TPS25200 [TI]

关断时可实现反向电流阻断的 2.5V 至 6.5V、60mΩ、0.085A 至 2.9A 电子保险丝;
TPS25200
型号: TPS25200
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

关断时可实现反向电流阻断的 2.5V 至 6.5V、60mΩ、0.085A 至 2.9A 电子保险丝

电子
文件: 总32页 (文件大小:4838K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS25200  
ZHCSC71E MARCH 2014 REVISED JUNE 2021  
具有高精度可调电流限值和过压钳位TPS25200 5V 电子保险丝  
1 特性  
3 说明  
2.5V 6.5V 工作电压  
• 输入可耐受高20V 的电压  
7.6V 输入过压关断  
TPS25200 是一款具有高精度电流限值和过压钳位的  
5V 电子保险丝。此器件可在过压和过流事件发生期间  
为负载和电源提供可靠保护。  
5.25V 5.55V 固定过压钳位  
0.6μs 过压锁定响应  
3.5μs 短路响应  
• 集成60mΩMOSFET  
• 高2.5A 的持续负载电流  
2.9 A 电流下的限流精度±6%  
• 禁用时反向电流阻断  
• 内置软启动  
TPS2553 引脚到引脚兼容  
• 通UL 2367 认证  
TPS25200 是一款用于保护负载的智能开关可耐受  
20V 的输入电压。如果在输入端施加了错误电压输  
出端可将电压限制在 5.4V以保护负载。如果输入端  
的电压超过 7.6V此器件将断开负载以防止对器件  
/或负载造成损坏。  
TPS25200 具有 60mΩ 的内部电源开关可用于在多  
种异常情况下保护电源、器件和负载。此器件提供高达  
2.5A 的持续负载电流。通过一个连接到地的电阻可  
对限流值85mA 2.9A 范围内进行设置。当发生过  
载时输出电流被限制在由 RILIM 设定的电流值上如果  
出现持续过载TPS25200 将最终进入热关断模式从  
而避免自身发生损坏。  
– 文件编169910  
RILIM 33kΩ最大电流3.12A)  
2 应用  
器件信息  
封装  
USB 电源开关  
订货编号  
封装尺寸  
USB 从设备  
TPS25200  
WSON (6)  
2.00mm × 2.00mm  
• 手机/智能电话  
3G4G 无线数据卡  
• 固态硬(SSD)  
3V 5V 适配器供电设备  
V
IO  
VOUT (V)  
300kΩ  
Over Voltage Clamp  
(OVC)  
Fault signal  
TPS25200DRV  
V
IN  
V
OUT  
5.4 V  
6
5
4
1
2
3
IN  
OUT  
ILIM  
C
IN  
300 kΩ  
GND  
EN  
Turn Off  
MOSFET  
C
OUT  
FAULT  
PowerPAD  
R
ILIM  
VIN (V)  
UVLO(2.35V)  
OVLO(7.6V)  
20 V  
V
OUT VIN 之间的关系  
简化版原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSCJ0  
 
 
 
TPS25200  
ZHCSC71E MARCH 2014 REVISED JUNE 2021  
www.ti.com.cn  
Table of Contents  
8.4 Device Functional Modes..........................................13  
9 Application and Implementation..................................14  
9.1 Application Information............................................. 14  
9.2 Typical Application.................................................... 14  
10 Power Supply Recommendations..............................21  
11 Layout...........................................................................21  
11.1 Layout Guidelines................................................... 21  
11.2 Layout Example...................................................... 21  
12 Device and Documentation Support..........................22  
12.1 Documentation Support.......................................... 22  
12.2 接收文档更新通知................................................... 22  
12.3 支持资源..................................................................22  
12.4 Trademarks.............................................................22  
12.5 Electrostatic Discharge Caution..............................22  
12.6 术语表..................................................................... 22  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................5  
6.6 Timing Requirements..................................................6  
6.7 Typical Characteristics................................................7  
7 Parameter Measurement Information............................9  
8 Detailed Description......................................................10  
8.1 Overview...................................................................10  
8.2 Functional Block Diagram......................................... 11  
8.3 Feature Description...................................................11  
Information.................................................................... 22  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision D (February 2020) to Revision E (June 2021)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
Corrected package type......................................................................................................................................3  
Corrected package type......................................................................................................................................4  
Changes from Revision C (September 2017) to Revision D (February 2020)  
Page  
Updated Figure 9-5 ..........................................................................................................................................15  
Changes from Revision B (February 2017) to Revision C (September 2017)  
Page  
• 在器件信表中将封装SON 更改WSON.................................................................................................. 1  
Changes from Revision A (March 2014) to Revision B (February 2017)  
Page  
• 向部分添加UL 认证状态.........................................................................................................................1  
Changes from Revision * (March 2014) to Revision A (March 2014)  
Page  
Changed the toff TYP value From: 0.24 ms To: 0.22 ms ....................................................................................6  
Added condition: VEN = VIN = 0 V to Figure 6-3 .................................................................................................7  
Changed Figure 6-8 graph title From: Discharge Resistance To: VIN ................................................................7  
Changed 方程4 From = 2470 mA to = 2479 mA..........................................................................................16  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS25200  
 
TPS25200  
ZHCSC71E MARCH 2014 REVISED JUNE 2021  
www.ti.com.cn  
5 Pin Configuration and Functions  
IN  
6
5
4
1
2
3
OUT  
ILIM  
Power  
PAD  
GND  
EN  
FAULT  
5-1. DRV Package 6-Pin WSON Top View  
5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Logic-level control input. When is driven high, the power switch is enabled. When it is driven low,  
turn power switch off. This pin cannot be left floating and it must be limited below the absolute  
maximum rating if tied to VIN  
EN  
4
I
Active-low open-drain output, asserted during overcurrent, overvoltage or overtemperature.  
Connect a pull up resistor to the logic I/O voltage  
FAULT  
3
O
GND  
ILIM  
5
2
Ground connection; connect externally to PowerPAD  
O
External resistor used to set current-limit threshold; Recommended 33 kΩRILIM 1100 kΩ  
Input voltage; connect a 0.1-μF or greater ceramic capacitor from IN to GND as close to the IC as  
possible  
IN  
6
1
I
OUT  
O
Protected power switch VOUT  
Internally connected to GND; used to heat-sink the part to the circuit board traces. Connect  
PowerPAD to GND terminal externally  
PowerPAD™  
PAD  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS25200  
 
 
TPS25200  
ZHCSC71E MARCH 2014 REVISED JUNE 2021  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range, voltage are referenced to GND (unless otherwise noted) (1)  
MIN  
MAX  
20  
UNIT  
Voltage on IN  
V
V
V
0.3  
0.3  
7  
Voltage on OUT, EN, ILIM, FAULT  
Voltage from IN to OUT  
7
20  
IO  
Continuous output current  
Continuous FAULT output sink current  
Continuous ILIM output source current  
Operating junction temperature  
Storage temperature  
Thermally Limited  
25  
150  
mA  
µA  
TJ  
Internally limited  
Tstg  
150  
°C  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolutemaximum- rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range, voltage are referenced to GND (unless otherwise noted)  
MIN  
MAX  
6.5  
UNIT  
V
VIN  
Input voltage of IN  
2.5  
0
VEN  
IFAULT  
IOUT  
RILIM  
TJ  
Enable terminal voltage  
6.5  
V
Continuous FAULT sink current  
Continuous output current of OUT  
Current-limit set resistors  
Operating junction temperature  
0
10  
mA  
A
2.5  
33  
1100  
125  
kΩ  
°C  
40  
6.4 Thermal Information  
TPS25200  
THERMAL METRIC(1)  
DRV (WSON)  
6 PINS  
66.5  
UNIT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
θJA  
83.4  
θJCtop  
θJB  
36.1  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.6  
ψJT  
36.5  
ψJB  
7.6  
θJCbot  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS25200  
 
 
 
 
 
 
 
 
 
 
TPS25200  
ZHCSC71E MARCH 2014 REVISED JUNE 2021  
www.ti.com.cn  
6.5 Electrical Characteristics  
Conditions are 40°C TJ +125°C and 2.5 V VIN 6.5 V. VEN = VIN, RILIM = 33 k. Positive current into terminals.  
Typical value is at 25°C. All voltages are with respect to GND (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SWITCH  
TJ = 25°C  
60  
60  
70  
90  
40°C TJ +85°C  
2.5 V VIN 5 V,  
IOUT = 2.5 A  
INOUT resistance(1)  
mΩ  
rDS(on)  
40°C TJ ≤  
+125°C  
60  
99  
ENABLE INPUT EN  
EN terminal turnon threshold  
Input rising  
Input falling  
1.9  
V
V
EN terminal turnoff threshold  
Hyesteresis  
0.6  
330(2)  
480  
mV  
µA  
IEN  
Leakage current  
VEN = 0 V or 5.5 V  
2
2  
DISCHARGE  
RDCHG OUT discharge resistance  
CURRENT LIMIT  
VOUT = 5 V, VEN = 0 V  
625  
Ω
2773  
2270  
1620  
1110  
590  
2952  
2423  
1740  
1206  
647  
3127  
2570  
1860  
1300  
710  
RILIM = 33 kΩ  
RILIM = 40.2 kΩ  
RILIM = 56 kΩ  
RILIM = 80.6 kΩ  
RILIM = 150 kΩ  
RILIM = 1100 kΩ  
IOS  
mA  
Current - limit, See 7-4  
40  
83  
130  
OVERVOLTAGE LOCKOUT, IN  
V(OVLO) IN rising OVLO threshold voltage  
Hysteresis  
IN rising  
6.8  
7.6  
8.45  
5.55  
V
70(2)  
mV  
VOLTAGE CLAMP, OUT  
V(OVC)  
OUT clamp voltage threshold  
5.25  
5.4  
V
CL = 1 µF, RL = 100 Ω, VIN = 6.5 V  
SUPPLY CURRENT  
VEN = 0 V, VIN = 5 V  
0.8  
1000  
143  
5
1700  
200  
IIN(off)  
Supply current, low-level output  
µA  
VEN = 0 or 5 V, VIN = 20 V  
RILIM = 33 kΩ  
RILIM = 150 kΩ  
VIN = 5 V,  
No load on OUT  
IIN(on)  
Supply current, high-level output  
Reverse leakage current  
µA  
µA  
134  
190  
VOUT = 6.5V, VIN = VEN = 0 V, TJ = 25°C,  
measure IOUT  
IREV  
3
5
UNDERVOLTAGE LOCKOUT, IN  
VUVLO IN rising UVLO threshold voltage  
Hysteresis  
FAULT FLAG  
VOL Output low voltage, FAULT  
Off-state leakage  
IN rising  
2.35  
30(2)  
2.45  
V
mV  
IFAULT = 1 mA  
VFAULT = 6.5 V  
50  
180  
1
mV  
µA  
THERMAL SHUTDOWN  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS25200  
 
 
TPS25200  
ZHCSC71E MARCH 2014 REVISED JUNE 2021  
www.ti.com.cn  
Conditions are 40°C TJ +125°C and 2.5 V VIN 6.5 V. VEN = VIN, RILIM = 33 k. Positive current into terminals.  
Typical value is at 25°C. All voltages are with respect to GND (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
155  
135  
TYP  
MAX  
UNIT  
Thermal shutdown threshold, OTSD2  
Thermal shutdown threshold only in  
current-limit, OTSD1  
°C  
Hysteresis  
20(2)  
(1) Pulse-testing techniques maintain junction temperature close to ambient temperature. Thermal effects must be taken into account  
separately.  
(2) These parameters are provided for reference only and does not constitute part of TI's published device specifications for purposes of  
TI's product warranty.  
6.6 Timing Requirements  
Conditions are 40°C TJ +125°C and 2.5 V VIN 6.5 V. VEN = VIN, RILIM = 33 k. Positive current are into  
terminals. Typical value is at 25°C. All voltages are with respect to GND (unless otherwise noted)  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
POWER SWITCH  
tr  
tf  
OUT voltage rise time  
OUT voltage fall time  
2.05  
0.18  
3.2  
ms  
0.2  
CL = 1 µF, RL = 100 , (see 7-2)  
ENABLE INPUT EN  
ton Turnon time  
toff Turnoff time  
CURRENT LIMIT  
5.12  
0.22  
7.3  
0.3  
ms  
ms  
2.5 V VIN 5 V, CL = 1 µF, RL = 100 Ω,  
(see 7-2)  
t(IOS)  
Short-circuit response time  
3.5(1)  
0.6(1)  
µs  
µs  
VIN = 5 V (see 7-4)  
OVERVOLTAGE LOCKOUT, IN  
VIN 5 V to 10 V with 1-V/µs ramp up rate,  
VOUT with 100-Ωload  
t(OVLO_off_delay) Turnoff delay for OVLO  
FAULT FLAG  
FAULT assertion or de-assertion due to  
overcurrent condition  
FAULT deglitch  
5
8
12  
ms  
(1) This parameter is provided for reference only and does not constitute part of TI's published device specifications for purposes of TI's  
product warranty.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS25200  
 
 
 
 
TPS25200  
ZHCSC71E MARCH 2014 REVISED JUNE 2021  
www.ti.com.cn  
6.7 Typical Characteristics  
200  
180  
160  
140  
120  
100  
80  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VIN = 2.5  
V = 5 V  
IN
60  
40  
V=2.5V
IN  
20  
V
= 5 V  
IN  
0
œ50  
0
50  
100  
150  
œ50  
0
50  
100  
150  
Junction Temperature (°C)  
Junction Temperature (°C)  
C001  
C002  
RILIM = 33 KΩ  
RILIM = 33 KΩ  
6-1. IIN(on) vs Junction Temperature  
6-2. IIN(off) vs Junction Temperature  
6
5
4
3
2
1
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 5 V  
VOUT = 6.5 V  
0
50  
100  
150  
0
50  
100  
150  
œ50  
œ50  
Junction Temperature (°C)  
Junction Temperature (°C)  
C003  
C004  
6-4. rDS(ON) vs Junction Temperature  
VEN = VIN = 0 V  
6-3. IREV vs Junction Temperature  
7.8  
7.8  
7.7  
7.7  
7.6  
7.6  
7.5  
7.5  
7.4  
5.50  
5.45  
5.40  
5.35  
5.30  
0
50  
100  
150  
0
50  
100  
150  
C005  
œ50  
œ50  
Junction Temperature (°C)  
Junction Temperature (°C)  
RL = 100 Ω  
C005  
VEN = VIN = 0 V  
6-5. V(OVLO) vs Junction Temperature  
CL = 1 µF  
VIN = 6.5 V  
6-6. VO(VC) vs Junction Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS25200  
 
 
 
TPS25200  
ZHCSC71E MARCH 2014 REVISED JUNE 2021  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
3500  
3000  
2500  
2000  
540  
530  
520  
510  
500  
490  
480  
470  
460  
RILIM = 33 K  
RILIM = 40.2 K  
RILIM = 150 K  
R
= 80.6 K  
ILIM
1500  
1000  
500  
0
œ50  
0
50  
100  
150  
2
3
4
5
6
7
Junction Temperature (°C)  
VIN  
C007  
C001  
6-7. IOS vs Junction Temperature  
6-8. Discharge Resistance vs VIN  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS25200  
 
TPS25200  
ZHCSC71E MARCH 2014 REVISED JUNE 2021  
www.ti.com.cn  
7 Parameter Measurement Information  
OUT  
90%  
tr  
tf  
VOUT  
RL  
10%  
CL  
7-2. Power-On and Off Timing  
7-1. Output Rise-Fall Test Load  
IOS  
50%  
ton  
50%  
VEN  
IOUT  
toff  
90%  
VOUT  
tIOS  
10%  
7-4. Output Short Circuit Parameters  
7-3. Enable Timing, Active High Enable  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS25200  
 
 
 
TPS25200  
ZHCSC71E MARCH 2014 REVISED JUNE 2021  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPS25200 is an intelligent low voltage switch or e-Fuse with robust overcurrent and overvoltage protection  
which are suitable for a variety of applications.  
The TPS25200 current limited power switch uses N-channel MOSFETs in applications requiring up to 2.5 A of  
continuous load current. The device allows the user to program the current-limit threshold between 85 mA and  
2.9 A (typical) via an external resistor. The device enters constant-current mode when the load exceeds the  
current-limit threshold.  
The TPS25200 Input can withstand 20-V DC voltage, but clamps VOUT to a precision regulated 5.4 V and shuts  
down in the event VIN exceeds 7.6 V. The device also integrates overcurrent and short circuit protection. The  
precision overcurrent limit helps to minimize over design of the input power supply while the fast response short  
circuit protection isolates the load when a short circuit is detected.  
The additional features include:  
Enable the device can be put into a sleep mode for portable applications.  
Overtemperature protection to safely shutdown in the event of an overcurrent event or a slight overvoltage  
event where the VOUT clamp is engaged over and extended period of time.  
Deglitched fault reporting to filter the Fault signal to ensure the TPS25200 do not provide false fault alerts.  
Output discharge pull-down to help ensue a load is in fact off and not in some undefined operational state.  
Reverse blocking when disabled to prevent back-drive from an active load inadvertently causing  
undetermined behavior in the application.  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS25200  
 
 
TPS25200  
ZHCSC71E MARCH 2014 REVISED JUNE 2021  
www.ti.com.cn  
8.2 Functional Block Diagram  
Current  
Sense  
CS  
IN  
OUT  
UVLO  
Charge  
Pump  
Current  
Limit  
Driver  
OVLO  
See Note A  
EN  
GND  
Zener Diode  
OTSD  
Thermal  
Sense  
OVC  
8-ms  
Deglitch  
FAULT  
ILIM  
A. 6.4-V Typical Clamp Voltage  
8.3 Feature Description  
8.3.1 Enable  
This logic enable input controls the power switch and device supply current. A logic high input on EN enables the  
driver, control circuits, and power switch. The enable input is compatible with both TTL and CMOS logic levels.  
EN can be tied to VIN with a pull up resistor, and is protected with an integrated zener diode. Use a sufficiently  
large (300-kΩ) pull up resistor to ensure that the V(EN) is limited below the absolute maximum rating.  
8.3.2 Thermal Sense  
The TPS25200 self protects by using two independent thermal sensing circuits that monitor the operating  
temperature of the power switch and disable operation if the temperature exceeds recommended operating  
conditions. The TPS25200 device operates in constant-current mode during an overcurrent condition, which  
increases the voltage drop across power switch. The power dissipation in the package is proportional to the  
voltage drop across the power switch, which increases the junction temperature during an overcurrent condition.  
The first thermal sensor (OTSD1) turns off the power switch when the die temperature exceeds 135°C  
(minimum) and the part is in current limit. Hysteresis is built into the thermal sensor, and the switch turns on after  
the device has cooled approximately 20°C.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS25200  
 
 
TPS25200  
ZHCSC71E MARCH 2014 REVISED JUNE 2021  
www.ti.com.cn  
The TPS25200 also has a second ambient thermal sensor (OTSD2). The ambient thermal sensor turns off the  
power switch when the die temperature exceeds 155°C (minimum) regardless of whether the power switch is in  
current limit and turns on the power switch after the device has cooled approximately 20°C. The TPS25200  
continues to cycle off and on until the fault is removed.  
8.3.3 Overcurrent Protection  
The TPS25200 thermally protects itself by thermal cycling during an extended overcurrent condition. The device  
turns off when the junction temperature exceeds 135°C (typical) while in current limit. The device remains off  
until the junction temperature cools 20°C (typical) and then restarts. The TPS25200 cycles on/off until the  
overload is removed (see Figure 9-13 and 9-16).  
The TPS25200 responds to an overcurrent condition by limiting their output current to the IOS levels shown in 图  
7-4. When an overcurrent condition is detected, the device maintains a constant output current and the output  
voltage is reduced accordingly. During an over current event, two possible overload conditions can occur.  
The first condition is when a short circuit or partial short circuit is present when the device is powered-up or  
enabled. The output voltage is held near zero potential with respect to ground and the TPS25200 ramps the  
output current to IOS. The TPS25200 devices limit the current to IOS until the overload condition is removed or  
the device begins to thermal cycle.  
The second condition is when a short circuit, partial short circuit, or transient overload occurs while the device is  
enabled and powered on. The device responds to the overcurrent condition within time tIOS (see 7-4). The  
current-sense amplifier is overdriven during this time and momentarily disables the internal current-limit  
MOSFET. The current-sense amplifier recovers and limits the output current to IOS. Similar to the previous case,  
the TPS25200 limits the current to IOS until the overload condition is removed or the device begins to thermal  
cycle.  
8.3.4 FAULT Response  
The FAULT open-drain output is asserted (active low) during an overcurrent, overtemperature or overvoltage  
condition. The TPS25200 asserts the FAULT signal until the fault condition is removed and the device resumes  
normal operation. The TPS25200 is designed to eliminate false FAULT reporting by using an internal delay  
"deglitch" circuit for overcurrent (8-ms typical) conditions without the need for external circuitry. This ensures that  
FAULT is not accidentally asserted due to normal operation such as starting into a heavy capacitive load. The  
deglitch circuitry delays entering and leaving current-limit induced fault conditions.  
The FAULT signal is not deglitched when the MOSFET is disabled due to an overtemperature condition but is  
deglitched after the device has cooled and begins to turnon. This unidirectional deglitch prevents FAULT  
oscillation during an overtemperature event.  
The FAULT signal is not deglitched when the MOSFET is disabled into OVLO or out of OVLO. The TPS25200  
does not assert the FAULT during output voltage clamp mode.  
Connect FAULT with a pull up resistor to a low voltage I/O rail.  
8.3.5 Output Discharge  
A 480-Ω(typical) output discharge dissipates stored charge and leakage current on OUT when the TPS25200 is  
in UVLO, disabled or OVLO. The pull down capability decreases as VIN decreases (Figure 6-8).  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS25200  
TPS25200  
ZHCSC71E MARCH 2014 REVISED JUNE 2021  
www.ti.com.cn  
8.4 Device Functional Modes  
The TPS25200 VIN can withstand up to 20 V. Within 0 V to 20 V range, it can be divided to four modes as shown  
in 8-1.  
VOUT (V)  
Over Voltage Clamp  
(OVC)  
5.4 V  
Turn Off  
MOSFET  
VIN (V)  
UVLO(2.35V)  
OVLO(7.6V)  
20 V  
8-1. Output vs Input Voltage  
8.4.1 Undervoltage Lockout (UVLO)  
The undervoltage lockout (UVLO) circuit disables the power switch until the input voltage reaches the UVLO  
turnon threshold. Built-in hysteresis prevents unwanted on and off cycling due to input voltage droop during  
turnon.  
8.4.2 Overcurrent Protection (OCP)  
When 2.35 V < VIN < 5.4 V, the TPS25200 is a traditional power switch, providing overcurrent protection.  
8.4.3 Overvoltage Clamp (OVC)  
When 5.4 V < VIN < 7.6 V, the overvoltage clamp (OVC) circuit clamps the output voltage to 5.4 V. Within this VIN  
range, the overcurrent protection remains active.  
8.4.4 Overvoltage Lockout (OVLO)  
When VIN exceeds 7.6 V, the overvoltage lockout (OVLO) circuit turns off the protected power switch.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS25200  
 
 
TPS25200  
ZHCSC71E MARCH 2014 REVISED JUNE 2021  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The TPS25200 is a 5-V eFuse with precision current limit and over-voltage clamp. When a slave device such as  
a mobile data-card device is hot plugged into a USB port as shown in 9-1, an input transient voltage could  
damage the slave device due to the cable inductance. Placing the TPS25200 at the input of mobile device as  
over-voltage and overcurrent protector can safeguard these slave devices. Input transients also occur when the  
current through the cable parasitic inductance changes abruptly. This can occur when the TPS25200 turns off  
the internal MOSFET in response to an overvoltage or overcurrent event. The TPS25200 can withstand the  
transient without a bypass bulk capacitor, or other external overvoltage protection components at input side. The  
TPS25200 also can be used at host side as a traditional power switch pin-to-pin compatible with the TPS2553.  
Mobile Device  
Rcable  
Lcable  
OUT  
IN  
TPS25200  
GND  
5 V  
USB Port  
Load  
9-1. Hot Plug Into 5V USB port with Parasitic Cable Resistance and Inductance  
9.2 Typical Application  
VIO  
300 kΩ  
Fault signal  
TPS25200DRV  
0.1µF  
VOUT  
VIN  
6
5
4
1
IN  
OUT  
ILIM  
300 kΩ  
GND  
EN  
2
3
FAULT  
22mF  
PowerPAD  
R
ILIM  
9-2. Overvoltage and Overcurrent ProtectorTypical Application Schematic  
Use the IOS in the Electrical Characteristics table or IOS in 方程1 to select the RILIM  
.
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS25200  
 
 
 
 
TPS25200  
ZHCSC71E MARCH 2014 REVISED JUNE 2021  
www.ti.com.cn  
9.2.1 Design Requirements  
For this design example, use the desgin parameters in 9-1 as the input parameters.  
9-1. Design Parameters  
DESIGN PARAMETERS  
Normal input operation voltage  
Output transient voltage  
Minimum current limit  
EXAMPLE VALUE  
5 V  
6.5 V  
2.1 A  
2.9 A  
Maximum currnt limit  
9.2.2 Detailed Design Procedure  
9.2.2.1 Step by Step Design Produce  
To begin the design process a few parameters must be decided upon. The designer needs to know the following:  
Normal Input Operation Voltage  
Output transient voltage  
Minimum Current Limit  
Maximum Current Limit  
9.2.2.2 Input and Output Capacitance  
Input and output capacitance improves the performance of the device; the actual capacitance must be optimized  
for the particular application. For all applications, a 0.1-µF or greater ceramic bypass capacitor between IN and  
GND is recommended as close to the device as possible for local noise decoupling.  
When VIN ramp up exceed 7.6 V, VOUT follows VIN until the TPS25200 turns off the internal MOSFET after  
t(OVLO_off_delay). Since t(OVLO_off_delay) largely depends on the VIN ramp rate, VOUT sees some peak voltage.  
Increasing the output capacitance can lower the output peak voltage as shown in 9-3.  
10  
8
6
4
2
0
0
10  
20  
30  
40  
50  
Output Cap (F)  
C008  
9-3. VOUT Peak Voltage vs COUT (VIN Step From 5 V to 15 V with 1-V/µs Ramp Up Rate)  
9.2.2.3 Programming the Current-Limit Threshold  
The overcurrent threshold is user programmable via an external resistor. The TPS25200 uses an internal  
regulation loop to provide a regulated voltage on the ILIM terminal. The current-limit threshold is proportional to  
the current sourced out of ILIM. The recommended 1% resistor range for RILIM is 33 kΩ ≤ RILIM 1100 kΩ to  
ensure stability of the internal regulation loop. Many applications require that the minimum current limit is above  
a certain current level or that the maximum current limit is below a certain current level, so it is important to  
consider the tolerance of the overcurrent threshold when selecting a value for RILIM. The current-limit threshold  
equations (IOS) in 方程式 1 approximate the resulting overcurrent threshold for a given external resistor value  
RILIM. See the Electrical Characteristics table for specific current limit settings. The traces routing the RILIM  
resistor to the TPS25200 must be as short as possible to reduce parasitic effects on the current-limit accuracy.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS25200  
 
 
 
TPS25200  
ZHCSC71E MARCH 2014 REVISED JUNE 2021  
www.ti.com.cn  
RILIM can be selected to provide a current-limit threshold that occurs 1) above a minimum load current or 2)  
below a maximum load current.  
To design above a minimum current-limit threshold, find the intersection of RILIM and the maximum desired load  
current on the IOS(min) curve and choose a value of RILIM below this value. Programming the current limit above a  
minimum threshold is important to ensure start up into full load or heavy capacitive loads. The resulting  
maximum current-limit threshold is the intersection of the selected value of RILIM and the IOS(max) curve.  
To design below a maximum current-limit threshold, find the intersection of RILIM and the maximum desired load  
current on the IOS(max) curve and choose a value of RILIM above this value. Programming the current limit below  
a maximum threshold is important to avoid current limiting upstream power supplies causing the input voltage  
bus to droop. The resulting minimum current-limit threshold is the intersection of the selected value of RILIM and  
the IOS(min) curve. See Figure 9-4 and Figure 9-5 .  
96754V  
IOSmax (mA) =  
IOSnom(mA) =  
IOSmin(mA) =  
+ 30  
0.985  
RILIM  
kW  
98322V  
1.003kW  
RILIM  
97399  
1.015  
- 30  
RILIM  
kW  
(1)  
Where 33 kRILIM 1100 kΩ.  
750  
700  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
3500  
3000  
2500  
IOS (max)  
IOS (typ)  
IOS (min)  
IOS(typ)  
2000  
1500  
1000  
500  
0
IOS(max)  
IOS(min)  
0
30 40 50 60 70 80 90 100 110 120 130 140 150  
100 200 300 400 500 600 700 800 900 1000 1100  
Current Limit Resistor (kW  
Current Limit Resistor (kW)  
C001  
C002  
33 kRILIM 150 kΩ  
150 kRILIM 1100 kΩ  
9-4. Current-Limit Threshold vs RILIM  
I
9-5. Current-Limit Threshold vs RILIM II  
9.2.2.4 Design Above a Minimum Current Limit  
Some applications require that current limiting cannot occur below a certain threshold. For this example, assume  
that 2.1 A must be delivered to the load so that the minimum desired current-limit threshold is 2100 mA. Use the  
IOS equations (方程1) and Figure 9-4 to select RILIM as shown in 方程2.  
IOSmin(mA) = 2100 mA  
97399V  
RILIM1.015kW  
IOSmin(mA) =  
- 30  
1
1
1.015  
æ
ö
÷
÷
ø
97399  
97399  
1.015  
æ
ö
RILIM(kW) = ç  
=
= 43.22 kW  
ç
÷
ç
è
IOS(min) + 30  
2100 + 30  
è
ø
(2)  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS25200  
 
 
 
 
TPS25200  
ZHCSC71E MARCH 2014 REVISED JUNE 2021  
www.ti.com.cn  
Select the closest 1% resistor less than the calculated value: RILIM = 42.2 kΩ. This sets the minimum current-  
limit threshold at 2130 mA as shown in 方程3.  
97399V  
RILIM1.015kW  
97399  
42.2 x 1.01 1.015  
IOSmin(mA) =  
- 30 =  
- 30 = 2130mA  
(
)
(3)  
Use the IOS equations (方程式 1), Figure 9-4, and the previously calculated value for RILIM to calculate the  
maximum resulting current-limit threshold as shown in 方程4.  
96754  
IOSmax (mA) =  
IOSmax (mA) =  
+ 30  
0.985  
RILIM  
96754  
(42.2´0.99)0.985  
+ 30 = 2479 mA  
(4)  
The resulting current-limit threshold minimum is 2130 mA and maximum is 2479 mA with RILIM = 42.2k± 1%.  
9.2.2.5 Design Below a Maximum Current Limit  
Some applications require that current limiting must occur below a certain threshold. For this example, assume  
that 2.9 A must be delivered to the load so that the minimum desired current-limit threshold is 2900 mA. Use the  
IOS equations (方程1) and Figure 9-5 to select RILIM as shown in 方程5.  
IOSmax (mA) = 2900mA  
96754  
RILIM0.985kW  
IOSmax (mA) =  
+ 30  
1
1
0.985  
æ
ö
÷
÷
ø
96754  
96754  
0.985  
æ
ö
R
(kW) = ç  
=
= 35.57 kW  
ç
÷
ILIM  
ç
IOS(max) - 30  
2900 - 30  
è
ø
è
(5)  
Select the closest 1% resistor greater than the calculated value: RILIM = 36 k. This sets the maximum current-  
limit threshold at 2894 mA as shown in 方程6.  
96754V  
RILIM0.985kW  
96754  
IOSmax (mA) =  
+ 30 =  
+ 30 = 2894mA  
0.985  
36 x 0.99  
(
)
(6)  
Use the IOS equations, Figure 9-5, and the previously calculated value for RILIM to calculate the minimum  
resulting current-limit threshold as shown in 方程7.  
97399  
IOSmin(mA) =  
IOSmin(mA) =  
- 30  
1.015  
RILIM  
97399  
36´1.01 1.015  
- 30 = 2508mA  
(
)
(7)  
The resulting minimum current-limit threshold minimum is 2592 mA and maximum is 2894 mA with RILIM = 36 kΩ  
± 1%.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS25200  
 
 
 
 
 
TPS25200  
ZHCSC71E MARCH 2014 REVISED JUNE 2021  
www.ti.com.cn  
9.2.2.6 Power Dissipation and Junction Temperature  
The low on-resistance of the internal N-channel MOSFET allows small surface-mount packages to pass large  
currents. It is good design practice to estimate power dissipation and junction temperature. The below analysis  
gives an approximation for calculating junction temperature based on the power dissipation in the package.  
However, it is important to note that thermal analysis is strongly dependent on additional system level factors.  
Such factors include air flow, board layout, copper thickness and surface area, and proximity to other devices  
dissipating power. Good thermal design practice must include all system level factors in addition to individual  
component analysis. Begin by determining the rDS(on) of the N-channel MOSFET relative to the input voltage and  
operating temperature. As an initial estimate, use the highest operating ambient temperature of interest and read  
rDS(on) from the typical characteristics graph. When VIN is lower than V(OVC), the TPS2500 is an traditional power  
switch. Using this value, the power dissipation can be calculated by usnig 方程8.  
2
PD = rDS(on) × IOUT  
(8)  
When VIN exceed V(OVC), but lower than V(OVLO), the TPS25200 clamp output to fixed V(OVC), the power  
dissipation can be calculated by using 方程9.  
PD = (VIN V(OVC)) × IOUT  
(9)  
where  
PD = Total power dissipation (W)  
rDS(on) = Power switch on-resistance (Ω)  
V(OVC) = Overvoltage clamp voltage (V)  
IOUT = Maximum current-limit threshold (A)  
This step calculates the total power dissipation of the N-channel MOSFET.  
Finally, calculate the junction temperature using 方程10.  
TJ = PD × θJA + TA  
(10)  
where  
TA = Ambient temperature (°C)  
• θJA = Thermal resistance (°C /W)  
PD = Total power dissipation (W)  
Compare the calculated junction temperature with the initial estimate. If they are not within a few degrees, repeat  
the calculation using the "refined" rDS(on) from the previous calculation as the new estimate. Two or three  
iterations are generally sufficient to achieve the desired result. The final junction temperature is highly dependent  
on thermal resistance θJA, and thermal resistance is highly dependent on the individual package and board  
layout.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS25200  
 
 
 
TPS25200  
ZHCSC71E MARCH 2014 REVISED JUNE 2021  
www.ti.com.cn  
9.2.3 Application Curves  
9
8
0.32  
0.28  
0.24  
0.2  
12  
11  
10  
9
VOUT  
V
IN  
7
6
8
5
7
0.16  
0.12  
0.08  
0.04  
6
4
5
3
4
2
V
V
IN  
3
OUT  
1
2
/FAULT  
0
0
1
I
OUT
0
œ1  
-0.04  
œ80  
œ40  
0
40  
80  
120  
160  
œ1  
œ2.0 œ1.5 œ1.0 œ0.5  
0.0  
0.5  
1.0  
1.5  
2.0  
C009  
Time (ms)  
Time (s)  
C001  
9-7. VIN Step 5 V to 8 V with 4.7 μF // 100 Ω  
9-6. VOUT vs VIN (0 V to 10 V)  
12  
11  
10  
9
11  
VIN  
V
V
IN  
10  
9
VOUT  
OUT  
/FAULT
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
œ1  
-1  
-2  
0
2
4
6
8
-6  
-4  
-2  
0
2
4
Time (s)  
Time (us)  
C010  
C012  
9-8. Pulse Overvoltage with 100 Ω  
9-9. 5-V to 10-V OVLO Response Time  
5
5
4
3
2
1
0
-1  
5
5
4
3
2
1
0
-1  
EN  
V
IN  
4
3
4
V
OUT  
3
2
2
1
1
EN  
0
0
V
IN  
V
OUT  
œ1  
œ1  
œ4  
1
6
11  
16  
-1.2  
-0.2  
0.8  
1.8  
2.8  
Time (ms)  
Time (ms)  
C013  
C013  
9-10. Turnon Delay and Rise Time 150 µF || 2.5 9-11. Turnoff Delay and Fall Time 150 µF || 2.5 Ω  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS25200  
TPS25200  
ZHCSC71E MARCH 2014 REVISED JUNE 2021  
www.ti.com.cn  
6
5
4
3
2
6
5
4
3
2
1
0
-1  
6
5
6
V
I
OUT  
OUT  
/FAULT  
5
4
3
2
1
0
-1  
4
3
2
1
1
EN  
0
0
/FAULT  
I
OUT
œ1  
œ1  
œ2  
2
6
10  
Time (ms)  
14  
18  
œ20  
0
20  
40  
60  
80  
Time (ms)  
C015  
C016  
9-12. Enable into Output Short  
9-13. 2.5 to Output Short Transient Response  
6
5
6
5
4
3
2
1
0
-1  
6
6
5
4
3
2
1
0
-1  
V
I
V
I
OUT  
OUT  
/FAULT  
OUT  
OUT  
/FAULT  
5
4
4
3
3
2
2
1
1
0
0
œ1  
œ1  
œ70  
œ50  
œ30  
œ10  
10  
30  
œ20  
0
20  
40  
60  
80  
Time (ms)  
Time (ms)  
C016  
C016  
9-14. Output Short to 2.5-Load Recovery  
9-15. No Load to Output Short Transient  
Response  
Response  
6
5
6
5
4
3
2
1
0
-1  
6
5
6
VOUT  
V
IN  
V
V
OUT  
I
OUT  
/FAULT  
5
4
4
4
3
3
3
2
2
2
1
1
1
0
0
0
œ1  
œ1  
-1  
-0.8  
0
0.8  
1.6  
2.4  
3.2  
œ70  
œ50  
œ30  
œ10  
10  
30  
Time (ms)  
Time (ms)  
C020  
C016  
9-17. Hot-Short With 50 mΩ  
9-16. Output Short to No Load Recovery  
Response  
6
5
60  
V
VOUT  
I
IOUT
50  
40  
30  
20  
10  
0
4
3
2
1
0
œ1  
œ2  
-10  
-20  
œ4  
œ2  
œ0  
2
4
6
Time (ms)  
C021  
9-18. 50-mHot-Short Response Time  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS25200  
 
 
TPS25200  
ZHCSC71E MARCH 2014 REVISED JUNE 2021  
www.ti.com.cn  
10 Power Supply Recommendations  
The TPS25200 is designed for 2.7 V < VIN < 5 V (typical) voltage rails. While there is a VOUT clamp, it is not  
intended to be used to regulate VOUT at approximately 5.4 V with 6 V < VIN < 7 V. This is a protection feature  
only.  
11 Layout  
11.1 Layout Guidelines  
For all applications, a 0.1-µF or greater ceramic bypass capacitor between IN and GND is recommended as  
close to the device as possible for local noise decoupling.  
For output capacitance, refer to 9-3, low ESR ceramic cap is recommended.  
The traces routing the RILIM resistor to the device must be as short as possible to reduce parasitic effects on  
the current limit accuracy.  
The PowerPAD must be directly connected to PCB ground plane using wide and short copper trace.  
11.2 Layout Example  
VIA to Power Ground Plane  
FAULT  
4
5
6
3
EN  
ILIM  
2
1
IN  
High Frequency  
Bypass Capacitor  
OUT  
Power Ground  
VI/O  
11-1. TPS25200 Board Layout  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS25200  
 
 
 
 
TPS25200  
ZHCSC71E MARCH 2014 REVISED JUNE 2021  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation, see the following:  
TPS25200 EVM User's Guide  
12.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
PowerPADand TI E2Eare trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS25200  
 
 
 
 
 
 
 
 
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Jun-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS25200DRVR  
TPS25200DRVT  
ACTIVE  
ACTIVE  
WSON  
WSON  
DRV  
DRV  
6
6
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
SKB  
SKB  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Jun-2021  
OTHER QUALIFIED VERSIONS OF TPS25200 :  
Automotive : TPS25200-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Jul-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS25200DRVR  
TPS25200DRVT  
TPS25200DRVT  
WSON  
WSON  
WSON  
DRV  
DRV  
DRV  
6
6
6
3000  
250  
180.0  
180.0  
178.0  
8.4  
8.4  
8.4  
2.3  
2.3  
2.3  
2.3  
1.15  
1.15  
1.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
Q2  
Q2  
Q2  
250  
2.25  
2.25  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Jul-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS25200DRVR  
TPS25200DRVT  
TPS25200DRVT  
WSON  
WSON  
WSON  
DRV  
DRV  
DRV  
6
6
6
3000  
250  
210.0  
210.0  
205.0  
185.0  
185.0  
200.0  
35.0  
35.0  
33.0  
250  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DRV 6  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4206925/F  
PACKAGE OUTLINE  
DRV0006A  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
A
B
PIN 1 INDEX AREA  
2.1  
1.9  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
(0.2) TYP  
0.05  
0.00  
1
0.1  
EXPOSED  
THERMAL PAD  
3
4
6
2X  
7
1.3  
1.6 0.1  
1
4X 0.65  
0.35  
0.25  
6X  
PIN 1 ID  
(OPTIONAL)  
0.3  
0.2  
6X  
0.1  
C A  
C
B
0.05  
4222173/B 04/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRV0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
6X (0.45)  
6X (0.3)  
(1)  
1
7
6
SYMM  
(1.6)  
(1.1)  
4X (0.65)  
4
3
SYMM  
(1.95)  
(R0.05) TYP  
(
0.2) VIA  
TYP  
LAND PATTERN EXAMPLE  
SCALE:25X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222173/B 04/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRV0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
7
6X (0.45)  
METAL  
1
6
6X (0.3)  
(0.45)  
SYMM  
4X (0.65)  
(0.7)  
4
3
(R0.05) TYP  
(1)  
(1.95)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD #7  
88% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:30X  
4222173/B 04/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS25200-Q1

关断时可实现反向电流阻断的 2.5V 至 6.5V、67mΩ、2.1A 至 2.7A 汽车电子保险丝
TI

TPS25200DRVR

关断时可实现反向电流阻断的 2.5V 至 6.5V、60mΩ、0.085A 至 2.9A 电子保险丝 | DRV | 6 | -40 to 125
TI

TPS25200DRVT

关断时可实现反向电流阻断的 2.5V 至 6.5V、60mΩ、0.085A 至 2.9A 电子保险丝 | DRV | 6 | -40 to 125
TI

TPS25200QDRVRQ1

关断时可实现反向电流阻断的 2.5V 至 6.5V、67mΩ、2.1A 至 2.7A 汽车电子保险丝 | DRV | 6 | -40 to 125
TI

TPS25200QDRVTQ1

关断时可实现反向电流阻断的 2.5V 至 6.5V、67mΩ、2.1A 至 2.7A 汽车电子保险丝 | DRV | 6 | -40 to 125
TI

TPS2521

TPS2521xx, 2.7 - 5.7 V, 4 A, 31-mΩ True Reverse Current Blocking eFuse with Input Reverse Polarity Protection
TI

TPS25210A

TPS2521xx, 2.7 - 5.7 V, 4 A, 31-mΩ True Reverse Current Blocking eFuse with Input Reverse Polarity Protection
TI

TPS25210ARPWR

TPS2521xx, 2.7 - 5.7 V, 4 A, 31-mΩ True Reverse Current Blocking eFuse with Input Reverse Polarity Protection
TI

TPS25210L

TPS2521xx, 2.7 - 5.7 V, 4 A, 31-mΩ True Reverse Current Blocking eFuse with Input Reverse Polarity Protection
TI

TPS25210LRPWR

TPS2521xx, 2.7 - 5.7 V, 4 A, 31-mΩ True Reverse Current Blocking eFuse with Input Reverse Polarity Protection
TI

TPS2521XX

TPS2521xx, 2.7 - 5.7 V, 4 A, 31-mΩ True Reverse Current Blocking eFuse with Input Reverse Polarity Protection
TI

TPS2521XXRPW

TPS2521xx, 2.7 - 5.7 V, 4 A, 31-mΩ True Reverse Current Blocking eFuse with Input Reverse Polarity Protection
TI