TMUX1134 [TI]

3pA 导通状态泄漏电流、2:1 (SPDT)、4 通道精密模拟开关;
TMUX1134
型号: TMUX1134
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

3pA 导通状态泄漏电流、2:1 (SPDT)、4 通道精密模拟开关

开关 光电二极管
文件: 总43页 (文件大小:1378K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TMUX1133, TMUX1134  
ZHCSK01A JUNE 2019REVISED AUGUST 2019  
TMUX113x 5V、低泄漏电流、2:1 (SPDT)3 通道或 4 通道精密开关  
1 特性  
3 说明  
1
单电源电压范围:1.08V 5.5V  
双电源电压范围:±2.75V  
低泄漏电流:3pA  
低电荷注入:-1pC  
低导通电阻:2Ω  
TMUX113x 器件是具有多个通道的精密互补金属氧化  
物半导体 (CMOS) 开关。TMUX1133 2:1 单极双投  
(SPDT) 开关,具有三个独立控制的通道和一个 EN 引  
脚,用于启用或禁用全部三个开关。TMUX1134 包含  
四个独立控制的 SPDT 开关。1.08V 5.5V 或  
±2.75V 双电源的宽电源电压工作范围 可支持 医疗设  
备到工业系统的大量应用。该器件可支持源极 (Sx) 和  
漏极 (Dx) 引脚上 VSS VDD 范围的双向模拟和数字信  
号。对于单电源 应用, VSS 必须连接至 GND。  
-40°C +125°C 工作温度  
兼容 1.8V 逻辑  
失效防护逻辑  
轨至轨运行  
双向信号路径  
所有逻辑输入均具有兼容 1.8V 逻辑的阈值,当器件在  
有效电源电压范围内运行时,这些阈值可确保 TTL 和  
CMOS 逻辑兼容性。失效防护逻辑 电路允许在电源引  
脚之前的控制引脚上施加电压,从而保护器件免受潜在  
的损害。  
先断后合开关  
ESD 保护 HBM2000V  
2 应用  
现场变送器  
TMUX113x 器件是精密开关和多路复用器器件系列中  
的一部分。这些器件具有非常低的导通和关断泄漏电流  
以及较低的电荷注入,因此可用于高精度测量 应用理  
想之选。8nA 的低电源电流  
可编程逻辑控制器 (PLC)  
工厂自动化和控制  
超声波扫描仪  
患者监护和诊断  
可用于便携式 应用的。  
心电图 (ECG)  
数据采集系统 (DAQ)  
ATE 测试设备  
器件信息(1)  
器件型号  
TMUX1133  
TMUX1134  
封装  
封装尺寸(标称值)  
5.00mm × 4.40mm  
6.50mm × 4.40mm  
电池测试设备  
TSSOP (16) (PW)  
TSSOP (20) (PW)  
仪表:实验室、分析、便携  
智能仪表:水表和燃气表  
光纤网络  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的封装选项附  
录。  
光学测试设备  
便携式 POS  
远程无线电单元  
有源天线系统 (mMIMIO)  
TMUX113x 方框图  
TMUX1133  
TMUX1134  
S1A  
S1B  
S1A  
S1B  
D1  
D1  
SEL1  
SEL1  
S2A  
S2B  
D2  
S2A  
S2B  
SEL2  
D2  
SEL2  
S3A  
S3B  
D3  
SEL3  
S3A  
S3B  
D3  
S4A  
S4B  
SEL3  
D4  
SEL4  
EN  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SCDS412  
 
 
 
 
TMUX1133, TMUX1134  
ZHCSK01A JUNE 2019REVISED AUGUST 2019  
www.ti.com.cn  
目录  
8.9 Crosstalk ................................................................. 23  
8.10 Bandwidth ............................................................. 23  
Detailed Description ............................................ 24  
9.1 Overview ................................................................. 24  
9.2 Functional Block Diagram ....................................... 24  
9.3 Feature Description................................................. 24  
9.4 Device Functional Modes........................................ 26  
9.5 Truth Tables............................................................ 26  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 5  
7.5 Electrical Characteristics (VDD = 5 V ±10 %)............ 6  
7.6 Electrical Characteristics (VDD = 3.3 V ±10 %)......... 8  
9
10 Application and Implementation........................ 27  
10.1 Application Information.......................................... 27  
10.2 Typical Application ............................................... 27  
10.3 Design Requirements............................................ 27  
10.4 Detailed Design Procedure ................................... 28  
10.5 Application Curve.................................................. 28  
11 Power Supply Recommendations ..................... 29  
12 Layout................................................................... 29  
12.1 Layout Guidelines ................................................. 29  
12.2 Layout Example .................................................... 30  
13 器件和文档支持 ..................................................... 31  
13.1 文档支持................................................................ 31  
13.2 相关链接................................................................ 31  
13.3 接收文档更新通知 ................................................. 31  
13.4 社区资源................................................................ 31  
13.5 ....................................................................... 31  
13.6 静电放电警告......................................................... 31  
13.7 Glossary................................................................ 31  
14 机械、封装和可订购信息....................................... 31  
7.7 Electrical Characteristics (VDD = 2.5 V ±10 %), (VSS  
=
–2.5 V ±10 %) .......................................................... 10  
7.8 Electrical Characteristics (VDD = 1.8 V ±10 %)....... 12  
7.9 Electrical Characteristics (VDD = 1.2 V ±10 %)....... 14  
7.10 Typical Characteristics.......................................... 16  
Parameter Measurement Information ................ 19  
8.1 On-Resistance ........................................................ 19  
8.2 Off-Leakage Current ............................................... 19  
8.3 On-Leakage Current ............................................... 20  
8.4 Transition Time ....................................................... 20  
8.5 Break-Before-Make................................................. 21  
8.6 tON(EN) and tOFF(EN).................................................. 21  
8.7 Charge Injection...................................................... 22  
8.8 Off Isolation............................................................. 22  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (June 2019) to Revision A  
Page  
将器件从预告信息 更改为生产 数据........................................................................................................................................ 1  
2
Copyright © 2019, Texas Instruments Incorporated  
 
TMUX1133, TMUX1134  
www.ti.com.cn  
ZHCSK01A JUNE 2019REVISED AUGUST 2019  
5 Device Comparison Table  
PRODUCT  
TMUX1133  
TMUX1134  
DESCRIPTION  
2:1 (SPDT), 3-Channel Switch  
2:1 (SPDT), 4-Channel Switch  
6 Pin Configuration and Functions  
TMUX1133: PW Package  
16-Pin TSSOP  
Top View  
S2B  
S2A  
S3B  
D3  
1
2
3
4
5
6
7
8
16  
V
DD  
15  
14  
13  
12  
11  
10  
9
D2  
D1  
S1B  
S1A  
SEL1  
SEL2  
SEL3  
S3A  
V
SS  
GND  
Not to scale  
Pin Functions TMUX1133  
PIN  
TYPE(1)  
DESCRIPTION(2)  
NAME  
S2B  
S2A  
S3B  
D3  
NO.  
1
I/O  
I/O  
I/O  
I/O  
I/O  
Source pin 2B. Can be an input or output.  
Source pin 2A. Can be an input or output.  
Source pin 3B. Can be an input or output.  
Drain pin 3. Can be an input or output.  
Source pin 3A. Can be an input or output.  
2
3
4
S3A  
5
Active low logic enable. When this pin is high, all switches are turned off. When this pin is low, the  
SELx inputs determine switch connection as shown in 1.  
EN  
6
7
I
Negative power supply. This pin is the most negative power-supply potential. For reliable operation,  
connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VSS and GND. VSS must be  
connected to ground for single supply voltage applications.  
VSS  
P
GND  
SEL3  
SEL2  
SEL1  
S1A  
S1B  
D1  
8
P
I
Ground (0 V) reference  
9
Logic control select pin 3. Controls switch 3 connection as shown in 1.  
Logic control select pin 2. Controls switch 2connection as shown in 1.  
Logic control select pin 1. Controls switch 1 connection as shown in 1.  
Source pin 1A. Can be an input or output.  
10  
11  
12  
13  
14  
15  
I
I
I/O  
I/O  
I/O  
I/O  
Source pin 1B. Can be an input or output.  
Drain pin 1. Can be an input or output.  
D2  
Drain pin 2. Can be an input or output.  
Positive power supply. This pin is the most positive power-supply potential. For reliable operation,  
connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VDD and GND.  
VDD  
16  
P
(1) I = input, O = output, I/O = input and output, P = power  
(2) Refer to Device Functional Modes for what to do with unused pins  
Copyright © 2019, Texas Instruments Incorporated  
3
TMUX1133, TMUX1134  
ZHCSK01A JUNE 2019REVISED AUGUST 2019  
www.ti.com.cn  
TMUX1134: PW Package  
20-Pin TSSOP  
Top View  
SEL1  
S1A  
D1  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
SEL4  
S4A  
D4  
S1B  
S4B  
V
V
SS  
DD  
GND  
S2B  
D2  
N.C.  
S3B  
D3  
S2A  
SEL2  
S3A  
SEL3  
Not to scale  
Pin Functions TMUX1134  
PIN  
TYPE(1)  
DESCRIPTION(2)  
NAME  
SEL1  
S1A  
NO.  
1
I
Logic control select pin 1. Controls switch 1 connection as shown in 2.  
Source pin 1A. Can be an input or output.  
2
I/O  
I/O  
I/O  
D1  
3
Drain pin 1. Can be an input or output.  
S1B  
4
Source pin 1B. Can be an input or output.  
Negative power supply. This pin is the most negative power-supply potential. For reliable operation,  
connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VSS and GND. VSS must be  
connected to ground for single supply voltage applications.  
VSS  
5
P
GND  
S2B  
D2  
6
7
P
.Ground (0 V) reference.  
I/O  
Source pin 2B. Can be an input or output.  
8
I/O  
Drain pin 2. Can be an input or output.  
S2A  
SEL2  
SEL3  
S3A  
D3  
9
I/O  
Source pin 2A. Can be an input or output.  
10  
11  
12  
13  
14  
15  
I
Logic control select pin 2. Controls switch 2 connection as shown in 2.  
Logic control select pin 3. Controls switch 3 connection as shown in 2.  
Source pin 3A. Can be an input or output.  
I
I/O  
I/O  
I/O  
Drain pin 3. Can be an input or output.  
S3B  
N.C.  
Source pin 3B. Can be an input or output.  
Not Connected  
Not Connected. Can be shorted to GND or left floating.  
Positive power supply. This pin is the most positive power-supply potential. For reliable operation,  
connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VDD and GND.  
VDD  
16  
P
S4B  
D4  
17  
18  
19  
20  
I/O  
I/O  
I/O  
I
Source pin 4B. Can be an input or output.  
Drain pin 4. Can be an input or output.  
S4A  
SEL4  
Source pin 4A. Can be an input or output.  
Logic control select pin 4. Controls switch 4 connection as shown in 2.  
(1) I = input, O = output, I/O = input and output, P = power  
(2) Refer to Device Functional Modes for what to do with unused pins  
4
Copyright © 2019, Texas Instruments Incorporated  
TMUX1133, TMUX1134  
www.ti.com.cn  
ZHCSK01A JUNE 2019REVISED AUGUST 2019  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)(3)  
MIN  
–0.5  
–0.5  
–3.0  
–0.5  
–30  
MAX  
UNIT  
V
VDD–VSS  
6
VDD  
Supply voltage  
6
V
VSS  
0.3  
V
VSEL or VEN  
ISEL or IEN  
VS or VD  
IS or ID (CONT)  
Tstg  
Logic control input pin voltage (EN, SELx)  
Logic control input pin current (EN, SELx)  
Source or drain voltage (SxA, SxB, Dx)  
Source or drain continuous current (SxA, SxB, Dx)  
Storage temperature  
6
30  
V
mA  
V
–0.5  
–30  
VDD + 0.5  
30  
mA  
°C  
°C  
–65  
150  
TJ  
Junction temperature  
150  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.  
(3) All voltages are with respect to ground, unless otherwise specified.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101  
or ANSI/ESDA/JEDEC JS-002, all pins(2)  
±750  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.08  
–2.75  
1.08  
VSS  
NOM  
MAX  
5.5  
0
UNIT  
VDD  
VSS  
Positive power supply voltage (single)  
Negative power supply voltage (dual)  
V
V
V
V
VDD - VSS Supply rail voltage difference  
5.5  
VDD  
VS or VD  
Signal path input/output voltage (source or drain pin) (SxA, SxB, Dx)  
VSEL or  
VEN  
Logic control input pin voltage (EN, SELx)  
Ambient temperature  
0
5.5  
V
TA  
–40  
125  
°C  
7.4 Thermal Information  
TMUX1133  
PW (TSSOP)  
16 PINS  
120.6  
TMUX1134  
PW (TSSOP)  
16 PINS  
102.2  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
51.0  
43.1  
66.8  
53.6  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
8.7  
6.6  
ΨJB  
66.2  
53.1  
RθJC(bot)  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2019, Texas Instruments Incorporated  
5
TMUX1133, TMUX1134  
ZHCSK01A JUNE 2019REVISED AUGUST 2019  
www.ti.com.cn  
MAX UNIT  
7.5 Electrical Characteristics (VDD = 5 V ±10 %)  
at TA = 25°C, VDD = 5 V (unless otherwise noted)  
PARAMETER  
ANALOG SWITCH  
TEST CONDITIONS  
TA  
MIN  
TYP  
25°C  
2
4
4.5  
4.9  
Ω
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to On-Resistance  
RON  
On-resistance  
–40°C to +85°C  
–40°C to +125°C  
25°C  
Ω
0.18  
0.85  
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to On-Resistance  
On-resistance matching between  
channels  
ΔRON  
–40°C to +85°C  
–40°C to +125°C  
25°C  
0.4  
0.5  
Ω
Ω
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to On-Resistance  
RON  
FLAT  
On-resistance flatness  
–40°C to +85°C  
–40°C to +125°C  
25°C  
1.6  
1.6  
Ω
Ω
VDD = 5 V  
Switch Off  
VD = 4.5 V / 1.5 V  
VS = 1.5 V / 4.5 V  
Refer to Off-Leakage Current  
–0.08 ±0.003  
–0.3  
0.08  
0.3  
nA  
nA  
–40°C to +85°C  
IS(OFF)  
Source off leakage current(1)  
–40°C to +125°C  
–0.9  
0.9  
nA  
VDD = 5 V  
Switch Off  
VD = 4.5 V / 1.5 V  
VS = 1.5 V / 4.5 V  
Refer to Off-Leakage Current  
25°C  
–0.1 ±0.003  
–0.35  
0.1  
nA  
nA  
–40°C to +85°C  
0.35  
ID(OFF) Drain off leakage current(1)  
–40°C to +125°C  
–2  
2
nA  
VDD = 5 V  
Switch On  
VD = VS = 4.5 V / 1.5 V  
Refer to On-Leakage Current  
25°C  
–0.1 ±0.003  
–0.35  
0.1  
nA  
nA  
ID(ON)  
–40°C to +85°C  
0.35  
Channel on leakage current  
IS(ON)  
–40°C to +125°C  
–2  
2
nA  
LOGIC INPUTS (EN, SELx)  
VIH  
VIL  
Input logic high  
Input logic low  
1.49  
0
5.5  
V
V
–40°C to +125°C  
0.87  
IIH  
IIL  
Input leakage current  
Input leakage current  
25°C  
±0.005  
µA  
µA  
IIH  
IIL  
–40°C to +125°C  
±0.05  
2
25°C  
1
pF  
pF  
CIN  
Logic input capacitance  
–40°C to +125°C  
POWER SUPPLY  
IDD VDD supply current  
25°C  
0.008  
µA  
µA  
Logic inputs = 0 V or 5.5 V  
–40°C to +125°C  
1
(1) When VS is 4.5 V, VD is 1.5 V or when VS is 1.5 V, VD is 4.5 V.  
6
Copyright © 2019, Texas Instruments Incorporated  
TMUX1133, TMUX1134  
www.ti.com.cn  
ZHCSK01A JUNE 2019REVISED AUGUST 2019  
Electrical Characteristics (VDD = 5 V ±10 %) (continued)  
at TA = 25°C, VDD = 5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
DYNAMIC CHARACTERISTICS  
25°C  
12  
ns  
VS = 3 V  
tTRAN  
Transition time between channels RL = 200 , CL = 15 pF  
–40°C to +85°C  
–40°C to +125°C  
25°C  
18  
19  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Refer to Transition Time  
8
12  
6
VS = 3 V  
tOPEN  
(BBM)  
Break before make time  
RL = 200 , CL = 15 pF  
–40°C to +85°C  
–40°C to +125°C  
25°C  
1
1
Refer to Break-Before-Make  
VS = 3 V  
RL = 200 , CL = 15 pF  
Refer to tON(EN) and tOFF(EN)  
Enable turn-on time  
(TMUX1133 Only)  
tON(EN)  
–40°C to +85°C  
–40°C to +125°C  
25°C  
21  
22  
VS = 3 V  
RL = 200 , CL = 15 pF  
Refer to tON(EN) and tOFF(EN)  
Enable turn-off time  
(TMUX1133 Only)  
tOFF(EN)  
–40°C to +85°C  
–40°C to +125°C  
11  
12  
VS = 1 V  
QC  
Charge Injection  
Off Isolation  
RS = 0 , CL = 1 nF  
Refer to Charge Injection  
25°C  
25°C  
25°C  
25°C  
–1  
–65  
pC  
dB  
dB  
dB  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Off Isolation  
OISO  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Refer to Off Isolation  
–45  
RL = 50 , CL = 5 pF  
f = 1 MHz  
–100  
Refer to Crosstalk  
XTALK  
Crosstalk  
RL = 50 , CL = 5 pF  
f = 10 MHz  
25°C  
25°C  
–90  
220  
dB  
Refer to Crosstalk  
RL = 50 , CL = 5 pF  
Refer to Bandwidth  
BW  
Bandwidth  
MHz  
CSOFF  
CDOFF  
Source off capacitance  
Drain off capacitance  
f = 1 MHz  
f = 1 MHz  
25°C  
25°C  
6
pF  
pF  
17  
CSON  
CDON  
On capacitance  
f = 1 MHz  
25°C  
20  
pF  
Copyright © 2019, Texas Instruments Incorporated  
7
TMUX1133, TMUX1134  
ZHCSK01A JUNE 2019REVISED AUGUST 2019  
www.ti.com.cn  
MAX UNIT  
7.6 Electrical Characteristics (VDD = 3.3 V ±10 %)  
at TA = 25°C, VDD = 3.3 V (unless otherwise noted)  
PARAMETER  
ANALOG SWITCH  
TEST CONDITIONS  
TA  
MIN  
TYP  
25°C  
3.7  
8.8  
9.5  
9.8  
Ω
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to On-Resistance  
RON  
On-resistance  
–40°C to +85°C  
–40°C to +125°C  
25°C  
Ω
0.13  
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to On-Resistance  
On-resistance matching between  
channels  
ΔRON  
–40°C to +85°C  
–40°C to +125°C  
25°C  
0.4  
0.5  
Ω
Ω
1.9  
2
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to On-Resistance  
RON  
FLAT  
On-resistance flatness  
–40°C to +85°C  
–40°C to +125°C  
25°C  
Ω
2.2  
Ω
VDD = 3.3 V  
Switch Off  
VD = 3 V / 1 V  
–0.05 ±0.001  
–0.1  
0.05  
0.1  
nA  
nA  
–40°C to +85°C  
IS(OFF)  
Source off leakage current(1)  
VS = 1 V / 3 V  
Refer to Off-Leakage Current  
–40°C to +125°C  
–0.7  
0.7  
nA  
VDD = 3.3 V  
Switch Off  
VD = 3 V / 1 V  
25°C  
–0.1 ±0.005  
–0.35  
0.1  
nA  
nA  
Drain off leakage current(1)  
(TMUX1133 Only)  
–40°C to +85°C  
0.35  
ID(OFF)  
VS = 1 V / 3 V  
Refer to Off-Leakage Current  
–40°C to +125°C  
–2  
2
nA  
VDD = 3.3 V  
Switch On  
VD = VS = 3 V / 1 V  
Refer to On-Leakage Current  
25°C  
–0.1 ±0.005  
–0.35  
0.1  
nA  
nA  
ID(ON)  
IS(ON)  
–40°C to +85°C  
0.35  
Channel on leakage current  
–40°C to +125°C  
–2  
2
nA  
LOGIC INPUTS (EN, SELx)  
VIH  
VIL  
Input logic high  
Input logic low  
1.35  
0
5.5  
0.8  
V
V
–40°C to +125°C  
IIH  
IIL  
Input leakage current  
Input leakage current  
25°C  
±0.005  
µA  
µA  
IIH  
IIL  
–40°C to +125°C  
±0.05  
2
25°C  
1
pF  
pF  
CIN  
Logic input capacitance  
–40°C to +125°C  
POWER SUPPLY  
IDD VDD supply current  
25°C  
0.006  
µA  
µA  
Logic inputs = 0 V or 5.5 V  
–40°C to +125°C  
1
(1) When VS is 3 V, VD is 1 V or when VS is 1 V, VD is 3 V.  
8
Copyright © 2019, Texas Instruments Incorporated  
TMUX1133, TMUX1134  
www.ti.com.cn  
ZHCSK01A JUNE 2019REVISED AUGUST 2019  
Electrical Characteristics (VDD = 3.3 V ±10 %) (continued)  
at TA = 25°C, VDD = 3.3 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
DYNAMIC CHARACTERISTICS  
25°C  
14  
ns  
VS = 2 V  
tTRAN  
Transition time between channels RL = 200 , CL = 15 pF  
–40°C to +85°C  
–40°C to +125°C  
25°C  
22  
22  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Refer to Transition Time  
9
15  
8
VS = 2 V  
tOPEN  
(BBM)  
Break before make time  
RL = 200 , CL = 15 pF  
–40°C to +85°C  
–40°C to +125°C  
25°C  
1
1
Refer to Break-Before-Make  
VS = 2 V  
RL = 200 , CL = 15 pF  
Refer to tON(EN) and tOFF(EN)  
Enable turn-on time  
(TMUX1133 Only)  
tON(EN)  
–40°C to +85°C  
–40°C to +125°C  
25°C  
22  
23  
VS = 2 V  
RL = 200 , CL = 15 pF  
Refer to tON(EN) and tOFF(EN)  
Enable turn-off time  
(TMUX1133 Only)  
tOFF(EN)  
–40°C to +85°C  
–40°C to +125°C  
13  
14  
VS = 1 V  
QC  
Charge Injection  
Off Isolation  
RS = 0 , CL = 1 nF  
Refer to Charge Injection  
25°C  
25°C  
25°C  
25°C  
–1  
–65  
pC  
dB  
dB  
dB  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Off Isolation  
OISO  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Refer to Off Isolation  
–45  
RL = 50 , CL = 5 pF  
f = 1 MHz  
–100  
Refer to Crosstalk  
XTALK  
Crosstalk  
RL = 50 , CL = 5 pF  
f = 10 MHz  
25°C  
25°C  
–90  
220  
dB  
Refer to Crosstalk  
RL = 50 , CL = 5 pF  
Refer to Bandwidth  
BW  
Bandwidth  
MHz  
CSOFF  
CDOFF  
Source off capacitance  
Drain off capacitance  
f = 1 MHz  
f = 1 MHz  
25°C  
25°C  
6
pF  
pF  
17  
CSON  
CDON  
On capacitance  
f = 1 MHz  
25°C  
20  
pF  
Copyright © 2019, Texas Instruments Incorporated  
9
TMUX1133, TMUX1134  
ZHCSK01A JUNE 2019REVISED AUGUST 2019  
www.ti.com.cn  
MAX UNIT  
7.7 Electrical Characteristics (VDD = 2.5 V ±10 %), (VSS = –2.5 V ±10 %)  
at TA = 25°C, VDD = +2.5 V, VSS = –2.5 V (unless otherwise noted)  
PARAMETER  
ANALOG SWITCH  
TEST CONDITIONS  
TA  
MIN  
TYP  
25°C  
2
4
4.5  
4.9  
Ω
Ω
VS = VSS to VDD  
ISD = 10 mA  
Refer to On-Resistance  
RON  
On-resistance  
–40°C to +85°C  
–40°C to +125°C  
25°C  
Ω
0.18  
0.85  
Ω
VS = VSS to VDD  
ISD = 10 mA  
Refer to On-Resistance  
On-resistance matching between  
channels  
ΔRON  
–40°C to +85°C  
–40°C to +125°C  
25°C  
0.4  
0.5  
Ω
Ω
Ω
VS = VSS to VDD  
ISD = 10 mA  
Refer to On-Resistance  
RON  
FLAT  
On-resistance flatness  
–40°C to +85°C  
–40°C to +125°C  
25°C  
1.6  
1.6  
Ω
Ω
VDD = +2.5 V, VSS = –2.5 V  
Switch Off  
VD = +2 V / –1 V  
–0.08 ±0.005  
–0.3  
0.08  
0.3  
nA  
nA  
–40°C to +85°C  
IS(OFF)  
Source off leakage current(1)  
VS = –1 V / +2 V  
Refer to Off-Leakage Current  
–40°C to +125°C  
–0.9  
0.9  
nA  
VDD = +2.5 V, VSS = –2.5 V  
Switch Off  
VD = +2 V / –1 V  
VS = –1 V / +2 V  
Refer to Off-Leakage Current  
25°C  
–0.1  
±0.01  
±0.01  
0.1  
nA  
nA  
–40°C to +85°C  
–0.35  
0.35  
ID(OFF) Drain off leakage current(1)  
–40°C to +125°C  
–2  
2
nA  
VDD = +2.5 V, VSS = –2.5 V  
Switch On  
VD = VS = +2 V / –1 V  
Refer to On-Leakage Current  
25°C  
–0.1  
0.1  
nA  
nA  
ID(ON)  
–40°C to +85°C  
–0.35  
0.35  
Channel on leakage current  
IS(ON)  
–40°C to +125°C  
–2  
2
nA  
LOGIC INPUTS (EN, SELx)  
VIH  
VIL  
Input logic high  
Input logic low  
1.2  
0
2.75  
0.73  
V
V
–40°C to +125°C  
IIH  
IIL  
Input leakage current  
Input leakage current  
25°C  
±0.005  
1
µA  
µA  
IIH  
IIL  
–40°C to +125°C  
±0.05  
2
25°C  
pF  
pF  
CIN  
Logic input capacitance  
–40°C to +125°C  
POWER SUPPLY  
IDD VDD supply current  
25°C  
0.008  
0.008  
µA  
µA  
µA  
µA  
Logic inputs = 0 V or 2.75 V  
Logic inputs = 0 V or 2.75 V  
–40°C to +125°C  
25°C  
1
1
ISS  
VSS supply current  
–40°C to +125°C  
(1) When VS is positive, VD is negative or when VS is negative, VD is positive.  
10  
Copyright © 2019, Texas Instruments Incorporated  
TMUX1133, TMUX1134  
www.ti.com.cn  
ZHCSK01A JUNE 2019REVISED AUGUST 2019  
Electrical Characteristics (VDD = 2.5 V ±10 %), (VSS = –2.5 V ±10 %) (continued)  
at TA = 25°C, VDD = +2.5 V, VSS = –2.5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
DYNAMIC CHARACTERISTICS  
25°C  
12  
ns  
VS = 1.5 V  
tTRAN  
Transition time between channels RL = 200 , CL = 15 pF  
–40°C to +85°C  
–40°C to +125°C  
25°C  
20  
21  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Refer to Transition Time  
8
12  
6
VS = 1.5 V  
tOPEN  
(BBM)  
Break before make time  
RL = 200 , CL = 15 pF  
–40°C to +85°C  
–40°C to +125°C  
25°C  
1
1
Refer to Break-Before-Make  
VS = 1.5 V  
RL = 200 , CL = 15 pF  
Refer to tON(EN) and tOFF(EN)  
Enable turn-on time  
(TMUX1133 Only)  
tON(EN)  
–40°C to +85°C  
–40°C to +125°C  
25°C  
21  
22  
VS = 1.5 V  
RL = 200 , CL = 15 pF  
Refer to tON(EN) and tOFF(EN)  
Enable turn-off time  
(TMUX1133 Only)  
tOFF(EN)  
–40°C to +85°C  
–40°C to +125°C  
14  
15  
VS = –1 V  
QC  
Charge Injection  
Off Isolation  
RS = 0 , CL = 1 nF  
Refer to Charge Injection  
25°C  
25°C  
25°C  
25°C  
–1  
–65  
pC  
dB  
dB  
dB  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Off Isolation  
OISO  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Refer to Off Isolation  
–45  
RL = 50 , CL = 5 pF  
f = 1 MHz  
–100  
Refer to Crosstalk  
XTALK  
Crosstalk  
RL = 50 , CL = 5 pF  
f = 10 MHz  
25°C  
25°C  
–90  
220  
dB  
Refer to Crosstalk  
RL = 50 , CL = 5 pF  
Refer to Bandwidth  
BW  
Bandwidth  
MHz  
CSOFF  
CDOFF  
Source off capacitance  
Drain off capacitance  
f = 1 MHz  
f = 1 MHz  
25°C  
25°C  
6
pF  
pF  
17  
CSON  
CDON  
On capacitance  
f = 1 MHz  
25°C  
20  
pF  
Copyright © 2019, Texas Instruments Incorporated  
11  
TMUX1133, TMUX1134  
ZHCSK01A JUNE 2019REVISED AUGUST 2019  
www.ti.com.cn  
7.8 Electrical Characteristics (VDD = 1.8 V ±10 %)  
at TA = 25°C, VDD = 1.8 V (unless otherwise noted)  
PARAMETER  
ANALOG SWITCH  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
40  
Ω
VS = 0 V to VDD  
RON  
On-resistance  
ISD = 10 mA  
Refer to On-Resistance  
–40°C to +85°C  
–40°C to +125°C  
25°C  
80  
80  
Ω
Ω
0.4  
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to On-Resistance  
On-resistance matching between  
channels  
ΔRON  
–40°C to +85°C  
–40°C to +125°C  
25°C  
1.5  
1.5  
Ω
Ω
VDD = 1.98 V  
Switch Off  
VD = 1.62 V / 1 V  
VS = 1 V / 1.62 V  
Refer to Off-Leakage Current  
–0.05 ±0.003  
–0.1  
0.05  
0.1  
nA  
nA  
–40°C to +85°C  
IS(OFF)  
Source off leakage current(1)  
–40°C to +125°C  
–0.5  
0.5  
nA  
VDD = 1.98 V  
Switch Off  
VD = 1.62 V / 1 V  
VS = 1 V / 1.62 V  
Refer to Off-Leakage Current  
25°C  
–0.1 ±0.005  
–0.5  
0.1  
0.5  
nA  
nA  
–40°C to +85°C  
ID(OFF) Drain off leakage current(1)  
–40°C to +125°C  
–2  
2
nA  
VDD = 1.98 V  
Switch On  
VD = VS = 1.62 V / 1 V  
Refer to On-Leakage Current  
25°C  
–0.1 ±0.005  
–0.5  
0.1  
0.5  
nA  
nA  
ID(ON)  
–40°C to +85°C  
Channel on leakage current  
IS(ON)  
–40°C to +125°C  
–2  
2
nA  
LOGIC INPUTS (EN, SELx)  
VIH  
VIL  
Input logic high  
Input logic low  
1.07  
0
5.5  
V
V
–40°C to +125°C  
0.68  
IIH  
IIL  
Input leakage current  
Input leakage current  
25°C  
±0.005  
µA  
µA  
IIH  
IIL  
–40°C to +125°C  
±0.05  
2
25°C  
1
pF  
pF  
CIN  
Logic input capacitance  
–40°C to +125°C  
POWER SUPPLY  
IDD VDD supply current  
25°C  
0.001  
µA  
µA  
Logic inputs = 0 V or 5.5 V  
–40°C to +125°C  
0.85  
(1) When VS is 1.62 V, VD is 1 V or when VS is 1 V, VD is 1.62 V.  
12  
Copyright © 2019, Texas Instruments Incorporated  
TMUX1133, TMUX1134  
www.ti.com.cn  
ZHCSK01A JUNE 2019REVISED AUGUST 2019  
Electrical Characteristics (VDD = 1.8 V ±10 %) (continued)  
at TA = 25°C, VDD = 1.8 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
DYNAMIC CHARACTERISTICS  
25°C  
28  
ns  
VS = 1 V  
tTRAN  
Transition time between channels RL = 200 , CL = 15 pF  
–40°C to +85°C  
–40°C to +125°C  
25°C  
48  
48  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Refer to Transition Time  
16  
28  
16  
VS = 1 V  
tOPEN  
(BBM)  
Break before make time  
RL = 200 , CL = 15 pF  
–40°C to +85°C  
–40°C to +125°C  
25°C  
1
1
Refer to Break-Before-Make  
VS = 1 V  
RL = 200 , CL = 15 pF  
Refer to tON(EN) and tOFF(EN)  
Enable turn-on time  
(TMUX1133 Only)  
tON(EN)  
–40°C to +85°C  
–40°C to +125°C  
25°C  
48  
48  
VS = 1 V  
RL = 200 , CL = 15 pF  
Refer to tON(EN) and tOFF(EN)  
Enable turn-off time  
(TMUX1133 Only)  
tOFF(EN)  
–40°C to +85°C  
–40°C to +125°C  
27  
27  
VS = 1 V  
QC  
Charge Injection  
Off Isolation  
RS = 0 , CL = 1 nF  
Refer to Charge Injection  
25°C  
25°C  
25°C  
25°C  
–1  
–65  
pC  
dB  
dB  
dB  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Off Isolation  
OISO  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Refer to Off Isolation  
–45  
RL = 50 , CL = 5 pF  
f = 1 MHz  
–100  
Refer to Crosstalk  
XTALK  
Crosstalk  
RL = 50 , CL = 5 pF  
f = 10 MHz  
25°C  
25°C  
–90  
220  
dB  
Refer to Crosstalk  
RL = 50 , CL = 5 pF  
Refer to Bandwidth  
BW  
Bandwidth  
MHz  
CSOFF  
CDOFF  
Source off capacitance  
Drain off capacitance  
f = 1 MHz  
f = 1 MHz  
25°C  
25°C  
6
pF  
pF  
17  
CSON  
CDON  
On capacitance  
f = 1 MHz  
25°C  
20  
pF  
Copyright © 2019, Texas Instruments Incorporated  
13  
TMUX1133, TMUX1134  
ZHCSK01A JUNE 2019REVISED AUGUST 2019  
www.ti.com.cn  
7.9 Electrical Characteristics (VDD = 1.2 V ±10 %)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
25°C  
70  
Ω
VS = 0 V to VDD  
RON  
On-resistance  
ISD = 10 mA  
Refer to On-Resistance  
–40°C to +85°C  
–40°C to +125°C  
25°C  
105  
105  
Ω
Ω
0.4  
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to On-Resistance  
On-resistance matching between  
channels  
ΔRON  
–40°C to +85°C  
–40°C to +125°C  
25°C  
1.5  
1.5  
Ω
Ω
VDD = 1.32 V  
Switch Off  
VD = 1 V / 0.8 V  
VS = 0.8 V / 1 V  
Refer to Off-Leakage Current  
–0.05 ±0.003  
–0.1  
0.05  
0.1  
nA  
nA  
–40°C to +85°C  
IS(OFF)  
Source off leakage current(1)  
–40°C to +125°C  
–0.5  
0.5  
nA  
VDD = 1.32 V  
Switch Off  
VD = 1 V / 0.8 V  
VS = 0.8 V / 1 V  
Refer to Off-Leakage Current  
25°C  
–0.1 ±0.005  
–0.5  
0.1  
0.5  
nA  
nA  
–40°C to +85°C  
ID(OFF) Drain off leakage current(1)  
–40°C to +125°C  
–2  
2
nA  
VDD = 1.32 V  
Switch On  
VD = VS = 1 V / 0.8 V  
Refer to On-Leakage Current  
25°C  
–0.1 ±0.005  
–0.5  
0.1  
0.5  
nA  
nA  
ID(ON)  
–40°C to +85°C  
Channel on leakage current  
IS(ON)  
–40°C to +125°C  
–2  
2
nA  
LOGIC INPUTS (EN, SELx)  
VIH  
VIL  
Input logic high  
Input logic low  
0.96  
0
5.5  
V
V
–40°C to +125°C  
0.36  
IIH  
IIL  
Input leakage current  
Input leakage current  
25°C  
±0.005  
µA  
µA  
IIH  
IIL  
–40°C to +125°C  
±0.05  
2
25°C  
1
pF  
pF  
CIN  
Logic input capacitance  
–40°C to +125°C  
POWER SUPPLY  
IDD VDD supply current  
25°C  
0.001  
µA  
µA  
Logic inputs = 0 V or 5.5 V  
–40°C to +125°C  
0.7  
(1) When VS is 1 V, VD is 0.8 V or when VS is 0.8 V, VD is 1 V.  
14  
Copyright © 2019, Texas Instruments Incorporated  
TMUX1133, TMUX1134  
www.ti.com.cn  
ZHCSK01A JUNE 2019REVISED AUGUST 2019  
Electrical Characteristics (VDD = 1.2 V ±10 %) (continued)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
DYNAMIC CHARACTERISTICS  
25°C  
55  
ns  
VS = 1 V  
tTRAN  
Transition time between channels RL = 200 , CL = 15 pF  
–40°C to +85°C  
–40°C to +125°C  
25°C  
201  
201  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Refer to Transition Time  
28  
60  
45  
VS = 1 V  
tOPEN  
(BBM)  
Break before make time  
RL = 200 , CL = 15 pF  
–40°C to +85°C  
–40°C to +125°C  
25°C  
1
1
Refer to Break-Before-Make  
VS = 1 V  
RL = 200 , CL = 15 pF  
Refer to tON(EN) and tOFF(EN)  
Enable turn-on time  
(TMUX1133 Only)  
tON(EN)  
–40°C to +85°C  
–40°C to +125°C  
25°C  
201  
201  
VS = 1 V  
RL = 200 , CL = 15 pF  
Refer to tON(EN) and tOFF(EN)  
Enable turn-off time  
(TMUX1133 Only)  
tOFF(EN)  
–40°C to +85°C  
–40°C to +125°C  
150  
150  
VS = 1 V  
QC  
Charge Injection  
Off Isolation  
RS = 0 , CL = 1 nF  
Refer to Charge Injection  
25°C  
25°C  
25°C  
25°C  
–1  
–65  
pC  
dB  
dB  
dB  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Off Isolation  
OISO  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Refer to Off Isolation  
–45  
RL = 50 , CL = 5 pF  
f = 1 MHz  
–100  
Refer to Crosstalk  
XTALK  
Crosstalk  
RL = 50 , CL = 5 pF  
f = 10 MHz  
25°C  
25°C  
–90  
220  
dB  
Refer to Crosstalk  
RL = 50 , CL = 5 pF  
Refer to Bandwidth  
BW  
Bandwidth  
MHz  
CSOFF  
CDOFF  
Source off capacitance  
Drain off capacitance  
f = 1 MHz  
f = 1 MHz  
25°C  
25°C  
6
pF  
pF  
17  
CSON  
CDON  
On capacitance  
f = 1 MHz  
25°C  
20  
pF  
版权 © 2019, Texas Instruments Incorporated  
15  
TMUX1133, TMUX1134  
ZHCSK01A JUNE 2019REVISED AUGUST 2019  
www.ti.com.cn  
7.10 Typical Characteristics  
at TA = 25°C, VDD = 5 V (unless otherwise noted)  
6
5
4.5  
4
VDD = 3 V  
5
TA = 85èC  
TA = 125èC  
VDD = 3.63 V  
3.5  
3
4
VDD = 4.5 V  
3
2.5  
2
VDD = 5.5 V  
2
1
0
1.5  
1
TA = -40èC  
TA = 25èC  
0.5  
0
0
1
2
VS or VD - Source or Drain Voltage (V)  
3
4
5
5.5  
0
1
2
VS or VD - Source or Drain Voltage (V)  
3
4
5
D001  
D002  
TA = 25°C  
VDD = 5 V  
1. On-Resistance vs Source or Drain Voltage  
2. On-Resistance vs Temperature  
TA = 85èC TA = 125èC  
4.5  
8
7
6
5
4
3
2
1
0
4
3.5  
3
VDD = 2.25V  
VSS = -2.25V  
VDD = 2.5V  
VSS = -2.5V  
2.5  
2
1.5  
1
VDD = 2.75V  
VSS = -2.75V  
0.5  
TA = 25èC  
2.5  
VS or VD - Source or Drain Voltage (V)  
TA = -40èC  
0
-3  
-2  
-1  
VS or VD - Source or Drain Voltage (V)  
0
1
2
3
0
0.5  
1
1.5  
2
3
3.5  
D003  
D004  
VDD = ±2.5 V  
VDD = 3.3 V  
3. On-Resistance vs Temperature  
4. On-Resistance vs Temperature  
80  
70  
60  
50  
40  
30  
20  
10  
0
40  
30  
VDD = 1.08 V  
VDD = 1.32 V  
20  
VDD = 1.32 V  
VDD = 1.98 V  
VDD = 3.63 V  
10  
VDD = 1.62 V  
0
-10  
-20  
-30  
-40  
VDD = 1.98 V  
0
0.2 0.4 0.6 0.8  
1
VS or VD - Source or Drain Voltage (V)  
1.2 1.4 1.6 1.8  
2
0
0.5  
1
1.5  
2
VS or VD - Source or Drain Voltage (V)  
2.5  
3
3.5  
4
D005  
D006  
TA = 25°C  
TA = 25°C  
5. On-Resistance vs Source or Drain Voltage  
6. On-Leakage vs Source or Drain Voltage  
16  
版权 © 2019, Texas Instruments Incorporated  
TMUX1133, TMUX1134  
www.ti.com.cn  
ZHCSK01A JUNE 2019REVISED AUGUST 2019  
Typical Characteristics (接下页)  
100  
3
2
80  
60  
IS(OFF)  
VDD = 2.5V  
SS = -2.5V  
VDD = 5V  
SS = 0V  
40  
20  
1
V
V
0
0
-20  
-40  
-60  
-80  
-100  
-1  
-2  
-3  
IS(ON)  
-3  
-2  
-1  
0
1
2
3
VS or VD - Source or Drain Voltage (V)  
4
5
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
D007  
D008  
VDD = 5 V  
VDD = 3.3 V  
7. On-Leakage vs Source or Drain Voltage  
8. Leakage Current vs Temperature  
3
2
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VDD = 5 V  
IS(OFF)  
1
VDD = 3.3 V  
VDD = 1.8 V  
0
-1  
-2  
-3  
IS(ON)  
VDD = 1.2 V  
-0.1  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
Temperature (èC)  
D009  
D010  
VDD = 5 V  
VSEL = VDD  
9. Leakage Current vs Temperature  
10. Supply Current vs Temperature  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
20  
15  
10  
5
VDD = 5 V  
VDD = 3.3 V  
VDD 2.5 V  
VDD = 1.8 V  
=
VDD = 3.3 V  
VSS = 0 V  
0
-5  
VDD = +2.5 V  
VSS = -2.5 V  
-10  
-15  
-20  
VDD = 5 V  
VSS = 0 V  
0
0.5  
1
1.5  
2
Logic Voltage (V)  
2.5  
3
3.5  
4
4.5  
5
-3  
-2  
-1  
0
Source Voltage (V)  
1
2
3
4
5
D011  
D012  
TA = 25°C  
TA = -40°C to 125°C  
11. Supply Current vs Logic Voltage  
12. Charge Injection vs Source Voltage  
版权 © 2019, Texas Instruments Incorporated  
17  
 
TMUX1133, TMUX1134  
ZHCSK01A JUNE 2019REVISED AUGUST 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
10  
10  
0
8
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
Off-Isolation  
6
4
VDD = 1.2V  
2
0
-2  
-4  
VDD = 1.8 V  
Crosstalk  
-6  
-8  
-10  
0
0.25  
0.5  
0.75  
1
1.25  
Source Voltage (V)  
1.5  
1.75  
2
100k  
1M  
10M  
Frequency (Hz)  
100M  
D013  
D014  
TA = -40°C to 125°C  
TA = -40°C to +125°C  
13. Charge Injection vs Source Voltage  
14. Xtalk and Off-Isolation vs Frequency  
0
-1  
-2  
-3  
-4  
-5  
-6  
1M  
10M  
Frequency (Hz)  
100M  
D015  
TA = -40°C to +125°C  
15. On Response vs Frequency  
18  
版权 © 2019, Texas Instruments Incorporated  
TMUX1133, TMUX1134  
www.ti.com.cn  
ZHCSK01A JUNE 2019REVISED AUGUST 2019  
8 Parameter Measurement Information  
8.1 On-Resistance  
The on-resistance of a device is the ohmic resistance between the source (Sx) and drain (Dx) pins of the device.  
The on-resistance varies with input voltage and supply voltage. The symbol RON is used to denote on-resistance.  
The measurement setup used to measure RON is shown in 16. Voltage (V) and current (ISD) are measured  
using this setup, and RON is computed with RON = V / ISD  
:
V
ISD  
Sx  
D
VS  
16. On-Resistance Measurement Setup  
8.2 Off-Leakage Current  
There are two types of leakage currents associated with a switch during the off state:  
1. Source off-leakage current  
2. Drain off-leakage current  
Source leakage current is defined as the leakage current flowing into or out of the source pin when the switch is  
off. This current is denoted by the symbol IS(OFF)  
.
Drain leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is off.  
This current is denoted by the symbol ID(OFF)  
.
The setup used to measure both off-leakage currents is shown in 17.  
VDD  
VSS  
VDD  
VSS  
0.1F  
0.1F  
0.1F  
0.1F  
Is (OFF)  
ID (OFF)  
S1A  
S1B  
S1A  
S1B  
A
D1  
D1  
A
VS  
VD  
VD  
VS  
VD  
Is (OFF)  
ID (OFF)  
A
S4A  
S4B  
S4A  
S4B  
A
D4  
D4  
VS  
VD  
VD  
VD  
VS  
GND  
GND  
17. Off-Leakage Measurement Setup  
版权 © 2019, Texas Instruments Incorporated  
19  
 
 
TMUX1133, TMUX1134  
ZHCSK01A JUNE 2019REVISED AUGUST 2019  
www.ti.com.cn  
8.3 On-Leakage Current  
Source on-leakage current is defined as the leakage current flowing into or out of the source pin when the switch  
is on. This current is denoted by the symbol IS(ON)  
.
Drain on-leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is  
on. This current is denoted by the symbol ID(ON)  
.
Either the source pin or drain pin is left floating during the measurement. 18 shows the circuit used for  
measuring the on-leakage current, denoted by IS(ON) or ID(ON)  
.
VDD  
VSS  
VDD  
VSS  
0.1F  
0.1F  
0.1F  
IS (ON)  
0.1F  
ID (ON)  
S1A  
S1B  
S1A  
A
N.C.  
N.C.  
D1  
D1  
A
N.C.  
S1B  
N.C.  
VS  
VD  
IS (ON)  
ID (ON)  
A
S4A  
S4B  
S4A  
S4B  
N.C.  
N.C.  
A
D4  
D4  
N.C.  
N.C.  
VS  
VD  
GND  
GND  
18. On-Leakage Measurement Setup  
8.4 Transition Time  
Transition time is defined as the time taken by the output of the device to rise or fall 10% after the address signal  
has risen or fallen past the logic threshold. The 10% transition measurement is utilized to provide the timing of  
the device. System level timing can then account for the time constant added from the load resistance and load  
capacitance. 19 shows the setup used to measure transition time, denoted by the symbol tTRANSITION  
.
VDD  
VSS  
0.1F  
0.1F  
VDD  
Logic  
Control  
(VSEL  
tf < 5ns  
tr < 5ns  
VIH  
S1A  
)
VS  
VIL  
OUTPUT  
D1  
0 V  
S1B  
CL  
RL  
tTRANSITION  
tTRANSITION  
S4A  
S4B  
VS  
OUTPUT  
RL  
D4  
CL  
90%  
OUTPUT  
SELx  
GND  
VSEL  
10%  
0 V  
19. Transition-Time Measurement Setup  
20  
版权 © 2019, Texas Instruments Incorporated  
 
 
TMUX1133, TMUX1134  
www.ti.com.cn  
ZHCSK01A JUNE 2019REVISED AUGUST 2019  
8.5 Break-Before-Make  
Break-before-make delay is a safety feature that prevents two inputs from connecting when the device is  
switching. The output first breaks from the on-state switch before making the connection with the next on-state  
switch. The time delay between the break and the make is known as break-before-make delay. 20 shows the  
setup used to measure break-before-make delay, denoted by the symbol tOPEN(BBM)  
.
VDD  
VSS  
0.1F  
0.1F  
VDD  
VSEL  
0 V  
S1A  
VS  
OUTPUT  
D1  
D4  
tr < 5ns  
tf < 5ns  
S1B  
CL  
RL  
S4A  
S4B  
VS  
OUTPUT  
RL  
90%  
Output  
0 V  
tBBM  
1
tBBM  
2
CL  
tOPEN (BBM) = min ( tBBM 1, tBBM 2)  
SELx  
VSEL  
GND  
20. Break-Before-Make Delay Measurement Setup  
8.6 tON(EN) and tOFF(EN)  
Turn-on time is defined as the time taken by the output of the device to rise to 10% after the enable has risen  
past the logic threshold. The 10% measurement is utilized to provide the timing of the device. System level  
timing can then account for the time constant added from the load resistance and load capacitance. 21 shows  
the setup used to measure turn-on time, denoted by the symbol tON(EN)  
.
Turn-off time is defined as the time taken by the output of the device to fall to 90% after the enable has fallen  
past the logic threshold. The 90% measurement is utilized to provide the timing of the device. System level  
timing can then account for the time constant added from the load resistance and load capacitance. 21 shows  
the setup used to measure turn-off time, denoted by the symbol tOFF(EN)  
.
VDD  
VSS  
0.1F  
0.1F  
VDD  
VIH  
Enable  
Control  
VIL  
S1A  
S1B  
VS  
OUTPUT  
D1  
D4  
(VEN  
)
tr < 5ns  
tf < 5ns  
CL  
RL  
0 V  
S4A  
S4B  
VS  
tOFF  
tON  
(EN)  
(EN)  
OUTPUT  
RL  
CL  
90%  
90%  
OUTPUT  
0 V  
EN  
VEN  
GND  
21. Turn-On and Turn-Off Time Measurement Setup  
版权 © 2019, Texas Instruments Incorporated  
21  
 
 
TMUX1133, TMUX1134  
ZHCSK01A JUNE 2019REVISED AUGUST 2019  
www.ti.com.cn  
8.7 Charge Injection  
The TMUX1133 has a transmission-gate topology. Any mismatch in capacitance between the NMOS and PMOS  
transistors results in a charge injected into the drain or source during the falling or rising edge of the gate signal.  
The amount of charge injected into the source or drain of the device is known as charge injection, and is denoted  
by the symbol QC. 22 shows the setup used to measure charge injection from source (Sx) to drain (D).  
VDD  
VSS  
0.1F  
0.1F  
VDD  
VEN  
0 V  
S1A  
VS  
OUTPUT  
D1  
D4  
VOUT  
CL  
S1B  
S4A  
S4B  
VS  
Output  
VS  
OUTPUT  
VOUT  
CL  
VOUT  
QC = CL  
×
VOUT  
EN  
VEN  
GND  
22. Charge-Injection Measurement Setup  
8.8 Off Isolation  
Off isolation is defined as the ratio of the signal at the drain pin (D) of the device when a signal is applied to the  
source pin (Sx) of an off-channel. 23 shows the setup used to measure, and the equation used to calculate off  
isolation.  
VDD  
VSS  
0.1µF  
0.1µF  
NETWORK  
ANALYZER  
VS  
S
D
50Ω  
VSIG  
VOUT  
RL  
SxA / SxB / Dx  
50Ω  
RL  
GND  
50Ω  
23. Off Isolation Measurement Setup  
«
÷
VOUT  
VS  
Off Isolation = 20 Log  
(1)  
22  
版权 © 2019, Texas Instruments Incorporated  
 
 
TMUX1133, TMUX1134  
www.ti.com.cn  
ZHCSK01A JUNE 2019REVISED AUGUST 2019  
8.9 Crosstalk  
Crosstalk is defined as the ratio of the signal at the drain pin (D) of a different channel, when a signal is applied  
at the source pin (Sx) of an on-channel. 24 shows the setup used to measure, and the equation used to  
calculate crosstalk.  
VDD  
VSS  
0.1µF  
0.1µF  
NETWORK  
ANALYZER  
D1  
D4  
S1A  
S4A  
VOUT  
RL  
RL  
50Ω  
50Ω  
VS  
RL  
50Ω  
50Ω  
SxA / SxB / Dx  
VSIG = 200 mVpp  
VBIAS = VDD / 2  
RL  
50Ω  
GND  
24. Crosstalk Measurement Setup  
«
÷
VOUT  
VS  
Channel-to-Channel Crosstalk = 20 Log  
(2)  
8.10 Bandwidth  
Bandwidth is defined as the range of frequencies that are attenuated by less than 3 dB when the input is applied  
to the source pin (Sx) of an on-channel, and the output is measured at the drain pin (D) of the device. 25  
shows the setup used to measure bandwidth.  
VDD  
VSS  
0.1µF  
0.1µF  
NETWORK  
ANALYZER  
VS  
S
D
50Ω  
VSIG  
VOUT  
RL  
SxA / SxB / Dx  
50Ω  
RL  
GND  
50Ω  
25. Bandwidth Measurement Setup  
版权 © 2019, Texas Instruments Incorporated  
23  
 
 
TMUX1133, TMUX1134  
ZHCSK01A JUNE 2019REVISED AUGUST 2019  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The TMUX1133 contains three independently controlled single-pole double-throw (SPDT) switches and has an  
active low EN pin to enable or disable all three switches simultaneously. The TMUX1134 contains four  
independently controlled SPDT switches.  
9.2 Functional Block Diagram  
TMUX1133  
TMUX1134  
S1A  
S1B  
S1A  
S1B  
D1  
D1  
SEL1  
SEL1  
S2A  
S2B  
D2  
S2A  
S2B  
SEL2  
D2  
SEL2  
S3A  
S3B  
D3  
SEL3  
S3A  
S3B  
D3  
S4A  
S4B  
SEL3  
D4  
SEL4  
EN  
26. TMUX1133 Functional Block Diagram  
9.3 Feature Description  
9.3.1 Bidirectional Operation  
The TMUX113x devices conduct equally well from source (Sx) to drain (Dx) or from drain (Dx) to source (Sx).  
Each channel has very similar characteristics in both directions and supports both analog and digital signals.  
9.3.2 Rail to Rail Operation  
The valid signal path input/output voltage for TMUX113x ranges from VSS to VDD. For single supply applications  
VSS can be connected to GND.  
9.3.3 1.8 V Logic Compatible Inputs  
The TMUX113x devices have 1.8-V logic compatible control for all logic control inputs. The logic input thresholds  
scale with supply but still provide 1.8-V logic control when operating at 5.5 V supply voltage. 1.8-V logic level  
inputs allows the TMUX113x devices to interface with processors that have lower logic I/O rails and eliminates  
the need for an external translator, which saves both space and BOM cost. The current consumption of the  
TMUX113x devices increase when using 1.8V logic with higher supply voltage as shown in 11. For more  
information on 1.8 V logic implementations refer to Simplifying Design with 1.8 V logic Muxes and Switches  
9.3.4 Fail-Safe Logic  
The TMUX113x devices support Fail-Safe Logic on the control input pins (SELx and EN) allowing for operation  
up to 5.5 V, regardless of the state of the supply pins. This feature allows voltages on the control pins to be  
applied before the supply pins, protecting the device from potential damage. Fail-Safe Logic minimizes system  
complexity by removing the need for power supply sequencing on the logic control pins. For example, the Fail-  
Safe Logic feature allows the select pins of the TMUX113x devices to be ramped to 5.5 V while VDD = 0 V.  
Additionally, the feature enables operation of the TMUX113x devices with VDD = 1.2 V while allowing the select  
pins to interface with a logic level of another device up to 5.5 V.  
24  
版权 © 2019, Texas Instruments Incorporated  
TMUX1133, TMUX1134  
www.ti.com.cn  
ZHCSK01A JUNE 2019REVISED AUGUST 2019  
Feature Description (接下页)  
9.3.5 Ultra-low Leakage Current  
The TMUX1133 and TMUX1134 provide extremely low on-leakage and off-leakage currents. The TMUX113x  
devices are capable of switching signals from high source-impedance inputs into a high input-impedance op amp  
with minimal offset error because of the ultra-low leakage currents. 27 shows typical leakage currents of the  
TMUX113x devices versus input voltage.  
40  
30  
20  
VDD = 1.32 V  
VDD = 1.98 V  
VDD = 3.63 V  
10  
0
-10  
-20  
-30  
-40  
0
0.5  
1
1.5  
2
2.5  
3
VS or VD - Source or Drain Voltage (V)  
3.5  
4
D006  
27. Leakage Current vs Input Voltage  
9.3.6 Ultra-low Charge Injection  
The TMUX113x devices have a transmission gate topology, as shown in 28. Any mismatch in the stray  
capacitance associated with the NMOS and PMOS causes an output level change whenever the switch is  
opened or closed.  
The TMUX113x devices have special charge-injection cancellation circuitry that reduces the source-to-drain  
charge injection to -1 pC at VS = 1 V as shown in 29.  
20  
OFF ON  
15  
VDD = 3.3 V  
VSS = 0 V  
CGDN  
10  
5
CGSN  
0
D
S
-5  
VDD = +2.5 V  
VSS = -2.5 V  
-10  
-15  
-20  
VDD = 5 V  
VSS = 0 V  
CGSP  
CGDP  
-3  
-2  
-1  
0
1
2
Source Voltage (V)  
3
4
5
OFF ON  
D012  
28. Transmission Gate Topology  
29. Charge Injection vs Source Voltage  
版权 © 2019, Texas Instruments Incorporated  
25  
 
 
 
TMUX1133, TMUX1134  
ZHCSK01A JUNE 2019REVISED AUGUST 2019  
www.ti.com.cn  
9.4 Device Functional Modes  
The select (SELx) pins are logic pins that control the connection between the source (SxA, SxB) and drain (Dx)  
pins of the TMUX113x devices. When a source pin is not selected that pin is in an open state (HI-Z). When a  
source pin is selected the switch conducts to drain. The logic control pins can be as high as 5.5 V.  
When the EN pin of the TMUX1133 is pulled low the SELx logic control inputs determine which source input is  
selected. When the EN pin is pulled high, all of the switches are in an open state regardless of the state of the  
SELx logic control inputs. The TMUX1134 SELx logic control inputs determine which source pin is connected to  
the drain pin for each channel.  
The TMUX113x devices can be operated without any external components except for the supply decoupling  
capacitors. Unused logic control pins must be tied to GND or VDD in order to ensure the device does not  
consume additional current as highlighted in Implications of Slow or Floating CMOS Inputs. Unused signal path  
inputs (SxA, SxB or Dx) should be connected to GND.  
9.5 Truth Tables  
1 and 2 show the truth tables for the TMUX1133 and TMUX1134 respectively.  
1. TMUX1133 Truth table(1)  
Selected Source Pins Connected To Drain  
EN  
SEL1  
SEL2  
SEL3  
Pins  
0
0
0
0
0
0
1
0
1
X
X
0
X
X
X
X
0
S1A to D1  
S1B to D1  
S2A to D2  
S2B to D2  
S3A to D3  
S3B to D3  
Hi-Z (OFF)  
X
X
X
X
X
1
X
X
X
1
X
(1) X denotes don't care.  
2. TMUX1134 Truth table(1)  
Selected Source Pins Connected To Drain  
Pins  
SEL1  
SEL2  
SEL3  
SEL4  
0
1
X
X
0
X
X
X
X
0
X
X
X
X
X
X
0
S1B to D1  
S1A to D1  
S2B to D2  
S2A to D2  
S3B to D3  
S3A to D3  
S4B to D4  
S4A to D4  
X
X
X
X
X
X
1
X
X
X
X
1
X
X
1
(1) X denotes don't care.  
26  
版权 © 2019, Texas Instruments Incorporated  
 
 
TMUX1133, TMUX1134  
www.ti.com.cn  
ZHCSK01A JUNE 2019REVISED AUGUST 2019  
10 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
The TMUX11xx family offers ultra-low input/output leakage currents and low charge injection. These devices  
operate up to 5.5 V, and offer true rail-to-rail input and output switching of both analog and digital signals. The  
TMUX113x devices have low on-capacitance which allows faster settling time when switching between inputs in  
the time domain. These features make the TMUX11xx devices a family of precision, high-performance switches  
and multiplexers for low-voltage applications.  
10.2 Typical Application  
30 shows an example circuit where the TMUX1133 or TMUX1134 can be used to minimize board space by  
integrating various applications into a multi-channel 2:1 (SPDT) switch. The application uses a 3-channel, or 4-  
channel SPDT switch in order to optimize the tradeoffs of system flexibility and board space.  
VDD  
VSS  
0.1µF  
0.1µF  
System  
0 V-5 V  
Voltage Input  
S1A  
S1B  
D1  
SEL1  
+
Calibration Path  
To µC  
Op Amp  
-
Precision  
ADC  
Precision  
DAC  
RPD  
10 k  
0 V-5 V  
Voltage Input  
S2A  
S2B  
D2  
+
4-20 mA  
Current Input  
To µC  
Op Amp  
-
SEL2  
Precision  
ADC  
250  
RPD  
10 k  
Voltage Input  
Voltage Ouput  
Precision  
ADC  
S4A  
S4B  
0 V-5 V  
0 V-5 V  
D4  
Analog Input / Output  
To µC  
SEL4  
Precision  
DAC  
RPD  
10 k  
30. Multi-channel 2:1, Switching Applications  
10.3 Design Requirements  
For this design example, use the parameters listed in 3.  
3. Design Parameters  
PARAMETERS  
Supply (VDD  
VALUES  
)
5 V  
Input / Output Voltage range  
Input / Output Current range  
Control logic thresholds  
0 V to 5V  
4 mA to 20 mA  
1.8 V compatible  
版权 © 2019, Texas Instruments Incorporated  
27  
 
 
TMUX1133, TMUX1134  
ZHCSK01A JUNE 2019REVISED AUGUST 2019  
www.ti.com.cn  
10.4 Detailed Design Procedure  
The TMUX113x devices can be operated without any external components except for the supply decoupling  
capacitors, however pull-down or pull-up resistors are recommended on the logic control inputs to ensure each  
channel is in a known state. All inputs passing through the switch must fall within the recommend operating  
conditions, including signal range and continuous current. For this design with a single supply of 5 V the signal  
range can be 0 V to 5 V, and the max continuous current can be 30 mA.  
Industrial applications such as in Factory Automation & Control and Test & Measurement benefit from using a  
multi-channel  
2:1  
switch  
because  
it  
allows  
additional  
flexibility  
in  
the  
design.  
A single 2:1 switch has numerous applications such as:  
1. Switching between an analog signal path and a calibration path in order to ensure the system is calibrated  
across the life of a product or after installation.  
2. Configuring a single channel to accept either a voltage or current input through software - allowing for system  
flexibility across applications where the end users input signals may differ.  
3. Allowing a single channel to be configured as either an analog input or analog output. Providing additional  
control to a system while minimizing the number of physical connectors  
30 shows how to configure a multi-channel analog switch to address these design implementations for  
additional control and flexibility in the system. The on-resistance of the TMUX113x devices is very low, 2Ω  
typical, and has a max on-leakage current of 2nA which allows the devices to be used in precision measurement  
applications. A system with a 4mA to 20mA signal can achieve >20bits of precision due to the extremely low  
leakage current of the TMUX113x devices.  
10.5 Application Curve  
The TMUX113x devices are capable of switching signals with minimal distortion because of the ultra-low leakage  
currents and low on-resistance. 31 shows how the leakage current of the TMUX113x varies with different input  
voltages.  
100  
80  
60  
VDD = 2.5V  
SS = -2.5V  
VDD = 5V  
SS = 0V  
40  
20  
V
V
0
-20  
-40  
-60  
-80  
-100  
-3  
-2  
-1  
0
1
2
3
VS or VD - Source or Drain Voltage (V)  
4
5
D007  
TA = 25°C  
31. On-Leakage vs Source or Drain Voltage  
28  
版权 © 2019, Texas Instruments Incorporated  
 
TMUX1133, TMUX1134  
www.ti.com.cn  
ZHCSK01A JUNE 2019REVISED AUGUST 2019  
11 Power Supply Recommendations  
The TMUX113x devices operate across a wide supply range of 1.08 V to 5.5 V single supply, or ±2.75 V for dual  
supply applications. For single supply voltage applications VSS must be connected to GND. Do not exceed the  
absolute maximum ratings because stresses beyond the listed ratings can cause permanent damage to the  
devices.  
Power-supply bypassing improves noise margin and prevents switching noise propagation from the VDD and VSS  
supplies to other components. Good power-supply decoupling is important to achieve optimum performance. For  
improved supply noise immunity, use a supply decoupling capacitor ranging from 0.1 μF to 10 μF from VDD and  
VSS to ground. Place the bypass capacitors as close to the power supply pins of the device as possible using  
low-impedance connections. TI recommends using multi-layer ceramic chip capacitors (MLCCs) that offer low  
equivalent series resistance (ESR) and inductance (ESL) characteristics for power-supply decoupling purposes.  
For very sensitive systems, or for systems in harsh noise environments, avoiding the use of vias for connecting  
the capacitors to the device pins may offer superior noise immunity. The use of multiple vias in parallel lowers  
the overall inductance and is beneficial for connections to ground planes.  
12 Layout  
12.1 Layout Guidelines  
12.1.1 Layout Information  
When a PCB trace turns a corner at a 90° angle, a reflection can occur. A reflection occurs primarily because of  
the change of width of the trace. At the apex of the turn, the trace width increases to 1.414 times the width. This  
increase upsets the transmission-line characteristics, especially the distributed capacitance and self–inductance  
of the trace which results in the reflection. Not all PCB traces can be straight and therefore some traces must  
turn corners.32 shows progressively better techniques of rounding corners. Only the last example (BEST)  
maintains constant trace width and minimizes reflections.  
WORST  
BETTER  
BEST  
1W min.  
W
32. Trace Example  
Route high-speed signals using a minimum of vias and corners which reduces signal reflections and  
impedance changes. When a via must be used, increase the clearance size around it to minimize its  
capacitance. Each via introduces discontinuities in the signal’s transmission line and increases the chance of  
picking up interference from the other layers of the board. Be careful when designing test points, through-  
hole pins are not recommended at high frequencies.  
33 and 34 illustrate examples of a PCB layout with the TMUX1133 and TMUX1134 respectively. Some key  
considerations are:  
Decouple the VDD and VSS pins with a 0.1-µF capacitor, placed as close to the pin as possible. Make sure  
that the capacitor voltage rating is sufficient for the supply voltage.  
Keep the input lines as short as possible.  
Use a solid ground plane to help reduce electromagnetic interference (EMI) noise pickup.  
Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if  
possible, and only make perpendicular crossings when necessary.  
版权 © 2019, Texas Instruments Incorporated  
29  
 
TMUX1133, TMUX1134  
ZHCSK01A JUNE 2019REVISED AUGUST 2019  
www.ti.com.cn  
12.2 Layout Example  
33 shows an example board layout for the TMUX1133.  
Via to GND plane  
C
Wide (low inductance)  
trace for power  
S2B  
VDD  
D2  
S2A  
S3B  
D3  
D1  
S1B  
S1A  
SEL1  
SEL2  
SEL3  
TMUX1133  
S3A  
EN  
VSS  
Wide (low inductance)  
trace for power  
GND  
C
33. TMUX1133 Layout Example  
34 shows an example board layout for the TMUX1134.  
Via to GND plane  
SEL1  
SEL4  
S4A  
D4  
S1A  
D1  
TMUX1134  
S1B  
VSS  
S4B  
VDD  
N.C.  
S3B  
D3  
C
C
GND  
S2B  
Wide (low inductance)  
trace for power  
Wide (low inductance)  
trace for power  
D2  
S2A  
SEL2  
S3A  
SEL3  
34. TMUX1134 Layout Example  
30  
版权 © 2019, Texas Instruments Incorporated  
 
 
TMUX1133, TMUX1134  
www.ti.com.cn  
ZHCSK01A JUNE 2019REVISED AUGUST 2019  
13 器件和文档支持  
13.1 文档支持  
13.1.1 相关文档  
德州仪器 (TI)《采用 MSP430™ 的超声波燃气表前端参考设计》。  
德州仪器 (TI)《真差分 4 x 2 多路复用器、模拟前端、同步采样 ADC 电路》。  
德州仪器 (TI)《使用低 CON 多路复用器改善稳定性问题》。  
德州仪器 (TI)《使用 1.8V 逻辑多路复用器和开关简化设计》。  
德州仪器 (TI)《利用关断保护信号开关消除电源排序》。  
德州仪器 (TI)《高电压模拟多路复用器的系统级保护》。  
德州仪器 (TI)QFN/SON PCB 连接》。  
德州仪器 (TI)《四方扁平封装无引线逻辑封装》。  
13.2 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。  
4. 相关链接  
器件  
产品文件夹  
单击此处  
单击此处  
立即订购  
单击此处  
单击此处  
技术文档  
单击此处  
单击此处  
工具与软件  
单击此处  
单击此处  
支持和社区  
单击此处  
单击此处  
TMUX1133  
TMUX1134  
13.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
13.4 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
13.5 商标  
E2E is a trademark of Texas Instruments.  
13.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
13.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
14 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2019, Texas Instruments Incorporated  
31  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMUX1133PWR  
TMUX1134PWR  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
PW  
PW  
16  
20  
2000 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
TM1133  
TM1134  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TMUX1133PWR  
TMUX1134PWR  
TSSOP  
TSSOP  
PW  
PW  
16  
20  
2000  
2000  
330.0  
330.0  
12.4  
16.4  
6.9  
5.6  
7.0  
1.6  
1.4  
8.0  
8.0  
12.0  
16.0  
Q1  
Q1  
6.95  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TMUX1133PWR  
TMUX1134PWR  
TSSOP  
TSSOP  
PW  
PW  
16  
20  
2000  
2000  
356.0  
356.0  
356.0  
356.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
PW0020A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
18X 0.65  
20  
1
2X  
5.85  
6.6  
6.4  
NOTE 3  
10  
B
11  
0.30  
20X  
4.5  
4.3  
NOTE 4  
0.19  
1.2 MAX  
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220206/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0020A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
20X (1.5)  
(R0.05) TYP  
20  
1
20X (0.45)  
SYMM  
18X (0.65)  
11  
10  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220206/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0020A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
20X (1.5)  
SYMM  
(R0.05) TYP  
20  
1
20X (0.45)  
SYMM  
18X (0.65)  
10  
11  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220206/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
PW0016A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
4.5  
4.3  
NOTE 4  
1.2 MAX  
0.19  
B
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220204/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
16X (1.5)  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220204/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
16X (1.5)  
SYMM  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220204/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TMUX1134PWR

3pA 导通状态泄漏电流、2:1 (SPDT)、4 通道精密模拟开关 | PW | 20 | -40 to 125
TI

TMUX1136

3pA 导通状态泄漏电流、5V、2:1、2 通道精密模拟开关
TI

TMUX1136DGSR

3pA 导通状态泄漏电流、5V、2:1、2 通道精密模拟开关 | DGS | 10 | -40 to 125
TI

TMUX1136DQAR

3pA 导通状态泄漏电流、5V、2:1、2 通道精密模拟开关 | DQA | 10 | -40 to 125
TI

TMUX1204

5V、4:1、单通道通用模拟多路复用器
TI

TMUX1204DGSR

5V、4:1、单通道通用模拟多路复用器 | DGS | 10 | -40 to 125
TI

TMUX1204DQAR

5V、4:1、单通道通用模拟多路复用器 | DQA | 10 | -40 to 125
TI

TMUX1208

具有 1.8V 输入逻辑的 5V、8:1、单通道通用模拟多路复用器
TI

TMUX1208-Q1

具有 1.8V 逻辑电平的汽车类 5V、8:1、单通道多路复用器
TI

TMUX1208PWR

具有 1.8V 输入逻辑的 5V、8:1、单通道通用模拟多路复用器 | PW | 16 | -40 to 125
TI

TMUX1208QRSVRQ1

具有 1.8V 逻辑电平的汽车类 5V、8:1、单通道多路复用器 | RSV | 16 | -40 to 125
TI

TMUX1208RSVR

具有 1.8V 输入逻辑的 5V、8:1、单通道通用模拟多路复用器 | RSV | 16 | -40 to 125
TI