TMUX1574DYYR [TI]

具有断电保护功能和 1.8V 输入逻辑的 5V、2:1 (SPDT)、4 通道模拟开关 | DYY | 16 | -40 to 125;
TMUX1574DYYR
型号: TMUX1574DYYR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有断电保护功能和 1.8V 输入逻辑的 5V、2:1 (SPDT)、4 通道模拟开关 | DYY | 16 | -40 to 125

开关 光电二极管
文件: 总44页 (文件大小:1999K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TMUX1574  
ZHCSIX6B OCTOBER 2018REVISED SEPT 2019  
具有1.8V 逻辑电平的 TMUX1574 低电容、2:1 (SPDT) 4 通道  
断电保护开关  
1 特性  
3 说明  
1
宽电源电压范围:1.5V 5.5V  
TMUX1574 是一款互补金属氧化物半导体 (CMOS) 开  
关。TMUX1574 提供具有 4 个通道的 2:1 SPDT 开关  
配置。1.5V 5.5V 的宽运行电源电压范围 使其 可用  
于从服务器和通信设备到工业应用的各种 应用理想之  
选。该器件可在源极 (SxA, SxB) 和漏极 (Dx) 引脚上支  
双向模拟和数字信号,并且可以传递高于电源的信号  
(高达 VDD x 2),最大输入/输出电压为 5.5V。  
低导通电容:7.5pF  
低导通电阻:2Ω  
高带宽:2GHz  
工作温度范围:-40°C +125°C  
兼容 1.8V 逻辑电平  
支持超出电源电压范围的输入电压  
逻辑引脚上的集成下拉电阻器  
双向信号路径  
TMUX1574 的信号路径上高达 3.6V 关断保护可在  
移除电源电压 (VDD = 0V) 时提供隔离。如果没有该保  
护功能,开关可通过内部 ESD 二极管为电源轨进行反  
向供电,从而对系统造成潜在损坏。  
失效防护逻辑  
高达 3.6V 信号的关断保护  
引脚排布与 SN74CBTLV3257 兼容  
失效防护逻辑 电路允许在施加电源引脚上的电压之  
前,先施加逻辑控制引脚上的电压,从而保护器件免受  
潜在的损害。所有控制输入都具有兼容 1.8V 逻辑电平  
的阈值,当器件在有效电源电压范围内运行时,这些阈  
值可确保 TTL CMOS 逻辑兼容性。逻辑引脚上带有  
集成下拉电阻 无需外部组件,可减少系统尺寸与成  
本。  
2 应用  
服务器  
数据中心交换机和路由器  
无线基础设施  
PC 和笔记本电脑  
楼宇自动化  
电网基础设施  
电子销售点 (ePOS)  
电器  
器件信息(1)  
器件型号  
封装  
TSSOP (16)  
封装尺寸(标称值)  
5.00mm × 4.40mm  
2.60mm x 1.80mm  
4.20mm x 2.00mm  
闪存存储器共享  
JTAG 多路复用  
SPI 多路复用  
TMUX1574  
UQFN (16)  
SOT-23-THIN (16)  
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。  
应用示例  
方框图  
VDD  
VI/O  
TMUX1574  
VDD  
0.1µF  
S1A  
SPI / JTAG / UART  
Device #1  
D1  
S1B  
Processor  
S1A  
S2A  
S3A  
S4A  
MISO / TDI / GPIO  
MOSI / TDO / GPIO  
SCLK / TCK / GPIO  
SS / TMS / GPIO  
S2A  
D2  
D1  
D2  
D3  
D4  
RAM  
CPU  
S2B  
JTAG  
DEBUG,  
SPI, GPIO  
S3A  
D3  
SPI / JTAG / UART  
Device #2  
S3B  
S1B  
S2B  
S3B  
S4B  
S4A  
MISO / TDI / GPIO  
MOSI / TDO / GPIO  
SCLK / TCK / GPIO  
SS / TMS / GPIO  
D4  
Peripherals  
S4B  
SEL  
EN  
1.8V Logic  
I/O  
LOGIC CONTROL*  
GND  
GND  
SEL  
EN  
*Internal 6MO Pull-Down on Logic Pins  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SCDS391  
 
 
 
 
 
TMUX1574  
ZHCSIX6B OCTOBER 2018REVISED SEPT 2019  
www.ti.com.cn  
目录  
7.12 Capacitance .......................................................... 19  
7.13 Off Isolation........................................................... 20  
7.14 Channel-to-Channel Crosstalk.............................. 20  
7.15 Bandwidth ............................................................. 21  
Detailed Description ............................................ 22  
8.1 Overview ................................................................. 22  
8.2 Functional Block Diagram ....................................... 22  
8.3 Feature Description................................................. 22  
8.4 Device Functional Modes........................................ 24  
8.5 Truth Tables............................................................ 24  
Application and Implementation ........................ 25  
9.1 Application Information............................................ 25  
9.2 Typical Application ................................................. 25  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 6  
6.6 Dynamic Characteristics ........................................... 7  
6.7 Timing Requirements................................................ 8  
6.8 Typical Characteristics.............................................. 9  
Parameter Measurement Information ................ 14  
7.1 On-Resistance ........................................................ 14  
7.2 Off-Leakage Current ............................................... 14  
7.3 On-Leakage Current ............................................... 15  
7.4 IPOFF Leakage Current............................................ 15  
7.5 Transition Time ....................................................... 16  
7.6 tON (EN) and tOFF (EN) Time....................................... 16  
7.7 tON (VDD) and tOFF (VDD) Time................................... 17  
7.8 Break-Before-Make Delay....................................... 17  
7.9 Propagation Delay................................................... 18  
7.10 Skew ..................................................................... 18  
7.11 Charge Injection.................................................... 19  
8
9
10 Power Supply Recommendations ..................... 26  
11 Layout................................................................... 27  
11.1 Layout Guidelines ................................................. 27  
11.2 Layout Example .................................................... 28  
12 器件和文档支持 ..................................................... 29  
12.1 文档支持................................................................ 29  
12.2 接收文档更新通知 ................................................. 29  
12.3 社区资源................................................................ 29  
12.4 ....................................................................... 29  
12.5 静电放电警告......................................................... 29  
12.6 Glossary................................................................ 29  
13 机械、封装和可订购信息....................................... 30  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (December 2018) to Revision B  
Page  
向数据表添加了 SOT-23-THIN (DYY) 封装 ............................................................................................................................ 1  
Added thermal information for DYY package......................................................................................................................... 5  
Changes from Original (October 2018) to Revision A  
Page  
将文档状态从预告信息 更改为生产 数据................................................................................................................................. 1  
2
Copyright © 2018–2019, Texas Instruments Incorporated  
 
TMUX1574  
www.ti.com.cn  
ZHCSIX6B OCTOBER 2018REVISED SEPT 2019  
5 Pin Configuration and Functions  
PW Package  
16-Pin TSSOP  
Top View  
DYY Package  
16-Pin SOT-23-THIN  
Top View  
SEL  
S1A  
S1B  
D1  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VDD  
EN  
SEL  
S1A  
S1B  
D1  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VDD  
EN  
S4A  
S4B  
D4  
S4A  
S4B  
D4  
S2A  
S2B  
D2  
S2A  
S2B  
D2  
S3A  
S3B  
D3  
S3A  
S3B  
D3  
GND  
GND  
Not to scale  
RSV Package  
16-Pin UQFN  
Top View  
S1B  
D1  
1
12  
11  
10  
9
S4A  
S4B  
D4  
2
3
4
S2A  
S2B  
S3A  
Not to scale  
Copyright © 2018–2019, Texas Instruments Incorporated  
3
TMUX1574  
ZHCSIX6B OCTOBER 2018REVISED SEPT 2019  
www.ti.com.cn  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION(2)  
TSSOP /  
SOT-23-THIN  
NAME  
UQFN  
SEL  
S1A  
S1B  
D1  
1
2
15  
16  
1
I
Select pin: controls state of switches according to 1. Internal 6 MΩ pull-down to GND.  
Source pin 1A. Can be an input or output.  
Source pin 1B. Can be an input or output.  
Drain pin 1. Can be an input or output.  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P
3
4
2
S2A  
S2B  
D2  
5
3
Source pin 2A. Can be an input or output.  
Source pin 2B. Can be an input or output.  
Drain pin 2. Can be an input or output.  
6
4
7
5
GND  
D3  
8
6
Ground (0 V) reference  
9
7
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Drain pin 3. Can be an input or output.  
S3B  
S3A  
D4  
10  
11  
12  
13  
14  
8
Source pin 3B. Can be an input or output.  
Source pin 3A. Can be an input or output.  
Drain pin 4. Can be an input or output.  
9
10  
11  
12  
S4B  
S4A  
Source pin 4B. Can be an input or output.  
Source pin 4A. Can be an input or output.  
Active low enable: When this pin is high, all switches are turned off. When this pin is low,  
SEL pin controls the signal path selection. Internal 6 MΩ pull-down to GND.  
EN  
15  
16  
13  
14  
I
Positive power supply. This pin is the most positive power-supply potential. For reliable  
operation, connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VDD and  
GND.  
VDD  
P
(1) I = input, O = output, I/O = input and output, P = power  
(2) Refer to Device Functional Modes for what to do with unused pins.  
4
Copyright © 2018–2019, Texas Instruments Incorporated  
TMUX1574  
www.ti.com.cn  
ZHCSIX6B OCTOBER 2018REVISED SEPT 2019  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)(3)  
MIN  
–0.5  
–0.5  
–30  
–0.5  
–25  
–65  
MAX  
6
UNIT  
V
VDD  
Supply voltage  
VSEL or VEN  
ISEL or IEN  
VS or VD  
IS or ID (CONT)  
Tstg  
Logic control input pin voltage (SEL or EN)  
Logic control input pin current (SEL or EN)  
Source or drain pin voltage  
6
V
30  
6
mA  
V
Source and drain pin continuous current: (SxA, SxB, Dx)  
Storage temperature  
25  
150  
150  
mA  
°C  
°C  
TJ  
Junction temperature  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.  
(3) All voltages are with respect to ground, unless otherwise specified.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-  
001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification  
JESD22-C101(2)  
±750  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
MIN  
MAX  
5.5  
UNIT  
V
VDD  
Supply voltage  
1.5  
0
VS or VD  
VS_off or VD_off  
VSEL or VEN  
TA  
Signal path input/output voltage (source or drain pin), VDD 1.5 V(1)  
Signal path input/output voltage (source or drain pin), VDD < 1.5 V(2)  
Logic control input voltage (EN, SEL)  
VDD x 2  
3.6  
V
0
V
0
5.5  
V
Ambient temperature  
–40  
125  
ºC  
(1) Device input/output can operate up to VDD x 2, with a maximum input/output voltage of 5.5 V.  
(2) VS_off and VD_off refers to the voltage at the source or drain pins when supply is less than 1.5 V.  
6.4 Thermal Information  
DEVICE  
PW (TSSOP)  
16 PINS  
117.4  
DEVICE  
DYY (SOT-23)  
16 PINS  
123.0  
DEVICE  
THERMAL METRIC(1)  
RSV (UQFN)  
16 PINS  
129.2  
69.7  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
47.9  
70.5  
63.7  
50.4  
58.7  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
6.9  
5.0  
3.6  
ΨJB  
63.1  
50.3  
56.8  
RθJC(bot)  
N/A  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2018–2019, Texas Instruments Incorporated  
5
TMUX1574  
ZHCSIX6B OCTOBER 2018REVISED SEPT 2019  
www.ti.com.cn  
6.5 Electrical Characteristics  
VDD = 1.5 V to 5.5 V, GND = 0V, TA = –40°C to +125°C  
Typical values are at VDD = 3.3 V, TA = 25°C, (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
VDD  
Power supply voltage  
1.5  
5.5  
68  
V
VSEL = 0 V, 1.4V or VDD  
VS = 0 V to 5.5 V  
IDD  
Active supply current  
40  
μA  
VEN = 1.4V or VDD  
VS = 0 V to 5.5 V  
IDD_STANDB  
Supply current when disabled  
7.5  
15  
µA  
Y
DC CHARACTERISTICS  
VS = 0 V to VDD*2  
VS(max) = 5.5 V  
ISD = 8 mA  
RON  
On-resistance  
2
4.5  
Refer to ON-State Resistance Figure  
VS = VDD  
ΔRON  
On-resistance match between channels  
ISD = 8 mA  
Refer to ON-State Resistance Figure  
0.07  
1
0.28  
1.8  
VS = 0 V to VDD  
ISD = 8 mA  
RON (FLAT) On-resistance flatness  
Refer to ON-State Resistance Figure  
VDD = 0 V  
VS = 0 V to 3 V  
VD = 0 V  
IPOFF  
Powered-off I/O pin leakage current  
–10  
0.01  
10  
nA  
TA = 25℃  
Refer to Ipoff Leakage Figure  
VDD = 0 V  
VS = 0 V to 3.6 V  
VD = 0 V  
Refer to Ipoff Leakage Figure  
IPOFF  
Powered-off I/O pin leakage current  
OFF leakage current  
–2  
0.01  
0.03  
2
µA  
nA  
Switch Off  
IS(OFF)  
ID(OFF)  
VD = 0.8*VDD / 0.2*VDD  
VS = 0.2*VDD / 0.8*VDD  
Refer to Off Leakage Figure  
–100  
100  
Switch On  
VD = 0.8*VDD / 0.2*VDD, S pins floating  
or  
VS = 0.8*VDD / 0.2*VDD, D pins floating  
Refer to On Leakage Figure  
ID(ON)  
IS(ON)  
ON leakage current  
–50  
0.01  
50  
nA  
LOGIC INPUTS  
VIH  
VIL  
IIH  
Input logic high  
1.2  
0
5.5  
0.45  
±2  
V
V
Input logic low  
Input high leakage current  
Input low leakage current  
Internal pull-down resistor on logic pins  
VSEL = 1.8 V, VDD  
VSEL = 0 V  
1
0.2  
6
μA  
μA  
MΩ  
IIL  
±2  
RPD  
VSEL = 0 V, 1.8 V or VDD  
f = 1 MHz  
CI  
Logic input capacitance  
3
pF  
6
Copyright © 2018–2019, Texas Instruments Incorporated  
TMUX1574  
www.ti.com.cn  
ZHCSIX6B OCTOBER 2018REVISED SEPT 2019  
6.6 Dynamic Characteristics  
VDD = 1.5 V to 5.5 V, GND = 0V, TA = –40°C to +125°C  
Typical values are at VDD = 3.3 V, TA = 25°C, (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VS = 2.5 V  
VSEL= 0 V  
f = 1 MHz  
Switch  
OFF  
COFF  
Source and drain off capacitance  
3.5  
6
pF  
Refer to Capacitance Figure  
VS = 2.5 V  
VSEL= 0 V  
f = 1 MHz  
Refer to Capacitance Figure  
Switch  
ON  
CON  
Source and drain on capacitance  
Charge Injection  
7.5  
12  
pF  
VS = VDD/2  
RS = 0 Ω, CL =1 nF  
Refer to Charge Injection Figure  
Switch  
ON  
QC  
3.5  
–90  
–75  
pC  
dB  
dB  
RL = 50 Ω  
f = 100 kHz  
Refer to Off Isolation Figure  
Switch  
OFF  
OISO  
Off isolation  
RL = 50 Ω  
f = 1 MHz  
Refer to Off Isolation Figure  
Switch  
OFF  
RL = 50 Ω  
f = 100 kHz  
Refer to Crosstalk Figure  
Switch  
ON  
XTALK  
BW  
Channel to Channel crosstalk  
Bandwidth  
–90  
2
dB  
GHz  
dB  
RL = 50 Ω  
Refer to Bandwidth Figure  
Switch  
ON  
RL = 50 Ω  
f = 1 MHz  
Refer to Bandwidth Figure  
Switch  
ON  
ILOSS  
Insertion loss  
–0.12  
Copyright © 2018–2019, Texas Instruments Incorporated  
7
TMUX1574  
ZHCSIX6B OCTOBER 2018REVISED SEPT 2019  
www.ti.com.cn  
6.7 Timing Requirements  
VDD = 1.5 V to 5.5 V, GND = 0V, TA = –40°C to +125°C  
Typical values are at VDD = 3.3 V, TA = 25°C, (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
VDD = 2.5 V to 5.5 V  
VS = VDD  
RL = 200 Ω, CL = 15pF  
Refer to Transition Timing Figure  
tTRAN  
Transition time from control input  
160  
350  
580  
ns  
VDD < 2.5 V  
VS = VDD  
RL = 200 Ω, CL = 15pF  
Refer to Transition Timing Figure  
tTRAN  
Transition time from control input  
180  
ns  
VS = VDD  
tON(EN)  
Device turn on time from enable pin  
Device turn off time from enable pin  
RL = 200 Ω, CL = 15pF  
Refer to Ton(EN) & Toff(EN) Figure  
12  
50  
35  
95  
µs  
ns  
VS = VDD  
RL = 200 Ω, CL = 15pF  
Refer to Ton(EN) & Toff(EN) Figure  
tOFF(EN)  
VS = 3.6 V  
VDD rise time = 1us  
RL = 200 Ω, CL = 15pF  
Refer to Ton(vdd) & Toff(vdd) Figure  
tON(VDD)  
Device turn on time (VDD to output)  
Device turn off time (VDD to output)  
20  
60  
µs  
VS = 3.6 V  
VDD fall time = 1us  
RL = 200 Ω, CL = 15pF  
Refer to Ton(vdd) & Toff(vdd) Figure  
tOFF(VDD)  
1.2  
2.7  
µs  
ns  
VS = 1 V  
RL = 200 Ω, CL = 15pF  
Refer to Topen(BBM) Figure  
tOPEN (BBM) Break before make time  
0.5  
tSK(P)  
tSK(P)  
tSK(P)  
tPD  
Inter - channel skew - QFN (RSV)  
Refer to Tsk Figure  
Refer to Tsk Figure  
Refer to Tsk Figure  
Refer to Tpd Figure  
Refer to Tpd Figure  
Refer to Tpd Figure  
5
10  
18  
50  
70  
95  
ps  
ps  
ps  
ps  
ps  
ps  
Inter - channel skew - DYY (SOT-23)  
Inter - channel skew - TSSOP (PW)  
Propagation delay - QFN (RSV)  
Propagation delay - DYY (SOT-23)  
Propagation delay - TSSOP (PW)  
tPD  
tPD  
8
版权 © 2018–2019, Texas Instruments Incorporated  
TMUX1574  
www.ti.com.cn  
ZHCSIX6B OCTOBER 2018REVISED SEPT 2019  
6.8 Typical Characteristics  
at TA = 25°C, VDD = 5 V (unless otherwise noted)  
5
4
3
5
4
3
2
1
0
TA = 125èC  
TA = 85èC  
VDD = 1.5 V  
VDD = 5.5 V  
2
1
0
TA = 25èC  
VDD = 3.3 V  
TA = -40èC  
0
1
2
Source or Drain Voltage (V)  
3
4
5
5.5  
0
1
2
Source or Drain Voltage (V)  
3
4
5
5.5  
D001  
D002  
TA = 25°C  
VDD = 5.5 V  
1. On-Resistance vs Source or Drain Voltage  
2. On-Resistance vs Source or Drain Voltage  
4
3
2
1
0
4
3
2
1
0
TA = 125èC  
TA = 85èC  
TA = 125èC  
TA = 85èC  
TA = 25èC  
TA = -40èC  
TA = 25èC  
TA = -40èC  
1.5  
Source or Drain Voltage (V)  
0
0.5  
1
2
2.5  
3
3.5  
0
0.5 1  
Source or Drain Voltage (V)  
1.5  
D003  
D004  
VDD = 3.3 V  
VDD = 1.5 V  
3. On-Resistance vs Source or Drain Voltage  
4. On-Resistance vs Source or Drain Voltage  
65  
60  
55  
50  
45  
40  
35  
30  
25  
60  
55  
50  
45  
40  
35  
30  
TA = 125èC  
TA = 85èC  
VDD = 3.3 V  
VDD = 5.5 V  
TA = 25èC  
VDD = 1.5 V  
TA = -40èC  
2.5  
0
0.5  
1
1.5  
2
2.5  
Logic Voltage (V)  
3
3.5  
4
4.5  
5
5.5  
1.5  
2
3
3.5  
Supply Voltage (V)  
4
4.5  
5
5.5  
6
D005  
D006  
TA = 25°C  
5. Supply Current vs Logic Voltage  
6. Supply Current vs Supply Voltage  
版权 © 2018–2019, Texas Instruments Incorporated  
9
TMUX1574  
ZHCSIX6B OCTOBER 2018REVISED SEPT 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
2
1.5  
1
30  
25  
20  
15  
10  
5
VDD = 5.5 V  
VDD = 3.3 V  
VDD = 1.5 V  
0.5  
0
0
VDD = 5.5 V  
VDD = 3.3 V  
VDD = 1.5 V  
-5  
-0.5  
-10  
0
0.5  
1
1.5  
2
Source or Drain Voltage (V)  
2.5  
3
3.5  
4
4.5  
5
5.5  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (èC)  
D007  
D008  
TA = 25°C  
7. On-Leakage vs Source or Drain Voltage  
8. On-Leakage vs Temperature  
3
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
0.1  
0.05  
0
VDD = 5.5 V  
VDD = 3.3 V  
VDD = 1.5 V  
-0.05  
-0.1  
-0.15  
VDD = 5.5 V  
VDD = 3.3 V  
VDD = 1.5 V  
-0.3  
0
1
2
Source Voltage (V)  
3
4
5
5.5  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
D009  
D010  
TA = 25°C  
9. Off-Leakage vs Source or Drain Voltage  
10. Off-Leakage vs Temperature  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
8
6
4
2
0
-2  
0
0.5  
1
1.5  
Source Voltage (V)  
2
2.5  
3
3.5  
4
-40 -30 -20 -10  
0
10  
20  
30  
40  
50  
60  
Temperature (èC)  
D011  
D012  
TA = 25°C  
VSource = 3 V  
11. IPOFF Leakage vs Source or Drain Voltage  
12. IPOFF Leakage vs Temperature  
10  
版权 © 2018–2019, Texas Instruments Incorporated  
TMUX1574  
www.ti.com.cn  
ZHCSIX6B OCTOBER 2018REVISED SEPT 2019  
Typical Characteristics (接下页)  
700  
600  
500  
400  
300  
200  
100  
0
-100  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
D013  
TA = 25°C  
VSource = 3.6 V  
VDrain = 0 V  
RL= 200 Ω  
14. IPOFF Leakage vs Source or Drain Voltage  
13. IPOFF Leakage vs Temperature  
180  
220  
195  
170  
145  
120  
95  
Transiton_Falling  
Transiton_Rising  
160  
140  
120  
100  
80  
Transiton_Falling  
Transiton_Rising  
60  
70  
40  
45  
20  
20  
1.5  
2
2.5  
3
3.5  
Supply Voltage (V)  
4
4.5  
5
5.5  
6
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
D015  
D016  
TA = 25°C  
VDD = 5.5 V  
16. TTRANSITION vs Temperature  
15. TTRANSITION vs Supply Voltage  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
TON(VDD)  
TOFF(VDD)  
0
0
1.5  
2
2.5  
3
Supply Voltage (V)  
3.5  
4
4.5  
5
5.5  
1.5  
2
2.5  
3
Supply Voltage (V)  
3.5  
4
4.5  
5
5.5  
D017  
D018  
TA = 25°C  
TA = 25°C  
17. TON (VDD) and TOFF (VDD) vs Supply Voltage  
18. TON (EN) vs Supply Voltage  
版权 © 2018–2019, Texas Instruments Incorporated  
11  
TMUX1574  
ZHCSIX6B OCTOBER 2018REVISED SEPT 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
Propagation Delay - PW  
Propagation Delay - RSV  
Skew - PW  
Skew - RSV  
1.5  
2
2.5  
3
3.5  
4
Supply Voltage (V)  
4.5  
5
5.5  
D019  
1.5  
2
2.5  
3
3.5  
4
Supply Voltage (V)  
4.5  
5
5.5  
6
TA = 25°C  
D020  
19. TOFF (EN) vs Supply Voltage  
TA = 25°C  
20. Skew and Propagation Delay vs Supply Voltage  
10  
10  
CSOFF  
CSON  
9
8
7
6
5
4
3
2
1
0
8
6
4
2
0
VDD = 5.5 V  
VDD = 3.3 V  
VDD = 1.5 V  
0
1
2
3
Source Voltage (V)  
4
5
6
1M  
10M  
100M  
Frequency (Hz)  
1G  
D021  
D022  
TA = 25°C  
TA = 25°C  
VDD = 1.5 V to 5.5 V  
21. Charge Injection vs Source Voltage  
22. Capacitance vs Frequency  
0
0
Off Isolation  
Crosstalk  
-10  
-20  
-1  
-2  
-3  
-4  
-5  
-6  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
100k  
1M  
10M  
Frequency (Hz)  
100M  
1G  
1M  
10M 100M  
Frequency (Hz)  
1G  
D023  
D024  
TA = 25°C  
TA = 25°C  
VDD = 3.3 V  
VDD = 1.5 V to 5.5 V  
23. Off Isolation and Crosstalk vs Frequency  
24. On-Response vs Frequency  
12  
版权 © 2018–2019, Texas Instruments Incorporated  
TMUX1574  
www.ti.com.cn  
ZHCSIX6B OCTOBER 2018REVISED SEPT 2019  
6.8.1 Eye Diagrams  
TA = 25°C  
Bias = 1.5 V  
TA = 25°C  
Bias = 1.5 V  
50 Ω Termination  
50 Ω Termination  
26. Eye Pattern: 2.4 Gbps Through Path  
25. Eye Pattern: 2.4 Gbps  
版权 © 2018–2019, Texas Instruments Incorporated  
13  
TMUX1574  
ZHCSIX6B OCTOBER 2018REVISED SEPT 2019  
www.ti.com.cn  
7 Parameter Measurement Information  
7.1 On-Resistance  
The on-resistance of a device is the ohmic resistance between the source (Sx) and drain (Dx) pins of the device.  
The on-resistance varies with input voltage and supply voltage. The symbol RON is used to denote on-resistance.  
The measurement setup used to measure RON is shown in 27. Voltage (V) and current (ISD) are measured  
using this setup, and RON is computed as shown below with RON = V / ISD  
:
V
ISD  
Sx  
Dx  
VS  
27. On-Resistance Measurement Setup  
7.2 Off-Leakage Current  
Source leakage current is defined as the leakage current flowing into or out of the source pin when the switch is  
off. This current is denoted by the symbol IS (OFF)  
.
Drain leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is off.  
This current is denoted by the symbol ID (OFF)  
.
The setup used to measure both off-leakage currents is shown in 28.  
VDD  
VDD  
IS (OFF)  
VDD  
VDD  
ID (OFF)  
A
S1A  
S1B  
S1A  
S1B  
A
D1  
D1  
VS  
VD  
VD  
VD  
VS  
ID (OFF)  
A
IS (OFF)  
A
S4A  
S4B  
D4  
S1A  
S1B  
D1  
VD  
VS  
VS  
VD  
GND  
GND  
VD  
28. Off-Leakage Measurement Setup  
14  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
TMUX1574  
www.ti.com.cn  
ZHCSIX6B OCTOBER 2018REVISED SEPT 2019  
7.3 On-Leakage Current  
Source on-leakage current is defined as the leakage current flowing into or out of the source pin when the switch  
is on. This current is denoted by the symbol IS (ON)  
.
Drain on-leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is  
on. This current is denoted by the symbol ID (ON)  
.
Either the source pin or drain pin is left floating during the measurement. 29 shows the circuit used for  
measuring the on-leakage current, denoted by IS(ON) or ID(ON)  
.
VDD  
VDD  
IS (ON)  
VDD  
VDD  
ID (ON)  
S1A  
S1A  
S1B  
A
N.C.  
D1  
D1  
A
N.C.  
S1B  
N.C.  
N.C.  
VS  
VD  
IS (ON)  
ID (ON)  
A
S4A  
S4B  
S4A  
S4B  
N.C.  
N.C.  
A
D4  
D4  
N.C.  
N.C.  
VS  
VD  
GND  
GND  
29. On-Leakage Measurement Setup  
7.4 IPOFF Leakage Current  
IPOFF leakage current is defined as the leakage current flowing into or out of the source pin when the device is  
powered off. This current is denoted by the symbol IPOFF  
.
The setup used to measure both IPOFF leakage current is shown in 30.  
VDD  
IPOFF  
VDD  
S1A  
A
D1  
S1B  
N.C.  
VS  
VD  
IPOFF  
S4A  
S4B  
A
D4  
N.C.  
VS  
VD  
GND  
30. IPOFF Leakage Measurement Setup  
版权 © 2018–2019, Texas Instruments Incorporated  
15  
 
 
TMUX1574  
ZHCSIX6B OCTOBER 2018REVISED SEPT 2019  
www.ti.com.cn  
7.5 Transition Time  
Transition time is defined as the time taken by the output of the device to rise or fall 10% after the select signal  
has risen or fallen past the logic threshold. The 10% transition measurement is utilized to provide the timing of  
the device. The time constant from the load resistance and load capacitance can be added to the transition time  
to calculate system level timing. 31 shows the setup used to measure transition time, denoted by the symbol  
tTRANSITION  
.
VDD  
0.1F  
VDD  
VDD  
ADDRESS  
DRIVE  
tf < 5ns  
tr < 5ns  
VIH  
S1A  
S1B  
(VSEL  
)
VS  
VIL  
OUTPUT  
RL  
D1  
D4  
0 V  
CL  
tTRANSITION  
tTRANSITION  
S4A  
S4B  
VS  
OUTPUT  
RL  
CL  
90%  
OUTPUT  
SEL  
GND  
VSEL  
10%  
0 V  
31. Transition-Time Measurement Setup  
7.6 tON (EN) and tOFF (EN) Time  
The tON (EN) time is defined as the time taken by the output of the device to rise to 90% after the enable has fallen  
past the logic threshold. The 90% measurement is used to provide the timing of the device being enabled in the  
system. 32 shows the setup used to measure the enable time, denoted by the symbol tON (EN)  
.
The tOFF (EN) time is defined as the time taken by the output of the device to fall to 90% after the enable has fallen  
past the logic threshold. The 90% measurement is used to provide the timing of the device being disabled in the  
system. 32 shows the setup used to measure enable time, denoted by the symbol tOFF (EN)  
.
VDD  
0.1F  
VDD  
VDD  
VIH  
ENABLE  
VIL  
DRIVE  
(VEN)  
S1A  
S1B  
VS  
OUTPUT  
RL  
D1  
D4  
tr < 5ns  
tf < 5ns  
CL  
0 V  
S4A  
S4B  
VS  
tOFF  
tON  
(EN)  
(EN)  
OUTPUT  
RL  
CL  
90%  
90%  
OUTPUT  
0 V  
EN  
VEN  
GND  
32. tON (EN) and tOFF (EN) Time Measurement Setup  
16  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
TMUX1574  
www.ti.com.cn  
ZHCSIX6B OCTOBER 2018REVISED SEPT 2019  
7.7 tON (VDD) and tOFF (VDD) Time  
The tON (VDD) time is defined as the time taken by the output of the device to rise to 90% after the supply has  
risen past the supply threshold. The 90% measurement is used to provide the timing of the device turning on in  
the system. 33 shows the setup used to measure turn on time, denoted by the symbol tON (VDD)  
.
the tOFF (VDD) time is defined as the time taken by the output of the device to fall to 90% after the supply has fallen  
past the supply threshold. The 90% measurement is used to provide the timing of the device turning off in the  
system. 33 shows the setup used to measure turn off time, denoted by the symbol tOFF (VDD)  
.
VDD  
0.1F  
VDD  
VDD  
VDD  
Supply  
Ramp  
1.5 V  
1.5 V  
(VDD  
)
S1A  
S1B  
VS  
OUTPUT  
D1  
D4  
0 V  
CL  
RL  
tON  
tOFF  
(VDD)  
(VDD)  
S4A  
S4B  
90%  
90%  
VS  
OUTPUT  
RL  
OUTPUT  
0 V  
CL  
EN  
GND  
33. tON (VDD) and tOFF (VDD)Time Measurement Setup  
7.8 Break-Before-Make Delay  
Break-before-make delay is a safety feature that prevents two inputs from connecting when the device is  
switching. The output first breaks from the on-state switch before making the connection with the next on-state  
switch. The time delay between the break and the make is known as break-before-make delay. 34 shows the  
setup used to measure break-before-make delay, denoted by the symbol tOPEN(BBM)  
.
VDD  
0.1F  
VDD  
VDD  
VSEL  
0 V  
S1A  
VS  
OUTPUT  
RL  
D1  
D4  
tr < 5ns  
tf < 5ns  
S1B  
CL  
S4A  
S4B  
VS  
OUTPUT  
RL  
90%  
Output  
0 V  
tBBM  
1
tBBM  
2
CL  
tOPEN (BBM) = min ( tBBM 1, tBBM 2)  
SEL  
VSEL  
GND  
34. Break-Before-Make Delay Measurement Setup  
版权 © 2018–2019, Texas Instruments Incorporated  
17  
 
 
TMUX1574  
ZHCSIX6B OCTOBER 2018REVISED SEPT 2019  
www.ti.com.cn  
7.9 Propagation Delay  
Propagation delay is defined as the time taken by the output of the device to rise or fall 50% after the input signal  
has risen or fallen past the 50% threshold. 35 shows the setup used to measure propagation delay, denoted  
by the symbol tPD  
.
VDD  
0.1F  
VDD  
250 mV  
Input  
(VS)  
S1A  
S1B  
50%  
50%  
VS  
VS  
OUTPUT  
D1  
0 V  
RL  
50  
tPD 1  
tPD 2  
S4A  
S4B  
VS  
VS  
OUTPUT  
D4  
Output  
0 V  
50%  
50%  
RL  
50ꢁ  
GND  
tProp Delay = max ( tPD 1, tPD 2  
)
35. Propagation Delay Measurement Setup  
7.10 Skew  
Skew is defined as the difference between propagation delays of any two outputs of the same device. The skew  
measurement is taken from the output of one channel rising or falling past 50% to a second channel rising or  
falling past the 50% threshold when the input signals are switched at the same time. 36 shows the setup used  
to measure skew, denoted by the symbol tSK  
.
VDD  
0.1F  
VDD  
S1A  
S1B  
Output 1  
50%  
50%  
VS  
VS  
OUTPUT  
D1  
0 V  
RL  
50  
tSK 1  
tSK 2  
S4A  
S4B  
VS  
VS  
OUTPUT  
D4  
Output 2  
0 V  
50%  
50%  
RL  
50ꢁ  
GND  
tSKEW = max ( tSK 1, tSK 2  
)
36. Skew Measurement Setup  
18  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
TMUX1574  
www.ti.com.cn  
ZHCSIX6B OCTOBER 2018REVISED SEPT 2019  
7.11 Charge Injection  
The amount of charge injected into the source or drain of the device during the falling or rising edge of the gate  
signal is known as charge injection, and is denoted by the symbol QC. 37 shows the setup used to measure  
charge injection from source (Sx) to drain (Dx).  
VDD  
0.1F  
VDD  
VDD  
S1A  
VS  
OUTPUT  
D1  
VOUT  
CL  
VEN  
0 V  
S1B  
S4A  
S4B  
VS  
Output  
VS  
OUTPUT  
D4  
VOUT  
CL  
VOUT  
QC = CL  
×
VOUT  
EN  
VEN  
GND  
37. Charge-Injection Measurement Setup  
7.12 Capacitance  
The parasitic capacitance of the device is captured at the source (Sx), drain (Dx), and select (SELx) pins. The  
capacitance is measured in both the on and off state and is denoted by the symbol CON and COFF. 38 shows  
the setup used to measure capacitance.  
VDD  
VDD  
S1A  
S1B  
D1  
1 MHz  
Capacitance  
Meter  
Capacitance is measured at SX, DX,  
and logic pins during ON and OFF  
conditions  
S4A  
D4  
S4B  
LOGIC CONTROL  
SEL  
EN  
GND  
38. Capacitance Measurement Setup  
版权 © 2018–2019, Texas Instruments Incorporated  
19  
 
 
TMUX1574  
ZHCSIX6B OCTOBER 2018REVISED SEPT 2019  
www.ti.com.cn  
7.13 Off Isolation  
Off isolation is defined as the ratio of the signal at the drain pin (Dx) of the device when a signal is applied to the  
source pin (Sx) of an off-channel. The characteristic impedance, Z0, for the measurement is 50 Ω. 39 shows  
the setup used to measure off isolation. Use off isolation equation to compute off isolation.  
0.1µF  
NETWORK  
VDD  
ANALYZER  
VS  
S
D
50Ω  
VSIG  
VOUT  
RL  
SxA / SxB / Dx  
50Ω  
RL  
GND  
50Ω  
39. Off Isolation Measurement Setup  
«
÷
VOUT  
VS  
Off Isolation = 20 Log  
(1)  
7.14 Channel-to-Channel Crosstalk  
Crosstalk is defined as the ratio of the signal at the drain pin (Dx) of a different channel, when a signal is applied  
at the source pin (Sx) of an on-channel. The characteristic impedance, Z0, for the measurement is 50 Ω. 40  
shows the setup used to measure, and the equation used to compute crosstalk.  
VDD  
0.1µF  
NETWORK  
VDD  
ANALYZER  
D1  
D4  
S1A  
VOUT  
RL  
RL  
50Ω  
50Ω  
VS  
S4A  
RL  
50Ω  
50Ω  
SxA / SxB / Dx  
VSIG = 200 mVpp  
VBIAS = VDD / 2  
RL  
50Ω  
GND  
40. Channel-to-Channel Crosstalk Measurement Setup  
«
÷
VOUT  
VS  
Channel-to-Channel Crosstalk = 20 Log  
(2)  
20  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
TMUX1574  
www.ti.com.cn  
ZHCSIX6B OCTOBER 2018REVISED SEPT 2019  
7.15 Bandwidth  
Bandwidth is defined as the range of frequencies that are attenuated by less than 3 dB when the input is applied  
to the source pin (Sx) of an on-channel, and the output is measured at the drain pin (Dx) of the device. The  
characteristic impedance, Z0, for the measurement is 50 Ω. 41 shows the setup used to measure bandwidth.  
VDD  
0.1µF  
NETWORK  
VDD  
ANALYZER  
VS  
50Ω  
S
D
VSIG  
VOUT  
RL  
50Ω  
SxA / SxB / Dx  
RL  
GND  
50Ω  
41. Bandwidth Measurement Setup  
#PPAJQ=PEKJ = 20 × .KC (8  
)
176  
8
5
(3)  
版权 © 2018–2019, Texas Instruments Incorporated  
21  
 
TMUX1574  
ZHCSIX6B OCTOBER 2018REVISED SEPT 2019  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TMUX1574 is a high speed 2:1 (SPDT) 4-ch. switch with powered-off protection up to 3.6 V. Wide  
operating supply of 1.5 V to 5.5 V allows for use in a wide array of applications from servers and  
communication equipment to industrial applications. The device supports bidirectional analog and digital  
signals on the source (SxA, SxB) and drain (Dx) pins. The wide bandwidth of this switch allows little or no  
attenuation of high-speed signals at the outputs to pass with minimum edge and phase distortion as well as  
propagation delay.  
The enable (EN) pin is an active-low logic pin that controls the connection between the source (SxA, SxB)  
and drain (Dx) pins of the device. The select pin (SEL) controls the state of all four channels of the  
TMUX1574 and determines which source pin is connected to the drain. Fail-Safe Logic circuitry allows  
voltages on the logic control pins to be applied before the supply pin, protecting the device from potential  
damage. All logic control inputs have 1.8V logic compatible thresholds, ensuring both TTL and CMOS logic  
compatibility when operating in the valid supply voltage range.  
Powered-off protection up to 3.6 V on the signal path of the TMUX1574 provides isolation when the supply  
voltage is removed (VDD = 0 V). Without this protection feature, the system can back-power the supply rail  
through an internal ESD diode and cause potential damage to the system.  
8.2 Functional Block Diagram  
TMUX1574  
S1A  
D1  
S1B  
S2A  
D2  
S2B  
S3A  
D3  
S3B  
S4A  
D4  
S4B  
LOGIC CONTROL*  
SEL  
EN  
*Internal 6MO Pull-Down on Logic Pins  
8.3 Feature Description  
8.3.1 Bidirectional Operation  
The TMUX1574 conducts equally well from source (SxA, SxB) to drain (Dx) or from drain (Dx) to source (SxA,  
SxB). Each channel has very similar characteristics in both directions and supports both analog and digital  
signals.  
8.3.2 Beyond Supply Operation  
When the TMUX1574 is powered from 1.5 V to 5.5 V, the valid signal path input/output voltage ranges from  
GND to VDD x 2, with a maximum input/output voltage of 5.5 V.  
Example 1: If the TMUX1574 is powered at 1.5V, the signal range is 0 V to 3 V.  
Example 2: If the TMUX1574 is powered at 3V, the signal range is 0 V to 5.5 V.  
Example 3: If the TMUX1574 is powered at 5.5V, the signal range is 0 V to 5.5 V.  
Other voltage levels not mentioned in the examples support Beyond Supply Operation as long as the supply  
voltage falls within the recommended operation conditions of 1.5 V to 5.5 V.  
22  
版权 © 2018–2019, Texas Instruments Incorporated  
 
TMUX1574  
www.ti.com.cn  
ZHCSIX6B OCTOBER 2018REVISED SEPT 2019  
Feature Description (接下页)  
8.3.3 1.8 V Logic Compatible Inputs  
The TMUX1574 has 1.8-V logic compatible control inputs. Regardless of the VDD voltage, the control input  
thresholds remain fixed, allowing a 1.8-V processor GPIO to control the TMUX1574 without the need for an  
external translator. This saves both space and BOM cost. For more information on 1.8 V logic implementations,  
refer to Simplifying Design with 1.8 V logic Muxes and Switches.  
8.3.4 Powered-off Protection  
Powered-off protection up to 3.6 V on the signal path of the TMUX1574 provides isolation when the supply  
voltage is removed (VDD = 0 V). When the TMUX1574 is powered-off, the I/Os of the device remain in a high-Z  
state. Powered-off protection minimizes system complexity by removing the need for power supply sequencing  
on the signal path. The device performance remains within the leakage performance mentioned in the Electrical  
Specifications. For more information on powered-off protection, refer to Eliminate Power Sequencing with  
Powered-off Protection Signal Switches.  
8.3.5 Fail-Safe Logic  
The TMUX1574 has Fail-Safe Logic on the control input pins (SELx) which allows for operation up to 5.5 V,  
regardless of the state of the supply pin. This feature allows voltages on the control pins to be applied before the  
supply pin, protecting the device from potential damage. Fail-Safe Logic minimizes system complexity by  
removing the need for power supply sequencing on the logic control pins. For example, the Fail-Safe Logic  
feature allows the select pins of the TMUX1574 to be ramped to 5.5 V while VDD = 0 V. Additionally, the feature  
enables operation of the TMUX1574 with VDD = 1.5 V while allowing the select pins to interface with a logic level  
of another device up to 5.5 V.  
8.3.6 Low Capacitance  
The TMUX1574 has very low capacitance in both the ON and OFF states on the source and drain pins. Low  
capacitance helps to reduce large overshoots and ringing of an amplifier circuit when the switch is connected to  
the feedback network. Additionally, low capacitance improves system settling time by reducing the switch time  
constant formed by the On-resistance and On-capacitance. For more information on the benefits of low  
capacitance refer to Improve Stability Issues with Low CON Multiplexers.  
8.3.7 Integrated Pull-Down Resistors  
The TMUX1574 has internal weak pull-down resistors (6 MΩ) to GND to ensure the logic pins are not left  
floating. This feature integrates up to four external components and reduces system size and cost.  
版权 © 2018–2019, Texas Instruments Incorporated  
23  
 
 
 
TMUX1574  
ZHCSIX6B OCTOBER 2018REVISED SEPT 2019  
www.ti.com.cn  
8.4 Device Functional Modes  
The enable (EN) pin is an active-low logic pin that controls the connection between the source (SxA, SxB) and  
drain (Dx) pins of the device. When the enable pin is pulled high, all switches are turned off. When the enable is  
pulled low, the select pin controls the signal path selection. The select pin (SEL) controls the state of all four  
channels of the TMUX1574 and determines which source pin is connected to the drain pins. When the select pin  
is pulled low, the SxA pin conducts to the corresponding Dx pins. When the select pin is pulled high, the SxB pin  
conducts to the corresponding Dx pins. The TMUX1574 logic pins have internal weak pull-down resistors (6 MΩ)  
to GND so that it powers-on in a known state.  
The TMUX1574 can be operated without any external components except for the supply decoupling capacitors.  
Unused logic control pins should be tied to GND or VDD in order to ensure the device does not consume  
additional current as highlighted in Implications of Slow or Floating CMOS Inputs. Unused signal path inputs  
(SxA, SxB, or Dx) should be connected to GND.  
8.5 Truth Tables  
1. TMUX1574 Truth Table  
INPUTS  
Selected Source Pins Connected To Drain Pins (Dx)  
EN  
SEL  
S1A connected to D1  
S2A connected to D2  
S3A connected to D3  
S4A connected to D4  
0
0
S1B connected to D1  
S2B connected to D2  
S3B connected to D3  
S4B connected to D4  
0
1
1
X(1)  
Hi-Z (OFF)  
(1) X denotes don't care.  
24  
版权 © 2018–2019, Texas Instruments Incorporated  
TMUX1574  
www.ti.com.cn  
ZHCSIX6B OCTOBER 2018REVISED SEPT 2019  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TMUX15xx family offers high-speed system performance across a wide operating supply (1.5 V to 5.5 V)  
and operating temperature (-40°C to +125°C). The TMUX1574 supports a number of features that improve  
system performance such as 1.8 V logic compatibility, supports input voltages beyond supply, Fail-Safe Logic,  
and Powered-off Protection up to 3.6 V. These features make the TMUX15xx a family of protection multiplexers  
and switches that can reduce system complexity, board size, and overall system cost.  
9.2 Typical Application  
Common applications that require the features of the TMUX1574 include multiplexing various protocols from a  
possessor or MCU such as SPI, JTAG, or standard GPIO signals. The TMUX1574 provides superior isolation  
performance when the device is powered. The added benefit of powered-off protection allows a system to  
minimize complexity by eliminating the need for power sequencing in hot-swap and live insertion applications.  
The example shown in 42 illustrates the use of the TMUX1574 to multiplex an SPI bus to multiple flash  
memory devices.  
1.8 V  
3.3 V  
3.3 V  
VDD  
0.1µF  
FLASH Device #1  
VI/O  
VDD  
Processor  
S1A  
S2A  
S3A  
S4A  
MISO  
MOSI  
SCLK  
SS  
D1  
D2  
D3  
D4  
RAM  
CPU  
SPI PORT  
FLASH Device #2  
S1B  
S2B  
S3B  
S4B  
MISO  
MOSI  
SCLK  
SS  
Peripherals  
1.8V Logic  
I/O  
SEL  
EN  
GND  
GND  
42. Multiplexing Flash Memory  
9.2.1 Design Requirements  
For this design example, use the parameters listed in 2.  
2. Design Parameters  
PARAMETERS  
Supply (VDD  
VALUES  
3.3 V  
)
Input / Output signal range  
Control logic thresholds  
0 V to 3.3 V  
1.8 V compatible  
版权 © 2018–2019, Texas Instruments Incorporated  
25  
 
 
TMUX1574  
ZHCSIX6B OCTOBER 2018REVISED SEPT 2019  
www.ti.com.cn  
9.2.2 Detailed Design Procedure  
The TMUX1574 can be operated without any external components except for the supply decoupling capacitors.  
The TMUX1574 has internal weak pull-down resistors (6 MΩ) to GND so that it powers-on with the switches in a  
known state. All inputs signals passing through the switch must fall within the recommend operating conditions of  
the TMUX1574 including signal range and continuous current. For this design example, with a supply of 3.3 V,  
the signals can range from 0 V to 3.3 V when the device is powered. This example can also utilize the Powered-  
off Protection feature and the inputs can range from 0 V to 3.6 V when VDD = 0 V. The max continuous current  
can be 25 mA. Due to the voltage range and high speed capability, the TMUX1574 example is suitable for use in  
SPI, JTAG, and I2S applications. Refer to Enabling SPI-based flash memory expansion by using multiplexers for  
more information on using switches and multiplexers for SPI protocol expansion.  
9.2.3 Application Curves  
Two important specifications when using a switch or multiplexer to pass signals are the device propagation delay  
and skew.  
100  
90  
Propagation Delay - PW  
80  
70  
Propagation Delay - RSV  
60  
50  
40  
Skew - PW  
Skew - RSV  
30  
20  
10  
0
1.5  
2
2.5  
3
3.5  
4
Supply Voltage (V)  
4.5  
5
5.5  
6
D020  
43. Propagation Delay and Skew Measurement  
10 Power Supply Recommendations  
The TMUX1574 operates across a wide supply range of 1.5 V to 5.5 V. Do not exceed the absolute maximum  
ratings because stresses beyond the listed ratings can cause permanent damage to the devices.  
Power-supply bypassing improves noise margin and prevents switching noise propagation from the VDD supply to  
other components. Good power-supply decoupling is important to achieve optimum performance. For improved  
supply noise immunity, use a supply decoupling capacitor ranging from 0.1 μF to 10 μF from VDD to ground.  
Place the bypass capacitors as close to the power supply pins of the device as possible using low-impedance  
connections. TI recommends using multi-layer ceramic chip capacitors (MLCCs) that offer low equivalent series  
resistance (ESR) and inductance (ESL) characteristics for power-supply decoupling purposes. For very sensitive  
systems, or for systems in harsh noise environments, avoiding the use of vias for connecting the capacitors to  
the device pins may offer superior noise immunity. The use of multiple vias in parallel lowers the overall  
inductance and is beneficial for connections to ground planes.  
26  
版权 © 2018–2019, Texas Instruments Incorporated  
TMUX1574  
www.ti.com.cn  
ZHCSIX6B OCTOBER 2018REVISED SEPT 2019  
11 Layout  
11.1 Layout Guidelines  
When a PCB trace turns a corner at a 90° angle, a reflection can occur. A reflection occurs primarily because of  
the change of width of the trace. At the apex of the turn, the trace width increases to 1.414 times the width. This  
increase upsets the transmission-line characteristics, especially the distributed capacitance and self–inductance  
of the trace which results in the reflection. Not all PCB traces can be straight and therefore some traces must  
turn corners.44 shows progressively better techniques of rounding corners. Only the last example (BEST)  
maintains constant trace width and minimizes reflections.  
WORST  
BETTER  
BEST  
1W min.  
W
44. Trace Example  
Route the high-speed signals using a minimum of vias and corners which reduces signal reflections and  
impedance changes. When a via must be used, increase the clearance size around it to minimize its  
capacitance. Each via introduces discontinuities in the signal’s transmission line and increases the chance of  
picking up interference from the other layers of the board. Be careful when designing test points, through-  
hole pins are not recommended at high frequencies.  
Do not route high speed signal traces under or near crystals, oscillators, clock signal generators, switching  
regulators, mounting holes, magnetic devices or ICs that use or duplicate clock signals.  
Avoid stubs on the high-speed signals traces because they cause signal reflections.  
Route all high-speed signal traces over continuous GND planes, with no interruptions.  
Avoid crossing over anti-etch, commonly found with plane splits.  
When working with high frequencies, a printed circuit board with at least four layers is recommended; two  
signal layers separated by a ground and power layer as shown in 45.  
Signal 1  
GND Plane  
Power Plane  
Signal 2  
45. Example Layout  
The majority of signal traces must run on a single layer, preferably Signal 1. Immediately next to this layer must  
be the GND plane, which is solid with no cuts. Avoid running signal traces across a split in the ground or power  
plane. When running across split planes is unavoidable, sufficient decoupling must be used. Minimizing the  
number of signal vias reduces EMI by reducing inductance at high frequencies.  
46 illustrates an example of a PCB layout with the TMUX1574. Some key considerations are:  
版权 © 2018–2019, Texas Instruments Incorporated  
27  
 
 
TMUX1574  
ZHCSIX6B OCTOBER 2018REVISED SEPT 2019  
www.ti.com.cn  
Layout Guidelines (接下页)  
Decouple the VDD pin with a 0.1-μF capacitor, placed as close to the pin as possible. Make sure that the  
capacitor voltage rating is sufficient for the VDD supply.  
High-speed switches require proper layout and design procedures for optimum performance.  
Keep the input lines as short as possible.  
Use a solid ground plane to help reduce electromagnetic interference (EMI) noise pickup.  
Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if  
possible, and only make perpendicular crossings when necessary.  
11.2 Layout Example  
Wide (low inductance)  
trace for power  
Via to GND plane  
C
SEL  
VDD  
EN  
S1A  
S1B  
D1  
S4A  
S4B  
TMUX1574  
S2A  
D4  
S3A  
S3B  
D3  
S2B  
D2  
GND  
46. Example Layout  
28  
版权 © 2018–2019, Texas Instruments Incorporated  
TMUX1574  
www.ti.com.cn  
ZHCSIX6B OCTOBER 2018REVISED SEPT 2019  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
德州仪器 (TI)《使用低 CON 多路复用器改善稳定性问题》。  
德州仪器 (TI)《通过使用多路复用器实现基于 SPI 的闪存扩展》。  
德州仪器 (TI)《使用 1.8V 逻辑多路复用器和开关简化设计》。  
德州仪器 (TI)《利用关断保护信号开关消除电源排序》。  
德州仪器 (TI)《高电压模拟多路复用器的系统级保护》。  
德州仪器 (TI)《高速接口布局指南》。  
德州仪器 (TI)《高速布局指南》。  
德州仪器 (TI)QFN/SON PCB 连接》。  
德州仪器 (TI)《四方扁平封装无引线逻辑封装》。  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.4 商标  
E2E is a trademark of Texas Instruments.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2018–2019, Texas Instruments Incorporated  
29  
TMUX1574  
ZHCSIX6B OCTOBER 2018REVISED SEPT 2019  
www.ti.com.cn  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
30  
版权 © 2018–2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Oct-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMUX1574DYYR  
TMUX1574PWR  
TMUX1574RSVR  
ACTIVE SOT-23-THIN  
DYY  
PW  
16  
16  
16  
3000 RoHS & Green  
2000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
TMUX1574  
ACTIVE  
ACTIVE  
TSSOP  
UQFN  
NIPDAU  
MUX1574  
1574  
RSV  
NIPDAUAG  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Oct-2021  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TMUX1574DYYR  
SOT-23-  
THIN  
DYY  
16  
3000  
330.0  
12.4  
4.8  
3.6  
1.6  
8.0  
12.0  
Q3  
TMUX1574PWR  
TMUX1574RSVR  
TSSOP  
UQFN  
PW  
16  
16  
2000  
3000  
330.0  
178.0  
12.4  
13.5  
6.9  
2.1  
5.6  
2.9  
1.6  
8.0  
4.0  
12.0  
12.0  
Q1  
Q1  
RSV  
0.75  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TMUX1574DYYR  
TMUX1574PWR  
TMUX1574RSVR  
SOT-23-THIN  
TSSOP  
DYY  
PW  
16  
16  
16  
3000  
2000  
3000  
336.6  
356.0  
189.0  
336.6  
356.0  
185.0  
31.8  
35.0  
36.0  
UQFN  
RSV  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RSV0016A  
UQFN - 0.55 mm max height  
S
C
A
L
E
5
.
0
0
0
ULTRA THIN QUAD FLATPACK - NO LEAD  
1.85  
1.75  
A
B
PIN 1 INDEX AREA  
2.65  
2.55  
C
0.55  
0.45  
SEATING PLANE  
0.05 C  
0.05  
0.00  
2X 1.2  
SYMM  
(0.13) TYP  
5
8
0.45  
0.35  
15X  
4
9
SYMM  
2X 1.2  
12X 0.4  
1
0.25  
16X  
12  
0.15  
0.07  
0.05  
C A B  
13  
16  
0.55  
0.45  
PIN 1 ID  
(45° X 0.1)  
4220314/C 02/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RSV0016A  
UQFN - 0.55 mm max height  
ULTRA THIN QUAD FLATPACK - NO LEAD  
SYMM  
(0.7)  
16  
SEE SOLDER MASK  
DETAIL  
13  
12  
16X (0.2)  
1
SYMM  
12X (0.4)  
(2.4)  
(R0.05) TYP  
9
4
15X (0.6)  
5
8
(1.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 25X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4220314/C 02/2020  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RSV0016A  
UQFN - 0.55 mm max height  
ULTRA THIN QUAD FLATPACK - NO LEAD  
(0.7)  
16  
13  
16X (0.2)  
1
12  
SYMM  
12X (0.4)  
(2.4)  
(R0.05) TYP  
4
9
15X (0.6)  
5
8
SYMM  
(1.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 25X  
4220314/C 02/2020  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
SOT-23-THIN - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
DYY0016A  
C
3.36  
3.16  
SEATING PLANE  
PIN 1 INDEX  
AREA  
A
0.1 C  
14X 0.5  
16  
1
4.3  
4.1  
NOTE 3  
2X  
3.5  
8
9
0.31  
16X  
0.11  
0.1  
C A  
B
1.1 MAX  
2.1  
1.9  
B
0.2  
0.08  
TYP  
SEE DETAIL A  
0.25  
GAUGE PLANE  
0°- 8°  
0.1  
0.0  
0.63  
0.33  
DETAIL A  
TYP  
4224642/B 07/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed  
0.15 per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.50 per side.  
5. Reference JEDEC Registration MO-345, Variation AA  
www.ti.com  
EXAMPLE BOARD LAYOUT  
SOT-23-THIN - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
DYY0016A  
16X (1.05)  
SYMM  
16  
1
16X (0.3)  
SYMM  
14X (0.5)  
9
8
(R0.05) TYP  
(3)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
NON- SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4224642/B 07/2021  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
SOT-23-THIN - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
DYY0016A  
16X (1.05)  
SYMM  
16  
1
16X (0.3)  
SYMM  
14X (0.5)  
9
8
(R0.05) TYP  
(3)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 20X  
4224642/B 07/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
PW0016A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
4.5  
4.3  
NOTE 4  
1.2 MAX  
0.19  
B
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220204/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
16X (1.5)  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220204/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
16X (1.5)  
SYMM  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220204/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TMUX1574PWR

具有断电保护功能和 1.8V 输入逻辑的 5V、2:1 (SPDT)、4 通道模拟开关 | PW | 16 | -40 to 125
TI

TMUX1574RSVR

具有断电保护功能和 1.8V 输入逻辑的 5V、2:1 (SPDT)、4 通道模拟开关 | RSV | 16 | -40 to 125
TI

TMUX1575

具有 1.2V 逻辑电平的低电容、2:1 (SPDT) 4 通道断电保护开关
TI

TMUX1575YCJR

具有 1.2V 逻辑电平的低电容、2:1 (SPDT) 4 通道断电保护开关 | YCJ | 16 | -40 to 125
TI

TMUX4051

具有 1.8V 逻辑电平的 ±12V 8:1 单通道多路复用器
TI

TMUX4051-Q1

具有 1.8V 兼容逻辑电压的汽车类 ±12V、8:1、单通道通用多路复用器
TI

TMUX4051PWR

具有 1.8V 逻辑电平的 ±12V 8:1 单通道多路复用器 | PW | 16 | -55 to 125
TI

TMUX4051PWRQ1

具有 1.8V 兼容逻辑电压的汽车类 ±12V、8:1、单通道通用多路复用器 | PW | 16 | -55 to 125
TI

TMUX4052

具有 1.8V 逻辑电平的 ±12V 4:1 双通道多路复用器
TI

TMUX4052-Q1

具有 1.8V 兼容逻辑电平的汽车类 ±12V 4:1 双通道多路复用器
TI

TMUX4052PWR

具有 1.8V 逻辑电平的 ±12V 4:1 双通道多路复用器 | PW | 16 | -55 to 125
TI

TMUX4052PWRQ1

具有 1.8V 兼容逻辑电平的汽车类 ±12V 4:1 双通道多路复用器 | PW | 16 | -55 to 125
TI