TLV6700DDCT [TI]

采用集成基准的低功耗窗口比较器 | DDC | 6 | -40 to 125;
TLV6700DDCT
型号: TLV6700DDCT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用集成基准的低功耗窗口比较器 | DDC | 6 | -40 to 125

比较器
文件: 总32页 (文件大小:2577K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TLV6700  
ZHCSHH1B JANUARY 2018REVISED NOVEMBER 2019  
具有 400mV 基准电压的 TLV6700 微功耗、18V 窗口比较器  
1 特性  
3 说明  
1
宽电源电压范围:1.8V 18V  
可调节阈值:低至 400mV  
高阈值精度:  
TLV6700 是一个工作电压范围为 1.8V 18V 的高电  
压窗口比较器。该器件拥有两个内部基准电压为  
400mV 的高精度比较器和两个额定电压为 18V 的开漏  
输出。TLV6700 可以作为窗口比较器使用,也可以作  
为两个独立的比较器使用。可以使用外部电阻器设定监  
控电压。  
25°C 时最高为 0.5%  
在工作温度范围内最高为 1.0%  
低静态电流:5.5µA(典型值)  
开漏输出  
INA+ 上的电压下降至低于 (VITP - VHYS)时,OUTA  
被驱动至低电平,当电压返回到相应阈值 (VITP) 之上  
时,OUTA 变为高电平。当 INB- 上的电压上升至高于  
内部迟滞:5.5mV(典型值)  
温度范围:–40°C 125°C  
封装:  
VITP时,OUTB 被驱动至低电平,当电压下降至低于相  
薄型 SOT-23-6  
应阈值 (VITP - VHYS) 时,OUTB 变为高电平。  
TLV6700 中的两个比较器都具有用于抑制短时毛刺脉  
冲的内置迟滞,从而确保稳定的输出运行,不会引起误  
触发。  
WSON-6  
2 应用  
笔记本电脑和平板电脑  
TLV6700 采用薄型 SOT-23-6 和无引线 WSON-6 封  
装,所有封装型号的额定结温范围为 –40°C 125°  
C。  
智能手机  
数码相机  
视频游戏控制器  
继电器和断路器  
便携式医疗设备  
门窗传感器  
器件信息(1)  
器件型号  
TLV6700  
封装  
SOT-23 (6)  
WSON (6)  
封装尺寸(标称值)  
2.90mm × 1.60mm  
1.50mm × 1.50mm  
便携式电池供电类产品  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
输出响应  
简化方框图  
VPULL-UP  
(Up To 18 V)  
1.8 V to 18 V  
VDD  
VIT+  
INA+  
OUTA  
INA+  
OUTB  
INBœ  
VIT+  
INB–  
Reference  
GND  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNVSAV2  
 
 
 
 
 
TLV6700  
ZHCSHH1B JANUARY 2018REVISED NOVEMBER 2019  
www.ti.com.cn  
目录  
8.3 Feature Description................................................... 9  
8.4 Device Functional Modes........................................ 11  
Application and Implementation ........................ 12  
9.1 Application Information............................................ 12  
9.2 Typical Application .................................................. 15  
9.3 Do's and Don'ts....................................................... 17  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics........................................... 5  
7.6 Timing Requirements................................................ 6  
7.7 Switching Characteristics.......................................... 6  
7.8 Typical Characteristics.............................................. 7  
Detailed Description .............................................. 9  
8.1 Overview ................................................................... 9  
8.2 Functional Block Diagram ......................................... 9  
9
10 Power Supply Recommendations ..................... 18  
11 Layout................................................................... 18  
11.1 Layout Guidelines ................................................. 18  
11.2 Layout Example .................................................... 19  
12 器件和文档支持 ..................................................... 20  
12.1 器件支持................................................................ 20  
12.2 接收文档更新通知 ................................................. 20  
12.3 社区资源................................................................ 20  
12.4 ....................................................................... 20  
12.5 静电放电警告......................................................... 20  
12.6 Glossary................................................................ 20  
13 机械、封装和可订购信息....................................... 20  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (April 2018) to Revision B  
Page  
已添加 添加了 WSON-6 封装 ................................................................................................................................................. 1  
Changes from Original (Jan 2018) to Revision A  
Page  
已更改 将预告信息更改为生产数据发布............................................................................................................................. 1  
5 Device Comparison Table  
Table 1. TLV67xx Integrated Comparator Family  
OPERATING  
VOLTAGE RANGE  
THRESHOLD ACCURACY OVER  
TEMPERATURE  
PART NUMBER  
CONFIGURATION  
TLV6700  
TLV6703  
TLV6710  
TLV6713  
Window  
1.8 V to 18 V  
1.8 V to 18 V  
1.8 V to 36 V  
1.8 V to 36 V  
1%  
1%  
Non-Inverting Single Channel  
Window  
0.75%  
0.75%  
Non-Inverting Single Channel  
2
Copyright © 2018–2019, Texas Instruments Incorporated  
 
 
TLV6700  
www.ti.com.cn  
ZHCSHH1B JANUARY 2018REVISED NOVEMBER 2019  
6 Pin Configuration and Functions  
DDC Package  
SOT-23-6  
Top View  
OUTA  
GND  
INA+  
1
2
3
6
5
4
OUTB  
VDD  
INB-  
DSE Package  
WSON-6  
Top View  
OUTB  
VDD  
1
2
3
6
5
4
OUTA  
GND  
INA+  
INB-  
Pin Functions  
PIN  
DDC  
I/O  
DESCRIPTION  
NAME  
DSE  
GND  
2
5
Ground  
This pin is connected to the voltage to be monitored with the use of an external  
resistor divider. When the voltage at this terminal drops below the threshold voltage  
(VITP – VHYS), OUTA is driven low.  
INA+  
INB–  
3
4
3
6
I
I
This pin is connected to the voltage to be monitored with the use of an external  
resistor divider. When the voltage at this terminal exceeds the threshold voltage  
(VITP), OUTB is driven low.  
4
1
INA+ comparator open-drain output. OUTA is driven low when the voltage at this  
comparator is below (VITP – VHYS). The output goes high when the sense voltage  
returns above the respective threshold (VITP).  
OUTA  
O
INB– comparator open-drain output. OUTB is driven low when the voltage at this  
comparator exceeds VITP. The output goes high when the sense voltage returns  
below the respective threshold (VITP – VHYS).  
OUTB  
VDD  
6
5
1
2
O
I
Supply voltage input. Connect a 1.8-V to 18-V supply to VDD to power the device.  
Good analog design practice is to place a 0.1-µF ceramic capacitor close to this pin.  
Copyright © 2018–2019, Texas Instruments Incorporated  
3
TLV6700  
ZHCSHH1B JANUARY 2018REVISED NOVEMBER 2019  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
20  
UNIT  
V
VDD  
Voltage(2)  
OUTA, OUTB  
20  
V
INA+, INB–  
7
V
Current  
Output terminal current  
40  
mA  
°C  
°C  
Operating junction temperature, TJ  
Storage temperature, Tstg  
–40  
–65  
125  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to network ground terminal.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
±2500  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101,  
all pins(2)  
±1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating temperature range (unless otherwise noted)  
MIN  
1.8  
0
NOM  
MAX UNIT  
VDD  
VI  
Supply voltage  
Input voltage  
Output voltage  
18  
6.5  
18  
V
V
V
INA+, INB–  
VO  
OUTA, OUTB  
0
7.4 Thermal Information  
TLV6700  
DDC  
(SOT)  
DSE  
THERMAL METRIC(1)  
UNIT  
(WSON)  
6 PINS  
194.9  
128.9  
153.8  
11.9  
6 PINS  
204.6  
50.5  
54.3  
0.8  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
52.8  
N/A  
157.4  
N/A  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2018–2019, Texas Instruments Incorporated  
TLV6700  
www.ti.com.cn  
ZHCSHH1B JANUARY 2018REVISED NOVEMBER 2019  
7.5 Electrical Characteristics  
Over the operating temperature range of TJ = –40°C to 125°C, and 1.8 V < VDD < 18 V, unless otherwise noted.  
Typical values are at TJ = 25°C and VDD = 5 V.  
PARAMETER  
Power-on reset voltage(1)  
TEST CONDITIONS  
VOLmax = 0.2 V, I(OUTA/B) = 15 µA  
VDD = 1.8V and 18 V, TJ = 25°C  
MIN  
TYP  
MAX UNIT  
V(POR)  
VIT+  
0.8  
402.5  
404  
397.5  
400  
12  
V
398  
396  
400  
Positive-going input threshold voltage  
Negative-going input threshold voltage  
mV  
VDD = 1.8V and 18 V, TJ = –40°C to 125°C  
VDD = 1.8V and 18 V, TJ = 25°C  
391.6  
387  
394.5  
VIT–  
mV  
VDD = 1.8V and 18 V, TJ = –40°C to 125°C  
Vhys  
Hysteresis voltage (hys = VIT+ – VIT–  
Input current (at the INA+ terminal)  
Input current (at the INB– terminal)  
)
5.5  
1
mV  
nA  
nA  
I(INA+)  
I(INB–)  
VDD = 1.8 V and 18 V, VI = 6.5 V  
VDD = 1.8 V and 18 V, VI = 0.1 V  
VDD = 1.3 V, IO = 0.4 mA  
VDD = 1.8 V, IO = 3 mA  
VDD = 5 V, IO = 5 mA  
VDD = 1.8 V and 18 V, VO = VDD  
VDD = 1.8 V, VO = 18 V  
VDD = 1.8 V, no load  
VDD = 5 V  
–25  
–15  
25  
1
15  
250  
250  
250  
300  
300  
11  
VOL  
Low-level output voltage  
mV  
nA  
Ilkg(OD)  
Open-drain output leakage-current  
5.5  
6
13  
IDD  
Supply current  
µA  
VDD = 12 V  
6
13  
VDD = 18 V  
7
13  
Start-up delay(2)  
Undervoltage lockout(3)  
150  
450  
1.7  
µs  
V
UVLO  
VDD falling  
1.3  
(1) The lowest supply voltage (VDD) at which output is active; tr(VDD) > 15 µs/V. Below V(POR), the output cannot be determined.  
(2) During power on, VDD must exceed 1.8 V for 450 µs (max) before the output is in a correct state.  
(3) When VDD falls below UVLO, OUTA is driven low and OUTB goes to high impedance. The outputs cannot be determined below V(POR)  
.
Copyright © 2018–2019, Texas Instruments Incorporated  
5
 
TLV6700  
ZHCSHH1B JANUARY 2018REVISED NOVEMBER 2019  
www.ti.com.cn  
7.6 Timing Requirements  
over operating temperature range (unless otherwise noted)  
MIN  
NOM  
MAX UNIT  
VDD = 5 V, 10-mV input overdrive,  
RP = 10 kΩ, VOH = 0.9 × VDD, VOL = 400 mV,  
see Figure 1  
tPHL  
High-to-low propagation delay(1)  
Low-to-high propagation delay(1)  
18  
µs  
VDD = 5 V, 10-mV input overdrive,  
RP = 10 kΩ, VOH = 0.9 × VDD, VOL = 400 mV,  
see Figure 1  
tPLH  
29  
µs  
(1) High-to-low and low-to-high refers to the transition at the input terminals (INA+ and INB–).  
7.7 Switching Characteristics  
Over operating temperature range (unless otherwise noted)  
PARAMETER  
Output rise time  
Output fall time  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VDD = 5 V, 10-mV input overdrive,  
RP = 10 kΩ, VO = (0.1 to 0.9) × VDD  
tr  
tf  
2.2  
µs  
VDD = 5 V, 10-mV input overdrive,  
RP = 10 kΩ, VO = (0.1 to 0.9) × VDD  
0.22  
µs  
VDD  
VIT+  
Vhys  
INA+  
OUTA  
tPHL  
tPLH  
tPLH  
VIT+  
Vhys  
INB–  
OUTB  
tPLH  
tPHL  
Figure 1. Timing Diagram  
6
Copyright © 2018–2019, Texas Instruments Incorporated  
 
TLV6700  
www.ti.com.cn  
ZHCSHH1B JANUARY 2018REVISED NOVEMBER 2019  
7.8 Typical Characteristics  
at TJ = 25°C and VDD = 5 V (unless otherwise noted)  
10  
9
8
7
6
5
4
3
2
1
0
401  
400.6  
400.2  
399.8  
399.4  
399  
VDD = 1.8 V  
VDD = 5 V  
VDD = 1.2 V  
VDD = 18 V  
-40èC  
0èC  
25èC  
85èC  
125èC  
0
2
4
6
8
10  
Supply Voltage (V)  
12  
14  
16  
18  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
D001  
D003  
Figure 2. Supply Current (IDD) vs Supply Voltage (VDD  
)
Figure 3. Rising Input Threshold Voltage (VIT+) vs  
Temperature  
9
8
7
6
5
4
3
31  
29  
27  
25  
23  
21  
19  
17  
15  
13  
11  
9
VDD = 1.8 V, INB- to OUTB  
VDD = 18 V, INB- to OUTB  
VDD = 1.8 V, INA+ to OUTA  
VDD = 18 V, INA+ to OUTA  
VDD = 1.8 V  
VDD = 5 V  
VDD = 12 V  
VDD = 18 V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
D005  
D004  
Figure 5. Propagation Delay vs Temperature  
(High-to-Low Transition at the Inputs)  
Figure 4. Hysteresis (Vhys) vs Temperature  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
INA+  
INB–  
6
VDD = 1.8 V, INB- to OUTB  
VDD = 18 V, INB- to OUTB  
VDD = 1.8 V, INA+ to OUTA  
VDD = 18 V, INA+ to OUTA  
4
2
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
2.5  
4
5.5  
7
8.5  
Positive-Going Input Threshold Overdrive (%)  
10 11.5  
13 14.5 16  
D006  
D007  
INA+ = negative spike below VIT–  
INB– = positive spike above VIT+  
Figure 6. Propagation Delay vs Temperature  
(Low-to-High Transition at the Inputs)  
Figure 7. Minimum Pulse Duration vs  
Threshold Overdrive Voltage  
Copyright © 2018–2019, Texas Instruments Incorporated  
7
 
 
TLV6700  
ZHCSHH1B JANUARY 2018REVISED NOVEMBER 2019  
www.ti.com.cn  
Typical Characteristics (continued)  
at TJ = 25°C and VDD = 5 V (unless otherwise noted)  
11  
2000  
1750  
1500  
1250  
1000  
750  
VDD = 1.8 V  
VDD = 5 V  
VDD = 18 V  
10  
9
8
7
6
5
4
3
2
1
-40èC  
0èC  
25èC  
85èC  
125èC  
500  
250  
0
0
4
8
12  
16  
20  
24  
Output Sink Current (mA)  
28  
32  
36  
40  
0
0
0
5
10  
15  
20  
25  
Output Sink Current (mA)  
30  
35  
40  
D008  
D009  
Figure 8. Supply Current (IDD) vs  
Output Sink Current  
Figure 9. Output Voltage Low (VOL) vs  
Output Sink Current (–40°C)  
2000  
1750  
1500  
1250  
1000  
750  
2000  
1750  
1500  
1250  
1000  
750  
VDD = 1.8 V  
VDD = 5 V  
VDD = 18 V  
VDD = 1.8 V  
VDD = 5 V  
VDD = 18 V  
500  
500  
250  
250  
0
0
0
5
10  
15  
Output Sink Current (mA)  
20  
25  
30  
35  
40  
5
10  
15  
Output Sink Current (mA)  
20  
25  
30  
35  
40  
D010  
D011  
Figure 10. Output Voltage Low (VOL) vs  
Output Sink Current (0°C)  
Figure 11. Output Voltage Low (VOL) vs  
Output Sink Current (25°C)  
2000  
1750  
1500  
1250  
1000  
750  
2000  
1750  
1500  
1250  
1000  
750  
VDD = 1.8 V  
VDD = 5 V  
VDD = 18 V  
VDD = 1.8 V  
VDD = 5 V  
VDD = 18 V  
500  
500  
250  
250  
0
0
0
5
10  
15  
Output Sink Current (mA)  
20  
25  
30  
35  
40  
5
10  
15  
Output Sink Current (mA)  
20  
25  
30  
35  
40  
D012  
D013  
Figure 12. Output Voltage Low (VOL) vs  
Output Sink Current (85°C)  
Figure 13. Output Voltage Low (VOL) vs  
Output Sink Current (125°C)  
8
Copyright © 2018–2019, Texas Instruments Incorporated  
TLV6700  
www.ti.com.cn  
ZHCSHH1B JANUARY 2018REVISED NOVEMBER 2019  
8 Detailed Description  
8.1 Overview  
The TLV6700-Q1 device combines two comparators for overvoltage and undervoltage detection. The TLV6700-  
Q1 has a wide-supply voltage range (1.8 V to 18 V) with a high-accuracy rising-input threshold of 400 mV (1%  
over temperature) and built-in hysteresis. The outputs are also rated to 18 V, independant of supply voltage, and  
can sink up to 40 mA.  
The TLV6700-Q1 is designed to assert the output signals, as shown in Table 2. Each input terminal can be set to  
monitor any voltage above 0.4 V using an external resistor divider network. Each input pin has very low input  
leakage current, allowing the use of large resistor dividers without sacrificing system accuracy. With the use of  
two input terminals of different polarities, the TLV6700-Q1 forms a window comparator. The relationship between  
the inputs and the outputs is shown in Table 2. Broad voltage thresholds can be supported that allow the device  
to be used in a wide array of applications.  
Table 2. TLV6700-Q1 Truth Table  
CONDITION  
INA+ > VIT+  
INA+ < VIT–  
INB– > VIT+  
INB– < VIT–  
OUTPUT  
OUTA high  
OUTA low  
OUTB low  
OUTB high  
OUTPUT STATE  
Output A high impedance  
Output A sinking  
Output B sinking  
Output B high impedance  
8.2 Functional Block Diagram  
VDD  
INA+  
OUTA  
OUTB  
INB–  
Reference  
GND  
8.3 Feature Description  
8.3.1 Inputs (INA+, INB–)  
The TLV6700-Q1 device combines two comparators. Each comparator has one external input (inverting and  
noninverting); the other input is connected to the internal reference. The comparator rising threshold is designed  
and trimmed to be equal to the reference voltage (400 mV). Both comparators also have a built-in falling  
hysteresis that makes the device less sensitive to supply rail noise and ensures stable operation.  
The comparator inputs can swing from ground to 6.5 V, regardless of the device supply voltage used. Although  
not required in most cases, good analog design practice is to place a 1-nF to 10-nF bypass capacitor at the  
comparator input for extremely noisy applications to reduce sensitivity to transients and layout parasitics.  
For comparator A, the corresponding output (OUTA) is driven to logic low when the input INA+ voltage drops  
below (VIT+ – Vhys). When the voltage exceeds VIT+, the output (OUTA) goes to a high-impedance state; see  
Figure 1.  
Copyright © 2018–2019, Texas Instruments Incorporated  
9
 
 
TLV6700  
ZHCSHH1B JANUARY 2018REVISED NOVEMBER 2019  
www.ti.com.cn  
Feature Description (continued)  
For comparator B, the corresponding output (OUTB) is driven to logic low when the voltage at input INB–  
exceeds VIT+. When the voltage drops below VIT+ – Vhys the output (OUTB) goes to a high-impedance state; see  
Figure 1. Together, these comparators form a window-detection function as discussed in the Window  
Comparator section.  
8.3.2 Outputs (OUTA, OUTB)  
In a typical TLV6700-Q1 application, the outputs are connected to a GPIO input of the processor (such as a  
digital signal processor [DSP], central processing unit [CPU], field-programmable gate array [FPGA], or  
application-specific integrated circuit [ASIC]).  
The TLV6700-Q1 device provides two open-drain outputs (OUTA and OUTB). Pullup resistors must be used to  
hold these lines high when the output goes to high impedance (not asserted). By connecting pullup resistors to  
the proper voltage rails, the outputs can be connected to other devices at the correct interface-voltage levels.  
The TLV6700-Q1 outputs can be pulled up to 18 V, independent of the device supply voltage. By using wired-OR  
logic, OUTA and OUTB can merge into one logic signal that goes low if either outputs are asserted because of a  
fault condition.  
Table 2 and the Inputs (INA+, INB–) section describe how the outputs are asserted or deasserted. See Figure 1  
for a timing diagram that describes the relationship between threshold voltages and the respective output.  
8.3.3 Window Comparator  
The inverting and noninverting configuration of the comparators forms a window-comparator detection circuit  
using a resistor divider network, as illustrated in Figure 14 and Figure 15. The input terminals can monitor any  
system voltage above 400 mV with the use of a resistor divider network. The INA+ and INB– terminals monitor  
for undervoltage and overvoltage conditions, respectively.  
Figure 14. Window Comparator Block Diagram  
10  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
 
TLV6700  
www.ti.com.cn  
ZHCSHH1B JANUARY 2018REVISED NOVEMBER 2019  
Feature Description (continued)  
Overvoltage  
Limit  
VMON  
Undervoltage  
Limit  
OUTB  
OUTA  
Figure 15. Window Comparator Timing Diagram  
8.3.4 Immunity to Input Terminal Voltage Transients  
The TLV6700-Q1 device is relatively immune to short voltage transient spikes on the input terminals. Sensitivity  
to transients depends on both transient duration and amplitude; see the Minimum Pulse Duration vs Threshold  
Overdrive Voltage curve (Figure 7) in the Typical Characteristics section.  
8.4 Device Functional Modes  
8.4.1 Normal Operation (VDD > UVLO)  
When the voltage on VDD is greater than 1.8 V for at least 150 µs, the OUTA and OUTB signals correspond to  
the voltage on INA+ and INB– as listed in Table 2.  
8.4.2 Undervoltage Lockout (V(POR) < VDD < UVLO)  
When the voltage on VDD is less than the device UVLO voltage, and greater than the power-on reset voltage,  
V(POR), the OUTA and OUTB signals are asserted and high impedance, respectively, regardless of the voltage on  
INA+ and INB–.  
8.4.3 Power-On Reset (VDD < V(POR)  
)
When the voltage on VDD is lower than the required voltage to internally pull the asserted output to GND (V(POR)),  
both outputs are in a high-impedance state.  
Copyright © 2018–2019, Texas Instruments Incorporated  
11  
TLV6700  
ZHCSHH1B JANUARY 2018REVISED NOVEMBER 2019  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TLV6700-Q1 device is a wide-supply voltage window comparator that operates over a VDD range of 1.8 V to  
18 V. The device has two high-accuracy comparators with an internal 400-mV reference and two open-drain  
outputs rated to 18 V for overvoltage and undervoltage detection. The device can be used either as a window  
comparator or as two independent voltage monitors. The monitored voltages are set with the use of external  
resistors.  
9.1.1 VPULLUP to a Voltage Other Than VDD  
The outputs are often tied to VDD through a resistor. However, some applications may require the outputs to be  
pulled up to a higher or lower voltage than VDD to correctly interface with the input terminals of other devices.  
Figure 16. Interfacing to Voltages Other Than VDD  
12  
Copyright © 2018–2019, Texas Instruments Incorporated  
TLV6700  
www.ti.com.cn  
ZHCSHH1B JANUARY 2018REVISED NOVEMBER 2019  
Application Information (continued)  
9.1.2 Monitoring VDD  
Many applications monitor the same rail that is powering VDD. In these applications the resistor divider is simply  
connected to the VDD rail.  
Figure 17. Monitoring the Same Voltage as VDD  
9.1.3 Monitoring a Voltage Other Than VDD  
Some applications monitor rails other than the one that is powering VDD. In these types of applications the  
resistor divider used to set the desired thresholds is connected to the rail that is being monitored.  
Copyright © 2018–2019, Texas Instruments Incorporated  
13  
TLV6700  
ZHCSHH1B JANUARY 2018REVISED NOVEMBER 2019  
www.ti.com.cn  
Application Information (continued)  
NOTE: The inputs can monitor a voltage higher than VDDmax with the use of an external resistor divider network.  
Figure 18. Monitoring a Voltage Other Than VDD  
14  
Copyright © 2018–2019, Texas Instruments Incorporated  
TLV6700  
www.ti.com.cn  
ZHCSHH1B JANUARY 2018REVISED NOVEMBER 2019  
9.2 Typical Application  
The TLV6700-Q1 device is a wide-supply voltage window comparator that operates over a VDD range of 1.8 to 18  
V. The monitored voltages are set with the use of external resistors, so the device can be used either as a  
window comparator or as two independent overvoltage and undervoltage monitors.  
V
V
DD  
PULLUP  
C1  
0.1 µF  
R4  
49.9 k  
R5  
49.9 kꢀ  
U1  
TLV6700DDC  
R1  
2.21 M  
V
DD  
OUTA  
5
1
INA+  
OUTB  
GND  
3
4
6
2
INBœ  
R2  
13.7 kꢀ  
R3  
69.8 kꢀ  
Figure 19. Typical Application Schematic  
9.2.1 Design Requirements  
For this design example, use the values summarized in Table 3 as the input parameters.  
Table 3. Design Parameters  
PARAMETER  
DESIGN REQUIREMENT  
DESIGN RESULT  
12-V nominal rail with maximum rising and  
falling thresholds of ±10%  
VMON(UV)= 10.99 V (8.33%) ±2.94%,  
VMON(OV)= 13.14 V (8.33%) ±2.94%  
Monitored voltage  
9.2.2 Detailed Design Procedure  
9.2.2.1 Resistor Divider Selection  
Use Equation 1 through Equation 4 to calculate the resistor divider values and target threshold voltages.  
RT = R1 + R2 + R3  
(1)  
Select a value for RT such that the current through the divider is approximately 100 times higher than the input  
current at the INA+ and INB– terminals. The resistors can have high values to minimize current consumption as  
a result of low-input bias current without adding significant error to the resistive divider. See the application note  
Optimizing Resistor Dividers at a Comparator Input (SLVA450) for details on sizing input resistors.  
Use Equation 2 to calculate the value of R3.  
RT  
R3 =  
´ VIT+  
VMON(OV)  
where:  
VMON(OV) is the target voltage at which an overvoltage condition is detected  
(2)  
Copyright © 2018–2019, Texas Instruments Incorporated  
15  
 
 
 
TLV6700  
ZHCSHH1B JANUARY 2018REVISED NOVEMBER 2019  
www.ti.com.cn  
Use Equation 3 or Equation 4 to calculate the value of R2.  
RT  
R2 =  
´ VIT+ - R3  
VMON (no UV)  
where:  
VMON(no UV) is the target voltage at which an undervoltage condition is removed as VMON rises  
(3)  
(4)  
RT  
R2 =  
´ (VIT+ - Vhys  
)
- R3  
VMON(UV)  
where:  
VMON(UV) is the target voltage at which an undervoltage condition is detected  
The worst-case tolerance can be calculated by referring to Equation 13 in application report SLVA450,  
Optimizing Resistor Dividers at a Comparator Input (available for download at www.ti.com). An example of the  
rising threshold error, VMON(OV), is given in Equation 5.  
VIT+(INB)  
0.4  
13.2  
% ACC = % TOL(VIT+(INB)) + 2 ´  
´ % TOLR = 1% + 2 ´  
1-  
1-  
´ 1% = 2.94%  
VMON(OV)  
(5)  
9.2.2.2 Pullup Resistor Selection  
To ensure proper voltage levels, the pullup resistor value is selected by ensuring that the pullup voltage divided  
by the resistor does not exceed the sink-current capability of the device. This confirmation is calculated by  
verifying that the pullup voltage minus the output-leakage current (Ilkg(OD)) multiplied by the resistor is greater the  
desired logic-high voltage. These values are specified in the Electrical Characteristics table.  
Use Equation 6 to calculate the value of the pullup resistor.  
(VHI - VPU)  
VPU  
IO  
³ RPU  
³
Ilkg(OD)  
(6)  
9.2.2.3 Input Supply Capacitor  
Although an input capacitor is not required for stability, connecting a 0.1-μF low equivalent series resistance  
(ESR) capacitor across the VDD terminal and GND terminal is good analog design practice. A higher-value  
capacitor may be necessary if large, fast rise-time load transients are anticipated, or if the device is not located  
close to the power source.  
9.2.2.4 Input Capacitors  
Although not required in most cases, for extremely noisy applications, placing a 1-nF to 10-nF bypass capacitor  
from the comparator inputs (INA+, INB–) to the GND terminal is good analog design practice. This capacitor  
placement reduces device sensitivity to transients.  
16  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
TLV6700  
www.ti.com.cn  
ZHCSHH1B JANUARY 2018REVISED NOVEMBER 2019  
9.2.3 Application Curves  
At TJ = 25°C  
OUTB  
C2  
(2 V/div)  
C2  
(2 V/div)  
OUTB  
OUTA  
C1  
(2 V/div)  
OUTA  
C1  
(2 V/div)  
C3  
(2 V/div)  
C3  
(2 V/div)  
VDD  
VDD  
Time (100 µs/div)  
Time (100 µs/div)  
G013  
G014  
VDD = 5 V  
V(INA+) = 390 mV  
V(INB–) = 410 mV  
VDD = 5 V  
V(INA+) = 410 mV  
V(INB–) = 390 mV  
Figure 20. Start-Up Delay  
(Outputs Pulled Up to VDD  
Figure 21. Start-Up Delay  
(Outputs Pulled Up to VDD  
)
)
9.3 Do's and Don'ts  
It is good analog design practice to have a 0.1-µF decoupling capacitor from VDD to GND.  
If the monitored rail is noisy, connect decoupling capacitors from the comparator inputs to GND.  
Do not use resistors for the voltage divider that cause the current through them to be less than 100 times the  
input current of the comparators without also accounting for the effect to the accuracy.  
Do not use pullup resistors that are too small, because the larger current sunk by the output then exceeds the  
desired low-level output voltage (VOL).  
Copyright © 2018–2019, Texas Instruments Incorporated  
17  
TLV6700  
ZHCSHH1B JANUARY 2018REVISED NOVEMBER 2019  
www.ti.com.cn  
10 Power Supply Recommendations  
The TLV6700-Q1 has a 20 V absolute maximum rating on the VDD pin, with a recommended operating condition  
of 18V. If the voltage supply that is providing power to VDD is susceptible to any large voltage transient that may  
exceed 20 V, or if the supply exhibits high voltage slew rates greater than 1 V/µs, take additional precautions.  
Place an RC filter between the supply and VDD to filter any high-frequency transient surges on the VDD pin. A  
100-Ω resistor and 0.01-µF capacitor is required in these cases, as shown in Figure 22.  
100  
0.01 F  
+
œ
VPULLUP  
R1  
VDD  
INA  
INB  
OUTA  
OUTB  
R2  
R3  
GND  
Figure 22. Using an RC Filter to Remove High-Frequency Disturbances on VDD  
11 Layout  
11.1 Layout Guidelines  
Placing a 0.1-µF capacitor close to the VDD terminal to reduce the input impedance to the device is good analog  
design practice. The pullup resistors can be separated if separate logic functions are needed (as shown in  
Figure 23) or both resistors can be tied to a single pullup resistor if a logical AND function is desired.  
18  
版权 © 2018–2019, Texas Instruments Incorporated  
 
TLV6700  
www.ti.com.cn  
ZHCSHH1B JANUARY 2018REVISED NOVEMBER 2019  
11.2 Layout Example  
Figure 23. TLV6700-Q1 Layout Schematic  
版权 © 2018–2019, Texas Instruments Incorporated  
19  
TLV6700  
ZHCSHH1B JANUARY 2018REVISED NOVEMBER 2019  
www.ti.com.cn  
12 器件和文档支持  
12.1 器件支持  
12.1.1 开发支持  
DIP 适配器评估模块可以将 SOT-23-6 封装转换为标准 DIP-6 引脚排列以便轻松构建原型和进行工作台评估。  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
20  
版权 © 2018–2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV6700DDCR  
TLV6700DDCT  
TLV6700DSER  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
DDC  
DDC  
DSE  
6
6
6
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
1I51  
1I51  
HD  
NIPDAU  
NIPDAU  
ACTIVE  
WSON  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV6700DDCR  
TLV6700DDCT  
TLV6700DSER  
SOT-23-  
THIN  
DDC  
DDC  
DSE  
6
6
6
3000  
250  
180.0  
180.0  
178.0  
8.4  
8.4  
8.4  
3.2  
3.2  
1.7  
3.2  
3.2  
1.7  
1.4  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q2  
SOT-23-  
THIN  
1.4  
WSON  
3000  
0.95  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV6700DDCR  
TLV6700DDCT  
TLV6700DSER  
SOT-23-THIN  
SOT-23-THIN  
WSON  
DDC  
DDC  
DSE  
6
6
6
3000  
250  
213.0  
213.0  
205.0  
191.0  
191.0  
200.0  
35.0  
35.0  
33.0  
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DSE0006A  
WSON - 0.8 mm max height  
SCALE 6.000  
PLASTIC SMALL OUTLINE - NO LEAD  
1.55  
1.45  
A
B
1.55  
1.45  
PIN 1 INDEX AREA  
0.8 MAX  
C
SEATING PLANE  
0.08 C  
(0.2) TYP  
0.05  
0.00  
0.6  
0.4  
5X  
3
4
2X 1  
4X 0.5  
6
1
0.3  
6X  
0.7  
0.5  
0.2  
0.1  
0.05  
PIN 1 ID  
C A B  
C
4220552/A 04/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSE0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
PKG  
(0.8)  
5X (0.7)  
1
6
6X (0.25)  
SYMM  
4X 0.5  
4
3
(R0.05) TYP  
(1.6)  
LAND PATTERN EXAMPLE  
SCALE:40X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
PADS 4-6  
NON SOLDER MASK  
DEFINED  
PADS 1-3  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4220552/A 04/2021  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSE0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
PKG  
5X (0.7)  
(0.8)  
6X (0.25)  
1
6
SYMM  
4X (0.5)  
4
3
(R0.05) TYP  
(1.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:40X  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
DDC0006A  
SOT-23 - 1.1 max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
3.05  
2.55  
1.1  
0.7  
1.75  
1.45  
0.1 C  
B
A
PIN 1  
INDEX AREA  
1
6
4X 0.95  
1.9  
3.05  
2.75  
4
3
0.5  
0.3  
0.1  
6X  
TYP  
0.0  
0.2  
C A B  
C
0 -8 TYP  
0.25  
GAGE PLANE  
SEATING PLANE  
0.20  
0.12  
TYP  
0.6  
0.3  
TYP  
4214841/C 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC MO-193.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDC0006A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
6X (1.1)  
1
6
6X (0.6)  
SYMM  
4X (0.95)  
4
3
(R0.05) TYP  
(2.7)  
LAND PATTERN EXAMPLE  
EXPLOSED METAL SHOWN  
SCALE:15X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDERMASK DETAILS  
4214841/C 04/2022  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDC0006A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
6X (1.1)  
1
6
6X (0.6)  
SYMM  
4X(0.95)  
4
3
(R0.05) TYP  
(2.7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:15X  
4214841/C 04/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TLV6700DSER

采用集成基准的低功耗窗口比较器 | DSE | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV6700QDDCRQ1

TLV6700-Q1 Micropower, 18-V Window Comparator With 400-mV Reference

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV6700QDSERQ1

TLV6700-Q1 Micropower, 18-V Window Comparator With 400-mV Reference

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV6703

具有集成基准电压的 18V 比较器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV6703-Q1

具有集成基准的汽车类 18V 比较器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV6703DDCR

具有集成基准电压的 18V 比较器 | DDC | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV6703DDCT

具有集成基准电压的 18V 比较器 | DDC | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV6703DSER

具有集成基准电压的 18V 比较器 | DSE | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV6703QDSERQ1

具有集成基准的汽车类 18V 比较器 | DSE | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV6710

采用集成基准的低功耗高电压窗口比较器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV6710DDCR

采用集成基准的低功耗高电压窗口比较器

| DDC | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV6710DDCT

采用集成基准的低功耗高电压窗口比较器

| DDC | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI