TMUX1204 [TI]

5V、4:1、单通道通用模拟多路复用器;
TMUX1204
型号: TMUX1204
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

5V、4:1、单通道通用模拟多路复用器

复用器
文件: 总35页 (文件大小:1624K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TMUX1204  
ZHCSJM4A APRIL 2019REVISED OCTOBER 2019  
TMUX1204 5V 4:1 通用型模拟多路复用器  
1 特性  
3 说明  
1
轨至轨运行  
TMUX1204 是一款现代互补金属氧化物半导体  
(CMOS) 模拟多路复用器 (MUX),可提供 4:1 单端(1  
通道)配置。TMUX1204 由单电源供电(1.08V 至  
5.5V),适用于 从 个人电子设备到楼宇自动化系统的  
各种应用。低电源电流为 10nA,可用于便携式 应用。  
双向信号路径  
1.8V 逻辑兼容  
失效防护逻辑  
低导通电阻:5Ω  
宽电源电压范围:1.08V 5.5V  
-40°C +125°C 工作温度  
低电源电流:10nA  
转换时间:14ns  
所有逻辑输入均具有兼容 1.8V 逻辑电平的阈值,当器  
件在有效电源电压范围内运行时,这些阈值可确保  
TTL CMOS 逻辑兼容性。失效防护逻辑 电路允许在  
电源引脚之前的控制引脚上施加电压,从而保护器件免  
受潜在的损害。  
先断后合开关  
ESD 保护 HBM2000V  
器件信息(1)  
2 应用  
器件型号  
TMUX1204  
封装  
VSSOP (10) (DGS) 3.00mm × 3.00mm  
USON (10) (DQA) 2.50mm x 1.00mm  
封装尺寸(标称值)  
模拟和数字多路复用或多路信号分离  
电机驱动器  
伺服驱动器控制模块  
楼宇自动化  
条形码扫描仪  
模拟输入模块  
电力输送  
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。  
SPACER  
SPACER  
烟雾探测器  
视频监控  
热成像摄像机  
电子销售终端  
电器  
消费类音频  
应用示例  
TMUX1204 方框图  
VDD  
VDD  
VI/O  
VDD  
EN  
TMUX1204  
S1  
MCU  
LDO #1  
LDO #2  
S1  
S2  
S2  
D1  
S3  
RAM  
FLASH  
D
Integrated  
12-bit ADC  
LM20  
Analog Temp.  
Sensor  
S3  
S4  
S4  
Port I/O  
TIMERS  
1-of-4  
LM20  
Analog Temp.  
Sensor  
Decoder  
A1  
A0  
GND  
1.8V Logic  
I/O  
System Inputs  
and Sensors  
EN A1 A0  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SCDS393  
 
 
 
 
TMUX1204  
ZHCSJM4A APRIL 2019REVISED OCTOBER 2019  
www.ti.com.cn  
目录  
7.10 Bandwidth ............................................................. 18  
Detailed Description ............................................ 19  
8.1 Functional Block Diagram ....................................... 19  
8.2 Feature Description................................................. 19  
8.3 Device Functional Modes........................................ 20  
8.4 Truth Tables............................................................ 20  
Application and Implementation ........................ 21  
9.1 Application Information............................................ 21  
9.2 Typical Application ................................................. 21  
9.3 Design Requirements.............................................. 21  
9.4 Detailed Design Procedure ..................................... 22  
9.5 Application Curve.................................................... 22  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics (VDD = 5 V ±10 %)............ 5  
6.6 Electrical Characteristics (VDD = 3.3 V ±10 %)......... 7  
6.7 Electrical Characteristics (VDD = 1.8 V ±10 %)......... 9  
6.8 Electrical Characteristics (VDD = 1.2 V ±10 %)....... 11  
6.9 Typical Characteristics............................................ 13  
Parameter Measurement Information ................ 14  
7.1 On-Resistance ........................................................ 14  
7.2 Off-Leakage Current ............................................... 14  
7.3 On-Leakage Current ............................................... 15  
7.4 Transition Time ....................................................... 15  
7.5 Break-Before-Make................................................. 16  
7.6 tON(EN) and tOFF(EN).................................................. 16  
7.7 Charge Injection...................................................... 17  
7.8 Off Isolation............................................................. 17  
7.9 Crosstalk ................................................................. 18  
8
9
10 Power Supply Recommendations ..................... 22  
11 Layout................................................................... 23  
11.1 Layout Guidelines ................................................. 23  
11.2 Layout Example .................................................... 23  
12 器件和文档支持 ..................................................... 24  
12.1 文档支持................................................................ 24  
12.2 接收文档更新通知 ................................................. 24  
12.3 社区资源................................................................ 24  
12.4 ....................................................................... 24  
12.5 静电放电警告......................................................... 24  
12.6 Glossary................................................................ 24  
13 机械、封装和可订购信息....................................... 24  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (April 2019) to Revision A  
Page  
删除了器件信息 表中 DQA 封装的产品预览 ........................................................................................................................... 1  
Deleted Product preview from the DQA package in the Pin Configuration and Functions section........................................ 3  
Added Note 2 to the Pin Functions table ............................................................................................................................... 3  
2
Copyright © 2019, Texas Instruments Incorporated  
 
TMUX1204  
www.ti.com.cn  
ZHCSJM4A APRIL 2019REVISED OCTOBER 2019  
5 Pin Configuration and Functions  
DGS Package  
10-Pin VSSOP  
Top View  
DQA Package  
10-Pin USON  
Top View  
A0  
S1  
1
2
3
4
5
10  
9
A1  
S2  
D
A0  
S1  
1
2
3
4
5
10  
9
A1  
S2  
D
GND  
S3  
8
GND  
S3  
8
7
S4  
VDD  
7
S4  
VDD  
EN  
6
EN  
6
Not to scale  
Not to scale  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION(2)  
NAME  
A0  
DGS, DQA  
1
2
3
4
I
Address line 0. Controls the switch configuration as shown in 1.  
Source pin 1. Can be an input or output.  
Ground (0 V) reference  
S1  
I/O  
P
GND  
S3  
I/O  
Source pin 3. Can be an input or output.  
Active high logic enable. When this pin is low, all switches are turned off. When this pin is high, the  
A[1:0] logic inputs determine which switch is turned on.  
EN  
5
6
I
Positive power supply. This pin is the most positive power-supply potential. For reliable operation,  
connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VDD and GND.  
VDD  
P
S4  
D
7
8
I/O  
I/O  
I/O  
I
Source pin 4. Can be an input or output.  
Drain pin. Can be an input or output.  
S2  
A1  
9
Source pin 2. Can be an input or output.  
10  
Address line 1. Controls the switch configuration as shown in 1.  
(1) I = input, O = output, I/O = input and output, P = power  
(2) For unused pins, refer to the Device Functional Modes  
Copyright © 2019, Texas Instruments Incorporated  
3
TMUX1204  
ZHCSJM4A APRIL 2019REVISED OCTOBER 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1) (2) (3)  
MIN  
–0.5  
–0.5  
–30  
–0.5  
–30  
–65  
MAX  
UNIT  
V
VDD  
Supply voltage  
6
6
VSEL or VEN  
ISEL or IEN  
VS or VD  
IS or ID (CONT)  
Tstg  
Logic control input pin voltage (EN, A0, A1)  
Logic control input pin current (EN, A0, A1)  
Source or drain voltage (Sx, D)  
Source or drain continuous current (Sx, D)  
Storage temperature  
V
30  
mA  
V
VDD+0.5  
30  
mA  
°C  
°C  
150  
TJ  
Junction temperature  
150  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.  
(3) All voltages are with respect to ground, unless otherwise specified.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101  
or ANSI/ESDA/JEDEC JS-002, all pins(2)  
±750  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.08  
0
NOM  
MAX  
5.5  
UNIT  
VDD  
Positive power supply voltage  
V
V
VS or VD  
Signal path input/output voltage (source or drain pin) (Sx, D)  
VDD  
VSEL or  
VEN  
Logic control input pin voltage (EN, A0, A1)  
Ambient temperature  
0
5.5  
V
TA  
–40  
125  
°C  
6.4 Thermal Information  
TMUX1204  
THERMAL METRIC(1)  
DGS (VSSOP)  
10 PINS  
193.9  
DQA (USON)  
10 PINS  
173.0  
99.7  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
83.1  
116.5  
73.5  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
22.0  
8.9  
ΨJB  
114.6  
73.0  
RθJC(bot)  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2019, Texas Instruments Incorporated  
TMUX1204  
www.ti.com.cn  
ZHCSJM4A APRIL 2019REVISED OCTOBER 2019  
6.5 Electrical Characteristics (VDD = 5 V ±10 %)  
at TA = 25°C, VDD = 5 V (unless otherwise noted)  
PARAMETER  
ANALOG SWITCH  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
5
Ω
VS = 0 V to VDD  
RON  
On-resistance  
ISD = 10 mA  
Refer to On-Resistance  
–40°C to +85°C  
–40°C to +125°C  
25°C  
7
9
Ω
Ω
0.15  
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to On-Resistance  
On-resistance matching between  
channels  
ΔRON  
–40°C to +85°C  
–40°C to +125°C  
25°C  
1
1
Ω
Ω
1.5  
2
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to On-Resistance  
RON  
FLAT  
On-resistance flatness  
–40°C to +85°C  
–40°C to +125°C  
25°C  
Ω
3
Ω
VDD = 5 V  
Switch Off  
VD = 4.5 V / 1.5 V  
VS = 1.5 V / 4.5 V  
Refer to Off-Leakage Current  
±75  
nA  
nA  
–40°C to +85°C  
–150  
–175  
150  
175  
IS(OFF)  
Source off leakage current(1)  
–40°C to +125°C  
nA  
VDD = 5 V  
Switch Off  
VD = 4.5 V / 1.5 V  
VS = 1.5 V / 4.5 V  
Refer to Off-Leakage Current  
25°C  
±200  
±200  
nA  
nA  
–40°C to +85°C  
–500  
–750  
500  
750  
ID(OFF) Drain off leakage current(1)  
–40°C to +125°C  
nA  
VDD = 5 V  
Switch On  
VD = VS = 4.5 V / 1.5 V  
Refer to On-Leakage Current  
25°C  
nA  
nA  
ID(ON)  
–40°C to +85°C  
–500  
–750  
500  
750  
Channel on leakage current  
IS(ON)  
–40°C to +125°C  
nA  
LOGIC INPUTS (EN, A0, A1)  
VIH  
VIL  
Input logic high  
Input logic low  
–40°C to +125°C  
–40°C to +125°C  
1.49  
0
5.5  
V
V
0.87  
IIH  
IIL  
Input leakage current  
Input leakage current  
25°C  
±0.005  
µA  
µA  
IIH  
IIL  
–40°C to +125°C  
±0.10  
2
CIN  
CIN  
Logic input capacitance  
Logic input capacitance  
25°C  
1
pF  
pF  
–40°C to +125°C  
POWER SUPPLY  
25°C  
0.01  
µA  
µA  
IDD VDD supply current  
Logic inputs = 0 V or 5.5 V  
–40°C to +125°C  
2
(1) When VS is 4.5 V, VD is 1.5 V or when VS is 1.5 V, VD is 4.5 V.  
Copyright © 2019, Texas Instruments Incorporated  
5
TMUX1204  
ZHCSJM4A APRIL 2019REVISED OCTOBER 2019  
www.ti.com.cn  
Electrical Characteristics (VDD = 5 V ±10 %) (continued)  
at TA = 25°C, VDD = 5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
DYNAMIC CHARACTERISTICS  
25°C  
14  
ns  
VS = 3 V  
tTRAN  
Transition time between channels RL = 200 , CL = 15 pF  
–40°C to +85°C  
–40°C to +125°C  
25°C  
21  
22  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Refer to Transition Time  
8
14  
5
VS = 3 V  
tOPEN  
(BBM)  
Break before make time  
RL = 200 , CL = 15 pF  
–40°C to +85°C  
–40°C to +125°C  
25°C  
1
1
Refer to Break-Before-Make  
VS = 3 V  
RL = 200 , CL = 15 pF  
Refer to tON(EN) and tOFF(EN)  
tON(EN) Enable turn-on time  
tOFF(EN) Enable turn-off time  
–40°C to +85°C  
–40°C to +125°C  
25°C  
20  
20  
VS = 3 V  
RL = 200 , CL = 15 pF  
Refer to tON(EN) and tOFF(EN)  
–40°C to +85°C  
–40°C to +125°C  
20  
20  
VS = 1 V  
QC  
Charge Injection  
Off Isolation  
RS = 0 , CL = 1 nF  
Refer to Charge Injection  
25°C  
25°C  
25°C  
25°C  
±9  
–62  
–42  
–62  
pC  
dB  
dB  
dB  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Off Isolation  
OISO  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Refer to Off Isolation  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Crosstalk  
XTALK  
Crosstalk  
RL = 50 , CL = 5 pF  
f = 10 MHz  
25°C  
25°C  
–42  
125  
dB  
Refer to Crosstalk  
RL = 50 , CL = 5 pF  
Refer to Bandwidth  
BW  
Bandwidth  
MHz  
CSOFF  
CDOFF  
Source off capacitance  
Drain off capacitance  
f = 1 MHz  
f = 1 MHz  
25°C  
25°C  
13  
38  
pF  
pF  
CSON  
CDON  
On capacitance  
f = 1 MHz  
25°C  
42  
pF  
6
Copyright © 2019, Texas Instruments Incorporated  
TMUX1204  
www.ti.com.cn  
ZHCSJM4A APRIL 2019REVISED OCTOBER 2019  
6.6 Electrical Characteristics (VDD = 3.3 V ±10 %)  
at TA = 25°C, VDD = 3.3 V (unless otherwise noted)  
PARAMETER  
ANALOG SWITCH  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
9
Ω
VS = 0 V to VDD  
RON  
On-resistance  
ISD = 10 mA  
Refer to On-Resistance  
–40°C to +85°C  
–40°C to +125°C  
25°C  
15  
17  
Ω
Ω
0.15  
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to On-Resistance  
On-resistance matching between  
channels  
ΔRON  
–40°C to +85°C  
–40°C to +125°C  
25°C  
1
1
Ω
Ω
3
5
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to On-Resistance  
RON  
FLAT  
On-resistance flatness  
–40°C to +85°C  
–40°C to +125°C  
25°C  
Ω
6
Ω
VDD = 3.3 V  
Switch Off  
VD = 3 V / 1 V  
VS = 1 V / 3 V  
±75  
nA  
nA  
–40°C to +85°C  
–150  
–175  
150  
175  
IS(OFF)  
Source off leakage current(1)  
–40°C to +125°C  
nA  
Refer to Off-Leakage Current  
VDD = 3.3 V  
Switch Off  
VD = 3 V / 1 V  
VS = 1 V / 3 V  
25°C  
±200  
±200  
nA  
nA  
–40°C to +85°C  
–500  
–750  
500  
750  
ID(OFF) Drain off leakage current(1)  
–40°C to +125°C  
nA  
Refer to Off-Leakage Current  
VDD = 3.3 V  
Switch On  
VD = VS = 3 V / 1 V  
Refer to On-Leakage Current  
25°C  
nA  
nA  
ID(ON)  
–40°C to +85°C  
–500  
–750  
500  
750  
Channel on leakage current  
IS(ON)  
–40°C to +125°C  
nA  
LOGIC INPUTS (EN, A0, A1)  
VIH  
VIL  
Input logic high  
Input logic low  
–40°C to +125°C  
–40°C to +125°C  
1.35  
0
5.5  
0.8  
V
V
IIH  
IIL  
Input leakage current  
Input leakage current  
25°C  
±0.005  
µA  
µA  
IIH  
IIL  
–40°C to +125°C  
±0.10  
2
CIN  
CIN  
Logic input capacitance  
Logic input capacitance  
25°C  
1
pF  
pF  
–40°C to +125°C  
POWER SUPPLY  
25°C  
0.01  
µA  
µA  
IDD VDD supply current  
Logic inputs = 0 V or 5.5 V  
–40°C to +125°C  
1.3  
(1) When VS is 3 V, VD is 1 V or when VS is 1 V, VD is 3 V.  
Copyright © 2019, Texas Instruments Incorporated  
7
TMUX1204  
ZHCSJM4A APRIL 2019REVISED OCTOBER 2019  
www.ti.com.cn  
Electrical Characteristics (VDD = 3.3 V ±10 %) (continued)  
at TA = 25°C, VDD = 3.3 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
DYNAMIC CHARACTERISTICS  
25°C  
14  
ns  
VS = 2 V  
tTRAN  
Transition time between channels RL = 200 , CL = 15 pF  
–40°C to +85°C  
–40°C to +125°C  
25°C  
25  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Refer to Transition Time  
8
14  
7
VS = 2 V  
tOPEN  
(BBM)  
Break before make time  
RL = 200 , CL = 15 pF  
–40°C to +85°C  
–40°C to +125°C  
25°C  
1
1
Refer to Break-Before-Make  
VS = 2 V  
RL = 200 , CL = 15 pF  
Refer to tON(EN) and tOFF(EN)  
tON(EN) Enable turn-on time  
tOFF(EN) Enable turn-off time  
–40°C to +85°C  
–40°C to +125°C  
25°C  
25  
25  
VS = 2 V  
RL = 200 , CL = 15 pF  
Refer to tON(EN) and tOFF(EN)  
–40°C to +85°C  
–40°C to +125°C  
13  
13  
VS = 1 V  
QC  
Charge Injection  
Off Isolation  
RS = 0 , CL = 1 nF  
Refer to Charge Injection  
25°C  
25°C  
25°C  
25°C  
±7  
–62  
–42  
–62  
pC  
dB  
dB  
dB  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Off Isolation  
OISO  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Refer to Off Isolation  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Crosstalk  
XTALK  
Crosstalk  
RL = 50 , CL = 5 pF  
f = 10 MHz  
25°C  
25°C  
–42  
125  
dB  
Refer to Crosstalk  
RL = 50 , CL = 5 pF  
Refer to Bandwidth  
BW  
Bandwidth  
MHz  
CSOFF  
CDOFF  
Source off capacitance  
Drain off capacitance  
f = 1 MHz  
f = 1 MHz  
25°C  
25°C  
13  
38  
pF  
pF  
CSON  
CDON  
On capacitance  
f = 1 MHz  
25°C  
42  
pF  
8
Copyright © 2019, Texas Instruments Incorporated  
TMUX1204  
www.ti.com.cn  
ZHCSJM4A APRIL 2019REVISED OCTOBER 2019  
6.7 Electrical Characteristics (VDD = 1.8 V ±10 %)  
at TA = 25°C, VDD = 1.8 V (unless otherwise noted)  
PARAMETER  
ANALOG SWITCH  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
40  
Ω
VS = 0 V to VDD  
RON  
On-resistance  
ISD = 10 mA  
Refer to On-Resistance  
–40°C to +85°C  
–40°C to +125°C  
25°C  
80  
80  
Ω
Ω
0.15  
±75  
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to On-Resistance  
On-resistance matching between  
channels  
ΔRON  
–40°C to +85°C  
–40°C to +125°C  
25°C  
1.5  
1.5  
Ω
Ω
VDD = 1.98 V  
Switch Off  
VD = 1.8 V / 1 V  
VS = 1 V / 1.8 V  
Refer to Off-Leakage Current  
nA  
nA  
–40°C to +85°C  
-150  
-175  
150  
175  
IS(OFF)  
Source off leakage current(1)  
–40°C to +125°C  
nA  
VDD = 1.98 V  
Switch Off  
VD = 1.8 V / 1 V  
VS = 1 V / 1.8 V  
Refer to Off-Leakage Current  
25°C  
±200  
±200  
nA  
nA  
–40°C to +85°C  
–500  
–750  
500  
750  
ID(OFF) Drain off leakage current(1)  
–40°C to +125°C  
nA  
VDD = 1.98 V  
Switch On  
VD = VS = 1.8 V / 1 V  
Refer to On-Leakage Current  
25°C  
nA  
nA  
ID(ON)  
–40°C to +85°C  
–500  
–750  
500  
750  
Channel on leakage current  
IS(ON)  
–40°C to +125°C  
nA  
LOGIC INPUTS (EN, A0, A1)  
VIH  
VIL  
Input logic high  
Input logic low  
–40°C to +125°C  
–40°C to +125°C  
1.07  
0
5.5  
V
V
0.68  
IIH  
IIL  
Input leakage current  
Input leakage current  
25°C  
±0.005  
µA  
µA  
IIH  
IIL  
–40°C to +125°C  
±0.10  
2
CIN  
CIN  
Logic input capacitance  
Logic input capacitance  
25°C  
1
pF  
pF  
–40°C to +125°C  
POWER SUPPLY  
25°C  
0.005  
µA  
µA  
IDD VDD supply current  
Logic inputs = 0 V or 5.5 V  
–40°C to +125°C  
0.95  
(1) When VS is 1.8 V, VD is 1 V or when VS is 1 V, VD is 1.8 V.  
Copyright © 2019, Texas Instruments Incorporated  
9
TMUX1204  
ZHCSJM4A APRIL 2019REVISED OCTOBER 2019  
www.ti.com.cn  
Electrical Characteristics (VDD = 1.8 V ±10 %) (continued)  
at TA = 25°C, VDD = 1.8 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
DYNAMIC CHARACTERISTICS  
25°C  
28  
ns  
VS = 1 V  
tTRAN  
Transition time between channels RL = 200 , CL = 15 pF  
–40°C to +85°C  
–40°C to +125°C  
25°C  
48  
48  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Refer to Transition Time  
16  
28  
16  
VS = 1 V  
tOPEN  
(BBM)  
Break before make time  
RL = 200 , CL = 15 pF  
–40°C to +85°C  
–40°C to +125°C  
25°C  
1
1
Refer to Break-Before-Make  
VS = 1 V  
RL = 200 , CL = 15 pF  
Refer to tON(EN) and tOFF(EN)  
tON(EN) Enable turn-on time  
tOFF(EN) Enable turn-off time  
–40°C to +85°C  
–40°C to +125°C  
25°C  
48  
48  
VS = 1 V  
RL = 200 , CL = 15 pF  
Refer to tON(EN) and tOFF(EN)  
–40°C to +85°C  
–40°C to +125°C  
27  
27  
VS = 1 V  
QC  
Charge Injection  
Off Isolation  
RS = 0 , CL = 1 nF  
Refer to Charge Injection  
25°C  
25°C  
25°C  
25°C  
–2  
–62  
–42  
–62  
pC  
dB  
dB  
dB  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Off Isolation  
OISO  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Refer to Off Isolation  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Crosstalk  
XTALK  
Crosstalk  
RL = 50 , CL = 5 pF  
f = 10 MHz  
25°C  
25°C  
–42  
125  
dB  
Refer to Crosstalk  
RL = 50 , CL = 5 pF  
Refer to Bandwidth  
BW  
Bandwidth  
MHz  
CSOFF  
CDOFF  
Source off capacitance  
Drain off capacitance  
f = 1 MHz  
f = 1 MHz  
25°C  
25°C  
13  
38  
pF  
pF  
CSON  
CDON  
On capacitance  
f = 1 MHz  
25°C  
42  
pF  
10  
Copyright © 2019, Texas Instruments Incorporated  
TMUX1204  
www.ti.com.cn  
ZHCSJM4A APRIL 2019REVISED OCTOBER 2019  
6.8 Electrical Characteristics (VDD = 1.2 V ±10 %)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
25°C  
70  
Ω
VS = 0 V to VDD  
RON  
On-resistance  
ISD = 10 mA  
Refer to On-Resistance  
–40°C to +85°C  
–40°C to +125°C  
25°C  
105  
105  
Ω
Ω
0.15  
±75  
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to On-Resistance  
On-resistance matching between  
channels  
ΔRON  
–40°C to +85°C  
–40°C to +125°C  
25°C  
1.5  
1.5  
Ω
Ω
VDD = 1.32 V  
Switch Off  
VD = 1.2 V / 1 V  
VS = 1 V / 1.2 V  
Refer to Off-Leakage Current  
nA  
nA  
–40°C to +85°C  
–150  
–175  
150  
175  
IS(OFF)  
Source off leakage current(1)  
–40°C to +125°C  
nA  
VDD = 1.32 V  
Switch Off  
VD = 1.2 V / 1 V  
VS = 1 V / 1.2 V  
Refer to Off-Leakage Current  
25°C  
±200  
±200  
nA  
nA  
–40°C to +85°C  
–500  
–750  
500  
750  
ID(OFF) Drain off leakage current(1)  
–40°C to +125°C  
nA  
VDD = 1.32 V  
Switch On  
VD = VS = 1.2 V / 1 V  
Refer to On-Leakage Current  
25°C  
nA  
nA  
ID(ON)  
–40°C to +85°C  
–500  
–750  
500  
750  
Channel on leakage current  
IS(ON)  
–40°C to +125°C  
nA  
LOGIC INPUTS (EN, A0, A1)  
VIH  
VIL  
Input logic high  
Input logic low  
–40°C to +125°C  
–40°C to +125°C  
0.96  
0
5.5  
V
V
0.36  
IIH  
IIL  
Input leakage current  
Input leakage current  
25°C  
±0.005  
µA  
µA  
IIH  
IIL  
–40°C to +125°C  
±0.10  
2
CIN  
CIN  
Logic input capacitance  
Logic input capacitance  
25°C  
1
pF  
pF  
–40°C to +125°C  
POWER SUPPLY  
25°C  
0.005  
µA  
µA  
IDD VDD supply current  
Logic inputs = 0 V or 5.5 V  
–40°C to +125°C  
0.8  
(1) When VS is 1 V, VD is 1.2 V or when VS is 1.2 V, VD is 1 V.  
Copyright © 2019, Texas Instruments Incorporated  
11  
TMUX1204  
ZHCSJM4A APRIL 2019REVISED OCTOBER 2019  
www.ti.com.cn  
Electrical Characteristics (VDD = 1.2 V ±10 %) (continued)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
DYNAMIC CHARACTERISTICS  
25°C  
60  
ns  
VS = 1 V  
tTRAN  
Transition time between channels RL = 200 , CL = 15 pF  
–40°C to +85°C  
–40°C to +125°C  
25°C  
210  
210  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Refer to Transition Time  
28  
60  
45  
VS = 1 V  
tOPEN  
(BBM)  
Break before make time  
RL = 200 , CL = 15 pF  
–40°C to +85°C  
–40°C to +125°C  
25°C  
1
1
Refer to Break-Before-Make  
VS = 1 V  
RL = 200 , CL = 15 pF  
Refer to tON(EN) and tOFF(EN)  
tON(EN) Enable turn-on time  
tOFF(EN) Enable turn-off time  
–40°C to +85°C  
–40°C to +125°C  
25°C  
190  
190  
VS = 1 V  
RL = 200 , CL = 15 pF  
Refer to tON(EN) and tOFF(EN)  
–40°C to +85°C  
–40°C to +125°C  
150  
150  
VS = 1 V  
QC  
Charge Injection  
Off Isolation  
RS = 0 , CL = 1 nF  
Refer to Charge Injection  
25°C  
25°C  
25°C  
25°C  
±2  
–62  
–42  
–62  
pC  
dB  
dB  
dB  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Off Isolation  
OISO  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Refer to Off Isolation  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Crosstalk  
XTALK  
Crosstalk  
RL = 50 , CL = 5 pF  
f = 10 MHz  
25°C  
25°C  
–42  
125  
dB  
Refer to Crosstalk  
RL = 50 , CL = 5 pF  
Refer to Bandwidth  
BW  
Bandwidth  
MHz  
CSOFF  
CDOFF  
Source off capacitance  
Drain off capacitance  
f = 1 MHz  
f = 1 MHz  
25°C  
25°C  
13  
38  
pF  
pF  
CSON  
CDON  
On capacitance  
f = 1 MHz  
25°C  
42  
pF  
12  
版权 © 2019, Texas Instruments Incorporated  
TMUX1204  
www.ti.com.cn  
ZHCSJM4A APRIL 2019REVISED OCTOBER 2019  
6.9 Typical Characteristics  
at TA = 25°C, VDD = 5 V (unless otherwise noted)  
80  
10  
8
VDD = 1.08V  
60  
TA = +85èC  
TA = +125èC  
6
40  
VDD = 1.62V  
4
20  
VDD = 3V  
2
VDD = 4.5V  
TA = +25èC  
TA = -40èC  
1.5  
Source or Drain Voltage (V)  
0
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
Source or Drain Voltage (V)  
4
4.5  
5
0
0.5  
1
2
2.5  
3
3.5  
D001  
D002  
TA = 25°C  
VDD = 3 V  
1. On-Resistance vs Source or Drain Voltage  
2. On-Resistance vs Source or Drain Voltage  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
20  
16  
12  
8
TON  
TON  
TOFF  
4
TOFF  
6
4
0
1.5  
2
2.5  
3
VDD - Supply Voltage (V)  
3.5  
4
4.5  
5
5.5  
6
-60  
-30  
0
30  
60  
90  
120  
150  
TA - Temperature (èC)  
D003  
D004  
TA = 25°C  
VDD = 3.3 V  
3. TON (EN) and TOFF (EN) vs Supply Voltage  
4. TON (EN) and TOFF (EN) vs Temperature  
1400  
0
1200  
1000  
800  
600  
400  
200  
0
-1  
-2  
-3  
-4  
-5  
-6  
VDD = 3.3 V  
VDD = 5 V  
0
0.5  
1
1.5  
2
2.5  
3
Logic Voltage (V)  
3.5  
4
4.5  
5
1M  
10M  
Frequency (Hz)  
100M  
D005  
D006  
TA = 25°C  
TA = 25°C  
5. Supply Current vs Logic Voltage  
6. Frequency Response  
版权 © 2019, Texas Instruments Incorporated  
13  
TMUX1204  
ZHCSJM4A APRIL 2019REVISED OCTOBER 2019  
www.ti.com.cn  
7 Parameter Measurement Information  
7.1 On-Resistance  
The on-resistance of a device is the ohmic resistance between the source (Sx) and drain (D) pins of the device.  
The on-resistance varies with input voltage and supply voltage. The symbol RON is used to denote on-resistance.  
The measurement setup used to measure RON is shown in 7. Voltage (V) and current (ISD) are measured  
using this setup, and RON is computed with RON = V / ISD  
:
V
ISD  
Sx  
D
VS  
7. On-Resistance Measurement Setup  
7.2 Off-Leakage Current  
There are two types of leakage currents associated with a switch during the off state:  
1. Source off-leakage current  
2. Drain off-leakage current  
Source leakage current is defined as the leakage current flowing into or out of the source pin when the switch is  
off. This current is denoted by the symbol IS(OFF)  
.
Drain leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is off.  
This current is denoted by the symbol ID(OFF)  
.
The setup used to measure both off-leakage currents is shown in 8.  
VDD  
VDD  
VDD  
VDD  
Is (OFF)  
S1  
S2  
S3  
S4  
S1  
S2  
A
ID (OFF)  
D
D
A
S3  
VS  
S4  
VS  
VD  
VD  
GND  
GND  
8. Off-Leakage Measurement Setup  
14  
版权 © 2019, Texas Instruments Incorporated  
 
 
TMUX1204  
www.ti.com.cn  
ZHCSJM4A APRIL 2019REVISED OCTOBER 2019  
7.3 On-Leakage Current  
Source on-leakage current is defined as the leakage current flowing into or out of the source pin when the switch  
is on. This current is denoted by the symbol IS(ON)  
.
Drain on-leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is  
on. This current is denoted by the symbol ID(ON)  
.
Either the source pin or drain pin is left floating during the measurement. 9 shows the circuit used for  
measuring the on-leakage current, denoted by IS(ON) or ID(ON)  
.
VDD  
VDD  
VDD  
VDD  
IS (ON)  
S1  
S1  
S2  
A
N.C.  
ID (ON)  
S2  
D
D
S3  
S4  
A
N.C.  
S8  
Vs  
VS  
VS  
VD  
GND  
GND  
9. On-Leakage Measurement Setup  
7.4 Transition Time  
Transition time is defined as the time taken by the output of the device to rise or fall 10% after the address signal  
has risen or fallen past the logic threshold. The 10% transition measurement is utilized to provide the timing of  
the device. System level timing can then account for the time constant added from the load resistance and load  
capacitance. 10 shows the setup used to measure transition time, denoted by the symbol tTRANSITION  
.
VDD  
0.1F  
VDD  
VDD  
ADDRESS  
DRIVE  
(VSEL  
S1  
tf < 5ns  
tr < 5ns  
VS  
VIH  
)
VIL  
S2  
S3  
S4  
OUTPUT  
0 V  
D
RL  
CL  
tTRANSITION  
tTRANSITION  
A0  
A1  
90%  
OUTPUT  
VSEL  
10%  
GND  
0 V  
10. Transition-Time Measurement Setup  
版权 © 2019, Texas Instruments Incorporated  
15  
 
 
TMUX1204  
ZHCSJM4A APRIL 2019REVISED OCTOBER 2019  
www.ti.com.cn  
7.5 Break-Before-Make  
Break-before-make delay is a safety feature that prevents two inputs from connecting when the device is  
switching. The output first breaks from the on-state switch before making the connection with the next on-state  
switch. The time delay between the break and the make is known as break-before-make delay. 11 shows the  
setup used to measure break-before-make delay, denoted by the symbol tOPEN(BBM)  
.
VDD  
0.1F  
VDD  
VDD  
VS  
ADDRESS  
DRIVE  
S2  
S3  
S4  
tr < 5ns  
tf < 5ns  
OUTPUT  
D
(VSEL  
)
0 V  
RL  
CL  
90%  
Output  
A0  
A1  
tBBM  
1
tBBM 2  
0 V  
VSEL  
tOPEN (BBM) = min ( tBBM 1, tBBM 2)  
GND  
11. Break-Before-Make Delay Measurement Setup  
7.6 tON(EN) and tOFF(EN)  
Turn-on time is defined as the time taken by the output of the device to rise to 10% after the enable has risen  
past the logic threshold. The 10% measurement is utilized to provide the timing of the device. System level  
timing can then account for the time constant added from the load resistance and load capacitance. 12 shows  
the setup used to measure turn-on time, denoted by the symbol tON(EN)  
.
Turn-off time is defined as the time taken by the output of the device to fall to 90% after the enable has fallen  
past the logic threshold. The 90% measurement is utilized to provide the timing of the device. System level  
timing can then account for the time constant added from the load resistance and load capacitance. 12 shows  
the setup used to measure turn-off time, denoted by the symbol tOFF(EN)  
.
VDD  
0.1F  
VDD  
VDD  
tf < 5ns  
tr < 5ns  
ENABLE  
DRIVE  
VS  
VIH  
(VEN  
)
S2  
S3  
S4  
VIL  
OUTPUT  
D
0 V  
RL  
CL  
tOFF (EN)  
tON  
(EN)  
EN  
A0  
A1  
90%  
OUTPUT  
0 V  
VEN  
10%  
GND  
12. Turn-On and Turn-Off Time Measurement Setup  
16  
版权 © 2019, Texas Instruments Incorporated  
 
 
TMUX1204  
www.ti.com.cn  
ZHCSJM4A APRIL 2019REVISED OCTOBER 2019  
7.7 Charge Injection  
The TMUX1204 has a transmission-gate topology. Any mismatch in capacitance between the NMOS and PMOS  
transistors results in a charge injected into the drain or source during the falling or rising edge of the gate signal.  
The amount of charge injected into the source or drain of the device is known as charge injection, and is denoted  
by the symbol QC. 13 shows the setup used to measure charge injection from source (Sx) to drain (D).  
VDD  
0.1F  
VDD  
VDD  
VS  
VEN  
S2  
S3  
S4  
OUTPUT  
D
0 V  
VOUT  
CL  
Output  
VOUT  
VS  
QC = CL  
×
VOUT  
A0  
A1  
EN  
VEN  
GND  
13. Charge-Injection Measurement Setup  
7.8 Off Isolation  
Off isolation is defined as the ratio of the signal at the drain pin (D) of the device when a signal is applied to the  
source pin (Sx) of an off-channel. 14 shows the setup used to measure, and the equation used to calculate off  
isolation.  
0.1µF  
NETWORK  
VDD  
ANALYZER  
VS  
50Q  
S
VSIG  
D
VOUT  
RL  
SX  
50Q  
GND  
RL  
50Q  
14. Off Isolation Measurement Setup  
«
÷
VOUT  
VS  
Off Isolation = 20 Log  
(1)  
17  
版权 © 2019, Texas Instruments Incorporated  
 
 
TMUX1204  
ZHCSJM4A APRIL 2019REVISED OCTOBER 2019  
www.ti.com.cn  
7.9 Crosstalk  
Crosstalk is defined as the ratio of the signal at the drain pin (D) of a different channel, when a signal is applied  
at the source pin (Sx) of an on-channel. 15 shows the setup used to measure, and the equation used to  
calculate crosstalk.  
0.1µF  
NETWORK  
VDD  
ANALYZER  
S1  
VOUT  
RL  
D
50Q  
VS  
RL  
S2  
50Q  
50Q  
VSIG  
SX  
RL  
GND  
50Q  
15. Crosstalk Measurement Setup  
«
÷
VOUT  
VS  
Channel-to-Channel Crosstalk = 20 Log  
(2)  
7.10 Bandwidth  
Bandwidth is defined as the range of frequencies that are attenuated by less than 3 dB when the input is applied  
to the source pin (Sx) of an on-channel, and the output is measured at the drain pin (D) of the device. 16  
shows the setup used to measure bandwidth.  
0.1µF  
NETWORK  
VDD  
ANALYZER  
VS  
S
50Q  
VSIG  
D
VOUT  
RL  
50Q  
SX  
GND  
RL  
50Q  
16. Bandwidth Measurement Setup  
18  
版权 © 2019, Texas Instruments Incorporated  
 
 
TMUX1204  
www.ti.com.cn  
ZHCSJM4A APRIL 2019REVISED OCTOBER 2019  
8 Detailed Description  
8.1 Functional Block Diagram  
The TMUX1204 is a 4:1, single-ended (1-ch.), mux. Each channel is turned on or turned off based on the state of  
the address lines and the enable pin.  
TMUX1204  
S1  
S2  
D1  
S3  
S4  
1-of-4  
Decoder  
EN A1 A0  
17. TMUX1204 Functional Block Diagrams  
8.2 Feature Description  
8.2.1 Bidirectional Operation  
The TMUX1204 conducts equally well from source (Sx) to drain (D) or from drain (D) to source (Sx). Each  
channel has very similar characteristics in both directions and supports both analog and digital signals.  
8.2.2 Rail to Rail Operation  
The valid signal path input/output voltage for TMUX1204 ranges from GND to VDD  
.
8.2.3 1.8 V Logic Compatible Inputs  
The TMUX1204 has 1.8-V logic compatible control for all logic control inputs. The logic input thresholds scale  
with supply but still provide 1.8-V logic control when operating at 5.5 V supply voltage. 1.8-V logic level inputs  
allows the TMUX1204 to interface with processors that have lower logic I/O rails and eliminates the need for an  
external translator, which saves both space and BOM cost. For more information on 1.8 V logic implementations  
refer to Simplifying Design with 1.8 V logic Muxes and Switches  
8.2.4 Fail-Safe Logic  
The TMUX1204 supports Fail-Safe Logic on the control input pins (EN, A0, A1) allowing for operation up to 5.5  
V, regardless of the state of the supply pin. This feature allows voltages on the control pins to be applied before  
the supply pin, protecting the device from potential damage. Fail-Safe Logic minimizes system complexity by  
removing the need for power supply sequencing on the logic control pins. For example, the Fail-Safe Logic  
feature allows the select pins of the TMUX1204 to be ramped to 5.5 V while VDD = 0 V. Additionally, the feature  
enables operation of the TMUX1204 with VDD = 1.2 V while allowing the select pins to interface with a logic level  
of another device up to 5.5 V.  
版权 © 2019, Texas Instruments Incorporated  
19  
TMUX1204  
ZHCSJM4A APRIL 2019REVISED OCTOBER 2019  
www.ti.com.cn  
8.3 Device Functional Modes  
When the EN pin of the TMUX1204 is pulled high, one of the switches is closed based on the state of the  
address lines. When the EN pin is pulled low, all the switches are in an open state irrespective of the state of the  
address lines. The EN pin can be connected to VDD (as high as 5.5 V).  
The TMUX1204 can be operated without any external components except for the supply decoupling capacitors.  
Unused logic control pins should be tied to GND or VDD in order to ensure the device does not consume  
additional current as highlighted in Implications of Slow or Floating CMOS Inputs. Unused signal path inputs (Sx  
or D) should be connected to GND.  
8.4 Truth Tables  
and 1 show the truth tables for the TMUX1204, respectively.  
1. TMUX1204 Truth Table  
Selected Channel  
EN  
A1  
A0  
Connected To Drain (D) Pin  
All channels are off  
Channel S1  
0
1
1
1
1
X(1)  
0
X(1)  
0
0
1
Channel S2  
1
0
Channel S3  
1
1
Channel S4  
(1) X denotes don't care.  
20  
版权 © 2019, Texas Instruments Incorporated  
 
TMUX1204  
www.ti.com.cn  
ZHCSJM4A APRIL 2019REVISED OCTOBER 2019  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TMUX12xx family offers good system performance across a wide operating supply (1.08V to 5.5V). These  
devices include 1.8V logic compatible control input pins that enable operation in systems with 1.8V I/O rails.  
Additionally, the control input pins support Fail-Safe Logic which allows for operation up to 5.5V, regardless of  
the state of the supply pin. This protection stops the logic pins from back-powering the supply rail. These  
features make the TMUX12xx a family of general purpose multiplexers and switches that can reduce system  
complexity, board size, and overall system cost.  
9.2 Typical Application  
One useful application to take advantage of the TMUX1204 features is multiplexing various signals into an ADC  
that is integrated into a MCU. Utilizing an integrated ADC in a MCU allows a system to minimize cost with a  
potential tradeoff of system performance when compared to an external ADC. The multiplexer allows for multiple  
inputs/sensors to be monitored with a single ADC pin of the device, which is critical in systems with limited I/O.  
VDD  
VDD  
VI/O  
VDD  
EN  
MCU  
LDO #1  
LDO #2  
S1  
S2  
RAM  
FLASH  
D
Integrated  
12-bit ADC  
LM20  
Analog Temp.  
Sensor  
S3  
S4  
Port I/O  
TIMERS  
LM20  
Analog Temp.  
Sensor  
A1  
A0  
GND  
1.8V Logic  
I/O  
System Inputs  
and Sensors  
18. Multiplexing Signals to Integrated ADC  
9.3 Design Requirements  
For this design example, use the parameters listed in 2.  
2. Design Parameters  
PARAMETERS  
Supply (VDD  
VALUES  
5.0 V  
)
I/O signal range  
0 V to VDD (Rail to Rail)  
1.8 V compatible  
Control logic thresholds  
版权 © 2019, Texas Instruments Incorporated  
21  
 
TMUX1204  
ZHCSJM4A APRIL 2019REVISED OCTOBER 2019  
www.ti.com.cn  
9.4 Detailed Design Procedure  
The TMUX1204 can be operated without any external components except for the supply decoupling capacitors. If  
the parts desired power-up state is disabled, the enable pin should have a weak pull-down resistor and be  
controlled by the MCU via GPIO. All inputs being muxed to the ADC of the MCU must fall within the recommend  
operating conditions of the TMUX1204 including signal range and continuous current. For this design with a  
supply of 5 V the signal range can be 0 V to 5 V and the max continuous current can be 30 mA.  
9.5 Application Curve  
80  
VDD = 1.08V  
60  
40  
VDD = 1.62V  
20  
VDD = 3V  
VDD = 4.5V  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
Source or Drain Voltage (V)  
4
4.5  
5
D001  
TA = 25°C  
19. On-Resistance vs Source or Drain Voltage  
10 Power Supply Recommendations  
The TMUX1204 operates across a wide supply range of 1.08 V to 5.5 V. Do not exceed the absolute maximum  
ratings because stresses beyond the listed ratings can cause permanent damage to the devices.  
Power-supply bypassing improves noise margin and prevents switching noise propagation from the VDD supply to  
other components. Good power-supply decoupling is important to achieve optimum performance. For improved  
supply noise immunity, use a supply decoupling capacitor ranging from 0.1 μF to 10 μF from VDD to ground.  
Place the bypass capacitors as close to the power supply pins of the device as possible using low-impedance  
connections. TI recommends using multi-layer ceramic chip capacitors (MLCCs) that offer low equivalent series  
resistance (ESR) and inductance (ESL) characteristics for power-supply decoupling purposes. For very sensitive  
systems, or for systems in harsh noise environments, avoiding the use of vias for connecting the capacitors to  
the device pins may offer superior noise immunity. The use of multiple vias in parallel lowers the overall  
inductance and is beneficial for connections to ground planes.  
22  
版权 © 2019, Texas Instruments Incorporated  
TMUX1204  
www.ti.com.cn  
ZHCSJM4A APRIL 2019REVISED OCTOBER 2019  
11 Layout  
11.1 Layout Guidelines  
11.1.1 Layout Information  
When a PCB trace turns a corner at a 90° angle, a reflection can occur. A reflection occurs primarily because of  
the change of width of the trace. At the apex of the turn, the trace width increases to 1.414 times the width. This  
increase upsets the transmission-line characteristics, especially the distributed capacitance and self–inductance  
of the trace which results in the reflection. Not all PCB traces can be straight and therefore some traces must  
turn corners.20 shows progressively better techniques of rounding corners. Only the last example (BEST)  
maintains constant trace width and minimizes reflections.  
WORST  
BETTER  
BEST  
1W min.  
W
20. Trace Example  
Route high-speed signals using a minimum of vias and corners which reduces signal reflections and  
impedance changes. When a via must be used, increase the clearance size around it to minimize its  
capacitance. Each via introduces discontinuities in the signal’s transmission line and increases the chance of  
picking up interference from the other layers of the board. Be careful when designing test points, through-  
hole pins are not recommended at high frequencies.  
21 illustrates an example of a PCB layout with the TMUX1204. Some key considerations are:  
Decouple the VDD pin with a 0.1-µF capacitor, placed as close to the pin as possible. Make sure that the  
capacitor voltage rating is sufficient for the VDD supply.  
Keep the input lines as short as possible.  
Use a solid ground plane to help reduce electromagnetic interference (EMI) noise pickup.  
Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if  
possible, and only make perpendicular crossings when necessary.  
11.2 Layout Example  
A0  
A1  
S2  
D
TMUX1204  
S1  
GND  
S3  
S4  
VDD  
EN  
Via to  
GND plane  
C
Wide (low inductance)  
trace for power  
21. TMUX1204 Layout Example  
版权 © 2019, Texas Instruments Incorporated  
23  
 
 
TMUX1204  
ZHCSJM4A APRIL 2019REVISED OCTOBER 2019  
www.ti.com.cn  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
德州仪器 (TI)《使用 1.8V 逻辑多路复用器和开关简化设计》。  
德州仪器 (TI)QFN/SON PCB 连接》。  
德州仪器 (TI)《四方扁平封装无引线逻辑封装》。  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.4 商标  
E2E is a trademark of Texas Instruments.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
24  
版权 © 2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMUX1204DGSR  
TMUX1204DQAR  
ACTIVE  
ACTIVE  
VSSOP  
USON  
DGS  
DQA  
10  
10  
2500 RoHS & Green  
3000 RoHS & Green  
NIPDAUAG  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
1F6  
204  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TMUX1204DGSR  
TMUX1204DQAR  
VSSOP  
USON  
DGS  
DQA  
10  
10  
2500  
3000  
330.0  
180.0  
12.4  
9.5  
5.3  
3.4  
1.4  
8.0  
4.0  
12.0  
8.0  
Q1  
Q1  
1.18  
2.68  
0.72  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TMUX1204DGSR  
TMUX1204DQAR  
VSSOP  
USON  
DGS  
DQA  
10  
10  
2500  
3000  
364.0  
189.0  
364.0  
185.0  
27.0  
36.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DQA0010A  
USON - 0.55 mm max height  
SCALE 6.000  
PLASTIC SMALL OUTLINE - NO LEAD  
1.1  
0.9  
A
B
PIN 1 INDEX AREA  
2.6  
2.4  
C
0.55 MAX  
SEATING PLANE  
(0.13) TYP  
0.08 C  
0.05  
0.00  
5
6
4X 0.5  
(R0.125)  
2X  
2
0.45  
0.35  
2X  
0.1  
C A  
B
0.05  
1
10  
0.25  
0.15  
8X  
PIN 1 ID  
(OPTIONAL)  
0.1  
0.05  
C A  
B
0.43  
0.30  
10X  
C
4220328/A 12/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DQA0010A  
USON - 0.55 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
10X (0.565)  
8X (0.2)  
1
10  
SYMM  
2X (0.4)  
4X (0.5)  
6
5
(R0.05) TYP  
SYMM  
(0.835)  
LAND PATTERN EXAMPLE  
SCALE:30X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4220328/A 12/2015  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DQA0010A  
USON - 0.55 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
10X (0.565)  
8X (0.2)  
1
10  
METAL  
TYP  
SYMM  
2X (0.36)  
8
3
4X (0.5)  
6
5
(R0.05) TYP  
SYMM  
(0.835)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PADS 3 & 8:  
90% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:40X  
4220328/A 12/2015  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
DGS0010A  
VSSOP - 1.1 mm max height  
S
C
A
L
E
3
.
2
0
0
SMALL OUTLINE PACKAGE  
C
SEATING PLANE  
0.1 C  
5.05  
4.75  
TYP  
PIN 1 ID  
AREA  
A
8X 0.5  
10  
1
3.1  
2.9  
NOTE 3  
2X  
2
5
6
0.27  
0.17  
10X  
3.1  
2.9  
1.1 MAX  
0.1  
C A  
B
B
NOTE 4  
0.23  
0.13  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.7  
0.4  
0 - 8  
DETAIL A  
TYPICAL  
4221984/A 05/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-187, variation BA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DGS0010A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
10X (1.45)  
(R0.05)  
TYP  
SYMM  
10X (0.3)  
1
5
10  
SYMM  
6
8X (0.5)  
(4.4)  
LAND PATTERN EXAMPLE  
SCALE:10X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221984/A 05/2015  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DGS0010A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
10X (1.45)  
SYMM  
(R0.05) TYP  
10X (0.3)  
8X (0.5)  
1
5
10  
SYMM  
6
(4.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:10X  
4221984/A 05/2015  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TMUX1204DGSR

5V、4:1、单通道通用模拟多路复用器 | DGS | 10 | -40 to 125
TI

TMUX1204DQAR

5V、4:1、单通道通用模拟多路复用器 | DQA | 10 | -40 to 125
TI

TMUX1208

具有 1.8V 输入逻辑的 5V、8:1、单通道通用模拟多路复用器
TI

TMUX1208-Q1

具有 1.8V 逻辑电平的汽车类 5V、8:1、单通道多路复用器
TI

TMUX1208PWR

具有 1.8V 输入逻辑的 5V、8:1、单通道通用模拟多路复用器 | PW | 16 | -40 to 125
TI

TMUX1208QRSVRQ1

具有 1.8V 逻辑电平的汽车类 5V、8:1、单通道多路复用器 | RSV | 16 | -40 to 125
TI

TMUX1208RSVR

具有 1.8V 输入逻辑的 5V、8:1、单通道通用模拟多路复用器 | RSV | 16 | -40 to 125
TI

TMUX1209

具有 1.8V 输入逻辑控制的 5V、4:1、2 通道通用多路复用器
TI

TMUX1209PWR

具有 1.8V 输入逻辑控制的 5V、4:1、2 通道通用多路复用器 | PW | 16 | -40 to 125
TI

TMUX1209RSVR

具有 1.8V 输入逻辑控制的 5V、4:1、2 通道通用多路复用器 | RSV | 16 | -40 to 125
TI

TMUX1219

具有 1.8V 输入逻辑的 5V、2:1 (SPDT)、单通道通用模拟开关
TI

TMUX1219DBVR

具有 1.8V 输入逻辑的 5V、2:1 (SPDT)、单通道通用模拟开关 | DBV | 6 | -40 to 125
TI