TPS22953-Q1 [TI]

TPS2295x-Q1 5.7-V, 5-A, 14-mΩ On-Resistance, Automotive Load Switch;
TPS22953-Q1
型号: TPS22953-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TPS2295x-Q1 5.7-V, 5-A, 14-mΩ On-Resistance, Automotive Load Switch

文件: 总47页 (文件大小:3273K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS22953-Q1, TPS22954-Q1  
SLVSGK4 – NOVEMBER 2021  
TPS2295x-Q1 5.7-V, 5-A, 14-mΩ On-Resistance, Automotive Load Switch  
1 Features  
3 Description  
Qualified for automotive applications  
AEC-Q100 qualified:  
The TPS2295x-Q1 are small, single channel load  
switches with controlled turn on. The devices contain  
a N-channel MOSFET that can operate over an input  
voltage range of 0.7 V to 5.7 V and can support a  
maximum continuous current of 5 A.  
– Device temperature grade 1: –40°C to 125°C  
ambient operating temperature range  
Integrated single channel load switch  
Input voltage range: 0.7 V to 5.7 V  
RON resistance  
– RON = 14 mΩ at VIN = 5 V (VBIAS = 5 V)  
5-A maximum continuous switch current  
Adjustable Undervoltage Lockout Threshold  
(UVLO)  
The integrated adjustable Undervoltage Lockout  
(UVLO) and adjustable Power Good (PG) threshold  
provides voltage monitoring as well as robust power  
sequencing. The adjustable rise time control of the  
device greatly reduces inrush current for a wide  
variety of bulk load capacitances, thereby reducing  
or eliminating power supply droop. The switch is  
independently controlled by an on and off input  
(EN), which is capable of interfacing directly with  
low-voltage control signals. A 15-Ω on-chip load is  
integrated into the device for a quick discharge of the  
output when the switch is disabled. The enhanced  
Quick Output Discharge (QOD) remains active for a  
short time after power is removed from the device to  
finish discharging the output.  
Adjustable voltage supervisor with  
Power Good (PG) indicator  
Adjustable output slew rate control  
Enhanced quick output discharge remains active  
after power is removed (TPS22954-Q1 only)  
– 15 Ω (typ.) discharges 100 µF within 10 ms  
Reverse current blocking when disabled  
(TPS22953-Q1 only)  
Automatic restart after supervisor fault detection  
when enabled  
Thermal shutdown  
The TPS2295x-Q1 are available in small, space-  
saving 10-SON packages with integrated thermal  
pad, allowing for high power dissipation. The device  
is characterized for operation over the free-air  
temperature range of –40°C to +125°C.  
Low quiescent current ≤ 50 µA  
SON 10-pin package with thermal pad  
ESD performance tested per JESD 22  
– 2-kV HBM and 750-V CDM  
Device Information(1)  
2 Applications  
PART NUMBER  
PACKAGE (PIN)  
BODY SIZE (NOM)  
Infotainment and cluster head unit  
Automotive cluster display  
ADAS surround view system ECU  
Body control module and gateway  
TPS2295x-Q1  
WSON (10)  
2.00 mm × 3.00 mm  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
Simplified Schematic  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. ADVANCE INFORMATION for preproduction products; subject to change  
without notice.  
 
 
 
TPS22953-Q1, TPS22954-Q1  
SLVSGK4 – NOVEMBER 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 4  
7.1 Absolute Maximum Ratings........................................ 4  
7.2 ESD Ratings .............................................................. 4  
Recommended Operating Conditions...............................4  
7.3 Thermal Information....................................................4  
7.4 Electrical Characteristics.............................................5  
7.5 Electrical Characteristics – VBIAS = 5 V.................... 5  
7.6 Electrical Characteristics – VBIAS = 3.3 V................. 6  
7.7 Electrical Characteristics – VBIAS = 2.5 V................. 7  
7.8 Switching Characteristics – CT = 1000 pF..................9  
7.9 Switching Characteristics – CT = 0 pF......................10  
7.10 Typical DC Characteristics......................................11  
7.11 Typical Switching Characteristics............................14  
8 Parameter Measurement Information..........................20  
9 Detailed Description......................................................21  
9.1 Overview...................................................................21  
9.2 Functional Block Diagram.........................................21  
9.3 Feature Description...................................................22  
9.4 Device Functional Modes..........................................28  
10 Application and Implementation................................29  
10.1 Application Information........................................... 29  
10.2 Typical Application.................................................. 34  
11 Power Supply Recommendations..............................37  
12 Layout...........................................................................37  
12.1 Layout Guidelines................................................... 37  
12.2 Layout Example...................................................... 37  
13 Device and Documentation Support..........................38  
13.1 Documentation Support.......................................... 38  
13.2 Related Links.......................................................... 38  
13.3 Receiving Notification of Documentation Updates..38  
13.4 Support Resources................................................. 38  
13.5 Trademarks.............................................................38  
13.6 Electrostatic Discharge Caution..............................38  
13.7 Glossary..................................................................38  
14 Mechanical, Packaging, and Orderable  
Information.................................................................... 38  
14.1 Tape and Reel Information......................................39  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
DATE  
REVISION  
NOTES  
November 2021  
*
Initial release  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS22953-Q1 TPS22954-Q1  
 
TPS22953-Q1, TPS22954-Q1  
www.ti.com  
SLVSGK4 – NOVEMBER 2021  
5 Device Comparison Table  
Quick Output  
Discharge  
Reverse Current  
Blocking  
Device  
Package (Pin)  
Body Size  
Pin Pitch  
TPS22954-Q1  
TPS22953-Q1  
Yes  
No  
No  
DQC (10)  
DQC (10)  
2.00 mm × 3.00 mm  
2.00 mm × 3.00 mm  
0.5 mm  
0.5 mm  
Yes  
6 Pin Configuration and Functions  
IN  
IN  
1
2
3
4
5
10 OUT  
OUT 10  
1
IN  
IN  
9
8
7
6
OUT  
OUT  
9
8
7
6
2
GND  
(Exposed  
thermal pad)  
GND  
(Exposed  
thermal pad)  
3
4
5
BIAS  
EN  
SNS  
PG  
SNS  
PG  
BIAS  
EN  
GND  
CT  
CT  
GND  
Figure 6-1. DQC/DSQ Package 10-Pin WSON Top  
View  
Figure 6-2. DQC/DSQ Package 10-Pin WSON  
Bottom View  
Table 6-1. Pin Functions  
PIN(1)  
NAME  
I/O  
DESCRIPTION  
NO.  
1
IN  
I
Switch input. Bypass this input with a ceramic capacitor to GND.  
2
3
BIAS  
EN  
I
I
Bias pin and power supply to the device  
Active high switch to enable and disable the output. Also acts as the input UVLO pin. Use external resistor  
divider to adjust the UVLO level. Do not leave floating.  
4
5
6
GND  
CT  
O
Device ground  
VOUT slew rate control. Place ceramic cap from CT to GND to change the VOUT slew rate of the device  
and limit the inrush current. Rate the CT Capacitor to 25 V or higher.  
Power Good. This pin is open drain which pulls low when the voltage on EN or SNS is below their  
respective VIL levels.  
7
PG  
O
I
8
9
SNS  
Sense pin. Use external resistor divider to adjust the power good level. Do not leave floating.  
OUT  
O
Switch output  
10  
Thermal Pad  
Exposed thermal pad. Tie to GND.  
(1) Pinout applies to all package versions.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS22953-Q1 TPS22954-Q1  
 
 
 
TPS22953-Q1, TPS22954-Q1  
SLVSGK4 – NOVEMBER 2021  
www.ti.com  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
V
VIN  
Input voltage  
6
6
6
6
5
7
VBIAS  
Bias voltage  
V
VOUT  
Output voltage  
V
VEN, VSNS, VPG  
EN, SNS, and PG voltage  
V
IMAX  
IPLS  
TJ  
Maximum continuous switch current, TA = 70°C  
Maximum pulsed switch current, pulse < 300-µs, 2% duty cycle  
Maximum junction temperature  
Storage temperature  
A
A
Internally Limited  
–65  
Tstg  
150  
°C  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions.  
If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per AEC Q100- 002(1)  
HBM ESD classification level 2  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per AEC Q100- 011  
CDM ESD classification level C5  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
0.7  
2.5  
0.9  
0
MAX  
VBIAS  
5.7  
UNIT  
VIN  
Input voltage  
V
V
VBIAS  
Bias voltage  
VOUT  
Output voltage  
5.7  
V
VEN, VSNS, VPG  
EN, SNS, and PG voltage  
Operating free-air temperature  
Operating junction temperature  
5.7  
V
TA  
TJ  
–40  
–40  
125  
150  
°C  
°C  
7.3 Thermal Information  
TPS2295x-Q1  
THERMAL METRIC (1)  
DQC (WSON)  
UNIT  
10 PINS  
65.2  
73.9  
25.5  
2
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
ψJB  
25.4  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS22953-Q1 TPS22954-Q1  
 
 
 
 
 
 
 
 
TPS22953-Q1, TPS22954-Q1  
www.ti.com  
SLVSGK4 – NOVEMBER 2021  
7.4 Electrical Characteristics  
Unless otherwise noted, the specification in the following table applies over the operating ambient temperature –40 °C ≤ TA ≤  
+125 °C and the recommended VBIAS voltage range of 2.5 V to 5.7 V. Typical values are for TA = 25°C.  
PARAMETER  
TEST CONDITIONS  
VIN = 0.7V to VBIAS  
TA  
MIN  
650  
560  
465  
410  
TYP  
700  
600  
515  
455  
MAX UNIT  
VIH, Rising threshold  
VIL, Falling threshold  
VIH, Rising threshold  
VIL, Falling threshold  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
750  
640  
565  
500  
mV  
mV  
mV  
mV  
VEN  
VIN = 0.7V to VBIAS  
VIN = 0.7V to VBIAS  
VIN = 0.7V to VBIAS  
VSNS  
Blanking time for EN and  
SNS  
tBLANK  
EN or SNS rising  
EN or SNS falling  
–40°C to +125°C  
–40°C to +125°C  
100  
5
µs  
µs  
Deglitch time for EN and  
SNS  
tDEGLITCH  
Output discharge time  
(TPS22954 only)  
tDIS  
CL = 100µF  
SNS falling  
–40°C to +125°C  
–40°C to +125°C  
10  
ms  
ms  
tRESTART  
Output restart time  
2
Response time for  
reverse current blocking  
(TPS22953 only)  
VOUT = VBIAS  
EN falling  
tRCB  
–40°C to +125°C  
10  
µs  
TSD  
Thermal shutdown  
Junction temperature rising  
Junction temperature falling  
-
-
130  
150  
20  
170  
°C  
°C  
Thermal shutdown  
hysteresis  
TSDHYS  
25°C  
0.01  
2
5
mΩ  
mΩ  
mΩ  
Input reverse blocking  
current (TPS22953 only)  
VOUT = 5V, VIN = VEN = 0V,  
VBIAS = 0V to 5.7V  
IRCB,IN  
–40°C to +85°C  
–40°C to +125°C  
11  
7.5 Electrical Characteristics – VBIAS = 5 V  
Unless otherwise noted, the specification in the following table applies over the operating ambient temperature –40 °C ≤ TA ≤  
+125 °C and VBIAS = 5 V. Typical values are for TA = 25°C.  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
–40°C to +85°C  
–40°C to +125°C  
–40°C to +85°C  
–40°C to +125°C  
–40°C to +85°C  
–40°C to +125°C  
–40°C to +85°C  
–40°C to +125°C  
–40°C to +85°C  
–40°C to +125°C  
–40°C to +85°C  
–40°C to +125°C  
–40°C to +85°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
34  
45  
µA  
50  
IQ, BIAS  
BIAS quiescent current  
IOUT = 0, VIN = 0.7 V to VBIAS, VEN = 5 V  
5
0.02  
0.01  
0.01  
0.01  
0.01  
7
ISD,BIAS  
BIAS shutdown current  
VOUT = 0 V, VIN = 0.7 V to VBIAS, VEN = 0 V to VIL  
µA  
8
4
13  
3
VIN = 5 V  
VIN = 3.3 V  
10  
3
µA  
10  
VEN = 0 V to VIL, VOUT  
VIN = 1.8 V  
ISD, IN  
Input shutdown current  
= 0 V  
2
8
2
8
VIN = 1.2 V  
VIN = 0.7 V  
IEN  
EN pin leakage current  
SNS pin leakage current  
VEN = 0 V to 5.7 V  
VSNS ≤ VBIAS  
0.1  
0.1  
µA  
µA  
ISNS  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS22953-Q1 TPS22954-Q1  
 
 
TPS22953-Q1, TPS22954-Q1  
SLVSGK4 – NOVEMBER 2021  
www.ti.com  
7.5 Electrical Characteristics – VBIAS = 5 V (continued)  
Unless otherwise noted, the specification in the following table applies over the operating ambient temperature –40 °C ≤ TA ≤  
+125 °C and VBIAS = 5 V. Typical values are for TA = 25°C.  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
14  
20  
23  
24  
20  
23  
24  
20  
23  
VIN = 5 V  
–40°C to +85°C  
–40°C to +125°C  
25°C  
14  
14  
14  
14  
14  
15  
VIN = 3.3 V  
VIN = 1.8 V  
–40°C to +85°C  
–40°C to +125°C  
25°C  
–40°C to +85°C  
–40°C to +125°C  
25°C  
24  
RON  
ON-resistance  
IOUT = –200 mA  
mΩ  
20  
VIN = 1.5 V  
VIN = 1.2 V  
VIN = 0.7 V  
–40°C to +85°C  
–40°C to +125°C  
25°C  
23  
24  
20  
23  
24  
20  
23  
24  
–40°C to +85°C  
–40°C to +125°C  
25°C  
–40°C to +85°C  
–40°C to +125°C  
25°C  
Output pull down  
resistance (TPS22954  
only)  
28  
30  
Ω
Ω
RPD  
VIN = VOUT = VBIAS, VEN = 0 V  
–40°C to +125°C  
7.6 Electrical Characteristics – VBIAS = 3.3 V  
Unless otherwise noted, the specification in the following table applies over the operating ambient temperature –40 °C ≤ TA ≤  
+125 °C and VBIAS = 3.3 V. Typical values are for TA = 25°C.  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
–40°C to +85°C  
–40°C to +125°C  
–40°C to +85°C  
–40°C to +125°C  
–40°C to +85°C  
–40°C to +125°C  
–40°C to +85°C  
–40°C to +125°C  
–40°C to +85°C  
–40°C to +125°C  
–40°C to +85°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
19  
35  
µA  
37  
IQ, BIAS  
BIAS quiescent current  
IOUT = 0, VIN = 0.7 V to VBIAS, VEN = 3.3 V  
4
0.01  
0.01  
0.01  
0.01  
6
ISD,BIAS  
BIAS shutdown current  
Input shutdown current  
VOUT = 0 V, VIN = 0.7 V to VBIAS, VEN = 0 V to VIL  
µA  
7
3
10  
3
VIN = 3.3 V  
VIN = 1.8 V  
VEN = 0 V to VIL, VOUT  
= 0 V  
10  
µA  
2
ISD, IN  
VIN = 1.2 V  
8
2
8
VIN = 0.7 V  
IEN  
EN pin leakage current  
SNS pin leakage current  
VEN = 0 V to 5.7 V  
VSNS ≤ VBIAS  
0.1  
0.1  
µA  
µA  
ISNS  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS22953-Q1 TPS22954-Q1  
 
TPS22953-Q1, TPS22954-Q1  
www.ti.com  
SLVSGK4 – NOVEMBER 2021  
7.6 Electrical Characteristics – VBIAS = 3.3 V (continued)  
Unless otherwise noted, the specification in the following table applies over the operating ambient temperature –40 °C ≤ TA ≤  
+125 °C and VBIAS = 3.3 V. Typical values are for TA = 25°C.  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
15  
21  
24  
25  
20  
23  
24  
20  
VIN = 3.3 V  
–40°C to +85°C  
–40°C to +125°C  
25°C  
14  
14  
14  
14  
13  
VIN = 1.8 V  
–40°C to +85°C  
–40°C to +125°C  
25°C  
RON  
ON-resistance  
IOUT = –200 mA  
VIN = 1.5 V  
VIN = 1.2 V  
VIN = 0.7 V  
–40°C to +85°C  
–40°C to +125°C  
25°C  
23  
24  
20  
23  
24  
20  
23  
24  
28  
mΩ  
–40°C to +85°C  
–40°C to +125°C  
25°C  
–40°C to +85°C  
–40°C to +125°C  
25°C  
Output pull down  
resistance (TPS22954  
only)  
Ω
Ω
RPD  
VIN = VOUT = VBIAS, VEN = 0 V  
–40°C to +125°C  
30  
7.7 Electrical Characteristics – VBIAS = 2.5 V  
Unless otherwise noted, the specification in the following table applies over the operating ambient temperature –40 °C ≤ TA ≤  
+125 °C and VBIAS = 2.5 V. Typical values are for TA = 25°C.  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
–40°C to +85°C  
–40°C to +125°C  
–40°C to +85°C  
–40°C to +125°C  
–40°C to +85°C  
–40°C to +125°C  
–40°C to +85°C  
–40°C to +125°C  
–40°C to +85°C  
–40°C to +125°C  
–40°C to +85°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
16  
25  
µA  
27  
IQ, BIAS  
BIAS quiescent current  
IOUT = 0, VIN = 0.7 V to VBIAS, VEN = 2.5 V  
4
0.01  
0.01  
0.01  
0.01  
5
ISD,BIAS  
BIAS shutdown current  
Input shutdown current  
VOUT = 0 V, VIN = 0.7 V to VBIAS, VEN = 0 V to VIL  
µA  
6
3
10  
3
VIN = 2.5 V  
VIN = 1.8 V  
VEN = 0 V to VIL, VOUT  
= 0 V  
10  
µA  
2
ISD, IN  
VIN = 1.2 V  
8
2
8
VIN = 0.7 V  
IEN  
EN pin leakage current  
SNS pin leakage current  
VEN = 0 V to 5.7V  
VSNS ≤ VBIAS  
0.1  
0.1  
µA  
µA  
ISNS  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS22953-Q1 TPS22954-Q1  
 
TPS22953-Q1, TPS22954-Q1  
SLVSGK4 – NOVEMBER 2021  
www.ti.com  
7.7 Electrical Characteristics – VBIAS = 2.5 V (continued)  
Unless otherwise noted, the specification in the following table applies over the operating ambient temperature –40 °C ≤ TA ≤  
+125 °C and VBIAS = 2.5 V. Typical values are for TA = 25°C.  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
16  
23  
26  
27  
22  
25  
26  
22  
VIN = 2.5 V  
–40°C to +85°C  
–40°C to +125°C  
25°C  
15  
15  
15  
14  
12  
VIN = 1.8 V  
–40°C to +85°C  
–40°C to +125°C  
25°C  
RON  
ON-resistance  
IOUT = –200 mA  
VIN = 1.5 V  
VIN = 1.2 V  
VIN = 0.7 V  
–40°C to +85°C  
–40°C to +125°C  
25°C  
25  
26  
22  
24  
25  
21  
24  
25  
28  
mΩ  
–40°C to +85°C  
–40°C to +125°C  
25°C  
–40°C to +85°C  
–40°C to +125°C  
25°C  
Output pull down  
resistance (TPS22954  
only)  
Ω
Ω
RPD  
VIN = VOUT = VBIAS, VEN = 0 V  
–40°C to +125°C  
30  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS22953-Q1 TPS22954-Q1  
TPS22953-Q1, TPS22954-Q1  
www.ti.com  
SLVSGK4 – NOVEMBER 2021  
7.8 Switching Characteristics – CT = 1000 pF  
All typical values are at 25°C unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN = 5 V, VEN = VBIAS = 2.5 V, TA = 25°C  
tON  
tOFF  
tR  
Turn-On time  
Turn-Off time  
VOUT Rise time  
VOUT Fall time  
Delay time  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
1265  
6
µs  
µs  
µs  
µs  
µs  
1492  
2.2  
tF  
tD  
519  
VIN = 2.5 V, VEN = VBIAS = 5 V, TA = 25°C  
tON  
tOFF  
tR  
Turn-On time  
Turn-Off time  
VOUT Rise time  
VOUT Fall time  
Delay time  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
813  
6.1  
µs  
µs  
µs  
µs  
µs  
765  
2.2  
tF  
tD  
430  
VIN = 0.7 V, VEN = 5 V, VBIAS = 5 V, TA = 25°C  
tON  
tOFF  
tR  
Turn-On time  
Turn-Off time  
VOUT Rise time  
VOUT Fall time  
Delay time  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
476  
6.2  
µs  
µs  
µs  
µs  
µs  
245  
2.1  
tF  
tD  
353  
VIN = 2.5 V, VEN = 5 V, VBIAS = 2.5 V, TA = 25°C  
tON  
tOFF  
tR  
Turn-On time  
Turn-Off time  
VOUT Rise time  
VOUT Fall time  
Delay time  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
813  
4.9  
µs  
µs  
µs  
µs  
µs  
765  
2.2  
tF  
tD  
430  
VIN = 0.7 V, VEN = 5 V, VBIAS = 2.5 V, TA = 25°C  
tON  
tOFF  
tR  
Turn-On time  
Turn-Off time  
VOUT Rise time  
VOUT Fall time  
Delay time  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
476  
6.1  
µs  
µs  
µs  
µs  
µs  
245  
2.1  
tF  
tD  
353  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS22953-Q1 TPS22954-Q1  
 
TPS22953-Q1, TPS22954-Q1  
www.ti.com  
UNIT  
SLVSGK4 – NOVEMBER 2021  
7.9 Switching Characteristics – CT = 0 pF  
All typical values are at 25°C unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
VIN = 5 V, VEN = VBIAS = 2.5 V, TA = 25°C  
tON  
tOFF  
tR  
Turn-On time  
Turn-Off time  
VOUT Rise time  
VOUT Fall time  
Delay time  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF  
235  
6
µs  
µs  
µs  
µs  
µs  
140  
2.2  
165  
tF  
tD  
VIN = 2.5 V, VEN = VBIAS = 5 V, TA = 25°C  
tON  
tOFF  
tR  
Turn-On time  
Turn-Off time  
VOUT Rise time  
VOUT Fall time  
Delay time  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF  
200  
6
µs  
µs  
µs  
µs  
µs  
79  
tF  
2.1  
160  
tD  
VIN = 0.7 V, VEN = 5 V, VBIAS = 5 V, TA = 25°C  
tON  
tOFF  
tR  
Turn-On time  
Turn-Off time  
VOUT Rise time  
VOUT Fall time  
Delay time  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF  
170  
6
µs  
µs  
µs  
µs  
µs  
32  
2
tF  
tD  
154  
VIN = 2.5 V, VEN = 5 V, VBIAS = 2.5 V, TA = 25°C  
tON  
tOFF  
tR  
Turn-On time  
Turn-Off time  
VOUT Rise time  
VOUT Fall time  
Delay time  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF  
200  
6
µs  
µs  
µs  
µs  
µs  
79  
tF  
2.1  
160  
tD  
VIN = 0.7 V, VEN = 5 V, VBIAS = 2.5 V, TA = 25°C  
tON  
tOFF  
tR  
Turn-On time  
Turn-Off time  
VOUT Rise time  
VOUT Fall time  
Delay time  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 0 pF  
170  
6
µs  
µs  
µs  
µs  
µs  
32  
2
tF  
tD  
154  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS22953-Q1 TPS22954-Q1  
 
TPS22953-Q1, TPS22954-Q1  
www.ti.com  
SLVSGK4 – NOVEMBER 2021  
7.10 Typical DC Characteristics  
40  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
105°C  
85°C  
25°C  
35  
30  
25  
20  
15  
10  
-40°C  
105°C  
85°C  
25°C  
-40°C  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
D001  
0.5  
1
1.5  
2
2.5  
VIN (V)  
3
3.5  
4
4.5  
5
VBIAS (V)  
D002  
VIN = 1.8 V  
VEN = 5.7 V  
VOUT = 0 V  
VBIAS = 5 V  
VEN = 5.7 V  
VOUT = 0 V  
Figure 7-1. IQ,BIAS vs VBIAS  
Figure 7-2. IQ,BIAS vs VIN  
6
5.5  
5
2.5  
2.25  
2
105°C  
105°C  
85°C  
25°C  
-40°C  
85°C  
25°C  
-40°C  
1.75  
1.5  
1.25  
1
4.5  
4
0.75  
0.5  
0.25  
0
3.5  
-0.25  
-0.5  
0.5  
3
2.5  
1
1.5  
2
2.5  
VIN (V)  
3
3.5  
4
4.5  
5
D004  
3
3.5  
4
4.5  
5
5.5  
6
D003  
VBIAS (V)  
VBIAS = 5 V  
VEN = 0 V  
VOUT = 0 V  
VIN = 1.8 V  
VEN = 0 V  
VOUT = 0 V  
Figure 7-4. ISD,IN vs VIN  
Figure 7-3. ISD,BIAS vs VBIAS  
0.01  
0.009  
0.008  
0.007  
0.006  
0.005  
0.004  
0.003  
0.002  
0.001  
0
2.4  
2.2  
2
25°C  
-40°C  
105°C  
85°C  
25°C  
-40°C  
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
0.5  
1
1.5  
2
2.5  
3 3.5  
VOUT (V)  
4
4.5  
5
5.5  
6
0.5  
1
1.5  
2
2.5  
3 3.5  
VOUT (V)  
4
4.5  
5
5.5  
6
D036  
D035  
VBIAS = 0 V to 5.7 V  
VEN = 0 V  
VIN = 0 V  
VBIAS = 0 V to 5.7 V  
VEN = 0 V  
VIN = 0 V  
Figure 7-6. IRCB,IN vs VOUT  
Figure 7-5. IRCB,IN vs VOUT  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS22953-Q1 TPS22954-Q1  
 
TPS22953-Q1, TPS22954-Q1  
SLVSGK4 – NOVEMBER 2021  
www.ti.com  
7.10 Typical DC Characteristics (continued)  
22  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
VIN = 2.5V  
VIN = 1.8V  
VIN = 0.7V  
VIN = 3.3V  
VIN = 2.5V  
VIN = 1.8V  
VIN = 0.7V  
20  
18  
16  
14  
12  
10  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Ambient Temperature (èC)  
Ambient Temperature (èC)  
D005  
D006  
VBIAS = 2.5 V  
Iout = –200 mA  
VEN = 5 V  
VBIAS = 3.3 V  
Iout = –200 mA  
VEN = 5 V  
Figure 7-7. RON vs Temperature, VBIAS = 2.5 V  
Figure 7-8. RON vs Temperature, VBIAS = 3.3 V  
24  
22  
20  
18  
16  
14  
12  
10  
22  
20  
18  
16  
14  
12  
10  
105°C  
85°C  
25°C  
-40°C  
105°C  
85°C  
25°C  
-40°C  
0.6 0.8  
1
1.2 1.4 1.6 1.8  
VIN (V)  
2
2.2 2.4 2.6  
0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4  
VIN (V)  
D008  
D009  
VBIAS = 2.5 V  
Iout = –200 mA  
VEN = 5 V  
VBIAS = 3.3 V  
Iout = –200 mA  
VEN = 5 V  
Figure 7-9. RON vs VIN, VBIAS = 2.5 V  
Figure 7-10. RON vs VIN, VBIAS = 3.3 V  
22  
20  
18  
16  
14  
12  
10  
16  
VBIAS = 2.5V  
VBIAS = 3.3V  
VBIAS = 5V  
105°C  
85°C  
25°C  
-40°C  
15.75  
15.5  
15.25  
15  
VBIAS = 5.7V  
14.75  
14.5  
14.25  
14  
13.75  
13.5  
13.25  
0.5  
1
1.5  
2
2.5  
3 3.5  
VIN (V)  
4
4.5  
5
5.5  
6
0.6  
1
1.4 1.8 2.2 2.6  
3
VIN (V)  
3.4 3.8 4.2 4.6  
5
D011  
D010  
TA = 25°C  
Iout = –200 mA  
VEN = 5 V  
VBIAS = 5 V  
Iout = –200 mA  
VEN = 5 V  
Figure 7-12. RON vs VIN  
Figure 7-11. RON vs VIN, VBIAS = 5 V  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS22953-Q1 TPS22954-Q1  
TPS22953-Q1, TPS22954-Q1  
www.ti.com  
SLVSGK4 – NOVEMBER 2021  
7.10 Typical DC Characteristics (continued)  
17.5  
15.4  
15.2  
15  
VIN = 2.5V  
VIN = 1.8V  
VIN = 0.7V  
VIN = 3.3V  
VIN = 2.5V  
VIN = 1.8V  
VIN = 0.7V  
17  
16.5  
16  
14.8  
14.6  
14.4  
14.2  
14  
15.5  
15  
13.8  
13.6  
13.4  
13.2  
14.5  
14  
13.5  
0
0.5  
1
1.5  
2
2.5  
IOUT (A)  
3
3.5  
4
4.5  
5
0
0.5  
1
1.5  
2
2.5  
IOUT (A)  
3
3.5  
4
4.5  
5
D032  
D033  
VBIAS = 2.5 V  
VEN = 5 V  
VBIAS = 3.3 V  
VEN = 5 V  
Figure 7-13. RON vs IOUT, VBIAS = 2.5 V  
Figure 7-14. RON vs IOUT, VBIAS = 3.3 V  
14.3  
14.2  
14.1  
14  
22  
20  
18  
16  
14  
12  
10  
8
VIN = 5V  
105°C  
25°C  
-40°C  
VIN = 3.3V  
VIN = 2.5V  
VIN = 1.8V  
VIN = 0.7V  
13.9  
13.8  
13.7  
13.6  
13.5  
13.4  
13.3  
13.2  
6
4
2
0
0.5  
1
1.5  
2
2.5  
IOUT (A)  
3
3.5  
4
4.5  
5
0.6 0.8  
1
1.2 1.4 1.6 1.8  
VOUT (V)  
2
2.2 2.4 2.6  
D034  
D012  
VBIAS = 5 V  
VEN = 5 V  
VBIAS = 2.5 V  
VIN = VOUT  
VEN = 0 V  
Figure 7-15. RON vs IOUT, VBIAS = 5 V  
Figure 7-16. RPD vs VOUT, VBIAS = 2.5 V  
18  
16  
14  
12  
10  
8
18  
16  
14  
12  
10  
8
105°C  
25°C  
-40°C  
105°C  
25°C  
-40°C  
6
6
4
4
2
2
0.6  
0.9  
1.2  
1.5  
1.8 2.1  
VOUT (V)  
2.4  
2.7  
3
3.3  
0.5  
1
1.5  
2
2.5  
VOUT (V)  
3
3.5  
4
4.5  
5
D016  
D014  
VBIAS = 3.3 V  
VIN = VOUT  
VEN = 0 V  
VBIAS = 5 V  
VIN = VOUT  
VEN = 0 V  
Figure 7-17. RPD vs VOUT, VBIAS = 3.3 V  
Figure 7-18. RPD vs VOUT, VBIAS = 5 V  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS22953-Q1 TPS22954-Q1  
TPS22953-Q1, TPS22954-Q1  
SLVSGK4 – NOVEMBER 2021  
www.ti.com  
7.11 Typical Switching Characteristics  
800  
1600  
1400  
1200  
1000  
800  
105°C  
85°C  
25°C  
-40°C  
105°C  
85°C  
25°C  
-40°C  
750  
700  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
600  
400  
200  
0.5  
1
1.5  
2
2.5  
VIN (V)  
3
3.5  
4
4.5  
5
0.6 0.8  
1
1.2 1.4 1.6 1.8  
VIN (V)  
2
2.2 2.4 2.6  
D021  
D020  
VBIAS = 5 V  
CT = 1000 pF VEN = Low to High  
VBIAS = 2.5 V  
CT = 1000 pF VEN = Low to High  
Figure 7-20. tR vs VIN, VBIAS = 5 V  
Figure 7-19. tR vs VIN, VBIAS = 2.5 V  
2.2  
2.18  
2.16  
2.14  
2.12  
2.1  
2.25  
2.22  
2.19  
2.16  
2.13  
2.1  
105°C  
85°C  
25°C  
-40°C  
2.08  
2.06  
2.04  
2.02  
2.07  
2.04  
2.01  
1.98  
105°C  
85°C  
25°C  
-40°C  
0.6 0.8  
1
1.2 1.4 1.6 1.8  
VIN (V)  
2
2.2 2.4 2.6  
0.5  
1
1.5  
2
2.5  
VIN (V)  
3
3.5  
4
4.5  
5
D022  
D023  
VBIAS = 2.5 V  
CT = 1000 pF VEN = High to Low  
VBIAS = 5 V  
CT = 1000 pF VEN = High to Low  
Figure 7-21. tF vs VIN, VBIAS = 2.5 V  
Figure 7-22. tF vs VIN, VBIAS = 5 V  
900  
850  
800  
750  
700  
650  
600  
550  
500  
450  
400  
1400  
1300  
1200  
1100  
1000  
900  
105°C  
85°C  
25°C  
-40°C  
105°C  
85°C  
25°C  
-40°C  
800  
700  
600  
500  
400  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0.6 0.8  
1
1.2 1.4 1.6 1.8  
VIN (V)  
2
2.2 2.4 2.6  
VIN (V)  
D025  
D024  
VBIAS = 5 V  
CT = 1000 pF VEN = Low to High  
VBIAS = 2.5 V  
CT = 1000 pF VEN = Low to High  
Figure 7-24. tON vs VIN, VBIAS = 5 V  
Figure 7-23. tON vs VIN, VBIAS = 2.5 V  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS22953-Q1 TPS22954-Q1  
 
TPS22953-Q1, TPS22954-Q1  
www.ti.com  
SLVSGK4 – NOVEMBER 2021  
7.11 Typical Switching Characteristics  
7.25  
7
6.4  
6.35  
6.3  
105°C  
85°C  
25°C  
-40°C  
105°C  
85°C  
25°C  
-40°C  
6.75  
6.5  
6.25  
6
6.25  
6.2  
6.15  
6.1  
5.75  
5.5  
5.25  
5
6.05  
6
4.75  
5.95  
0.6 0.8  
1
1.2 1.4 1.6 1.8  
VIN (V)  
2
2.2 2.4 2.6  
0.5  
1
1.5  
2
2.5  
VIN (V)  
3
3.5  
4
4.5  
5
D02351  
D027  
VBIAS = 2.5 V  
CT = 1000 pF VEN = High to Low  
VBIAS = 5 V  
CT = 1000 pF VEN = High to Low  
Figure 7-25. tOFF vs VIN, VBIAS = 2.5 V  
Figure 7-26. tOFF vs VIN, VBIAS = 5 V  
480  
460  
440  
420  
400  
380  
360  
340  
320  
300  
280  
570  
540  
510  
480  
450  
420  
390  
360  
330  
300  
270  
105°C  
85°C  
25°C  
-40°C  
105°C  
85°C  
25°C  
-40°C  
0.6 0.8  
1
1.2 1.4 1.6 1.8  
VIN (V)  
2
2.2 2.4 2.6  
0.5  
1
1.5  
2
2.5  
VIN (V)  
3
3.5  
4
4.5  
5
D028  
D029  
VBIAS = 2.5 V  
CT = 1000 pF VEN = Low to High  
VBIAS = 5 V  
CT = 1000 pF  
VEN =Low to High  
Figure 7-27. tD vs VIN, VBIAS = 2.5 V  
Figure 7-28. tD vs VIN, VBIAS= 5 V  
810  
800  
790  
780  
770  
760  
750  
740  
730  
720  
710  
700  
690  
105°C  
85°C  
25°C  
-40°C  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VBIAS (V)  
D030  
VIN = 2.5 V CT = 1000 pF  
Figure 7-29. tR vs VBIAS  
VEN = Low to High  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS22953-Q1 TPS22954-Q1  
TPS22953-Q1, TPS22954-Q1  
SLVSGK4 – NOVEMBER 2021  
www.ti.com  
7.11 Typical Switching Characteristics (continued)  
VIN = 0.7 V  
CIN = 1 µF  
VBIAS = 2.5 V  
CL = 0.1 µF  
CT = 1000 pF  
RL = 10 Ω  
VIN = 0.7 V  
CIN = 1 µF  
VBIAS = 2.5 V  
CL = 0.1 µF  
CT = 1000 pF  
RL = 10 Ω  
Figure 7-30. Turn-on Waveform, VBIAS = 2.5 V  
Figure 7-31. Turn-off Waveform, VBIAS = 2.5 V  
VIN = 0.7 V  
CIN = 1 µF  
VBIAS = 5 V  
CL = 0.1 µF  
CT = 1000 pF  
RL = 10 Ω  
VIN = 0.7 V  
CIN = 1 µF  
VBIAS = 5 V  
CL = 0.1 µF  
CT = 1000 pF  
RL = 10 Ω  
Figure 7-32. Turn-on Waveform, VBIAS = 5 V  
Figure 7-33. Turn-off Waveform, VBIAS = 5 V  
VIN = 2.5 V  
CIN = 1 µF  
VBIAS = 2.5 V  
CL = 0.1 µF  
CT = 1000 pF  
RL = 10 Ω  
VIN = 2.5 V  
CIN = 1 µF  
VBIAS = 2.5 V  
CL = 0.1 µF  
CT = 1000 pF  
RL = 10 Ω  
Figure 7-34. Turn-on Waveform, VBIAS = 2.5 V  
Figure 7-35. Turn-off Waveform, VBIAS = 2.5 V  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS22953-Q1 TPS22954-Q1  
TPS22953-Q1, TPS22954-Q1  
www.ti.com  
SLVSGK4 – NOVEMBER 2021  
7.11 Typical Switching Characteristics (continued)  
VIN = 2.5 V  
CIN = 1 µF  
VBIAS = 5 V  
CL = 0.1 µF  
CT = 1000 pF  
RL = 10 Ω  
VIN = 2.5 V  
CIN = 1 µF  
VBIAS = 5 V  
CL = 0.1 µF  
CT = 1000 pF  
RL = 10 Ω  
Figure 7-36. Turn-on Waveform, VBIAS = 5 V  
Figure 7-37. Turn-off Waveform, VBIAS = 5 V  
VIN = 3.3 V  
CIN = 1 µF  
VBIAS = 5 V  
CL = 0.1 µF  
CT = 1000 pF  
RL = 10 Ω  
VIN = 3.3 V  
CIN = 1 µF  
VBIAS = 5 V  
CL = 0.1 µF  
CT = 1000 pF  
RL = 10 Ω  
Figure 7-38. Turn-on Waveform, VBIAS = 5 V  
Figure 7-39. Turn-off Waveform, VBIAS = 5 V  
VIN = 5 V  
VBIAS = 5 V  
CL = 0.1 µF  
CT = 1000 pF  
RL = 10 Ω  
VIN = 5 V  
VBIAS = 5 V  
CL = 0.1 µF  
CT = 1000 pF  
RL = 10 Ω  
CIN = 1 µF  
CIN = 1 µF  
Figure 7-40. Turn-on Waveform, VBIAS = 5 V  
Figure 7-41. Turn-off Waveform, VBIAS = 5 V  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS22953-Q1 TPS22954-Q1  
TPS22953-Q1, TPS22954-Q1  
SLVSGK4 – NOVEMBER 2021  
www.ti.com  
7.11 Typical Switching Characteristics (continued)  
VIN = 3.3 V  
CIN = 1 µF  
VBIAS = 5 V  
CL = 0.1 µF  
CT = 1000 pF  
RL = Open  
VIN = 5 V  
VBIAS = 5 V  
CL = 0.1 µF  
CT = 1000 pF  
RL = Open  
CIN = 1 µF  
Figure 7-42. Turn-on Waveform, No Load  
Figure 7-43. Turn-on Waveform, No Load  
VIN = 3.3 V  
CIN = 1 µF  
VBIAS = 5 V  
CL = 0.1 µF  
CT = 1000 pF  
RL = 1 Ω  
VIN = 5 V  
VBIAS = 5 V  
CL = 0.1 µF  
CT = 1000 pF  
RL = 1 Ω  
CIN = 1 µF  
Figure 7-44. Turn-on Waveform, Heavy Load  
Figure 7-45. Turn-on Waveform, Heavy Load  
VIN = 5 V  
VBIAS = 5 V  
CL = 100 µF  
CT = 1000 pF  
RL = 10 Ω  
VIN = 5 V  
VBIAS = 5 V  
CL = 100 µF  
CT = 1000 pF  
RL = 10 Ω  
CIN = 1 µF  
CIN = 1 µF  
Figure 7-46. PG Response to EN Falling (tDEGLITCH  
)
Figure 7-47. PG Response to SNS Falling With Auto-Restart  
(tDEGLITCH and tRESTART  
)
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS22953-Q1 TPS22954-Q1  
TPS22953-Q1, TPS22954-Q1  
www.ti.com  
SLVSGK4 – NOVEMBER 2021  
7.11 Typical Switching Characteristics (continued)  
VIN = 5 V  
VBIAS = 5 V  
CL = 100 µF  
CT = 1000 pF  
RL = 10 Ω  
VIN = 5 V  
VBIAS = 5 V  
CL = 100 µF  
CT = 1000 pF  
RL = None  
CIN = 1 µF  
CIN = 1 µF  
Figure 7-48. PG Response to SNS Rising (tBLANK  
)
Figure 7-49. Quick Output Discharge of 100-µF Load (tDIS  
)
VIN = 10 Ω to GND  
CIN = 0.2 µF  
VBIAS = 5 V  
VOUT = 5 V  
Figure 7-50. Reverse Current Blocking Response Time (tRCB  
)
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS22953-Q1 TPS22954-Q1  
TPS22953-Q1, TPS22954-Q1  
SLVSGK4 – NOVEMBER 2021  
www.ti.com  
8 Parameter Measurement Information  
A. Rise and fall times of the control signal is 100 ns.  
Figure 8-1. Timing Test Circuit  
tDEGLITCH  
tDEGLITCH  
VEN  
50%  
50%  
50%  
50%  
tON  
tOFF  
90%  
90%  
tD  
VOUT  
50%  
50%  
10%  
10%  
tBLANK  
tBLANK  
tR  
tF  
Figure 8-2. Timing Waveforms  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS22953-Q1 TPS22954-Q1  
 
TPS22953-Q1, TPS22954-Q1  
www.ti.com  
SLVSGK4 – NOVEMBER 2021  
9 Detailed Description  
9.1 Overview  
The TPS2295x-Q1 are 5.7-V, 5-A load switches in 10-pin SON packages. To reduce voltage drop for low  
voltage, high current rails the device implements a low-resistance N-channel MOSFET, which reduces the drop  
out voltage through the device at high currents. The integrated adjustable Undervoltage Lockout (UVLO) and  
adjustable Power Good (PG) threshold provides voltage monitoring as well as robust power sequencing.  
The adjustable rise time control of the device greatly reduces inrush current for a wide variety of bulk load  
capacitances, thereby reducing or eliminating power supply droop. The switch is independently controlled by an  
on and off input (EN), which is capable of interfacing directly with low-voltage control signals. A 15-Ω on-chip  
load resistor integrates into the device for output quick discharge when the switch turns off.  
During shutdown, the device has very low leakage currents, thereby reducing unnecessary leakages for  
downstream modules during standby. Integrated power monitoring functionality, control logic, driver, power  
supply, and output discharge FET eliminates the need for any external components, which reduces solution size  
and BOM count.  
9.2 Functional Block Diagram  
Reverse Current  
Blocking*  
(TPS22953 Only)  
IN  
Power  
supply  
module  
BIAS  
PG  
EN  
Control  
Logic  
Driver  
VEN  
OUT  
CT  
Thermal  
Shutdown  
QOD Resistance*  
(TPS22954 Only)  
SNS  
VSNS  
GND  
(*) Only active when the switch is disabled.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS22953-Q1 TPS22954-Q1  
 
 
 
TPS22953-Q1, TPS22954-Q1  
SLVSGK4 – NOVEMBER 2021  
www.ti.com  
9.3 Feature Description  
9.3.1 On and Off Control (EN pin)  
The EN pin controls the state of the switch. When the voltage on EN exceeds VIH,EN the switch enables. When  
EN goes below VIL,EN the switch disables.  
The EN pin has a blanking time of tBLANK on the rising edge once the VIH,EN threshold has been exceeded. The  
EN pin also has a de-glitch time of tDEGLITCH when the voltage has gone below VIL,EN  
.
The EN pin can also be configured through an external resistor divider to monitor a voltage signal for input  
UVLO. See Equation 1 and Figure 9-1 on how to configure the EN pin for input UVLO.  
REN2  
V
= V ´  
IN  
IH,EN  
R
EN1 + REN2  
(1)  
where  
VIH,EN is the rising threshold of the EN pin (see the Electrical Characteristics table)  
VIN is the input voltage being monitored (this could be VIN, VBIAS, or an external power supply)  
REN1, REN2 are the resistor divider values  
VIN or VBIAS  
REN1  
EN  
REN2  
Figure 9-1. Resistor Divider (EN Pin)  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS22953-Q1 TPS22954-Q1  
 
 
 
TPS22953-Q1, TPS22954-Q1  
www.ti.com  
SLVSGK4 – NOVEMBER 2021  
9.3.2 Voltage Monitoring (SNS Pin)  
The SNS pin of the device can be used to monitor the output voltage of the device or another voltage rail. The  
pin can be configured with an external resistor divider to set the desired trip point for the voltage being monitored  
or be tied to OUT directly. If the voltage on the SNS pin exceeds VIH,SNS, the voltage being monitored on the  
SNS pin is considered to be valid high. The voltage on the SNS pin must be greater than VIH,SNS for at least  
tBLANK before PG is asserted high. If the voltage on the SNS pin goes below VIL,SNS, then the switch powers  
cycle (that is, the switch is disabled and re-enabled). For proper functionality of the device, this pin must not be  
left floating. If a resistor divider is not being used for voltage sensing, this pin can be tied directly to VOUT  
.
The SNS pin has a blanking time of tBLANK on the rising edge once the VIH,SNS threshold has been exceeded.  
The SNS pin has a de-glitch time of tDEGLITCH when the voltage has gone below VIL,SNS  
See Equation 2 and Figure 9-2 on how to configure the SNS pin for voltage monitoring.  
.
RSNS2  
V
= VOUT  
´
IH,SNS  
R
SNS1 + RSNS2  
(2)  
where  
VIH,SNS is the the rising threshold of the SNS pin (see Electrical Characteristics table)  
VOUT is the voltage on the OUTpin  
RSNS1, RSNS2 are the resistor divider values  
VOUT  
RSNS1  
SNS  
RSNS2  
Figure 9-2. Voltage Divdier (SNS Pin)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS22953-Q1 TPS22954-Q1  
 
 
TPS22953-Q1, TPS22954-Q1  
SLVSGK4 – NOVEMBER 2021  
www.ti.com  
9.3.3 Power Good (PG Pin)  
The PG pin is only asserted high when the voltage on EN exceeds VIH,EN and the voltage on SNS exceeds  
VIH,SNS. There is a tBLANK time, typically 100 µs, between the SNS voltage exceeding VIH,SNS and PG being  
asserted high. If the voltage on EN goes below VIL,EN or the voltage on SNS goes below VIL,SNS, PG is  
de-asserted. There is a tDEGLITCH time, typically 5µs, between the EN voltage or SNS voltage going below their  
respective VIL levels and PG being pulled low.  
PG is an open drain pin and must be pulled up with a pull-up resistor. Be sure to never exceed the maximum  
operating voltage on this pin. If PG is not being used in the application, tie it to GND for proper device  
functionality.  
For proper PG operation, the BIAS voltage must be within the recommended operating range. In systems that  
are very sensitive to noise or have long PG traces, TI recommends to add a small capacitance from PG to GND  
for decoupling.  
9.3.4 Supervisor Fault Detection and Automatic Restart  
The falling edge of the SNS pin below VIL,SNS is considered a fault case and causes the load switch to be  
disabled for tRESTART (typically 2 ms). After the tRESTART time, the switch is automatically re-enabled as long as  
EN is still above VIH,EN. In the case the SNS pin is being used to monitor VOUT or a downstream voltage, the  
restart helps to protect against excessive overcurrent if there is a quick short to GND. See Figure 9-3.  
VIN  
IN  
0
VBIAS  
BIAS  
0
VEN  
EN  
tR  
0
tD  
VOUT  
90%  
Voltage  
Pulled  
Down  
OUT  
SNS  
10%  
0
tRESTART  
VSNS  
0
VIL,SNS  
VIH,SNS  
tBLANK  
tDEGLITCH  
VPG  
0
PG  
Time  
Figure 9-3. Automatic Restart After Quick Short to GND  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS22953-Q1 TPS22954-Q1  
 
TPS22953-Q1, TPS22954-Q1  
www.ti.com  
SLVSGK4 – NOVEMBER 2021  
9.3.5 Manual Restart  
The falling edge of the SNS pin below VIL,SNS is considered a fault case and causes the load switch to be  
disabled for tRESTART (typically 2 ms). The SNS pin can be driven by an MCU to manually reset the load switch.  
After the tRESTART time, the switch is automatically re-enabled as long as EN is still above VIH,EN, even is SNS is  
held low. The PG pin stays low until the switch is re-enabled and the SNS pin rises above VIH,SNS. See Figure  
9-4.  
VIN  
IN  
0
VBIAS  
BIAS  
0
VEN  
EN  
tR  
0
tD  
VOUT  
90%  
OUT  
SNS  
10%  
0
tRESTART  
VSNS  
0
VIL,SNS  
tDEGLITCH  
VPG  
0
PG  
Time  
Figure 9-4. Manual Restart (SNS Held Low)  
If the SNS pin is brought above VIH,SNS within the tRESTART time, the switch still waits to re-enable. The PG pin  
also stays low until tBLANK after switch is re-enabled. In this case, PG indicates when the switch is enabled and  
capable of being reset again. See Figure 9-5.  
VIN  
IN  
0
VBIAS  
BIAS  
0
VEN  
EN  
tR  
0
tD  
VOUT  
90%  
OUT  
SNS  
10%  
0
tRESTART  
VSNS  
0
VIL,SNS  
tBLANK  
tDEGLITCH  
VPG  
PG  
0
Time  
Figure 9-5. Manual Restart (SNS Toggled Low to High)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS22953-Q1 TPS22954-Q1  
 
 
TPS22953-Q1, TPS22954-Q1  
SLVSGK4 – NOVEMBER 2021  
www.ti.com  
9.3.6 Thermal Shutdown  
If the junction temperature of the device exceeds TSD, the switch disables. The device enables after the junction  
temperature drops by TSDHYS as long as EN is still greater than VIH,EN  
.
9.3.7 Reverse Current Blocking (TPS22953-Q1 Only)  
When the switch disables (either by de-asserting EN or SNS, triggering thermal shutdown, or losing power),  
the reverse current blocking (RCB) feature of the device engages within tRCB, typically 10 μs. After the RCB  
engages, the reverse current from the OUT pin to the IN pin is limited to IRCB,IN, typically 0.01 μA.  
9.3.8 Quick Output Discharge (QOD) (TPS22954-Q1 Only)  
The Quick Output Discharge (QOD) transistor is engaged indefinitely whenever the switch is disabled and the  
recommended VBIAS voltage is met. During this state, the QOD resistance (RPD) discharges VOUT to GND. TI  
does not recommend to apply a continuous DC voltage to OUT when the device is disabled.  
The QOD transistor can remain active for a short period of time even after VBIAS loses power. This brief period  
of time is defined as tDIS. For best results, TI recommends the device get disabled before VBIAS goes below the  
minimum recommended voltage. The waveform in Figure 9-6 shows the behavior when power is applied and  
then removed in a typical application.  
VIN  
IN  
0
VBIAS  
BIAS  
0
VEN  
EN  
VIH,EN  
VIL,EN  
0
tDEGLITCH  
tBLANK  
VOUT  
OUT  
VOUT < 100mV  
0
tDIS  
VSNS  
VIH,SNS  
tBLANK  
VIL,SNS  
tDEGLITCH  
SNS  
PG  
0
VPG  
0
Time  
Figure 9-6. Power Applied and Then Removed in a Typical Application  
At the end of the tDIS time, it is not guaranteed that VOUT will be 0 V because the final voltage is dependent upon  
the initial voltage and the CL capacitor. The final VOUT can be calculated with Equation 3 for a given initial voltage  
and CL capacitor.  
-t  
Vƒ = Vo ´ eRC  
(3)  
where  
Vf is the final VOUT voltage  
Vo is the initial VOUT voltage  
R is the the value of the output discharge resistor, RPD (see the Electrical Characteristics table)  
C is the output bulk capacitance on OUT  
9.3.9 VIN and VBIAS Voltage Range  
For optimal RON performance, make sure VIN ≤ VBIAS. The device is still functional if VIN > VBIAS but it exhibits  
RON greater than what is listed in the Electrical Characteristics table. See Figure 9-7 for an example of a typical  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS22953-Q1 TPS22954-Q1  
 
 
TPS22953-Q1, TPS22954-Q1  
www.ti.com  
SLVSGK4 – NOVEMBER 2021  
device. Notice the increasing RON as VIN increases. Be sure to never exceed the maximum voltage rating for VIN  
and VBIAS  
.
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
VBIAS = 2.5V  
VBIAS = 3.3V  
VBIAS = 5V  
VBIAS = 5.7V  
0.5  
1
1.5  
2
2.5  
3 3.5  
VIN (V)  
4
4.5  
5
5.5  
6
D031  
Figure 9-7. RON When VIN > VBIAS  
9.3.10 Adjustable Rise Time (CT Pin)  
A capacitor to GND on the CT pin sets the slew rate for VOUT. An appropriate capacitance value must be placed  
on CT such that the IMAX and IPLS specifications of the device are not violated. The capacitor to GND on the CT  
pin must be rated for 25 V or higher. Equation 4 shows an approximate formula for the relationship between CT  
(except for CT = open) and the slew rate for any VBIAS  
.
SR = 0.35 × CT + 20  
where  
(4)  
SR is the slew rate (in μs/V)  
CT is the the capacitance value on the CT terminal (in pF)  
The units for the constant 20 are μs/V.  
The units for the constant 0.35 are μs/(V*pF).  
Rise time can be calculated by multiplying the input voltage (typically 10% to 90%) by the slew rate. Table 9-1  
contains rise time values measured on a typical device.  
Table 9-1. Rise Time  
RISE TIME (µs) 10%–90%, CL = 0.1 µF, VBIAS = 2.5 V to 5.7 V, RL = 10-Ω LOAD.  
TYPICAL VALUES AT 25°C, 25 V X7R 10% CERAMIC CAP  
CTx (pF)  
5 V  
140  
3.3 V  
98  
1.8 V  
62  
1.5 V  
54  
1.2 V  
46  
0.7 V  
32  
Open  
220  
444  
301  
175  
150  
255  
474  
961  
1980  
4331  
124  
210  
387  
787  
1612  
3533  
81  
470  
767  
518  
299  
133  
245  
490  
998  
2197  
1000  
2200  
4700  
10000  
1492  
3105  
6420  
14059  
994  
562  
2050  
4246  
9339  
1151  
2365  
5183  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS22953-Q1 TPS22954-Q1  
 
 
 
TPS22953-Q1, TPS22954-Q1  
SLVSGK4 – NOVEMBER 2021  
www.ti.com  
9.3.11 Power Sequencing  
The TPS2295x-Q1 operates regardless of power-on and power-off sequencing order. The order in which  
voltages are applied to IN, BIAS, and EN does not damage the device as long as the voltages do not exceed the  
absolute maximum operating conditions. If voltage is applied to EN before IN and BIAS, the slew rate of VOUT is  
not controlled. Also, turning off IN or BIAS while EN is high does not damage the device.  
9.4 Device Functional Modes  
Table 9-2 describes what the OUT pin is connected to for a particular device as determined by the EN pin.  
Table 9-2. Function Table  
EN  
L
TPS22953-Q1  
TPS22954-Q1  
RPD to GND  
IN  
OPEN  
IN  
H
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS22953-Q1 TPS22954-Q1  
 
 
TPS22953-Q1, TPS22954-Q1  
www.ti.com  
SLVSGK4 – NOVEMBER 2021  
10 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
10.1 Application Information  
This section highlights some of the design considerations when implementing this device in various applications.  
A PSPICE model for this device is also available on www.ti.com for further aid.  
10.1.1 Input to Output Voltage Drop  
The input to output voltage drop in the device is determined by the RON of the device and the load current. The  
RON of the device depends upon the VIN and VBIAS conditions of the device. Refer to the RON specification of the  
device in the Electrical Characteristics table of this data sheet. After the RON of the device is determined based  
upon the VIN and VBIAS voltage conditions, use Equation 5 to calculate the input to output voltage drop.  
DV = ILOAD ´RON  
(5)  
where  
ΔV is the voltage drop from IN to OUT  
ILOAD is the load current  
RON is the On-Resistance of the device for a specific VIN and VBIAS  
An appropriate ILOAD must be chosen such that the IMAX specification of the device is not violated.  
10.1.2 Thermal Considerations  
The maximum IC junction temperature must be restricted to just under the thermal shutdown (TSD) limit of the  
device. Use Equation 6 to calculate the maximum allowable dissipation, PD(max) for a given output current and  
ambient temperature.  
TJ(max) - TA  
PD(max)  
=
qJA  
(6)  
where  
PD(max) is the maximum allowable power dissipation  
TJ(max) is the maximum allowable junction temperature before hitting thermal shutdown (see the Electrical  
Characteristics table)  
TA is the ambient temperature of the device  
θJA is the junction to air thermal impedance. See the thermal Information section. This parameter is highly  
dependent upon board layout.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS22953-Q1 TPS22954-Q1  
 
 
 
 
TPS22953-Q1, TPS22954-Q1  
SLVSGK4 – NOVEMBER 2021  
www.ti.com  
10.1.3 Automatic Power Sequencing  
The PG pin of the TPS2295x-Q1 allows for automatic sequencing of multiple system rails or loads. The accurate  
SNS voltage monitoring ensures the first rail is up before the next starts to turn on. This approach provides  
robust system sequencing and reduces the total inrush current by preventing overlap. Figure 10-1 shows how  
two rails can be sequenced. There is no limit to the number of rails that can be sequenced in this way.  
Figure 10-1. Power Sequencing With PG Control Schematic  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS22953-Q1 TPS22954-Q1  
 
TPS22953-Q1, TPS22954-Q1  
www.ti.com  
SLVSGK4 – NOVEMBER 2021  
10.1.4 Monitoring a Downstream Voltage  
The SNS pin can be used to monitor other system voltages in addition to VOUT. The status of the monitored  
voltage are indicated by the PG pin which can be pulled up to VOUT or another voltage. Figure 10-2 shows an  
example of the TPS2295x-Q1 monitoring the output of a downstream DC/DC regulator. In this case, the switch  
turns on when the power supply is above the UVLO, but the PG is not asserted until the DC/DC regulator has  
started up.  
Figure 10-2. Monitoring a Downstream Voltage Schematic  
In this application, if the DC/DC Regulator is shut down, the supervisor registers this as a fault case and resets  
the load switch.  
10.1.5 Monitoring the Input Voltage  
The SNS pin can also be used to monitor VIN in the case a MCU GPIO is being used to control the EN. This  
event allows PG to report on the status of the input voltage when the switch is enabled. See Figure 10-3.  
Figure 10-3. Monitoring the Input Voltage Schematic  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS22953-Q1 TPS22954-Q1  
 
 
TPS22953-Q1, TPS22954-Q1  
SLVSGK4 – NOVEMBER 2021  
www.ti.com  
10.1.6 Break-Before-Make Power MUX (TPS22953-Q1 Only)  
The reverse current blocking feature of the TPS22953-Q1 makes it suitable for power multiplexing (MUXing)  
between two power supplies with different voltages. The SNS and PG pin can be configured to implement  
break-before-make logic. The circuit in Figure 10-4 shows how the detection of power supply 1 can be used to  
disable the load switch for power supply 2. By tying the SNS of Load Switch 1 directly to the input, its PG pin is  
pulled up as soon as the device is enabled.  
Figure 10-4. Break-Before-Make Power MUX Schematic  
The break-before-make logic ensures that power supply 2 is completely disconnected before power supply 1  
is connected. This approach provides very robust reverse current blocking. However, in most cases, this also  
results in a dip in the output voltage when switching between supplies.  
The amount of voltage dip depends on the loading, the output capacitance, and the turn-on delay of the load  
switch. In this application, leaving the CT pin open results in the shortest turn on delay and minimize the output  
voltage dip.  
Table 10-1 summarizes the logic of the PG Signal for Figure 10-4.  
Table 10-1. Break-Before-Make PG Signal  
PG Signal  
Indication  
H
L
Power supply 1 not present. System powered from power supply 2.  
Power supply 1 present. System powered from power supply 1.  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPS22953-Q1 TPS22954-Q1  
 
 
TPS22953-Q1, TPS22954-Q1  
www.ti.com  
SLVSGK4 – NOVEMBER 2021  
10.1.7 Make-Before-Break Power MUX (TPS22953-Q1 Only)  
The reverse current blocking feature of the TPS22953-Q1 makes it suitable for power multiplexing (MUXing)  
between two power supplies with different voltages. The SNS and PG pin can be configured to implement  
make-before-break logic. The circuit in Figure 10-5 shows how the detection of Load Switch 1 turning on can  
be used to disable the load switch for power supply 2. By tying SNS to the Load, the PG is pulled up when the  
output voltage starts to rise. This disables an active low load switch such as the TPS22910A.  
Figure 10-5. Make-Before-Break Power MUX Schematic  
The make-before-break logic ensures that power supply 2 is not disconnected until power supply 1 is connected.  
Unlike break-before-make logic, this approach is ideal for preventing voltage dip on the output when switching  
between supplies. However, in most cases, this also results in temporary reverse current flow.  
The TPS22910A is well suited for this application because it can detect and block reverse current even before it  
is disabled by the TPS22953-Q1 PG signal. Also, the active low enable of the TPS22910A eliminates the need  
for an inverter as shown in the previous example.  
In order to ensure correct logic, the SNS pin must be configured to toggle PG when the load voltage is between  
the two supply voltages (3.6 V to 4.5 V). The SNS resistor values in Figure 10-5 are assuming a tolerance of  
±1% or better.  
Table 10-2 summarizes the logic of the PG Signal for Figure 10-5.  
Table 10-2. Make-Before-Break PG Signal  
PG Signal  
Indication  
H
L
Power supply 1 present. System powered from power supply 1.  
Power supply 1 not present. System powered from power supply 2.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPS22953-Q1 TPS22954-Q1  
 
 
TPS22953-Q1, TPS22954-Q1  
SLVSGK4 – NOVEMBER 2021  
www.ti.com  
10.2 Typical Application  
This application demonstrates how the TPS2295x-Q1 can be used to limit inrush current to output capacitance.  
Figure 10-6. Powering a Downstream Module Schematic  
10.2.1 Design Requirements  
For this design example, use the input parameters shown in Table 10-3.  
Table 10-3. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
VIN  
3.3 V  
5 V  
VBIAS  
CL  
47 µF  
150 mA  
None  
Maximum Acceptable Inrush Current  
RL  
10.2.2 Detailed Design Procedure  
To begin the design process, the designer needs to know the following:  
Input voltage  
BIAS voltage  
Load current  
Load capacitance  
Maximum acceptable inrush current  
10.2.2.1 Inrush Current  
Use Equation 7 to determine how much inrush current is caused by the CL capacitor.  
dVOUT  
I
= CL ´  
INRUSH  
dt  
(7)  
where  
IINRUSH is the amount of inrush caused by CL  
CL is the load capacitance on VOUT  
dt is the VOUT rise time (typically 10% to 90%)  
dVOUT is the change in VOUT Voltage (typically 10% to 90%)  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TPS22953-Q1 TPS22954-Q1  
 
 
 
TPS22953-Q1, TPS22954-Q1  
www.ti.com  
SLVSGK4 – NOVEMBER 2021  
In this case, a Slew Rate slower than 314 μs/V is required to meet the maximum acceptable inrush requirement.  
Equation 4 can be used to estimate the CT capacitance (as shown in Equation 8 and Equation 9) required for  
this slew rate.  
314 μs/V = 0.35 × CT + 20  
CT = 840 pF  
(8)  
(9)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPS22953-Q1 TPS22954-Q1  
 
 
TPS22953-Q1, TPS22954-Q1  
SLVSGK4 – NOVEMBER 2021  
www.ti.com  
10.2.3 Application Curves  
The following Application Curves show the inrush with multiple different CT values. These curves show only a  
CT capacitance greater than 840 pF results in the acceptable inrush current of 150 mA.  
CT = 0 pF  
CT = 220 pF  
Figure 10-7. Inrush With CT = 0 pF  
Figure 10-8. Inrush With CT = 220 pF  
CT = 470 pF  
CT = 1000 pF  
Figure 10-9. Inrush With CT = 470 pF  
Figure 10-10. Inrush With CT = 1000 pF  
CT = 2200 pF  
Figure 10-11. Inrush With CT = 2200 pF  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TPS22953-Q1 TPS22954-Q1  
TPS22953-Q1, TPS22954-Q1  
www.ti.com  
SLVSGK4 – NOVEMBER 2021  
11 Power Supply Recommendations  
The device is designed to operate from a VBIAS range of 2.5 V to 5.7 V and a VIN range of 0.7 V to 5.7 V. The  
power supply must be well regulated and placed as close to the device terminals as possible. The power supply  
must be able to withstand all transient and load current steps. In most situations, using an input capacitance  
of 1 µF is sufficient to prevent the supply voltage from dipping when the switch is turned on. In cases where  
the power supply is slow to respond to a large transient current or large load current step, additional bulk  
capacitance can be required on the input.  
The requirements for larger input capacitance can be mitigated by adding additional capacitance to the CT pin.  
This action causes the load switch to turn on more slowly. Not only does this event reduce transient inrush  
current, but it also gives the power supply more time to respond to the load current step.  
12 Layout  
12.1 Layout Guidelines  
Input and Output traces must be as short and wide as possible to accommodate for high current.  
Use vias under the exposed thermal pad for thermal relief for high current operation.  
The CT Capacitor must be placed as close as possible to the device to minimize parasitic trace capacitance.  
TI recommends to cutout copper on other layers directly below CT to minimize parasitic capacitance.  
The IN terminal must be bypassed to ground with low ESR ceramic bypass capacitors. The typical  
recommended bypass capacitance is ceramic with X5R or X7R dielectric. This capacitor must be placed  
as close to the device pins as possible.  
The OUT terminal must be bypassed to ground with low ESR ceramic bypass capacitors. The typical  
recommended bypass capacitance is ceramic with X5R or X7R dielectric. This capacitor must be placed as  
close to the device pins as possible.  
The BIAS terminal must be bypassed to ground with low ESR ceramic bypass capacitors. The typical  
recommended bypass capacitance is ceramic with X5R or X7R dielectric.  
12.2 Layout Example  
VIA to Power Ground Plane  
VIA to PG pin  
Input Bypass  
Output Bypass  
Capacitor  
Capacitor  
IN  
OUT  
OUT  
SNS  
PG  
IN  
To Bias Supply  
BIAS  
To µC  
EN  
GND  
CT  
To GPIO  
control or  
resistor  
divider  
Exposed Thermal  
Pad Area  
Figure 12-1. Recommended Board Layout  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TPS22953-Q1 TPS22954-Q1  
 
 
 
 
TPS22953-Q1, TPS22954-Q1  
SLVSGK4 – NOVEMBER 2021  
www.ti.com  
13 Device and Documentation Support  
13.1 Documentation Support  
13.1.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, TPS22953/54 5.7-V, 5-A, 14-mΩ On-Resistance Load Switch user's guide  
Texas Instruments, Basics of Load Switches application report  
Texas Instruments, Managing Inrush Current application report  
Texas Instruments, Reverse Current Protection in Load Switches application report  
Texas Instruments, Quiescent Current vs Shutdown Current for Load Switch Power Consumption application  
report  
Texas Instruments, Load Switch Thermal Considerations application report  
13.2 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to sample or buy.  
Table 13-1. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
SAMPLE & BUY  
TPS22953-Q1  
TPS22954-Q1  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
13.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
13.4 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
13.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
13.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
13.7 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TPS22953-Q1 TPS22954-Q1  
 
 
 
 
 
 
 
 
 
TPS22953-Q1, TPS22954-Q1  
www.ti.com  
SLVSGK4 – NOVEMBER 2021  
14.1 Tape and Reel Information  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
Reel  
Diameter  
(mm)  
Reel  
Width W1  
(mm)  
Package  
Type  
Package  
Drawing  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
Quadrant  
Device  
Pins  
SPQ  
TPS22953QDQCRQ1  
TPS22953QDQCRQ1  
WSON  
WSON  
WSON  
WSON  
DQC  
DQC  
DQC  
DQC  
10  
10  
10  
10  
3000  
3000  
3000  
3000  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
2.25  
2.3  
3.25  
3.2  
1.05  
1.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
Q1  
Q1  
Q1  
Q1  
TPS22954QDQCRQ1  
TPS22954QDQCRQ1  
2.25  
2.3  
3.25  
3.2  
1.05  
1.0  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TPS22953-Q1 TPS22954-Q1  
 
TPS22953-Q1, TPS22954-Q1  
SLVSGK4 – NOVEMBER 2021  
www.ti.com  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Device  
Package Type  
Package Drawing Pins  
SPQ  
Length (mm) Width (mm)  
Height (mm)  
TPS22953QDQCRQ1  
TPS22953QDQCRQ1  
WSON  
DQC  
DQC  
DQC  
DQC  
10  
10  
10  
10  
3000  
210.0  
195.0  
210.0  
195.0  
185.0  
200.0  
185.0  
200.0  
35.0  
WSON  
WSON  
WSON  
3000  
3000  
3000  
45.0  
35.0  
45.0  
TPS22954QDQCRQ1  
TPS22954QDQCRQ1  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TPS22953-Q1 TPS22954-Q1  
TPS22953-Q1, TPS22954-Q1  
www.ti.com  
SLVSGK4 – NOVEMBER 2021  
PACKAGE OUTLINE  
DQC0010A  
WSON - 0.8mm max height  
S
C
A
L
E
4
.
5
0
0
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
0.3  
0.2  
0.35  
0.25  
OPTIONAL TERMINAL  
TYPICAL  
C
0.8 MAX  
SEATING PLANE  
0.08  
0.84 0.1  
SYMM  
(0.2) TYP  
0.05  
0.00  
5
6
8X 0.5  
2X  
2
SYMM  
11  
2.4 0.1  
SEE OPTIONAL  
TERMINAL  
DETAIL  
1
10  
0.3  
10X  
0.2  
0.1  
0.05  
PIN 1 ID  
(45 X0.2)  
C A B  
C
0.35  
10X  
0.25  
4218281/B 11/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TPS22953-Q1 TPS22954-Q1  
TPS22953-Q1, TPS22954-Q1  
SLVSGK4 – NOVEMBER 2021  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DQC0010A  
WSON - 0.8mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.84)  
( 0.2) TYP  
VIA  
10X (0.5)  
1
10  
10X (0.25)  
(0.95)  
11  
SYMM  
(2.4)  
8X (0.5)  
5
6
(R0.05) TYP  
SYMM  
(1.9)  
LAND PATTERN EXAMPLE  
SCALE: 30X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4218281/B 11/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TPS22953-Q1 TPS22954-Q1  
TPS22953-Q1, TPS22954-Q1  
www.ti.com  
SLVSGK4 – NOVEMBER 2021  
EXAMPLE STENCIL DESIGN  
DQC0010A  
WSON - 0.8mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.8)  
10X (0.5)  
10  
10X (0.25)  
1
(1.08)  
11  
SYMM  
8X (0.5)  
(0.64)  
METAL  
TYP  
6
5
(R0.05) TYP  
SYMM  
(1.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 11:  
86% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE: 30X  
4218281/B 11/2016  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TPS22953-Q1 TPS22954-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Nov-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PTPS22953QDQCRQ1  
PTPS22954QDQCRQ1  
ACTIVE  
ACTIVE  
WSON  
WSON  
DQC  
DQC  
10  
10  
3000  
3000  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
-40 to 125  
-40 to 125  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Nov-2021  
OTHER QUALIFIED VERSIONS OF TPS22953-Q1, TPS22954-Q1 :  
Catalog : TPS22953, TPS22954  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

TPS22953DQCR

具有可调节上升时间和电压监控功能的 5.7V、5A、14mΩ 负载开关 | DQC | 10 | -40 to 105

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS22953DSQR

具有可调节上升时间和电压监控功能的 5.7V、5A、14mΩ 负载开关 | DSQ | 10 | -40 to 105

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS22953QDQCRQ1

具有可调节上升时间和电压监控功能的汽车类 5.7V、5A、14mΩ 负载开关 | DQC | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS22954

具有可调节上升时间、电压监控功能和输出放电功能的 5.7V、5A、14mΩ 负载开关

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS22954-Q1

TPS2295x-Q1 5.7-V, 5-A, 14-mΩ On-Resistance, Automotive Load Switch

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS22954DQCR

具有可调节上升时间、电压监控功能和输出放电功能的 5.7V、5A、14mΩ 负载开关 | DQC | 10 | -40 to 105

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS22954DSQR

具有可调节上升时间、电压监控功能和输出放电功能的 5.7V、5A、14mΩ 负载开关 | DSQ | 10 | -40 to 105

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS22954QDQCRQ1

具有可调节上升时间、电压监控功能和输出诊断功能的汽车类 5.7V、5A、14mΩ 负载开关 | DQC | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS22958

具有可调节上升时间和可选输出放电功能的 5.5V、6A、13mΩ 负载开关

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS22958DGKR

具有可调节上升时间和可选输出放电功能的 5.5V、6A、13mΩ 负载开关 | DGK | 8 | -40 to 105

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS22958DGNR

具有可调节上升时间和可选输出放电功能的 5.5V、6A、13mΩ 负载开关 | DGN | 8 | -40 to 105

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS22958NDGKR

具有可调节上升时间和可选输出放电功能的 5.5V、6A、13mΩ 负载开关 | DGK | 8 | -40 to 105

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI