TMUX1511PWR [TI]

具有断电保护功能和 1.8V 输入逻辑的 5V、1:1 (SPST)、4 通道模拟开关 | PW | 14 | -40 to 125;
TMUX1511PWR
型号: TMUX1511PWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有断电保护功能和 1.8V 输入逻辑的 5V、1:1 (SPST)、4 通道模拟开关 | PW | 14 | -40 to 125

开关 光电二极管 输出元件
文件: 总36页 (文件大小:1720K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TMUX1511  
ZHCSIR9A SEPTEMBER 2018REVISED DECEMBER 2018  
具有1.8V 逻辑的 TMUX1511 低电容、1:1 (SPST) 4 通道  
关断保护开关  
1 特性  
3 说明  
1
宽电源电压范围:1.5V 5.5V  
低导通电容:3.3pF  
TMUX1511 是一款互补金属氧化物半导体 (CMOS) 开  
关。TMUX1511 提供具有 4 个独立控制通道的 1:1  
SPST 开关配置。1.5V 5.5V 的宽运行电源电压范围  
使其 可用于从服务器和通信设备到工业应用的各种 应  
用的需求。该器件可在源极 (Sx) 和漏极 (Dx) 引脚上支  
双向模拟和数字信号,并且可以传递高于电源的信号  
(高达 VDD x 2),最大输入/输出电压为 5.5V。  
低导通电阻:2Ω  
高带宽:3GHz  
-40°C +125°C 运行温度  
兼容 1.8V 逻辑  
支持超出电源的输入电压  
逻辑引脚上的集成下拉电阻器  
双向信号路径  
TMUX1511 的信号路径上高达 3.6V 关断保护可在  
移除电源电压 (VDD = 0V) 时提供隔离。如果没有该保  
护功能,开关可通过内部 ESD 二极管为电源轨进行反  
向供电,从而对系统造成潜在损坏。  
失效防护逻辑  
关断保护 高达 3.6V  
SN74CBTLV3126 引脚兼容  
失效防护逻辑 电路允许在施加电源引脚上的电压之  
前,先施加逻辑控制引脚上的电压,从而保护器件免受  
潜在的损害。所有逻辑控制输入都具有 兼容 1.8V 逻辑  
的阈值,当器件在有效电源电压范围内运行时,这些阈  
值可确保 TTL CMOS 逻辑兼容性。  
SN74CBTLV3125 引脚兼容(逻辑型号)  
2 应用  
服务器  
有线网络  
无线基础设施  
数据中心交换机和路由器  
PC/笔记本电脑  
楼宇自动化  
ePOS  
器件信息(1)  
器件型号  
TMUX1511  
封装  
TSSOP (14)  
QFN (16)  
封装尺寸(标称值)  
5.00mm × 4.40mm  
2.60mm x 1.80mm  
(1) 如需了解所有可用封装,请参阅产品数据表末尾的封装选项附  
录。  
电机驱动器  
电器  
电池供电类设备  
JTAG 隔离  
SPI 隔离  
应用示例  
方框图  
VDD  
VI/O  
TMUX1511  
VDD  
0.1µF  
SEL1  
S1  
SEL4  
S4  
Processor  
JTAG, SPI, GPIO  
Port  
FLASH  
TDI / MISO / GPIO  
TDO / MOSI / GPIO  
TCK / SCLK / GPIO  
TMS / SS / GPIO  
S1  
S2  
S3  
S4  
D1  
D2  
D3  
D4  
JTAG  
DEBUG,  
D1  
D4  
RAM  
CPU  
SPI, GPIO  
SEL2  
S2  
SEL3  
S3  
SEL1  
SEL2  
SEL3  
SEL4  
1.8V Logic  
I/O  
Peripherals  
D2  
D3  
GND  
GND  
*Internal 6MO Pull-Down on Logic Pins  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SCDS390  
 
 
 
 
TMUX1511  
ZHCSIR9A SEPTEMBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
目录  
7.11 Off Isolation........................................................... 17  
7.12 Channel-to-Channel Crosstalk.............................. 17  
7.13 Bandwidth ............................................................. 18  
Detailed Description ............................................ 19  
8.1 Overview ................................................................. 19  
8.2 Functional Block Diagram ....................................... 19  
8.3 Feature Description................................................. 19  
8.4 Device Functional Modes........................................ 20  
8.5 Truth Tables............................................................ 20  
Application and Implementation ........................ 21  
9.1 Application Information............................................ 21  
9.2 Typical Application ................................................. 21  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Dynamic Characteristics ........................................... 6  
6.7 Timing Requirements................................................ 6  
6.8 Typical Characteristics.............................................. 7  
Parameter Measurement Information ................ 12  
7.1 On-Resistance ........................................................ 12  
7.2 Off-Leakage Current ............................................... 12  
7.3 On-Leakage Current ............................................... 13  
7.4 IPOFF Leakage Current.......................................... 13  
7.5 Transition Time ....................................................... 14  
7.6 TON (VDD) and TOFF (VDD) Time ................................ 14  
7.7 Propagation Delay................................................... 15  
7.8 Skew ....................................................................... 15  
7.9 Charge Injection...................................................... 16  
7.10 Capacitance .......................................................... 16  
8
9
10 Power Supply Recommendations ..................... 23  
11 Layout................................................................... 24  
11.1 Layout Guidelines ................................................. 24  
11.2 Layout Example .................................................... 25  
12 器件和文档支持 ..................................................... 26  
12.1 文档支持................................................................ 26  
12.2 接收文档更新通知 ................................................. 26  
12.3 社区资源................................................................ 26  
12.4 ....................................................................... 26  
12.5 静电放电警告......................................................... 26  
12.6 术语表 ................................................................... 26  
13 机械、封装和可订购信息....................................... 26  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (September 2018) to Revision A  
Page  
更改了产品说明书状态:将预告信息更改成了生产数据..................................................................................................... 1  
2
Copyright © 2018, Texas Instruments Incorporated  
 
TMUX1511  
www.ti.com.cn  
ZHCSIR9A SEPTEMBER 2018REVISED DECEMBER 2018  
5 Pin Configuration and Functions  
PW Package  
14-Pin TSSOP  
Top View  
RSV Package  
16-Pin QFN  
Top View  
SEL1  
S1  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
VDD  
SEL4  
S4  
D1  
SEL1  
S1  
1
12  
11  
10  
9
N.C.  
SEL3  
S3  
SEL2  
S2  
D4  
SEL3  
S3  
2
3
4
D2  
D1  
GND  
8
D3  
SEL2  
D3  
Not to scale  
Not to scale  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
TSSOP  
UQFN  
Select pin 1: controls state of switch #1 (logic low = OFF, logic high = ON). Internal 6 MΩ  
pull-down to GND.  
SEL1  
1
1
I
S1  
D1  
2
3
2
3
I/O  
I/O  
Source pin 1. Can be an input or output.  
Drain pin 1. Can be an input or output.  
Select pin 2: controls state of switch #2 (logic low = OFF, logic high = ON). Internal 6 MΩ  
pull-down to GND.  
SEL2  
4
4
I
S2  
5
6
-
5
6
I/O  
Source pin 2. Can be an input or output.  
Drain pin 2. Can be an input or output.  
Not Connected - Can be shorted to GND or left floating  
Ground (0 V) reference  
D2  
I/O  
N.C.  
GND  
D3  
7
Not Connected  
7
8
9
8
P
9
I/O  
I/O  
Drain pin 3. Can be an input or output.  
Source pin 3. Can be an input or output.  
S3  
10  
Select pin 3: controls state of switch #3 (logic low = OFF, logic high = ON). Internal 6 MΩ  
pull-down to GND.  
SEL3  
10  
11  
I
N.C.  
D4  
-
12  
13  
14  
Not Connected  
Not Connected - Can be shorted to GND or left floating  
Drain pin 4. Can be an input or output.  
11  
12  
I/O  
I/O  
S4  
Source pin 4. Can be an input or output.  
Select pin 4: controls state of switch #4 (logic low = OFF, logic high = ON). Internal 6 MΩ  
pull-down to GND.  
SEL4  
VDD  
13  
14  
15  
16  
I
Positive power supply. This pin is the most positive power-supply potential. For reliable  
operation, connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VDD and  
GND.  
P
(1) I = input, O = output, I/O = input and output, P = power  
Copyright © 2018, Texas Instruments Incorporated  
3
TMUX1511  
ZHCSIR9A SEPTEMBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
(2) (3)  
MIN  
–0.5  
–0.5  
–30  
–0.5  
–25  
–65  
MAX  
UNIT  
V
VDD  
Supply voltage  
6
6
VSEL  
Logic control input pin voltage (SEL1, SEL2, SEL3, SEL4)  
Logic control input pin current (SEL1, SEL2, SEL3, SEL4)  
Source or drain pin voltage  
V
ISEL  
30  
6
mA  
V
VS or VD  
IS or ID (CONT)  
Tstg  
Source and drain pin continuous current: (S1 to S4, D1 to D4)  
Storage temperature  
25  
150  
150  
mA  
°C  
°C  
TJ  
Junction temperature  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.  
(3) All voltages are with respect to ground, unless otherwise specified.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per  
ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC  
specification JESD22-C101(2)  
±750  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
MIN  
MAX  
5.5  
UNIT  
V
VDD  
Supply voltage  
1.5  
0
VS or VD  
VS_off or VD_off  
VSEL  
Signal path input/output voltage (source or drain pin), VDD 1.5 V(1)  
Signal path input/output voltage (source or drain pin), VDD < 1.5 V(2)  
Logic control input voltage (SELx)  
VDD x 2  
3.6  
V
0
V
0
5.5  
V
TA  
Ambient temperature  
–40  
125  
ºC  
(1) Device input/output can operate up to VDD x 2, with a maximum input/output voltage of 5.5 V.  
(2) VS_off and VD_off refers to the voltage at the source or drain pins when supply is less than 1.5 V  
6.4 Thermal Information  
DEVICE  
DEVICE  
RSV (UQFN)  
16 PINS  
141.5  
THERMAL METRIC(1)  
PW (TSSOP)  
14 PINS  
129.4  
58.8  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
77.9  
72.4  
67.6  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
11.6  
5.1  
ΨJB  
71.9  
65.5  
RθJC(bot)  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2018, Texas Instruments Incorporated  
TMUX1511  
www.ti.com.cn  
ZHCSIR9A SEPTEMBER 2018REVISED DECEMBER 2018  
6.5 Electrical Characteristics  
VDD = 1.5 V to 5.5 V, GND = 0 V, TA = –40°C to +125°C,  
Typical values are at VDD = 3.3 V, TA = 25°C, (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
VDD  
Power supply voltage  
1.5  
5.5  
70  
V
VSEL = 0 V, 1.4 V or VDD  
VS = 0 V to 5.5 V  
IDD  
Supply current  
37  
μA  
DC CHARACTERISTICS  
VS = 0 V to VDD*2  
VS(max) = 5.5 V  
ISD = 8 mA  
RON  
On-resistance  
2
4.5  
Refer to ON-State Resistance Figure  
VS = VDD  
ΔRON  
On-resistance match between channels  
On-resistance flatness  
ISD = 8 mA  
Refer to ON-State Resistance Figure  
0.07  
1
0.28  
1.8  
VS = 0 V to VDD  
ISD = 8 mA  
Refer to ON-State Resistance Figure  
RON  
(FLAT)  
VDD = 0 V  
VS = 0 V to 3 V  
VD = 0 V  
IPOFF  
Powered-off I/O pin leakage current  
–10  
0.01  
10  
nA  
TA = 25  
Refer to Ipoff Leakage Figure  
VDD = 0 V  
VS = 0 V to 3.6 V  
VD = 0 V  
Refer to Ipoff Leakage Figure  
IPOFF  
Powered-off I/O pin leakage current  
OFF leakage current  
–2  
0.01  
0.03  
2
µA  
nA  
Switch Off  
IS(OFF)  
ID(OFF)  
VD = 0.8*VDD / 0.2*VDD  
VS = 0.2*VDD / 0.8*VDD  
Refer to Off Leakage Figure  
–100  
100  
Switch On  
VD = 0.8*VDD / 0.2*VDD, S pins floating  
or  
VS = 0.8*VDD / 0.2*VDD, D pins floating  
Refer to On Leakage Figure  
ID(ON)  
IS(ON)  
ON leakage current  
–50  
0.01  
50  
nA  
LOGIC INPUTS  
VIH  
VIL  
IIH  
Input logic high  
1.2  
0
5.5  
0.45  
±2  
V
V
Input logic low  
Input high leakage current  
Input low leakage current  
VSEL = 1.8 V, VDD  
VSEL = 0 V  
1
μA  
μA  
IIL  
0.2  
±2  
Internal pull-down resistor on logic input  
pins  
RPD  
CI  
6
3
MΩ  
VSEL = 0 V, 1.8 V or VDD  
f = 1 MHz  
Logic input capacitance  
pF  
Copyright © 2018, Texas Instruments Incorporated  
5
TMUX1511  
ZHCSIR9A SEPTEMBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
6.6 Dynamic Characteristics  
VDD = 1.5 V to 5.5 V, GND = 0 V, TA = –40°C to +125°C,  
Typical values are at VDD = 3.3 V, TA = 25°C, (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VS = VDD / 2  
VSEL= 0 V  
f = 1 MHz  
Refer to Capacitance Figure  
Switch  
OFF  
COFF  
Source and drain off capacitance  
2.5  
4
6
pF  
pF  
VS = VDD / 2  
VSEL = VDD  
f = 1 MHz  
Refer to Capacitance Figure  
Switch  
ON  
CON  
Source and drain on capacitance  
Charge Injection  
3.3  
VS = VDD / 2  
RS = 0 Ω, CL = 100 pF  
Refer to Charge Injection Figure  
Switch  
ON  
QC  
2
–90  
–75  
pC  
dB  
dB  
RL = 50 Ω  
f = 100 kHz  
Refer to Off Isolation Figure  
Switch  
OFF  
OISO  
Off isolation  
RL = 50 Ω  
f = 1 MHz  
Refer to Off Isolation Figure  
Switch  
OFF  
RL = 50 Ω  
f = 100 kHz  
Refer to Crosstalk Figure  
Switch  
ON  
XTALK  
BW  
Channel to Channel crosstalk  
Bandwidth  
–90  
3
dB  
GHz  
dB  
RL = 50 Ω  
Refer to Bandwidth Figure  
Switch  
ON  
RL = 50 Ω  
f = 1 MHz  
Refer to Bandwidth Figure  
Switch  
ON  
ILOSS  
Insertion loss  
–0.12  
6.7 Timing Requirements  
VDD = 1.5 V to 5.5 V, GND = 0 V, TA = –40°C to +125°C,  
Typical values are at VDD = 3.3 V, TA = 25°C, (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VS = 3.6 V  
VDD rise time = 1us  
RL = 200 Ω, CL = 15pF  
Refer to Ton(vdd) & Toff(vdd) Figure  
tON(VDD) Device turn on time (VDD to output)  
20  
60  
4
µs  
VS = 3.6 V  
VDD fall time = 1us  
RL = 200 Ω, CL = 15pF  
Refer to Ton(vdd) & Toff(vdd) Figure  
tOFF(VDD) Device turn off time (VDD to output)  
1.2  
25  
50  
µs  
ns  
ns  
VDD = 2.5 V to 5.5 V  
VS = VDD  
RL = 200 Ω, CL = 15pF  
Refer to Transition Time Figure  
tTRAN  
Transition time from control input  
Transition time from control input  
55  
80  
VDD < 2.5 V  
VS = VDD  
RL = 200 Ω, CL = 15pF  
Refer to Transition Time Figure  
tTRAN  
tSK(P)  
tPD  
Inter - channel skew  
Propagation delay  
Refer to Tsk Figure  
Refer to Tpd Figure  
10  
67  
ps  
ps  
6
版权 © 2018, Texas Instruments Incorporated  
TMUX1511  
www.ti.com.cn  
ZHCSIR9A SEPTEMBER 2018REVISED DECEMBER 2018  
6.8 Typical Characteristics  
at TA = 25°C, VDD = 5 V (unless otherwise noted)  
5
4
3
5
4
3
2
1
0
TA = 125èC  
TA = 85èC  
VDD = 1.5 V  
VDD = 5.5 V  
2
1
TA = 25èC  
TA = -40èC  
VDD = 3.3 V  
0
0
1
2
3
4
5
5.5  
0
1
2
3
4
5
5.5  
Source or Drain Voltage (V)  
Source or Drain Voltage (V)  
D001  
D002  
TA = 25°C  
VDD = 5.5 V  
1. On-Resistance vs Source or Drain Voltage  
2. On-Resistance vs Source or Drain Voltage  
4
3
2
1
0
4
3
2
1
0
TA = 85èC  
TA = 125èC  
TA = 85èC  
TA = 125èC  
TA = 25èC  
TA = -40èC  
TA = 25èC  
TA = -40èC  
1.5  
0
0.5  
1
2
2.5  
3
3.5  
0
0.5  
1
1.5  
Source or Drain Voltage (V)  
Source or Drain Voltage (V)  
D003  
D004  
VDD = 3.3 V  
VDD = 1.5 V  
3. On-Resistance vs Source or Drain Voltage  
4. On-Resistance vs Source or Drain Voltage  
70  
65  
60  
55  
50  
45  
40  
35  
30  
60  
55  
50  
45  
40  
35  
30  
TA = 125èC  
TA = 85èC  
VDD = 3.3 V  
VDD = 5.5 V  
TA = 25èC  
VDD = 1.5 V  
TA = -40èC  
2.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
1.5  
2
3
3.5  
4
4.5  
5
5.5  
6
Logic Voltage (V)  
D005  
Supply Voltage (V)  
D006  
TA = 25°C  
5. Supply Current vs Logic Voltage  
6. Supply Current vs Supply Voltage  
版权 © 2018, Texas Instruments Incorporated  
7
TMUX1511  
ZHCSIR9A SEPTEMBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
10  
30  
25  
20  
15  
10  
5
VDD = 5.5 V  
VDD = 3.3 V  
VDD = 1.5 V  
8
6
VDD = 5.5 V  
4
2
0
-2  
-4  
-6  
-8  
-10  
VDD = 3.3 V  
VDD = 1.5 V  
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Temperature (èC)  
D008  
Source or Drain Voltage (V)  
D007  
TA = 25°C  
8. On-Leakage vs Temperature  
7. On-Leakage vs Source or Drain Voltage  
0.1  
0.05  
0
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VDD = 5.5 V  
VDD = 3.3 V  
VDD = 1.5 V  
-0.05  
-0.1  
-0.15  
VDD = 5.5 V  
VDD = 3.3 V  
VDD = 1.5 V  
-0.1  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
0
1
2
3
4
5
Temperature (èC)  
D010  
Source or Drain Voltage (V)  
D009  
TA = 25°C  
10. Off-Leakage vs Temperature  
9. Off-Leakage vs Source or Drain Voltage  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
8
6
4
2
0
-2  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
-40 -30 -20 -10  
0
10  
20  
30  
40  
50  
60  
Source or Drain Voltage (V)  
Temperature (èC)  
D011  
D012  
TA = 25°C  
VSource = 3 V  
11. IPOFF Leakage vs Source or Drain Voltage  
12. IPOFF Leakage vs Temperature  
8
版权 © 2018, Texas Instruments Incorporated  
TMUX1511  
www.ti.com.cn  
ZHCSIR9A SEPTEMBER 2018REVISED DECEMBER 2018  
Typical Characteristics (接下页)  
700  
600  
500  
400  
300  
200  
100  
0
-100  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
D013  
TA = 25°C  
VSource = 3.6 V  
VDrain = 0 V  
RL= 200 Ω  
14. IPOFF Leakage vs Source or Drain Voltage  
13. IPOFF Leakage vs Temperature  
50  
45  
40  
35  
30  
25  
20  
15  
10  
25  
20  
15  
10  
5
Transiton_Rising  
Transiton_Falling  
Transiton_Rising  
Transiton_Falling  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Supply Voltage (V)  
Temperature (èC)  
D015  
D016  
TA = 25°C  
VDD = 5.5 V  
15. TTRANSITION vs Supply Voltage  
16. TTRANSITION vs Temperature  
22.5  
20  
70  
60  
50  
40  
30  
20  
10  
0
Propagation Delay  
17.5  
15  
12.5  
10  
TON(VDD)  
TOFF(VDD)  
Skew  
7.5  
5
2.5  
0
1.5  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Supply Voltage (V)  
D018  
Supply Voltage (V)  
D017  
TA = 25°C  
TA = 25°C  
18. Skew and Propagation Delay vs Supply Voltage  
17. TON (VDD) and TOFF (VDD) vs Supply Voltage  
版权 © 2018, Texas Instruments Incorporated  
9
TMUX1511  
ZHCSIR9A SEPTEMBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
10  
9
8
6
4
2
0
COFF  
CON  
8
VDD = 5.5 V  
7
6
VDD = 3.3 V  
5
4
VDD = 1.5 V  
3
2
1
0
0
1
2
3
4
5
6
1M  
10M  
100M  
Frequency (Hz)  
1G  
Source Voltage (V)  
D019  
D020  
TA = 25°C  
TA = 25°C  
20. Capacitance vs Frequency  
19. Charge Injection vs Source or Drain Voltage  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-1  
-2  
-3  
-4  
-5  
-6  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
Frequency (Hz)  
Frequency (Hz)  
D021  
D022  
TA = 25°C  
TA = 25°C  
VDD = 1.5 V to 5.5 V  
21. Off Isolation vs Frequency  
22. On-Response vs Frequency  
10  
版权 © 2018, Texas Instruments Incorporated  
TMUX1511  
www.ti.com.cn  
ZHCSIR9A SEPTEMBER 2018REVISED DECEMBER 2018  
6.8.1 Eye Diagrams  
TA = 25°C  
Bias = 1.5 V  
TA = 25°C  
Bias = 1.5 V  
50 Ω Termination  
50 Ω Termination  
24. Eye Pattern: 2.4 Gbps Through Path  
23. Eye Pattern: 2.4 Gbps  
TA = 25°C  
Bias = 1.5 V  
TA = 25°C  
Bias = 1.5 V  
50 Ω Termination  
50 Ω Termination  
26. Eye Pattern: 3 Gbps Through Path  
25. Eye Pattern: 3 Gbps  
版权 © 2018, Texas Instruments Incorporated  
11  
TMUX1511  
ZHCSIR9A SEPTEMBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
7 Parameter Measurement Information  
7.1 On-Resistance  
The on-resistance of a device is the ohmic resistance between the source (Sx) and drain (Dx) pins of the device.  
The on-resistance varies with input voltage and supply voltage. The symbol RON is used to denote on-resistance.  
The measurement setup used to measure RON is shown in 27 . Voltage (V) and current (IDS) are measured  
using this setup, and RON is computed as shown below with RON = V / ISD  
:
V
ISD  
Sx  
Dx  
VS  
27. On-Resistance Measurement Setup  
7.2 Off-Leakage Current  
Source off-leakage current is defined as the leakage current flowing into or out of the source pin when the switch  
is off. This current is denoted by the symbol IS(OFF)  
.
Drain off-leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is  
off. This current is denoted by the symbol ID(OFF)  
.
The setup used to measure both off-leakage currents is shown in 28.  
VDD  
VDD  
VDD  
VDD  
IS (OFF)  
A
ID (OFF)  
A
S1  
S4  
D1  
D4  
D1  
D4  
S1  
S4  
VS  
VD  
VD  
VS  
IS (OFF)  
A
ID (OFF)  
A
VS  
VD  
VD  
VS  
GND  
GND  
28. Off-Leakage Measurement Setup  
12  
版权 © 2018, Texas Instruments Incorporated  
 
 
TMUX1511  
www.ti.com.cn  
ZHCSIR9A SEPTEMBER 2018REVISED DECEMBER 2018  
7.3 On-Leakage Current  
Source on-leakage current is defined as the leakage current flowing into or out of the source pin when the switch  
is on. This current is denoted by the symbol IS(ON)  
.
Drain on-leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is  
on. This current is denoted by the symbol ID(ON)  
.
Either the source pin or drain pin is left floating during the measurement. 29 shows the circuit used for  
measuring the on-leakage current, denoted by IS(ON) or ID(ON)  
.
VDD  
VDD  
VDD  
VDD  
IS (ON)  
A
ID (ON)  
S1  
S4  
D1  
D4  
D1  
D4  
S1  
S4  
N.C.  
N.C.  
N.C.  
N.C.  
A
VS  
VD  
IS (ON)  
A
ID (ON)  
A
VS  
VD  
GND  
GND  
29. On-Leakage Measurement Setup  
7.4 IPOFF Leakage Current  
IPOFF leakage current is defined as the leakage current flowing into or out of the source pin when the device is  
powered off. This current is denoted by the symbol IPOFF.  
The setup used to measure both IPOFF leakage current is shown in 30.  
VDD = 0 V  
VDD  
IPOFF  
S1  
S4  
D1  
D4  
A
VS  
VD  
IPOFF  
A
VS  
VD  
GND  
30. IPOFF Leakage Measurement Setup  
版权 © 2018, Texas Instruments Incorporated  
13  
 
 
TMUX1511  
ZHCSIR9A SEPTEMBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
7.5 Transition Time  
Transition time is defined as the time taken by the output of the device to rise or fall 10% after the control select  
signal has risen or fallen past the logic threshold. The 10% transition measurement is utilized to provide the  
timing of the device. The time constant from the load resistance and load capacitance can be added to the  
transition time to calculate system level timing. 31 shows the setup used to measure transition time, denoted  
by the symbol tTRANSITION  
.
VDD  
0.1F  
VDD  
VDD  
ADDRESS  
DRIVE  
tf < 5ns  
tr < 5ns  
VIH  
(VSEL  
)
VIL  
OUTPUT  
RL  
S1  
S4  
D1  
D4  
0 V  
VS  
CL  
tTRANSITION  
tTRANSITION  
OUTPUT  
RL  
VS  
90%  
CL  
SEL1 - SEL4  
GND  
OUTPUT  
0 V  
VSEL  
10%  
31. Transition-Time Measurement Setup  
7.6 TON (VDD) and TOFF (VDD) Time  
TON (VDD) time is defined as the time taken by the output of the device to rise to 90% after the supply has risen  
past the supply threshold. The 90% measurement is utilized to provide the timing of the device turning on in the  
system. The time constant from the load resistance and load capacitance can be added to the turn-on-VDD time  
to calculate system level timing. 32 shows the setup used to measure transition time, denoted by the symbol  
tON (VDD)  
.
TOFF (VDD) time is defined as the time taken by the output of the device to fall to 90% after the enable has fallen  
past the supply threshold. The 90% measurement is utilized to provide the timing of the device turning off in the  
system. The time constant from the load resistance and load capacitance can be added to the turn-off-VDD time  
to calculate system level timing. 32 shows the setup used to measure transition time, denoted by the symbol  
tOFF (VDD)  
.
VDD  
0.1F  
VDD  
VDD  
VDD  
Supply  
Ramp  
1.5 V  
1.5 V  
(VDD  
)
OUTPUT  
S1  
S4  
D1  
D4  
VS  
0 V  
CL  
RL  
tON  
tOFF  
(VDD)  
(VDD)  
90%  
90%  
OUTPUT  
RL  
VS  
OUTPUT  
0 V  
CL  
VDD  
SEL1 - SEL4  
GND  
32. Turn-On-VDD and Turn-Off-VDD Time Measurement Setup  
14  
版权 © 2018, Texas Instruments Incorporated  
 
 
TMUX1511  
www.ti.com.cn  
ZHCSIR9A SEPTEMBER 2018REVISED DECEMBER 2018  
7.7 Propagation Delay  
Propagation delay is defined as the time taken by the output of the device to rise or fall 50% after the input signal  
has risen or fallen past the 50% threshold. 33 shows the setup used to measure propagation delay, denoted  
by the symbol tPD  
.
VDD  
0.1F  
VDD  
250 mV  
Input  
(VS)  
50%  
50%  
OUTPUT  
S1  
S4  
D1  
D4  
VS  
0 V  
RL  
50ꢀ  
tPD 1  
tPD 2  
OUTPUT  
VS  
RL  
50ꢀ  
Output  
0 V  
50%  
50%  
GND  
tProp Delay = max ( tPD 1, tPD  
)
2
33. Propagation Delay Measurement Setup  
7.8 Skew  
Skew is defined as the difference between propagation delays of any two outputs of the same device. The skew  
measurement is taken from the output of one channel rising or falling past 50% to a second channel rising or  
falling past the 50% threshold when the input signals are switched at the same time. 34 shows the setup used  
to measure skew, denoted by the symbol tSK  
.
VDD  
0.1F  
VDD  
Output 1  
50%  
50%  
OUTPUT  
S1  
S4  
D1  
D4  
VS  
0 V  
RL  
50ꢀ  
tSK 1  
tSK 2  
OUTPUT  
VS  
RL  
50ꢀ  
Output 2  
0 V  
50%  
50%  
GND  
tSKEW = max ( tSK 1, tSK  
)
2
34. Skew Measurement Setup  
版权 © 2018, Texas Instruments Incorporated  
15  
 
 
TMUX1511  
ZHCSIR9A SEPTEMBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
7.9 Charge Injection  
The amount of charge injected into the source or drain of the device during the falling or rising edge of the gate  
signal is known as charge injection, and is denoted by the symbol QC. 35 shows the setup used to measure  
charge injection from source (Sx) to drain (Dx).  
VDD  
0.1F  
VDD  
VDD  
VSEL  
OUTPUT  
S1  
D1  
D4  
VOUT  
CL  
VS  
0 V  
Output  
VS  
OUTPUT  
VOUT  
S4  
VOUT  
CL  
VS  
QC = CL  
×
VOUT  
SEL1 - SEL4  
VSEL  
GND  
35. Charge-Injection Measurement Setup  
7.10 Capacitance  
The parasitic capacitance of the device is captured at the source (Sx), drain (Dx), and select (SELx) pins. The  
capacitance is measured in both the on and off state and is denoted by the symbol CON and COFF. 36 shows  
the setup used to measure capacitance.  
VDD  
VDD  
SEL1  
S1  
1 MHz  
Capacitance  
Capacitance is measured at SX, DX,  
and SELX pins during ON and OFF  
conditions  
D1  
Meter  
SEL4  
S4  
D4  
GND  
36. Capacitance Measurement Setup  
16  
版权 © 2018, Texas Instruments Incorporated  
 
 
TMUX1511  
www.ti.com.cn  
ZHCSIR9A SEPTEMBER 2018REVISED DECEMBER 2018  
7.11 Off Isolation  
Off isolation is defined as the ratio of the signal at the drain pin (Dx) of the device when a signal is applied to the  
source pin (Sx) of an off-channel. The characteristic impedance, Z0, for the measurement is 50 Ω. 37 shows  
the setup used to measure off isolation. Use off isolation equation to compute off isolation.  
0.1µF  
NETWORK  
VDD  
ANALYZER  
VS  
S
D
50Ω  
VSIG  
VOUT  
RL  
50Ω  
SX/DX  
GND  
RL  
50Ω  
37. Off Isolation Measurement Setup  
«
÷
VOUT  
VS  
Off Isolation = 20 Log  
(1)  
7.12 Channel-to-Channel Crosstalk  
Crosstalk is defined as the ratio of the signal at the drain pin (Dx) of a different channel, when a signal is applied  
at the source pin (Sx) of an on-channel. The characteristic impedance, Z0, for the measurement is 50 Ω. 38  
shows the setup used to measure, and the equation used to compute crosstalk.  
VDD  
0.1µF  
NETWORK  
VDD  
ANALYZER  
D1  
D2  
S1  
S2  
VOUT  
RL  
RL  
50Ω  
50Ω  
VS  
RL  
50Ω  
50Ω  
SX / DX  
VSIG = 200 mVpp  
VBIAS = VDD / 2  
RL  
50Ω  
GND  
38. Channel-to-Channel Crosstalk Measurement Setup  
«
÷
VOUT  
VS  
Channel-to-Channel Crosstalk = 20 Log  
(2)  
17  
版权 © 2018, Texas Instruments Incorporated  
 
 
TMUX1511  
ZHCSIR9A SEPTEMBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
7.13 Bandwidth  
Bandwidth is defined as the range of frequencies that are attenuated by less than 3 dB when the input is applied  
to the source pin (Sx) of an on-channel, and the output is measured at the drain pin (Dx) of the device. The  
characteristic impedance, Z0, for the measurement is 50 Ω. 39 shows the setup used to measure bandwidth.  
VDD  
0.1µF  
NETWORK  
VDD  
ANALYZER  
VS  
50Ω  
S
D
VSIG  
VOUT  
RL  
50Ω  
GND  
39. Bandwidth Measurement Setup  
18  
版权 © 2018, Texas Instruments Incorporated  
 
TMUX1511  
www.ti.com.cn  
ZHCSIR9A SEPTEMBER 2018REVISED DECEMBER 2018  
8 Detailed Description  
8.1 Overview  
The TMUX1511 is a high speed 1:1 (SPST) 4-channel switch with powered-off protection up to 3.6 V. Wide  
operating supply of 1.5 V to 5.5 V allows for use in a broad array of applications from servers and  
communication equipment to industrial applications. The device supports bidirectional analog and digital  
signals on the source (Sx) and drain (Dx) pins. The wide bandwidth of this switch allows little or no  
attenuation of the high-speed signals at the outputs to pass with minimum edge and phase distortion as well  
as propagation delay.  
The select (SELx) pins are active-high logic pins that control the connection between the source (Sx) and  
drain (Dx) pins of the device. Each channel of the TMUX1511 can be controlled independently through the  
associated select pin, or all four select pins can be tied together for simultaneous control of all channels with  
a single GPIO. Fail-Safe Logic circuitry allows voltages on the logic control pins to be applied before the  
supply pin, protecting the device from potential damage. All logic control inputs have 1.8V logic compatible  
thresholds, ensuring both TTL and CMOS logic compatibility when operating in the valid supply voltage  
range.  
Powered-off protection up to 3.6 V on the signal path of the TMUX1511 provides isolation when the supply  
voltage is removed (VDD = 0 V). Without this protection feature, the system can back-power the supply rail  
through an internal ESD diode and cause potential damage to the system.  
8.2 Functional Block Diagram  
TMUX1511  
SEL1  
S1  
SEL4  
S4  
D1  
D4  
SEL2  
S2  
SEL3  
S3  
D2  
D3  
*Internal 6MO Pull-Down on Logic Pins  
8.3 Feature Description  
8.3.1 Bidirectional Operation  
The TMUX1511 conducts equally well from source (Sx) to drain (Dx) or from drain (Dx) to source (Sx). Each  
channel has very similar characteristics in both directions and supports both analog and digital signals.  
8.3.2 Beyond Supply Operation  
When the TMUX1511 is powered from 1.5 V to 5.5 V, the valid signal path input/output voltage ranges from  
GND to VDD x 2, with a maximum input/output voltage of 5.5 V.  
Example 1: If the TMUX1511 is powered at 1.5V, the signal range is 0 V to 3 V.  
Example 2: If the TMUX1511 is powered at 3V, the signal range is 0 V to 5.5 V.  
Example 3: If the TMUX1511 is powered at 5.5V, the signal range is 0 V to 5.5 V.  
Other voltage levels not mentioned in the examples will support Beyond Supply Operation as long as the supply  
voltage falls within the recommended operation conditions of 1.5 V to 5.5 V.  
版权 © 2018, Texas Instruments Incorporated  
19  
 
TMUX1511  
ZHCSIR9A SEPTEMBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
Feature Description (接下页)  
8.3.3 1.8 V Logic Compatible Inputs  
The TMUX1511 has 1.8-V logic compatible control inputs. Regardless of the VDD voltage, the control input  
thresholds remain fixed, allowing a 1.8-V processor GPIO to control the TMUX1511 without the need for an  
external translator. This saves both space and BOM cost. For more information on 1.8 V logic implementations  
refer to Simplifying Design with 1.8 V logic Muxes and Switches.  
8.3.4 Powered-off Protection  
Powered-off protection up to 3.6 V on the signal path of the TMUX1511 provides isolation when the supply  
voltage is removed (VDD = 0 V). When the TMUX1511 is powered-off, the I/Os of the device remain in a high-Z  
state. Powered-off protection minimizes system complexity by removing the need for power supply sequencing  
on the signal path. The device performance remains within the leakage performance mentioned in the Electrical  
Specifications. For more information on powered-off protection refer to Eliminate Power Sequencing with  
Powered-off Protection Signal Switches  
8.3.5 Fail-Safe Logic  
The TMUX1511 has Fail-Safe Logic on the control input pins (SELx) which allows for operation up to 5.5 V,  
regardless of the state of the supply pin. This feature allows voltages on the control pins to be applied before the  
supply pin, protecting the device from potential damage. Fail-Safe Logic minimizes system complexity by  
removing the need for power supply sequencing on the logic control pins. For example, the Fail-Safe Logic  
feature allows the select pins of the TMUX1511 to be ramped to 5.5 V while VDD = 0 V. Additionally, the feature  
enables operation of the TMUX1511 with VDD = 1.5 V while allowing the select pins to interface with a logic level  
of another device up to 5.5 V.  
8.3.6 Low Capacitance  
The TMUX1511 has very low capacitance in both the ON and OFF states on the source and drain pins. The low  
capacitance specification allows the TMUX1511 to be used in applications such as sample & hold circuits, and in  
the feedback path of an operation amplifier. Low capacitance helps to reduce large overshoots and ringing of an  
amplifier circuit when the switch is connected to the feedback network. Additionally, low capacitance improves  
system settling time by reducing the switch time constant formed by the On-resistance and On-capacitance. For  
more information on the benefits of low capacitance refer to Improve Stability Issues with Low CON Multiplexers.  
8.3.7 Integrated Pull-Down Resistors  
The TMUX1511 has internal weak pull-down resistors (6 MΩ) to GND to ensure the logic pins are not left  
floating. This feature integrates up to four external components and reduces system size and cost.  
8.4 Device Functional Modes  
The select (SELx) pins are active-high logic pins that control the connection between the source (Sx) and drain  
(Dx) pins of the device. The TMUX1511 has internal weak pull-down resistors (6 MΩ) to GND so that it powers-  
on with the switches disabled. When a given select pin of the TMUX1511 is pulled high, the corresponding switch  
conducts from the source to drain. When any of the select pins are pulled low, the corresponding switch is in an  
open state (HI-Z). Each channel of the TMUX1511 can be controlled independently through the associated select  
pin, or all four select pins can be tied together for simultaneous control of all channels with a single GPIO.  
8.5 Truth Tables  
1 shows the truth table for the TMUX1511.  
1. TMUX1511 Truth Table  
SELx  
Sx / Dx: STATE  
Hi-Z (OFF)  
0
1
Conducting (ON)  
20  
版权 © 2018, Texas Instruments Incorporated  
 
 
 
 
TMUX1511  
www.ti.com.cn  
ZHCSIR9A SEPTEMBER 2018REVISED DECEMBER 2018  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TMUX15xx family offers high-speed system performance across a wide operating supply (1.5 V to 5.5 V)  
and operating temperature (-40°C to +125°C). The TMUX1511 supports a number of features that improve  
system performance such as 1.8 V logic compatibility, input voltages beyond supply, Fail-Safe Logic, and  
Powered-off Protection up to 3.6 V. These features make the TMUX15xx a family of protection multiplexers and  
switches that can reduce system complexity, board size, and overall system cost.  
9.2 Typical Application  
9.2.1 Protocol / Signal Isolation  
One useful application to take advantage of the TMUX1511 features is isolating various protocols from a  
possessor or MCU such as JTAG, SPI, or standard GPIO signals. The device provides excellent isolation  
performance when the device is powered. The added benefit of powered-off protection allows a system to  
minimize complexity by eliminating the need for power sequencing in hot-swap and live insertion applications.  
VDD  
VI/O  
VDD  
0.1µF  
Processor  
JTAG, SPI, GPIO  
Port  
FLASH  
TDI / MISO / GPIO  
TDO / MOSI / GPIO  
TCK / SCLK / GPIO  
TMS / SS / GPIO  
S1  
S2  
S3  
S4  
D1  
D2  
D3  
D4  
JTAG  
DEBUG,  
SPI, GPIO  
RAM  
CPU  
SEL1  
SEL2  
SEL3  
SEL4  
1.8V Logic  
I/O  
Peripherals  
GND  
GND  
40. Isolation of JTAG, SPI, and GPIO Signals  
9.2.1.1 Design Requirements  
For this design example, use the parameters listed in Table 2.  
2. Design Parameters  
PARAMETERS  
Supply (VDD  
VALUES  
3.3 V  
)
Input / Output signal range  
Control logic thresholds  
0 V to 3.3 V  
1.8 V compatible  
版权 © 2018, Texas Instruments Incorporated  
21  
TMUX1511  
ZHCSIR9A SEPTEMBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
9.2.1.2 Detailed Design Procedure  
The TMUX1511 can be operated without any external components except for the supply decoupling capacitors.  
The device has internal weak pull-down resistors (6 MΩ) to GND so that it powers-on with the switches disabled.  
All inputs signals passing through the switch must fall within the recommend operating conditions of the  
TMUX1511 including signal range and continuous current. For this design example, with a supply of 3.3 V, the  
signals can range from 0 V to 3.3 V when the device is powered. This example can also utilize the Powered-off  
Protection feature and the inputs can range from 0 V to 3.3 V when VDD = 0 V. The max continuous current can  
be 25 mA. Due to the voltage range and high speed capability, the TMUX1511example is suitable for use in  
JTAG and SPI applications beyond the 100 MHz maximum in a typical application.  
9.2.1.3 Application Curves  
Two important specifications when using a switch or multiplexer to pass signals are the device propagation delay  
and skew.  
70  
60  
Propagation Delay  
50  
40  
30  
Skew  
20  
10  
0
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Supply Voltage (V)  
D018  
41. Propagation Delay and Skew Measurement  
9.2.2 Transimpedance Amplifier Feedback Control  
Switches and multiplexers are commonly used in the feedback path of amplifier circuits to provide configurable  
gain control. By using various resistor values on each switch path the TMUX1511 allows the system to have  
multiple gain settings. An external resistor, or utilizing 1 channel always being closed, ensures the amplifier isn't  
operating in an open loop configuration. A transimpedance amplifier (TIA) for photodiodes is a common circuit  
that requires gain control using a multi-channel switch to convert the output current of the photodiode into a  
voltage for the MCU or processor. The leakage current, capacitance, and charge injection performance of the  
TMUX1511 are key specifications to evaluate when selecting a device for gain control.  
VI/O  
VDD  
VDD  
0.1µF  
Processor  
SEL1  
SEL2  
SEL3  
SEL4  
1.8V Logic I/O  
RF_1  
Digital Processing  
RF_2  
RF_3  
RF_4  
VDD  
VDD  
-
OP  
AMP  
Gain / Filter  
Network  
ADC  
IPD  
+
42. Multiplexing Gain for a TIA Circuit  
22  
版权 © 2018, Texas Instruments Incorporated  
TMUX1511  
www.ti.com.cn  
ZHCSIR9A SEPTEMBER 2018REVISED DECEMBER 2018  
9.2.2.1 Design Requirements  
For this design example, use the parameters listed in Table 3.  
3. Design Parameters  
PARAMETERS  
VALUES  
5 V  
Supply (VDD  
)
Input / Output signal range  
Control logic thresholds  
0 µA to 10 µA  
1.8 V compatible  
9.2.2.2 Detailed Design Procedure  
Photodiodes commonly have a current output that ranges from a few hundred picoamps to tens of microamps  
based on the amount of light being absorbed. The TMUX1511 has a typical On-leakage current of less than 10  
pA which would lead to an accuracy well within 1% of a full scale 10 µA signal. The low ON and OFF  
capacitance of the TMUX1511 improves system stability by minimizing the total capacitance on the output of the  
amplifier. Lower capacitance leads to less overshoot and ringing in the system which can cause the amplifier  
circuit to go unstable if the phase margin is not at least 45°. Refer to Improve Stability Issues with Low CON  
Multiplexers for more information on calculating the phase margin vs. percent overshoot.  
9.2.2.3 Application Curves  
8
6
4
2
0
10  
8
COFF  
CON  
VDD = 5.5 V  
VDD = 3.3 V  
VDD = 1.5 V  
6
4
2
0
-2  
-4  
-6  
-8  
-10  
1M  
10M  
100M  
Frequency (Hz)  
1G  
D020  
TA = 25°C  
44. Capacitance vs Frequency  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Source or Drain Voltage (V)  
D007  
TA = 25°C  
43. On-Leakage vs Source or Drain Voltage  
10 Power Supply Recommendations  
The TMUX1511 operates across a wide supply range of 1.5 V to 5.5 V. Do not exceed the absolute maximum  
ratings because stresses beyond the listed ratings can cause permanent damage to the devices.  
Power-supply bypassing improves noise margin and prevents switching noise propagation from the VDD supply to  
other components. Good power-supply decoupling is important to achieve optimum performance. For improved  
supply noise immunity, use a supply decoupling capacitor ranging from 0.1 μF to 10 μF from VDD to ground.  
Place the bypass capacitors as close to the power supply pins of the device as possible using low-impedance  
connections. TI recommends using multi-layer ceramic chip capacitors (MLCCs) that offer low equivalent series  
resistance (ESR) and inductance (ESL) characteristics for power-supply decoupling purposes. For very sensitive  
systems, or for systems in harsh noise environments, avoiding the use of vias for connecting the capacitors to  
the device pins may offer superior noise immunity. The use of multiple vias in parallel lowers the overall  
inductance and is beneficial for connections to ground planes.  
版权 © 2018, Texas Instruments Incorporated  
23  
TMUX1511  
ZHCSIR9A SEPTEMBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
When a PCB trace turns a corner at a 90° angle, a reflection can occur. A reflection occurs primarily because of  
the change of width of the trace. At the apex of the turn, the trace width increases to 1.414 times the width. This  
increase upsets the transmission-line characteristics, especially the distributed capacitance and self–inductance  
of the trace which results in the reflection. Not all PCB traces can be straight and therefore some traces must  
turn corners. 45 shows progressively better techniques of rounding corners. Only the last example (BEST)  
maintains constant trace width and minimizes reflections.  
WORST  
BETTER  
BEST  
1W min.  
W
45. Trace Example  
Route the high-speed signals using a minimum of vias and corners which reduces signal reflections and  
impedance changes. When a via must be used, increase the clearance size around it to minimize its  
capacitance. Each via introduces discontinuities in the signal’s transmission line and increases the chance of  
picking up interference from the other layers of the board. Be careful when designing test points, through-  
hole pins are not recommended at high frequencies.  
Do not route high speed signal traces under or near crystals, oscillators, clock signal generators, switching  
regulators, mounting holes, magnetic devices or ICs that use or duplicate clock signals.  
Avoid stubs on the high-speed signals traces because they cause signal reflections.  
Route all high-speed signal traces over continuous GND planes, with no interruptions.  
Avoid crossing over anti-etch, commonly found with plane splits.  
When working with high frequencies, a printed circuit board with at least four layers is recommended; two  
signal layers separated by a ground and power layer as shown in 46.  
Signal 1  
GND Plane  
Power Plane  
Signal 2  
46. Example Layout  
The majority of signal traces must run on a single layer, preferably Signal 1. Immediately next to this layer must  
be the GND plane, which is solid with no cuts. Avoid running signal traces across a split in the ground or power  
plane. When running across split planes is unavoidable, sufficient decoupling must be used. Minimizing the  
number of signal vias reduces EMI by reducing inductance at high frequencies.  
47 illustrates an example of a PCB layout with the TMUX1511. Some key considerations are:  
24  
版权 © 2018, Texas Instruments Incorporated  
 
 
TMUX1511  
www.ti.com.cn  
ZHCSIR9A SEPTEMBER 2018REVISED DECEMBER 2018  
Layout Guidelines (接下页)  
Decouple the VDD pin with a 0.1-μF capacitor, placed as close to the pin as possible. Make sure that the  
capacitor voltage rating is sufficient for the VDD supply.  
High-speed switches require proper layout and design procedures for optimum performance.  
Keep the input lines as short as possible.  
Use a solid ground plane to help reduce electromagnetic interference (EMI) noise pickup.  
Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if  
possible, and only make perpendicular crossings when necessary.  
11.2 Layout Example  
Wide (low inductance)  
trace for power  
Via to GND plane  
C
SEL1  
VDD  
SEL4  
S4  
S1  
D1  
TMUX1511  
SEL2  
S2  
D4  
SEL3  
S3  
D2  
GND  
D3  
47. Example Layout  
版权 © 2018, Texas Instruments Incorporated  
25  
TMUX1511  
ZHCSIR9A SEPTEMBER 2018REVISED DECEMBER 2018  
www.ti.com.cn  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
德州仪器 (TI)《使用低 CON 多路复用器改善稳定性问题》。  
德州仪器 (TI)《使用 1.8V 逻辑多路复用器和开关简化设计》。  
德州仪器 (TI)《利用关断保护信号开关消除电源排序》。  
德州仪器 (TI)《高速接口布局指南》。  
德州仪器 (TI)《高速布局指南》。  
德州仪器 (TI)QFN/SON PCB 连接》。  
Texas Instruments, 《四方扁平封装无引线逻辑封装》。  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.4 商标  
E2E is a trademark of Texas Instruments.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
26  
版权 © 2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMUX1511PWR  
TMUX1511RSVR  
ACTIVE  
ACTIVE  
TSSOP  
UQFN  
PW  
14  
16  
2000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
MUX1511  
1511  
RSV  
NIPDAUAG  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TMUX1511PWR  
TMUX1511RSVR  
TSSOP  
UQFN  
PW  
14  
16  
2000  
3000  
330.0  
178.0  
12.4  
13.5  
6.9  
2.1  
5.6  
2.9  
1.6  
8.0  
4.0  
12.0  
12.0  
Q1  
Q1  
RSV  
0.75  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TMUX1511PWR  
TMUX1511RSVR  
TSSOP  
UQFN  
PW  
14  
16  
2000  
3000  
356.0  
189.0  
356.0  
185.0  
35.0  
36.0  
RSV  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RSV0016A  
UQFN - 0.55 mm max height  
S
C
A
L
E
5
.
0
0
0
ULTRA THIN QUAD FLATPACK - NO LEAD  
1.85  
1.75  
A
B
PIN 1 INDEX AREA  
2.65  
2.55  
C
0.55  
0.45  
SEATING PLANE  
0.05 C  
0.05  
0.00  
2X 1.2  
SYMM  
(0.13) TYP  
5
8
0.45  
0.35  
15X  
4
9
SYMM  
2X 1.2  
12X 0.4  
1
0.25  
16X  
12  
0.15  
0.07  
0.05  
C A B  
13  
16  
0.55  
0.45  
PIN 1 ID  
(45° X 0.1)  
4220314/C 02/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RSV0016A  
UQFN - 0.55 mm max height  
ULTRA THIN QUAD FLATPACK - NO LEAD  
SYMM  
(0.7)  
16  
SEE SOLDER MASK  
DETAIL  
13  
12  
16X (0.2)  
1
SYMM  
12X (0.4)  
(2.4)  
(R0.05) TYP  
9
4
15X (0.6)  
5
8
(1.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 25X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4220314/C 02/2020  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RSV0016A  
UQFN - 0.55 mm max height  
ULTRA THIN QUAD FLATPACK - NO LEAD  
(0.7)  
16  
13  
16X (0.2)  
1
12  
SYMM  
12X (0.4)  
(2.4)  
(R0.05) TYP  
4
9
15X (0.6)  
5
8
SYMM  
(1.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 25X  
4220314/C 02/2020  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TMUX1511RSVR

具有断电保护功能和 1.8V 输入逻辑的 5V、1:1 (SPST)、4 通道模拟开关 | RSV | 16 | -40 to 125
TI

TMUX154E

具有断电保护功能的 7.5pF 导通状态电容、3.3V、2:1 (SPDT)、2 通道模拟开关
TI

TMUX154EDGSR

具有断电保护功能的 7.5pF 导通状态电容、3.3V、2:1 (SPDT)、2 通道模拟开关 | DGS | 10 | -40 to 85
TI

TMUX154ERSWR

具有断电保护功能的 7.5pF 导通状态电容、3.3V、2:1 (SPDT)、2 通道模拟开关 | RSW | 10 | -40 to 85
TI

TMUX1574

具有断电保护功能和 1.8V 输入逻辑的 5V、2:1 (SPDT)、4 通道模拟开关
TI

TMUX1574DYYR

具有断电保护功能和 1.8V 输入逻辑的 5V、2:1 (SPDT)、4 通道模拟开关 | DYY | 16 | -40 to 125
TI

TMUX1574PWR

具有断电保护功能和 1.8V 输入逻辑的 5V、2:1 (SPDT)、4 通道模拟开关 | PW | 16 | -40 to 125
TI

TMUX1574RSVR

具有断电保护功能和 1.8V 输入逻辑的 5V、2:1 (SPDT)、4 通道模拟开关 | RSV | 16 | -40 to 125
TI

TMUX1575

具有 1.2V 逻辑电平的低电容、2:1 (SPDT) 4 通道断电保护开关
TI

TMUX1575YCJR

具有 1.2V 逻辑电平的低电容、2:1 (SPDT) 4 通道断电保护开关 | YCJ | 16 | -40 to 125
TI

TMUX4051

具有 1.8V 逻辑电平的 ±12V 8:1 单通道多路复用器
TI

TMUX4051-Q1

具有 1.8V 兼容逻辑电压的汽车类 ±12V、8:1、单通道通用多路复用器
TI