TMS320C5532 [TI]

Fixed-Point Digital Signal Processors; 定点数字信号处理器
TMS320C5532
型号: TMS320C5532
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Fixed-Point Digital Signal Processors
定点数字信号处理器

数字信号处理器
文件: 总155页 (文件大小:1509K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
TMS320C5535, 'C5534, 'C5533, 'C5532 Fixed-Point Digital Signal Processors  
Check for Samples: TMS320C5535, TMS320C5534, TMS320C5533, TMS320C5532  
1 Fixed-Point Digital Signal Processor  
1.1 Features  
1
Four Inter-IC Sound (I2S Bus) for Data  
Transport  
Device USB Port With Integrated 2.0  
CORE:  
High-Performance, Low-Power, TMS320C55x  
Fixed-Point Digital Signal Processor  
High-Speed PHY that Supports:  
20-, 10-ns Instruction Cycle Time  
50-, 100-MHz Clock Rate  
One/Two Instruction(s) Executed per  
Cycle  
USB 2.0 Full- and High-Speed Device  
LCD Bridge With Asynchronous Interface  
10-Bit 4-Input Successive Approximation  
(SAR) ADC  
IEEE-1149.1 (JTAG)  
Dual Multipliers [Up to 200 Million  
Multiply-Accumulates per Second  
(MMACS)]  
Boundary-Scan-Compatible  
Up to 20 General-Purpose I/O (GPIO) Pins  
(Multiplexed With Other Device Functions)  
POWER:  
Two Arithmetic/Logic Units (ALUs)  
Three Internal Data/Operand Read Buses  
and Two Internal Data/Operand Write  
Buses  
Four Core Isolated Power Supply Domains:  
Analog, RTC, CPU and Peripherals, and USB  
Three I/O Isolated Power Supply Domains:  
Software-Compatible With C55x Devices  
Industrial Temperature Devices Available  
RTC I/O, USB PHY, and DVDDIO  
320K Bytes Zero-Wait State On-Chip RAM,  
Three integrated LDOs (DSP_LDO,  
ANA_LDO, and USB_LDO) to power the  
isolated domains: DSP Core, Analog, and  
USB Core, respectively  
Composed of:  
64K Bytes of Dual-Access RAM (DARAM),  
8 Blocks of 4K x 16-Bit  
256K Bytes of Single-Access RAM  
(SARAM), 32 Blocks of 4K x 16-Bit  
1.05-V Core (50 MHz), 1.8-V, 2.5-V, 2.75-V, or  
3.3-V I/Os  
128K Bytes of Zero Wait-State On-Chip ROM  
1.3-V Core (100 MHz), 1.8-V, 2.5-V, 2.75-V, or  
3.3-V I/Os  
CLOCK:  
(4 Blocks of 16K x 16-Bit)  
Tightly-Coupled FFT Hardware Accelerator  
PERIPHERAL:  
Real-Time Clock (RTC) With Crystal Input,  
With Separate Clock Domain, Separate  
Power Supply  
Direct Memory Access (DMA) Controller  
Four DMA With 4 Channels Each  
(16-Channels Total)  
Low-Power S/W Programmable  
Three 32-Bit General-Purpose Timers  
One Selectable as a Watchdog and/or GP  
Phase-Locked Loop (PLL) Clock Generator  
BOOTLOADER:  
Two Embedded Multimedia Card/Secure  
Digital (eMMC/SD) Interfaces  
Universal Asynchronous  
Receiver/Transmitter (UART)  
Serial-Port Interface (SPI) With Four  
Chip-Selects  
Master/Slave Inter-Integrated Circuit (I2C  
Bus)  
On-Chip ROM Bootloader (RBL) to Boot  
From SPI EEPROM, SPI Serial Flash or I2C  
EEPROM eMMC/SD/SDHC, UART, and USB  
PACKAGE:  
144-Terminal Pb-Free Plastic BGA (Ball Grid  
Array) (ZHH Suffix)  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2011, Texas Instruments Incorporated  
 
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
1.2 Applications  
Wireless Audio Devices (e.g., Headsets, Microphones, Speakerphones)  
Echo Cancellation Headphones  
Portable Medical Devices  
Voice Applications  
Industrial Controls  
Fingerprint Biometrics  
Software-defined Radio  
1.3 Description  
These devices are members of TI's TMS320C5000fixed-point Digital Signal Processor (DSP) product  
family and are designed for low-power applications.  
The fixed-point DSP is based on the TMS320C55x DSP generation CPU processor core. The C55x DSP  
architecture achieves high performance and low power through increased parallelism and total focus on  
power savings. The CPU supports an internal bus structure that is composed of one program bus, one  
32-bit data read bus and two 16-bit data read buses, two 16-bit data write buses, and additional buses  
dedicated to peripheral and DMA activity. These buses provide the ability to perform up to four 16-bit data  
reads and two 16-bit data writes in a single cycle. The device also includes four DMA controllers, each  
with 4 channels, providing data movement for 16-independent channel contexts without CPU intervention.  
Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and independent of the  
CPU activity.  
The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit  
multiplication and a 32-bit add in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by  
an additional 16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize  
parallel activity and power consumption. These resources are managed in the Address Unit (AU) and Data  
Unit (DU) of the C55x CPU.  
The C55x CPU supports a variable byte width instruction set for improved code density. The Instruction  
Unit (IU) performs 32-bit program fetches from internal or external memory and queues instructions for the  
Program Unit (PU). The Program Unit decodes the instructions, directs tasks to the Address Unit (AU) and  
Data Unit (DU) resources, and manages the fully protected pipeline. Predictive branching capability avoids  
pipeline flushes on execution of conditional instructions.  
The general-purpose input and output functions, along with the 10-bit SAR ADC on the TMS320C5535,  
provide sufficient pins for status, interrupts, and bit I/O for LCD displays, keyboards, and media interfaces.  
Serial media is supported through two Secure Digital (SD) peripherals, four Inter-IC Sound (I2S Bus)  
modules, one Serial-Port Interface (SPI) with up to 4 chip selects, one I2C multi-master and slave  
interface, and a Universal Asynchronous Receiver/Transmitter (UART) interface.  
Additional peripherals include: a high-speed Universal Serial Bus (USB 2.0) device mode only (not  
available on TMS320C5532), a real-time clock (RTC), three general-purpose timers with one configurable  
as a watchdog timer, and an analog phase-locked loop (APLL) clock generator.  
In addition, the TMS320C5535 includes a tightly-coupled FFT Hardware Accelerator. The tightly-coupled  
FFT Hardware Accelerator supports 8 to 1024-point (in power of 2) real and complex-valued FFTs.  
Furthermore, the device includes three integrated LDOs to power different sections of the device:  
ANA_LDO (All devices)Provides 1.3 V to the DSP PLL (VDDA_PLL), SAR, and power management  
circuits (VDDA_ANA).  
2
Fixed-Point Digital Signal Processor  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
 
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
DSP_LDO (TMS320C5535 and 'C5534)Provides 1.3 V or 1.05 V to the DSP core (CVDD), selectable  
on-the-fly by software as long as operating frequency ranges are observed. For lowest power  
operation, the programmer can shut down the internal DSP_LDO, cutting power to the DSP core  
(CVDD) while an external supply provides power to the RTC (CVDDRTC and DVDDRTC). The RTC alarm  
interrupt or the WAKEUP pin can re-enable the internal DSP_LDO and re-apply power to the DSP  
core.  
When DSP_LDO comes out of reset, it is enabled to 1.3 V for the bootloader to operate. For the  
50-MHz devices, DSP_LDO must be programmed to 1.05 V to match the core voltage, CVDD, for  
proper operation after reset.  
USB_LDO (TMS320C5535, 'C5534, and 'C5533)Provides 1.3 V to the USB core digital  
(USB_VDD1P3) and PHY circuits (USB_VDDA1P3).  
These devices are supported by the industrys award-winning eXpressDSP, Code Composer Studio™  
Integrated Development Environment (IDE), DSP/BIOS, Texas Instrumentsalgorithm standard, and the  
industrys largest third-party network. Code Composer Studio IDE features code generation tools including  
a C Compiler and Linker, RTDX, XDS100, XDS510, XDS560emulation device drivers, and  
evaluation modules. The devices are also supported by the C55x DSP Library which features more than  
50 foundational software kernels (FIR filters, IIR filters, FFTs, and various math functions) as well as chip  
support libraries.  
Copyright © 2011, Texas Instruments Incorporated  
Fixed-Point Digital Signal Processor  
3
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
1.4 Functional Block Diagram  
Figure 1-1 shows the functional block diagram of the devices.  
Figure 1-1. Functional Block Diagram  
DSP System  
JTAG Interface  
C55x DSP CPU  
Input  
Clock(s)  
Power  
Management  
PLL/Clock  
Generator  
64 KB DARAM  
128 KB ROM  
Pin  
Multiplexing  
TMS320C5532  
TMS320C5533  
TMS320C5534  
No SARAM  
64 KB SARAM  
192 KB SARAM  
256 KB SARAM  
TMS320C5535  
FFT Hardware  
Accelerator  
Switched Central Resource (SCR)  
Peripherals  
TMS320C5535  
TMS320C5534  
TMS320C5533  
Connectivity  
Program/Data  
Storage  
Application  
Specific  
Interconnect  
Display  
USB 2.0  
PHY (HS)  
[DEVICE]  
Not Applicable  
TMS320C5532  
eMMC/SD  
SDHC  
(x2)  
DMA  
(x4)  
10-Bit  
SAR  
ADC  
LCD  
Bridge  
System  
Serial Interfaces  
I2S  
I2C  
(x4)  
GP Timer  
(x2)  
GP Timer  
or WD  
RTC  
ANA_LDO  
USB_LDO  
DSP_LDO  
TMS320C5532  
TMS320C5533  
SPI  
UART  
TMS320C5535/C5534  
4
Fixed-Point Digital Signal Processor  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
 
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
1
Fixed-Point Digital Signal Processor ............... 1  
6.1 Parameter Information .............................. 83  
6.2  
Recommended Clock and Control Signal Transition  
1.1 Features .............................................. 1  
1.2 Applications .......................................... 2  
1.3 Description ........................................... 2  
Behavior ............................................ 83  
6.3 Power Supplies ..................................... 84  
6.4  
External Clock Input From RTC_XI, CLKIN, and  
USB_MXI Pins ...................................... 87  
1.4 Functional Block Diagram ............................ 4  
6.5 Clock PLLs ......................................... 91  
2
Device Overview ........................................ 6  
6.6  
Direct Memory Access (DMA) Controller ........... 93  
2.1 Device Differences ................................... 6  
2.2 Device Characteristics ............................... 6  
2.3 C55x CPU .......................................... 13  
2.4 Memory Map Summary ............................. 20  
Device Pins ............................................. 24  
3.1 Pin Assignments .................................... 24  
6.7 Reset ............................................... 94  
6.8 Wake-up Events, Interrupts, and XF ............... 98  
6.9 Secure Digital (SD) ................................ 100  
6.10 Real-Time Clock (RTC) ........................... 105  
3
4
6.11 Inter-Integrated Circuit (I2C) ...................... 108  
6.12 Universal Asynchronous Receiver/Transmitter  
(UART) ............................................ 112  
3.2 Terminal Functions ................................. 28  
Device Configuration ................................. 55  
6.13 Inter-IC Sound (I2S) ............................... 114  
6.14 Liquid Crystal Display Controller (LCDC) C5535  
Only ............................................... 121  
4.1 System Registers ................................... 55  
4.2 Power Considerations .............................. 56  
4.3 Clock Considerations ............................... 64  
4.4 Boot Sequence ..................................... 66  
4.5 Configurations at Reset ............................ 69  
4.6 Configurations After Reset ......................... 70  
4.7 Multiplexed Pin Configurations ..................... 72  
4.8 Debugging Considerations ......................... 76  
Device Operating Conditions ....................... 78  
6.15 10-Bit SAR ADC C5535 Only .................. 130  
6.16 Serial Port Interface (SPI) ......................... 131  
6.17 Universal Serial Bus (USB) 2.0 Controller Does  
Not Apply to C5532 ............................... 134  
6.18 General-Purpose Timers .......................... 141  
6.19 General-Purpose Input/Output .................... 143  
6.20 IEEE 1149.1 JTAG ................................ 147  
Device and Documentation Support ............. 149  
7.1 Device Support .................................... 149  
5
6
7
8
5.1  
Absolute Maximum Ratings Over Operating Case  
Temperature Range (Unless Otherwise Noted) .... 78  
7.2 Community Resources ............................ 150  
Mechanical Packaging and Orderable  
Information ............................................ 151  
8.1 Thermal Data for ZHH ............................. 151  
8.2 Packaging Information ............................ 151  
5.2 Recommended Operating Conditions .............. 79  
5.3  
Electrical Characteristics Over Recommended  
Ranges of Supply Voltage and Operating  
Temperature (Unless Otherwise Noted) ............ 80  
Peripheral Information and Electrical  
Specifications .......................................... 83  
Copyright © 2011, Texas Instruments Incorporated  
Contents  
5
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
2 Device Overview  
2.1 Device Differences  
Table 2-1 lists the important differences between all four devices, including on-chip RAM, peripheral  
support, and LDOs.  
Table 2-1. Device Differences  
Device  
Digital Core Supply  
Voltage (CVDD  
On-chip  
DARAM  
On-chip  
SARAM  
USB  
LCD  
Interface  
Tightly-  
Coupled  
FFT  
SAR  
ADC  
LDO  
)
1.05 V 1.3 V  
Maximum CPU Speed  
TMS320C5535A05  
TMS320C5535A10  
50 MHz  
50 MHz  
-
ANA, DSP,  
and USB  
64 KB  
64 KB  
64 KB  
64 KB  
256 KB  
192 KB  
64 KB  
0 KB  
x(1)  
x
x
-
x
-
100 MHz  
TMS320C5534A05  
TMS320C5534A10  
50 MHz  
50 MHz  
-
ANA, DSP,  
and USB  
(2)  
x
x
-
-
100 MHz  
TMS320C5533A05  
TMS320C5533A10  
50 MHz  
50 MHz  
-
ANA and  
USB  
-
-
-
-
100 MHz  
TMS320C5532A05  
TMS320C5532A10  
50 MHz  
50 MHz  
-
-
-
ANA only  
100 MHz  
(1) x Supported  
(2) - Not supported  
2.2 Device Characteristics  
Table 2-2 through Table 2-5 provide an overview of all four devices. The tables show significant features  
of each device, including the capacity of on-chip RAM, the peripherals, the CPU frequency, and the  
package type with pin count. For more detailed information on the actual device part number and  
maximum device operating frequency, see Section 7.1.2, Device and Development-Support Tool  
Nomenclature.  
Table 2-2. Characteristics of the 'C5535 Processor  
HARDWARE FEATURES  
TMS320C5535A05, 'C5535A10  
Peripherals  
Not all peripheral pins are  
available at the same time  
(for more detail, see the  
Device Configurations  
section).  
Four DMA controllers each with four channels,  
for a total of 16 channels  
DMA  
2 32-Bit General-Purpose (GP) Timers  
1 Additional Timer Configurable as a 32-Bit GP Timer and/or a  
Watchdog  
Timers  
UART  
1 (with RTS/CTS flow control)  
1 with 4 chip selects  
SPI  
I2C  
1 (Master/Slave)  
I2S  
4 (Two Channel, Full Duplex Communication)  
High- and Full-Speed Device  
USB 2.0 (Device only)  
2 SD, 256-byte read/write buffer, max 50-MHz clock and  
signaling for DMA transfers  
SD  
LCD Bridge  
1 (8-bit or 16-bit asynchronous parallel bus)  
1 (10-bit, 4-input, 16-μs conversion time)  
ADC (Successive Approximation [SAR])  
Real-Time Clock (RTC)  
FFT Hardware Accelerator  
1 (Crystal Input, Separate Clock Domain and Power Supply)  
1 (Supports 8 to 1024-point 16-bit real and complex FFT)  
6
Device Overview  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
 
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
Table 2-2. Characteristics of the 'C5535 Processor (continued)  
HARDWARE FEATURES  
General-Purpose Input/Output Port (GPIO)  
Size (Bytes)  
TMS320C5535A05, 'C5535A10  
Up to 20 pins (with 1 Additional General-Purpose Output (XF)  
and 4 Special-Purpose Outputs for Use With SAR)  
320 KB RAM, 128KB ROM  
64 KB On-Chip Dual-Access RAM (DARAM)  
256 KB On-Chip Single-Access RAM (SARAM)  
128 KB On-Chip Single-Access ROM (SAROM)  
On-Chip Memory  
Organization  
JTAGID Register  
(Value is: 0x1B8F E02F)  
JTAG BSDL_ID  
CPU Frequency  
see Figure 6-38  
1.05-V Core  
50 MHz  
100 MHz (TMS320C5535A10 only)  
20 ns  
MHz  
1.3-V Core  
1.05-V Core  
Cycle Time  
ns  
1.3-V Core  
10 ns (TMS320C5535A10 only)  
1.05 V 50 MHz  
Core (V)  
Voltage  
LDOs  
1.3 V 100 MHz (TMS320C5535A10 only)  
1.8 V, 2.5 V, 2.75 V, 3.3 V  
I/O (V)  
DSP_LDO  
1.3 V or 1.05 V, 250 mA max current for DSP CPU (CVDD  
1.3 V, 4 mA max current to supply power to PLL (VDDA_PLL),  
SAR, and power management circuits (VDDA_ANA  
1.3 V, 25 mA max current to supply power to USB core digital  
)
ANA_LDO  
USB_LDO  
)
(USB_VDD1P3) and PHY circuits (USB_VDDA1P3  
)
Active @ Room Temp 25°C, 75% DMAC +  
25% ADD  
0.15 mW/MHz @ 1.05 V, 50 MHz  
0.22 mW/MHz @ 1.3 V, 100 MHz  
Power Characterization  
Active @ Room Temp 25°C, 75% DMAC +  
25% NOP  
0.14 mW/MHz @ 1.05 V, 50 MHz  
0.22 mW/MHz @ 1.3 V, 100 MHz  
Standby (Master Clock Disabled) @ Room  
Temp 25°C (DARAM and SARAM in Active  
Mode)  
0.26 mW @ 1.05 V  
0.44 mW @ 1.3 V  
Standby (Master Clock Disabled) @ Room  
Temp 25°C (DARAM in Retention and  
SARAM in Active Mode)  
0.23 mW @ 1.05 V  
0.40 mW @ 1.3 V  
Standby (Master Clock Disabled) @ Room  
Temp 25°C (DARAM in Active Mode and  
SARAM in Retention)  
0.15 mW @ 1.05 V  
0.28 mW @ 1.3 V  
PLL Options  
Software Programmable Multiplier  
12 x 12 mm  
x4 to x4099 multiplier  
144-Pin BGA (ZHH)  
BGA Package  
Product Preview (PP),  
Advance Information (AI),  
or Production Data (PD)  
Product Status(1)  
PD  
(1) PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
Copyright © 2011, Texas Instruments Incorporated  
Device Overview  
7
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
Table 2-3. Characteristics of the 'C5534 Processor  
HARDWARE FEATURES  
TMS320C5534A05, 'C5534A10  
Peripherals  
Not all peripheral pins are  
available at the same time  
(for more detail, see the  
Device Configurations  
section).  
Four DMA controllers each with four channels, for a total of 16  
channels  
DMA  
2 32-Bit General-Purpose (GP) Timers  
1 Additional Timer Configurable as a 32-Bit GP Timer and/or a  
Watchdog  
Timers  
UART  
1 (with RTS/CTS flow control)  
1 with 4 chip selects  
SPI  
I2C  
1 (Master/Slave)  
I2S  
4 (Two Channel, Full Duplex Communication)  
High- and Full-Speed Device  
USB 2.0 (Device only)  
2 SD, 256-byte read/write buffer, max 50-MHz clock and  
signaling for DMA transfers  
SD  
Real-Time Clock (RTC)  
1 (Crystal Input, Separate Clock Domain and Power Supply)  
Up to 20 pins (with 1 Additional General-Purpose Output (XF))  
256 KB RAM, 128KB ROM  
General-Purpose Input/Output Port (GPIO)  
Size (Bytes)  
64 KB On-Chip Dual-Access RAM (DARAM)  
192 KB On-Chip Single-Access RAM (SARAM)  
128 KB On-Chip Single-Access ROM (SAROM)  
On-Chip Memory  
Organization  
JTAGID Register  
(Value is: 0x1B8F E02F)  
JTAG BSDL_ID  
CPU Frequency  
see Figure 6-38  
1.05-V Core  
50 MHz  
100 MHz (TMS320C5534A10 only)  
20 ns  
MHz  
1.3-V Core  
1.05-V Core  
Cycle Time  
ns  
1.3-V Core  
10 ns (TMS320C5534A10 only)  
1.05 V 50 MHz  
Core (V)  
Voltage  
LDOs  
1.3 V 100 MHz (TMS320C5534A10 only)  
1.8 V, 2.5 V, 2.75 V, 3.3 V  
I/O (V)  
DSP_LDO  
1.3 V or 1.05 V, 250 mA max current for DSP CPU (CVDD)  
1.3 V, 4 mA max current to supply power to PLL (VDDA_PLL  
and power management circuits (VDDA_ANA  
)
ANA_LDO  
USB_LDO  
)
1.3 V, 25 mA max current to supply power to USB core digital  
(USB_VDD1P3) and PHY circuits (USB_VDDA1P3  
)
Active @ Room Temp 25°C, 75% DMAC +  
25% ADD  
0.15 mW/MHz @ 1.05 V, 50 MHz  
0.22 mW/MHz @ 1.3 V, 100 MHz  
Power Characterization  
Active @ Room Temp 25°C, 75% DMAC +  
25% NOP  
0.14 mW/MHz @ 1.05 V, 50 MHz  
0.22 mW/MHz @ 1.3 V, 100 MHz  
Standby (Master Clock Disabled) @ Room  
Temp 25°C (DARAM and SARAM in Active  
Mode)  
0.26 mW @ 1.05 V  
0.44 mW @ 1.3 V  
Standby (Master Clock Disabled) @ Room  
Temp 25°C (DARAM in Retention and  
SARAM in Active Mode)  
0.23 mW @ 1.05 V  
0.40 mW @ 1.3 V  
Standby (Master Clock Disabled) @ Room  
Temp 25°C (DARAM in Active Mode and  
SARAM in Retention)  
0.15 mW @ 1.05 V  
0.28 mW @ 1.3 V  
PLL Options  
Software Programmable Multiplier  
12 x 12 mm  
x4 to x4099 multiplier  
144-Pin BGA (ZHH)  
BGA Package  
8
Device Overview  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
Table 2-3. Characteristics of the 'C5534 Processor (continued)  
HARDWARE FEATURES  
TMS320C5534A05, 'C5534A10  
Product Preview (PP),  
Advance Information (AI),  
or Production Data (PD)  
Product Status(1)  
PD  
(1) PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
Copyright © 2011, Texas Instruments Incorporated  
Device Overview  
9
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
Table 2-4. Characteristics of the 'C5533 Processor  
HARDWARE FEATURES  
TMS320C5533A05, 'C5533A10  
Peripherals  
Not all peripheral pins are  
available at the same time  
(for more detail, see the  
Device Configurations  
section).  
Four DMA controllers each with four channels,  
for a total of 16 channels  
DMA  
2 32-Bit General-Purpose (GP) Timers  
1 Additional Timer Configurable as a 32-Bit GP Timer and/or a  
Watchdog  
Timers  
UART  
1 (with RTS/CTS flow control)  
1 with 4 chip selects  
SPI  
I2C  
1 (Master/Slave)  
I2S  
4 (Two Channel, Full Duplex Communication)  
High- and Full-Speed Device  
USB 2.0 (Device only)  
2 SD, 256-byte read/write buffer, max 50-MHz clock and  
signaling for DMA transfers  
SD  
Real-Time Clock (RTC)  
1 (Crystal Input, Separate Clock Domain and Power Supply)  
Up to 20 pins (with 1 Additional General-Purpose Output (XF))  
128 KB RAM, 128KB ROM  
General-Purpose Input/Output Port (GPIO)  
Size (Bytes)  
64 KB On-Chip Dual-Access RAM (DARAM)  
64 KB On-Chip Single-Access RAM (SARAM)  
128 KB On-Chip Single-Access ROM (SAROM)  
On-Chip Memory  
Organization  
JTAGID Register  
(Value is: 0x1B8F E02F)  
JTAG BSDL_ID  
CPU Frequency  
see Figure 6-38  
1.05-V Core  
50 MHz  
100 MHz (TMS320C5533A10 only)  
20 ns  
MHz  
1.3-V Core  
1.05-V Core  
Cycle Time  
ns  
1.3-V Core  
10 ns (TMS320C5533A10 only)  
1.05 V 50 MHz  
Core (V)  
Voltage  
LDOs  
1.3 V 100 MHz (TMS320C5533A10 only)  
1.8 V, 2.5 V, 2.75 V, 3.3 V  
I/O (V)  
1.3 V, 4 mA max current to supply power to PLL (VDDA_PLL  
)
ANA_LDO  
and power management circuits (VDDA_ANA  
)
1.3 V, 25 mA max current to supply power to USB core digital  
USB_LDO  
(USB_VDD1P3) and PHY circuits (USB_VDDA1P3  
)
Active @ Room Temp 25°C, 75% DMAC +  
25% ADD  
0.15 mW/MHz @ 1.05 V, 50 MHz  
0.22 mW/MHz @ 1.3 V, 100 MHz  
Power Characterization  
Active @ Room Temp 25°C, 75% DMAC +  
25% NOP  
0.14 mW/MHz @ 1.05 V, 50 MHz  
0.22 mW/MHz @ 1.3 V, 100 MHz  
Standby (Master Clock Disabled) @ Room  
Temp 25°C (DARAM and SARAM in Active  
Mode)  
0.26 mW @ 1.05 V  
0.44 mW @ 1.3 V  
Standby (Master Clock Disabled) @ Room  
Temp 25°C (DARAM in Retention and  
SARAM in Active Mode)  
0.23 mW @ 1.05 V  
0.40 mW @ 1.3 V  
Standby (Master Clock Disabled) @ Room  
Temp 25°C (DARAM in Active Mode and  
SARAM in Retention)  
0.15 mW @ 1.05 V  
0.28 mW @ 1.3 V  
PLL Options  
Software Programmable Multiplier  
12 x 12 mm  
x4 to x4099 multiplier  
144-Pin BGA (ZHH)  
BGA Package  
10  
Device Overview  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
Table 2-4. Characteristics of the 'C5533 Processor (continued)  
HARDWARE FEATURES  
TMS320C5533A05, 'C5533A10  
Product Preview (PP),  
Advance Information (AI),  
or Production Data (PD)  
Product Status(1)  
PD  
(1) PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
Copyright © 2011, Texas Instruments Incorporated  
Device Overview  
11  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
Table 2-5. Characteristics of the C5532 Processor  
HARDWARE FEATURES  
TMS320C5532A05, 'C5532A10  
Peripherals  
Not all peripheral pins are  
available at the same time  
(for more detail, see the  
Device Configurations  
section).  
Four DMA controllers each with four channels,  
for a total of 16 channels  
DMA  
2 32-Bit General-Purpose (GP) Timers  
1 Additional Timer Configurable as a 32-Bit GP Timer and/or a  
Watchdog  
Timers  
UART  
SPI  
1 (with RTS/CTS flow control)  
1 with 4 chip selects  
I2C  
1 (Master/Slave)  
I2S  
4 (Two Channel, Full Duplex Communication)  
2 SD, 256-byte read/write buffer, max 50-MHz clock and  
signaling for DMA transfers  
SD  
Real-Time Clock (RTC)  
1 (Crystal Input, Separate Clock Domain and Power Supply)  
Up to 20 pins (with 1 Additional General-Purpose Output (XF))  
64 KB RAM, 128KB ROM  
General-Purpose Input/Output Port (GPIO)  
Size (Bytes)  
On-Chip Memory  
64 KB On-Chip Dual-Access RAM (DARAM)  
128 KB On-Chip Single-Access ROM (SAROM)  
Organization  
JTAGID Register  
(Value is: 0x1B8F E02F)  
JTAG BSDL_ID  
CPU Frequency  
see Figure 6-38  
1.05-V Core  
50 MHz  
100 MHz (TMS320C5532A10 only)  
20 ns  
MHz  
1.3-V Core  
1.05-V Core  
Cycle Time  
Voltage  
ns  
1.3-V Core  
10 ns (TMS320C5532A10 only)  
1.05 V 50 MHz  
Core (V)  
1.3 V 100 MHz (TMS320C5532A10 only)  
1.8 V, 2.5 V, 2.75 V, 3.3 V  
I/O (V)  
1.3 V, 4 mA max current for PLL (VDDA_PLL) power  
LDO  
ANA_LDO  
management circuits (VDDA_ANA  
)
Active @ Room Temp 25°C, 75% DMAC +  
25% ADD  
0.15 mW/MHz @ 1.05 V, 50 MHz  
0.22 mW/MHz @ 1.3 V, 100 MHz  
Power Characterization  
Active @ Room Temp 25°C, 75% DMAC +  
25% NOP  
0.14 mW/MHz @ 1.05 V, 50 MHz  
0.22 mW/MHz @ 1.3 V, 100 MHz  
Standby (Master Clock Disabled) @ Room  
Temp 25°C (DARAM and SARAM in Active  
Mode)  
0.26 mW @ 1.05 V  
0.44 mW @ 1.3 V  
Standby (Master Clock Disabled) @ Room  
Temp 25°C (DARAM in Retention and  
SARAM in Active Mode)  
0.23 mW @ 1.05 V  
0.40 mW @ 1.3 V  
Standby (Master Clock Disabled) @ Room  
Temp 25°C (DARAM in Active Mode and  
SARAM in Retention)  
0.15 mW @ 1.05 V  
0.28 mW @ 1.3 V  
PLL Options  
Software Programmable Multiplier  
12 x 12 mm  
x4 to x4099 multiplier  
144-Pin BGA (ZHH)  
BGA Package  
Product Preview (PP),  
Advance Information (AI),  
or Production Data (PD)  
Product Status(1)  
PD  
(1) PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
12  
Device Overview  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
2.3 C55x CPU  
The TMS320C5535, 'C5534, 'C5533, and 'C5532 fixed-point digital signal processors (DSP) are based on  
the C55x CPU 3.3 generation processor core. The C55x DSP architecture achieves high performance and  
low power through increased parallelism and total focus on power savings. The CPU supports an internal  
bus structure that is composed of one program bus, three data read buses (one 32-bit data read bus and  
two 16-bit data read buses), two 16-bit data write buses, and additional buses dedicated to peripheral and  
DMA activity. These buses provide the ability to perform up to four data reads and two data writes in a  
single cycle. Each DMA controller can perform one 32-bit data transfer per cycle, in parallel and  
independent of the CPU activity.  
The C55x CPU provides two multiply-accumulate (MAC) units, each capable of 17-bit x 17-bit  
multiplication in a single cycle. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional  
16-bit ALU. Use of the ALUs is under instruction set control, providing the ability to optimize parallel  
activity and power consumption. These resources are managed in the Address Unit (AU) and Data Unit  
(DU) of the C55x CPU.  
The C55x DSP generation supports a variable byte width instruction set for improved code density. The  
Instruction Unit (IU) performs 32-bit program fetches from internal or external memory, stores them in a  
128-byte Instruction Buffer Queue, and queues instructions for the Program Unit (PU). The Program Unit  
decodes the instructions, directs tasks to AU and DU resources, and manages the fully protected pipeline.  
Predictive branching capability avoids pipeline flushes on execution of conditional instruction calls.  
For more detailed information on the CPU, see the TMS320C55x CPU 3.0 CPU Reference Guide  
(literature number SWPU073).  
2.3.1 On-Chip Dual-Access RAM (DARAM)  
The DARAM is located in the byte address range 000000h 00FFFFh and is composed of eight blocks of  
4K words each (see Table 2-6). Each DARAM block can perform two accesses per cycle (two reads, two  
writes, or a read and a write). The DARAM can be accessed by the internal program, data, or DMA buses.  
Table 2-6. DARAM Blocks  
CPU  
DMA CONTROLLER  
BYTE ADDRESS RANGE  
MEMORY BLOCK  
BYTE ADDRESS RANGE  
000000h 001FFFh  
002000h 003FFFh  
004000h 005FFFh  
006000h 007FFFh  
008000h 009FFFh  
00A000h 00BFFFh  
00C000h 00DFFFh  
00E000h 00FFFFh  
0001 0000h 0001 1FFFh  
0001 2000h 0001 3FFFh  
0001 4000h 0001 5FFFh  
0001 6000h 0001 7FFFh  
0001 8000h 0001 9FFFh  
0001 A000h 0001 BFFFh  
0001 C000h 0001 DFFFh  
0001 E000h 0001 FFFFh  
DARAM 0(1)  
DARAM 1  
DARAM 2  
DARAM 3  
DARAM 4  
DARAM 5  
DARAM 6  
DARAM 7  
(1) The first 192 bytes are reserved for memory-mapped registers (MMRs). See Figure 2-1, Memory Map  
Summary.  
2.3.2 On-Chip Read-Only Memory (ROM)  
The zero-wait-state ROM is located at the byte address range FE0000h FFFFFFh. The ROM is  
composed of four 16K-word blocks, for a total of 128K bytes of ROM. The ROM address space can be  
mapped by software to the internal ROM.  
The standard device includes a Bootloader program resident in the ROM.  
Copyright © 2011, Texas Instruments Incorporated  
Device Overview  
13  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
When the MPNMC bit field of the ST3 status register is cleared (by default), the byte address range  
FE0000h FFFFFFh is reserved for the on-chip ROM. When the MPNMC bit field of the ST3 status  
register is set through software, the on-chip ROM is disabled and not present in the memory map, and  
byte address range FE0000h FFFFFFh is unmapped. A hardware reset always clears the MPNMC bit,  
so it is not possible to disable the ROM at reset. However, the software reset instruction does not affect  
the MPNMC bit. The ROM can be accessed by the program and data buses. Each on-chip ROM block is  
a one cycle per word access memory.  
2.3.3 On-Chip Single-Access RAM (SARAM)  
Section 2.3.3.1 explains the SARAM blocks for the C5535. Section 2.3.3.2 explains the SARAM blocks for  
the C5534. Section 2.3.3.3 explains the SARAM blocks for the C5533. The C5532 has no SARAM blocks.  
2.3.3.1 SARAM for C5535  
The SARAM is located at the byte address range 010000h 04FFFFh and is composed of 32 blocks of  
4K words each (see Table 2-7). Each SARAM block can perform one access per cycle (one read or one  
write). SARAM can be accessed by the internal program, data, or DMA buses. SARAM is also accessed  
by the USB and LCD DMA buses.  
Table 2-7. SARAM Blocks for C5535  
CPU  
DMA/USB CONTROLLER  
BYTE ADDRESS RANGE  
MEMORY BLOCK  
BYTE ADDRESS RANGE  
010000h 011FFFh  
012000h 013FFFh  
014000h 015FFFh  
016000h 017FFFh  
018000h 019FFFh  
01A000h 01BFFFh  
01C000h 01DFFFh  
01E000h 01FFFFh  
020000h 021FFFh  
022000h 023FFFh  
024000h 025FFFh  
026000h 027FFFh  
028000h 029FFFh  
02A000h 02BFFFh  
02C000h 02DFFFh  
02E000h 02FFFFh  
030000h 031FFFh  
032000h 033FFFh  
034000h 035FFFh  
036000h 037FFFh  
038000h 039FFFh  
03A000h 03BFFFh  
03C000h 03DFFFh  
03E000h 03FFFFh  
040000h 041FFFh  
042000h 043FFFh  
044000h 045FFFh  
046000h 047FFFh  
0009 0000h 0009 1FFFh  
0009 2000h 0009 3FFFh  
0009 4000h 0009 5FFFh  
0009 6000h 0009 7FFFh  
0009 8000h 0009 9FFFh  
0009 A000h 0009 BFFFh  
0009 C000h 0009 DFFFh  
0009 E000h 0009 FFFFh  
000A 0000h 000A 1FFFh  
000A 2000h 000A 3FFFh  
000A 4000h 000A 5FFFh  
000A 6000h 000A 7FFFh  
000A 8000h 000A 9FFFh  
000A A000h 000A BFFFh  
000A C000h 000A DFFFh  
000A E000h 000A FFFFh  
000B 0000h 000B 1FFFh  
000B 2000h 000B 3FFFh  
000B 4000h 000B 5FFFh  
000B 6000h 000B 7FFFh  
000B 8000h 000B 9FFFh  
000B A000h 000B BFFFh  
000B C000h 000B DFFFh  
000B E000h 000B FFFFh  
000C 0000h 000C 1FFFh  
000C 2000h 000C 3FFFh  
000C 4000h 000C 5FFFh  
000C 6000h 000C 7FFFh  
SARAM 0  
SARAM 1  
SARAM 2  
SARAM 3  
SARAM 4  
SARAM 5  
SARAM 6  
SARAM 7  
SARAM 8  
SARAM 9  
SARAM 10  
SARAM 11  
SARAM 12  
SARAM 13  
SARAM 14  
SARAM 15  
SARAM 16  
SARAM 17  
SARAM 18  
SARAM 19  
SARAM 20  
SARAM 21  
SARAM 22  
SARAM 23  
SARAM 24  
SARAM 25  
SARAM 26  
SARAM 27  
14  
Device Overview  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
 
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
Table 2-7. SARAM Blocks for C5535 (continued)  
CPU  
DMA/USB CONTROLLER  
BYTE ADDRESS RANGE  
MEMORY BLOCK  
BYTE ADDRESS RANGE  
048000h 049FFFh  
04A000h 04BFFFh  
04C000h 04DFFFh  
04E000h 04FFFFh  
000C 8000h 000C 9FFFh  
000C A000h 000C BFFFh  
000C C000h 000C DFFFh  
000C E000h 000C FFFFh  
SARAM 28  
SARAM 29  
SARAM 30  
SARAM 31(1)  
(1) SARAM31 (byte address range: 0x4E000 0x4EFFF) is reserved for the bootloader. After the boot  
process is complete, this memory space can be used.  
2.3.3.2 SARAM for C5534  
The SARAM is located at the byte address range 010000h 03FFFFh and is composed of 24 blocks of  
4K words each (see Table 2-8). Each SARAM block can perform one access per cycle (one read or one  
write). SARAM can be accessed by the internal program, data, or DMA buses. SARAM is also accessed  
by the USB bus.  
Table 2-8. SARAM Blocks for C5534  
CPU  
DMA/USB CONTROLLER  
BYTE ADDRESS RANGE  
MEMORY BLOCK  
BYTE ADDRESS RANGE  
010000h 011FFFh  
012000h 013FFFh  
014000h 015FFFh  
016000h 017FFFh  
018000h 019FFFh  
01A000h 01BFFFh  
01C000h 01DFFFh  
01E000h 01FFFFh  
020000h 021FFFh  
022000h 023FFFh  
024000h 025FFFh  
026000h 027FFFh  
028000h 029FFFh  
02A000h 02BFFFh  
02C000h 02DFFFh  
02E000h 02FFFFh  
030000h 031FFFh  
032000h 033FFFh  
034000h 035FFFh  
036000h 037FFFh  
038000h 039FFFh  
03A000h 03BFFFh  
03C000h 03DFFFh  
03E000h 03FFFFh  
0009 0000h 0009 1FFFh  
0009 2000h 0009 3FFFh  
0009 4000h 0009 5FFFh  
0009 6000h 0009 7FFFh  
0009 8000h 0009 9FFFh  
0009 A000h 0009 BFFFh  
0009 C000h 0009 DFFFh  
0009 E000h 0009 FFFFh  
000A 0000h 000A 1FFFh  
000A 2000h 000A 3FFFh  
000A 4000h 000A 5FFFh  
000A 6000h 000A 7FFFh  
000A 8000h 000A 9FFFh  
000A A000h 000A BFFFh  
000A C000h 000A DFFFh  
000A E000h 000A FFFFh  
000B 0000h 000B 1FFFh  
000B 2000h 000B 3FFFh  
000B 4000h 000B 5FFFh  
000B 6000h 000B 7FFFh  
000B 8000h 000B 9FFFh  
000B A000h 000B BFFFh  
000B C000h 000B DFFFh  
000B E000h 000B FFFFh  
SARAM 0  
SARAM 1  
SARAM 2  
SARAM 3  
SARAM 4  
SARAM 5  
SARAM 6  
SARAM 7  
SARAM 8  
SARAM 9  
SARAM 10  
SARAM 11  
SARAM 12  
SARAM 13  
SARAM 14  
SARAM 15  
SARAM 16  
SARAM 17  
SARAM 18  
SARAM 19  
SARAM 20  
SARAM 21  
SARAM 22  
SARAM 23  
2.3.3.3 SARAM for C5533  
The SARAM is located at the byte address range 010000h 01FFFFh and is composed of 8 blocks of 4K  
words each (see Table 2-9). Each SARAM block can perform one access per cycle (one read or one  
write). SARAM can be accessed by the internal program, data, or DMA buses. SARAM is also accessed  
by the USB bus.  
Copyright © 2011, Texas Instruments Incorporated  
Device Overview  
15  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
Table 2-9. SARAM Blocks for C5533  
CPU  
DMA/USB CONTROLLER  
BYTE ADDRESS RANGE  
MEMORY BLOCK  
BYTE ADDRESS RANGE  
010000h 011FFFh  
012000h 013FFFh  
014000h 015FFFh  
016000h 017FFFh  
018000h 019FFFh  
01A000h 01BFFFh  
01C000h 01DFFFh  
01E000h 01FFFFh  
0009 0000h 0009 1FFFh  
0009 2000h 0009 3FFFh  
0009 4000h 0009 5FFFh  
0009 6000h 0009 7FFFh  
0009 8000h 0009 9FFFh  
0009 A000h 0009 BFFFh  
0009 C000h 0009 DFFFh  
0009 E000h 0009 FFFFh  
SARAM 0  
SARAM 1  
SARAM 2  
SARAM 3  
SARAM 4  
SARAM 5  
SARAM 6  
SARAM 7  
2.3.4 I/O Memory  
Each device DSP includes a 64K byte I/O space for the memory-mapped registers of the DSP peripherals  
and system registers used for idle control, status monitoring and system configuration. I/O space is  
separate from program/memory space and is accessed with separate instruction opcodes or via the  
DMA's.  
Table 2-10, Table 2-11, and Table 2-12 list the memory-mapped registers of each device. Note that not all  
addresses in the 64K byte I/O space are used; these addresses should be treated as RESERVED and not  
accessed by the CPU nor DMA. For the expanded tables of each peripheral, see Section 6, Peripheral  
Information and Electrical Specifications of this document.  
Some DMA controllers have access to the I/O-Space memory-mapped registers of the following  
peripherals registers: I2C, UART, I2S, SD, USB, and SAR ADC.  
Before accessing any peripheral memory-mapped register, make sure the peripheral being accessed is  
not held in reset via the Peripheral Reset Control Register (PRCR) and its internal clock is enabled via the  
Peripheral Clock Gating Control Registers (PCGCR1 and PCGCR2).  
Table 2-10. Peripheral I/O-Space Control Registers for C5535  
WORD ADDRESS  
0x0000 0x0004  
PERIPHERAL  
Idle Control  
Reserved  
DMA0  
0x0005 0x000D through 0x0803 0x0BFF  
0x0C00 0x0C7F  
0x0C80 0x0CFF  
0x0D00 0x0D7F  
0x0D80 0x0DFF  
0x0E00 0x0E7F  
Reserved  
DMA1  
Reserved  
DMA2  
0x0E80 0x0EFF  
0x0F00 0x0F7F  
Reserved  
DMA3  
0x0F80 0x17FF  
Reserved  
Timer0  
0x1800 0x181F  
0x1820 0x183F  
Reserved  
Timer1  
0x1840 0x185F  
0x1860 0x187F  
Reserved  
Timer2  
0x1880 0x189F  
0x1900 0x197F  
RTC  
0x1980 0x19FF  
Reserved  
I2C  
0x1A00 0x1A6C  
0x1A6D 0x1AFF  
Reserved  
16  
Device Overview  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
Table 2-10. Peripheral I/O-Space Control Registers for C5535 (continued)  
WORD ADDRESS  
0x1B00 0x1B1F  
PERIPHERAL  
UART  
0x1B80 0x1BFF  
0x1C00 0x1CFF  
0x1D00 0x1FFF through 0x2600 0x27FF  
0x2800 0x2840  
Reserved  
System Control  
Reserved  
I2S0  
0x2900 0x2940  
I2S1  
0x2A00 0x2A40  
I2S2  
0x2B00 0x2B40  
I2S3  
0x2C41 0x2DFF  
0x2E00 0x2E40  
Reserved  
LCD  
0x2E41 0x2FFF  
Reserved  
0x3000 0x300F  
SPI  
0x3010 0x39FF  
Reserved  
0x3A00 0x3A1F  
SD0  
0x3A20 0x3AFF  
0x3B00 0x3B1F  
Reserved  
SD1  
0x3B2F 0x6FFF  
0x7000 0x70FF  
Reserved  
SAR and Analog Control Registers  
0x7100 0x7FFF  
Reserved  
USB  
0x8000 0xFFFF  
Table 2-11. Peripheral I/O-Space Control Registers for C5534 and C5533  
WORD ADDRESS  
0x0000 0x0004  
PERIPHERAL  
Idle Control  
Reserved  
DMA0  
0x0005 0x000D through 0x0803 0x0BFF  
0x0C00 0x0C7F  
0x0C80 0x0CFF  
Reserved  
DMA1  
0x0D00 0x0D7F  
0x0D80 0x0DFF  
Reserved  
DMA2  
0x0E00 0x0E7F  
0x0E80 0x0EFF  
Reserved  
DMA3  
0x0F00 0x0F7F  
0x0F80 0x0FFF  
Reserved  
Reserved  
Reserved  
Timer0  
0x1000 0x10DD  
0x10EE 0x10FF through 0x1300 0x17FF  
0x1800 0x181F  
0x1820 0x183F  
Reserved  
Timer1  
0x1840 0x185F  
0x1860 0x187F  
Reserved  
Timer2  
0x1880 0x189F  
0x1900 0x197F  
RTC  
0x1980 0x19FF  
Reserved  
I2C  
0x1A00 0x1A6C  
0x1A6D 0x1AFF  
Reserved  
UART  
0x1B00 0x1B1F  
0x1B80 0x1BFF  
Reserved  
Copyright © 2011, Texas Instruments Incorporated  
Device Overview  
17  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
Table 2-11. Peripheral I/O-Space Control Registers for C5534 and  
C5533 (continued)  
WORD ADDRESS  
PERIPHERAL  
System Control  
Reserved  
I2S0  
0x1C00 0x1CFF  
0x1D00 0x1FFF through 0x2600 0x27FF  
0x2800 0x2840  
0x2900 0x2940  
I2S1  
0x2A00 0x2A40  
I2S2  
0x2B00 0x2B40  
I2S3  
0x2C41 0x2FFF  
0x3000 0x300F  
Reserved  
SPI  
0x3010 0x39FF  
Reserved  
SD0  
0x3A00 0x3A1F  
0x3A20 0x3AFF  
0x3B00 0x3B1F  
Reserved  
SD1  
0x3B2F 0x7FFF  
0x8000 0xFFFF  
Reserved  
USB  
Table 2-12. Peripheral I/O-Space Control Registers for C5532  
WORD ADDRESS  
0x0000 0x0004  
PERIPHERAL  
Idle Control  
Reserved  
DMA0  
0x0005 0x000D through 0x0803 0x0BFF  
0x0C00 0x0C7F  
0x0C80 0x0CFF  
Reserved  
DMA1  
0x0D00 0x0D7F  
0x0D80 0x0DFF  
Reserved  
DMA2  
0x0E00 0x0E7F  
0x0E80 0x0EFF  
Reserved  
DMA3  
0x0F00 0x0F7F  
0x0F80 0x0FFF  
Reserved  
Reserved  
Reserved  
Timer0  
0x1000 0x10DD  
0x10EE 0x10FF through 0x1300 0x17FF  
0x1800 0x181F  
0x1820 0x183F  
Reserved  
Timer1  
0x1840 0x185F  
0x1860 0x187F  
Reserved  
Timer2  
0x1880 0x189F  
0x1900 0x197F  
RTC  
0x1980 0x19FF  
Reserved  
I2C  
0x1A00 0x1A6C  
0x1A6D 0x1AFF  
Reserved  
UART  
0x1B00 0x1B1F  
0x1B80 0x1BFF  
Reserved  
System Control  
Reserved  
I2S0  
0x1C00 0x1CFF  
0x1D00 0x1FFF through 0x2600 0x27FF  
0x2800 0x2840  
0x2900 0x2940  
I2S1  
0x2A00 0x2A40  
I2S2  
18  
Device Overview  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
Table 2-12. Peripheral I/O-Space Control Registers for C5532 (continued)  
WORD ADDRESS  
0x2B00 0x2B40  
PERIPHERAL  
I2S3  
0x2C41 0x2DFF through 0x2E41 - 0x2FFF  
0x3000 0x300F  
Reserved  
SPI  
0x3010 0x39FF  
Reserved  
SD0  
0x3A00 0x3A1F  
0x3A20 0x3AFF  
Reserved  
SD1  
0x3B00 0x3B1F  
0x3B2F 0xFFFF  
Reserved  
Copyright © 2011, Texas Instruments Incorporated  
Device Overview  
19  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
2.4 Memory Map Summary  
The on-chip, dual-access RAM allows two accesses to a given block during the same cycle. There are 8  
blocks of 8K bytes of dual-access RAM. The on-chip, single-access RAM allows one access to a given  
block per cycle. In addition, there are 32 blocks of 8K bytes of single-access RAM.  
The DSP memory is accessible by different master modules within the DSP, including the C55x CPU, the  
four DMA controllers, LCD, and USB's CDMA (see Figure 2-1).  
CPU BYTE  
DMA/USB/LCD  
ADDRESS(A) BYTE ADDRESS(A)  
MEMORY BLOCKS  
MMR (Reserved)(B)  
BLOCK SIZE  
000000h  
0000C0h  
0001 0000h  
0001 00C0h  
DARAM(C)  
SARAM  
64K Minus 192 Bytes  
256K Bytes  
010000h  
050000h  
0009 0000h  
0100 0000h  
Reserved  
FE0000h  
FFFFFFh  
050E 0000h  
050F FFFFh  
Unmapped (if MPNMC=1)  
128K Bytes ROM (if MPNMC=0)  
ROM  
(if MPNMC=0)  
Reserved  
(if MPNMC=1)  
A. Address shown represents the first byte address in each block.  
B. The first 192 bytes are reserved for memory-mapped registers (MMRs).  
C. The USB and LCD controllers do not have access to DARAM.  
Figure 2-1. C5535 Memory Map Summary  
20  
Device Overview  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
CPU BYTE  
DMA/USB  
ADDRESS(A) BYTE ADDRESS(A)  
MEMORY BLOCKS  
BLOCK SIZE  
000000h  
0000C0h  
0001 0000h  
0001 00C0h  
MMR (Reserved)(B)  
DARAM(C)  
64K Minus 192 Bytes  
192K Bytes  
010000h  
040000h  
0009 0000h  
000C 0000h  
SARAM  
Reserved  
050E 0000h  
050F FFFFh  
FE0000h  
FFFFFFh  
Unmapped (if MPNMC=1)  
128K Bytes ROM (if MPNMC=0)  
ROM  
(if MPNMC=0)  
Reserved  
(if MPNMC=1)  
A. Address shown represents the first byte address in each block.  
B. The first 192 bytes are reserved for memory-mapped registers (MMRs).  
C. The USB controller does not have access to DARAM.  
Figure 2-2. C5534 Memory Map Summary  
Copyright © 2011, Texas Instruments Incorporated  
Device Overview  
21  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
CPU BYTE  
DMA/USB  
ADDRESS(A) BYTE ADDRESS(A)  
MEMORY BLOCKS  
MMR (Reserved)(B)  
BLOCK SIZE  
000000h  
0000C0h  
0001 0000h  
0001 00C0h  
DARAM(C)  
SARAM  
64K Minus 192 Bytes  
64K Bytes  
010000h  
020000h  
0009 0000h  
000A 0000h  
Reserved  
FE0000h  
FFFFFFh  
050E 0000h  
050F FFFFh  
Unmapped (if MPNMC=1)  
128K Bytes ROM (if MPNMC=0)  
ROM  
(if MPNMC=0)  
Reserved  
(if MPNMC=1)  
A. Address shown represents the first byte address in each block.  
B. The first 192 bytes are reserved for memory-mapped registers (MMRs).  
C. The USB controller does not have access to DARAM.  
Figure 2-3. C5533 Memory Map Summary  
22  
Device Overview  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
CPU BYTE  
DMA  
ADDRESS(A) BYTE ADDRESS(A)  
MEMORY BLOCKS  
BLOCK SIZE  
000000h  
0000C0h  
0001 0000h  
0001 00C0h  
MMR (Reserved)(B)  
64K Minus 192 Bytes  
DARAM  
010000h  
0009 0000h  
Reserved  
FE0000h  
FFFFFFh  
050E 0000h  
050F FFFFh  
Unmapped (if MPNMC=1)  
128K Bytes ROM (if MPNMC=0)  
ROM  
(if MPNMC=0)  
Reserved  
(if MPNMC=1)  
A. Address shown represents the first byte address in each block.  
B. The first 192 bytes are reserved for memory-mapped registers (MMRs).  
Figure 2-4. C5532 Memory Map Summary  
Copyright © 2011, Texas Instruments Incorporated  
Device Overview  
23  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
3 Device Pins  
3.1 Pin Assignments  
Extensive pin multiplexing is used to accommodate the largest number of peripheral functions in the  
smallest possible package. Pin multiplexing is controlled using software programmable register settings.  
For more information on pin muxing, see Section 4.7, Multiplexed Pin Configurations of this document.  
3.1.1 Pin Map (Bottom View)  
Figure 3-1 shows the bottom view of the package pin assignments.  
SD0_D1/  
I2S0_RX/  
GP[3]  
SD0_D3/  
GP[5]  
SD1_D1/  
I2S1_RX/  
GP[9]  
SD0_D2/  
GP[4]  
SD0_CMD/  
I2S0_FS/  
GP[1]  
SD1_D3/  
GP[11]  
SD1_D0/  
I2S1_DX/  
GP[8]  
SD1_CLK/  
I2S1_CLK/  
GP[6]  
SD0_CLK/  
I2S0_CLK/  
GP[0]  
SD1_CMD/  
I2S1_FS/  
GP[7]  
SD1_D2/  
GP[10]  
SD0_D0/  
I2S0_DX/  
GP[2]  
USB_MXI  
USB_MXO  
DSP_LDO_  
EN  
INT0  
DV  
DDRTC  
LDOI  
INT1  
LDOI  
DSP_LDOO  
Figure 3-1. C5535 Pin Map  
24  
Device Pins  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
I2S2_CLK/  
GP[18]/  
SPI_CLK  
SD0_D1/  
I2S0_RX/  
GP[3]  
SD0_D3/  
GP[5]  
I2S2_RX/  
GP[20]/  
SPI_RX  
SD1_D1/  
I2S1_RX/  
GP[9]  
I2S2_DX/  
GP[27]/  
SPI_TX  
UART_CTS/ UART_RXD/  
GP[30]/  
I2S3_RX  
V
TRST  
SS  
GP[14]  
GP[16]  
TCK  
V
P
N
M
L
GP[17]  
SS  
GP[29]/  
I2S3_FS  
I2S2_FS/  
GP[19]/  
SPI_CS0  
UART_RTS/  
GP[28]/  
I2S3_CLK  
SD0_D2/  
GP[4]  
SPI_CS2  
GP[13]  
TMS  
GP[15]  
DV  
CV  
DD  
SPI_RX  
TDO  
DV  
DV  
DDIO  
DDIO  
DDIO  
SD0_CMD/  
I2S0_FS/  
GP[1]  
UART_TXD/  
GP[31]/  
I2S3_DX  
SD1_D3/  
GP[11]  
SD1_D0/  
I2S1_DX/  
GP[8]  
SD1_CLK/  
I2S1_CLK/  
GP[6]  
SD0_CLK/  
I2S0_CLK/  
GP[0]  
DV  
DV  
EMU1  
SPI_CS0  
SPI_TX  
SPI_CS1  
EMU0  
TDI  
SPI_CS3  
CV  
DD  
V
CV  
DD  
DDIO  
DDIO  
SS  
SD1_CMD/  
I2S1_FS/  
GP[7]  
SD1_D2/  
GP[10]  
RSV2  
USB_VBUS  
V
SS  
SPI_CLK  
DV  
V
SS  
DDIO  
USB_V  
SS1P3  
V
V
CV  
DD  
RSV1  
USB_V  
DD1P3  
K
J
SS  
SS  
SD0_D0/  
I2S0_DX/  
GP[2]  
USB_V  
SSA1P3  
V
USB_DM  
USB_DP  
USB_R1  
GP[12]  
XF  
SS  
USB_  
RSV10  
RSV9  
RSV8  
USB_V  
SSA3P3  
CV  
DD  
V
H
G
F
SS  
V
DDA1P3  
CV  
DD  
RSV12  
USB_V  
USB_V  
USB_V  
DDA3P3  
DDPLL  
USB_V  
USB_V  
DD1P3  
V
CV  
DD  
SSREF  
SSPLL  
SS  
V
V
V
USB_V  
USB_V  
USB_V  
USB_MXI  
RSV11  
RESET  
E
D
C
B
A
RSV7  
SS  
SS  
SS  
DD1P3  
DDOSC  
SSOSC  
V
SS  
V
USB_LDOO  
USB_MXO  
CLK_SEL  
CV  
DD  
V
CV  
DD  
SS  
SS  
DSP_LDO_  
EN  
V
BG_CAP  
V
INT0  
V
CV  
DD  
V
LDOI  
LDOI  
CLKIN  
INT1  
DV  
SCL  
V
DV  
SSA_ANA  
SS  
SSRTC  
DDRTC  
DDIO  
DDA_PLL  
SS  
LDOI  
V
CV  
RSV3  
V
V
ANA_LDOO  
RSV5  
RSV6  
CV  
V
NC  
SS  
DDRTC  
SS  
SSA_ANA  
DDRTC  
DDA_ANA  
V
SDA  
NC  
NC  
10  
RSV0  
NC  
RSV4  
11  
CLKOUT  
RTC_CLKOUT  
WAKEUP  
RTC_XO  
RTC_XI  
SSA_PLL  
DSP_LDOO  
V
SS  
1
2
3
4
5
6
7
8
9
12  
13  
14  
Figure 3-2. C5534 Pin Map  
Copyright © 2011, Texas Instruments Incorporated  
Device Pins  
25  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
I2S2_CLK/  
GP[18]/  
SPI_CLK  
SD0_D1/  
I2S0_RX/  
GP[3]  
SD0_D3/  
GP[5]  
I2S2_RX/  
GP[20]/  
SPI_RX  
SD1_D1/  
I2S1_RX/  
GP[9]  
I2S2_DX/  
GP[27]/  
SPI_TX  
UART_CTS/ UART_RXD/  
GP[30]/  
I2S3_RX  
V
TRST  
SS  
GP[14]  
GP[16]  
TCK  
V
P
N
M
L
GP[17]  
SS  
GP[29]/  
I2S3_FS  
I2S2_FS/  
GP[19]/  
SPI_CS0  
UART_RTS/  
GP[28]/  
I2S3_CLK  
SD0_D2/  
GP[4]  
SPI_CS2  
GP[13]  
TMS  
GP[15]  
DV  
CV  
DD  
SPI_RX  
TDO  
DV  
DV  
DDIO  
DDIO  
DDIO  
SD0_CMD/  
I2S0_FS/  
GP[1]  
UART_TXD/  
GP[31]/  
I2S3_DX  
SD1_D3/  
GP[11]  
SD1_D0/  
I2S1_DX/  
GP[8]  
SD1_CLK/  
I2S1_CLK/  
GP[6]  
SD0_CLK/  
I2S0_CLK/  
GP[0]  
DV  
DV  
EMU1  
SPI_CS0  
SPI_TX  
SPI_CS1  
EMU0  
TDI  
SPI_CS3  
CV  
DD  
V
CV  
DD  
DDIO  
DDIO  
SS  
SD1_CMD/  
I2S1_FS/  
GP[7]  
SD1_D2/  
GP[10]  
RSV2  
USB_VBUS  
V
SS  
SPI_CLK  
DV  
V
SS  
DDIO  
USB_V  
SS1P3  
V
V
CV  
DD  
RSV1  
USB_V  
DD1P3  
K
J
SS  
SS  
SD0_D0/  
I2S0_DX/  
GP[2]  
USB_V  
SSA1P3  
V
USB_DM  
USB_DP  
USB_R1  
GP[12]  
XF  
SS  
USB_  
RSV10  
RSV9  
RSV8  
USB_V  
SSA3P3  
CV  
DD  
V
H
G
F
SS  
V
DDA1P3  
CV  
DD  
RSV12  
USB_V  
USB_V  
USB_V  
DDA3P3  
DDPLL  
USB_V  
USB_V  
DD1P3  
V
CV  
DD  
SSREF  
SSPLL  
SS  
V
V
V
USB_V  
USB_V  
USB_V  
USB_MXI  
RSV11  
RESET  
E
D
C
B
A
RSV7  
SS  
SS  
SS  
DD1P3  
DDOSC  
SSOSC  
V
SS  
V
USB_LDOO  
USB_MXO  
CLK_SEL  
CV  
DD  
V
CV  
DD  
SS  
SS  
DSP_LDO_  
(1)  
EN  
V
BG_CAP  
V
INT0  
V
CV  
DD  
V
LDOI  
LDOI  
CLKIN  
INT1  
DV  
SCL  
V
DV  
SSA_ANA  
SS  
SSRTC  
DDRTC  
DDIO  
DDA_PLL  
SS  
LDOI  
V
CV  
RSV3  
V
V
ANA_LDOO  
RSV5  
RSV6  
CV  
V
NC  
SS  
DDRTC  
SS  
SSA_ANA  
DDRTC  
DDA_ANA  
V
SDA  
NC  
NC  
10  
RSV0  
RSV4  
11  
CLKOUT  
RTC_CLKOUT  
WAKEUP  
RTC_XO  
RTC_XI  
NC  
8
SSA_PLL  
DSP_LDOO  
V
SS  
1
2
3
4
5
6
7
9
12  
13  
14  
(1) Pin is not supported on this device. To ensure proper device operation, this pin must be hooked up properly. See Table 3-15,  
Regulators and Power Management Terminal Functions.  
(2) Shaded pins are not supported on this device. To ensure proper device operation, these pins must be hooked up properly. See  
Table 3-9, Unsupported USB 2.0 Terminal Functions.  
Figure 3-3. C5533 Pin Map  
26  
Device Pins  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
I2S2_CLK/  
GP[18]/  
SPI_CLK  
SD0_D1/  
I2S0_RX/  
GP[3]  
SD0_D3/  
GP[5]  
I2S2_RX/  
GP[20]/  
SPI_RX  
SD1_D1/  
I2S1_RX/  
GP[9]  
I2S2_DX/  
GP[27]/  
SPI_TX  
UART_CTS/ UART_RXD/  
GP[30]/  
I2S3_RX  
V
TRST  
SS  
GP[14]  
GP[16]  
TCK  
V
P
N
M
L
GP[17]  
SS  
GP[29]/  
I2S3_FS  
I2S2_FS/  
GP[19]/  
SPI_CS0  
UART_RTS/  
GP[28]/  
I2S3_CLK  
SD0_D2/  
GP[4]  
SPI_CS2  
GP[13]  
TMS  
GP[15]  
DV  
CV  
DD  
SPI_RX  
TDO  
DV  
DV  
DDIO  
DDIO  
DDIO  
SD0_CMD/  
I2S0_FS/  
GP[1]  
UART_TXD/  
GP[31]/  
I2S3_DX  
SD1_D3/  
GP[11]  
SD1_D0/  
I2S1_DX/  
GP[8]  
SD1_CLK/  
I2S1_CLK/  
GP[6]  
SD0_CLK/  
I2S0_CLK/  
GP[0]  
DV  
DV  
EMU1  
SPI_CS0  
SPI_TX  
SPI_CS1  
EMU0  
TDI  
SPI_CS3  
CV  
DD  
V
CV  
DD  
DDIO  
DDIO  
SS  
SD1_CMD/  
I2S1_FS/  
GP[7]  
SD1_D2/  
GP[10]  
RSV2  
USB_V  
BUS  
V
SS  
SPI_CLK  
DV  
V
SS  
DDIO  
USB_V  
SS1P3  
V
V
CV  
DD  
RSV1  
USB_V  
DD1P3  
K
J
SS  
SS  
SD0_D0/  
I2S0_DX/  
GP[2]  
USB_V  
SSA1P3  
V
USB_DM  
USB_DP  
USB_R1  
GP[12]  
XF  
SS  
USB_  
RSV10  
RSV9  
RSV8  
USB_V  
SSA3P3  
CV  
DD  
V
H
G
F
SS  
V
DDA1P3  
CV  
DD  
RSV12  
USB_V  
USB_V  
USB_V  
DDA3P3  
DDPLL  
USB_V  
USB_V  
DD1P3  
V
CV  
DD  
SSREF  
SSPLL  
SS  
V
V
V
USB_V  
USB_V  
USB_V  
USB_MXI  
RSV11  
RESET  
E
D
C
B
A
RSV7  
SS  
SS  
SS  
DD1P3  
DDOSC  
SSOSC  
V
SS  
V
USB_  
(1)  
LDOO  
USB_MXO  
CLK_SEL  
CV  
DD  
V
CV  
DD  
SS  
SS  
DSP_LDO_  
(1)  
EN  
V
BG_CAP  
V
INT0  
V
CV  
DD  
V
LDOI  
LDOI  
CLKIN  
INT1  
DV  
SCL  
V
DV  
SSA_ANA  
SS  
SSRTC  
DDRTC  
DDIO  
DDA_PLL  
SS  
LDOI  
V
CV  
RSV3  
V
V
ANA_LDOO  
RSV5  
RSV6  
CV  
V
NC  
SS  
DDRTC  
SS  
SSA_ANA  
DDRTC  
DDA_ANA  
DSP_  
(1)  
LDOO  
V
SDA  
NC  
NC  
10  
RSV0  
RSV4  
11  
CLKOUT  
RTC_CLKOUT  
WAKEUP  
RTC_XO  
RTC_XI  
NC  
8
SSA_PLL  
V
SS  
1
2
3
4
5
6
7
9
12  
13  
14  
(1) Pin is not supported on this device. To ensure proper device operation, this pin must be hooked up properly. See Table 3-15,  
Regulators and Power Management Terminal Functions.  
(2) Shaded pins are not supported on this device. To ensure proper device operation, these pins must be hooked up properly. See  
Table 3-9, Unsupported USB 2.0 Terminal Functions.  
Figure 3-4. C5532 Pin Map  
Copyright © 2011, Texas Instruments Incorporated  
Device Pins  
27  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
3.2 Terminal Functions  
The terminal functions tables (Table 3-1 through Table 3-18) identify the external signal names, the  
associated pin (ball) numbers along with the mechanical package designator, the pin type, whether the pin  
has any internal pullup or pulldown resistors or bus-holders, and a functional pin description. For more  
detailed information on device configuration, peripheral selection, multiplexed/shared pins, and debugging  
considerations, see the Device Configuration section of this data manual.  
For proper device operation, external pullup/pulldown resistors may be required on some pins.  
Section 4.8.1, Pullup/Pulldown Resistors discusses situations where external pullup/pulldown resistors are  
required.  
28  
Device Pins  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
Table 3-1. Oscillator/PLL Terminal Functions  
TYPE(1)  
SIGNAL  
OTHER(3) (4)  
DESCRIPTION  
(2)  
NAME  
NO.  
DSP clock output signal. For debug purposes, the CLKOUT pin can be used to tap  
different clocks within the system clock generator. The SRC bits in the CLKOUT  
Control Source Register (CCSSR) can be used to specify the CLKOUT pin source.  
Additionally, the slew rate of the CLKOUT pin can be controlled by the Output  
Slew Rate Control Register (OSRCR) [0x1C16].  
The CLKOUT pin is enabled/disabled through the CLKOFF bit in the CPU ST3_55  
register. When disabled, the CLKOUT pin is placed in high-impedance (Hi-Z). At  
reset the CLKOUT pin is enabled until the beginning of the boot sequence, when  
the on-chip Bootloader sets CLKOFF = 1 and the CLKOUT pin is disabled (Hi-Z).  
For more information on the ST3_55 register, see the TMS320C55x 3.0 CPU  
Reference Guide (literature number: SWPU073).  
CLKOUT  
A2  
O/Z  
DVDDIO  
BH  
Note: This pin may consume static power if configured as Hi-Z and not externally  
pulled low or high. Prevent current drain by externally terminating the pin.  
Input clock. This signal is used to input an external clock when the 32-KHz on-chip  
oscillator is not used as the DSP clock (pin CLK_SEL = 1). For boot purposes, the  
CLKIN frequency is assumed to be either 11.2896, 12, or 12.288 MHz.  
The CLK_SEL pin (D1) selects between the 32-KHz crystal clock or CLKIN.  
When the CLK_SEL pin is low, this pin should be tied to ground (VSS). When  
CLK_SEL is high, this pin should be driven by an external clock source.  
CLKIN  
C1  
I
DVDDIO  
BH  
If CLK_SEL is high, this pin is used as the reference clock for the clock generator  
and during bootup the bootloader bypasses the PLL and assumes the CLKIN  
frequency is one of the following frequencies: 11.2896-, 12-, or 12.288-MHz. With  
these frequencies in mind, the bootloader sets the SPI clock rates at 500 KHz and  
the I2C clock rate at 400 KHz.  
Clock input select. This pin selects between the 32-KHz crystal clock or CLKIN.  
0 = 32-KHz on-chip oscillator drives the RTC timer and the system clock generator  
while CLKIN is ignored.  
CLK_SEL  
D1  
I
DVDDIO  
BH  
1 = CLKIN drives the system clock generator and the 32-KHz on-chip oscillator  
drives only the RTC timer.  
This pin is not allowed to change during device operation; it must be tied high or  
low at the board.  
1.3-V Analog PLL power supply for the system clock generator (PLLOUT 120  
MHz).  
see Section 5.2,  
ROC  
VDDA_PLL  
C7  
A1  
PWR  
GND  
This signal can be powered from the ANA_LDOO pin.  
Analog PLL ground for the system clock generator.  
see Section 5.2,  
ROC  
VSSA_PLL  
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal, BH = Bus Holder  
(2) Input pins of type I, I/O, and I/O/Z are required to be driven at all times. To achieve the lowest power, these pins must not be allowed to  
float. When configured as input or high-impedance state, and not driven to a known state, they may cause an excessive IO-supply  
current. If this is the case, enable IPD/IPU, if applicable, or externally terminate the pins.  
(3) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where external  
pullup/pulldown resistors are required, see Section 4.8.1, Pullup/Pulldown Resistors.  
(4) Specifies the operating I/O supply voltage for each signal  
Copyright © 2011, Texas Instruments Incorporated  
Device Pins  
29  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
Table 3-2. Real-Time Clock (RTC) Terminal Functions  
TYPE(1)  
SIGNAL  
NAME  
OTHER(3) (4)  
DESCRIPTION  
(2)  
NO.  
Real-time clock oscillator output. This pin operates at the RTC core voltage,  
CVDDRTC, and supports a 32.768-kHz crystal.  
If the RTC oscillator is not used, it can be disabled by connecting RTC_XI to  
CVDDRTC and RTC_XO to floating or grounded. A voltage must still be applied to  
CVDDRTC (see Section 5.2, Recommended Operating Conditions).  
RTC_XO  
RTC_XI  
A6  
I/O/Z  
CVDDRTC  
Note: When RTC oscillator is disabled, the RTC registers (I/O address range  
1900h 197Fh) are not accessible.  
Real-time clock oscillator input.  
If the RTC oscillator is not used, it can be disabled by connecting RTC_XI to  
CVDDRTC and RTC_XO to ground (VSS). A voltage must still be applied to CVDDRTC  
(see Section 5.2, Recommended Operating Conditions).  
A7  
I
CVDDRTC  
Note: When RTC oscillator is disabled, the RTC registers (I/O address range  
1900h 197Fh) are not accessible.  
Real-time clock output pin. This pin operates at DVDDRTC voltage. The  
RTC_CLKOUT pin is enabled/disabled through the RTCCLKOUTEN bit in the RTC  
Power Management Register (RTCPMGT). At reset, the RTC_CLKOUT pin is  
disabled (high-impedance [Hi-Z]).  
RTC_CLKOUT  
WAKEUP  
A3  
A5  
O/Z  
DVDDRTC  
The pin is used to WAKEUP the core from idle condition. This pin defaults to an  
input at CVDDRTC powerup, but can also be configured as an active-low open-drain  
output signal to wakeup an external device from an RTC alarm.  
I/O/Z  
DVDDRTC  
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal, BH = Bus Holder  
(2) Input pins of type I, I/O, and I/O/Z are required to be driven at all times. To achieve the lowest power, these pins must not be allowed to  
float. When configured as input or high-impedance state, and not driven to a known state, they may cause an excessive IO-supply  
current. If this is the case, enable IPD/IPU, if applicable, or externally terminate the pins.  
(3) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where external  
pullup/pulldown resistors are required, see Section 4.8.1, Pullup/Pulldown Resistors.  
(4) Specifies the operating I/O supply voltage for each signal  
30  
Device Pins  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
Table 3-3. RESET, Interrupts, and JTAG Terminal Functions  
SIGNAL  
NAME  
TYPE(1) (2) OTHER(3) (4)  
DESCRIPTION  
NO.  
RESET  
External Flag Output. XF is used for signaling other processors in  
multiprocessor configurations or XF can be used as a fast  
general-purpose output pin.  
XF is set high by the BSET XF instruction and XF is set low by the  
BCLR XF instruction or by writing to bit 13 of the ST1_55 register. For  
more information on the ST1_55 register, see the TMS320C55x 3.0  
CPU Reference Guide (literature number: SWPU073).  
XF  
J3  
O/Z  
DVDDIO  
BH  
For XF pin behavior at reset, see Section 6.7.2, Pin Behavior at Reset.  
Note: This pin may consume static power if configured as Hi-Z and not  
externally pulled low or high. Prevent current drain by externally  
terminating the pin. XF pin is ONLY in the Hi-Z state when doing  
boundary scan. Therefore, external termination is probably not required  
for most applications.  
Device reset. RESET causes the DSP to terminate execution and loads  
the program counter with the contents of the reset vector. When  
RESET is brought to a high level, the reset vector in ROM at FFFF00h  
forces the program execution to branch to the location of the on-chip  
ROM bootloader.  
IPU  
DVDDIO  
BH  
RESET  
D2  
I
RESET affects the various registers and status bits.  
The IPU resistor on this pin can be enabled or disabled via the  
PDINHIBR2 register but will be forced ON when RESET is asserted.  
JTAG  
[For more detailed information on emulation header design guidelines, see the XDS560 Emulator Technical Reference (literature number:  
SPRU589).]  
IEEE standard 1149.1 test mode select. This serial control input is  
clocked into the TAP controller on the rising edge of TCK.  
If the emulation header is located greater than 6 inches from the  
device, TMS must be buffered. In this case, the input buffer for TMS  
IPU  
DVDDIO  
BH  
needs a pullup resistor connected to DVDDIO to hold the signal at a  
known value when the emulator is not connected. A resistor value of  
4.7 kor greater is suggested. For board design guidelines related to  
the emulation header, see the XDS560 Emulator Technical Reference  
(literature number: SPRU589).  
TMS  
N6  
I
The IPU resistor on this pin can be enabled or disabled via the  
PDINHIBR2 register.  
IEEE standard 1149.1 test data output. The contents of the selected  
register (instruction or data) are shifted out of TDO on the falling edge  
of TCK. TDO is in the high-impedance (Hi-Z) state except when the  
scanning of data is in progress.  
For board design guidelines related to the emulation header, see the  
XDS560 Emulator Technical Reference (literature number: SPRU589).  
TDO  
N1  
O/Z  
DVDDIO  
BH  
If the emulation header is located greater than 6 inches from the  
device, TDO must be buffered.  
Note: This pin may consume static power if configured as Hi-Z and not  
externally pulled low or high. Prevent current drain by externally  
terminating the pin. TDO pin will be in Hi-Z whenever not doing  
emulation/boundary scan, so an external pullup is highly recommended.  
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal, BH = Bus Holder  
(2) Input pins of type I, I/O, and I/O/Z are required to be driven at all times. To achieve the lowest power, these pins must not be allowed to  
float. When configured as input or high-impedance state, and not driven to a known state, they may cause an excessive IO-supply  
current. If this is the case, enable IPD/IPU, if applicable, or externally terminate the pins.  
(3) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where external  
pullup/pulldown resistors are required, see Section 4.8.1, Pullup/Pulldown Resistors.  
(4) Specifies the operating I/O supply voltage for each signal  
Copyright © 2011, Texas Instruments Incorporated  
Device Pins  
31  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
Table 3-3. RESET, Interrupts, and JTAG Terminal Functions (continued)  
SIGNAL  
NAME  
TYPE(1) (2) OTHER(3) (4)  
DESCRIPTION  
NO.  
IEEE standard 1149.1 test data input. TDI is clocked into the selected  
register (instruction or data) on a rising edge of TCK.  
If the emulation header is located greater than 6 inches from the  
device, TDI must be buffered. In this case, the input buffer for TDI  
needs a pullup resistor connected to DVDDIO to hold this signal at a  
known value when the emulator is not connected. A resistor value of  
4.7 kor greater is suggested.  
IPU  
DVDDIO  
BH  
TDI  
K2  
I
The IPU resistor on this pin can be enabled or disabled via the  
PDINHIBR2 register.  
IEEE standard 1149.1 test clock. TCK is normally a free-running clock  
signal with a 50% duty cycle. The changes on input signals TMS and  
TDI are clocked into the TAP controller, instruction register, or selected  
test data register on the rising edge of TCK. Changes at the TAP output  
signal (TDO) occur on the falling edge of TCK.  
IPU  
DVDDIO  
BH  
If the emulation header is located greater than 6 inches from the  
device, TCK must be buffered.  
TCK  
N3  
I
For board design guidelines related to the emulation header, see the  
XDS560 Emulator Technical Reference (literature number: SPRU589).  
The IPU resistor on this pin can be enabled or disabled via the  
PDINHIBR2 register.  
IEEE standard 1149.1 reset signal for test and emulation logic. TRST,  
when high, allows the IEEE standard 1149.1 scan and emulation logic  
to take control of the operations of the device. If TRST is not connected  
or is driven low, the device operates in its functional mode, and the  
IEEE standard 1149.1 signals are ignored. The device will not operate  
properly if this reset pin is never asserted low.  
IPD  
DVDDIO  
BH  
TRST  
P4  
I
For board design guidelines related to the emulation header, see the  
XDS560 Emulator Technical Reference (literature number: SPRU589).  
It is recommended that an external pulldown resistor be used in  
addition to the IPD -- especially if there is a long trace to an emulation  
header.  
Emulator 1 pin. EMU1 is used as an interrupt to or from the emulator  
system and is defined as input/output by way of the emulation logic.  
For board design guidelines related to the emulation header, see the  
XDS560 Emulator Technical Reference (literature number: SPRU589).  
IPU  
DVDDIO  
BH  
An external pullup to DVDDIO is required to provide a signal rise time of  
less than 10 μsec. A 4.7-kresistor is suggested for most applications.  
EMU1  
M1  
I/O/Z  
For board design guidelines related to the emulation header, see the  
XDS560 Emulator Technical Reference (literature number: SPRU589).  
The IPU resistor on this pin can be enabled or disabled via the  
PDINHIBR2 register.  
Emulator 0 pin. When TRST is driven low and then high, the state of  
the EMU0 pin is latched and used to connect the JTAG pins (TCK,  
TMS, TDI, TDO) to either the IEEE1149.1 Boundary-Scan TAP (when  
the latched value of EMU0 = 0) or to the DSP Emulation TAP (when the  
latched value of EMU0 = 1). Once TRST is high, EMU0 is used as an  
interrupt to or from the emulator system and is defined as input/output  
by way of the emulation logic.  
IPU  
DVDDIO  
BH  
EMU0  
L2  
I/O/Z  
An external pullup to DVDDIO is required to provide a signal rise time of  
less than 10 μsec. A 4.7-kresistor is suggested for most applications.  
For board design guidelines related to the emulation header, see the  
XDS560 Emulator Technical Reference (literature number: SPRU589).  
The IPU resistor on this pin can be enabled or disabled via the  
PDINHIBR2 register.  
EXTERNAL INTERRUPTS  
32  
Device Pins  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
Table 3-3. RESET, Interrupts, and JTAG Terminal Functions (continued)  
SIGNAL  
NAME  
TYPE(1) (2) OTHER(3) (4)  
DESCRIPTION  
NO.  
IPU  
DVDDIO  
BH  
External interrupt inputs (INT1 and INT0). These pins are maskable via  
their specific Interrupt Mask Register (IMR1, IMR0) and the interrupt  
mode bit. The pins can be polled and reset by their specific Interrupt  
Flag Register (IFR1, IFR0).  
INT1  
INT0  
B1  
I
I
IPU  
DVDDIO  
BH  
C2  
The IPU resistor on these pins can be enabled or disabled via the  
PDINHIBR2 register.  
Table 3-4. Inter-Integrated Circuit (I2C) Terminal Functions  
TYPE(1)  
SIGNAL  
OTHER(3) (4)  
DESCRIPTION  
(2)  
NAME  
NO.  
I2C  
DVDDIO  
BH  
This pin is the I2C clock output. Per the I2C standard, an external pullup is required  
on this pin.  
SCL  
SDA  
C4  
A4  
I/O/Z  
I/O/Z  
DVDDIO  
BH  
This pin is the I2C bidirectional data signal. Per the I2C standard, an external pullup  
is required on this pin.  
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal, BH = Bus Holder  
(2) Input pins of type I, I/O, and I/O/Z are required to be driven at all times. To achieve the lowest power, these pins must not be allowed to  
float. When configured as input or high-impedance state, and not driven to a known state, they may cause an excessive IO-supply  
current. If this is the case, enable IPD/IPU, if applicable, or externally terminate the pins.  
(3) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where external  
pullup/pulldown resistors are required, see Section 4.8.1, Pullup/Pulldown Resistors.  
(4) Specifies the operating I/O supply voltage for each signal  
Copyright © 2011, Texas Instruments Incorporated  
Device Pins  
33  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
Table 3-5. Inter-IC Sound (I2S0 I2S3) Terminal Functions  
TYPE(1)  
SIGNAL  
NAME(5)  
OTHER(3) (4)  
DESCRIPTION(5)  
(2)  
NO.  
Interface 0 (I2S0)  
This pin is multiplexed between SD0, I2S0, and GPIO.  
For I2S, it is I2S0 transmit data output I2S0_DX.  
SD0_D0/  
I2S0_DX/  
GP[2]  
IPD  
DVDDIO  
BH  
J1  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
Mux control via the SP0MODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR1 register.  
This pin is multiplexed between SD0, I2S0, and GPIO.  
For I2S, it is I2S0 clock input/output I2S0_CLK.  
SD0_CLK/  
I2S0_CLK/  
GP[0]  
IPD  
DVDDIO  
BH  
M8  
P6  
Mux control via the SP0MODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR1 register.  
This pin is multiplexed between SD0, I2S0, and GPIO.  
For I2S, it is I2S0 receive data input I2S0_RX.  
SD0_D1/  
I2S0_RX/  
GP[3]  
IPD  
DVDDIO  
BH  
Mux control via the SP0MODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR1 register.  
This pin is multiplexed between SD0, I2S0, and GPIO.  
SD0_CMD/  
I2S0_FS/  
GP[1]  
IPD  
DVDDIO  
BH  
For I2S, it is I2S0 frame synchronization input/output I2S0_FS.  
M10  
Mux control via the SP0MODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR1 register.  
Interface 1 (I2S1)  
This pin is multiplexed between SD1, I2S1, and GPIO.  
SD1_D0/  
2S1_DX/  
GP[8]  
IPD  
DVDDIO  
BH  
For I2S, it is I2S1 transmit data output I2S1_DX.  
M13  
M14  
P10  
L11  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
Mux control via the SP1MODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR1 register.  
This pin is multiplexed between SD1, I2S1, and GPIO.  
For I2S, it is I2S1 clock input/output I2S1_CLK.  
SD1_CLK/  
I2S1_CLK/  
GP[6]  
IPD  
DVDDIO  
BH  
Mux control via the SP1MODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR1 register.  
This pin is multiplexed between SD1, I2S1, and GPIO.  
For I2S, it is I2S1 receive data input I2S1_RX.  
SD1_D1/  
I2S1_RX/  
GP[9]  
IPD  
DVDDIO  
BH  
Mux control via the SP1MODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR1 register.  
This pin is multiplexed between SD1, I2S2, and GPIO.  
SD1_CMD/  
I2S1_FS/  
GP[7]  
IPD  
DVDDIO  
BH  
For I2S, it is I2S1 frame synchronization input/output I2S1_FS.  
Mux control via the SP1MODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR1 register.  
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal, BH = Bus Holder  
(2) Input pins of type I, I/O, and I/O/Z are required to be driven at all times. To achieve the lowest power, these pins must not be allowed to  
float. When configured as input or high-impedance state, and not driven to a known state, they may cause an excessive IO-supply  
current. If this is the case, enable IPD/IPU, if applicable, or externally terminate the pins.  
(3) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where external  
pullup/pulldown resistors are required, see Section 4.8.1, Pullup/Pulldown Resistors.  
(4) Specifies the operating I/O supply voltage for each signal  
(5) LCD Bridge applies only to TMS320C5535.  
34  
Device Pins  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
Table 3-5. Inter-IC Sound (I2S0 I2S3) Terminal Functions (continued)  
TYPE(1)  
SIGNAL  
NAME(5)  
OTHER(3) (4)  
DESCRIPTION(5)  
(2)  
NO.  
Interface 2 (I2S2)  
This pin is multiplexed between LCD Bridge, I2S2, GPIO, and SPI.  
For I2S, it is I2S2 transmit data output I2S2_DX.  
LCD_D[11]/  
I2S2_DX/  
GP[27]/  
IPD  
DVDDIO  
BH  
P11  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
Mux control via the PPMODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR3 register.  
SPI_TX  
This pin is multiplexed between LCD Bridge, I2S2, GPIO, and SPI.  
For I2S, it is I2S2 clock input/output I2S2_CLK.  
LCD_D8]/  
I2S2_CLK/  
GP[18]/  
IPD  
DVDDIO  
BH  
P5  
P9  
Mux control via the PPMODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR3 register.  
SPI_CLK  
This pin is multiplexed between LCD Bridge, I2S2, GPIO, and SPI.  
For I2S, it is I2S2 receive data input I2S2_RX.  
LCD_D[10]/  
I2S2_RX/  
GP[20]/  
IPD  
DVDDIO  
BH  
Mux control via the PPMODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR3 register.  
SPI_RX  
This pin is multiplexed between LCD Bridge, I2S2, and GPIO.  
For I2S, it is I2S2 frame synchronization input/output I2S2_FS.  
LCD_D[9]/  
I2S2_FS/  
GP[19]/  
IPD  
DVDDIO  
BH  
N10  
Mux control via the PPMODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR3 register.  
SPI_CS0  
Interface 3 (I2S3)  
This pin is multiplexed between LCD Bridge, UART, GPIO, and I2S3.  
LCD_D[15]/  
UART_TXD/  
GP[31]/  
IPD  
DVDDIO  
BH  
For I2S, it is I2S3 transmit data output I2S3_DX.  
M11  
N12  
P13  
P12  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
Mux control via the PPMODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR3 register.  
I2S3_DX  
This pin is multiplexed between LCD Bridge, UART, GPIO, and I2S3.  
For I2S, it is I2S3 clock input/output I2S3_CLK.  
LCD_D[12]/  
UART_RTS/  
GP[28]/  
IPD  
DVDDIO  
BH  
Mux control via the PPMODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR3 register.  
I2S3_CLK  
This pin is multiplexed between LCD Bridge, UART, GPIO, and I2S3.  
For I2S, it is I2S3 receive data input I2S3_RX.  
LCD_D[14]/  
UART_RXD/  
GP[30]/  
IPD  
DVDDIO  
BH  
Mux control via the PPMODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR3 register.  
I2S3_RX  
This pin is multiplexed between LCD Bridge, UART, GPIO, and I2S3.  
For I2S, it is I2S3 frame synchronization input/output I2S3_FS.  
LCD_D[13]/  
UART_CTS/  
GP[29]/  
IPD  
DVDDIO  
BH  
Mux control via the PPMODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR3 register.  
I2S3_FS  
Copyright © 2011, Texas Instruments Incorporated  
Device Pins  
35  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
Table 3-6. Serial Peripheral Interface (SPI) Terminal Functions  
TYPE(1)  
SIGNAL  
NAME(5)  
OTHER(3) (4)  
DESCRIPTION(5)  
(2)  
NO.  
Serial Port Interface (SPI)  
This pin is multiplexed between LCD Bridge and SPI.  
Mux control via the PPMODE bits in the EBSR.  
LCD_CS0_E0/  
SPI_CS0  
DVDDIO  
BH  
L1  
I/O/Z  
I/O/Z  
I/O/Z  
For SPI, this pin is SPI chip select SPI_CS0.  
This pin is multiplexed between LCD Bridge, I2S2, GPIO, and SPI.  
LCD_D[9]/  
I2S2_FS/  
GP[19]/  
IPD  
DVDDIO  
BH  
Mux control via the PPMODE bits in the EBSR.  
For SPI, this pin is SPI chip select SPI_CS0.  
N10  
M2  
SPI_CS0  
The IPD resistor on this pin can be enabled or disabled via the PDINHIBR3 register.  
This pin is multiplexed between LCD Bridge and SPI.  
LCD_CS1_E1/  
SPI_CS1  
DVDDIO  
BH  
Mux control via the PPMODE bits in the EBSR.  
For SPI, this pin is SPI chip select SPI_CS1.  
This pin is multiplexed between LCD Bridge and SPI.  
LCD_RW_WRB/  
SPI_CS2  
DVDDIO  
BH  
N2  
M5  
I/O/Z  
I/O/Z  
Mux control via the PPMODE bits in the EBSR.  
For SPI, this pin is SPI chip select SPI_CS2.  
This pin is multiplexed between LCD Bridge and SPI.  
LCD_RS/  
SPI_CS3  
DVDDIO  
BH  
Mux control via the PPMODE bits in the EBSR.  
For SPI, this pin is SPI chip select SPI_CS3.  
This pin is multiplexed between LCD Bridge and SPI.  
Mux control via the PPMODE bits in the EBSR.  
For SPI, this pin is clock output SPI_CLK.  
LCD_EN_RDB/  
SPI_CLK  
DVDDIO  
BH  
L3  
O/Z  
Note: This pin may consume static power if configured as Hi-Z and not externally  
pulled low or high. Prevent current drain by externally terminating the pin.  
This pin is multiplexed between LCD Bridge, I2S2, GPIO, and SPI.  
Mux control via the PPMODE bits in the EBSR.  
For SPI, this pin is clock output SPI_CLK.  
LCD_D8]/  
I2S2_CLK/  
GP[18]/  
IPD  
DVDDIO  
BH  
P5  
K1  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
SPI_CLK  
The IPD resistor on this pin can be enabled or disabled via the PDINHIBR3 register.  
This pin is multiplexed between LCD Bridge and SPI.  
LCD_D[1]/  
SPI_TX  
DVDDIO  
BH  
Mux control via the PPMODE bits in the EBSR.  
For SPI, this pin is SPI transmit data output.  
This pin is multiplexed between LCD Bridge, I2S2, GPIO, and SPI.  
Mux control via the PPMODE bits in the EBSR.  
LCD_D[11]/  
I2S2_DX/  
GP[27]/  
IPD  
DVDDIO  
BH  
P11  
N4  
P9  
For SPI, this pin is SPI transmit data output.  
SPI_TX  
The IPD resistor on this pin can be enabled or disabled via the PDINHIBR3 register.  
This pin is multiplexed between LCD Bridge and SPI.  
LCD_D[0]/  
SPI_RX  
DVDDIO  
BH  
Mux control via the PPMODE bits in the EBSR.  
For SPI this pin is SPI receive data input.  
This pin is multiplexed between LCD Bridge, I2S2, GPIO, and SPI.  
Mux control via the PPMODE bits in the EBSR.  
LCD_D[10]/  
I2S2_RX/  
GP[20]/  
IPD  
DVDDIO  
BH  
For SPI this pin is SPI receive data input.  
SPI_RX  
The IPD resistor on this pin can be enabled or disabled via the PDINHIBR3 register.  
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal, BH = Bus Holder  
(2) Input pins of type I, I/O, and I/O/Z are required to be driven at all times. To achieve the lowest power, these pins must not be allowed to  
float. When configured as input or high-impedance state, and not driven to a known state, they may cause an excessive IO-supply  
current. If this is the case, enable IPD/IPU, if applicable, or externally terminate the pins.  
(3) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where external  
pullup/pulldown resistors are required, see Section 4.8.1, Pullup/Pulldown Resistors.  
(4) Specifies the operating I/O supply voltage for each signal  
(5) LCD Bridge applies only to TMS320C5535.  
36  
Device Pins  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
Table 3-7. UART Terminal Functions  
TYPE(1)  
SIGNAL  
NAME(5)  
OTHER(3) (4)  
DESCRIPTION(5)  
(2)  
NO.  
UART  
This pin is multiplexed between LCD Bridge, UART, GPIO, and I2S3.  
When used by UART, it is the receive data input UART_RXD.  
LCD_D[14]/  
UART_RXD/  
GP[30]/  
IPD  
DVDDIO  
BH  
P13  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
Mux control via the PPMODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR3 register.  
I2S3_RX  
This pin is multiplexed between LCD Bridge, UART, GPIO, and I2S3.  
In UART mode, it is the transmit data output UART_TXD.  
LCD_D[15]/  
UART_TXD/  
GP[31]/  
IPD  
DVDDIO  
BH  
M11  
P12  
N12  
Mux control via the PPMODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR3 register.  
I2S3_DX  
This pin is multiplexed between LCD Bridge, UART, GPIO, and I2S3.  
In UART mode, it is the clear to send input UART_CTS.  
LCD_D[13]/  
UART_CTS/  
GP[29]/  
IPD  
DVDDIO  
BH  
Mux control via the PPMODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR3 register.  
I2S3_FS  
This pin is multiplexed between LCD Bridge, UART, GPIO, and I2S3.  
In UART mode, it is the ready to send output UART_RTS.  
LCD_D[12]/  
UART_RTS/  
GP[28]/  
IPD  
DVDDIO  
BH  
Mux control via the PPMODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR3 register.  
I2S3_CLK  
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal, BH = Bus Holder  
(2) Input pins of type I, I/O, and I/O/Z are required to be driven at all times. To achieve the lowest power, these pins must not be allowed to  
float. When configured as input or high-impedance state, and not driven to a known state, they may cause an excessive IO-supply  
current. If this is the case, enable IPD/IPU, if applicable, or externally terminate the pins.  
(3) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where external  
pullup/pulldown resistors are required, see Section 4.8.1, Pullup/Pulldown Resistors.  
(4) Specifies the operating I/O supply voltage for each signal  
(5) LCD Bridge applies only to TMS320C5535.  
Copyright © 2011, Texas Instruments Incorporated  
Device Pins  
37  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
Table 3-8. USB2.0 Terminal Functions Does Not Apply to C5532  
TYPE(1)  
SIGNAL  
NAME  
OTHER(3) (4)  
DESCRIPTION  
(2)  
NO.  
USB 2.0  
12-MHz crystal oscillator input.  
When the USB peripheral is not used, USB_MXI should be connected to ground  
(VSS).  
USB_MXI  
E14  
I
USB_VDDOSC  
When using an external 12-MHz oscillator, the external oscillator clock signal should  
be connected to the USB_MXI pin and the amplitude of the oscillator clock signal  
must meet the VIH requirement (see Section 5.2, Recommended Operating  
Conditions). The USB_MXO is left unconnected and the USB_VSSOSC signal is  
connected to board ground (VSS).  
12-MHz crystal oscillator output.  
When the USB peripheral is not used, USB_MXO should be left unconnected.  
When using an external 12-MHz oscillator, the external oscillator clock signal should  
be connected to the USB_MXI pin and the amplitude of the oscillator clock signal  
must meet the VIH requirement (see Section 5.2, Recommended Operating  
Conditions). The USB_MXO is left unconnected and the USB_VSSOSC signal is  
connected to board ground (VSS).  
USB_MXO  
D14  
O/Z  
USB_VDDOSC  
3.3-V power supply for USB oscillator.  
see  
Section 5.2,  
ROC  
USB_VDDOSC  
USB_VSSOSC  
USB_VBUS  
E13  
D12  
L14  
S
S
When the USB peripheral is not used, USB_VDDOSC should be connected to ground  
(VSS).  
Ground for USB oscillator. When using a 12-MHz crystal, this pin is a local ground  
for the crystal and must not be connected to the board ground (See Figure 6-7).  
see  
Section 5.2,  
ROC  
When using an external 12-MHz oscillator, the external oscillator clock signal should  
be connected to the USB_MXI pin and the amplitude of the oscillator clock signal  
must meet the VIH requirement (see Section 5.2, Recommended Operating  
Conditions). The USB_MXO is left unconnected and the USB_VSSOSC signal is  
connected to board ground (VSS).  
USB power detect. 5-V input that signifies that VBUS is connected.  
see  
Section 5.2,  
ROC  
A I/O  
When the USB peripheral is not used, the USB_VBUS signal should be connected  
to ground (VSS).  
USB_DP  
USB_DM  
H14  
J14  
A I/O  
A I/O  
USB_VDDA3P3 USB bi-directional Data Differential signal pair [positive/negative].  
When the USB peripheral is not used, the USB_DP and USB_DM signals should  
USB_VDDA3P3  
both be tied to ground (VSS).  
External resistor connect. Reference current output. This must be connected via a  
10-kΩ ±1% resistor to USB_VSSREF and be placed as close to the device as  
possible.  
USB_R1  
G14  
F12  
A I/O  
GND  
USB_VDDA3P3  
When the USB peripheral is not used, the USB_R1 signal should be connected via  
a 10-kresistor to USB_VSSREF  
.
Ground for reference current. This must be connected via a 10-kΩ ±1% resistor to  
USB_R1.  
see  
Section 5.2,  
ROC  
USB_VSSREF  
When the USB peripheral is not used, the USB_VSSREF signal should be connected  
directly to ground (Vss).  
Analog 3.3 V power supply for USB PHY.  
see  
Section 5.2,  
ROC  
USB_VDDA3P3  
USB_VSSA3P3  
G12  
H13  
S
When the USB peripheral is not used, the USB_VDDA3P3 signal should be  
connected to ground (VSS).  
see  
Section 5.2,  
ROC  
GND  
Analog ground for USB PHY.  
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal, BH = Bus Holder  
(2) Input pins of type I, I/O, and I/O/Z are required to be driven at all times. To achieve the lowest power, these pins must not be allowed to  
float. When configured as input or high-impedance state, and not driven to a known state, they may cause an excessive IO-supply  
current. If this is the case, enable IPD/IPU, if applicable, or externally terminate the pins.  
(3) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where external  
pullup/pulldown resistors are required, see Section 4.8.1, Pullup/Pulldown Resistors.  
(4) Specifies the operating I/O supply voltage for each signal  
38  
Device Pins  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
Table 3-8. USB2.0 Terminal Functions Does Not Apply to C5532 (continued)  
TYPE(1)  
SIGNAL  
OTHER(3) (4)  
DESCRIPTION  
(2)  
NAME  
NO.  
Analog 1.3 V power supply for USB PHY. [For high-speed sensitive analog circuits]  
see  
Section 5.2,  
ROC  
USB_VDDA1P3  
H12  
S
GND  
S
When the USB peripheral is not used, the USB_VDDA1P3 signal should be  
connected to ground (VSS).  
see  
Section 5.2,  
ROC  
USB_VSSA1P3  
USB_VDD1P3  
USB_VSS1P3  
USB_VDDPLL  
USB_VSSPLL  
J12  
Analog ground for USB PHY [For high speed sensitive analog circuits].  
1.3-V digital core power supply for USB PHY.  
K13,  
E12,  
F14  
see  
Section 5.2,  
ROC  
When the USB peripheral is not used, the USB_VDD1P3 signal should be connected  
to ground (VSS).  
see  
Section 5.2,  
ROC  
K14  
G13  
F13  
GND  
S
Digital core ground for USB phy.  
3.3 V USB Analog PLL power supply.  
see  
Section 5.2,  
ROC  
When the USB peripheral is not used, the USB_VDDPLL signal should be connected  
to ground (VSS).  
see  
Section 5.2,  
ROC  
GND  
USB Analog PLL ground.  
Copyright © 2011, Texas Instruments Incorporated  
Device Pins  
39  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
Table 3-9. Unsupported USB2.0 Terminal Functions C5532 Only  
TYPE(1)  
SIGNAL  
NAME  
OTHER(3) (4)  
DESCRIPTION  
(2)  
NO.  
USB 2.0  
When the USB peripheral is not used, USB_MXI should be connected to ground  
(VSS).  
USB_MXI  
USB_MXO  
USB_VDDOSC  
E14  
D14  
E13  
I
-
-
-
O/Z  
S
When the USB peripheral is not used, USB_MXO should be left unconnected.  
When the USB peripheral is not used, USB_VDDOSC should be connected to ground  
(VSS).  
The USB_MXO is left unconnected and the USB_VSSOSC signal is connected to  
board ground (VSS).  
USB_VSSOSC  
USB_VBUS  
D12  
L14  
S
-
-
When the USB peripheral is not used, the USB_VBUS signal should be connected  
to ground (VSS).  
A I/O  
USB_DP  
USB_DM  
H14  
J14  
A I/O  
A I/O  
-
-
When the USB peripheral is not used, the USB_DP and USB_DM signals should  
both be tied to ground (VSS).  
When the USB peripheral is not used, the USB_R1 signal should be connected via  
a 10-kΩ resistor to ground (Vss).  
USB_R1  
G14  
F12  
A I/O  
GND  
-
-
When the USB peripheral is not used, the USB_VSSREF signal should be connected  
directly to ground (Vss).  
USB_VSSREF  
When the USB peripheral is not used, the USB_VDDA3P3 signal should be  
connected to ground (VSS).  
USB_VDDA3P3  
USB_VSSA3P3  
USB_VDDA1P3  
USB_VSSA1P3  
G12  
H13  
H12  
J12  
S
-
-
-
-
When the USB peripheral is not used, USB_VSSA3P3 should be conntected to  
ground (VSS).  
GND  
S
When the USB peripheral is not used, the USB_VDDA1P3 signal should be  
connected to ground (VSS).  
When the USB peripheral is not used, USBVSSA1P3 should be connected to ground  
(VSS).  
GND  
K13,  
E12,  
F14  
When the USB peripheral is not used, the USB_VDD1P3 signal should be connected  
to ground (VSS).  
USB_VDD1P3  
S
-
When the USB peripheral is not used, USB_VSS1P3 should be connected to ground  
(VSS).  
USB_VSS1P3  
USB_VDDPLL  
USB_VSSPLL  
K14  
G13  
F13  
GND  
S
-
-
-
When the USB peripheral is not used, the USB_VDDPLL signal should be connected  
to ground (VSS).  
When the USB peripheral is not used, USB_VSSPLL should be connected to ground  
(VSS).  
GND  
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal, BH = Bus Holder  
(2) Input pins of type I, I/O, and I/O/Z are required to be driven at all times. To achieve the lowest power, these pins must not be allowed to  
float. When configured as input or high-impedance state, and not driven to a known state, they may cause an excessive IO-supply  
current. If this is the case, enable IPD/IPU, if applicable, or externally terminate the pins.  
(3) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where external  
pullup/pulldown resistors are required, see Section 4.8.1, Pullup/Pulldown Resistors.  
(4) Specifies the operating I/O supply voltage for each signal  
40  
Device Pins  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
Table 3-10. LCD Bridge Terminal Functions C5535 Only  
TYPE(1)  
SIGNAL  
OTHER(3) (4) DESCRIPTION  
This pin is multiplexed between LCD Bridge and SPI.  
(2)  
NAME  
NO.  
For LCD Bridge, this pin is either LCD Bridge read/write enable (MPU68 mode) or  
read strobe (MPU80 mode).  
LCD_EN_RDB/  
SPI_CLK  
DVDDIO  
BH  
L3  
O/Z  
Mux control via the PPMODE bits in the EBSR.  
Note: This pin may consume static power if configured as Hi-Z and not externally  
pulled low or high. Prevent current drain by externally terminating the pin.  
This pin is multiplexed between LCD Bridge and SPI.  
LCD_CS0_E0/  
SPI_CS0  
DVDDIO  
BH  
For LCD Bridge, this pin is either LCD Bridge chip select 0 (MPU68 and MPU80  
modes) or enable 0 (HD44780 mode).  
L1  
I/O/Z  
I/O/Z  
Mux control via the PPMODE bits in the EBSR.  
This pin is multiplexed between LCD Bridge and SPI.  
LCD_CS1_E1/  
SPI_CS1  
DVDDIO  
BH  
For LCD Bridge, this pin is either LCD Bridge chip select 1 (MPU68 and MPU80  
modes) or enable 1 (HD44780 mode).  
M2  
Mux control via the PPMODE bits in the EBSR.  
This pin is multiplexed between LCD Bridge and SPI.  
LCD_RW_WRB/  
SPI_CS2  
DVDDIO  
BH  
For LCD, this pin is either LCD Bridge read/write select (HD44780 and MPU68  
modes) or write strobe (MPU80 mode).  
N2  
M5  
I/O/Z  
I/O/Z  
I/O/Z  
Mux control via the PPMODE bits in the EBSR.  
This pin is multiplexed between LCD Bridge and SPI.  
LCD_RS/  
SPI_CS3  
DVDDIO  
BH  
For LCD, this pin is the LCD Bridge address set-up.  
Mux control via the PPMODE bits in the EBSR.  
This pin is multiplexed between LCD Bridge, UART, GPIO, and I2S3.  
LCD_D[15]/  
UART_TXD/  
GP[31]/  
IPD  
DVDDIO  
BH  
For LCD Bridge, it is LCD data pin 15.  
M11  
Mux control via the PPMODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR3 register.  
I2S3_DX  
This pin is multiplexed between LCD Bridge, UART, GPIO, and I2S3.  
For LCD Bridge, it is LCD data pin 14.  
LCD_D[14]/  
UART_RXD/  
GP[30]/  
IPD  
DVDDIO  
BH  
P13  
P12  
N12  
P11  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
Mux control via the PPMODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR3 register.  
I2S3_RX  
This pin is multiplexed between LCD Bridge, UART, GPIO, and I2S3.  
For LCD Bridge, it is LCD data pin 13.  
LCD_D[13]/  
UART_CTS/  
GP[29]/  
IPD  
DVDDIO  
BH  
Mux control via the PPMODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR3 register.  
I2S3_FS  
This pin is multiplexed between LCD Bridge, I2S2, and GPIO.  
For LCD Bridge, it is LCD data pin 12.  
LCD_D[12]/  
UART_RTS/  
GP[28]/  
IPD  
DVDDIO  
BH  
Mux control via the PPMODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR3 register.  
I2S3_CLK  
This pin is multiplexed between LCD Bridge, I2S2, GPIO, and SPI.  
For LCD Bridge, it is LCD data pin 11.  
LCD_D[11]/  
I2S2_DX/  
GP[27]/  
IPD  
DVDDIO  
BH  
Mux control via the PPMODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR3 register.  
SPI_TX  
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal, BH = Bus Holder  
(2) Input pins of type I, I/O, and I/O/Z are required to be driven at all times. To achieve the lowest power, these pins must not be allowed to  
float. When configured as input or high-impedance state, and not driven to a known state, they may cause an excessive IO-supply  
current. If this is the case, enable IPD/IPU, if applicable, or externally terminate the pins.  
(3) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where external  
pullup/pulldown resistors are required, see Section 4.8.1, Pullup/Pulldown Resistors.  
(4) Specifies the operating I/O supply voltage for each signal  
Copyright © 2011, Texas Instruments Incorporated  
Device Pins  
41  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
Table 3-10. LCD Bridge Terminal Functions C5535 Only (continued)  
TYPE(1)  
SIGNAL  
NAME  
OTHER(3) (4) DESCRIPTION  
(2)  
NO.  
This pin is multiplexed between LCD Bridge, I2S2, GPIO, and SPI.  
For LCD Bridge, it is LCD data pin 10.  
LCD_D[10]/  
I2S2_RX/  
GP[20]/  
IPD  
DVDDIO  
BH  
P9  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
Mux control via the PPMODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR3 register.  
SPI_RX  
This pin is multiplexed between LCD Bridge, I2S2, GPIO, and SPI.  
For LCD Bridge, it is LCD data pin 9.  
LCD_D[9]/  
I2S2_FS/  
GP[19]/  
IPD  
DVDDIO  
BH  
N10  
P5  
P8  
P3  
N7  
P2  
N5  
J2  
Mux control via the PPMODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR3 register.  
SPI_CS0  
This pin is multiplexed between LCD Bridge, I2S2, GPIO, and SPI.  
For LCD Bridge, it is LCD data pin 8.  
LCD_D[8]/  
I2S2_CLK  
GP[18]/  
IPD  
DVDDIO  
BH  
Mux control via the PPMODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR3 register.  
SPI_CLK  
This pin is multiplexed between LCD Bridge and GPIO.  
For LCD Bridge, it is LCD data pin 7.  
IPD  
DVDDIO  
BH  
LCD_D[7]/  
GP[17]  
Mux control via the PPMODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR3 register.  
This pin is multiplexed between LCD Bridge and GPIO.  
For LCD Bridge, it is LCD data pin 6.  
IPD  
DVDDIO  
BH  
LCD_D[6]/  
GP[16]  
Mux control via the PPMODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR3 register.  
This pin is multiplexed between LCD Bridge and GPIO.  
For LCD Bridge, it is LCD data pin 5.  
IPD  
DVDDIO  
BH  
LCD_D[5]/  
GP[15]  
Mux control via the PPMODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR3 register.  
This pin is multiplexed between LCD Bridge and GPIO.  
For LCD Bridge, it is LCD data pin 4.  
IPD  
DVDDIO  
BH  
LCD_D[4]/  
GP[14]  
Mux control via the PPMODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR3 register.  
This pin is multiplexed between LCD Bridge and GPIO.  
For LCD Bridge, it is LCD data pin 3.  
IPD  
DVDDIO  
BH  
LCD_D[3]/  
GP[13]  
Mux control via the PPMODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR3 register.  
This pin is multiplexed between LCD Bridge and GPIO.  
For LCD Bridge, it is LCD data pin 2.  
IPD  
DVDDIO  
BH  
LCD_D[2]/  
GP[12]  
Mux control via the PPMODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR3 register.  
This pin is multiplexed between LCD Bridge and SPI.  
For LCD Bridge, it is LCD data pin 1.  
LCD_D[1]/  
SPI_TX  
DVDDIO  
BH  
K1  
N4  
I/O/Z  
I/O/Z  
Mux control via the PPMODE bits in the EBSR.  
This pin is multiplexed between LCD Bridge and SPI.  
LCD_D[0]/  
SPI_RX  
DVDDIO  
BH  
For LCD Bridge, it is LCD data pin 0.  
Mux control via the PPMODE bits in the EBSR.  
42  
Device Pins  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
Table 3-11. SD1 Terminal Functions  
TYPE(1)  
SIGNAL  
OTHER(3) (4)  
DESCRIPTION  
(2)  
NAME  
NO.  
SD  
This pin is multiplexed between SD1, I2S1, and GPIO.  
For SD, this is the SD1 data clock output SD1_CLK.  
SD1_CLK/  
I2S1_CLK/  
GP[6]  
IPD  
DVDDIO  
BH  
M14  
I/O/Z  
I/O/Z  
Mux control via the SP1MODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR1 register.  
This pin is multiplexed between SD1, I2S1, and GPIO.  
For SD, this is the SD1 command I/O output SD1_CMD.  
SD1_CMD/  
I2S1_FS/  
GP[7]  
IPD  
DVDDIO  
BH  
L11  
Mux control via the SP1MODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR1 register.  
IPD  
DVDDIO  
BH  
SD1_D3/  
GP[11]  
M12  
L12  
P10  
M13  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
The SD1_D3 and SD1_D2 pins are multiplexed between SD1 and GPIO.  
The SD1_D1 and SD1_D0 pins are multiplexed between SD1, I2S1, and GPIO.  
In SD mode, all these pins are the SD1 nibble wide bi-directional data bus.  
Mux control via the SP1MODE bits in the EBSR.  
IPD  
DVDDIO  
BH  
SD1_D2/  
GP[10]  
SD1_D1/  
I2S1_RX/  
GP[9]  
IPD  
DVDDIO  
BH  
The IPD resistor on these pins can be enabled or disabled via the PDINHIBR1  
register.  
SD1_D0/  
I2S1_DX/  
GP[8]  
IPD  
DVDDIO  
BH  
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal, BH = Bus Holder  
(2) Input pins of type I, I/O, and I/O/Z are required to be driven at all times. To achieve the lowest power, these pins must not be allowed to  
float. When configured as input or high-impedance state, and not driven to a known state, they may cause an excessive IO-supply  
current. If this is the case, enable IPD/IPU, if applicable, or externally terminate the pins.  
(3) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where external  
pullup/pulldown resistors are required, see Section 4.8.1, Pullup/Pulldown Resistors.  
(4) Specifies the operating I/O supply voltage for each signal  
Copyright © 2011, Texas Instruments Incorporated  
Device Pins  
43  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
Table 3-12. SD0 Terminal Functions  
TYPE(1)  
SIGNAL  
NAME  
OTHER(3) (4)  
DESCRIPTION  
(2)  
NO.  
SD  
This pin is multiplexed between SD0, I2S0, and GPIO.  
For SD, this is the SD0 data clock output SD0_CLK.  
SD0_CLK/  
I2S0_CLK/  
GP[0]  
IPD  
DVDDIO  
BH  
M8  
I/O/Z  
I/O/Z  
Mux control via the SP0MODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR1 register.  
This pin is multiplexed between SD0, I2S0, and GPIO.  
For SD, this is the SD0 command I/O output SD0_CMD.  
SD0_CMD/  
I2S0_FS/  
GP[1]  
IPD  
DVDDIO  
BH  
M10  
Mux control via the SP0MODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR1 register.  
IPD  
DVDDIO  
BH  
SD0_D3/  
GP[5]  
P7  
N13  
P6  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
The SD0_D3 and SD0_D2 pins are multiplexed between SD0 and GPIO.  
The SD0_D1 and SD0_D0 pins are multiplexed between SD0, I2S0, and GPIO.  
In SD mode, these pins are the SD0 nibble wide bi-directional data bus.  
Mux control via the SP0MODE bits in the EBSR.  
IPD  
DVDDIO  
BH  
SD0_D2/  
GP[4]  
SD0_D1/  
I2S0_RX/  
GP[3]  
IPD  
DVDDIO  
BH  
The IPD resistor on these pins can be enabled or disabled via the PDINHIBR1  
register.  
SD0_D0/  
I2S0_DX/  
GP[2]  
IPD  
DVDDIO  
BH  
J1  
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal, BH = Bus Holder  
(2) Input pins of type I, I/O, and I/O/Z are required to be driven at all times. To achieve the lowest power, these pins must not be allowed to  
float. When configured as input or high-impedance state, and not driven to a known state, they may cause an excessive IO-supply  
current. If this is the case, enable IPD/IPU, if applicable, or externally terminate the pins.  
(3) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where external  
pullup/pulldown resistors are required, see Section 4.8.1, Pullup/Pulldown Resistors.  
(4) Specifies the operating I/O supply voltage for each signal  
44  
Device Pins  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
Table 3-13. 10-Bit SAR ADC Terminal Functions C5535 Only  
TYPE(1)  
SIGNAL  
OTHER(3) (4)  
DESCRIPTION  
(2)  
NAME  
NO.  
SAR ADC  
GPAIN0: General -Purpose Output and Analog Input pin 0. This pin is demuxed  
internally into ADC Channels 0, 1, & 2. GPAIN0 can also be used as a  
general-purpose open-drain output. This pin is unique among the GPAIN pins in that  
it is the only pin that is 3.6 V-tolerant to support measuring a battery voltage.  
GPAIN0 can accommodate input voltages from 0 V to 3.6 V; although, the ADC is  
unable to accept signals greater than VDDA_ANA without clamping. ADC Channel 1 is  
capable of switching in an internal resistor divider that has a divide ratio of  
approximately 1/8.  
GPAIN0  
A8  
I/O  
VDDA_ANA  
GPAIN1: General -Purpose Output and Analog Input pin 1. This pin is connected to  
ADC Channel 3. GPAIN1 can be used as a general-purpose output if certain  
requirements are met (see the following note). GPAIN1 can accommodate input  
voltages from 0 V to VDDA_ANA  
.
Note: If the ANA_LDO is used to supply power to VDDA_ANA, this pin must not be  
used as a general-purpose output (driving high) since the max current capability  
(see the ISD parameter in Section 5.3, Electrical Characteristics Over Recommended  
Ranges of Supply Voltage and Operating Temperature) of the ANA_LDO can be  
exceeded. Doing so may result in the on-chip power-on reset (POR) resetting the  
chip.  
GPAIN1  
B8  
I/O  
VDDA_ANA  
GPAIN2: General -Purpose Output and Analog Input pin 2. This pin is connected to  
ADC Channel 4. GPAIN2 can be used as a general-purpose output if certain  
requirements are met (see the following note). GPAIN2 can accommodate input  
voltages from 0 V to VDDA_ANA  
.
GPAIN2  
A9  
I/O  
VDDA_ANA  
Note: If the ANA_LDO is used to supply power to VDDA_ANA, this pin must not be  
used as a general-purpose output (driving high) since the max current capability  
(see the ISD parameter in Section 5.3, Electrical Characteristics Over Recommended  
Ranges of Supply Voltage and Operating Temperature) of the ANA_LDO can be  
exceeded. Doing so may result in the on-chip POR resetting the chip.  
GPAIN3: General -Purpose Output and Analog Input pin 3. This pin is connected to  
ADC Channel 5. GPAIN3 can be used as a general-purpose output if certain  
requirements are met (see the following note). GPAIN3 can accommodate input  
voltages from 0 V to VDDA_ANA  
.
GPAIN3  
A10  
I/O  
VDDA_ANA  
Note: If the ANA_LDO is used to supply power to VDDA_ANA, this pin must not be  
used as a general-purpose output (driving high) since the max current capability  
(see the ISD parameter in Section 5.3, Electrical Characteristics Over Recommended  
Ranges of Supply Voltage and Operating Temperature) of the ANA_LDO can be  
exceeded. Doing so may result in the on-chip POR resetting the chip.  
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal, BH = Bus Holder  
(2) Input pins of type I, I/O, and I/O/Z are required to be driven at all times. To achieve the lowest power, these pins must not be allowed to  
float. When configured as input or high-impedance state, and not driven to a known state, they may cause an excessive IO-supply  
current. If this is the case, enable IPD/IPU, if applicable, or externally terminate the pins.  
(3) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where external  
pullup/pulldown resistors are required, see Section 4.8.1, Pullup/Pulldown Resistors.  
(4) Specifies the operating I/O supply voltage for each signal  
Copyright © 2011, Texas Instruments Incorporated  
Device Pins  
45  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
Table 3-14. GPIO Terminal Functions  
TYPE(1)  
SIGNAL  
NAME(5)  
OTHER(3) (4)  
DESCRIPTION(5)  
(2)  
NO.  
General-Purpose Input/Output  
External Flag Output. XF is used for signaling other processors in multiprocessor  
configurations or XF can be used as a fast general-purpose output pin.  
XF is set high by the BSET XF instruction and XF is set low by the BCLR XF  
instruction or by writing to bit 13 of the ST1_55 register. For more information on the  
ST1_55 register, see the TMS320C55x 3.0 CPU Reference Guide (literature  
number: SWPU073).  
XF  
J3  
O/Z  
DVDDIO  
BH  
For XF pin behavior at reset, see Section 6.7.2, Pin Behavior at Reset.  
Note: This pin may consume static power if configured as Hi-Z and not externally  
pulled low or high. Prevent current drain by externally terminating the pin. XF pin is  
ONLY in the Hi-Z state when doing boundary scan. Therefore, external termination  
is probably not required for most applications.  
This pin is multiplexed between SD0, I2S0, and GPIO.  
For GPIO, it is general-purpose input/output pin 0 (GP[0]).  
SD0_CLK/  
I2S0_CLK/  
GP[0]  
IPD  
DVDDIO  
BH  
M8  
M10  
J1  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
Mux control via the SP0MODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR1 register.  
This pin is multiplexed between SD0, I2S0, and GPIO.  
For GPIO, it is general-purpose input/output pin 1 (GP[1]).  
SD0_CMD/  
I2S0_FS/  
GP[1]  
IPD  
DVDDIO  
BH  
Mux control via the SP0MODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR1 register.  
This pin is multiplexed between SD0, I2S0, and GPIO.  
For GPIO, it is general-purpose input/output pin 2 (GP[2]).  
SD0_D0/  
I2S0_DX/  
GP[2]  
IPD  
DVDDIO  
BH  
Mux control via the SP0MODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR1 register.  
This pin is multiplexed between SD0, I2S0, and GPIO.  
For GPIO, it is general-purpose input/output pin 3 (GP[3]).  
SD0_D1/  
I2S0_RX/  
GP[3]  
IPD  
DVDDIO  
BH  
P6  
Mux control via the SP0MODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR1 register.  
This pin is multiplexed between SD0 and GPIO.  
IPD  
DVDDIO  
BH  
SD0_D2/  
GP[4]  
For GPIO, it is general-purpose input/output pin 4 (GP[4]).  
N13  
Mux control via the SP0MODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR1 register.  
This pin is multiplexed between SD0 and GPIO.  
IPD  
DVDDIO  
BH  
SD0_D3/  
GP[5]  
For GPIO, it is general-purpose input/output pin 5 (GP[5]).  
P7  
M14  
L11  
I/O/Z  
I/O/Z  
I/O/Z  
Mux control via the SP0MODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR1 register.  
This pin is multiplexed between SD1, I2S1, and GPIO.  
For GPIO, it is general-purpose input/output pin 6 (GP[6]).  
SD1_CLK/  
I2S1_CLK/  
GP[6]  
IPD  
DVDDIO  
BH  
Mux control via the SP1MODE bits in the EBSR.  
This pin is multiplexed between SD1, I2S1, and GPIO.  
SD1_CMD/  
I2S1_FS/  
GP[7]  
IPD  
DVDDIO  
BH  
For GPIO, it is general-purpose input/output pin 7 (GP[7]).  
Mux control via the SP1MODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR1 register.  
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal, BH = Bus Holder  
(2) Input pins of type I, I/O, and I/O/Z are required to be driven at all times. To achieve the lowest power, these pins must not be allowed to  
float. When configured as input or high-impedance state, and not driven to a known state, they may cause an excessive IO-supply  
current. If this is the case, enable IPD/IPU, if applicable, or externally terminate the pins.  
(3) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where external  
pullup/pulldown resistors are required, see Section 4.8.1, Pullup/Pulldown Resistors.  
(4) Specifies the operating I/O supply voltage for each signal  
(5) LCD Bridge applies only to TMS320C5535.  
46  
Device Pins  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
Table 3-14. GPIO Terminal Functions (continued)  
TYPE(1)  
SIGNAL  
NAME(5)  
OTHER(3) (4)  
DESCRIPTION(5)  
(2)  
NO.  
This pin is multiplexed between SD1, I2S1, and GPIO.  
For GPIO, it is general-purpose input/output pin 8 (GP[8]).  
SD1_D0/  
I2S1_DX/  
GP[8]  
IPD  
DVDDIO  
BH  
M13  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
Mux control via the SP1MODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR1 register.  
This pin is multiplexed between SD1, I2S1, and GPIO.  
For GPIO, it is general-purpose input/output pin 9 (GP[9]).  
SD1_D1/  
I2S1_RX/  
GP[9]  
IPD  
DVDDIO  
BH  
P10  
L12  
M12  
J2  
Mux control via the SP1MODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR1 register.  
This pin is multiplexed between SD1 and GPIO.  
IPD  
DVDDIO  
BH  
SD1_D2/  
GP[10]  
For GPIO, it is general-purpose input/output pin 10 (GP[10]).  
Mux control via the SP1MODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR1 register.  
This pin is multiplexed between SD1 and GPIO.  
IPD  
DVDDIO  
BH  
SD1_D3/  
GP[11]  
For GPIO, it is general-purpose input/output pin 11 (GP[11]).  
Mux control via the SP1MODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR1 register.  
This pin is multiplexed between LCD Bridge and GPIO.  
For GPIO, it is general-purpose input/output pin 12 (GP[12]).  
IPD  
DVDDIO  
BH  
LCD_D[2]/  
GP[12]  
Mux control via the PPMODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR3 register.  
This pin is multiplexed between LCD Bridge and GPIO.  
For GPIO, it is general-purpose input/output pin 13 (GP[13]).  
IPD  
DVDDIO  
BH  
LCD_D[3]/  
GP[13]  
N5  
P2  
Mux control via the PPMODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR3 register.  
This pin is multiplexed between LCD Bridge and GPIO.  
For GPIO, it is general-purpose input/output pin 14 (GP[14]).  
IPD  
DVDDIO  
BH  
LCD_D[4]/  
GP[14]  
Mux control via the PPMODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR3 register.  
This pin is multiplexed between LCD Bridge and GPIO.  
For GPIO, it is general-purpose input/output pin 15 (GP[15]).  
IPD  
DVDDIO  
BH  
LCD_D[5]/  
GP[15]  
N7  
P3  
Mux control via the PPMODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR3 register.  
This pin is multiplexed between LCD Bridge and GPIO.  
For GPIO, it is general-purpose input/output pin 16 (GP[16]).  
IPD  
DVDDIO  
BH  
LCD_D[6]/  
GP[16]  
Mux control via the PPMODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR3 register.  
This pin is multiplexed between LCD Bridge and GPIO.  
For GPIO, it is general-purpose input/output pin 17 (GP[17]).  
IPD  
DVDDIO  
BH  
LCD_D[7]/  
GP[17]  
P8  
Mux control via the PPMODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR3 register.  
This pin is multiplexed between LCD Bridge and GPIO.  
For GPIO, it is general-purpose input/output pin 18 (GP[18]).  
LCD_D8]/  
I2S2_CLK/  
GP[18]/  
IPD  
DVDDIO  
BH  
P5  
Mux control via the PPMODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR3 register.  
SPI_CLK  
Copyright © 2011, Texas Instruments Incorporated  
Device Pins  
47  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
Table 3-14. GPIO Terminal Functions (continued)  
TYPE(1)  
SIGNAL  
NAME(5)  
OTHER(3) (4)  
DESCRIPTION(5)  
(2)  
NO.  
This pin is multiplexed between LCD Bridge, I2S2, and GPIO.  
For GPIO, it is general-purpose input/output pin 19 (GP[19]).  
LCD_D[9]/  
I2S2_FS/  
GP[19]/  
IPD  
DVDDIO  
BH  
N10  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
Mux control via the PPMODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR3 register.  
SPI_CS0  
This pin is multiplexed between LCD Bridge, I2S2, GPIO and SPI.  
For GPIO, it is general-purpose input/output pin 20 (GP[20]).  
LCD_D[10]/  
I2S2_RX/  
GP[20]/  
IPD  
DVDDIO  
BH  
P9  
Mux control via the PPMODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR3 register.  
SPI_RX  
This pin is multiplexed between LCD Bridge, I2S2, GPIO, and SPI.  
For GPIO, it is general-purpose input/output pin 27 (GP[27]).  
LCD_D[11]/  
I2S2_DX/  
GP[27]/  
IPD  
DVDDIO  
BH  
P11  
N12  
P12  
P13  
M11  
Mux control via the PPMODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR3 register.  
SPI_TX  
This pin is multiplexed between LCD Bridge, UART, GPIO, and I2S3.  
For GPIO, it is general-purpose input/output pin 28 (GP[28]).  
LCD_D[12]/  
UART_RTS/  
GP[28]/  
IPD  
DVDDIO  
BH  
Mux control via the PPMODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR3 register.  
I2S3_CLK  
This pin is multiplexed between LCD Bridge, UART, GPIO, and I2S3.  
For GPIO, it is general-purpose input/output pin 29 (GP[29]).  
LCD_D[13]/  
UART_CTS/  
GP[29]/  
IPD  
DVDDIO  
BH  
Mux control via the PPMODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR3 register.  
I2S3_FS  
This pin is multiplexed between LCD Bridge, UART, GPIO, and I2S3.  
For GPIO, it is general-purpose input/output pin 30 (GP[30]).  
LCD_D[14]/  
UART_RXD/  
GP[30]/  
IPD  
DVDDIO  
BH  
Mux control via the PPMODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR3 register.  
I2S3_RX  
This pin is multiplexed between LCD Bridge, UART, GPIO, and I2S3.  
For GPIO, it is general-purpose input/output pin 31 (GP[31]).  
LCD_D[15]/  
UART_TXD/  
GP[31]/  
IPD  
DVDDIO  
BH  
Mux control via the PPMODE bits in the EBSR. The IPD resistor on this pin can be  
enabled or disabled via the PDINHIBR3 register.  
I2S3_DX  
48  
Device Pins  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
Table 3-15. Regulators and Power Management Terminal Functions  
TYPE(1)  
SIGNAL  
OTHER(3) (4)  
DESCRIPTION  
(2)  
NAME  
NO.  
Regulators  
DSP_LDO output. When enabled, this output provides a regulated 1.3 V or 1.05 V  
output and up to 250 mA of current (see the ISD parameter in Section 5.3, Electrical  
Characteristics Over Recommended Ranges of Supply Voltage and Operating  
Temperature). The DSP_LDO is intended to supply current to the digital core circuits  
only (CVDD) and not external devices. For proper device operation, the external  
decoupling capacitor of this pin should be 5µF  
~ 10µF. For more detailed  
information, see Section 6.3.4, Power-Supply Decoupling.  
When disabled, this pin is in the high-impedance (Hi-Z) state.  
DSP_LDOO(5)  
A13  
S
Note: DSP_LDO is not supported on TMS320C5533 and C5532, so the  
DSP_LDOO pin must be left unconnected. DSP_LDO can be enabled to provide a  
regulated 1.3 V or 1.05 V output to only the internal POR to support the RTC only  
mode (see Section 6.10.1, RTC Only Mode, for details). DSP_LDOO must never be  
used to provide power to the CPU Core (CVDD) on these devices.  
When DSP_LDO comes out of reset, it is enabled to 1.3 V for the bootloader to  
operate. For the 50-MHz devices, DSP_LDO must be programmed to 1.05 V to  
match the core voltage, CVDD, for proper operation after reset.  
LDO inputs. For proper device operation, LDOI must always be powered. The LDOI  
pins must be connected to the same power supply source with a voltage range of  
1.8 V to 3.6 V. These pins supply power to the internal LDOs, the bandgap  
reference generator circuits, and serve as the I/O supply for some input pins.  
B14,  
C14,  
B10  
LDOI  
S
DSP_LDO enable input. This signal is not intended to be dynamically switched.  
0 = DSP_LDO is enabled. The internal POR monitors the DSP_LDOO pin voltage  
and generates the internal POWERGOOD signal.  
1 = DSP_LDO is disabled. The internal POR voltage monitoring is also disabled.  
The internal POWERGOOD signal is forced high and the external reset signal on  
the RESET pin (D6) is the only source of the device reset. Note, the device's  
internal reset signal is generated as the logical AND of the RESET pin and the  
internal POWERGOOD signal.  
DSP_LDO_EN(5)  
C13  
I
LDOI  
Note: DSP_LDO is not supported on TMS320C5533 and C5532, so the  
DSP_LDOO pin must be left unconnected. DSP_LDO can be enabled to provide a  
regulated 1.3V or 1.05V output to only the internal POR to support the RTC only  
mode (see Section 6.10.1, RTC Only Mode, for details). DSP_LDOO must never be  
used to provide power to the CPU Core (CVDD) on these devices.  
USB_LDO output. This output provides a regulated 1.3 V output and up to 25 mA of  
current (see the ISD parameter in Section 5.3, Electrical Characteristics Over  
Recommended Ranges of Supply Voltage and Operating Temperature). For proper  
device operation, this pin must be connected to a 1 μF ~ 2 μF decoupling capacitor  
to VSS. For more detailed information, see Section 6.3.4, Power-Supply Decoupling.  
This LDO is intended to supply power to the USB_ VDD1P3, USB_VDDA1P3 pins and  
not external devices.  
USB_LDOO  
D13  
S
Note: USB_LDO is not supported on TMS320C5532. For proper device operation,  
this pin must be left unconnected on these devices.  
ANA_LDO output. This output provides a regulated 1.3 V output and up to 4 mA of  
current (see the ISD parameter in Section 5.3, Electrical Characteristics Over  
Recommended Ranges of Supply Voltage and Operating Temperature).  
ANA_LDOO  
B9  
S
For proper device operation, this pin must be connected to an ~ 1.0 μF decoupling  
capacitor to VSS. For more detailed information, see Section 6.3.4, Power-Supply  
Decoupling. This LDO is intended to supply power to the VDDA_ANA and VDDA_PLL  
pins and not external devices.  
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal, BH = Bus Holder  
(2) Input pins of type I, I/O, and I/O/Z are required to be driven at all times. To achieve the lowest power, these pins must not be allowed to  
float. When configured as input or high-impedance state, and not driven to a known state, they may cause an excessive IO-supply  
current. If this is the case, enable IPD/IPU, if applicable, or externally terminate the pins.  
(3) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where external  
pullup/pulldown resistors are required, see Section 4.8.1, Pullup/Pulldown Resistors.  
(4) Specifies the operating I/O supply voltage for each signal  
(5) Applies only to TMS320C5535 and TMS320C5534.  
Copyright © 2011, Texas Instruments Incorporated  
Device Pins  
49  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
Table 3-15. Regulators and Power Management Terminal Functions (continued)  
TYPE(1)  
SIGNAL  
NAME  
OTHER(3) (4)  
DESCRIPTION  
(2)  
NO.  
Bandgap reference filter signal. For proper device operation, this pin needs to be  
bypassed with a 0.1 μF capacitor to analog ground (VSSA_ANA).  
BG_CAP  
C10  
A I/O  
This external capacitor provides filtering for stable reference voltages & currents  
generated by the bandgap circuit. The bandgap produces the references for use by  
the System PLL, SAR, and POR circuits.  
50  
Device Pins  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
Table 3-16. Reserved and No Connects Terminal Functions  
TYPE(1)  
SIGNAL  
OTHER(3) (4)  
DESCRIPTION  
(2)  
NAME  
NO.  
Reserved  
Reserved. For proper device operation, this pin must be tied directly to VSS.  
RSV0  
A12  
I
LDOI  
RSV1  
RSV2  
K12  
L13  
PWR  
PWR  
Reserved. For proper device operation, this pin must be tied directly to CVDD  
.
.
Reserved. For proper device operation, this pin must be tied directly to CVDD  
RSV3  
RSV4  
RSV5  
RSV6  
B12  
A11  
B11  
B13  
I
I
I
I
Reserved. For proper device operation, this pin must be tied directly to VSS  
Reserved. For proper device operation, this pin must be tied directly to VSS  
Reserved. For proper device operation, this pin must be tied directly to VSS  
.
.
.
LDOI  
LDOI  
LDOI  
Reserved. For proper device operation, this pin must be directly tied to either VSS or  
LDOI, or tied via a 10-kΩ resistor to either VSS or LDOI.  
LDOI  
RSV7  
RSV8  
E1  
F1  
G1  
H1  
E2  
G2  
I
I
I
I
I
I
Reserved. (Leave unconnected, do not connect to power or ground).  
Reserved. (Leave unconnected, do not connect to power or ground).  
Reserved. (Leave unconnected, do not connect to power or ground).  
Reserved. (Leave unconnected, do not connect to power or ground).  
Reserved. (Leave unconnected, do not connect to power or ground).  
Reserved. (Leave unconnected, do not connect to power or ground).  
RSV9  
RSV10  
RSV11  
RSV12  
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal, BH = Bus Holder  
(2) Input pins of type I, I/O, and I/O/Z are required to be driven at all times. To achieve the lowest power, these pins must not be allowed to  
float. When configured as input or high-impedance state, and not driven to a known state, they may cause an excessive IO-supply  
current. If this is the case, enable IPD/IPU, if applicable, or externally terminate the pins.  
(3) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where external  
pullup/pulldown resistors are required, see Section 4.8.1, Pullup/Pulldown Resistors.  
(4) Specifies the operating I/O supply voltage for each signal  
Table 3-17. Supply Voltage Terminal Functions  
TYPE(1)  
SIGNAL  
OTHER(3) (4)  
DESCRIPTION(5)  
(2)  
NAME(5)  
NO.  
SUPPLY VOLTAGES  
F2  
H2  
D3  
G3  
1.05-V Digital Core supply voltage (50 MHz)  
1.3-V Digital Core supply voltage (100 MHz)  
M6  
M9  
N9  
CVDD  
PWR  
C11  
D11  
K11  
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal, BH = Bus Holder  
(2) Input pins of type I, I/O, and I/O/Z are required to be driven at all times. To achieve the lowest power, these pins must not be allowed to  
float. When configured as input or high-impedance state, and not driven to a known state, they may cause an excessive IO-supply  
current. If this is the case, enable IPD/IPU, if applicable, or externally terminate the pins.  
(3) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where external  
pullup/pulldown resistors are required, see Section 4.8.1, Pullup/Pulldown Resistors.  
(4) Specifies the operating I/O supply voltage for each signal  
(5) USB signal does not apply to TMS320C5532.  
Copyright © 2011, Texas Instruments Incorporated  
Device Pins  
51  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
Table 3-17. Supply Voltage Terminal Functions (continued)  
TYPE(1)  
SIGNAL  
NAME(5)  
OTHER(3) (4)  
DESCRIPTION(5)  
(2)  
NO.  
M3  
L4  
M4  
C6  
DVDDIO  
PWR  
1.8-V, 2.5-V, 2.75-V, or 3.3-V I/O power supply for non-RTC I/Os  
1.05-V thru 1.3-V RTC digital core and RTC oscillator power supply.  
N8  
N11  
N14  
B5  
CVDDRTC  
DVDDRTC  
PWR  
PWR  
Note: The CVDDRTC must always be powered even though RTC is not used.  
B4  
1.8-V, 2.5-V, 2.75-V, or 3.3-V I/O power supply for RTC_CLOCKOUT and WAKEUP  
pins.  
C3  
1.3-V Analog PLL power supply for the system clock generator (PLLOUT 120  
MHz).  
see  
Section 5.2,  
ROC  
VDDA_PLL  
C7  
PWR  
This signal can be powered from the ANA_LDOO pin.  
3.3 V USB Analog PLL power supply.  
see  
Section 5.2,  
ROC  
USB_VDDPLL  
USB_VDD1P3  
USB_VDDA1P3  
USB_VDDA3P3  
G13  
E12  
H12  
G12  
S
S
S
S
When the USB peripheral is not used, the USB_VDDPLL signal should be connected  
to ground (VSS).  
1.3-V digital core power supply for USB PHY.  
see  
Section 5.2,  
ROC  
When the USB peripheral is not used, the USB_VDD1P3 signal should be connected  
to ground (VSS).  
Analog 1.3 V power supply for USB PHY. [For high-speed sensitive analog circuits]  
see  
Section 5.2,  
ROC  
When the USB peripheral is not used, the USB_VDDA1P3 signal should be  
connected to ground (VSS).  
Analog 3.3 V power supply for USB PHY.  
see  
Section 5.2,  
ROC  
When the USB peripheral is not used, the USB_VDDA3P3 signal should be  
connected to ground (VSS).  
3.3-V power supply for USB oscillator.  
see  
Section 5.2,  
ROC  
USB_VDDOSC  
E13  
B7  
S
When the USB peripheral is not used, USB_VDDOSC should be connected to  
ground (VSS).  
1.3-V supply for power management and 10-bit SAR ADC  
This signal can be powered from the ANA_LDOO pin.  
VDDA_ANA  
PWR  
52  
Device Pins  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
Table 3-18. Ground Terminal Functions  
TYPE(1)  
SIGNAL  
NAME(5)  
OTHER(3) (4)  
DESCRIPTION(5)  
(2)  
NO.  
P1  
B2  
B3  
E3  
F3  
H3  
K3  
D4  
E4  
K4  
VSS  
D5  
GND  
Ground pins  
L5  
M7  
C8  
D10  
L10  
E11  
C12  
J13  
A14  
P14  
Ground for RTC oscillator. When using a 32.768-KHz crystal, this pin is a local  
ground for the crystal and must not be connected to the board ground (See Figure  
Figure 6-4 and Figure 6-5). When not using RTC and the crystal is not populated on  
the board, this pin is connected to the board ground.  
see  
Section 5.2,  
ROC  
VSSRTC  
C5  
GND  
see  
Section 5.2,  
ROC  
VSSA_PLL  
A1  
GND  
GND  
GND  
GND  
GND  
S
Analog PLL ground for the system clock generator.  
USB Analog PLL ground.  
see  
Section 5.2,  
ROC  
USB_VSSPLL  
USB_VSS1P3  
USB_VSSA1P3  
USB_VSSA3P3  
USB_VSSOSC  
F13  
K14  
J12  
H13  
D12  
see  
Section 5.2,  
ROC  
Digital core ground for USB phy.  
see  
Section 5.2,  
ROC  
Analog ground for USB PHY [For high speed sensitive analog circuits].  
Analog ground for USB PHY.  
see  
Section 5.2,  
ROC  
see  
Section 5.2,  
ROC  
Ground for USB oscillator.  
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal, BH = Bus Holder  
(2) Input pins of type I, I/O, and I/O/Z are required to be driven at all times. To achieve the lowest power, these pins must not be allowed to  
float. When configured as input or high-impedance state, and not driven to a known state, they may cause an excessive IO-supply  
current. If this is the case, enable IPD/IPU, if applicable, or externally terminate the pins.  
(3) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where external  
pullup/pulldown resistors are required, see Section 4.8.1, Pullup/Pulldown Resistors.  
(4) Specifies the operating I/O supply voltage for each signal  
(5) USB signal does not apply to TMS320C5532.  
Copyright © 2011, Texas Instruments Incorporated  
Device Pins  
53  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
Table 3-18. Ground Terminal Functions (continued)  
TYPE(1)  
SIGNAL  
NAME(5)  
OTHER(3) (4)  
DESCRIPTION(5)  
(2)  
NO.  
Ground for reference current. This must be connected via a 10-kΩ ±1% resistor to  
USB_R1.  
see  
Section 5.2,  
ROC  
USB_VSSREF  
F12  
GND  
GND  
When the USB peripheral is not used, the USB_VSSREF signal should be connected  
directly to ground (Vss).  
B6  
C9  
VSSA_ANA  
Ground pins for power management (POR & Bandgap circuits) and 10-bit SAR ADC  
54  
Device Pins  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
4 Device Configuration  
4.1 System Registers  
The system registers are used to configure the device and monitor its status. Brief descriptions of the  
various system registers are shown in Table 4-1.  
Table 4-1. Idle Control, Status, and System Registers  
CPU WORD  
ADDRESS  
ACRONYM  
COMMENTS  
Register Description  
Idle Control Register  
0001h  
0002h  
1C00h  
ICR  
ISTR  
EBSR  
Idle Status Register  
See Section 4.6.1 of this  
document.  
External Bus Selection Register  
1C02h  
1C03h  
1C04h  
1C05h  
1C14h  
1C16h  
1C17h  
1C18h  
1C19h  
1C1Ah  
1C1Bh  
1C1Ch  
1C1Dh  
1C28h  
1C2A  
PCGCR1  
PCGCR2  
Peripheral Clock Gating Control Register 1  
Peripheral Clock Gating Control Register 2  
Peripheral Software Reset Counter Register  
Peripheral Reset Control Register  
PSRCR  
PRCR  
TIAFR  
Timer Interrupt Aggregation Flag Register  
Output Drive Strength Control Register  
Pull-Down Inhibit Register 1  
ODSCR  
PDINHIBR1  
PDINHIBR2  
Pull-Down Inhibit Register 2  
PDINHIBR3  
Pull-Down Inhibit Register 3  
DMA0CESR1  
DMA0CESR2  
DMA1CESR1  
DMA1CESR2  
RAMSLPMDCNTLR1  
RAMSLPMDCNTLR2  
RAMSLPMDCNTLR3  
RAMSLPMDCNTLR4  
RAMSLPMDCNTLR5  
DMAIFR  
DMA0 Channel Event Source Register 1  
DMA0 Channel Event Source Register 2  
DMA1 Channel Event Source Register 1  
DMA1 Channel Event Source Register 2  
RAM Sleep Mode Control Register 1  
RAM Sleep Mode Control Register 2  
RAM Sleep Mode Control Register 3  
RAM Sleep Mode Control Register 4  
RAM Sleep Mode Control Register 5  
DMA Interrupt Flag Aggregation Register  
DMA Interrupt Enable Register  
1C2B  
1C2C  
1C2D  
1C30h  
1C31h  
1C32h  
DMAIER  
USBSCR  
Does not apply to  
TMS320C5532.  
USB System Control Register  
1C36h  
1C37h  
1C38h  
1C39h  
1C3Ah  
1C40h  
1C41h  
1C42h  
1C43h  
1C44h  
1C45h  
1C46h  
1C47h  
7004h  
DMA2CESR1  
DMA2CESR2  
DMA3CESR1  
DMA3CESR2  
CLKSTOP  
DIEIDR0  
DMA2 Channel Event Source Register 1  
DMA2 Channel Event Source Register 2  
DMA3 Channel Event Source Register 1  
DMA3 Channel Event Source Register 2  
Peripheral Clock Stop Request/Acknowledge Register  
Die ID Register 0  
DIEIDR1  
Die ID Register 1  
DIEIDR2  
Die ID Register 2  
DIEIDR3  
Die ID Register 3  
DIEIDR4  
Die ID Register 4  
DIEIDR5  
Die ID Register 5  
DIEIDR6  
Die ID Register 6  
DIEIDR7  
Die ID Register 7  
LDOCNTL  
see Section 4.2.1.1.3 of this  
document.  
LDO Control Register  
Copyright © 2011, Texas Instruments Incorporated  
Device Configuration  
55  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
 
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
4.2 Power Considerations  
4.2.1 Power Considerations for C5535 and C5534  
The device provides several means of managing power consumption.  
To minimize power consumption, the device divides its circuits into nine main isolated supply domains:  
LDOI (LDOs and Bandgap Power Supply)  
(1)  
Analog POR, SAR, and PLL (VDDA_ANA and VDDA_PLL  
)
RTC Core (CVDDRTC  
Digital Core (CVDD  
USB Core (USB_ VDD1P3 and USB_VDDA1P3  
USB PHY and USB PLL (USB_VDDOSC, USB_VDDA3P3, and USB_VDDPLL  
RTC I/O (DVDDRTC  
Rest of the I/O (DVDDIO  
)
)
)
)
)
)
4.2.1.1 LDO Configuration  
The device includes three Low-Dropout Regulators (LDOs) which can be used to regulate the power  
supplies of the analog PLL and SAR ADC/Power Management (ANA_LDO), Digital Core (DSP_LDO), and  
USB Core (USB_LDO).  
These LDOs are controlled by a combination of pin configuration and register settings. For more detailed  
information see the following sections.  
4.2.1.1.1 LDO Inputs  
The LDOI pins (B10, B14, C14) provide power to the internal Analog LDO, DSP LDO, USB LDO, the  
bandgap reference generator, and some I/O input pins, and can range from 1.8 V to 3.6 V. The bandgap  
provides accurate voltage and current references to the POR, LDOs, PLL, and SAR; therefore, for proper  
device operation, power must always be applied to the LDOI pins even if the LDO outputs are not used.  
4.2.1.1.2 LDO Outputs  
The ANA_LDOO pin (B9) is the output of the internal ANA_LDO and can provide regulated 1.3 V power of  
up to 4 mA. The ANA_LDOO pin is intended to be connected, on the board, to the VDDA_ANA and VDDA_PLL  
pins to provide a regulated 1.3 V to the 10-bit SAR ADC, Power Management Circuits, and System PLL.  
VDDA_ANA and VDDA_PLL may be powered by this LDO output, which is recommended, to take advantage of  
the device's power management techniques, or by an external power supply. The ANA_LDO cannot be  
disabled individually (see Section 4.2.1.1.3, LDO Control).  
The DSP_LDOO pin (A13) is the output of the internal DSP_LDO and provides software-selectable  
regulated 1.3 V or regulated 1.05 V power of up to 250 mA. The DSP_LDOO pin is intended to be  
connected, on the board, to the CVDD pins. In this configuration, the DSP_LDO_EN pin should be tied to  
the board VSS, thus enabling the DSP_LDO. Optionally, the CVDD pins may be powered by an external  
power supply; in this configuration the DSP_LDO_EN pin should be tied (high) to LDOI, disabling  
DSP_LDO. The DSP_LDO_EN also affects how reset is generated to the chip (for more details, see the  
DSP_LDO_EN pin description in Table 3-15, Regulators and Power Management Terminal Functions).  
When the DSP_LDO is disabled, its output pin is in a high-impedance state. Note: DSP_LDO_EN is not  
intended to be changed dynamically.  
When DSP_LDO comes out of reset, it is enabled to 1.3 V for the bootloader to operate. For the 50-MHz  
devices, DSP_LDO must be programmed to 1.05 V to match the core voltage, CVDD, for proper operation  
after reset.  
(1) SAR applies to only TMS320C5535.  
56  
Device Configuration  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
 
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
The USB_LDOO pin (D13) is the output of the internal USB_LDO and provides regulated 1.3 V,  
software-switchable (on/off) power of up to 25 mA. The USB_LDOO pin is intended to be connected, on  
the board, to the USB_VDD1P3 and USB_VDDA1P3 pins to provide power to portions of the USB. Optionally,  
the USB_VDD1P3 and USB_VDDA1P3 may be powered by an external power supply and the USB_LDO can  
be left disabled. When the USB_LDO is disabled, its output pin is in a high-impedance state.  
4.2.1.1.3 LDO Control  
All three LDOs can be simultaneously disabled via software by writing to either the BG_PD bit or the  
LDO_PD bit in the RTCPMGT register (see Figure 4-1). When the LDOs are disabled via this mechanism,  
the only way to re-enable them is by asserting the WAKEUP signal pin (which must also have been  
previously enabled to allow wakeup), or by a previously enabled and configured RTC alarm, or by cycling  
power to the CVDDRTC pin.  
ANA_LDO: The ANA_LDO is only disabled by the BG_PD and the LDO_PD mechanism described above.  
Otherwise, it is always enabled.  
DSP_LDO: The DSP_LDO can be statically disabled by the DSP_LDO_EN pin as described in  
Section 4.2.1.1.2, LDO Outputs. It can be also dynamically disabled via the BG_PD and the LDO_PD  
mechanism described above. The DSP_LDO can change its output voltage dynamically by software via  
the DSP_LDO_V bit in the LDOCNTL register (see Figure 4-2). The DSP_LDO output voltage is set to 1.3  
V at reset.  
For the 50-MHz devices, DSP_LDO must be programmed to 1.05 V to match the core voltage, CVDD, for  
proper operation after reset.  
USB_LDO: The USB_LDO can be independently and dynamically enabled or disabled by software via the  
USB_LDO_EN bit in the LDOCNTL register (see Figure 4-2). The USB _LDO is disabled at reset.  
Table 4-4 shows the ON/OFF control of each LDO and its register control bit configurations.  
Copyright © 2011, Texas Instruments Incorporated  
Device Configuration  
57  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
15  
8
Reserved  
R-0  
7
5
4
3
2
1
0
Reserved  
WU_DOUT  
WU_DIR  
BG_PD  
LDO_PD  
RTCCLKOUTEN  
R-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Figure 4-1. RTC Power Management Register (RTCPMGT) [1930h]  
Table 4-2. RTCPMGT Register Bit Descriptions  
BIT  
NAME  
DESCRIPTION  
Reserved. Read-only, writes have no effect.  
15:5  
RESERVED  
Wakeup output, active low/open-drain.  
0 = WAKEUP pin driven low.  
4
WU_DOUT  
1 = WAKEUP pin is in high-impedance (Hi-Z).  
Wakeup pin direction control.  
0 = WAKEUP pin configured as a input.  
1 = WAKEUP pin configured as a output.  
3
WU_DIR  
Note: When the WAKEUP pin is configured as an input, it is active high. When the WAKEUP pin is  
configured as an output, is an open-drain that is active low and should be externally pulled-up via a  
10-kΩ resistor to DVDDRTC. WU_DIR must be configured as an input to allow the WAKEUP pin to  
wake the device up from idle modes.  
Bandgap, on-chip LDOs, and the analog POR power down bit.  
This bit shuts down the on-chip LDOs (ANA_LDO, DSP_LDO, and USB_LDO), the Analog POR,  
and Bandgap reference. BG_PD and LDO_PD are only intended to be used when the internal  
LDOs supply power to the chip. If the internal LDOs are bypassed and not used then the BG_PD  
and LDO_PD power down mechanisms should not be used since POR gets powered down and the  
POWERGOOD signal is not generated properly.  
2
BG_PD  
After this bit is asserted, the on-chip LDOs, Analog POR, and the Bandgap reference can be  
re-enabled by the WAKEUP pin (high) or the RTC alarm interrupt. The Bandgap circuit will take  
about 100 msec to charge the external 0.1 uF capacitor via the internal 326-kΩ resistor.  
0 = On-chip LDOs, Analog POR, and Bandgap reference are enabled.  
1 = On-chip LDOs, Analog POR, and Bandgap reference are disabled (shutdown).  
On-chip LDOs and Analog POR power down bit.  
This bit shuts down the on-chip LDOs (ANA_LDO, DSP_LDO, and USB_LDO) and the Analog  
POR. BG_PD and LDO_PD are only intended to be used when the internal LDOs supply power to  
the chip. If the internal LDOs are bypassed and not used then the BG_PD and LDO_PD power  
down mechanisms should not be used since POR gets powered down and the POWERGOOD  
signal is not generated properly.  
1
0
LDO_PD  
After this bit is asserted, the on-chip LDOs and Analog POR can be re-enabled by the WAKEUP  
pin (high) or the RTC alarm interrupt. This bit keeps the Bandgap reference turned on to allow a  
faster wake-up time with the expense power consumption of the Bandgap reference.  
0 = On-chip LDOs and Analog POR are enabled.  
1 = On-chip LDOs and Analog POR are disabled (shutdown).  
Clockout output enable bit.  
RTCCLKOUTEN 0 = Clock output disabled.  
1 = Clock output enabled.  
58  
Device Configuration  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
15  
8
Reserved  
R-0  
7
2
1
0
Reserved  
DSP_LDO_V  
USB_LDO_EN  
R-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
R/W-0  
R/W-0  
Figure 4-2. LDO Control Register (LDOCNTL) [7004h]  
Table 4-3. LDOCNTL Register Bit Descriptions  
BIT  
NAME  
DESCRIPTION  
15:2  
RESERVED  
Reserved. Read-only, writes have no effect.  
DSP_LDO voltage select bit.  
0 = DSP_LDOO is regulated to 1.3 V.  
1 = DSP_LDOO is regulated to 1.05 V  
1
0
DSP_LDO_V  
Note: For the 50-MHz devices, DSP_LDO must be programmed to 1.05 V to match the core  
voltage, CVDD, for proper operation after reset.  
USB_LDO enable bit.  
USB_LDO_EN  
0 = USB_LDO output is disabled. USB_LDOO pin is placed in high-impedance (Hi-Z) state.  
1 = USB_LDO output is enabled. USB_LDOO is regulated to 1.3 V.  
Table 4-4. LDO Controls Matrix  
RTCPMGT Register  
(0x1930)  
LDOCNTL Register  
DSP_LDO_EN  
(0x7004)  
ANA_LDO  
DSP_LDO  
USB_LDO  
(Pin C13)  
BG_PD Bit  
LDO_PD Bit  
USB_LDO_EN Bit  
1
Don't Care  
Don't Care  
Don't Care  
Don't Care  
Low  
OFF  
OFF  
ON  
OFF  
OFF  
ON  
OFF  
OFF  
OFF  
OFF  
ON  
Don't Care  
1
0
0
0
Don't Care  
0
0
0
0
0
1
High  
ON  
OFF  
ON  
Low  
ON  
4.2.2 Power Considerations for C5533  
The device provides several means of managing power consumption.  
To minimize power consumption, the device divides its circuits into nine main isolated supply domains:  
LDOI (LDOs and Bandgap Power Supply)  
Analog POR and PLL (VDDA_ANA and VDDA_PLL  
)
RTC Core (CVDDRTC  
Digital Core (CVDD  
USB Core (USB_ VDD1P3 and USB_VDDA1P3  
USB PHY and USB PLL (USB_VDDOSC, USB_VDDA3P3, and USB_VDDPLL  
RTC I/O (DVDDRTC  
Rest of the I/O (DVDDIO  
)
)
)
)
)
)
4.2.2.1 LDO Configuration  
The device includes two Low-Dropout Regulators (LDOs) which can be used to regulate the power  
supplies of the analog PLL and Power Management (ANA_LDO) and USB Core (USB_LDO).  
Copyright © 2011, Texas Instruments Incorporated  
Device Configuration  
59  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
 
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
These LDOs are controlled by a combination of pin configuration and register settings. For more detailed  
information see the following sections.  
4.2.2.1.1 LDO Inputs  
The LDOI pins (B10, B14, C14) provide power to the internal Analog and USB LDOs, the bandgap  
reference generator, and some I/O input pins, and can range from 1.8 V to 3.6 V. The bandgap provides  
accurate voltage and current references to the POR, LDOs, and PLL; therefore, for proper device  
operation, power must always be applied to the LDOI pins even if the LDO outputs are not used.  
4.2.2.1.2 LDO Outputs  
The ANA_LDOO pin (B9) is the output of the internal ANA_LDO and can provide regulated 1.3 V power of  
up to 4 mA. The ANA_LDOO pin is intended to be connected, on the board, to the VDDA_ANA and VDDA_PLL  
pins to provide a regulated 1.3 V to the Power Management Circuits and System PLL. VDDA_ANA and  
VDDA_PLL may be powered by this LDO output, which is recommended, to take advantage of the device's  
power management techniques, or by an external power supply. The ANA_LDO cannot be disabled  
individually (see Section 4.2.1.1.3, LDO Control).  
The USB_LDOO pin (D13) is the output of the internal USB_LDO and provides regulated 1.3 V,  
software-switchable (on/off) power of up to 25 mA. The USB_LDOO pin is intended to be connected, on  
the board, to the USB_VDD1P3 and USB_VDDA1P3 pins to provide power to portions of the USB. Optionally,  
the USB_VDD1P3 and USB_VDDA1P3 may be powered by an external power supply and the USB_LDO can  
be left disabled. When the USB_LDO is disabled, its output pin is in a high-impedance state.  
4.2.2.1.3 LDO Control  
Both LDOs can be simultaneously disabled via software by writing to either the BG_PD bit or the LDO_PD  
bit in the RTCPMGT register (see Figure 4-1). When the LDOs are disabled via this mechanism, the only  
way to re-enable them is by asserting the WAKEUP signal pin (which must also have been previously  
enabled to allow wakeup), or by a previously enabled and configured RTC alarm, or by cycling power to  
the CVDDRTC pin.  
ANA_LDO: The ANA_LDO is only disabled by the BG_PD and the LDO_PD mechanism described above.  
Otherwise, it is always enabled.  
USB_LDO: The USB_LDO can be independently and dynamically enabled or disabled by software via the  
USB_LDO_EN bit in the LDOCNTL register (see Figure 4-2). The USB _LDO is disabled at reset.  
Table 4-4 shows the ON/OFF control of each LDO and its register control bit configurations.  
60  
Device Configuration  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
15  
8
Reserved  
R-0  
7
5
4
3
2
1
0
Reserved  
WU_DOUT  
WU_DIR  
BG_PD  
LDO_PD  
RTCCLKOUTEN  
R-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Figure 4-3. RTC Power Management Register (RTCPMGT) [1930h]  
Table 4-5. RTCPMGT Register Bit Descriptions  
BIT  
NAME  
DESCRIPTION  
Reserved. Read-only, writes have no effect.  
15:5  
RESERVED  
Wakeup output, active low/open-drain.  
0 = WAKEUP pin driven low.  
4
WU_DOUT  
1 = WAKEUP pin is in high-impedance (Hi-Z).  
Wakeup pin direction control.  
0 = WAKEUP pin configured as a input.  
1 = WAKEUP pin configured as a output.  
3
WU_DIR  
Note: When the WAKEUP pin is configured as an input, it is active high. When the WAKEUP pin is  
configured as an output, is an open-drain that is active low and should be externally pulled-up via a  
10-kΩ resistor to DVDDRTC. WU_DIR must be configured as an input to allow the WAKEUP pin to  
wake the device up from idle modes.  
Bandgap, on-chip LDOs, and the analog POR power down bit.  
This bit shuts down the on-chip LDOs (ANA_LDO and USB_LDO), the Analog POR, and Bandgap  
reference. BG_PD and LDO_PD are only intended to be used when the internal LDOs supply  
power to the chip. If the internal LDOs are bypassed and not used then the BG_PD and LDO_PD  
power down mechanisms should not be used since POR gets powered down and the  
POWERGOOD signal is not generated properly.  
2
BG_PD  
After this bit is asserted, the on-chip LDOs, Analog POR, and the Bandgap reference can be  
re-enabled by the WAKEUP pin (high) or the RTC alarm interrupt. The Bandgap circuit will take  
about 100 msec to charge the external 0.1 uF capacitor via the internal 326-kΩ resistor.  
0 = On-chip LDOs, Analog POR, and Bandgap reference are enabled.  
1 = On-chip LDOs, Analog POR, and Bandgap reference are disabled (shutdown).  
On-chip LDOs and Analog POR power down bit.  
This bit shuts down the on-chip LDOs (ANA_LDO and USB_LDO) and the Analog POR. BG_PD  
and LDO_PD are only intended to be used when the internal LDOs supply power to the chip. If the  
internal LDOs are bypassed and not used then the BG_PD and LDO_PD power down mechanisms  
should not be used since POR gets powered down and the POWERGOOD signal is not generated  
properly.  
1
0
LDO_PD  
After this bit is asserted, the on-chip LDOs and Analog POR can be re-enabled by the WAKEUP  
pin (high) or the RTC alarm interrupt. This bit keeps the Bandgap reference turned on to allow a  
faster wake-up time with the expense power consumption of the Bandgap reference.  
0 = On-chip LDOs and Analog POR are enabled.  
1 = On-chip LDOs and Analog POR are disabled (shutdown).  
Clockout output enable bit.  
RTCCLKOUTEN 0 = Clock output disabled.  
1 = Clock output enabled.  
Copyright © 2011, Texas Instruments Incorporated  
Device Configuration  
61  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
15  
8
Reserved  
R-0  
7
1
0
Reserved  
USB_LDO_EN  
R-0  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Figure 4-4. LDO Control Register (LDOCNTL) [7004h]  
Table 4-6. LDOCNTL Register Bit Descriptions  
BIT  
NAME  
DESCRIPTION  
Reserved. Read-only. Writes have no effect.  
USB_LDO enable bit.  
15:1  
RESERVED  
0
USB_LDO_EN  
0 = USB_LDO output is disabled. USB_LDOO pin is placed in high-impedance (Hi-Z) state.  
1 = USB_LDO output is enabled. USB_LDOO is regulated to 1.3 V.  
Table 4-7. LDO Controls Matrix  
RTCPMGT Register  
(0x1930)  
LDOCNTL Register  
DSP_LDO_EN  
(0x7004)  
ANA_LDO  
USB_LDO  
(Pin C13)  
BG_PD Bit  
LDO_PD Bit  
USB_LDO_EN Bit  
1
Don't Care  
Don't Care  
High  
High  
High  
High  
High  
OFF  
OFF  
ON  
OFF  
OFF  
OFF  
OFF  
ON  
Don't Care  
1
0
0
0
Don't Care  
0
0
0
0
0
1
ON  
ON  
4.2.3 Power Considerations for C5532  
The device provides several means of managing power consumption.  
To minimize power consumption, the device divides its circuits into nine main isolated supply domains:  
LDOI (ANA_LDO and Bandgap Power Supply)  
Analog POR and PLL (VDDA_ANA and VDDA_PLL  
RTC Core (CVDDRTC  
Digital Core (CVDD  
)
)
)
USB Core (USB_VDD1P3 and USB_VDDA1P3) C5533 Only  
USB PHY and USB PLL (USB_VDDOSC, USB_VDDA3P3, and USB_VDDPLL) C5533 Only  
RTC I/O (DVDDRTC  
)
Rest of the I/O (DVDDIO  
)
4.2.3.1 LDO Configuration  
The device includes one Low-Dropout Regulators (LDO) which can be used to regulate the power  
supplies of the analog PLL.  
4.2.3.2 LDO Inputs  
The LDOI pins (B10, B14, C14) provide power to the internal Analog LDO, the bandgap reference  
generator, and some I/O input pins, and can range from 1.8 V to 3.6 V. The bandgap provides accurate  
voltage and current references to the LDO PLL; therefore, for proper device operation, power must always  
be applied to the LDOI pins even if the LDO output is not used.  
62  
Device Configuration  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
4.2.3.3 LDO Outputs  
The ANA_LDOO pin (B9) is the output of the internal ANA_LDO and can provide regulated 1.3 V power of  
up to 4 mA. The ANA_LDOO pin is intended to be connected, on the board, to the VDDA_ANA and  
VDDA_PLL pins to provide a regulated 1.3 V to the System PLL. VDDA_ANA and VDDA_PLL may be  
powered by this LDO output. However, when VDDA_PLL requires 1.4 V, VDDA_PLL must be powered  
externally and ANA_LDO output can provide a regulated 1.3 V, but only to VDDA_ANA, not both.  
NOTE  
The DSP_LDOO is not supported on TMS320C5532. However, DSP_LDO can be enabled to  
support the RTC-only mode (see Section 6.10.1, RTC Only Mode, for details). Otherwise,  
DSP_LDO should be disabled on this device and the DSP_LDO output pin must be always  
left unconnected. The USB_LDOO is not supported on this device, so the USB_LDO must  
be left disabled. USB_LDO is disabled at reset, so it does not require any action to disable  
the USB_LDO. When the USB_LDO is disabled, the USB_LDOO pin is in a high-impedance  
(Hi-Z) state and should be left unconnected.  
Copyright © 2011, Texas Instruments Incorporated  
Device Configuration  
63  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
4.3 Clock Considerations  
The system clock, which is used by the CPU and most of the DSP peripherals, is controlled by the system  
clock generator. The system clock generator features a software-programmable PLL multiplier and several  
dividers. The clock generator accepts an input reference clock from the CLKIN pin or the output clock of  
the 32.768-KHz real-time clock (RTC) oscillator. The selection of the input reference clock is based on the  
state of the CLK_SEL pin. The CLK_SEL pin is required to be statically tied high or low and cannot  
change dynamically after reset.  
In addition, the DSP requires a reference clock for USB applications. The USB reference clock is  
generated using a dedicated on-chip oscillator with a 12-MHz external crystal connected to the USB_MXI  
and USB_MXO pins.  
The USB reference clock is not required if the USB peripheral is not being used. To completely disable the  
USB oscillator, connect the USB_MXI pin to ground (VSS) and leave the USB_MXO pin unconnected. The  
USB oscillator power pins (USB_VDDOSC and USB_VSSOSC) should also be connected to ground.  
The RTC oscillator generates a clock when a 32.768-KHz crystal is connected to the RTC_XI and  
RTC_XO pins. The 32.768-KHz crystal can be disabled if CLKIN is used as the clock source for the DSP.  
However, when the RTC oscillator is disabled, the RTC peripheral will not operate and the RTC registers  
(I/O address range 1900h 197Fh) will not be accessible. This includes the RTC power management  
register (RTCPMGT) which controls the RTCLKOUT and WAKEUP pins. To disable the RTC oscillator,  
connect the RTC_XI pin to CVDDRTC and the RTC_XO pin to ground.  
For more information on crystal specifications for the RTC oscillator and the USB oscillator, see  
Section 6.4, External Clock Input From RTC_XI, CLKIN, and USB_MXI Pins.  
4.3.1 Clock Configurations After Device Reset  
After reset, the on-chip Bootloader programs the system clock generator based on the input clock selected  
via the CLK_SEL pin. If CLK_SEL = 0, the Bootloader programs the system clock generator and sets the  
system clock to 12.288 MHz (multiply the 32.768-kHz RTC oscillator clock by 375). If CLK_SEL = 1, the  
Bootloader bypasses the system clock generator altogether and the system clock is driven by the CLKIN  
pin. In this case, the CLKIN frequency is expected to be 11.2896 MHz, 12.0 MHz, or 12.288 MHz. While  
the bootloader tries to boot from the USB, the clock generator will be programmed to output approximately  
36 MHz.  
4.3.1.1 Device Clock Frequency  
After the boot process is complete, the user is allowed to re-program the system clock generator to bring  
the device up to the desired clock frequency and the desired peripheral clock state (clock gating or not).  
The user must adhere to various clock requirements when programming the system clock generator. For  
more information, see Section 6.5, Clock PLLs.  
Note: The on-chip Bootloader allows for DSP registers to be configured during the boot process.  
However, this feature must not be used to change the output frequency of the system clock generator  
during the boot process. Timer0 is also used by the bootloader to allow for 200 ms of BG_CAP settling  
time. The bootloader register modification feature must not modify the Timer0 registers.  
64  
Device Configuration  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
4.3.1.2 Peripheral Clock State  
The clock and reset state of each of peripheral is controlled through a set of system registers. The  
peripheral clock gating control registers (PCGCR1 and PCGCR2) are used to enable and disable  
peripheral clocks. The peripheral software reset counter register (PSRCR) and the peripheral reset control  
register (PRCR) are used to assert and de-assert peripheral reset signals.  
At hardware reset, all of the peripheral clocks are off to conserve power. After hardware reset, the DSP  
boots via the bootloader code in ROM. During the boot process, the bootloader queries each peripheral to  
determine if it can boot from that peripheral. In other words, it reads each peripheral looking for a valid  
boot image file. At that time, the individual peripheral clocks will be enabled for the query and then  
disabled again when the bootloader is finished with the peripheral. By the time the bootloader releases  
control to the user code, all peripheral clocks will be off and all domains in the ICR, except the CPU  
domain, will be idled.  
4.3.1.3 USB Oscillator Control  
The USB oscillator is controlled through the USB system control register (USBSCR). To enable the  
oscillator, the USBOSCDIS and USBOSCBIASDIS bits must be cleared to 0. The user must wait until the  
USB oscillator stabilizes before proceeding with the USB configuration. The USB oscillator stabilization  
time is typically 100 μs, with a 10 ms maximum (Note: the startup time is highly dependent on the ESR  
and capacitive load on the crystal).  
Copyright © 2011, Texas Instruments Incorporated  
Device Configuration  
65  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
4.4 Boot Sequence  
The boot sequence is a process by which the device's on-chip memory is loaded with program and data  
sections from an external image file (in flash memory, for example). The boot sequence also allows,  
optionally, for some of the device's internal registers to be programmed with predetermined values. The  
boot sequence is started automatically after each device reset. For more details on device reset, see  
Section 6.7, Reset.  
There are several methods by which the memory and register initialization can take place. Each of these  
methods is referred to as a boot mode. At reset, the device cycles through different boot modes until an  
image is found with a valid boot signature. The on-chip Bootloader allows the DSP registers to be  
configured during the boot process, if the optional register configuration section is present in the boot  
image (see Figure 4-5). For more information on the boot modes supported, see Section 4.4.1, Boot  
Modes.  
The device Bootloader follows the following steps as shown in Figure 4-5  
1. Immediately after reset, the CPU fetches the reset vector from 0xFFFF00. MP/MC is 0 by default, so  
0xFFFF00 is mapped to internal ROM. The PLL is in bypass mode.  
2. Set CLKOUT slew rate control to slow slew rate.  
3. Idle all peripherals, MPORT and HWA.  
4. If CLK_SEL = 0, the Bootloader powers up the PLL and sets its output frequency to 12.288 MHz (with  
a 375x multiplier using VP = 749, VS = 0, input divider disabled, output divide-by-8 enabled, and output  
divider enabled with VO = 0). If CLK_SEL = 1, the Bootloader keeps the PLL bypassed. Enable  
TIMER0 to start counting 200 ms.  
5. Apply manufacturing trim to the bandgap references.  
6. Disable CLKOUT.  
7. Test for 16-bit and 24-bit SPI EEPROM boot on SPI_CS[0] with a 500-KHz clock rate and set to  
Parallel Port Mode on the External Bus Selection Register to 5, then set to 6:  
(a) Check the first 2 bytes read from boot table for a boot signature match using 16-bit address mode.  
(b) If the boot signature is not valid, read the first 2 bytes again using 24-bit address mode.  
(c) If the boot signature is not valid from either case (16-bit and 24-bit address modes), go to step 8.  
(d) Set Register Configuration, if present in boot image.  
(e) Attempt SPI Serial Memory boot, go to step 13.  
8. Test for I2C EEPROM boot with a 7-bit slave address 0x50 and 400-kHz clock rate.  
(a) Check the first 2 bytes read from boot table for a boot signature match.  
(b) If the boot signature is not valid, go to step 9.  
(c) Set Register Configuration, if present in boot image.  
(d) Attempt I2C EEPROM boot, go to step 13.  
9. Test for eMMC partitions/eMMC/SD0 boot:  
For an eMMC/SD/SDHC card, the card must be formatted to FAT16 or FAT32. The boot image file  
must be renamed to "bootimg.bin" and copied to the foot directory of the formatted card.  
If an eMMC boot partition is desired (for only eMMC 4.3 and up), then the boot image file must be  
programmed to one of the two boot partitions (1 or 2) on the eMMC card. PARTITION_CONFIG in  
the EXT_CSD must be set accordingly.  
If the boot signature is found, attempt eMMC/SD/SDHC boot and go to step 13.  
If boot signature is not found, go to step 10.  
10. Set the PLL output to approximately 36 MHz. If CLK_SEL = 1, CLKIN multiplied by 3x. If CLK_SEL =  
0, CLKIN is multiplied by 1125x. Re-enable TIMER0 to start counting 200 ms due to the PLL change.  
11. Test for UART/USB boot:  
The USB internal LDO will be enabled and the device is configured to accept a boot image on EP1  
OUT.  
UART will be set to 57600 baud, 8 bit, 1 stop bit, CTS/RTS auto flow control, and odd parity will be  
66  
Device Configuration  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
enabled to accept a boot image from the UART transmitter.  
The device will poll UART and USB in turns. If a valid boot signature is detected on either device, a  
boot image will attempt to download on that device. Go to step 13.  
If a valid signature is not detected, return to step 11.  
12. Ensure a minimum of 200 ms has elapsed since step 15 before proceeding to execute the bootloaded  
code.  
13. Jump to the entry point specified in the boot image.  
No  
CLK SEL = 1  
?
Setup PLL to  
x375  
Yes  
Internal Configuration  
Yes  
Yes  
SPI Boot  
?
No  
I2C Boot  
?
No  
eMMC/SD0  
Boot  
?
Yes  
Set Register  
Configuration  
Yes  
UART/USB(1) Boot  
?
Copy Boot  
Image Sections  
to System  
No  
Memory  
Start Timer0 to Count  
200 ms  
Has Timer0  
Counter Expired  
?
No  
Yes  
Jump to Stored  
Execution Point  
(1)  
Figure 4-5. Bootloader Software Architecture  
(1) USB is not supported on TMS320C5532.  
Copyright © 2011, Texas Instruments Incorporated  
Device Configuration  
67  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
4.4.1 Boot Modes  
The device DSP supports the following boot modes in the following device order: SPI 16-bit EEPROM,  
SPI 24-bit Flash, I2C EEPROM, and eMMC boot partition/eMMC/SD/SDHC card. The boot mode is  
determined by checking for a valid boot signature on each supported boot device. The first boot device  
with a valid boot signature will be used to load and execute the user code. If none of the supported boot  
devices have a valid boot signature, the Bootloader goes into an endless loop checking the UART/USB  
boot mode and the device must be reset to look for another valid boot image in the supported boot modes.  
Note: For detailed information on eMMC boot partition/eMMC/SD/SDHC and UART/USB boot modes,  
contact your local sales representative.  
4.4.2 Boot Configuration  
After reset, the on-chip Bootloader programs the system clock generator based on the input clock selected  
via the CLK_SEL pin. If CLK_SEL = 0, the Bootloader programs the system clock generator and sets the  
system clock to 12.288 MHz (multiply the 32.768-KHz RTC oscillator clock by 375). If CLK_SEL = 1, the  
Bootloader bypasses the system clock generator altogether and the system clock is driven by the CLKIN  
pin.  
Note:  
When CLK_SEL =1, the CLKIN frequency is expected to be 11.2896 MHz, 12.0 MHz, or 12.288 MHz.  
The on-chip Bootloader allows for DSP registers to be configured during the boot process. However,  
this feature must not be used to change the output frequency of the system clock generator during the  
boot process. Timer0 is also used by the bootloader to allow for 200 ms of BG_CAP settling time. The  
bootloader register modification feature must not modify the PLL or Timer0 registers.  
After hardware reset, the DSP boots via the bootloader code in ROM. During the boot process, the  
bootloader queries each peripheral to determine if it can boot from that peripheral. At that time, the  
individual peripheral clocks will be enabled for the query and then disabled when the bootloader is finished  
with the peripheral. By the time the bootloader releases control to the user code, all peripheral clocks will  
be "off" and all domains in the ICR, except the CPU domain, will be idled.  
4.4.3 DSP Resources Used By the Bootloader  
The Bootloader uses SARAM block 31 for the storing of temporary data. This block of memory is reserved  
during the boot process. However, after the boot process is complete, it can be used by the user  
application.  
68  
Device Configuration  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
4.5 Configurations at Reset  
Some device configurations are determined at reset. The following subsections give more details.  
4.5.1 Device and Peripheral Configurations at Device Reset  
Table 4-8 summarizes the device boot and configuration pins that are required to be statically tied high,  
tied low, or left unconnected during device operation. For proper device operation, a device reset should  
be initiated after changing any of these pin functions.  
Table 4-8. Default Functions Affected by Device Configuration Pins  
CONFIGURATION PINS  
SIGNAL NO.  
IPU/IPD  
FUNCTIONAL DESCRIPTION  
DSP_LDO enable input.  
DSP_LDO_EN  
C13  
This signal is not intended to be dynamically  
switched.  
0 = DSP_LDO is enabled. The internal DSP LDO  
is enabled to regulate power on the DSP_LDOO  
pin at either 1.3 V or 1.05 V according to the  
LDO_DSP_V bit in the LDOCNTL register, see  
Figure 4-2). At power-on-reset, the internal POR  
monitors the DSP_LDOO pin voltage and  
generates the internal POWERGOOD signal  
when the DSP_LDO voltage is above a minimum  
threshold voltage. The internal device reset is  
generated by the AND of POWERGOOD and the  
RESET pin.  
Note: For the 50-MHz devices, DSP_LDO must  
be programmed to 1.05 V to match the core  
voltage, CVDD, for proper operation after reset.  
1 = DSP_LDO is disabled and the DSP_LDOO  
pin is in a high-impedance (Hi-Z) state. The  
internal voltage monitoring on the DSP_LDOO is  
bypassed and the internal POWERGOOD signal  
is immediately set high. The RESET pin (D6) will  
act as the sole reset source for the device. If an  
external power supply is used to provide power to  
CVDD, then DSP_LDO_EN should be tied to  
LDOI, DSP_LDOO should be left unconnected,  
and the RESET pin must be asserted  
appropriately for device initialization after  
powerup.  
Note: to pullup this pin, connect it to the same  
supply as LDOI pins.  
CLK_SEL  
D1  
Clock input select.  
0 = 32-KHz on-chip oscillator drives the RTC  
timer and the system clock generator. CLKIN is  
ignored.  
1 = CLKIN drives the system clock generator and  
the 32-KHz on-chip oscillator drives only the RTC  
timer.  
This pin is not allowed to change during device  
operation; it must be tied to DVDDIO or GND at  
the board.  
For proper device operation, external pullup/pulldown resistors may be required on these device  
configuration pins. For discussion on situations where external pullup/pulldown resistors are required, see  
Section 4.8.1, Pullup/Pulldown Resistors.  
This device also has RESERVED pins that need to be configured correctly for proper device operation  
(statically tied high, tied low, or left unconnected at all times). For more details on these pins, see  
Table 3-16, Reserved and No Connects Terminal Functions.  
Copyright © 2011, Texas Instruments Incorporated  
Device Configuration  
69  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
 
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
4.6 Configurations After Reset  
The following sections provide details on configuring the device after reset. Multiplexed pin functions are  
selected by software after reset. For more details on multiplexed pin function control, see Section 4.7,  
Multiplexed Pin Configurations.  
4.6.1 External Bus Selection Register (EBSR)  
The External Bus Selection Register (EBSR) determines the mapping of the LCD controller, I2S2, I2S3,  
UART, SPI, and GPIO signals to 21 signals of the external parallel port pins. It also determines the  
mapping of the I2S or SD ports to serial port 1 pins and serial port 2 pins. The EBSR register is located at  
port address 0x1C00. Once the bit fields of this register are changed, the routing of the signals takes  
place on the next CPU clock cycle.  
Before modifying the values of the external bus selection register, you must clock gate all affected  
peripherals through the Peripheral Clock Gating Control Register. After the external bus selection register  
has been modified, you must reset the peripherals before using them through the Peripheral Software  
Reset Counter Register.  
15  
14  
12  
11  
10  
9
8
Reserved  
Reserved  
PPMODE  
SP1MODE  
SP0MODE  
R/W-00  
R-0  
7
R/W-000  
R/W-00  
6
5
4
3
2
1
0
Reserved  
R-0  
R-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Figure 4-6. External Bus Selection Register (EBSR) [1C00h]  
Table 4-9. EBSR Register Bit Descriptions  
BIT  
NAME  
RESERVED  
DESCRIPTION  
15  
Reserved. Read-only, writes have no effect.  
Parallel Port Mode Control Bits. These bits control the pin multiplexing of the LCD Controller, SPI,  
UART, I2S2, I2S3, and GP[31:27, 20:18] pins on the parallel port.  
For more details, see Table 4-10, LCD Controller, SPI, UART, I2S2, I2S3, and GP[31:27, 20:18] Pin  
Multiplexing.  
000 = Mode 0 (16-bit LCD Controller). All 21 signals of the LCD Bridge module are routed to the 21  
external signals of the parallel port.  
001 = Mode 1 (SPI, GPIO, UART, and I2S2). 7 signals of the SPI module, 6 GPIO signals, 4  
signals of the UART module and 4 signals of the I2S2 module are routed to the 21 external signals  
of the parallel port.  
010 = Mode 2 (8-bit LCD Controller and GPIO). 8 bits of pixel data of the LCD Controller module  
and 8 GPIO are routed to the 21 external signals of the parallel port.  
011 = Mode 3 (8-bit LCD Controller, SPI, and I2S3). 8 bits of pixel data of the LCD Controller  
module, 4 signals of the SPI module, and 4 signals of the I2S3 module are routed to the 21 external  
signals of the parallel port.  
14:12  
PPMODE  
100 = Mode 4 (8-bit LCD Controller, I2S2, and UART). 8 bits of pixel data of the LCD Controller  
module, 4 signals of the I2S2 module, and 4 signals of the UART module are routed to the 21  
external signals of the parallel port.  
101 = Mode 5 (8-bit LCD Controller,SPI, and UART). 8 bits of pixel data of the LCD Controller  
module, 4 signals of the SPI module, and 4 signals of the UART module are routed to the 21  
external signals of the parallel port.  
110 = Mode 6 (SPI, I2S2, I2S3, and GPIO). 7 signals of the SPI module, 4 signals of the I2S2  
module, 4 signals of the I2S3 module, and 6 GPIO are routed to the 21 external signals of the  
parallel port.  
111 = Reserved.  
70  
Device Configuration  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
BIT  
SPRS737AUGUST 2011  
Table 4-9. EBSR Register Bit Descriptions (continued)  
NAME  
DESCRIPTION  
Serial Port 1 Mode Control Bits. The bits control the pin multiplexing of the SD1, I2S1, and GPIO  
pins on serial port 1.  
For more details, see Table 4-11, SD1, I2S1, and GP[11:6] Pin Multiplexing.  
00 = Mode 0 (SD1). All 6 signals of the SD1 module are routed to the 6 external signals of the  
serial port 1.  
11:10  
SP1MODE  
01 = Mode 1 (I2S1 and GP[11:10]). 4 signals of the I2S1 module and 2 GP[11:10] signals are  
routed to the 6 external signals of the serial port 1.  
10 = Mode 2 (GP[11:6]). 6 GPIO signals (GP[11:6]) are routed to the 6 external signals of the serial  
port 1.  
11 = Reserved.  
Serial Port 0 Mode Control Bits. The bits control the pin multiplexing of the SD0, I2S0, and GPIO  
pins on serial port 0.  
For more details, see Section 4.7.1.3, SD0, I2S0, and GP[5:0] Pin Multiplexing.  
00 = Mode 0 (SD0). All 6 signals of the SD0 module are routed to the 6 external signals of the  
serial port 0.  
9:8  
SP0MODE  
01 = Mode 1 (I2S0 and GP[5:0]). 4 signals of the I2S0 module and 2 GP[5:4] signals are routed to  
the 6 external signals of the serial port 0.  
10 = Mode 2 (GP[5:0]). 6 GPIO signals (GP[5:0]) are routed to the 6 external signals of the serial  
port 0.  
11 = Reserved.  
7
6
5
4
3
2
1
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
Reserved. Read-only, writes have no effect.  
Reserved. Read-only, writes have no effect.  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
4.6.2 LDO Control Register [7004h]  
When the DSP_LDO is enabled by the DSP_LDO_EN pin [C13], by default, the DSP_LDOO voltage is set  
to 1.3 V. The DSP_LDOO voltage can be programmed to be either 1.05 V or 1.3 V via the DSP_LDO_V  
bit (bit 1) in the LDO Control Register (LDOCNTL).  
For the 50-MHz devices, DSP_LDO must be programmed to 1.05 V to match the core voltage, CVDD, for  
proper operation after reset.  
At reset, the USB_LDO is turned off. The USB_LDO can be enabled via the USBLDOEN bit (bit 0) in the  
LDOCNTL register.  
For more detailed information on the LDOs, see Section 4.2.1.1 LDO Configuration.  
4.6.3 USB System Control Registers (USBSCR) [1C32h]  
After reset, by default, the CPU performs 16-bit accesses to the USB register and data space. To perform  
8-bit accesses to the USB data space, the user must set the BYTEMODE bits to 01b for the "high byte" or  
10b for the "low byte" in the USB System Control Register (USBSCR).  
4.6.4 Peripheral Clock Gating Control Registers (PCGCR1 and PCGCR2) [1C02h and 1C03h]  
After hardware reset, the DSP executes the on-chip bootloader from ROM. As the bootloader executes, it  
selectively enables the clock of the peripheral being queried for a valid boot. If a valid boot source is not  
Copyright © 2011, Texas Instruments Incorporated  
Device Configuration  
71  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
found, the bootloader disables the clock to that peripheral and moves on to the next peripheral in the boot  
order. After the boot process is complete, all of the peripheral clocks will be off and all domains in the ICR,  
except for the CPU domain, will be idled (this includes the MPORT and HWA). The user must enable the  
clocks to the peripherals and CPU ports that are going to be used. The peripheral clock gating control  
registers (PCGCR1 and PCGCR2) are used to enable and disable the peripheral clocks.  
4.6.5 Pullup/Pulldown Inhibit Registers (PDINHIBR1/2/3) [1C17h, 1C18h, and 1C19h,  
respectively]  
Each internal pullup and pulldown (IPU/IPD) resistor on the device DSP, except for the IPD on TRST, can  
be individually controlled through the IPU/IPD registers (PDINHIBR1 [1C17h] , PDINHIBR2 [1C18h], and  
PDINHIBR3 [1C19h]). To minimize power consumption, internal pullup or pulldown resistors should be  
disabled in the presence of an external pullup or pulldown resistor or external driver. Section 4.8.1,  
Pullup/Pulldown Resistors, describes other situations in which an pullup and pulldown resistors are  
required.  
When CVDD is powered down, pullup and pulldown resistors will be forced disabled and an internal  
bus-holder will be enabled. For more detailed information, see Section 6.3.2, Digital I/O Behavior When  
Core Power (CVDD) is Down.  
4.6.6 Output Slew Rate Control Register (OSRCR) [1C16h]  
To provide the lowest power consumption setting, the DSP has configurable slew rate control on the  
CLKOUT output pin. The output slew rate control register (OSRCR) is used to set a subset of the device  
I/O pins, namely the CLKOUT pin, to either fast or slow slew rate. The slew rate feature is implemented by  
staging/delaying turn-on times of the parallel p-channel drive transistors and parallel n-channel drive  
transistors of the output buffer. In the slow slew rate configuration, the delay is longer, but ultimately the  
same number of parallel transistors are used to drive the output high or low. Thus, the drive strength is  
ultimately the same. The slower slew rate control can be used for power savings and has the greatest  
effect at lower DVDDIO voltages.  
4.7 Multiplexed Pin Configurations  
The device DSP uses pin multiplexing to accommodate a larger number of peripheral functions in the  
smallest possible package, providing the ultimate flexibility for end applications. The external bus selection  
register (EBSR) controls all the pin multiplexing functions on the device.  
4.7.1 Pin Multiplexing Details  
This section discusses how to program the external bus selection register (EBSR) to select the desired  
peripheral functions and pin muxing. See the individual pin mux sections for pin muxing details for a  
specific muxed pin. After changing any of the pin mux control registers, it will be necessary to reset the  
peripherals that are affected.  
4.7.1.1 LCD Controller, SPI, UART, I2S2, I2S3, and GP[31:27, 20:18] Pin Multiplexing [EBSR.PPMODE  
Bits] C5535 Only  
The LCD Controller, SPI, UART, I2S2, I2S3, and GPIO signal muxing is determined by the value of the  
PPMODE bit fields in the External Bus Selection Register (EBSR) register. For more details on the actual  
pin functions, see Table 4-10.  
72  
Device Configuration  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
Table 4-10. LCD Controller, SPI, UART, I2S2, I2S3, and GP[31:27, 20:18] Pin Multiplexing(1)  
PDINHIBR3  
REGISTER  
BIT  
EBSR PPMODE BITS  
MODE 3  
MODE 0  
000  
MODE 1  
001  
MODE 2  
010  
MODE 4  
100  
MODE 5  
101  
MODE 6  
110  
PIN NAME  
FIELDS(2)  
011  
LCD_EN_RDB/SPI_CLK  
LCD_EN_RDB  
LCD_D[0]  
LCD_D[1]  
LCD_D[2]  
LCD_D[3]  
LCD_D[4]  
LCD_D[5]  
LCD_D[6]  
LCD_D[7]  
LCD_D[8]  
LCD_D[9]  
LCD_D[10]  
LCD_D[11]  
LCD_D[12]  
LCD_D[13]  
LCD_D[14]  
LCD_D[15]  
LCD_CS0_E0  
LCD_CS1_E1  
LCD_RW_WRB  
LCD_RS  
SPI_CLK  
SPI_RX  
LCD_EN_RDB  
LCD_D[0]  
LCD_D[1]  
LCD_D[2]  
LCD_D[3]  
LCD_D[4]  
LCD_D[5]  
LCD_D[6]  
LCD_D[7]  
GP[18]  
LCD_EN_RDB  
LCD_D[0]  
LCD_D[1]  
LCD_D[2]  
LCD_D[3]  
LCD_D[4]  
LCD_D[5]  
LCD_D[6]  
LCD_D[7]  
SPI_CLK  
LCD_EN_RDB  
LCD_D[0]  
LCD_D[1]  
LCD_D[2]  
LCD_D[3]  
LCD_D[4]  
LCD_D[5]  
LCD_D[6]  
LCD_D[7]  
I2S2_CLK  
I2S2_FS  
LCD_EN_RDB  
LCD_D[0]  
LCD_D[1]  
LCD_D[2]  
LCD_D[3]  
LCD_D[4]  
LCD_D[5]  
LCD_D[6]  
LCD_D[7]  
SPI_CLK  
SPI_CLK  
SPI_RX  
SPI_TX  
GP[12]  
LCD_D[0]/SPI_RX  
LCD_D[1]/SPI_TX  
SPI_TX  
P2PD  
P3PD  
P4PD  
P5PD  
P6PD  
P7PD  
P8PD  
P9PD  
P10PD  
P11PD  
P12PD  
P13PD  
P14PD  
P15PD  
LCD_D[2]/GP[12]  
GP[12]  
LCD_D[3]/GP[13]  
GP[13]  
GP[13]  
LCD_D[4]/GP[14]  
GP[14]  
GP[14]  
LCD_D[5]/GP[15]  
GP[15]  
GP[15]  
LCD_D[6]/GP[16]  
GP[16]  
GP[16]  
LCD_D[7]/GP[17]  
GP[17]  
GP[17]  
LCD_D[8]/I2S2_CLK/GP[18]/SPI_CLK  
LCD_D[9]/I2S2_FS/GP[19]/SPI_CS0  
LCD_D[10]/I2S2_RX/GP[20]/SPI_RX  
LCD_D[11]/I2S2_DX/GP[27]/SPI_TX  
LCD_D[12]/UART_RTS/GP[28]/I2S3_CLK  
LCD_D[13]/UART_CTS/GP[29]/I2S3_FS  
LCD_D[14]/UART_RXD/GP[30]/I2S3_RX  
LCD_D[15]/UART_TXD/GP[31]/I2S3_DX  
LCD_CS0_E0/SPI_CS0  
I2S2_CLK  
I2S2_FS  
I2S2_RX  
I2S2_DX  
UART_RTS  
UART_CTS  
UART_RXD  
UART_TXD  
SPI_CS0  
SPI_CS1  
SPI_CS2  
SPI_CS3  
I2S2_CLK  
I2S2_FS  
I2S2_RX  
I2S2_DX  
I2S3_CLK  
I2S3_FS  
I2S3_RX  
I2S3_DX  
SPI_CS0  
SPI_CS1  
SPI_CS2  
SPI_CS3  
GP[19]  
SPI_CS0  
SPI_CS0  
GP[20]  
SPI_RX  
I2S2_RX  
SPI_RX  
GP[27]  
SPI_TX  
I2S2_DX  
SPI_TX  
GP[28]  
I2S3_CLK  
I2S3_FS  
UART_RTS  
UART_CTS  
UART_RXD  
UART_TXD  
LCD_CS0_E0  
LCD_CS1_E1  
UART_RTS  
UART_CTS  
UART_RXD  
UART_TXD  
LCD_CS0_E0  
LCD_CS1_E1  
GP[29]  
GP[30]  
I2S3_RX  
GP[31]  
I2S3_DX  
LCD_CS0_E0  
LCD_CS1_E1  
LCD_CS0_E0  
LCD_CS1_E1  
LCD_CS1_E1/SPI_CS1  
LCD_RW_WRB/SPI_CS2  
LCD_RS/SPI_CS3  
LCD_RW_WRB LCD_RW_WRB LCD_RW_WRB LCD_RW_WRB  
LCD_RS LCD_RS LCD_RS LCD_RS  
(1) Not supported on TMS320C5534, C5533, or C5532.  
(2) The pin names with PDINHIBR3 register bit field references can have the pulldown resistor enabled or disabled via this register.  
Copyright © 2011, Texas Instruments Incorporated  
Device Configuration  
73  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
4.7.1.2 SD1, I2S1, and GP[11:6] Pin Multiplexing [EBSR.SP1MODE Bits]  
The SD1, I2S1, and GPIO signal muxing is determined by the value of the SP1MODE bit fields in the External Bus Selection Register (EBSR)  
register. For more details on the actual pin functions, see Table 4-11.  
Table 4-11. SD1, I2S1, and GP[11:6] Pin Multiplexing  
EBSR SP1MODE BITS  
PDINHIBR1  
REGISTER  
PIN NAME  
MODE 0  
00  
MODE 1  
01  
MODE 2  
10  
BIT FIELDS(1)  
S10PD  
S11PD  
S12PD  
S13PD  
S14PD  
S15PD  
SD1_CLK/I2S1_CLK/GP[6]  
SD1_CLK  
SD1_CMD  
SD1_D0  
SD1_D1  
SD1_D2  
SD1_D3  
I2S1_CLK  
I2S1_FS  
I2S1_DX  
I2S1_RX  
GP[10]  
GP[6]  
GP[7]  
GP[8]  
GP[9]  
GP[10]  
GP[11]  
SD1_CMD/I2S1_FS/GP[7]  
SD1_D0/I2S1_DX/GP[8]  
SD1_D1/I2S1_RX/GP[9]  
SD1_D2/GP[10]  
SD1_D3/GP[11]  
GP[11]  
(1) The pin names with PDINHIBR1 register bit field references can have the pulldown register enabled or disabled via this register.  
74  
Device Configuration  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
4.7.1.3 SD0, I2S0, and GP[5:0] Pin Multiplexing [EBSR.SP0MODE Bits]  
The SD0, I2S0, and GPIO signal muxing is determined by the value of the SP0MODE bit fields in the  
External Bus Selection Register (EBSR) register. For more details on the actual pin functions, see  
Table 4-12.  
Table 4-12. SD0, I2S0, and GP[5:0] Pin Multiplexing  
EBSR SP0MODE BITS  
PDINHIBR1  
REGISTER  
PIN NAME  
MODE 0  
MODE 1  
MODE 2  
10  
BIT FIELDS(1)  
00  
01  
S00PD  
S01PD  
S02PD  
S03PD  
S04PD  
S05PD  
SD0_CLK/I2S0_CLK/GP[0]  
SD0_CMD/I2S0_FS/GP[1]  
SD0_D0/I2S0_DX/GP[2]  
SD0_D1/I2S0_RX/GP[3]  
SD0_D2/GP[4]  
SD0_CLK  
SD0_CMD  
SD0_D0  
SD0_D1  
SD0_D2  
SD0_D3  
I2S0_CLK  
I2S0_FS  
I2S0_DX  
I2S0_RX  
GP[4]  
GP[0]  
GP[1]  
GP[2]  
GP[3]  
GP[4]  
GP[5]  
SD0_D3/GP[5]  
GP[5]  
(1) The pin names with PDINHIBR1 register bit field references can have the pulldown register enabled or disabled via this register.  
Copyright © 2011, Texas Instruments Incorporated  
Device Configuration  
75  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
4.8 Debugging Considerations  
4.8.1 Pullup/Pulldown Resistors  
Proper board design should ensure that input pins to the device DSP always be at a valid logic level and  
not floating. This may be achieved via pullup/pulldown resistors. The DSP features internal pullup (IPU)  
and internal pulldown (IPD) resistors on many pins, including all GPIO pins, to eliminate the need, unless  
otherwise noted, for external pullup/pulldown resistors.  
An external pullup/pulldown resistor may need to be used in the following situations:  
Configuration Pins: An external pullup/pulldown resistor is recommended to set the desired value/state  
(see the configuration pins listed in Table 4-8, Default Functions Affected by Device Configuration  
Pins). Note that some configuration pins must be connected directly to ground or to a specific supply  
voltage.  
Other Input Pins: If the IPU/IPD does not match the desired value/state, use an external  
pullup/pulldown resistor to pull the signal to the opposite rail.  
For the configuration pins (listed in Table 4-8, Default Functions Affected by Device Configuration Pins), if  
they are both routed out and high-impedance state (not driven), it is strongly recommended that an  
external pullup/pulldown resistor be implemented. In addition, applying external pullup/pulldown resistors  
on the configuration pins adds convenience to the user in debugging and flexibility in switching operating  
modes.  
When an external pullup or pulldown resistor is used on a pin, the pins internal pullup or pulldown resistor  
should be disabled through the Pullup/Pulldown Inhibit Registers (PDINHIBR1/2/3) [1C17h, 1C18h, and  
1C19h, respectively] to minimize power consumption.  
Tips for choosing an external pullup/pulldown resistor:  
Consider the total amount of current that may pass through the pullup or pulldown resistor. Make sure  
to include the leakage currents of all the devices connected to the net, as well as any internal pullup or  
pulldown (IPU/IPD) resistors.  
Decide a target value for the net. For a pulldown resistor, this should be below the lowest VIL level of  
all inputs connected to the net. For a pullup resistor, this should be above the highest VIH level of all  
inputs on the net. A reasonable choice would be to target the VOL or VOH levels for the logic family of  
the limiting device; which, by definition, have margin to the VIL and VIH levels.  
Select a pullup/pulldown resistor with the largest possible value; but, which can still ensure that the net  
will reach the target pulled value when maximum current from all devices on the net is flowing through  
the resistor. The current to be considered includes leakage current plus, any other internal and  
external pullup/pulldown resistors on the net.  
For bidirectional nets, there is an additional consideration which sets a lower limit on the resistance  
value of the external resistor. Verify that the resistance is small enough that the weakest output buffer  
can drive the net to the opposite logic level (including margin).  
Remember to include tolerances when selecting the resistor value.  
For pullup resistors, also remember to include tolerances on the DVDD rail.  
For most systems, a 1-kresistor can be used to oppose the IPU/IPD while meeting the above criteria.  
Users should confirm this resistor value is correct for their specific application.  
For most systems, a 20-kresistor can be used to compliment the IPU/IPD on the configuration pins  
while meeting the above criteria. Users should confirm this resistor value is correct for their specific  
application.  
For more detailed information on input current (II), and the low-/high-level input voltages (VIL and VIH) for  
the device DSP, see Section 5.3, Electrical Characteristics Over Recommended Ranges of Supply  
Voltage and Operating Temperature.  
76  
Device Configuration  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
For the internal pullup/pulldown resistors for all device pins, see the peripheral/system-specific terminal  
functions table in this document.  
4.8.2 Bus Holders  
The device has special I/O bus-holder structures to ensure pins are not left floating when CVDD power is  
removed while I/O power is applied. When CVDD is "ON", the bus-holders are disabled and the internal  
pullups or pulldowns, if applicable, function normally. But when CVDD is "OFF" and the I/O supply is "ON",  
the bus-holders become enabled and any applicable internal pullups and pulldowns are disabled.  
The bus-holders are weak drivers on the pin and, for as long as CVDD is "OFF" and I/O power is "ON",  
they hold the last state on the pin. If an external device is strongly driving the device I/O pin to the  
opposite state then the bus-holder will flip state to match the external driver and DC current will stop.  
This bus-holder feature prevents unnecessary power consumption when CVDD is "OFF"and I/O supply is  
"ON". For example, current caused by undriven pins (input buffer oscillation) and/or DC current flowing  
through pullups or pulldowns.  
If external pullup or pulldown resistors are implemented, then care should be taken that those  
pullup/pulldown resistors can exceed the internal bus-holder's max current and thereby cause the  
bus-holder to flip state to match the state of the external pullup or pulldown. Otherwise, DC current will  
flow unnecessarily. When CVDD power is applied, the bus holders are disabled (for further details on bus  
holders, see Section 6.3.2, Digital I/O Behavior When Core Power (CVDD) is Down).  
4.8.3 CLKOUT Pin  
For debug purposes, the DSP includes a CLKOUT pin which can be used to tap different clocks within the  
clock generator. The SRC bits of the CLKOUT Control Source Register (CCSSR) can be used to specify  
the source for the CLKOUT pin.  
Note: The bootloader disables the CLKOUT pin via CLKOFF bit in the ST3_55 CPU register.  
For more information on the ST3_55 CPU register, see the TMS320C55x 3.0 CPU Reference Guide  
(literature number: SWPU073).  
Copyright © 2011, Texas Instruments Incorporated  
Device Configuration  
77  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
5 Device Operating Conditions  
For the device maximum operating frequency, see Section 7.1.2, Device and Development-Support Tool  
Nomenclature.  
5.1 Absolute Maximum Ratings Over Operating Case Temperature Range (Unless  
Otherwise Noted)(1)  
(2)  
Supply voltage ranges:  
Digital Core (CVDD, CVDDRTC, USB_VDD1P3  
)
0.5 V to 1.7 V  
0.5 V to 4.2 V  
I/O, 1.8 V, 2.5 V, 2.75 V, 3.3 V (DVDDIO, DVDDRTC) 3.3V  
USB supplies USB PHY (USB_VDDOSC, USB_VDDPLL  
,
(2)  
USB_VDDA3P3  
)
LDOI  
0.5 V to 4.2 V  
0.5 V to 1.7 V  
0.5 V to 4.2 V  
(2)  
Analog, 1.3 V (VDDA_PLL, USB_VDDA1P3, VDDA_ANA  
)
Input and Output voltage ranges:  
VI I/O, All pins with DVDDIO or USB_VDDOSC or USB_VDDPLL  
or USB_VDDA3P3 as supply source  
VO I/O, All pins with DVDDIO or USB_VDDOSC or  
USB_VDDPLLor USB_VDDA3P3 as supply source  
0.5 V to 4.2 V  
RTC_XI and RTC_XO  
VI and VO, GPAIN[0]  
0.5 V to 1.7 V  
0.5 V to 4.2 V  
0.5 V to 1.7 V  
0.5 V to 1.7 V  
-0.5 V to 5.5 V  
0.5 V to 1.7 V  
-10°C to 70°C  
-40°C to 85°C  
65°C to 150°C  
100,000 POH  
100,000 POH  
> 300 V  
VI and VO, GPAIN[3:1]  
VO, BG_CAP  
USB_VBUS Input  
ANA_LDOO, DSP_LDOO, and USB_LDOO(3)  
Commercial Temperature (default)  
Industrial Temperature  
(default)  
Operating case temperature ranges, Tc:  
Storage temperature range, Tstg  
Device Operating Life  
DSP Operating Frequency  
(SYSCLK ) 100 MHz  
<70 °C  
(4)  
Power-On Hours (POH)  
70 °C - 85 °C  
JTAG  
ESD Stress Voltage(5)  
Human Body Model (HBM)(6)  
GPIO  
> 500 V  
Other  
> 1000 V  
Charged Device Model (CDM)(7)  
> 250 V  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to VSS.  
(3) DSP_LDOO on TMS320C5533 and C5532 and USB_LDOO on C5532 are not supported and should be left unconnected.  
(4) This information is provided solely for your convenience and does not extend or modify the warranty provided under TIs standard terms  
and conditions for TI semiconductor products.  
(5) Electrostatic discharge (ESD) to measure device sensitivity/immunity to damage caused by electrostatic discharges into the device.  
(6) Level listed is the passing level per ANSI/ESDA/JEDEC JS-001. JEDEC document JEP155 states that 500 V HBM allows safe  
manufacturing with a standard ESD control process, and manufacturing with less than 500 V HBM is possible if necessary precautions  
are taken. Pins listed as 1000 V may actually have higher performance.  
(7) Level listed is the passing level per EIA-JEDEC JESD22-C101E. JEDEC document JEP157 states that 250 V CDM allows safe  
manufacturing with a standard ESD control process. Pins listed as 250 V may actually have higher performance.  
78  
Device Operating Conditions  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
5.2 Recommended Operating Conditions  
MIN  
0.998  
1.24  
0.998  
1.24  
1.24  
1.24  
1.24  
2.97  
2.97  
2.48  
2.25  
1.65  
2.97  
2.97  
1.8  
NOM  
1.05  
1.3  
MAX UNIT  
50 MHz  
1.15  
1.43  
1.43  
1.43  
1.43  
1.43  
1.43  
3.63  
3.63  
3.02  
2.75  
1.98  
3.63  
3.63  
3.6  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
CVDD  
Supply voltage, Digital Core  
100 MHz  
32.768 KHz  
CVDDRTC  
Supply voltage, RTC and RTC OSC  
Supply voltage, Digital USB  
USB_VDD1P3  
USB_VDDA1P3  
VDDA_ANA  
1.3  
1.3  
1.3  
1.3  
3.3  
3.3  
2.75  
2.5  
1.8  
3.3  
3.3  
Core Supplies  
Supply voltage, 1.3 V Analog USB  
Supply voltage, 1.3 V SAR and Pwr Mgmt  
Supply voltage, System PLL  
Supply voltage, 3.3 V USB PLL  
Supply voltage, I/O, 3.3 V  
VDDA_PLL  
USB_VDDPLL  
Supply voltage, I/O, 2.75 V  
DVDDIO  
DVDDRTC  
Supply voltage, I/O, 2.5 V  
I/O Supplies  
Supply voltage, I/O, 1.8 V  
USB_VDDOSC  
USB_VDDA3P3  
LDOI  
Supply voltage, I/O, 3.3 V USB OSC  
Supply voltage, I/O, 3.3 V Analog USB PHY  
Supply voltage, Analog Pwr Mgmt and LDO Inputs  
Supply ground, Digital I/O  
VSS  
VSSRTC  
Supply ground, RTC  
USB_VSSOSC  
USB_VSSPLL  
USB_VSSA3P3  
USB_VSSA1P3  
USB_VSSREF  
VSSA_PLL  
Supply ground, USB OSC  
Supply ground, USB PLL  
Supply ground, 3.3 V Analog USB PHY  
Supply ground, USB 1.3 V Analog USB PHY  
Supply ground, USB Reference Current  
Supply ground, System PLL  
GND  
0
0
0
V
USB_VSS1P3  
VSSA_ANA  
Supply ground, 1.3 V Digital USB PHY  
Supply ground, SAR and Pwr Mgmt  
High-level input voltage, 3.3, 2.75, 2.5, 1.8 V I/O (except  
(1)  
VIH  
0.7 * DVDD  
-0.3  
DVDD + 0.3  
0.3 * DVDD  
V
V
(2)  
GPAIN[3:0] pins)  
Low-level input voltage, 3.3, 2.75, 2.5, 1.8 V I/O (except  
GPAIN[3:0] pins)  
(1)  
VIL  
(2)  
Input voltage, GPAIN0 pin(3)  
Input voltage, GPAIN[3:1] pins  
Default  
-0.3  
-0.3  
3.6  
V
V
VIN  
VDDA_ANA + 0.3  
-10  
70  
°C  
(Commercial)  
Tc  
Operating case temperature  
(Industrial)  
-40  
0
85  
60  
°C  
1.05 V  
DSP Operating Frequency (SYSCLK)  
1.3 V  
MHz  
MHz  
FSYSCLK  
0
100  
(1) DVDD refers to the pin I/O supply voltage. To determine the I/O supply voltage for each pin, see Section 3.2, Terminal Functions.  
(2) The I2C pin SDA and SCL do not feature fail-safe I/O buffers. These pin could potentially draw current when the DVDDIO is powered  
down. Due to the fact that different voltage devices can be connected to I2C bus and the I2C inputs are LVCMOS, the level of logic 0  
(low) and logic 1 (high) are not fixed and depend on DVDDIO  
.
(3) The GNDON bit in the SARPINCTRL register should be set to "1" before SAR channels 0, 1, or 2 are enabled via the CHSEL bit in the  
SARCTRL register, when VIN greater than VDDA_ANA  
.
Copyright © 2011, Texas Instruments Incorporated  
Device Operating Conditions  
79  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
5.3 Electrical Characteristics Over Recommended Ranges of Supply Voltage and  
Operating Temperature (Unless Otherwise Noted)  
(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Full speed: USB_DN and  
USB_DP(2)  
2.8  
USB_VDDA3P3  
V
High speed: USB_DN and  
USB_DP(2)  
360  
440  
mV  
V
VOH  
High-level output voltage, 3.3,  
2.75, 2.5, 1.8 V I/O (except  
GPAIN[3:0] pins)  
IO = IOH  
IO = IOH  
0.8 * DVDD  
High-level output voltage,  
GPAIN[3:1] pins  
0.8 * VDDA_ANA  
V
V
Full speed: USB_DN and  
USB_DP(2)  
0.0  
0.3  
10  
High speed: USB_DN and  
USB_DP(2)  
10  
mV  
Low-level output voltage, 3.3,  
2.75, 2.5, 1.8V I/O (except I2C  
and GPAIN[3:0] pins)  
VOL  
IO = IOL  
0.2 * DVDD  
V
Low-level output voltage, I2C  
pins(3)  
V
DD > 2 V, IOL = 3 mA  
0
0.4  
V
V
Low-level output voltage,  
GPAIN[3:0] pins  
IO = IOL  
0.2 * VDDA_ANA  
DVDD = 3.3 V  
DVDD = 2.5 V  
DVDD = 1.8 V  
162  
141  
122  
1.3  
mV  
mV  
mV  
V
VHYS  
VLDO  
ISD  
Input hysteresis(4)  
USB_LDOO voltage  
ANA_LDOO voltage  
1.24  
1.24  
1.24  
0.998  
250  
4
1.43  
1.43  
1.43  
1.15  
1.3  
V
DSP_LDO_V bit in the LDOCNTL register = 1  
DSP_LDO_V bit in the LDOCNTL register = 0  
LDOI = VMIN  
1.3  
V
DSP_LDOO voltage  
1.05  
V
DSP_LDO shutdown current(5)  
ANA_LDO shutdown current(5)  
USB_LDO shutdown current(5)  
mA  
mA  
mA  
μA  
LDOI = VMIN  
LDOI = VMIN  
25  
Input only pin, internal pulldown or pullup disabled  
-5  
+5  
-59 to  
-161  
DVDD = 3.3 V with internal pullup enabled(8)  
μA  
Input current [DC] (except  
WAKEUP, I2C, and GPAIN[3:0]  
pins)  
(6)(7)  
IILPU  
DVDD = 2.5 V with internal pullup enabled(8)  
DVDD = 1.8 V with internal pullup enabled(8)  
Input only pin, internal pulldown or pullup disabled  
DVDD = 3.3 V with internal pulldown enabled(8)  
DVDD = 2.5 V with internal pulldown enabled(8)  
DVDD = 1.8 V with internal pulldown enabled(8)  
-31 to -93  
-14 to -44  
μA  
μA  
μA  
μA  
μA  
μA  
-5  
-5  
+5  
+5  
Input current [DC] (except  
WAKEUP, I2C, and GPAIN[3:0]  
pins)  
52 to 158  
27 to 83  
11 to 35  
(6)(7)  
IIHPD  
IIH  
/
VI = VSS to DVDD with internal pullups and  
pulldowns disabled.  
Input current [DC], ALL pins  
μA  
(7)  
IIL  
(1) For test conditions shown as MIN, MAX, or TYP, use the appropriate value specified in the recommended operating conditions table.  
(2) The USB I/Os adhere to the Universal Bus Specification Revision 2.0 (USB2.0 spec).  
(3) VDD is the voltage to which the I2C bus pullup resistors are connected.  
(4) Applies to all input pins except WAKEUP, I2C pins, GPAIN[3:0], RTC_XI, and USB_MXI.  
(5) ISD is the amount of current the LDO is ensured to deliver before shutting down to protect itself.  
(6) II applies to input-only pins and bi-directional pins. For input-only pins, II indicates the input leakage current. For bi-directional pins, II  
indicates the input leakage current and off-state (Hi-Z) output leakage current.  
(7) When CVDD power is "ON", the pin bus-holders are disabled. For more detailed information, see Section 6.3.2, Digital I/O Behavior  
When Core Power (CVDD) is Down.  
(8) Applies only to pins with an internal pullup (IPU) or pulldown (IPD) resistor.  
80  
Device Operating Conditions  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Temperature  
(Unless Otherwise Noted) (continued)  
(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
All Pins (except USB, CLKOUT, and GPAIN[3:0]  
pins)  
-4  
mA  
DVDD = 3.3 V  
CLKOUT pin  
-6  
-4  
mA  
mA  
DVDD = 1.8 V  
(7)  
IOH  
High-level output current [DC]  
DVDD = VDDA_ANA = 1.3  
V,  
-4  
mA  
GPAIN[3:1] pins  
External Regulator(9)  
(GPAIN0 is open-drain  
and cannot drive high)  
V,  
DVDD = VDDA_ANA = 1.3  
-100  
μA  
Internal Regulator(9)  
All Pins (except USB, CLKOUT, and GPAIN[3:0]  
pins)  
+4  
mA  
DVDD = 3.3 V  
CLKOUT pin  
+6  
+4  
mA  
mA  
DVDD = 1.8 V  
(7)  
IOL  
Low-level output current [DC]  
I/O Off-state output current  
DVDD = VDDA_ANA = 1.3  
+4  
+4  
mA  
mA  
V, external regulator  
GPAIN[3:0]  
DVDD = VDDA_ANA = 1.3  
V, internal regulator(9)  
All Pins (except USB and GPAIN[3:0])  
GPAIN[3:0] pins  
-10  
-10  
+10  
+10  
2.2  
μA  
μA  
(10)  
IOZ  
Supply voltage, I/O, 3.3 V  
Supply voltage, I/O, 2.75 V  
Supply voltage, I/O, 2.5 V  
Supply voltage, I/O, 1.8 V  
Supply voltage, I/O, 3.3 V  
Supply voltage, I/O, 2.75 V  
Supply voltage, I/O, 2.5 V  
Supply voltage, I/O, 1.8 V  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
1.6  
Bus Holder pull low current when  
CVDD is powered "OFF"  
(11)  
IOLBH  
1.4  
0.72  
-1.3  
-0.97  
-0.83  
-0.46  
Bus Holder pull high current  
when CVDD is powered "OFF"  
(11)  
IOHBH  
(9) When the ANA_LDO supplies VDDA_ANA, it is not recommended to use the GPAIN[3:1] signals for general-purpose outputs (driving high).  
The ISD parameter of the ANA_LDO is too low to drive any realistic load on the GPAIN[3:1] pins while also supplying the PLL through  
VDDA_PLL and the SAR through VDDA_ANA  
.
(10) IOZ applies to output-only pins, indicating off-state (Hi-Z) output leakage current.  
(11) This parameter specifies the maximum strength of the Bus Holder and is needed to calculate the minimum strength of external pull-ups  
and pull-downs.  
Copyright © 2011, Texas Instruments Incorporated  
Device Operating Conditions  
81  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Temperature  
(Unless Otherwise Noted) (continued)  
(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Active, CVDD = 1.3 V, DSP clock = 100 MHz,  
Clock source = RTC on-chip Oscillator  
0.22  
mW/MHz  
Room Temp (25 °C), 75% DMAC + 25% ADD  
(typical sine wave data switching)  
Active, CVDD = 1.05 V, DSP clock = 50 MHz,  
Clock source = RTC on-chip Oscillator  
0.15  
0.22  
0.14  
0.44  
0.26  
0.40  
0.23  
0.28  
mW/MHz  
mW/MHz  
mW/MHz  
mW  
Room Temp (25 °C), 75% DMAC + 25% ADD  
(typical data switching)  
Active, CVDD = 1.3 V, DSP clock = 100MHz, Clock  
source = RTC on-chip Oscillator  
Room Temp (25 °C), 75% DMAC + 25% NOP  
(typical sine wave data switching)  
Active, CVDD = 1.05 V, DSP clock = 50 MHz,  
Clock source = RTC on-chip Oscillator  
Room Temp (25 °C), 75% DMAC + 25% NOP  
(typical data switching)  
Standby, CVDD = 1.3 V, Master clock disabled,  
Clock source = RTC on-chip Oscillator  
Room Temp (25 °C), DARAM and SARAM in  
active mode  
Core (CVDD) supply current  
Standby, CVDD = 1.05 V, Master clock disabled,  
Clock source = RTC on-chip Oscillator  
mW  
Room Temp (25 °C), DARAM and SARAM in  
active mode  
ICDD  
Standby, CVDD = 1.3 V, Master clock disabled,  
Clock source = RTC on-chip Oscillator  
mW  
Room Temp (25 °C), DARAM in retention and  
SARAM in active mode  
Standby, CVDD = 1.05 V, Master clock disabled,  
Clock source = RTC on-chip Oscillator  
mW  
Room Temp (25 °C), DARAM in retention and  
SARAM in active mode  
Standby, CVDD = 1.3 V, Master clock disabled,  
Clock source = RTC on-chip Oscillator  
mW  
Room Temp (25 °C), DARAM in active mode and  
SARAM in retention  
Standby, CVDD = 1.05 V, Master clock disabled,  
Clock source = RTC on-chip Oscillator  
0.15  
0.7  
mW  
Room Temp (25 °C), DARAM in active mode and  
SARAM in retention  
VDDA_PLL = 1.3 V  
Analog PLL (VDDA_PLL) supply  
current  
mA  
mA  
Room Temp (25 °C), Phase detector = 170 kHz,  
VCO = 100 MHz  
VDDA_ANA = 1.3 V, SAR clock = 2 MHz, Temp  
SAR Analog (VDDA_ANA) supply  
current  
1
(70 °C)  
CI  
Input capacitance  
Output capacitance  
4
4
pF  
pF  
Co  
82  
Device Operating Conditions  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
6 Peripheral Information and Electrical Specifications  
6.1 Parameter Information  
Tester Pin Electronics  
Data Sheet Timing Reference Point  
42 Ω  
3.5 nH  
Output  
Under  
Test  
Transmission Line  
Z0 = 50 Ω  
(see Note)  
Device Pin  
(see Note)  
4.0 pF  
1.85 pF  
NOTE: The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its transmission line effects must be  
taken into account.Atransmission line with a delay of 2 ns can be used to produce the desired transmission line effect. The transmission line is  
intended as a load only. It is not necessary to add or subtract the transmission line delay (2 ns) from the data sheet timings.  
Input requirements in this data sheet are tested with an input slew rate of < 4 Volts per nanosecond (4 V/ns) at the device pin.  
Figure 6-1. 3.3-V Test Load Circuit for AC Timing Measurements  
The load capacitance value stated is only for characterization and measurement of AC timing signals. This  
load capacitance value does not indicate the maximum load the device is capable of driving.  
6.1.1 1.8-V, 2.5-V, 2.75-V, and 3.3-V Signal Transition Levels  
All rise and fall transition timing parameters are referenced to VIL MAX and VIH MIN for input clocks, VOL  
MAX and VOH MIN for output clocks.  
Vref = VIH MIN (or VOH MIN)  
Vref = VIL MAX (or VOL MAX)  
Figure 6-2. Rise and Fall Transition Time Voltage Reference Levels  
6.1.2 3.3-V Signal Transition Rates  
All timings are tested with an input edge rate of 4 volts per nanosecond (4 V/ns).  
6.1.3 Timing Parameters and Board Routing Analysis  
The timing parameter values specified in this data manual do not include delays by board routing. As a  
good board design practice, such delays must always be taken into account. Timing values may be  
adjusted by increasing/decreasing such delays. TI recommends utilizing the available I/O buffer  
information specification (IBIS) models to analyze the timing characteristics correctly. To properly use IBIS  
models to attain accurate timing analysis for a given system, see the Using IBIS Models for Timing  
Analysis application report (literature number SPRA839). If needed, external logic hardware such as  
buffers may be used to compensate any timing differences.  
6.2 Recommended Clock and Control Signal Transition Behavior  
All clocks and control signals must transition between VIH and VIL (or between VIL and VIH) in a monotonic  
manner.  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
83  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
6.3 Power Supplies  
The device includes four core voltage-level supplies (CVDD, CVDDRTC, USB_VDD1P3, USB_VDDA1P3), and  
several I/O supplies (DVDDIO, DVDDRTC, USB_VDDOSC, and USB_VDDA3P3), as well as several analog  
supplies (LDOI, VDDA_PLL, VDDA_ANA, and USB_VDDPLL). Some TI power-supply devices include features  
that facilitate power sequencingfor example, Auto-Track and Slow-Start/Enable features. For more  
information regarding TI's power management products and suggested devices to power TI DSPs, visit  
www.ti.com/processorpower.  
6.3.1 Power-Supply Sequencing  
The device includes four core voltage-level supplies (CVDD, CVDDRTC, USB_VDD1P3, USB_VDDA1P3), and  
several I/O supplies, DVDDIO, DVDDRTC, USB_VDDOSC, and USB_VDDA3P3  
.
The device does not require a specific power-up sequence. However, if the DSP_LDO is disabled  
(DSP_LDO_EN = high) and an external regulator supplies power to the CPU Core (CVDD), the external  
reset signal (RESET) must be held asserted until all of the supply voltages reach their valid operating  
ranges.  
Note: the external reset signal on the RESET pin must be held low until all of the power supplies reach  
their operating voltage conditions.  
The I/O design allows either the core supplies (CVDD, CVDDRTC, USB_VDD1P3, USB_VDDA1P3) or the I/O  
supplies (DVDDIO, DVDDRTC, USB_VDDOSC, and USB_VDDA3P3) to be powered up for an indefinite period of  
time while the other supply is not powered if the following constraints are met:  
1. All maximum ratings and recommended operating conditions are satisfied.  
2. All warnings about exposure to maximum rated and recommended conditions, particularly junction  
temperature are satisfied. These apply to power transitions as well as normal operation.  
3. Bus contention while core supplies are powered must be limited to 100 hours over the projected  
lifetime of the device.  
4. Bus contention while core supplies are powered down does not violate the absolute maximum ratings.  
If the USB subsystem is not used, the USB Core (USB_VDD1P3, USB_VDDA1P3) and USB PHY and I/O level  
supplies (USB_VDDOSC, USB_VDDA3P3, and USB_VDDPLL) can be powered off.  
Note: If the device is powered up with the USB cable connected to an active USB host and the USB PHY  
(USB_VDDA3P3) is powered up before the USB Core (USB_VDD1P3, USB_VDDA1P3), the USB Core must be  
powered within 100 ms after the USB host detects the device has been attached.  
A supply bus is powered up when the voltage is within the recommended operating range. It is powered  
down when the voltage is below that range, either stable or while in transition.  
84  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
Copyright © 2011, Texas Instruments Incorporated  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
6.3.2 Digital I/O Behavior When Core Power (CVDD) is Down  
With some exceptions (listed below), all digital I/O pins on the device have special features to allow  
powering down of the Digital Core Domain (CVDD) without causing I/O contentions or floating inputs at the  
pins (see Figure 6-3). The device asserts the internal signal called HHV high when power has been  
removed from the Digital Core Domain (CVDD). Asserting the internal HHV signal causes the following  
conditions to occur in any order:  
All output pin strong drivers to go to the high-impedance (Hi-Z) state  
Weak bus holders to be enabled to hold the pin at a valid high or low  
The internal pullups or pulldowns (IPUs/IPDs) on the I/O pins will be disabled  
The exception pins that do not have this special feature are:  
Pins driven by the CVDDRTC Power Domain [This power domain is "Always On"; therefore, the pins  
driven by CVDDRTC do not need these special features]:  
RTC_XI, RTC_XO, RTC_CLKOUT, and WAKEUP  
USB Pins:  
USB_DP, USB_DM, USB_R1, USB_VBUS, USB_MXI, and USB_MXO  
Pins for the Analog Block:  
GPAIN[3:0], DSP_LDO_EN, and BG_CAP  
DVDD  
Y
A
PAD  
hhvgz  
HHV  
GZ  
OR  
HHV  
PI  
hhvpi  
OR  
HHV  
Figure 6-3. Bus Holder I/O Circuit  
NOTE  
Figure 6-3 shows both a pullup and pulldown but pins have only one, not both.  
PI = Pullup/pulldown Inhibit  
GZ = Output Enable (active low)  
HHV = Described in Section 6.3.2  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
85  
 
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
6.3.3 Power-Supply Design Considerations  
Core and I/O supply voltage regulators should be located close to the DSP (or DSP array) to minimize  
inductance and resistance in the power delivery path. Additionally, when designing for high-performance  
applications utilizing the device, the PC board should include separate power planes for core, I/O,  
VDDA_ANA and VDDA_PLL (which can share the same PCB power plane), and ground; all bypassed with  
highquality lowESL/ESR capacitors.  
6.3.4 Power-Supply Decoupling  
In order to properly decouple the supply planes from system noise, place capacitors (caps) as close as  
possible to the device. These caps need to be no more than 1.25 cm maximum distance from the device  
power pins to be effective. Physically smaller caps, such as 0402, are better but need to be evaluated  
from a yield/manufacturing point-of-view. Parasitic inductance limits the effectiveness of the decoupling  
capacitors, therefore physically smaller capacitors should be used while maintaining the largest available  
capacitance value.  
Larger caps for each supply can be placed further away for bulk decoupling. Large bulk caps (on the order  
of 10 μF) should be furthest away, but still as close as possible. Large caps for each supply should be  
placed outside of the BGA footprint.  
As with the selection of any component, verification of capacitor availability over the product's production  
lifetime should be considered.  
The recommended decoupling capacitance for the DSP core supplies should be 1 μF in parallel with  
0.01-μF capacitor per supply pin.  
6.3.5 LDO Input Decoupling  
The LDO inputs should follow the same decoupling guidelines as other power-supply pins above.  
6.3.6 LDO Output Decoupling  
The LDO circuits implement a voltage feedback control system which has been designed to optimize gain  
and stability tradeoffs. As such, there are design assumptions for the amount of capacitance on the LDO  
outputs. For proper device operation, the following external decoupling capacitors should be used when  
the on-chip LDOs are enabled:  
ANA_LDOO1μF  
DSP_LDOO 5μF ~ 10μF  
USB_LDOO 1μF ~ 2μF  
86  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
Copyright © 2011, Texas Instruments Incorporated  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
6.4 External Clock Input From RTC_XI, CLKIN, and USB_MXI Pins  
The device DSP includes two options to provide an external clock input to the system clock generator:  
Use the on-chip real-time clock (RTC) oscillator with an external 32.768-kHz crystal connected to the  
RTC_XI and RTC_XO pins.  
Use an external 11.2896-, 12.0-, or 12.288-MHz LVCMOS clock input fed into the CLKIN pin that  
operates at the same voltage as the DVDDIO supply (1.8-, 2.5-, 2.75-, or 3.3-V).  
The CLK_SEL pin determines which input is used as the clock source for the system clock generator. For  
more details, see Section 4.5.1, Device and Peripheral Configurations at Device Reset. The crystal for the  
RTC oscillator is not required if CLKIN is used as the system reference clock; however, the RTC must still  
be powered. The RTC registers starting at I/O address 1900h will not be accessible without an RTC clock.  
This includes the RTC Power Management Register which provides control to the on-chip LDOs and  
WAKEUP and RTC_CLKOUT pins. Section 6.4.1, Real-Time Clock (RTC) On-Chip Oscillator With  
External Crystal provides more details on using the RTC on-chip oscillator with an external crystal.  
Section 6.4.2, CLKIN Pin With LVCMOS-Compatible Clock Input provides details on using an external  
LVCMOS-compatible clock input fed into the CLKIN pin.  
Additionally, the USB requires a reference clock generated using a dedicated on-chip oscillator with a  
12-MHz external crystal connected to the USB_MXI and USB_MXO pins. The USB reference clock is not  
required if the USB peripheral is not being used. Section 6.4.3, USB On-Chip Oscillator With External  
Crystal provides details on using the USB on-chip oscillator with an external crystal.  
6.4.1 Real-Time Clock (RTC) On-Chip Oscillator With External Crystal  
The on-chip oscillator requires an external 32.768-kHz crystal connected across the RTC_XI and RTC_XO  
pins, along with two load capacitors, as shown in Figure 6-4. The external crystal load capacitors must be  
connected only to the RTC oscillator ground pin (VSSRTC). Do not connect to board ground (VSS). Position  
the VSS lead on the board between RTC_XI and RTC_XO as a shield to reduce direct capacitance  
between RTC_XI and RTC_XO leads on the board. The CVDDRTC pin can be connected to the same  
power supply as CVDD , or may be connected to a different supply that meets the recommended operating  
conditions (see Section 5.2, Recommended Operating Conditions), if desired.  
RTC_XI  
RTC_XO  
VSSRTC  
CVDDRTC  
VSS  
CVDD  
Crystal  
32.768 kHz  
C1  
C2  
0.998-1.43 V  
1.05/1.3 V  
Figure 6-4. 32.768-kHz RTC Oscillator  
The crystal should be in fundamental-mode function, and parallel resonant, with a maximum effective  
series resistance (ESR) specified in Table 6-1. The load capacitors, C1 and C2, are the total capacitance  
of the circuit board and components, excluding the IC and crystal. The load capacitors values are usually  
approximately twice the value of the crystal's load capacitance, CL, which is specified in the crystal  
manufacturer's datasheet and should be chosen such that the equation is satisfied. All discrete  
components used to implement the oscillator circuit should be placed as close as possible to the  
associated oscillator pins (RTC_XI and RTC_XO) and to the VSSRTC pin.  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
87  
 
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
C C  
1
2
C
=
L
C
+ C  
2
(
)
1
Table 6-1. Input Requirements for Crystal on the 32.768-kHz RTC Oscillator  
PARAMETER  
MIN  
NOM  
MAX  
UNIT  
sec  
kHz  
kΩ  
Start-up time (from power up until oscillating at stable frequency of 32.768-kHz)(1)  
0.2  
2
Oscillation frequency  
ESR  
32.768  
100  
1.6  
1.0  
Maximum shunt capacitance  
Maximum crystal drive  
pF  
μW  
(1) The startup time is highly dependent on the ESR and the capacitive load of the crystal.  
6.4.2 CLKIN Pin With LVCMOS-Compatible Clock Input (Optional)  
Note: If CLKIN is not used, the pin must be tied low.  
A LVCMOS-compatible clock input of a frequency less than 24 MHz can be fed into the CLKIN pin for use  
by the DSP system clock generator. The external connections are shown in Figure 6-5 and Figure 6-6.  
The bootloader assumes that the CLKIN pin is connected to the LVCMOS-compatible clock source with a  
frequency of 11.2896-, 12.0-, or 12.288-MHz. These frequencies were selected to support boot mode  
peripheral speeds of 500 KHz for SPI and 400 KHz for I2C and UART. These clock frequencies are  
achieved by dividing the CLKIN value by 25 for SPI and by 32 for I2C and UART. If a faster external clock  
is input, then these boot modes will run at faster clock speeds. If the system design utilizes faster  
peripherals or these boot modes are not used, CLKIN values higher than 12.288 MHz can be used. Note:  
The CLKIN pin operates at the same voltage as the DVDDIO supply (1.8-, 2.5-, 2.75-, or 3.3-V).  
In this configuration the RTC oscillator can be optionally disabled by connecting RTC_XI to CVDDRTC and  
RTC_XO to ground (VSS). However, when the RTC oscillator is disabled the RTC registers starting at I/O  
address 1900h will not be accessible. This includes the RTC Power Management Register which provides  
control to the on-chip LDOs and WAKEUP and RTC_CLKOUT pins. Note: the RTC must still be powered  
even if the RTC oscillator is disabled.  
For more details on the RTC on-chip oscillator, see Section 6.4.1, Real-Time Clock (RTC) On-Chip  
Oscillator With External Crystal.  
RTC_XI  
RTC_XO  
VSSRTC  
CVDDRTC  
VSS  
CVDD  
CLKIN  
Crystal  
32.768 kHz  
C1  
C2  
0.998-1.43 V  
1.05/1.3 V  
Figure 6-5. LVCMOS-Compatible Clock Input With RTC Oscillator Enabled  
88  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
Copyright © 2011, Texas Instruments Incorporated  
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
RTC_XI  
CVDDRTC RTC_XO  
VSS  
VSSRTC  
CVDD  
CLKIN  
0.998-1.43 V  
1.05/1.3 V  
Figure 6-6. LVCMOS-Compatible Clock Input With RTC Oscillator Disabled  
6.4.3 USB On-Chip Oscillator With External Crystal (Optional)  
When using the USB, the USB on-chip oscillator requires an external 12-MHz crystal connected across  
the USB_MXI and USB_MXO pins, along with two load capacitors, as shown in Figure 6-7. The external  
crystal load capacitors must be connected only to the USB oscillator ground pin (USB_VSSOSC). Do not  
connect to board ground (VSS). The USB_VDDOSC pin can be connected to the same power supply as  
USB_VDDA3P3  
.
The USB on-chip oscillator can be permanently disabled, via tie-offs, if the USB peripheral is not being  
used. To permanently disable the USB oscillator, connect the USB_MXI pin to ground (VSS) and leave the  
USB_MXO pin unconnected. The USB oscillator power pins (USB_VDDOSC and USB_VSSOSC) should also  
be connected to ground, as shown in Figure 6-8.  
When using an external 12-MHz oscillator, the external oscillator clock signal should be connected to the  
USB_MXI pin and the amplitude of the oscillator clock signal must meet the VIH requirement (see  
Section 5.2, Recommended Operating Conditions). The USB_MXO is left unconnected and the  
USB_VSSOSC signal is connected to board ground (VSS).  
USB_MXI  
USB_MXO  
USB_VSSOSC USB_VDDOSC  
VSS  
USB_VDDA3P3  
Crystal  
12 MHz  
C1  
C2  
3.3 V  
3.3 V  
Figure 6-7. 12-MHz USB Oscillator  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
89  
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
USB_MXI  
USB_MXO  
USB_VSSOSC USB_VDDOSC  
VSS  
USB_VDDA3P3  
Figure 6-8. Connections when USB Oscillator is Permanently Disabled  
The crystal should be in fundamental-mode operation, and parallel resonant, with a maximum effective  
series resistance (ESR) specified in Table 6-2. The load capacitors, C1 and C2 are the total capacitance  
of the circuit board and components, excluding the IC and crystal. The load capacitor value is usually  
approximately twice the value of the crystal's load capacitance, CL, which is specified in the crystal  
manufacturer's datasheet and should be chosen such that the equation below is satisfied. All discrete  
components used to implement the oscillator circuit should be placed as close as possible to the  
associated oscillator pins (USB_MXI and USB_MXO) and to the USB_VSSOSC pin.  
C C  
1
2
C
=
L
C
+ C  
2
(
)
1
Table 6-2. Input Requirements for Crystal on the 12-MHz USB Oscillator  
PARAMETER  
MIN  
NOM  
0.100  
12  
MAX  
UNIT  
ms  
Start-up time (from power up until oscillating at stable frequency of 12 MHz)(1)  
10  
Oscillation frequency  
ESR  
MHz  
100  
±100  
5
(2)  
Frequency stability  
ppm  
pF  
Maximum shunt capacitance  
Maximum crystal drive  
330  
μW  
(1) The startup time is highly dependent on the ESR and the capacitive load of the crystal.  
(2) If the USB is used, a 12-MHz, ±100-ppm crystal is recommended.  
90  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
Copyright © 2011, Texas Instruments Incorporated  
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
6.5 Clock PLLs  
The device DSP uses a software-programmable PLL to generate frequencies required by the CPU, DMA,  
and peripherals. The reference clock for the PLL is taken from either the CLKIN pin or the RTC on-chip  
oscillator (as specified through the CLK_SEL pin).  
6.5.1 PLL Device-Specific Information  
There is a minimum and maximum operating frequency for CLKIN, PLLOUT, and the system clock  
(SYSCLK). The system clock generator must be configured not to exceed any of these constraints  
documented in this section (certain combinations of external clock inputs, internal dividers, and PLL  
multiply ratios are not supported).  
Table 6-3. PLLC1 Clock Frequency Ranges  
CVDD = 1.05 V  
CVDD = 1.3 V  
VDDA_PLL = 1.3 V  
VDDA_PLL = 1.3 V  
CLOCK SIGNAL NAME  
UNIT  
MIN  
MAX  
MIN  
MAX  
11.2896  
12  
11.2896  
12  
CLKIN(1)  
MHz  
12.288  
12.288  
RTC Clock  
PLLIN  
32.768  
170  
60  
32.768  
170  
KHz  
KHz  
MHz  
MHz  
ms  
32.768  
32.768  
PLLOUT  
100  
SYSCLK  
0.032768  
4
60  
0.032768  
4
100  
PLL_LOCKTIME  
(1) These CLKIN values are used when the CLK_SEL pin = 1.  
The PLL has lock time requirements that must be followed. The PLL lock time is the amount of time  
needed for the PLL to complete its phase-locking sequence.  
6.5.2 Clock PLL Considerations With External Clock Sources  
If the CLKIN pin is used to provide the reference clock to the PLL, to minimize the clock jitter a single  
clean power supply should power both the device and the external clock oscillator circuit. The minimum  
CLKIN rise and fall times should also be observed. For the input clock timing requirements, see  
Section 6.5.3, Clock PLL Electrical Data/Timing (Input and Output Clocks).  
Rise/fall times, duty cycles (high/low pulse durations), and the load capacitance of the external clock  
source must meet the device requirements in this data manual (see Section 5.3, Electrical Characteristics  
Over Recommended Ranges of Supply Voltage and Operating Temperature, and Section 6.5.3, Clock  
PLL Electrical Data/Timing (Input and Output Clocks).  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
91  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
6.5.3 Clock PLL Electrical Data/Timing (Input and Output Clocks)  
Table 6-4. Timing Requirements for CLKIN(1) (2) (see Figure 6-9)  
CVDD = 1.05 V  
CVDD = 1.3 V  
NO.  
UNIT  
MIN  
NOM  
MAX  
MIN  
NOM  
MAX  
88.577,  
83.333,  
or  
88.577,  
83.333,  
or  
Cycle time, external clock driven on  
CLKIN  
1
2
tc(CLKIN)  
ns  
ns  
81.380  
81.380  
0.466 *  
tc(CLKIN)  
0.466 *  
tc(CLKIN)  
tw(CLKINH) Pulse width, CLKIN high  
tw(CLKINL) Pulse width, CLKIN low  
0.466 *  
tc(CLKIN)  
0.466 *  
tc(CLKIN)  
3
4
ns  
ns  
tt(CLKIN)  
Transition time, CLKIN  
4
4
(1) The CLKIN frequency and PLL multiply factor should be chosen such that the resulting clock frequency is within the specific range for  
CPU operating frequency.  
(2) The reference points for the rise and fall transitions are measured at VIL MAX and VIH MIN.  
1
4
1
2
CLKIN  
3
4
Figure 6-9. CLKIN Timing  
Table 6-5. Switching Characteristics Over Recommended Operating Conditions for CLKOUT(1) (2)  
(see Figure 6-10)  
CVDD = 1.05 V  
CVDD = 1.3 V  
VDDA_PLL = 1.3 V  
VDDA_PLL = 1.3 V  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
1
2
tc(CLKOUT)  
Cycle time, CLKOUT  
P
20  
P
10  
ns  
ns  
0.466 *  
tc(CLKOUT)  
0.466 *  
tc(CLKOUT)  
tw(CLKOUTH)  
Pulse duration, CLKOUT high  
0.466 *  
tc(CLKOUT)  
0.466 *  
tc(CLKOUT)  
3
tw(CLKOUTL)  
Pulse duration, CLKOUT low  
ns  
4
5
tt(CLKOUTR)  
tt(CLKOUTF)  
Transition time (rise), CLKOUT(3)  
Transition time (fall), CLKOUT(3)  
5
5
5
5
ns  
ns  
(1) The reference points for the rise and fall transitions are measured at VOL MAX and VOH MIN.  
(2) P = 1/SYSCLK clock frequency in nanoseconds (ns). For example, when SYSCLK frequency is 100 MHz, use P = 10 ns.  
(3) Transition time is measured with the slew rate set to FAST and DVDDIO = 1.65 V. (For more detailed information, see the Section 4.6.6,  
Output Slew Rate Control Register (OSRCR) [1C16h].).  
2
5
1
CLKOUT  
3
4
Figure 6-10. CLKOUT Timing  
92  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
Copyright © 2011, Texas Instruments Incorporated  
 
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
6.6 Direct Memory Access (DMA) Controller  
The DMA controller is used to move data among internal memory, external memory, and peripherals  
without intervention from the CPU and in the background of CPU operation.  
The DSP includes a total of four DMA controllers. Aside from the DSP resources they can access, all four  
DMA controllers are identical.  
The DMA controller has the following features:  
Operation that is independent of the CPU.  
Four channels, which allow the DMA controller to keep track of the context of four independent block  
transfers.  
Event synchronization. DMA transfers in each channel can be made dependent on the occurrence of  
selected events.  
An interrupt for each channel. Each channel can send an interrupt to the CPU on completion of the  
programmed transfer.  
Ping-Pong mode allows the DMA controller to keep track of double buffering context without CPU  
intervention.  
A dedicated clock idle domain. The four device DMA controllers can be put into a low-power state by  
independently turning off their input clocks.  
6.6.1 DMA Channel Synchronization Events  
The DMA controllers allow activity in their channels to be synchronized to selected events. The DSP  
supports 20 separate synchronization events and each channel can be tied to separate sync events  
independent of the other channels. Synchronization events are selected by programming the CHnEVT  
field in the DMAn channel event source registers (DMAnCESR1 and DMAnCESR2).  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
93  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
6.7 Reset  
The device has two main types of reset: hardware reset and software reset.  
Hardware reset is responsible for initializing all key states of the device. It occurs whenever the RESET  
pin is asserted or when the internal power-on-reset (POR) circuit deasserts an internal signal called  
POWERGOOD. The device's internal POR is a voltage comparator that monitors the DSP_LDOO pin  
voltage and generates the internal POWERGOOD signal when the DSP_LDO is enabled externally by the  
DSP_LDO_EN pin. POWERGOOD is asserted when the DSP_LDOO voltage is above a minimum  
threshold voltage provided by the bandgap. When the DSP_LDO is disabled (DSP_LDO_EN is high), the  
internal voltage comparator becomes inactive, and the POWERGOOD signal logic level is immediately set  
high. The RESET pin and the POWERGOOD signal are internally combined with a logical AND gate to  
produce an (active low) hardware reset (see Figure 6-11, Power-On Reset Timing Requirements and  
Figure 6-12, Reset Timing Requirements).  
There are two types of software reset: the CPU's software reset instruction and the software control of the  
peripheral reset signals. For more information on the CPU's software reset instruction, see the  
TMS320C55x CPU 3.0 CPU Reference Guide (literature number: SWPU073). In all the device  
documentation, all references to "reset" refer to hardware reset. Any references to software reset will  
explicitly state software reset.  
The device RTC has one additional type of reset, a power-on-reset (POR) for the registers in the RTC  
core. This POR monitors the voltage of CVDDRTC and resets the RTC registers when power is first applied  
to the RTC core.  
6.7.1 Power-On Reset (POR) Circuits  
The device includes two power-on reset (POR) circuits, one for the RTC (RTC POR) and another for the  
rest of the chip (MAIN POR).  
6.7.1.1 RTC Power-On Reset (POR)  
The RTC POR ensures that the flip-flops in the CVDDRTC power domain have an initial state upon  
powerup. In particular, the RTCNOPWR register is reset by this POR and is used to indicate that the RTC  
time registers need to be initialized with the current time and date when power is first applied.  
6.7.1.2 Main Power-On Reset (POR)  
The device includes an analog power-on reset (POR) circuit that keeps the DSP in reset until specific  
voltages have reached predetermined levels. When the DSP_LDO is enabled externally by the  
DSP_LDO_EN pin, the output of the POR circuit, POWERGOOD, is held low until the following conditions  
are satisfied:  
LDOI is powered and the bandgap is active for at least approximately 8 ms  
VDD_ANA is powered for at least approximately 4 ms  
DSP_LDOO is above a threshold of approximately 950 mV (see Note:)  
Once these conditions are met, the internal POWERGOOD signal is set high. The POWERGOOD signal  
is internally combined with the RESET pin signal, via an AND-gate, to produce the DSP subsystem's  
global reset. This global reset is the hardware reset for the whole chip, except the RTC. When the global  
reset is deasserted (high), the boot sequence starts. For more detailed information on the boot sequence,  
see Section 4.4, Boot Sequence.  
When the DSP_LDO is disabled (DSP_LDO_EN pin = 1), the voltage monitoring on the DSP_LDOO pin is  
de-activated and the POWERGOOD signal is immediately set high. The RESET pin will be the sole  
source of hardware reset.  
Note: The POR comparator has hysteresis, so the threshold voltage becomes approximately 850 mV after  
POWERGOOD signal is set high.  
94  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
Copyright © 2011, Texas Instruments Incorporated  
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
6.7.1.3 Reset Pin (RESET)  
The device can receive an external reset signal on the RESET pin. As specified above in Section 6.7.1.2,  
Main Power-On Reset, the RESET pin is combined with the internal POWERGOOD signal, that is  
generated by the MAIN POR, via an AND-gate. The output of the AND gate provides the hardware reset  
to the chip. The RESET pin may be tied high and the MAIN POR can provide the hardware reset in case  
DSP_LDO is enabled (DSP_LDO_EN = 0), but an external hardware reset must be provided via the  
RESET pin when the DSP_LDO is disabled (DSP_LDO_EN = 1).  
Once the hardware reset is applied, the system clock generator is enabled and the DSP starts the boot  
sequence. For more information on the boot sequence, see Section 4.4, Boot Sequence.  
6.7.2 Pin Behavior at Reset  
During normal operation, pins are controlled by the respective peripheral selected in the External Bus  
Selection Register (EBSR) register. During power-on reset and reset, the behavior of the output pins  
changes and is categorized as follows:  
High Group: LCD_RS/SPI_CS3, EM_SDCAS, EM_SDRAS  
Low Group: LCD_EN_RDB/SPI_CLK, SD0_CLK/I2S0_CLK/GP[0], SD1_CLK/I2S1_CLK/GP[6]  
Z Group: EMU[1:0], SCL, SDA, LCD_D[0]/SPI_RX, LCD_D[1]/SPI_TX,  
LCD_D[10]/I2S2_RX/GP[20]/SPI_RX, LCD_D[11]/I2S2_DX/GP[27]/SPI_TX,  
LCD_D[12]/I2S2_RTS/GP[28]/I2S3_CLK, LCD_D[13]/I2S2_CTS/GP[29]/I2S3_RS,  
LCD_D[14]/I2S2_RXD/GP[30]/I2S3_RX, LCD_D[15]/I2S2_TXD/GP[31]/I2S3_DX, LCD_D[2]/GP[12],  
LCD_D[3]/GP[13], LCD_D[4]/GP[14], LCD_D[5]/GP[15], LCD_D[6]/GP[16], LCD_D[7]/GP[17],  
LCD_D[8]/I2S2_CLK/GP[18]/SPI_CLK,LCD_D[9]/I2S2_FS/GP[19]/SPI_CS0, RTC_CLKOUT,  
SD0_CMD/I2S0_FS/GP[1], SD0_D0/I2S0_DX/GP[2], SD0_D1/I2S0_RX/GP[3], SD0_D2/GP[4],  
SD0_D3/GP[5], SD1_CMD/I2S1_FS/GP[7], SD1_D0/2S1_DX/GP[8], SD1_D1/I2S1_RX/GP[9],  
SD1_D2/GP[10], SD1_D3/GP[11], TDO, WAKEUP  
CLKOUT Group: CLKOUT, LCD_CS1_E1/SPI_CS1  
SYNCH 01 Group: LCD_CS0_E0/SPI_CS0, LCD_RW_WRB/SPI_CS2, EM_SDCKE  
SYNCH 01 Group: EM_CS0, EM_CS1  
SYNCH x1 Group: XF  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
95  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
6.7.3 Reset Electrical Data/Timing  
Table 6-6. Timing Requirements for Reset(1) (see Figure 6-11 and Figure 6-12)  
CVDD = 1.05 V  
CVDD = 1.3 V  
NO.  
UNIT  
MIN  
MAX  
MIN  
MAX  
1
tw(RSTL)  
Pulse duration, RESET low  
3P  
3P  
ns  
(1) P = 1/SYSCLK clock frequency in ns. For example, if SYSCLK = 12 MHz, use P = 83.3 ns. In IDLE3 mode the system clock generator is  
bypassed and the SYSCLK frequency is equal to either CLKIN or the RTC clock frequency depending on CLK_SEL.  
POWERGOOD  
(Internal)  
RESET  
POWERGOOD and RESET  
(Internal)  
LOW Group  
HIGH Group  
Z Group  
SYNCH X® 0  
Group  
SYNCH X® 1  
Group  
SYNCH 0® 1  
Group  
SYNCH 1® 0  
Group  
Valid Clock  
CLKOUT  
65526 + 38 clocks if CLK_SEL = 1,  
32 + 38 clocks if CLK_SEL = 0  
Figure 6-11. Power-On Reset Timing Requirements  
96  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
Copyright © 2011, Texas Instruments Incorporated  
 
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
POWERGOOD  
(Internal)  
tw(RSTL)  
RESET  
POWERGOOD and RESET  
(Internal)  
LOW Group  
HIGH Group  
Z Group  
SYNCH X ® 0  
Group  
SYNCH X ® 1  
Group  
SYNCH 0 ® 1  
Group  
SYNCH 1 ® 0  
Group  
Valid Clock  
CLKOUT  
65526 + 38 clocks if CLK_SEL = 1,  
32 + 38 clocks if CLK_SEL = 0  
Figure 6-12. Reset Timing Requirements  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
97  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
6.8 Wake-up Events, Interrupts, and XF  
The device has a number of interrupts to service the needs of its peripherals. The interrupts can be  
selectively enabled or disabled.  
6.8.1 Interrupts Electrical Data/Timing  
Table 6-7. Timing Requirements for Interrupts(1) (see Figure 6-13)  
CVDD = 1.05 V  
CVDD = 1.3 V  
NO.  
UNIT  
MIN  
2P  
MAX  
1
2
tw(INTH)  
tw(INTL)  
Pulse duration, interrupt high CPU active  
Pulse duration, interrupt low CPU active  
ns  
ns  
2P  
(1) P = 1/SYSCLK clock frequency in ns. For example, when the CPU core is clocked at 100 MHz, use P = 10 ns. For example, when the  
CPU core is clocked att 120 MHz, use P = 8.3 ns.  
1
INTx  
2
Figure 6-13. External Interrupt Timings  
6.8.2 Wake-Up From IDLE Electrical Data/Timing  
Table 6-8. Timing Requirements for Wake-Up From IDLE (see Figure 6-14)  
CVDD = 1.05 V  
CVDD = 1.3 V  
NO.  
UNIT  
MIN  
MAX  
1
tw(WKPL)  
Pulse duration, WAKEUP or INTx low, SYSCLKDIS = 1  
10  
ns  
Table 6-9. Switching Characteristics Over Recommended Operating Conditions For Wake-Up From  
IDLE(1)(2)(3)(4) (see Figure 6-14)  
CVDD = 1.05 V  
CVDD = 1.3 V  
NO.  
PARAMETER  
UNIT  
MIN TYP  
MAX  
IDLE3 Mode with SYSCLKDIS = 1,  
WAKEUP or INTx event, CLK_SEL =  
1
D
ns  
td(WKEVTH-C  
KLGEN)  
Delay time, wake-up event high to CPU  
active  
2
IDLE3 Mode with SYSCLKDIS = 1,  
WAKEUP or INTx event, CLK_SEL =  
0
C
ns  
ns  
IDLE2 Mode; INTx event  
3P  
(1) D = 1/ External Clock Frequency (CLKIN).  
(2) C = 1/RTCCLK= 30.5 μs. RTCCLK is the clock output of the 32.768-kHz RTC oscillator.  
(3) P = 1/SYSCLK clock frequency in ns. For example, when the CPU core is clocked at 100 MHz, use P = 10 ns.  
(4) Assumes the internal LDOs are used with a 0.1uF bandgap capacitor.  
98  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
Copyright © 2011, Texas Instruments Incorporated  
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
2
CLKOUT  
WAKEUP  
INTx  
1
A. INT[1:0] can only be used as a wake-up event for IDLE3 and IDLE2 modes.  
B. RTC interrupt (internal signal) can be used as wake-up event for IDLE3 and IDLE2 modes.  
C. Any unmasked interrupt can be used to exit the IDLE2 mode.  
D. CLKOUT reflects either the CPU clock, SAR, USB PHY, or PLL clock dependent on the setting of the CLOCKOUT  
Clock Source Register. For this diagram, CLKOUT refers to the CPU clock.  
Figure 6-14. Wake-Up From IDLE Timings  
6.8.3 XF Electrical Data/Timing  
Table 6-10. Switching Characteristics Over Recommended Operating Conditions For XF(1) (2)  
(see Figure 6-15)  
CVDD = 1.05 V  
CVDD = 1.3 V  
NO.  
PARAMETER  
Delay time, CLKOUT high to XF high  
UNIT  
MIN  
MAX  
10.2 ns  
1
td(XF)  
0
(1) P = 1/SYSCLK clock frequency in ns. For example, when the CPU core is clocked at 100 MHz, use P = 10 ns.  
(2) C = 1/RTCCLK= 30.5 μs. RTCCLK is the clock output of the 32.768-kHz RTC oscillator.  
CLKOUT(A)  
1
XF  
A. CLKOUT reflects either the CPU clock, SAR,USB PHY, or PLL clock dependent on the setting of the CLOCKOUT  
Clock Source Register. For this diagram, CLKOUT refers to the CPU clock.  
Figure 6-15. XF Timings  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
99  
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
6.9 Secure Digital (SD)  
The device includes two SD controllers which are compliant with Secure Digital Part 1 Physical Layer  
Specification V2.0 and Secure Digital Input Output (SDIO) V2.0 specifications. The SD card controller  
supports these industry standards and assumes the reader is familiar with these standards.  
Each SD controller in the device has the following features:  
Embedded Multimedia Card/Secure Digital (eMMC/SD/HCSD/HCSD/HSSD) protocol support  
Programmable clock frequency  
512 bit Read/Write FIFO to lower system overhead  
Slave DMA transfer capability  
The SD card controller transfers data between the CPU and DMA controller on one side and the SD card  
on the other side. The CPU and DMA controller can read/write the data in the card by accessing the  
registers in the SD controller.  
The SD controller on this device, does not support the SPI mode of operation.  
6.9.1 SD Peripheral Register Description(s)  
Table 6-11 and Table 6-12 shows the SD registers. The SD0 registers start at address 0x3A00 and the  
SD1 registers start at address 0x3B00.  
100  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
Copyright © 2011, Texas Instruments Incorporated  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
Table 6-11. SD0 Registers  
HEX ADDRESS  
RANGE  
ACRONYM  
REGISTER NAME  
3A00h  
3A04h  
3A08h  
3A0Ch  
3A10h  
3A14h  
3A18h  
3A1Ch  
3A20h  
3A24h  
3A28h  
3A29h  
3A2Ch  
3A2Dh  
3A30h  
3A34h  
3A38h  
3A39h  
3A3Ch  
3A3Dh  
3A40h  
3A41h  
3A44h  
3A45h  
3A48h  
3A50h  
3A64h 3A70h  
3A74h  
SDCTL  
SDCLK  
SD Control Register  
SD Memory Clock Control Register  
SD Status Register 0  
SDST0  
SDST1  
SD Status Register 1  
SDIM  
SD Interrupt Mask Register  
SD Response Time-Out Register  
SD Data Read Time-Out Register  
SD Block Length Register  
SD Number of Blocks Register  
SD Number of Blocks Counter Register  
SD Data Receive 1 Register  
SD Data Receive 2 Register  
SD Data Transmit 1 Register  
SD Data Transmit 2 Register  
SD Command Register  
SDTOR  
SDTOD  
SDBLEN  
SDNBLK  
SDNBLC  
SDDRR1  
SDDRR2  
SDDXR1  
SDDXR2  
SDCMD  
SDARGHL  
SDRSP0  
SDRSP1  
SDRSP2  
SDRSP3  
SDRSP4  
SDRSP5  
SDRSP6  
SDRSP7  
SDDRSP  
SDCIDX  
SD Argument Register  
SD Response Register 0  
SD Response Register 1  
SD Response Register 2  
SD Response Register 3  
SD Response Register 4  
SD Response Register 5  
SD Response Register 6  
SD Response Register 7  
SD Data Response Register  
SD Command Index Register  
Reserved  
SDFIFOCTL  
SD FIFO Control Register  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
101  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
Table 6-12. SD1 Registers  
HEX ADDRESS  
RANGE  
ACRONYM  
REGISTER NAME  
3B00h  
3B04h  
3B08h  
3B0Ch  
3B10h  
3B14h  
3B18h  
3B1Ch  
3B20h  
3B24h  
3B28h  
3B29h  
3B2Ch  
3B2Dh  
3B30h  
3B34h  
3B38h  
3B39h  
3B3Ch  
3B3Dh  
3B40h  
3B41h  
3B44h  
3B45h  
3B48h  
3B50h  
3B74h  
SDCTL  
SDCLK  
SD Control Register  
SD Memory Clock Control Register  
SD Status Register 0  
SDST0  
SDST1  
SD Status Register 1  
SDIM  
SD Interrupt Mask Register  
SD Response Time-Out Register  
SD Data Read Time-Out Register  
SD Block Length Register  
SD Number of Blocks Register  
SD Number of Blocks Counter Register  
SD Data Receive 1 Register  
SD Data Receive 2 Register  
SD Data Transmit 1 Register  
SD Data Transmit 2 Register  
SD Command Register  
SDTOR  
SDTOD  
SDBLEN  
SDNBLK  
SDNBLC  
SDDRR1  
SDDRR2  
SDDXR1  
SDDXR2  
SDCMD  
SDARGHL  
SDRSP0  
SDRSP1  
SDRSP2  
SDRSP3  
SDRSP4  
SDRSP5  
SDRSP6  
SDRSP7  
SDDRSP  
SDCIDX  
SDFIFOCTL  
SD Argument Register  
SD Response Register 0  
SD Response Register 1  
SD Response Register 2  
SD Response Register 3  
SD Response Register 4  
SD Response Register 5  
SD Response Register 6  
SD Response Register 7  
SD Data Response Register  
SD Command Index Register  
SD FIFO Control Register  
102  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
Copyright © 2011, Texas Instruments Incorporated  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
6.9.2 SD Electrical Data/Timing  
Table 6-13. Timing Requirements for SD (see Figure 6-16 and Figure 6-19)  
CVDD = 1.3 V  
FAST MODE  
CVDD = 1.05 V  
STD MODE  
NO  
.
UNIT  
MIN  
3
MAX  
MIN  
3
MAX  
1
2
3
4
tsu(CMDV-CLKH)  
th(CLKH-CMDV)  
tsu(DATV-CLKH)  
th(CLKH-DATV)  
Setup time, SDx_CMD data input valid before SDx_CLK high  
Hold time, SDx_CMD data input valid after SDx_CLK high  
Setup time, SD_Dx data input valid before SDx_CLK high  
Hold time, SD_Dx data input valid after SDx_CLK high  
ns  
ns  
ns  
ns  
3
3
3
3
3
3
Table 6-14. Switching Characteristics Over Recommended Operating Conditions for SD Output(1) (see  
Figure 6-16 and Figure 6-19)  
CVDD = 1.3 V  
FAST MODE  
CVDD = 1.05 V  
STD MODE  
NO  
.
PARAMETER  
UNIT  
MIN  
0
MAX  
50(2)  
MIN  
0
MAX  
25(2) MHz  
7
8
9
f(CLK)  
Operating frequency, SDx_CLK  
Identification mode frequency, SDx_CLK  
Pulse width, SDx_CLK low  
Pulse width, SDx_CLK high  
Rise time, SDx_CLK  
f(CLK_ID)  
tw(CLKL)  
0
400  
0
400 kHz  
7
10  
10  
ns  
ns  
10 tw(CLKH)  
11 tr(CLK)  
12 tf(CLK)  
7
3
3
3
3
ns  
ns  
ns  
ns  
ns  
ns  
Fall time, SDx_CLK  
13 td(MDCLKL-CMDIV) Delay time, SDx_CLK low to SD_CMD data output invalid  
14 td(MDCLKL-CMDV) Delay time, SDx_CLK low to SD_CMD data output valid  
15 td(MDCLKL-DATIV) Delay time, SDx_CLK low to SD_Dx data output invalid  
-4  
-4  
-4.1  
-4.1  
4
4
5.1  
5.1  
16 td(MDCLKL-DATV)  
Delay time, SDx_CLK low to SD_Dx data output valid  
(1) For SD, the parametric values are measured at DVDDIO = 3.3 V and 2.75 V.  
(2) Use this value or SYS_CLK/2 whichever is smaller.  
7
9
10  
SDx_CLK  
13  
14  
VALID  
SDx_CMD  
Figure 6-16. SD Host Command Write Timing  
9
10  
7
SDx_CLK  
SDx_Dx  
4
4
3
Start  
3
D0  
D1  
Dx  
End  
Figure 6-17. SD Card Response Timing  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
103  
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
9
10  
7
SDx_CLK  
1
2
START  
XMIT  
SDx_CMD  
Valid  
Valid  
Valid  
END  
Figure 6-18. SD Host Write Timing  
7
9
10  
SDx_CLK  
SDx_DAT  
16  
15  
VALID  
Figure 6-19. SD Data Write Timing  
104  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
Copyright © 2011, Texas Instruments Incorporated  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
6.10 Real-Time Clock (RTC)  
The device includes a Real-Time Clock (RTC) with its own separated power supply and isolation circuits.  
The separate supply and isolation circuits allow the RTC to run with the least possible power consumption,  
called RTC only mode. The RTC only mode requires CVDDRTC, LDOI, and DVDDRTC power domains to be  
powered, but other power domains can be shut off. See Section 6.10.1, RTC Only Mode for details. All  
RTC registers are preserved (except for RTC Control and RTC Update Registers) and the counter  
continues to operate when the device is powered off. The RTC also has the capability to wakeup the  
device from idle states via alarms, periodic interrupts, or an external WAKEUP input. Additionally, the RTC  
is able to output an alarm or periodic interrupt on the WAKEUP pin to cause external power management  
to re-enable power to the DSP Core and I/O. Note: The RTC Core (CVDDRTC) must be powered properly  
even though RTC is not used.  
The device RTC provides the following features:  
100-year calendar up to year 2099.  
Counts seconds, minutes, hours, day of the week, date, month, and year with leap year compensation  
Millisecond time correction  
Binary-coded-decimal (BCD) representation of time, calendar, and alarm  
24-hour clock mode  
Second, minute, hour, day, or week alarm interrupt  
Periodic interrupt: every millisecond, second, minute, hour, or day  
Alarm interrupt: precise time of day  
Single interrupt to the DSP CPU  
32.768-kHz crystal oscillator with frequency calibration  
Control of the RTC is maintained through a set of I/O memory mapped registers (see Table 6-15). Note  
that any write to these registers will be synchronized to the RTC 32.768-KHz clock; thus, the CPU must  
run at least 3X faster than the RTC. Writes to these registers will not be evident until the next two  
32.768-KHz clock cycles later. Furthermore, if the RTC Oscillator is disabled, no RTC register can be  
written to.  
The RTC has its own power-on-reset (POR) circuit which resets the registers in the RTC core domain  
when power is first applied to the CVDDRTC power pin. The RTC flops are not reset by the device's RESET  
pin nor the digital core's POR (powergood signal).  
The scratch registers in the RTC can be used to take advantage of this unique reset domain to keep track  
of when the DSP boots and whether the RTC time registers have already been initialized to the current  
clock time or whether the software needs to go into a routine to prompt the user to set the time/date.  
6.10.1 RTC Only Mode  
The maximum power saving can be achieved by using the RTC only mode. There are hardware and  
software requirements to use the RTC only mode.  
Hardware Requirements:  
The DSP_LDO_EN pin must be tied to GND or pulled down to GND.  
The RTC Core (CVDDRTC), RTC I/O (DVDDRTC), and LDO inputs (LDOI) must be always powered.  
VDDA_ANA is recommended to be powered from the ANA_LDOO pin. (In case VDDA_ANA has to be  
powered externally, then VDDA_ANA must be always powered, too.)  
All other power domains can be totally shut down during the RTC only mode.  
A high pulse for a minimum of one RTC clock period (30.5 µs) to the WAKEUP pin is required to wake  
up the device from the RTC only mode.  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
105  
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
Power Down Sequence:  
1. CPU must set the LDO_PD bit or the BG_PD bit in the RTCPMGT register (See Figure 4-1). Once the  
LDO_PD bit or the BG_PD bit is set to 1, the DSP_LDOO will be internally shut off and it will cause the  
internal POR holds the internal POWERGOOD signal low, which creates isolation for RTC.  
2. All of the device power domains can be shut down except RTC Core (CVDDRTC), RTC I/O (DVDDRTC),  
and LDO inputs (LDOI).  
Wake-Up Sequence:  
1. When waking up the device, all power domains must be turned back on before or upon applying a  
pulse to WAKEUP.  
2. A pulse (30.5 µs) must be applied to the WAKEUP pin (active high). When the WAKEUP pin is  
asserted, the voltage on the DSP_LDOO pin will start ramping up and it is monitored by the internal  
POR. Until the voltage reaches to the threshold level, the internal POR will hold the internal  
POWERGOOD signal low, which provides isolation to RTC during transition period. Once the voltage  
reaches to the threshold level, the internal POR asserts the internal POWERGOOD signal (logic level  
high) and it resets reset of the system and disables RTC isolation and enables CPU to communicate  
with RTC.  
106  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
Copyright © 2011, Texas Instruments Incorporated  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
6.10.2 RTC Peripheral Register Description(s)  
Table 6-15 shows the RTC registers.  
Table 6-15. Real-Time Clock (RTC) Registers  
HEX ADDRESS  
RANGE  
ACRONYM  
REGISTER NAME  
1900h  
1901h  
1904h  
1905h  
1908h  
1909h  
190Ch  
190Dh  
1910h  
1911h  
1914h  
1915h  
1918h  
1919h  
191Ch  
191Dh  
1920h  
1921h  
1924h  
1928h  
192Ch  
1930h  
1960h  
1961h  
1964h  
1965h  
RTCINTEN  
RTCUPDATE  
RTCMIL  
RTC Interrupt Enable Register  
RTC Update Register  
Milliseconds Register  
RTCMILA  
Milliseconds Alarm Register  
Seconds Register  
RTCSEC  
RTCSECA  
RTCMIN  
Seconds Alarm Register  
Minutes Register  
RTCMINA  
RTCHOUR  
RTCHOURA  
RTCDAY  
Minutes Alarm Register  
Hours Register  
Hours Alarm Register  
Days Register  
RTCDAYA  
RTCMONTH  
RTCMONTHA  
RTCYEAR  
RTCYEARA  
RTCINTFL  
RTCNOPWR  
RTCINTREG  
RTCDRIFT  
RTCOSC  
Days Alarm Register  
Months Register  
Months Alarm Register  
Years Register  
Years Alarm Register  
RTC Interrupt Flag Register  
RTC Lost Power Status Register  
RTC Interrupt Register  
RTC Compensation Register  
RTC Oscillator Register  
RTC Power Management Register  
RTC LSW Scratch Register 1  
RTC MSW Scratch Register 2  
RTC LSW Scratch Register 3  
RTC MSW Scratch Register 4  
RTCPMGT  
RTCSCR1  
RTCSCR2  
RTCSCR3  
RTCSCR4  
6.10.2.1 RTC Electrical Data/Timing  
For more detailed information on RTC electrical timings, specifically WAKEUP, see the Section 6.7.3,  
Reset Electrical Data/Timing.  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
107  
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
6.11 Inter-Integrated Circuit (I2C)  
The inter-integrated circuit (I2C) module provides an interface between the device and other devices  
compliant with Philips Semiconductors Inter-IC bus (I2C-bus) specification version 2.1. External  
components attached to this 2-wire serial bus can transmit/receive 2 to 8-bit data to/from the DSP through  
the I2C module. The I2C port does not support CBUS compatible devices.  
The I2C port supports the following features:  
Compatible with Philips I2C Specification Revision 2.1 (January 2000)  
Data Transfer Rate from 10 kbps to 400 kbps (Philips Fast-Mode Rate)  
Noise Filter to Remove Noise 50 ns or Less  
Seven- and Ten-Bit Device Addressing Modes  
Master (Transmit/Receive) and Slave (Transmit/Receive) Functionality  
One Read DMA Event and One Write DMA Event, which can be used by the DMA Controller  
One Interrupt that can be used by the CPU  
Slew-Rate Limited Open-Drain Output Buffers  
The I2C module clock must be in the range from 6.7 MHz to 13.3 MHz. This is necessary for proper  
operation of the I2C module. With the I2C module clock in this range, the noise filters on the SDA and  
SCL pins suppress noise that has a duration of 50 ns or shorter. The I2C module clock is derived from the  
DSP clock divided by a programmable prescaler.  
108  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
Copyright © 2011, Texas Instruments Incorporated  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
6.11.1 I2C Peripheral Register Description(s)  
Table 6-16 shows the Inter-Integrated Circuit (I2C) registers.  
Table 6-16. Inter-Integrated Circuit (I2C) Registers  
HEX ADDRESS  
RANGE  
ACRONYM  
REGISTER NAME  
1A00h  
1A04h  
1A08h  
1A0Ch  
1A10h  
1A14h  
1A18h  
1A1Ch  
1A20h  
1A24h  
1A28h  
1A2Ch  
1A30h  
1A34h  
1A38h  
ICOAR  
ICIMR  
I2C Own Address Register  
I2C Interrupt Mask Register  
I2C Interrupt Status Register  
ICSTR  
ICCLKL  
ICCLKH  
ICCNT  
ICDRR  
ICSAR  
ICDXR  
ICMDR  
ICIVR  
I2C Clock Low-Time Divider Register  
I2C Clock High-Time Divider Register  
I2C Data Count Register  
I2C Data Receive Register  
I2C Slave Address Register  
I2C Data Transmit Register  
I2C Mode Register  
I2C Interrupt Vector Register  
I2C Extended Mode Register  
I2C Prescaler Register  
ICEMDR  
ICPSC  
ICPID1  
ICPID2  
I2C Peripheral Identification Register 1  
I2C Peripheral Identification Register 2  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
109  
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
6.11.2 I2C Electrical Data/Timing  
Table 6-17. Timing Requirements for I2C Timings(1) (see Figure 6-20)  
CVDD = 1.05 V  
CVDD = 1.3 V  
NO.  
STANDARD  
MODE  
UNIT  
FAST MODE  
MIN  
MAX  
MIN  
MAX  
1
2
tc(SCL)  
Cycle time, SCL  
10  
2.5  
µs  
µs  
Setup time, SCL high before SDA low (for a repeated START  
condition)  
tsu(SCLH-SDAL)  
4.7  
4
0.6  
0.6  
Hold time, SCL low after SDA low (for a START and a  
repeated START condition)  
3
th(SCLL-SDAL)  
µs  
4
5
6
7
tw(SCLL)  
tw(SCLH)  
Pulse duration, SCL low  
Pulse duration, SCL high  
4.7  
4
1.3  
0.6  
100(2)  
µs  
µs  
ns  
µs  
tsu(SDAV-SCLH) Setup time, SDA valid before SCL high  
250  
0(3)  
th(SDA-SCLL)  
Hold time, SDA valid after SCL low  
0(3) 0.9(4)  
Pulse duration, SDA high between STOP and START  
conditions  
8
tw(SDAH)  
4.7  
1.3  
µs  
(6)  
(6)  
(6)  
(6)  
9
tr(SDA)  
tr(SCL)  
tf(SDA)  
tf(SCL)  
Rise time, SDA(5)  
Rise time, SCL(5)  
Fall time, SDA(5)  
Fall time, SCL(5)  
1000 20 + 0.1Cb  
1000 20 + 0.1Cb  
300 20 + 0.1Cb  
300 20 + 0.1Cb  
300  
300  
300  
300  
ns  
ns  
ns  
ns  
µs  
ns  
pF  
10  
11  
12  
13  
14  
15  
tsu(SCLH-SDAH) Setup time, SCL high before SDA high (for STOP condition)  
4
0.6  
0
tw(SP)  
Pulse duration, spike (must be suppressed)  
Capacitive load for each bus line  
50  
(6)  
Cb  
400  
400  
(1) The I2C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the device is powered  
down. Also these pins are not 3.6 V-tolerant (their VIH cannot go above DVDDIO + 0.3 V).  
(2) A Fast-mode I2C-busdevice can be used in a Standard-mode I2C-bus system, but the requirement tsu(SDA-SCLH)250 ns must then be  
met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch  
the LOW period of the SCL signal, it must output the next data bit to the SDA line tr max + tsu(SDA-SCLH)= 1000 + 250 = 1250 ns  
(according to the Standard-mode I2C-Bus Specification) before the SCL line is released.  
(3) A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the VIHmin of the SCL signal) to bridge the  
undefined region of the falling edge of SCL.  
(4) The maximum th(SDA-SCLL) has only to be met if the device does not stretch the low period [tw(SCLL)] of the SCL signal.  
(5) The rise/fall times are measured at 30% and 70% of DVDDIO. The fall time is only slightly influenced by the external bus load (Cb) and  
external pullup resistor. However, the rise time (tr) is mainly determined by the bus load capacitance and the value of the pullup resistor.  
The pullup resistor must be selected to meet the I2C rise and fall time values specified.  
(6) Cb = total capacitance of one bus line in pF. If mixed with HS-mode devices, faster fall-times are allowed.  
11  
9
SDA  
SCL  
6
8
14  
4
13  
5
10  
1
12  
3
2
7
3
Stop  
Start  
Repeated  
Start  
Stop  
Figure 6-20. I2C Receive Timings  
110  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
Copyright © 2011, Texas Instruments Incorporated  
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
Table 6-18. Switching Characteristics for I2C Timings(1) (see Figure 6-21)  
CVDD = 1.05 V  
CVDD = 1.3 V  
NO.  
PARAMETER  
STANDARD  
MODE  
UNIT  
FAST MODE  
MIN  
MAX  
MIN  
MAX  
16  
17  
tc(SCL)  
td(SCLH-SDAL)  
td(SDAL-SCLL)  
Cycle time, SCL  
10  
2.5  
µs  
µs  
Delay time, SCL high to SDA low (for a repeated START  
condition)  
4.7  
4
0.6  
0.6  
Delay time, SDA low to SCL low (for a START and a  
repeated START condition)  
18  
µs  
19  
20  
21  
22  
tw(SCLL)  
tw(SCLH)  
Pulse duration, SCL low  
Pulse duration, SCL high  
4.7  
4
1.3  
0.6  
100  
0
µs  
µs  
ns  
µs  
td(SDAV-SCLH) Delay time, SDA valid to SCL high  
250  
0
tv(SCLL-SDAV)  
Valid time, SDA valid after SCL low  
0.9  
Pulse duration, SDA high between STOP and START  
conditions  
23  
tw(SDAH)  
4.7  
1.3  
µs  
Rise time, SDA(2)  
Rise time, SCL(2)  
Fall time, SDA(2)  
Fall time, SCL(2)  
1000 20 + 0.1Cb  
1000 20 + 0.1Cb  
300 20 + 0.1Cb  
300 20 + 0.1Cb  
300  
300  
300  
300  
ns  
ns  
ns  
ns  
µs  
pF  
(1)  
(1)  
(1)  
(1)  
24  
25  
26  
27  
28  
29  
tr(SDA)  
tr(SCL)  
tf(SDA)  
tf(SCL)  
td(SCLH-SDAH) Delay time, SCL high to SDA high (for STOP condition)  
Cp Capacitance for each I2C pin  
4
0.6  
10  
10  
(1) Cb = total capacitance of one bus line in pF. If mixed with HS-mode devices, faster fall-times are allowed.  
(2) The rise/fall times are measured at 30% and 70% of DVDDIO. The fall time is only slightly influenced by the external bus load (Cb) and  
external pullup resistor. However, the rise time (tr) is mainly determined by the bus load capacitance and the value of the pullup resistor.  
The pullup resistor must be selected to meet the I2C rise and fall time values specified.  
26  
24  
SDA  
SCL  
21  
23  
19  
28  
20  
25  
16  
18  
27  
18  
17  
22  
Stop  
Start  
Repeated  
Start  
Stop  
Figure 6-21. I2C Transmit Timings  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
111  
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
6.12 Universal Asynchronous Receiver/Transmitter (UART)  
The UART performs serial-to-parallel conversions on data received from an external peripheral device and  
parallel-to-serial conversions on data transmitted to an external peripheral device via a serial bus.  
The device has one UART peripheral with the following features:  
Programmable baud rates (frequency pre-scale values from 1 to 65535)  
Fully programmable serial interface characteristics:  
5, 6, 7, or 8-bit characters  
Even, odd, or no PARITY bit generation and detection  
1, 1.5, or 2 STOP bit generation  
16-byte depth transmitter and receiver FIFOs:  
The UART can be operated with or without the FIFOs  
1, 4, 8, or 14 byte selectable receiver FIFO trigger level for autoflow control and DMA  
DMA signaling capability for both received and transmitted data  
CPU interrupt capability for both received and transmitted data  
False START bit detection  
Line break generation and detection  
Internal diagnostic capabilities:  
Loopback controls for communications link fault isolation  
Break, parity, overrun, and framing error simulation  
Programmable autoflow control using CTS and RTS signals  
6.12.1 UART Peripheral Register Description(s)  
Table 6-19 shows the UART registers.  
Table 6-19. UART Registers  
HEX ADDRESS  
RANGE  
ACRONYM  
REGISTER NAME  
1B00h  
1B00h  
1B02h  
1B04h  
1B04h  
1B06h  
1B08h  
1B0Ah  
1B0Ch  
1B0Eh  
1B10h  
1B12h  
1B18h  
RBR  
Receiver Buffer Register (read only)  
Transmitter Holding Register (write only)  
Interrupt Enable Register  
THR  
IER  
IIR  
Interrupt Identification Register (read only)  
FIFO Control Register (write only)  
Line Control Register  
FCR  
LCR  
MCR  
Modem Control Register  
LSR  
Line Status Register  
MSR  
SCR  
Modem Status Register  
Scratch Register  
DLL  
Divisor LSB Latch  
DLH  
Divisor MSB Latch  
PWREMU_MGMT  
Power and Emulation Management Register  
112  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
Copyright © 2011, Texas Instruments Incorporated  
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
6.12.2 UART Electrical Data/Timing [Receive/Transmit]  
Table 6-20. Timing Requirements for UART Receive(1)(2) (see Figure 6-22)  
CVDD = 1.05 V  
CVDD = 1.3 V  
NO.  
UNIT  
MIN  
U - 3.5  
U - 3.5  
MAX  
MIN  
U - 3.5  
U - 3.5  
MAX  
4
5
tw(URXDB)  
tw(URXSB)  
Pulse duration, receive data bit (UART_RXD) [15/30/100 pF]  
Pulse duration, receive start bit [15/30/100 pF]  
U + 3  
U + 3  
U + 3  
U + 3  
ns  
ns  
(1) U = UART baud time = 1/programmed baud rate.  
(2) These parametric values are measured at DVDDIO = 3.3 V, 2.75 V, and 2.5 V  
Table 6-21. Switching Characteristics Over Recommended Operating Conditions for UART Transmit(1) (2)  
(see Figure 6-22)  
CVDD = 1.05 V  
CVDD = 1.3V  
MIN MAX  
6.25 MHz  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
3.75  
1
2
3
f(baud)  
Maximum programmable bit rate  
tw(UTXDB)  
tw(UTXSB)  
Pulse duration, transmit data bit (UART_TXD) [15/30/100 pF]  
Pulse duration, transmit start bit [15/30/100 pF]  
U - 3.5  
U - 3.5  
U + 4  
U + 4  
U - 3.5  
U - 3.5  
U + 4  
U + 4  
ns  
ns  
(1) U = UART baud time = 1/programmed baud rate.  
(2) These parametric values are measured at DVDDIO = 3.3 V, 2.75 V, and 2.5 V  
3
2
Start  
Bit  
UART_TXD  
Data Bits  
5
4
Start  
Bit  
UART_RXD  
Data Bits  
Figure 6-22. UART Transmit/Receive Timing  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
113  
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
6.13 Inter-IC Sound (I2S)  
The device I2S peripherals allow serial transfer of full-duplex streaming data, usually audio data, between  
the device and an external I2S peripheral device such as an audio codec.  
The device supports 4 independent dual-channel I2S peripherals, each with the following features:  
Full-duplex (transmit and receive) dual-channel communication  
Double buffered data registers that allow for continuous data streaming  
I2S/Left-justified and DSP data format with a data delay of 1 or 2 bits  
Data word-lengths of 8, 10, 12, 14, 16, 18, 20, 24, or 32 bits  
Ability to sign-extend received data samples for easy use in signal processing algorithms  
Programmable polarity for both frame synchronization and bit clocks  
Stereo (in I2S/Left-justified or DSP data formats) or mono (in DSP data format) mode  
Detection of over-run, under-run, and frame-sync error conditions  
6.13.1 I2S Peripheral Register Description(s)  
Table 6-22 through Table 6-25 show the I2S0 through I2S3 registers.  
Table 6-22. I2S0 Registers  
HEX ADDRESS  
ACRONYM  
REGISTER NAME  
RANGE  
2800h  
2804h  
2808h  
2809h  
280Ch  
280Dh  
2810h  
2814h  
2828h  
2829h  
282Ch  
282Dh  
I2S0SCTRL  
I2S0SRATE  
I2S0TXLT0  
I2S0TXLT1  
I2S0TXRT0  
I2S0TXRT1  
I2S0INTFL  
I2S0 Serializer Control Register  
I2S0 Sample Rate Generator Register  
I2S0 Transmit Left Data 0 Register  
I2S0 Transmit Left Data 1 Register  
I2S0 Transmit Right Data 0 Register  
I2S0 Transmit Right Data 1 Register  
I2S0 Interrupt Flag Register  
I2S0INTMASK  
I2S0RXLT0  
I2S0RXLT1  
I2S0RXRT0  
I2S0RXRT1  
I2S0 Interrupt Mask Register  
I2S0 Receive Left Data 0 Register  
I2S0 Receive Left Data 1 Register  
I2S0 Receive Right Data 0 Register  
I2S0 Receive Right Data 1 Register  
Table 6-23. I2S1 Registers  
HEX ADDRESS  
RANGE  
ACRONYM  
REGISTER NAME  
2900h  
2904h  
2908h  
2909h  
290Ch  
290Dh  
2910h  
2914h  
2928h  
2929h  
292Ch  
292Dh  
I2S1SCTRL  
I2S1SRATE  
I2S1TXLT0  
I2S1TXLT1  
I2S1TXRT0  
I2S1TXRT1  
I2S1INTFL  
I2S1 Serializer Control Register  
I2S1 Sample Rate Generator Register  
I2S1 Transmit Left Data 0 Register  
I2S1 Transmit Left Data 1 Register  
I2S1 Transmit Right Data 0 Register  
I2S1 Transmit Right Data 1 Register  
I2S1 Interrupt Flag Register  
I2S1INTMASK  
I2S1RXLT0  
I2S1RXLT1  
I2S1RXRT0  
I2S1RXRT1  
I2S1 Interrupt Mask Register  
I2S1 Receive Left Data 0 Register  
I2S1 Receive Left Data 1 Register  
I2S1 Receive Right Data 0 Register  
I2S1 Receive Right Data 1 Register  
114  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
Copyright © 2011, Texas Instruments Incorporated  
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
Table 6-24. I2S2 Registers  
HEX ADDRESS  
RANGE  
ACRONYM  
REGISTER NAME  
2A00h  
2A04h  
2A08h  
2A09h  
2A0Ch  
2A0Dh  
2A10h  
2A14h  
2A28h  
2A29h  
2A2Ch  
2A2Dh  
I2S2SCTRL  
I2S2SRATE  
I2S2TXLT0  
I2S2TXLT1  
I2S2TXRT0  
I2S2TXRT1  
I2S2INTFL  
I2S2 Serializer Control Register  
I2S2 Sample Rate Generator Register  
I2S2 Transmit Left Data 0 Register  
I2S2 Transmit Left Data 1 Register  
I2S2 Transmit Right Data 0 Register  
I2S2 Transmit Right Data 1 Register  
I2S2 Interrupt Flag Register  
I2S2INTMASK  
I2S2RXLT0  
I2S2RXLT1  
I2S2RXRT0  
I2S2RXRT1  
I2S2 Interrupt Mask Register  
I2S2 Receive Left Data 0 Register  
I2S2 Receive Left Data 1 Register  
I2S2 Receive Right Data 0 Register  
I2S2 Receive Right Data 1 Register  
Table 6-25. I2S3 Registers  
HEX ADDRESS  
RANGE  
ACRONYM  
REGISTER NAME  
2B00h  
2B04h  
2B08h  
2B09h  
2B0Ch  
2B0Dh  
2B10h  
2B14h  
2B28h  
2B29h  
2B2Ch  
2B2Dh  
I2S3SCTRL  
I2S3SRATE  
I2S3TXLT0  
I2S3TXLT1  
I2S3TXRT0  
I2S3TXRT1  
I2S3INTFL  
I2S3 Serializer Control Register  
I2S3 Sample Rate Generator Register  
I2S3 Transmit Left Data 0 Register  
I2S3 Transmit Left Data 1 Register  
I2S3 Transmit Right Data 0 Register  
I2S3 Transmit Right Data 1 Register  
I2S3 Interrupt Flag Register  
I2S3INTMASK  
I2S3RXLT0  
I2S3RXLT1  
I2S3RXRT0  
I2S3RXRT1  
I2S3 Interrupt Mask Register  
I2S3 Receive Left Data 0 Register  
I2S3 Receive Left Data 1 Register  
I2S3 Receive Right Data 0 Register  
I2S3 Receive Right Data 1 Register  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
115  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
6.13.2 I2S Electrical Data/Timing  
Table 6-26. Timing Requirements for I2S [I/O = 3.3 V, 2.75 V, and 2.5 V](1) (see Figure 6-23)  
MASTER  
CVDD = 1.05 V CVDD = 1.3 V  
MIN MAX  
SLAVE  
NO.  
CVDD = 1.05 V  
MIN MAX  
CVDD = 1.3 V  
MIN MAX  
UNIT  
MIN MAX  
40 or  
40 or  
1
tc(CLK)  
Cycle time, I2S_CLK  
40 or 2P(1)(2)  
40 or 2P(1)(2)  
ns  
2P(1)(2)  
2P(1)(2)  
2
3
tw(CLKH)  
tw(CLKL)  
Pulse duration, I2S_CLK high  
Pulse duration, I2S_CLK low  
20  
20  
20  
20  
20  
20  
20  
20  
ns  
ns  
Setup time, I2S_RX valid before I2S CLK high  
(CLKPOL = 0)  
tsu(RXV-CLKH)  
tsu(RXV-CLKL)  
th(CLKH-RXV)  
th(CLKL-RXV)  
tsu(FSV-CLKH)  
tsu(FSV-CLKL)  
th(CLKH-FSV)  
th(CLKL-FSV)  
5
5
3
3
5
5
3
3
5
5
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
7
8
Setup time, I2S_RX valid before I2S_CLK low  
(CLKPOL = 1)  
5
Hold time, I2S_RX valid after I2S_CLK high  
(CLKPOL = 0)  
3
3
Hold time, I2S_RX valid after I2S_CLK low  
(CLKPOL = 1)  
3
15  
3
Setup time, I2S_FS valid before I2S_CLK high  
(CLKPOL = 0)  
15  
15  
9
Setup time, I2S_FS valid before I2S_CLK low  
(CLKPOL = 1)  
15  
Hold time, I2S_FS valid after I2S_CLK high  
(CLKPOL = 0)  
tw(CLKH) + 0.6(3)  
tw(CLKL) + 0.6(3)  
tw(CLKH) + 0.6(3)  
tw(CLKL) + 0.6(3)  
10  
Hold time, I2S_FS valid after I2S_CLK low  
(CLKPOL = 1)  
(1) P = SYSCLK period in ns. For example, when the CPU core is clocked at 100 MHz, use P = 10 ns.  
(2) Use whichever value is greater.  
(3) In Slave Mode, I2S_FS is required to be latched on both edges of I2S input clock (I2S_CLK).  
116  
Peripheral Information and Electrical Specifications  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
Table 6-27. Timing Requirements for I2S [I/O = 1.8 V](1) (see Figure 6-23)  
MASTER  
SLAVE  
NO.  
CVDD = 1.05 V  
CVDD = 1.3 V  
CVDD = 1.05 V  
MIN  
CVDD = 1.3 V  
MIN MAX  
UNIT  
MIN  
MAX  
MIN  
MAX  
MAX  
50 or 2P(1)  
40 or 2P(1)  
1
tc(CLK)  
Cycle time, I2S_CLK  
50 or 2P(1) (2)  
40 or 2P(1) (2)  
ns  
(2)  
(2)  
2
3
tw(CLKH)  
tw(CLKL)  
Pulse duration, I2S_CLK high  
Pulse duration, I2S_CLK low  
25  
25  
20  
20  
25  
25  
20  
20  
ns  
ns  
Setup time, I2S_RX valid before I2S CLK  
high (CLKPOL = 0)  
tsu(RXV-CLKH)  
tsu(RXV-CLKL)  
th(CLKH-RXV)  
th(CLKL-RXV)  
tsu(FSV-CLKH)  
tsu(FSV-CLKL)  
th(CLKH-FSV)  
th(CLKL-FSV)  
5
5
3
3
5
5
3
3
5
5
5
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
7
8
Setup time, I2S_RX valid before I2S_CLK  
low (CLKPOL = 1)  
Hold time, I2S_RX valid after I2S_CLK high  
(CLKPOL = 0)  
3
3
Hold time, I2S_RX valid after I2S_CLK low  
(CLKPOL = 1)  
3
3
Setup time, I2S_FS valid before I2S_CLK  
high (CLKPOL = 0)  
15  
15  
15  
15  
9
Setup time, I2S_FS valid before I2S_CLK  
low (CLKPOL = 1)  
Hold time, I2S_FS valid after I2S_CLK high  
(CLKPOL = 0)  
tw(CLKH)  
+
tw(CLKH)  
+
0.6(3)  
0.6(3)  
10  
Hold time, I2S_FS valid after I2S_CLK low  
(CLKPOL = 1)  
tw(CLKL)  
+
tw(CLKL)  
+
0.6(3)  
0.6(3)  
(1) P = SYSCLK period in ns. For example, when the CPU core is clocked at 100 MHz, use P = 10 ns.  
(2) Use whichever value is greater.  
(3) In Slave Mode, I2S_FS is required to be latched on both edges of I2S input clock (I2S_CLK).  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
117  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
Table 6-28. Switching Characteristics Over Recommended Operating Conditions for I2S Output  
[I/O = 3.3 V, 2.75 V, or 2.5 V] (see Figure 6-23)  
MASTER  
SLAVE  
CVDD = 1.05 V  
MIN MAX  
NO.  
PARAMETER  
CVDD = 1.05 V  
MIN MAX  
CVDD = 1.3 V  
MIN MAX  
CVDD = 1.3 V  
MIN MAX  
UNIT  
40 or  
40 or  
40 or  
40 or  
1
2
tc(CLK)  
Cycle time, I2S_CLK  
ns  
2P(1) (2)  
20  
2P(1) (2)  
20  
2P(1) (2)  
2P(1) (2)  
tw(CLKH)  
Pulse duration, I2S_CLK high (CLKPOL = 0)  
20  
20  
20  
20  
0
20  
20  
20  
20  
0
ns  
ns  
ns  
ns  
tw(CLKL)  
Pulse duration, I2S_CLK low (CLKPOL = 1)  
20  
20  
tw(CLKL)  
Pulse duration, I2S_CLK low (CLKPOL = 0)  
20  
20  
3
4
5
tw(CLKH)  
Pulse duration, I2S_CLK high (CLKPOL = 1)  
20  
20  
tdmax(CLKL-DXV)  
tdmax(CLKH-DXV)  
tdmax(CLKL-FSV)  
tdmax(CLKH-FSV)  
Output Delay time, I2S_CLK low to I2S_DX valid (CLKPOL = 0)  
Output Delay time, I2S_CLK high to I2S_DX valid (CLKPOL = 1)  
Delay time, I2S_CLK low to I2S_FS valid (CLKPOL = 0)  
Delay time, I2S_CLK high to I2S_FS valid (CLKPOL = 1)  
0
15  
0
14  
15  
15  
ns  
ns  
ns  
ns  
0
15  
14  
14  
0
14  
14  
14  
0
15  
0
15  
-1.1  
-1.1  
-1.1  
-1.1  
(1) P = SYSCLK period in ns. For example, when the CPU core is clocked at 100 MHz, use P = 10 ns.  
(2) Use whichever value is greater.  
118  
Peripheral Information and Electrical Specifications  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
Table 6-29. Switching Characteristics Over Recommended Operating Conditions for I2S Output  
[I/O = 1.8 V] (see Figure 6-23)  
MASTER  
CVDD = 1.05 V CVDD = 1.3 V  
MIN MAX MIN MAX  
SLAVE  
CVDD = 1.05 V  
MIN MAX  
NO.  
PARAMETER  
CVDD = 1.3 V  
MIN MAX  
UNIT  
50 or  
40 or  
50 or  
40 or  
1
2
tc(CLK)  
Cycle time, I2S_CLK  
ns  
2P(1) (2)  
25  
2P(1) (2)  
20  
2P(1) (2)  
2P(1) (2)  
tw(CLKH)  
Pulse duration, I2S_CLK high (CLKPOL = 0)  
25  
25  
25  
25  
0
20  
20  
20  
20  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tw(CLKL)  
Pulse duration, I2S_CLK low (CLKPOL = 1)  
25  
20  
tw(CLKL)  
Pulse duration, I2S_CLK low (CLKPOL = 0)  
25  
20  
3
4
5
tw(CLKH)  
Pulse duration, I2S_CLK high (CLKPOL = 1)  
25  
20  
tdmax(CLKL-DXV)  
tdmax(CLKH-DXV)  
tdmax(CLKL-FSV)  
tdmax(CLKH-FSV)  
Output Delay time, I2S_CLK low to I2S_DX valid (CLKPOL = 0)  
Output Delay time, I2S_CLK high to I2S_DX valid (CLKPOL = 1)  
Delay time, I2S_CLK low to I2S_FS valid (CLKPOL = 0)  
Delay time, I2S_CLK high to I2S_FS valid (CLKPOL = 1)  
0
19  
0
14  
14  
14  
14  
19  
16.5  
16.5  
0
19  
14  
14  
0
0
19  
0
-1.1  
-1.1  
-1.1  
-1.1  
(1) P = SYSCLK period in ns. For example, when the CPU core is clocked at 100 MHz, use P = 10 ns.  
(2) Use whichever value is greater.  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
119  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
1
3
2
I2S_CLK  
(CLKPOL = 0)  
I2S_CLK  
(CLKPOL = 1)  
5
I2S_FS  
(Output, MODE = 1)  
9
10  
I2S_FS  
(Input, MODE = 0)  
4
I2S_DX  
7
8
I2S_RX  
Figure 6-23. I2S Input and Output Timings  
120  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
Copyright © 2011, Texas Instruments Incorporated  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
6.14 Liquid Crystal Display Controller (LCDC) C5535 Only  
The device includes a LCD Interface Display Driver (LIDD) controller.  
The LIDD Controller supports the asynchronous LCD interface and has the following features:  
Provides full-timing programmability of control signals and output data  
Note: Raster mode is not supported on this device.  
The LCD controller is responsible for generating the correct external timing. The DMA engine provides a  
constant flow of data from the frame buffer(s) to the external LCD panel via the LIDD controller. In  
addition, CPU access is provided to read and write registers.  
6.14.1 LCDC Peripheral Register Description(s)  
Table 6-30 shows the LCDC peripheral registers.  
Table 6-30. LCD Controller Registers  
CPU WORD  
ADDRESS  
ACRONYM  
REGISTER DESCRIPTION  
2E00h  
2E01h  
LCDREVMIN  
LCDREVMAJ  
LCD Minor Revision Register  
LCD Major Revision Register  
LCD Control Register  
2E04h  
LCDCR  
2E08h  
LCDSR  
LCD Status Register  
2E0Ch  
2E10h  
LCDLIDDCR  
LCD LIDD Control Register  
LCDLIDDCS0CONFIG0  
LCDLIDDCS0CONFIG1  
LCDLIDDCS0ADDR  
LCDLIDDCS0DATA  
LCDLIDDCS1CONFIG0  
LCDLIDDCS1CONFIG1  
LCDLIDDCS1ADDR  
LCDLIDDCS1DATA  
LCD LIDD CS0 Configuration Register 0  
LCD LIDD CS0 Configuration Register 1  
LCD LIDD CS0 Address Read/Write Register  
LCD LIDD CS0 Data Read/Write Register  
LCD LIDD CS1 Configuration Register 0  
LCD LIDD CS1 Configuration Register 1  
LCD LIDD CS1 Address Read/Write Register  
LCD LIDD CS1 Data Read/Write Register  
Reserved  
2E11h  
2E14h  
2E18h  
2E1Ch  
2E1Dh  
2E20h  
2E24h  
2E28h 2E3Ah  
2E40h  
LCDDMACR  
LCD DMA Control Register  
2E44h  
LCDDMAFB0BAR0  
LCDDMAFB0BAR1  
LCDDMAFB0CAR0  
LCDDMAFB0CAR1  
LCDDMAFB1BAR0  
LCDDMAFB1BAR1  
LCDDMAFB1CAR0  
LCDDMAFB1CAR1  
LCD DMA Frame Buffer 0 Base Address Register 0  
LCD DMA Frame Buffer 0 Base Address Register 1  
LCD DMA Frame Buffer 0 Ceiling Address Register 0  
LCD DMA Frame Buffer 0 Ceiling Address Register 1  
LCD DMA Frame Buffer 1 Base Address Register 0  
LCD DMA Frame Buffer 1 Base Address Register 1  
LCD DMA Frame Buffer 1 Ceiling Address Register 0  
LCD DMA Frame Buffer 1 Ceiling Address Register 1  
2E45h  
2E48h  
2E49h  
2E4Ch  
2E4Dh  
2E50h  
2E51h  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
121  
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
6.14.2 LCDC Electrical Data/Timing  
Table 6-31. Timing Requirements for LCD LIDD Mode(1) (see Figure 6-24 through Figure 6-31)  
CVDD = 1.05 V  
MIN MAX  
CVDD = 1.3 V  
MAX  
NO.  
UNIT  
MIN  
Setup time, LCD_D[15:0] valid  
before LCD_CLK rising edge  
16 tsu(LCD_D-CLK)  
17 th(CLK-LCD_D)  
27  
0
42  
ns  
ns  
Hold time, LCD_D[15:0] valid after  
LCD_CLK rising edge  
0
(1) Over operating free-air temperature range (unless otherwise noted)  
Table 6-32. Switching Characteristics Over Recommended Operating Conditions for LCD LIDD Mode (see  
Figure 6-24 through Figure 6-31)  
CVDD = 1.05 V  
CVDD = 1.3 V  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
Delay time, LCD_CLK rising edge  
to LCD_D[15:0] valid (write)  
4
5
6
7
8
9
td(LCD_D_V)  
td(LCD_D_I)  
td(LCD_E_A)  
td(LCD_E_I)  
td(LCD_A_A)  
td(LCD_A_I)  
5
5
5
5
5
5
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Delay time, LCD_CLK rising edge  
to LCD_D[15:0] invalid (write)  
-6  
-6  
Delay time, LCD_CLK rising edge  
to LCD_CSx_Ex low  
7
7
7
7
7
Delay time, LCD_CLKrising edge  
to LCD_CSx_Ex high  
-6  
-6  
-6  
-6  
-6  
-6  
-6  
-6  
-6  
-6  
Delay time, LCD_CLKrising edge  
to LCD_RS low  
Delay time, LCD_CLK rising edge  
to LCD_RS high  
Delay time, LCD_CLK rising edge  
to LCD_RW_WRB low  
10 td(LCD_W_A)  
11 td(LCD_W_I)  
12 td(LCD_STRB_A)  
13 td(LCD_STRB_I)  
14 td(LCD_D_Z)  
15 td(Z_LCD_D)  
Delay time, LCD_CLK rising edge  
to LCD_RW_WRB high  
Delay time, LCD_CLK rising edge  
to LCD_EN_RDB high  
Delay time, LCD_CLK rising edge  
to LCD_EN_RDB low  
Delay time, LCD_CLK rising edge  
to LCD_D[15:0] in 3-state  
Delay time, LCD_CLK rising edge  
to LCD_D[15:0] valid from 3-state  
122  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
Copyright © 2011, Texas Instruments Incorporated  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
CS_DELAY  
(0 to 3)  
R_SU  
(0 to 31)  
R_HOLD  
(1 to 15)  
W_SU  
(0 to 31)  
W_STROBE  
(1 to 63)  
CS_DELAY  
(0 to 3)  
R_STROBE  
(1 to 63)  
W_HOLD  
(1 to 15)  
LCD_CLK  
[Internal]  
4
5
14  
17  
16  
15  
LCD_D[15:0]  
Write Data  
Data[7:0]  
Read Status  
8
9
LCD_RS  
RS  
10  
11  
LCD_RW_WRB  
R/W  
12  
12  
13  
13  
E0  
E1  
LCD_CSx_Ex  
Figure 6-24. Character Display HD44780 Write  
W_HOLD  
(1–15)  
R_SU  
(0–31)  
R_STROBE R_HOLD CS_DELAY  
(1–63) (1–5) (0-3)  
W_SU  
(0–31)  
W_STROBE  
(1–63)  
CS_DELAY  
(0 - 3)  
LCD_CLK  
[Internal]  
4
17  
15  
5
14  
16  
LCD_D[7:0]  
Data[7:0]  
Write Instruction  
Read  
Data  
8
9
RS  
LCD_RS  
10  
11  
LCD_RW_WRB  
R/W  
12  
13  
13  
12  
E0  
E1  
LCD_CSx_Ex  
Figure 6-25. Character Display HD44780 Read  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
123  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
W_HOLD  
(1-15)  
W_HOLD  
(1-15)  
W_SU  
(0-31)  
W_STROBE  
(1-63)  
CS_DELAY  
(0-3)  
W_SU  
(0-31)  
W_STROBE  
(1-63)  
CS_DELAY  
(0-3)  
LCD_CLK  
[Internal]  
4
6
5
7
5
4
LCD_D[15:0]  
Write Address  
Write Data  
Data[15:0]  
6
7
LCD_CSx_Ex  
(async mode)  
CS0  
CS1  
9
8
RS  
R/W  
EN  
LCD_RS  
10  
11  
10  
11  
LCD_RW_WRB  
LCD_EN_RDB  
12  
13  
12  
13  
Figure 6-26. Micro-Interface Graphic Display 6800 Write  
124  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
Copyright © 2011, Texas Instruments Incorporated  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
W_HOLD  
(1-15)  
R_SU  
(0-31)  
W_SU  
(0-31)  
W_STROBE  
(1-63)  
CS_DELAY  
(0-3)  
R_STROBE R_HOLD CS_DELAY  
(1-63  
(0-3)  
(1-15)  
LCD_CLK  
[Internal]  
14  
4
5
16  
15  
Data[15:0]  
17  
LCD_D[15:0]  
Write Address  
Read  
Data  
6
6
7
7
LCD_CSx_Ex  
(Async Mode)  
CS0  
CS1  
8
9
11  
LCD_RS  
LCD_RW_WRB  
LCD_EN_RDB  
RS  
R/W  
EN  
10  
12  
13  
12  
13  
Figure 6-27. Micro-Interface Graphic Display 6800 Read  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
125  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
R_SU  
(0-31)  
R_SU  
(0-31)  
R_STROBE R_HOLD CS_DELAY  
R_HOLD CS_DELAY  
R_STROBE  
(1-63)  
(1-63)  
(1-15)  
(0-3)  
(1-15)  
(0-3)  
LCD_CLK  
[Internal]  
14  
16  
17  
15  
7
14  
16  
17  
15  
LCD_D[15:0]  
Data[15:0]  
Read  
Status  
Read  
Data  
6
8
6
7
LCD_CSx_Ex  
(Async Mode)  
CS0  
CS1  
9
LCD_RS  
RS  
R/W  
EN  
LCD_RW_WRB  
13  
12  
12  
13  
LCD_EN_RDB  
Figure 6-28. Micro-Interface Graphic Display 6800 Status  
126  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
Copyright © 2011, Texas Instruments Incorporated  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
W_HOLD  
(1-15)  
W_HOLD  
(1-15)  
W_SU  
(0-31)  
W_STROBE  
CS_DELAY  
(0-3)  
W_SU  
(0-31)  
W_STROBE  
(1-63)  
CS_DELAY  
(0 - 3)  
(1-63)  
LCD_CLK  
[Internal]  
4
5
4
5
LCD_D[15:0]  
Write Address  
Write Data  
7
6
6
8
7
LCD_CSx_Ex  
(Async Mode)  
CS0  
CS1  
9
LCD_RS  
LCD_RW_WRB  
LCD_EN_RDB  
RS  
WRB  
RDB  
11  
10  
10  
11  
Figure 6-29. Micro-Interface Graphic Display 8080 Write  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
127  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
W_HOLD  
(1-15)  
R_SU  
(0-31)  
W_SU  
(0-31)  
W_STROBE  
(1-63)  
CS_DELAY  
(0-3)  
R_STROBE  
(1-63)  
R_HOLD CS_DELAY  
(1-15) (0-3)  
LCD_CLK  
[Internal]  
4
5
16  
17  
15  
Data[15:0]  
14  
6
LCD_D[15:0]  
Write Address  
Read  
Data  
7
6
7
LCD_CSx_Ex  
(async mode)  
CS0  
CS1  
9
8
LCD_RS  
LCD_RW_WRB  
LCD_EN_RDB  
RS  
11  
10  
WRB  
12  
13  
RDB  
Figure 6-30. Micro-Interface Graphic Display 8080 Read  
128  
Peripheral Information and Electrical Specifications  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
R_SU  
(0-31)  
R_SU  
(0-31)  
R_STROBE R_HOLD CS_DELAY  
R_STROBE R_HOLD  
CS_DELAY  
(0-3)  
(1-15)  
(1-63)  
(1-63)  
(1-15)  
(0-3)  
LCD_CLK  
[Internal]  
17  
16  
17  
15  
14  
6
16  
15  
14  
Data[15:0]  
LCD_D[15:0]  
Read Data  
Read Status  
7
6
7
9
LCD_CSx_Ex  
CS0  
CS1  
8
RS  
LCD_RS  
WRB  
RDB  
LCD_RW_WRB  
12  
13  
13  
12  
LCD_PCLK  
Figure 6-31. Micro-Interface Graphic Display 8080 Status  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
129  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
6.15 10-Bit SAR ADC C5535 Only  
The device includes a 10-bit SAR ADC using a switched capacitor architecture which converts an analog  
input signal to a digital value at a maximum rate of 62.5-k samples per second (ksps) for use by the DSP.  
This SAR module supports six channels that are connected to four general purpose analog pins (GPAIN  
[3:0]) which can be used as general purpose outputs.  
The device SAR supports the following features:  
Up to 62.5 ksps (2-MHz clock with 32 cycles per conversion)  
Single conversion and continuous back-to-back conversion modes  
Interrupt driven or polling conversion or DMA event generation  
Internal configurable bandgap reference voltages of 1 V or 0.8 V; or external Vref of VDDA_ANA  
One 3.6-V Tolerant analog input (GPAIN0) with internal voltage division for conversion of battery  
voltage  
Software controlled power down  
Individually configurable general-purpose digital outputs  
6.15.1 SAR ADC Peripheral Register Description(s)  
Table 6-33 shows the SAR ADC peripheral registers.  
Table 6-33. SAR Analog Control Registers  
CPU WORD  
ADDRESS  
ACRONYM  
REGISTER DESCRIPTION  
7012h  
7014h  
7016h  
7018h  
701Ah  
SARCTRL  
SARDATA  
SAR A/D Control Register  
SAR A/D Data Register  
SARCLKCTRL  
SARPINCTRL  
SARGPOCTRL  
SAR A/D Clock Control Register  
SAR A/D Reference and Pin Control Register  
SAR A/D GPO Control Register  
6.15.2 SAR ADC Electrical Data/Timing  
Table 6-34. Switching Characteristics Over Recommended Operating Conditions for ADC Characteristics  
CVDD = 1.3 V  
CVDD = 1.05 V  
NO.  
PARAMETER  
UNIT  
MIN  
TYP  
MAX  
2
1
3
4
5
6
7
8
9
tC(SCLC)  
td(CONV)  
SDNL  
SINL  
Cycle time, ADC internal conversion clock  
Delay time, ADC conversion time  
Static differential non-linearity error (DNL measured for 9 bits)  
Static integral non-linearity error  
MHz  
ns  
32tC(SCLC)  
±0.6  
±1  
LSB  
LSB  
LSB  
LSB  
MΩ  
dB  
Zset  
Zero-scale offset error (INL measured for 9 bits)  
Full-scale offset error  
2
2
Fset  
Analog input impedance  
1
Signal-to-noise ratio  
54  
130  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
Copyright © 2011, Texas Instruments Incorporated  
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
6.16 Serial Port Interface (SPI)  
The device serial port interface (SPI) is a high-speed synchronous serial input/output port that allows a  
serial bit stream of programmed length (1 to 32 bits) to be shifted into and out of the device at a  
programmed bit-transfer rate. The SPI supports multi-chip operation of up to four SPI slave devices. The  
SPI can operate as a master device only, slave mode is not supported. Note: The SPI is not supported by  
the device DMA controller, so DMA cannot be used in transferring data between the SPI and the on-chip  
RAM.  
The SPI is normally used for communication between the DSP and external peripherals. Typical  
applications include an interface to external I/O or peripheral expansion via devices such as shift registers,  
display drivers, SPI EEPROMs, and analog-to-digital converters.  
The SPI has the following features:  
Programmable divider for serial data clock generation  
Four pin interface (SPI_CLK, SPI_CSn, SPI_RX, and SPI_TX)  
Programmable data length (1 to 32 bits)  
4 external chip select signals  
Programmable transfer or frame size (1 to 4096 characters)  
Optional interrupt generation on character completion  
Programmable SPI_CSn to SPI_TX delay from 0 to 3 SPI_CLK cycles  
Programmable signal polarities  
Programmable active clock edge  
Internal loopback mode for testing  
6.16.1 SPI Peripheral Register Description(s)  
Table 6-35 shows the SPI registers.  
Table 6-35. SPI Module Registers  
CPU  
WORD  
ACRONYM  
REGISTER NAME  
ADDRESS  
3000h  
3001h  
3002h  
3003h  
3004h  
3005h  
3006h  
3007h  
3008h  
3009h  
SPICDR  
SPICCR  
Clock Divider Register  
Clock Control Register  
SPIDCR1  
SPIDCR2  
SPICMD1  
SPICMD2  
SPISTAT1  
SPISTAT2  
SPIDAT1  
SPIDAT2  
Device Configuration Register 1  
Device Configuration Register 2  
Command Register 1  
Command Register 2  
Status Register 1  
Status Register 2  
Data Register 1  
Data Register 2  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
131  
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
6.16.2 SPI Electrical Data/Timing  
Table 6-36. Timing Requirements for SPI Inputs (see Figure 6-32 through Figure 6-35)  
CVDD = 1.05 V  
CVDD = 1.3 V  
NO.  
UNIT  
MIN  
MAX  
MIN  
MAX  
66.4 or  
4P(1)(2)  
40 or  
4
tC(SCLK)  
Cycle time, SPI_CLK  
ns  
4P(1)(2)  
5
6
tw(SCLKH)  
tw(SCLKL)  
Pulse duration, SPI_CLK high  
30  
30  
19  
19  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Pulse duration, SPI_CLK low  
Setup time, SPI_RX valid before SPI_CLK high, SPI Mode 0  
Setup time, SPI_RX valid before SPI_CLK low, SPI Mode 1  
Setup time, SPI_RX valid before SPI_CLK high, SPI Mode 2  
Setup time, SPI_RX valid before SPI_CLK high, SPI Mode 3  
Hold time, SPI_RX valid after SPI_CLK high, SPI Mode 0  
Hold time, SPI_RX valid after SPI_CLK low, SPI Mode 1  
Hold time, SPI_RX valid after SPI_CLK low, SPI Mode 2  
Hold time, SPI_RX valid after SPI_CLK high, SPI Mode 3  
16.1  
16.1  
16.1  
16.1  
0
13.9  
13.9  
13.9  
13.9  
0
7
8
tsu(SRXV-SCLK)  
0
0
th(SCLK-SRXV)  
0
0
0
0
(1) P = SYSCLK period in ns. For example, when the CPU core is clocked at 100 MHz, use P = 10 ns.  
(2) Use whichever value is greater.  
Table 6-37. Switching Characteristics Over Recommended Operating Conditions for SPI Outputs  
(see Figure 6-32 through Figure 6-35)  
CVDD = 1.05 V  
MIN  
CVDD = 1.3 V  
MIN  
NO.  
PARAMETER  
UNIT  
MAX  
MAX  
Delay time, SPI_CLK low to SPI_TX valid, SPI  
Mode 0  
-4.2  
-4.2  
-4.2  
-4.2  
8.9  
-4.9  
-4.9  
-4.9  
-4.9  
5.3 ns  
Delay time, SPI_CLK high to SPI_TX valid, SPI  
Mode 1  
8.9  
8.9  
8.9  
5.3 ns  
5.3 ns  
5.3 ns  
1
td(SCLK-STXV)  
Delay time, SPI_CLK high to SPI_TX valid, SPI  
Mode 2  
Delay time, SPI_CLK low to SPI_TX valid, SPI  
Mode 3  
2
3
td(SPICS-SCLK)  
Delay time, SPI_CS active to SPI_CLK active  
tC - 8 + D(1)  
tC - 8 + D(1) ns  
0.5tC - 2.2 ns  
Output hold time, SPI_CS inactive to SPI_CLK  
inactive  
toh(SCLKI-SPICSI)  
0.5tC - 2.2  
(1) D is the programable data delay in ns. Data delay can be programmed to 0, 1, 2, or 3 SPICLK clock cycles.  
4
5
6
SPI_CLK  
SPI_TX  
1
Bn-2  
Bn-2  
Bn-1  
Bn-1  
B0  
B0  
B1  
B1  
SPI_RX  
SPI_CS  
7
8
2
3
A. Character length is programmable between 1 and 32 bits; 8-bit character length shown.  
B. Polarity of SPI_CSn is configurable, active-low polarity is shown.  
Figure 6-32. SPI Mode 0 Transfer (CKPn = 0, CKPHn = 0)  
132  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
Copyright © 2011, Texas Instruments Incorporated  
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
4
5
6
SPI_CLK  
1
2
Bn-2  
Bn-2  
Bn-1  
Bn-1  
B0  
B1  
B1  
B1  
SPI_TX  
SPI_RX  
7
8
3
SPI_CS  
A. Character length is programmable between 1 and 32 bits; 8-bit character length shown.  
B. Polarity of SPI_CSn is configurable, active-low polarity is shown.  
Figure 6-33. SPI Mode 1 Transfer (CKPn = 0, CKPHn = 1)  
4
5
6
SPI_CLK  
SPI_TX  
SPI_RX  
1
B0  
B0  
B1  
B1  
Bn-2  
Bn-2  
Bn-1  
Bn-1  
3
7
8
2
SPI_CS  
A. Character length is programmable between 1 and 32 bits; 8-bit character length shown.  
B. Polarity of SPI_CSn is configurable, active-low polarity is shown.  
Figure 6-34. SPI Mode 2 Transfer (CKPn = 1, CKPHn = 0)  
4
6
5
SPI_CLK  
SPI_TX  
SPI_RX  
SPI_CS  
1
2
Bn-2  
Bn-2  
Bn-1  
Bn-1  
B0  
B0  
B1  
B1  
7
8
3
A. Character length is programmable between 1 and 32 bits; 8-bit character length shown.  
B. Polarity of SPI_CSn is configurable, active-low polarity is shown.  
Figure 6-35. SPI Mode 3 Transfer (CKPn = 1, CKPHn = 1)  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
133  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
6.17 Universal Serial Bus (USB) 2.0 Controller Does Not Apply to C5532  
The device USB2.0 peripheral supports the following features:  
USB2.0 peripheral at speeds high-speed (480 Mb/s) and full-speed (12 Mb/s)  
All transfer modes (control, bulk, interrupt, and isochronous asynchronous mode)  
4 Transmit (TX) and 4 Receive (RX) Endpoints in addition to Control Endpoint 0  
FIFO RAM  
4K endpoint  
Programmable size  
Integrated USB2.0 High Speed PHY  
RNDIS mode for accelerating RNDIS type protocols using short packet termination over USB  
The USB2.0 peripheral on this device, does not support:  
Host Mode (Peripheral/Device Modes supported only)  
On-Chip Charge Pump  
On-the-Go (OTG) Mode  
134  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
Copyright © 2011, Texas Instruments Incorporated  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
6.17.1 USB2.0 Peripheral Register Description(s)  
Table 6-38 lists of the USB2.0 peripheral registers.  
Table 6-38. Universal Serial Bus (USB) Registers(1)  
CPU WORD  
ADDRESS  
ACRONYM  
REGISTER DESCRIPTION  
Revision Identification Register 1  
8000h  
8001h  
8004h  
8008h  
800Ch  
8010h  
8011h  
8014h  
8018h  
8019h  
801Ch  
801Dh  
8020h  
8021h  
8024h  
8025h  
8028h  
8029h  
802Ch  
802Dh  
8030h  
8031h  
8034h  
8035h  
8038h  
8039h  
803Ch  
8040h  
8041h  
8050h  
8051h  
8054h  
8055h  
8058h  
8059h  
805Ch  
805Dh  
REVID1  
REVID2  
Revision Identification Register 2  
Control Register  
CTRLR  
STATR  
Status Register  
EMUR  
Emulation Register  
MODER1  
Mode Register 1  
MODER2  
Mode Register 2  
AUTOREQ  
SRPFIXTIME1  
SRPFIXTIME2  
TEARDOWN1  
TEARDOWN2  
INTSRCR1  
INTSRCR2  
INTSETR1  
Auto Request Register  
SRP Fix Time Register 1  
SRP Fix Time Register 2  
Teardown Register 1  
Teardown Register 2  
USB Interrupt Source Register 1  
USB Interrupt Source Register 2  
USB Interrupt Source Set Register 1  
USB Interrupt Source Set Register 2  
USB Interrupt Source Clear Register 1  
USB Interrupt Source Clear Register 2  
USB Interrupt Mask Register 1  
USB Interrupt Mask Register 2  
USB Interrupt Mask Set Register 1  
USB Interrupt Mask Set Register 2  
USB Interrupt Mask Clear Register 1  
USB Interrupt Mask Clear Register 2  
USB Interrupt Source Masked Register 1  
USB Interrupt Source Masked Register 2  
USB End of Interrupt Register  
USB Interrupt Vector Register 1  
USB Interrupt Vector Register 2  
Generic RNDIS EP1Size Register 1  
Generic RNDIS EP1Size Register 2  
Generic RNDIS EP2 Size Register 1  
Generic RNDIS EP2 Size Register 2  
Generic RNDIS EP3 Size Register 1  
Generic RNDIS EP3 Size Register 2  
Generic RNDIS EP4 Size Register 1  
Generic RNDIS EP4 Size Register 2  
Common USB Registers  
INTSETR2  
INTCLRR1  
INTCLRR2  
INTMSKR1  
INTMSKR2  
INTMSKSETR1  
INTMSKSETR2  
INTMSKCLRR1  
INTMSKCLRR2  
INTMASKEDR1  
INTMASKEDR2  
EOIR  
INTVECTR1  
INTVECTR2  
GREP1SZR1  
GREP1SZR2  
GREP2SZR1  
GREP2SZR2  
GREP3SZR1  
GREP3SZR2  
GREP4SZR1  
GREP4SZR2  
8401h  
8402h  
8405h  
8406h  
FADDR_POWER  
INTRTX  
Function Address Register, Power Management Register  
Interrupt Register for Endpoint 0 plus Transmit Endpoints 1 to 4  
Interrupt Register for Receive Endpoints 1 to 4  
Interrupt enable register for INTRTX  
INTRRX  
INTRTXE  
(1) Before reading or writing to the USB registers, be sure to set the BYTEMODE bits to "00b" in the USB system control register to enable  
word accesses to the USB registers .  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
135  
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
Table 6-38. Universal Serial Bus (USB) Registers(1) (continued)  
CPU WORD  
ADDRESS  
ACRONYM  
REGISTER DESCRIPTION  
8409h  
840Ah  
840Dh  
840Eh  
INTRRXE  
INTRUSB_INTRUSBE  
FRAME  
Interrupt Enable Register for INTRRX  
Interrupt Register for Common USB Interrupts, Interrupt Enable Register  
Frame Number Register  
Index Register for Selecting the Endpoint Status and Control Registers, Register to  
Enable the USB 2.0 Test Modes  
INDEX_TESTMODE  
USB Indexed Registers  
8411h  
8412h  
Maximum Packet Size for Peripheral/Host Transmit Endpoint. (Index register set to  
select Endpoints 1-4)  
TXMAXP_INDX  
PERI_CSR0_INDX  
PERI_TXCSR_INDX  
RXMAXP_INDX  
Control Status Register for Endpoint 0 in Peripheral Mode. (Index register set to  
select Endpoint 0)  
Control Status Register for Peripheral Transmit Endpoint. (Index register set to select  
Endpoints 1-4)  
8415h  
8416h  
8419h  
Maximum Packet Size for Peripheral/Host Receive Endpoint. (Index register set to  
select Endpoints 1-4)  
Control Status Register for Peripheral Receive Endpoint. (Index register set to select  
Endpoints 1-4)  
PERI_RXCSR_INDX  
COUNT0_INDX  
Number of Received Bytes in Endpoint 0 FIFO. (Index register set to select Endpoint  
0)  
Number of Bytes in Host Receive Endpoint FIFO. (Index register set to select  
Endpoints 1- 4)  
RXCOUNT_INDX  
841Ah  
841Dh  
841Eh  
-
-
Reserved  
Reserved  
CONFIGDATA_INDC  
(Upper byte of 841Eh)  
Returns details of core configuration. (index register set to select Endpoint 0)  
USB FIFO Registers  
8421h  
8422h  
8425h  
8426h  
8429h  
842Ah  
842Dh  
842Eh  
8431h  
8432h  
FIFO0R1  
FIFO0R2  
FIFO1R1  
FIFO1R2  
FIFO2R1  
FIFO2R2  
FIFO3R1  
FIFO3R2  
FIFO4R1  
FIFO4R2  
Transmit and Receive FIFO Register 1 for Endpoint 0  
Transmit and Receive FIFO Register 2 for Endpoint 0  
Transmit and Receive FIFO Register 1 for Endpoint 1  
Transmit and Receive FIFO Register 2 for Endpoint 1  
Transmit and Receive FIFO Register 1 for Endpoint 2  
Transmit and Receive FIFO Register 2 for Endpoint 2  
Transmit and Receive FIFO Register 1 for Endpoint 3  
Transmit and Receive FIFO Register 2 for Endpoint 3  
Transmit and Receive FIFO Register 1 for Endpoint 4  
Transmit and Receive FIFO Register 2 for Endpoint 4  
Dynamic FIFO Control Registers  
8461h  
8462h  
-
Reserved  
Transmit Endpoint FIFO Size, Receive Endpoint FIFO Size (Index register set to  
select Endpoints 1-4)  
TXFIFOSZ_RXFIFOSZ  
8465h  
8466h  
846Dh  
TXFIFOADDR  
Transmit Endpoint FIFO Address (Index register set to select Endpoints 1-4)  
Receive Endpoint FIFO Address (Index register set to select Endpoints 1-4)  
Reserved  
RXFIFOADDR  
-
Control and Status Register for Endpoint 0  
8501h  
8502h  
8505h  
8506h  
8509h  
850Ah  
850Dh  
-
Reserved  
PERI_CSR0  
Control Status Register for Peripheral Endpoint 0  
-
Reserved  
-
Reserved  
COUNT0  
Number of Received Bytes in Endpoint 0 FIFO  
-
-
Reserved  
Reserved  
136  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
Copyright © 2011, Texas Instruments Incorporated  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
Table 6-38. Universal Serial Bus (USB) Registers(1) (continued)  
CPU WORD  
ADDRESS  
ACRONYM  
REGISTER DESCRIPTION  
Returns details of core configuration.  
CONFIGDATA  
(Upper byte of 850Eh)  
850Eh  
Control and Status Register for Endpoint 1  
Maximum Packet Size for Peripheral/Host Transmit Endpoint  
Control Status Register for Peripheral Transmit Endpoint (peripheral mode)  
Maximum Packet Size for Peripheral/Host Receive Endpoint  
Control Status Register for Peripheral Receive Endpoint (peripheral mode)  
Number of Bytes in the Receiving Endpoint's FIFO  
Reserved  
8511h  
8512h  
8515h  
8516h  
8519h  
851Ah  
851Dh  
851Eh  
TXMAXP  
PERI_TXCSR  
RXMAXP  
PERI_RXCSR  
RXCOUNT  
-
-
-
Reserved  
Reserved  
Control and Status Register for Endpoint 2  
Maximum Packet Size for Peripheral/Host Transmit Endpoint  
Control Status Register for Peripheral Transmit Endpoint (peripheral mode)  
Maximum Packet Size for Peripheral/Host Receive Endpoint  
Control Status Register for Peripheral Receive Endpoint (peripheral mode)  
Number of Bytes in Host Receive endpoint FIFO  
Reserved  
8521h  
8522h  
8525h  
8526h  
8529h  
852Ah  
852Dh  
852Eh  
TXMAXP  
PERI_TXCSR  
RXMAXP  
PERI_RXCSR  
RXCOUNT  
-
-
-
Reserved  
Reserved  
Control and Status Register for Endpoint 3  
Maximum Packet Size for Peripheral/Host Transmit Endpoint  
Control Status Register for Peripheral Transmit Endpoint (peripheral mode)  
Maximum Packet Size for Peripheral/Host Receive Endpoint  
Control Status Register for Peripheral Receive Endpoint (peripheral mode)  
Number of Bytes in Host Receive endpoint FIFO  
Reserved  
8531h  
8532h  
8535h  
8536h  
8539h  
853Ah  
853Dh  
853Eh  
TXMAXP  
PERI_TXCSR  
RXMAXP  
PERI_RXCSR  
RXCOUNT  
-
-
-
Reserved  
Reserved  
Control and Status Register for Endpoint 4  
Maximum Packet Size for Peripheral/Host Transmit Endpoint  
Control Status Register for Peripheral Transmit Endpoint (peripheral mode)  
Maximum Packet Size for Peripheral/Host Receive Endpoint  
Control Status Register for Peripheral Receive Endpoint (peripheral mode)  
Number of Bytes in Host Receive endpoint FIFO  
Reserved  
8541h  
8542h  
8545h  
8546h  
8549h  
854Ah  
854Dh  
854Eh  
TXMAXP  
PERI_TXCSR  
RXMAXP  
PERI_RXCSR  
RXCOUNT  
-
-
-
Reserved  
Reserved  
CPPI DMA (CMDA) Registers  
9000h  
9001h  
9004h  
9008h  
9800h  
9801h  
9808h  
9809h  
-
Reserved  
-
Reserved  
TDFDQ  
CDMA Teardown Free Descriptor Queue Control Register  
CDMA Emulation Control Register  
DMAEMU  
TXGCR1[0]  
TXGCR2[0]  
RXGCR1[0]  
RXGCR2[0]  
Transmit Channel 0 Global Configuration Register 1  
Transmit Channel 0 Global Configuration Register 2  
Receive Channel 0 Global Configuration Register 1  
Receive Channel 0 Global Configuration Register 2  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
137  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
Table 6-38. Universal Serial Bus (USB) Registers(1) (continued)  
CPU WORD  
ADDRESS  
ACRONYM  
REGISTER DESCRIPTION  
980Ch  
980Dh  
9810h  
RXHPCR1A[0]  
RXHPCR2A[0]  
RXHPCR1B[0]  
RXHPCR2B[0]  
TXGCR1[1]  
Receive Channel 0 Host Packet Configuration Register 1 A  
Receive Channel 0 Host Packet Configuration Register 2 A  
Receive Channel 0 Host Packet Configuration Register 1 B  
Receive Channel 0 Host Packet Configuration Register 2 B  
Transmit Channel 1 Global Configuration Register 1  
Transmit Channel 1 Global Configuration Register 2  
Receive Channel 1 Global Configuration Register 1  
Receive Channel 1 Global Configuration Register 2  
Receive Channel 1 Host Packet Configuration Register 1 A  
Receive Channel 1 Host Packet Configuration Register 2 A  
Receive Channel 1 Host Packet Configuration Register 1 B  
Receive Channel 1 Host Packet Configuration Register 2 B  
Transmit Channel 2 Global Configuration Register 1  
Transmit Channel 2 Global Configuration Register 2  
Receive Channel 2 Global Configuration Register 1  
Receive Channel 2 Global Configuration Register 2  
Receive Channel 2 Host Packet Configuration Register 1 A  
Receive Channel 2 Host Packet Configuration Register 2 A  
Receive Channel 2 Host Packet Configuration Register 1 B  
Receive Channel 2 Host Packet Configuration Register 2 B  
Transmit Channel 3 Global Configuration Register 1  
Transmit Channel 3 Global Configuration Register 2  
Receive Channel 3 Global Configuration Register 1  
Receive Channel 3 Global Configuration Register 2  
Receive Channel 3 Host Packet Configuration Register 1 A  
Receive Channel 3 Host Packet Configuration Register 2 A  
Receive Channel 3 Host Packet Configuration Register 1 B  
Receive Channel 3 Host Packet Configuration Register 2 B  
CDMA Scheduler Control Register 1  
9811h  
9820h  
9821h  
TXGCR2[1]  
9828h  
RXGCR1[1]  
9829h  
RXGCR2[1]  
982Ch  
982Dh  
9830h  
RXHPCR1A[1]  
RXHPCR2A[1]  
RXHPCR1B[1]  
RXHPCR2B[1]  
TXGCR1[2]  
9831h  
9840h  
9841h  
TXGCR2[2]  
9848h  
RXGCR1[2]  
9849h  
RXGCR2[2]  
984Ch  
984Dh  
9850h  
RXHPCR1A[2]  
RXHPCR2A[2]  
RXHPCR1B[2]  
RXHPCR2B[2]  
TXGCR1[3]  
9851h  
9860h  
9861h  
TXGCR2[3]  
9868h  
RXGCR1[3]  
9869h  
RXGCR2[3]  
986Ch  
986Dh  
9870h  
RXHPCR1A[3]  
RXHPCR2A[3]  
RXHPCR1B[3]  
RXHPCR2B[3]  
DMA_SCHED_CTRL1  
DMA_SCHED_CTRL2  
ENTRYLSW[N]  
ENTRYMSW[N]  
9871h  
A000h  
A001h  
A800h + 4 × N  
A801h + 4 × N  
CDMA Scheduler Control Register 1  
CDMA Scheduler Table Word N Registers LSW (N = 0 to 63)  
CDMA Scheduler Table Word N Registers MSW (N = 0 to 63)  
Queue Manager (QMGR) Registers  
C000h  
C001h  
C008h  
C009h  
C020h  
C021h  
C024h  
C025h  
C028h  
C029h  
C02Ch  
C02Dh  
C080h  
C081h  
-
Reserved  
-
Reserved  
DIVERSION1  
DIVERSION2  
FDBSC0  
FDBSC1  
FDBSC2  
FDBSC3  
FDBSC4  
FDBSC5  
FDBSC6  
FDBSC7  
LRAM0BASE1  
LRAM0BASE2  
Queue Manager Queue Diversion Register 1  
Queue Manager Queue Diversion Register 2  
Queue Manager Free Descriptor/Buffer Starvation Count Register 0  
Queue Manager Free Descriptor/Buffer Starvation Count Register 1  
Queue Manager Free Descriptor/Buffer Starvation Count Register 2  
Queue Manager Free Descriptor/Buffer Starvation Count Register 3  
Queue Manager Free Descriptor/Buffer Starvation Count Register 4  
Queue Manager Free Descriptor/Buffer Starvation Count Register 5  
Queue Manager Free Descriptor/Buffer Starvation Count Register 6  
Queue Manager Free Descriptor/Buffer Starvation Count Register 7  
Queue Manager Linking RAM Region 0 Base Address Register 1  
Queue Manager Linking RAM Region 0 Base Address Register 2  
138  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
Copyright © 2011, Texas Instruments Incorporated  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
Table 6-38. Universal Serial Bus (USB) Registers(1) (continued)  
CPU WORD  
ADDRESS  
ACRONYM  
REGISTER DESCRIPTION  
C084h  
LRAM0SIZE  
-
Queue Manager Linking RAM Region 0 Size Register  
Reserved  
C085h  
C088h  
LRAM1BASE1  
LRAM1BASE2  
PEND0  
Queue Manager Linking RAM Region 1 Base Address Register 1  
Queue Manager Linking RAM Region 1 Base Address Register 2  
Queue Manager Queue Pending 0  
C089h  
C090h  
C091h  
PEND1  
Queue Manager Queue Pending 1  
C094h  
PEND2  
Queue Manager Queue Pending 2  
C095h  
PEND3  
Queue Manager Queue Pending 3  
C098h  
PEND4  
Queue Manager Queue Pending 4  
C099h  
PEND5  
Queue Manager Queue Pending 5  
D000h + 16 × R  
D001h + 16 × R  
D004h + 16 × R  
D005h + 16 × R  
E000h + 16 × N  
E001h + 16 × N  
E004h + 16 × N  
E005h + 16 × N  
E008h + 16 × N  
E009h + 16 × N  
E00Ch + 16 × N  
E00Dh + 16 × N  
E800h + 16 × N  
E801h + 16 × N  
E804h + 16 × N  
E805h + 16 × N  
E808h + 16 × N  
E809h + 16 × N  
QMEMRBASE1[R]  
QMEMRBASE2[R]  
QMEMRCTRL1[R]  
QMEMRCTRL2[R]  
CTRL1A  
Queue Manager Memory Region R Base Address Register 1 (R = 0 to 15)  
Queue Manager Memory Region R Base Address Register 2 (R = 0 to 15)  
Queue Manager Memory Region R Control Register (R = 0 to 15)  
Queue Manager Memory Region R Control Register (R = 0 to 15)  
Queue Manager Queue N Control Register 1A (N = 0 to 63)  
Queue Manager Queue N Control Register 2A (N = 0 to 63)  
Queue Manager Queue N Control Register 1B (N = 0 to 63)  
Queue Manager Queue N Control Register 2B (N = 0 to 63)  
Queue Manager Queue N Control Register 1C (N = 0 to 63)  
Queue Manager Queue N Control Register 2C (N = 0 to 63)  
Queue Manager Queue N Control Register 1D (N = 0 to 63)  
Queue Manager Queue N Control Register 2D (N = 0 to 63)  
Queue Manager Queue N Status Register 1A (N = 0 to 63)  
Queue Manager Queue N Status Register 2A (N = 0 to 63)  
Queue Manager Queue N Status Register 1B (N = 0 to 63)  
Queue Manager Queue N Status Register 2B (N = 0 to 63)  
Queue Manager Queue N Status Register 1C (N = 0 to 63)  
Queue Manager Queue N Status Register 2C (N = 0 to 63)  
CTRL2A  
CTRL1B  
CTRL2B  
CTRL1C  
CTRL2C  
CTRL1D  
CTRL2D  
QSTAT1A  
QSTAT2A  
QSTAT1B  
QSTAT2B  
QSTAT1C  
QSTAT1C  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
139  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
6.17.2 USB 2.0 Electrical Data/Timing  
Table 6-39. Switching Characteristics Over Recommended Operating Conditions for USB 2.0 (see  
Figure 6-36)  
CVDD = 1.05 V  
CVDD = 1.3 V  
NO.  
PARAMETER  
FULL SPEED  
12 Mbps  
HIGH SPEED  
480 Mbps(1)  
UNIT  
MIN  
4
MAX  
MIN  
0.5  
0.5  
MAX  
1
2
tr(D)  
Rise time, USB_DP and USB_DM signals(2)  
Fall time, USB_DP and USB_DM signals(2)  
Rise/Fall time, matching(3)  
Output signal cross-over voltage(2)  
Pulse duration, EOP transmitter(4)  
Pulse duration, EOP receiver(4)  
Data Rate  
20  
20  
ns  
ns  
%
V
tf(D)  
4
3
trfM  
90  
1.3  
160  
82  
111  
2
4
VCRS  
tw(EOPT)  
tw(EOPR)  
t(DRATE)  
ZDRV  
ZINP  
7
175  
ns  
ns  
8
9
12  
480 Mb/s  
10  
11  
Driver Output Resistance  
40.5  
49.5  
40.5  
-
49.5  
-
Receiver Input Impedance  
100k  
(1) For more detailed information, see the Universal Serial Bus Specification, Revision 2.0, Chapter 7.  
(2) Full Speed and High Speed CL = 50 pF  
(3) tRFM = (tr/tf) x 100. [Excluding the first transaction from the Idle state.]  
(4) Must accept as valid EOP  
t t  
per - jr  
USB_DM  
V
90% V  
OH  
CRS  
10% V  
OL  
USB_DP  
t
f
t
r
Figure 6-36. USB2.0 Integrated Transceiver Interface Timing  
140  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
Copyright © 2011, Texas Instruments Incorporated  
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
6.18 General-Purpose Timers  
The device has three 32-bit software programmable Timers. Each timer can be used as a  
general- purpose (GP) timer. Timer2 can be configured as either a GP or a Watchdog (WD) or both.  
General-purpose timers are typically used to provide interrupts to the CPU to schedule periodic tasks or a  
delayed task. A watchdog timer is used to reset the CPU in case it gets into an infinite loop. The GP  
timers are 32-bit timers with a 13-bit prescaler that can divide the CPU clock and uses this scaled value as  
a reference clock. These timers can be used to generate periodic interrupts. The Watchdog Timer is a  
16-bit counter with a 16-bit prescaler used to provide a recovery mechanism for the device in the event of  
a fault condition, such as a non-exiting code loop.  
The device Timers support the following:  
32-bit Programmable Countdown Timer  
13-bit Prescaler Divider  
Timer Modes:  
32-bit General-Purpose Timer  
32-bit Watchdog Timer (Timer2 only)  
Auto Reload Option  
Generates Single Interrupt to CPU (The interrupt is individually latched to determine which timer  
triggered the interrupt.)  
Generates Active Low Pulse to the Hardware Reset (Watchdog only)  
Interrupt can be used for DMA Event  
6.18.1 Timers Peripheral Register Description(s)  
Table 6-40 through Table 6-43 show the Timer and Watchdog registers.  
Table 6-40. Watchdog Timer Registers (Timer2 only)  
CPU WORD  
ACRONYM  
REGISTER DESCRIPTION  
ADDRESS  
1880h  
1882h  
1884h  
1886h  
1888h  
188Ah  
188Ch  
188Eh  
WDKCKLK  
WDKICK  
WDSVLR  
WDSVR  
WDENLOK  
WDEN  
Watchdog Kick Lock Register  
Watchdog Kick Register  
Watchdog Start Value Lock Register  
Watchdog Start Value Register  
Watchdog Enable Lock Register  
Watchdog Enable Register  
WDPSLR  
WDPS  
Watchdog Prescale Lock Register  
Watchdog Prescale Register  
Table 6-41. General-Purpose Timer 0 Registers  
CPU WORD  
ADDRESS  
ACRONYM  
REGISTER DESCRIPTION  
1810h  
1812h  
1813h  
1814h  
1815h  
TCR  
Timer 0 Control Register  
Timer 0 Period Register 1  
Timer 0 Period Register 2  
Timer 0 Counter Register 1  
Timer 0 Counter Register 2  
TIMPRD1  
TIMPRD2  
TIMCNT1  
TIMCNT2  
Table 6-42. General-Purpose Timer 1 Registers  
CPU WORD  
ADDRESS  
ACRONYM  
TCR  
REGISTER DESCRIPTION  
1850h  
Timer 1 Control Register  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
141  
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
Table 6-42. General-Purpose Timer 1 Registers (continued)  
CPU WORD  
ADDRESS  
ACRONYM  
REGISTER DESCRIPTION  
1852h  
1853h  
1854h  
1855h  
TIMPRD1  
TIMPRD2  
TIMCNT1  
TIMCNT2  
Timer 1 Period Register 1  
Timer 1 Period Register 2  
Timer 1 Counter Register 1  
Timer 1 Counter Register 2  
Table 6-43. General-Purpose Timer 2 Registers  
CPU WORD  
ADDRESS  
ACRONYM  
REGISTER DESCRIPTION  
1890h  
1892h  
1893h  
1894h  
1895h  
TCR  
Timer 2 Control Register  
Timer 2 Period Register 1  
Timer 2 Period Register 2  
Timer 2 Counter Register 1  
Timer 2 Counter Register 2  
TIMPRD1  
TIMPRD2  
TIMCNT1  
TIMCNT2  
142  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
Copyright © 2011, Texas Instruments Incorporated  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
6.19 General-Purpose Input/Output  
The GPIO peripheral provides general-purpose pins that can be configured as either inputs or outputs.  
When configured as an output, you can write to an internal register to control the state driven on the  
output pin. When configured as an input, you can detect the state of the input by reading the state of the  
internal register. The GPIO can also be used to send interrupts to the CPU.  
The GPIO peripheral supports the following:  
Up to 20 GPIOs plus 1 general-purpose output (XF) and 4 Special-Purpose Outputs for Use With SAR  
(C5535 only)  
The 20 GPIO pins have internal pulldowns (IPDs) which can be individually disabled  
The 20 GPIOs can be configured to generate edge detected interrupts to the CPU on either the rising  
or falling edge  
The device GPIO pin functions are multiplexed with various other signals. For more detailed information  
on what signals are multiplexed with the GPIO and how to configure them, see Section 3.2, Terminal  
Functions and Section 4, Device Configuration of this document.  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
143  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
6.19.1 General-Purpose Input/Output Peripheral Register Description(s)  
The external parallel port interface includes a 16-bit general purpose I/O that can be individually  
programmed as input or output with interrupt capability. Control of the general purpose I/O is maintained  
through a set of I/O memory-mapped registers shown in Table 6-44.  
Table 6-44. GPIO Registers  
HEX ADDRESS  
RANGE  
ACRONYM  
REGISTER NAME  
1C06h  
1C07h  
1C08h  
1C09h  
1C0Ah  
1C0Bh  
1C0Ch  
1C0Dh  
1C0Eh  
1C0Fh  
1C10h  
1C11h  
IODIR1  
IODIR2  
GPIO Direction Register 1  
GPIO Direction Register 2  
GPIO Data In Register 1  
GPIO Data In Register 2  
GPIO Data Out Register 1  
GPIO Data Out Register 2  
IOINDATA1  
IOINDATA2  
IODATAOUT1  
IODATAOUT2  
IOINTEDG1  
IOINTEDG2  
IOINTEN1  
GPIO Interrupt Edge Trigger Enable Register 1  
GPIO Interrupt Edge Trigger Enable Register 2  
GPIO Interrupt Enable Register 1  
IOINTEN2  
GPIO Interrupt Enable Register 2  
IOINTFLG1  
IOINTFLG2  
GPIO Interrupt Flag Register 1  
GPIO Interrupt Flag Register 2  
144  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
Copyright © 2011, Texas Instruments Incorporated  
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
6.19.2 GPIO Peripheral Input/Output Electrical Data/Timing  
Table 6-45. Timing Requirements for GPIO Inputs(1) (see Figure 6-37)  
CVDD = 1.05 V  
CVDD = 1.3 V  
NO.  
UNIT  
MIN  
MAX  
1
2
tw(ACTIVE)  
Pulse duration, GPIO input/external interrupt pulse active  
Pulse duration, GPIO input/external interrupt pulse inactive  
2C(1)(2)  
ns  
ns  
(1)(2)  
tw(INACTIVE)  
C
(1) The pulse width given is sufficient to get latched into the GPIO_IFR register and to generate an interrupt. However, if a user wants to  
have the device recognize the GPIO changes through software polling of the GPIO Data In (GPIO_DIN) register, the GPIO duration  
must be extended to allow the device enough time to access the GPIO register through the internal bus.  
(2) C = SYSCLK period in ns. For example, when running parts at 100 MHz, use C = 10 ns.  
Table 6-46. Switching Characteristics Over Recommended Operating Conditions for GPIO Outputs  
(see Figure 6-37)  
CVDD = 1.05 V  
CVDD = 1.3 V  
NO.  
PARAMETER  
UNIT  
MIN  
3C(1)(2)  
3C(1)(2)  
MAX  
3
4
tw(GPOH)  
tw(GPOL)  
Pulse duration, GP[x] output high  
Pulse duration, GP[x] output low  
ns  
ns  
(1) This parameter value should not be used as a maximum performance specification. Actual performance of back-to-back accesses of the  
GPIO is dependent upon internal bus activity.  
(2) C = SYSCLK period in ns. For example, when running parts at 100 MHz, use C = 10 ns.  
2
1
GP[x] Input  
(With IOINTEDGy = 0)  
2
1
GP[x] Input  
(With IOINTEDGy = 1)  
4
3
GP[x] Output  
Figure 6-37. GPIO Port Timing  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
145  
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
6.19.3 GPIO Peripheral Input Latency Electrical Data/Timing  
Table 6-47. Timing Requirements for GPIO Input Latency(1)  
CVDD = 1.05 V  
CVDD = 1.3 V  
NO.  
UNIT  
MIN  
5
MAX  
Polling GPIO_DIN register  
Polling GPIO_IFR register  
Interrupt Detection  
cyc  
cyc  
cyc  
1
tL(GPI) Latency, GP[x] input  
7
8
(1) The pulse width given is sufficient to generate a CPU interrupt. However, if a user wants to have the device recognize the GP[x] input  
changes through software polling of the GPIO register, the GP[x] input duration must be extended to allow device enough time to access  
the GPIO register through the internal bus.  
146  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
Copyright © 2011, Texas Instruments Incorporated  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
6.20 IEEE 1149.1 JTAG  
The JTAG interface is used for Boundary-Scan testing and emulation of the device.  
TRST should only to be deasserted when it is necessary to use a JTAG controller to debug the device or  
exercise the device's boundary scan functionality.  
The device includes an internal pulldown (IPD) on the TRST pin to ensure that TRST will always be  
asserted upon power up and the device's internal emulation logic will always be properly initialized. It is  
also recommended that an external pulldown be added to ensure proper device operation when an  
emulation or boundary scan JTAG controller is not connected to the JTAG pins. JTAG controllers from  
Texas Instruments actively drive TRST high. However, some third-party JTAG controllers may not drive  
TRST high but expect the use of a pullup resistor on TRST. When using this type of JTAG controller,  
assert TRST to initialize the device after powerup and externally drive TRST high before attempting any  
emulation or boundary scan operations. The device will not operate properly if TRST is not asserted low  
during powerup.  
6.20.1 JTAG ID (JTAGID) Register Description(s)  
Table 6-48. JTAG ID Register  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
JTAG Identification Register  
COMMENTS  
Read-only. Provides 32-bit  
JTAG ID of the device.  
N/A  
JTAGID  
The JTAG ID register is a read-only register that identifies to the customer the JTAG/Device ID. The  
register hex value for the device is: 0x01B8F E02F. For the actual register bit names and their associated  
bit field descriptions, see Figure 6-38 and Table 6-49.  
31-28  
VARIANT (4-Bit)  
R-0001  
27-12  
11-1  
0
PART NUMBER (16-Bit)  
R-1011 1000 1111 1110  
MANUFACTURER (11-Bit)  
R-0000 0010 111  
LSB  
R-1  
LEGEND: R = Read, W = Write, n = value at reset  
Figure 6-38. JTAG ID Register Description - 'C5535, 'C5534, 'C5533, and 'C5532 Register Value -  
0x01B8F E02F  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
147  
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
Table 6-49. JTAG ID Register Selection Bit Descriptions  
BIT  
31:28  
27:12  
11:1  
0
NAME  
VARIANT  
DESCRIPTION  
Variant (4-Bit) value: 0001.  
Part Number (16-Bit) value: 1011 1000 1111 1110.  
PART NUMBER  
MANUFACTURER Manufacturer (11-Bit) value: 0000 0010 111.  
LSB LSB. This bit is read as a "1".  
6.20.2 JTAG Test_port Electrical Data/Timing  
Table 6-50. Timing Requirements for JTAG Test Port (see Figure 6-39)  
CVDD = 1.05 V  
CVDD = 1.3 V  
NO.  
UNIT  
MIN  
60  
24  
24  
10  
6
MAX  
2
3
4
5
6
7
8
tc(TCK)  
Cycle time, TCK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tw(TCKH)  
Pulse duration, TCK high  
tw(TCKL)  
Pulse duration, TCK low  
tsu(TDIV-TCKH)  
tsu(TMSV-TCKH)  
th(TCKH-TDIV)  
th(TCKH-TDIV)  
Setup time, TDI valid before TCK high  
Setup time, TMS valid before TCK high  
Hold time, TDI valid after TCK high  
Hold time, TMS valid after TCK high  
5
4
Table 6-51. Switching Characteristics Over Recommended Operating Conditions for JTAG Test Port  
(see Figure 6-39)  
CVDD = 1.05 V  
CVDD = 1.3 V  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
1
td(TCKL-TDOV)  
Delay time, TCK low to TDO valid  
30.5  
ns  
2
3
4
TCK  
TDO  
1
1
7
8
5
6
TDI  
TMS  
Figure 6-39. JTAG Test-Port Timing  
148  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
Copyright © 2011, Texas Instruments Incorporated  
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
7 Device and Documentation Support  
7.1 Device Support  
7.1.1 Development Support  
TI offers an extensive line of development tools for the TMS320C55x DSP platform, including tools to  
evaluate the performance of the processors, generate code, develop algorithm implementations, and fully  
integrate and debug software and hardware modules. The tool's support documentation is electronically  
available within the Code Composer StudioIntegrated Development Environment (IDE).  
The following products support development of TMS320C55x fixed-point DSP-based applications:  
Software Development Tools:  
Code Composer StudioIntegrated Development Environment (IDE): Version 4.2.4 or later  
C/C++/Assembly Code Generation, and Debug plus additional development tools  
Scalable, Real-Time Foundation Software (DSP/BIOSVersion 5.33 or later), which provides the  
basic run-time target software needed to support any DSP application.  
Hardware Development Tools:  
Extended Development System (XDS) Emulator  
For a complete listing of development-support tools for the TMS320C55x DSP platform, visit the Texas  
Instruments web site on the Worldwide Web at http://www.ti.com. For information on pricing and  
availability, contact the nearest TI field sales office or authorized distributor.  
7.1.2 Device and Development-Support Tool Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
DSP devices and support tools. Each DSP commercial family member has one of three prefixes: TMX,  
TMP, or TMS (e.g., TMS320C5535AZHHA10). Texas Instruments recommends two of three possible  
prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of  
product development from engineering prototypes (TMX/TMDX) through fully qualified production  
devices/tools (TMS/TMDS).  
Device development evolutionary flow:  
TMX  
TMP  
TMS  
Experimental device that is not necessarily representative of the final device's electrical  
specifications.  
Final silicon die that conforms to the device's electrical specifications but has not completed  
quality and reliability verification.  
Fully-qualified production device.  
Support tool development evolutionary flow:  
TMDX  
Development-support product that has not yet completed Texas Instruments internal  
qualification testing.  
TMDS  
Fully qualified development-support product.  
TMX and TMP devices and TMDX development-support tools are shipped against the following  
disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
TMS devices and TMDS development-support tools have been characterized fully, and the quality and  
reliability of the device have been demonstrated fully. TI's standard warranty applies.  
Copyright © 2011, Texas Instruments Incorporated  
Device and Documentation Support  
149  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
SPRS737AUGUST 2011  
www.ti.com  
Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard  
production devices. Texas Instruments recommends that these devices not be used in any production  
system because their expected end-use failure rate still is undefined. Only qualified production devices are  
to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the  
package type (for example, ZHH), and the temperature range (for example, "Blank" is the commercial  
temperature range).  
Figure 7-1 provides a legend for reading the complete device name for any DSP platform member.  
TMS 320  
C
5535  
A
ZHH  
A
10  
PREFIX  
DEVICE MAXIMUM OPERATING FREQUENCY  
TMX = Experimental device  
TMS = Qualified device  
10 = 50 MHz at 1.05 V, 100 MHz at 1.3 V  
DEVICE FAMILY  
TEMPERATURE RANGE  
320 = TMS320™ DSP family  
Blank = –10° C to 70° C, Commercial Temperature  
A = –40° C to 85° C, Industrial Temperature  
TECHNOLOGY  
C = Dual-supply CMOS  
PACKAGE TYPE  
ZHH = 144-pin plastic BGA, with Pb-Free  
soldered balls [Green]  
DEVICE  
C55x™ DSP: 5535A10, 5535A05  
5534A10, 5534A05  
5533A10, 5533A05  
SILICON REVISION  
5532A10, 5532A05  
Revision 2.2  
A. For actual device part numbers (P/Ns) and ordering information, see the TI website (http://www.ti.com)  
Figure 7-1. Device Nomenclature  
7.2 Community Resources  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the  
respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views;  
see TI's Terms of Use.  
TI E2E Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and  
help solve problems with fellow engineers.  
TI Embedded Processors Wiki Texas Instruments Embedded Processors Wiki. Established to help  
developers get started with Embedded Processors from Texas Instruments and to foster  
innovation and growth of general knowledge about the hardware and software surrounding  
these devices.  
150  
Device and Documentation Support  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
 
TMS320C5535  
TMS320C5534, TMS320C5533, TMS320C5532  
www.ti.com  
SPRS737AUGUST 2011  
8 Mechanical Packaging and Orderable Information  
The following table(s) show the thermal resistance characteristics for the PBGAZHH mechanical  
package.  
8.1 Thermal Data for ZHH  
Table 8-1. Thermal Resistance Characteristics (PBGA Package) [ZHH]  
°C/W(1)  
12.53  
38  
AIR FLOW (m/s)(2)  
RΘJC  
RΘJB  
RΘJA  
PsiJT  
PsiJB  
Junction-to-case  
1S0P  
2S2P  
2S2P  
2S2P  
2S2P  
N/A  
N/A  
Junction-to-board  
Junction-to-free air  
Junction-to-package top  
Junction-to-board  
50  
0.00  
0.00  
0.00  
0.49  
37.4  
(1) These measurements were conducted in a JEDEC-defined 1S0P/2S2P system and will change based on environment as well as  
application. For more information, see these EIA/JEDEC standards EIA/JESD51-2, Integrated Circuits Thermal Test Method  
Environment Conditions - Natural Convection (Still Air) and JESD51-7, High Effective Thermal Conductivity Test Board for Leaded  
Surface Mount Packages.  
(2) m/s = meters per second  
8.2 Packaging Information  
The following packaging information and addendum reflect the most current data available for the  
designated device(s). This data is subject to change without notice and without revision of this document.  
Copyright © 2011, Texas Instruments Incorporated  
Mechanical Packaging and Orderable Information  
Submit Documentation Feedback  
focus.ti.com: TMS320C5535 TMS320C5534 TMS320C5533 TMS320C5532  
151  
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-Dec-2011  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
TMS320C5532AZHH05  
TMS320C5532AZHH10  
TMS320C5532AZHHA05  
TMS320C5532AZHHA10  
TMS320C5533AZHH05  
TMS320C5533AZHH10  
TMS320C5533AZHHA05  
TMS320C5533AZHHA10  
TMS320C5534AZHH05  
TMS320C5534AZHH10  
TMS320C5534AZHHA05  
TMS320C5534AZHHA10  
TMS320C5535AZHH05  
TMS320C5535AZHH10  
TMS320C5535AZHHA05  
TMS320C5535AZHHA10  
TMX320C5535AZHH10  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
BGA  
MICROSTAR  
ZHH  
ZHH  
ZHH  
ZHH  
ZHH  
ZHH  
ZHH  
ZHH  
ZHH  
ZHH  
ZHH  
ZHH  
ZHH  
ZHH  
ZHH  
ZHH  
ZHH  
144  
144  
144  
144  
144  
144  
144  
144  
144  
144  
144  
144  
144  
144  
144  
144  
144  
160  
160  
160  
160  
160  
160  
160  
160  
160  
160  
160  
160  
160  
160  
160  
160  
Green (RoHS  
& no Sb/Br)  
SNAGCU Level-3-260C-168 HR  
BGA  
MICROSTAR  
Green (RoHS  
& no Sb/Br)  
SNAGCU Level-3-260C-168 HR  
SNAGCU Level-3-260C-168 HR  
SNAGCU Level-3-260C-168 HR  
SNAGCU Level-3-260C-168 HR  
SNAGCU Level-3-260C-168 HR  
SNAGCU Level-3-260C-168 HR  
SNAGCU Level-3-260C-168 HR  
SNAGCU Level-3-260C-168 HR  
SNAGCU Level-3-260C-168 HR  
SNAGCU Level-3-260C-168 HR  
SNAGCU Level-3-260C-168 HR  
SNAGCU Level-3-260C-168 HR  
SNAGCU Level-3-260C-168 HR  
SNAGCU Level-3-260C-168 HR  
SNAGCU Level-3-260C-168 HR  
BGA  
MICROSTAR  
Green (RoHS  
& no Sb/Br)  
BGA  
MICROSTAR  
Green (RoHS  
& no Sb/Br)  
BGA  
MICROSTAR  
Green (RoHS  
& no Sb/Br)  
BGA  
MICROSTAR  
Green (RoHS  
& no Sb/Br)  
BGA  
MICROSTAR  
Green (RoHS  
& no Sb/Br)  
BGA  
MICROSTAR  
Green (RoHS  
& no Sb/Br)  
BGA  
MICROSTAR  
Green (RoHS  
& no Sb/Br)  
BGA  
MICROSTAR  
Green (RoHS  
& no Sb/Br)  
BGA  
MICROSTAR  
Green (RoHS  
& no Sb/Br)  
BGA  
MICROSTAR  
Green (RoHS  
& no Sb/Br)  
BGA  
MICROSTAR  
Green (RoHS  
& no Sb/Br)  
BGA  
MICROSTAR  
Green (RoHS  
& no Sb/Br)  
BGA  
MICROSTAR  
Green (RoHS  
& no Sb/Br)  
BGA  
MICROSTAR  
Green (RoHS  
& no Sb/Br)  
BGA  
TBD  
Call TI  
Call TI  
MICROSTAR  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-Dec-2011  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TIs terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TIs standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Audio  
Applications  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
Medical  
Security  
Logic  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
Transportation and Automotive www.ti.com/automotive  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
www.ti.com/video  
OMAP Mobile Processors www.ti.com/omap  
Wireless Connectivity www.ti.com/wirelessconnectivity  
TI E2E Community Home Page  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2011, Texas Instruments Incorporated  

相关型号:

TMS320C5532AZAY05

低功耗 C55x 定点 DSP- 高达 100MHz | ZAY | 144 | -10 to 70

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320C5532AZAY10

低功耗 C55x 定点 DSP- 高达 100MHz | ZAY | 144 | -10 to 70

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320C5532AZAYA05

低功耗 C55x 定点 DSP- 高达 100MHz | ZAY | 144 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320C5532AZAYA10

低功耗 C55x 定点 DSP- 高达 100MHz | ZAY | 144 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320C5532AZHH05

Fixed-Point Digital Signal Processors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320C5532AZHH10

Fixed-Point Digital Signal Processors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320C5532AZHHA05

Fixed-Point Digital Signal Processors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320C5532AZHHA10

Fixed-Point Digital Signal Processors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320C5533

Fixed-Point Digital Signal Processors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320C5533AZAY05

低功耗 C55x 定点 DSP- 高达 100MHz、USB | ZAY | 144 | -10 to 70

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320C5533AZAY10

低功耗 C55x 定点 DSP- 高达 100MHz、USB | ZAY | 144 | -10 to 70

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320C5533AZAYA05

低功耗 C55x 定点 DSP- 高达 100MHz、USB | ZAY | 144 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI