TLV6703DDCT [TI]

具有集成基准电压的 18V 比较器 | DDC | 6 | -40 to 125;
TLV6703DDCT
型号: TLV6703DDCT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成基准电压的 18V 比较器 | DDC | 6 | -40 to 125

比较器
文件: 总28页 (文件大小:1087K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TLV6703  
ZHCSHG9A JANUARY 2018REVISED APRIL 2018  
具有 400mV 基准电压的 TLV6703 微功耗、18V 比较器  
1 特性  
3 说明  
1
宽电源电压范围:1.8V 18V  
TLV6703 是一款高电压比较器,工作电压范围为 1.8V  
18VTLV6703 具有一个内部基准电压为 400mV  
的高精度比较器和一个额定电压为 18V 的开漏输出,  
用于实现精确的电压检测。可以使用外部电阻设置监视  
电压。  
可调节阈值:低至 400mV  
高阈值精度:  
最高 0.5% (25°C)  
在工作温度范围内最高 1.0%  
低静态电流:5.5µA(典型值)  
漏极开路输出  
SENSE 引脚上的电压下降至低于 (VIT–) 时,OUT  
引脚被驱动至低电平,而当电压返回到对应阈值 (VIT+  
)
内部滞后:5.5mV(典型值)  
温度范围:-40°C +125°C  
封装:超薄 SOT-23-6  
之上时,OUT 引脚变为高电平。TLV6703 中的比较器  
具有拒绝短暂干扰的内置迟滞,确保稳定的输出运行,  
不会引起误触发。  
TLV6703 采用超薄 SOT-23-6 封装,额定结温范围为  
–40°C +125°C。  
2 应用  
笔记本电脑和平板电脑  
智能手机  
器件信息 (1)  
数码相机  
器件型号  
TLV6703  
封装  
SOT-23 (6)  
封装尺寸(标称值)  
视频游戏控制器  
中继器和断路器  
便携式医疗设备  
门窗传感器  
2.90mm × 1.60mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。  
便携式和电池供电类产品  
简化框图  
VMON  
0.01 F  
VPULLUP  
Up to 18 V  
VDD  
R1  
RP  
SENSE  
OUT  
R2  
VIT  
+
GND  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBOS865  
 
 
 
 
TLV6703  
ZHCSHG9A JANUARY 2018REVISED APRIL 2018  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 10  
8.4 Device Functional Modes........................................ 10  
Application and Implementation ........................ 11  
9.1 Application Information............................................ 11  
9.2 Typical Application .................................................. 13  
9.3 Dos and Don'ts........................................................ 14  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics........................................... 5  
7.6 Timing Requirements................................................ 6  
7.7 Switching Characteristics.......................................... 6  
7.8 Typical Characteristics.............................................. 7  
Detailed Description .............................................. 9  
8.1 Overview ................................................................... 9  
8.2 Functional Block Diagram ......................................... 9  
9
10 Power-Supply Recommendations ..................... 15  
11 Layout................................................................... 15  
11.1 Layout Guidelines ................................................. 15  
11.2 Layout Example .................................................... 15  
12 器件和文档支持 ..................................................... 16  
12.1 器件支持................................................................ 16  
12.2 接收文档更新通知 ................................................. 16  
12.3 社区资源................................................................ 16  
12.4 ....................................................................... 16  
12.5 静电放电警告......................................................... 16  
12.6 术语表 ................................................................... 16  
13 机械、封装和可订购信息....................................... 16  
8
4 修订历史记录  
Changes from Original (January 2018) to Revision A  
Page  
已更改 从预告信息更改成了生产数据” ................................................................................................................................ 1  
5 Device Comparison Table  
Table 1. TLV67xx Integrated Comparator Family  
OPERATING  
VOLTAGE RANGE  
THRESHOLD ACCURACY OVER  
TEMPERATURE  
PART NUMBER  
CONFIGURATION  
TLV6700  
TLV6703  
TLV6710  
TLV6713  
Window  
1.8 V to 18 V  
1.8 V to 18 V  
1.8 V to 36 V  
1.8 V to 36 V  
1%  
1%  
Non-Inverting Single Channel  
Window  
0.75%  
0.75%  
Non-Inverting Single Channel  
2
Copyright © 2018, Texas Instruments Incorporated  
 
 
TLV6703  
www.ti.com.cn  
ZHCSHG9A JANUARY 2018REVISED APRIL 2018  
6 Pin Configuration and Functions  
DDC Package  
6-Pin SOT  
Top View  
OUT  
GND  
1
2
3
6
5
4
GND  
VDD  
GND  
SENSE  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
GND  
DDC  
2, 4, 6  
O
Connect all three pins to ground.  
SENSE comparator open-drain output. OUT is driven low when the voltage at this comparator is  
below (VIT-). The output goes high when the sense voltage returns above the respective  
threshold (VIT+).  
OUT  
1
This pin is connected to the voltage to be monitored with the use of an external resistor divider.  
When the voltage at this pin drops below the threshold voltage (VIT-), OUT is driven low.  
SENSE  
VDD  
3
5
I
I
Supply voltage input. Connect a 1.8-V to 18-V supply to VDD to power the device. Good analog  
design practice is to place a 0.1-µF ceramic capacitor close to this pin.  
Copyright © 2018, Texas Instruments Incorporated  
3
TLV6703  
ZHCSHG9A JANUARY 2018REVISED APRIL 2018  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
20  
UNIT  
VDD  
Voltage(2)  
OUT  
20  
V
SENSE  
7
Current  
OUT (output sink current)  
Operating junction, TJ  
Storage, Tstg  
40  
mA  
°C  
–40  
–65  
125  
150  
Temperature  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to network ground pin.  
7.2 ESD Ratings  
VALUE  
±2500  
±1000  
UNIT  
(1)  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins  
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins  
V(ESD)  
Electrostatic discharge  
V
(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating temperature range (unless otherwise noted)  
MIN  
1.8  
0
NOM  
MAX UNIT  
VDD  
VI  
Supply voltage  
Input voltage  
Output voltage  
18  
6.5  
18  
V
V
V
SENSE  
OUT  
VO  
0
7.4 Thermal Information  
TLV6703  
(1)  
THERMAL METRIC  
DDC (SOT)  
6 PINS  
204.6  
50.5  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
54.3  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.8  
ψJB  
52.8  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor an IC Package Thermal Metrics application  
report.  
4
Copyright © 2018, Texas Instruments Incorporated  
TLV6703  
www.ti.com.cn  
ZHCSHG9A JANUARY 2018REVISED APRIL 2018  
7.5 Electrical Characteristics  
Over the operating temperature range of TJ = –40°C to +125°C, and 1.8 V < VDD < 18 V (unless otherwise noted).  
Typical values are at TJ = 25°C and VDD = 5 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
(1)  
V(POR)  
VIT+  
Power-on reset voltage  
VOLmax = 0.2 V, output sink current = 15 µA  
VDD = 1.8V and 18 V, TJ = 25°C  
0.8  
402.5  
404  
397.5  
400  
12  
V
398  
396  
400  
Positive-going input threshold voltage  
Negative-going input threshold voltage  
mV  
VDD = 1.8V and 18 V, TJ = –40°C to 125°C  
VDD = 1.8V and 18 V, TJ = 25°C  
391.6  
387  
394.5  
VIT–  
Vhys  
mV  
VDD = 1.8V and 18 V, TJ = –40°C to 125°C  
Hysteresis voltage (hys = VIT+ – VIT–  
)
5.5  
1
mV  
nA  
I(SENSE) Input current (at the SENSE pin)  
VDD = 1.8 V and 18 V, VI = 6.5 V  
VDD = 1.3 V, output sink current = 0.4 mA  
VDD = 1.8 V, output sink current = 3 mA  
VDD = 5 V, output sink current = 5 mA  
VDD = 1.8 V and 18 V, VO = VDD  
VDD = 1.8 V, VO = 18 V  
VDD = 1.8 V, no load  
–25  
25  
250  
250  
250  
300  
300  
11  
VOL  
Low-level output voltage  
mV  
nA  
Ilkg(OD)  
Open-drain output leakage-current  
5.5  
6
VDD = 5 V  
13  
IDD  
Supply current  
µA  
V
VDD = 12 V  
6
13  
VDD = 18 V  
7
13  
(2)  
UVLO  
Undervoltage lockout  
VDD falling  
1.3  
1.7  
(1) The lowest supply voltage (VDD) at which output is active; tr(VDD) > 15 µs/V. Below V(POR), the output cannot be determined.  
(2) When VDD falls below UVLO, OUT is driven low. The output cannot be determined below V(POR)  
.
Copyright © 2018, Texas Instruments Incorporated  
5
 
TLV6703  
ZHCSHG9A JANUARY 2018REVISED APRIL 2018  
www.ti.com.cn  
7.6 Timing Requirements  
over operating temperature range (unless otherwise noted)  
MIN  
NOM  
MAX UNIT  
VDD = 5 V, 10-mV input overdrive,  
RP = 10 kΩ, VOH = 0.9 × VDD, VOL = 400 mV,  
see Figure 1  
(1)  
(1)  
tpd(HL)  
High-to-low propagation delay  
Low-to-high propagation delay  
18  
µs  
VDD = 5 V, 10-mV input overdrive,  
RP = 10 kΩ, VOH = 0.9 × VDD, VOL = 400 mV,  
see Figure 1  
tpd(LH)  
td(start)  
29  
µs  
µs  
(2)  
Start-up delay  
150  
(1) High-to-low and low-to-high refers to the transition at the input pin (SENSE).  
(2) During power on, VDD must exceed 1.8 V for at least 150 µs before the output is in a correct state.  
7.7 Switching Characteristics  
over operating temperature range (unless otherwise noted)  
PARAMETER  
Output rise time  
Output fall time  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VDD = 5 V, 10-mV input overdrive,  
RP = 10 kΩ, VO = (0.1 to 0.9) × VDD  
tr  
tf  
2.2  
µs  
VDD = 5 V, 10-mV input overdrive,  
RP = 10 kΩ, VO = (0.1 to 0.9) × VDD  
0.22  
µs  
VDD  
V(POR)  
VIT+  
VITœ  
VHYS  
SENSE  
OUT  
tpd(LH)  
tpd(HL)  
tpd(LH)  
t d(start)  
Figure 1. Timing Diagram  
6
Copyright © 2018, Texas Instruments Incorporated  
 
TLV6703  
www.ti.com.cn  
ZHCSHG9A JANUARY 2018REVISED APRIL 2018  
7.8 Typical Characteristics  
at TJ = 25°C and VDD = 5 V (unless otherwise noted)  
401  
400.6  
400.2  
399.8  
399.4  
399  
10  
9
VDD = 1.8 V  
VDD = 5 V  
VDD = 12 V  
VDD = 18 V  
8
7
6
5
4
3
2
1
0
TJ = -40°C  
TJ = 0°C  
TJ = +25°C  
TJ = +85°C  
TJ = +125°C  
0
2
4
6
8
10  
12  
14  
16  
18  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Supply Voltage (V)  
Temperature (èC)  
Figure 2. Supply Current (IDD) vs Supply Voltage (VDD  
)
Figure 3. Rising Input Threshold Voltage (VIT+) vs  
Temperature  
25  
23  
21  
19  
17  
15  
13  
11  
9
9
VDD = 1.8 V  
VDD = 18 V  
8
7
6
5
4
3
VDD = 1.8 V  
VDD = 5 V  
VDD = 12 V  
VDD = 18 V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
Temperature (èC)  
Figure 5. Propagation Delay vs Temperature  
(High-to-Low Transition at Sense)  
Figure 4. Hysteresis (Vhys) vs Temperature  
30  
28  
26  
24  
22  
20  
18  
16  
14  
16  
14  
12  
10  
8
6
4
VDD = 1.8 V  
VDD = 18 V  
2
0
2.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
4
5.5  
7
8.5  
10  
11.5  
13  
14.5  
Temperature (èC)  
Positive-Going Input Threshold Overdrive (%)  
SENSE = negative spike below VIT–  
Figure 6. Propagation Delay vs Temperature  
(Low-to-High Transition at Sense)  
Figure 7. Minimum Pulse Width vs  
Threshold Overdrive Voltage  
Copyright © 2018, Texas Instruments Incorporated  
7
 
TLV6703  
ZHCSHG9A JANUARY 2018REVISED APRIL 2018  
www.ti.com.cn  
Typical Characteristics (continued)  
at TJ = 25°C and VDD = 5 V (unless otherwise noted)  
2000  
1800  
1600  
1400  
1200  
1000  
800  
12  
VDD = 1.8 V  
VDD = 5 V  
VDD = 18 V  
10  
8
6
4
600  
TJ = -40°C  
TJ = 0°C  
400  
TJ = +25°C  
TJ = +85°C  
TJ = +125°C  
2
0
200  
0
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
Output Sink Current (mA)  
Output Sink Current (mA)  
Figure 9. Output Voltage Low (VOL) vs  
Output Sink Current (–40°C)  
Figure 8. Supply Current (IDD) vs  
Output Sink Current  
2000  
1800  
1600  
1400  
1200  
1000  
800  
2000  
1800  
1600  
1400  
1200  
1000  
800  
VDD = 1.8 V  
VDD = 5 V  
VDD = 18 V  
VDD = 1.8 V  
VDD = 5 V  
VDD = 18 V  
600  
600  
400  
400  
200  
200  
0
0
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
Output Sink Current (mA)  
Output Sink Current (mA)  
Figure 10. Output Voltage Low (VOL) vs  
Output Sink Current (0°C)  
Figure 11. Output Voltage Low (VOL) vs  
Output Sink Current (25°C)  
2000  
1800  
1600  
1400  
1200  
1000  
800  
2000  
1800  
1600  
1400  
1200  
1000  
800  
VDD = 1.8 V  
VDD = 5 V  
VDD = 18 V  
VDD = 1.8 V  
VDD = 5 V  
VDD = 18 V  
600  
600  
400  
400  
200  
200  
0
0
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
Output Sink Current (mA)  
Output Sink Current (mA)  
Figure 12. Output Voltage Low (VOL) vs  
Output Sink Current (85°C)  
Figure 13. Output Voltage Low (VOL) vs  
Output Sink Current (125°C)  
8
Copyright © 2018, Texas Instruments Incorporated  
TLV6703  
www.ti.com.cn  
ZHCSHG9A JANUARY 2018REVISED APRIL 2018  
8 Detailed Description  
8.1 Overview  
The TLV6703 provides precision voltage detection. The TLV6703 is a wide-supply voltage range (1.8 V to 18 V)  
comparator with a high-accuracy rising input threshold of 400 mV (1% over temperature) and built-in hysteresis.  
The output is also rated to 18 V, independant of supply voltage, and can sink up to 40 mA.  
The TLV6703 asserts the output signal, as shown in Table 2. To monitor any voltage above 0.4 V, set the input  
using an external resistor divider network. Each input pin has very low input leakage current, allowing the use of  
large resistor dividers without sacrificing system accuracy. Broad voltage thresholds are supported that enable  
the device for use in a wide array of applications.  
Table 2. TLV6703 Truth Table  
CONDITION  
SENSE > VIT+  
SENSE < VIT–  
OUTPUT  
OUT high  
OUT low  
OUTPUT STATE  
Output high impedance  
Output sinking  
8.2 Functional Block Diagram  
VDD  
SENSE  
OUT  
VIT+  
GND  
Copyright © 2018, Texas Instruments Incorporated  
9
 
TLV6703  
ZHCSHG9A JANUARY 2018REVISED APRIL 2018  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Input Pin (SENSE)  
The TLV6703 comparator has two inputs: one external input, and one input internally connected to the internal  
400mV reference. The comparator rising threshold is trimmed to be equal to the reference voltage (400 mV). The  
comparator also has a built-in falling hysteresis that makes the device less sensitive to supply-rail noise and  
provides stable operation.  
The comparator input (SENSE) is able to swing from ground to 6.5 V, regardless of the device supply voltage.  
Although not required in most cases, to reduce sensitivity to transients and layout parasitics for extremely noisy  
applications, place a 1-nF to 10-nF bypass capacitor at the comparator input.  
OUT is driven to logic low when the input SENSE voltage drops below (VIT-). When the voltage exceeds VIT+, the  
output (OUT) goes to a high-impedance state; see Figure 1.  
8.3.2 Output Pin (OUT)  
In a typical TLV6703 application, the output is connected to a GPIO input of the processor (such as a digital  
signal processor [DSP], central processing unit [CPU], field-programmable gate array [FPGA], or application-  
specific integrated circuit [ASIC]).  
The TLV6703 device provides an open-drain output (OUT). Use a pullup resistor to hold this line high when the  
output goes to high impedance (not asserted). To connect the output to another device at the correct interface-  
voltage level, connect a pullup resistor to the proper voltage rail. The TLV6703 output can be pulled up to 18 V,  
independent of the device supply voltage.  
Table 2 and the Input Pin (SENSE) section describe how the output is asserted or deasserted. See Figure 1 for a  
timing diagram that describes the relationship between threshold voltage and the respective output.  
8.3.3 Immunity to Input-Pin Voltage Transients  
The TLV6703 is relatively immune to short voltage transient spikes on the sense pin. Sensitivity to transients  
depends on both transient duration and amplitude; see Figure 7, Minimum Pulse Width vs Threshold Overdrive  
Voltage.  
8.4 Device Functional Modes  
8.4.1 Normal Operation (VDD > UVLO)  
When the voltage on VDD is greater than 1.8 V for at least 150 µs, the OUT signal correspond to the voltage on  
SENSE as listed in Table 2.  
8.4.2 Undervoltage Lockout (V(POR) < VDD < UVLO)  
When the voltage on VDD is less than the device UVLO voltage, and greater than the power-on reset voltage,  
V(POR), the OUT signal is asserted regardless of the voltage on SENSE.  
8.4.3 Power-On Reset (VDD < V(POR)  
)
When the voltage on VDD is lower than the required voltage to internally pull the asserted output to GND (V(POR)),  
SENSE is in a high-impedance state.  
10  
Copyright © 2018, Texas Instruments Incorporated  
 
TLV6703  
www.ti.com.cn  
ZHCSHG9A JANUARY 2018REVISED APRIL 2018  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TLV6703 device is a wide-supply voltage comparator that operates over a VDD range of 1.8 V to  
18 V. The device has a high-accuracy comparator with an internal 400-mV reference and an open-drain output  
rated to 18 V for precision voltage detection. The device can be used as a voltage monitor. The monitored  
voltage are set with the use of external resistors.  
9.1.1 VPULLUP to a Voltage Other Than VDD  
The output is often tied to VDD through a resistor. However, some applications may require the output to be  
pulled up to a higher or lower voltage than VDD to correctly interface with the reset and enable pins of other  
devices.  
VMON  
1.8 V to 18 V  
0.01 F  
VPULLUP  
Up to 18 V  
R1  
VDD  
RP  
To a reset or enable  
input of the system.  
SENSE  
OUT  
R2  
GND  
Figure 14. Interfacing to a Voltage Other Than VDD  
Copyright © 2018, Texas Instruments Incorporated  
11  
TLV6703  
ZHCSHG9A JANUARY 2018REVISED APRIL 2018  
www.ti.com.cn  
Application Information (continued)  
9.1.2 Monitoring VDD  
Many applications monitor the same rail that is powering VDD. In these applications the resistor divider is simply  
connected to the VDD rail.  
1.8 V to 18 V  
0.01 F  
VPULLUP  
Up to 18 V  
R1  
R2  
VDD  
SENSE  
RP  
To a reset or enable  
input of the system.  
OUT  
GND  
Figure 15. Monitoring the Same Voltage as VDD  
9.1.3 Monitoring a Voltage Other Than VDD  
Some applications monitor rails other than the one that is powering VDD. In these types of applications the  
resistor divider used to set the desired threshold is connected to the rail that is being monitored.  
VMON  
1.8 V to 18 V  
0.01 F  
VPULLUP  
Up to 18 V  
R1  
VDD  
RP  
To a reset or enable  
input of the system.  
SENSE  
OUT  
R2  
GND  
NOTE: The input can monitor a voltage greater than maximum VDD with the use of an external resistor divider  
network.  
Figure 16. Monitoring a Voltage Other Than VDD  
12  
Copyright © 2018, Texas Instruments Incorporated  
TLV6703  
www.ti.com.cn  
ZHCSHG9A JANUARY 2018REVISED APRIL 2018  
9.2 Typical Application  
The TLV6703 device is a wide-supply voltage comparator that operates over a VDD range of 1.8 to 18 V. The  
monitored voltage is set with the use of external resistors, so the device can be used either as a precision  
voltage monitor.  
VMON  
1.8 V to 18 V  
0.01 F  
VPULLUP  
Up to 18 V  
R1  
2.21 M  
RP  
VDD  
SENSE  
49.9 kΩ  
To a reset or enable  
input of the system.  
OUT  
R2  
83.5 kΩ  
GND  
Figure 17. Wide VIN Voltage Monitor  
9.2.1 Design Requirements  
For this design example, use the values summarized in Table 3 as the input parameters.  
Table 3. Design Parameters  
PARAMETER  
DESIGN REQUIREMENT  
DESIGN RESULT  
12-V nominal rail with maximum falling  
threshold of 10%  
Monitored voltage  
VMON(UV)= 10.99 V (8.33%)  
9.2.2 Detailed Design Procedure  
9.2.2.1 Resistor Divider Selection  
The resistor divider values and target threshold voltage can be calculated by using Equation 1 to determine  
VMON(UV)  
.
R1  
R2  
VMON(UV) = 1 +  
× V  
IT-  
÷
«
(1)  
where  
R1 and R2 are the resistor values for the resistor divider on the SENSEx pins  
VMON(UV) is the target voltage at which an undervoltage condition is detected  
Choose RTOTAL ( = R1 + R2) so that the current through the divider is approximately 100 times higher than the  
input current at the SENSE pin. The resistors can have high values to minimize current consumption as a result  
of low input bias current without adding significant error to the resistive divider. For details on sizing input  
resistors, refer to application report SLVA450, Optimizing Resistor Dividers at a Comparator Input, available for  
download from www.ti.com.  
Copyright © 2018, Texas Instruments Incorporated  
13  
 
 
TLV6703  
ZHCSHG9A JANUARY 2018REVISED APRIL 2018  
www.ti.com.cn  
9.2.2.2 Pullup Resistor Selection  
To ensure the proper voltage level, the pullup resistor value is selected by ensuring that the pullup voltage  
divided by the resistor does not exceed the sink-current capability of the device. This confirmation is calculated  
by verifying that the pullup voltage minus the output-leakage current (Ilkg(OD)) multiplied by the resistor is greater  
than the desired logic-high voltage. These values are specified in the Electrical Characteristics .  
Use Equation 2 to calculate the value of the pullup resistor.  
(VHI - VPU)  
VPU  
IO  
³ RPU  
³
Ilkg(OD)  
(2)  
9.2.2.3 Input Supply Capacitor  
Although an input capacitor is not required for stability, for good analog design practice, connect a 0.1-μF low  
equivalent series resistance (ESR) capacitor across the VDD and GND pins. A higher-value capacitor may be  
necessary if large, fast rise-time load transients are anticipated, or if the device is not located close to the power  
source.  
9.2.2.4 Sense Capacitor  
Although not required in most cases, for extremely noisy applications, place a 1-nF to 10-nF bypass capacitor  
from the comparator input (SENSE) to the GND pin for good analog design practice. This capacitor placement  
reduces device sensitivity to transients.  
9.2.3 Application Curves  
401  
VDD = 1.8 V  
VDD = 5 V  
VDD = 12 V  
VDD = 18 V  
400.6  
400.2  
399.8  
399.4  
399  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
Figure 18. Rising Input Threshold Voltage (VIT+) vs Temperature  
9.3 Dos and Don'ts  
Do connect a 0.1-µF decoupling capacitor from VDD to GND for best system performance.  
If the monitored rail is noisy, do connect a decoupling capacitor from the comparator input (sense) to GND.  
Don't use resistors for the voltage divider that cause the current through them to be less than 100 times the input  
current of the comparator without also accounting for the effect to the accuracy.  
Don't use a pullup resistor that is too small, because the larger current sunk by the output then exceeds the  
desired low-level output voltage (VOL).  
14  
Copyright © 2018, Texas Instruments Incorporated  
 
TLV6703  
www.ti.com.cn  
ZHCSHG9A JANUARY 2018REVISED APRIL 2018  
10 Power-Supply Recommendations  
These devices operate from an input voltage supply range between 1.8 V and 18 V.  
11 Layout  
11.1 Layout Guidelines  
Placing a 0.1-µF capacitor close to the VDD pin to reduce the input impedance to the device is good analog  
design practice.  
11.2 Layout Example  
Pullup  
Voltage  
RP1  
Output  
Flag  
6
5
1
CVDD  
Input  
Supply  
2
3
4
R1  
R2  
Monitored  
Voltage  
Figure 19. Layout Example  
版权 © 2018, Texas Instruments Incorporated  
15  
TLV6703  
ZHCSHG9A JANUARY 2018REVISED APRIL 2018  
www.ti.com.cn  
12 器件和文档支持  
12.1 器件支持  
12.1.1 开发支持  
DIP 适配器评估模块可以将 SOT-23-6 封装转换为标准 DIP-6 引脚排列以便轻松构建原型和进行工作台评估。  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请参阅左侧的导航栏。  
16  
版权 © 2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV6703DDCR  
TLV6703DDCT  
TLV6703DSER  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
DDC  
DDC  
DSE  
6
6
6
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
1MR1  
1MR1  
HE  
NIPDAU  
NIPDAU  
ACTIVE  
WSON  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV6703DDCR  
TLV6703DDCT  
TLV6703DSER  
SOT-23-  
THIN  
DDC  
DDC  
DSE  
6
6
6
3000  
250  
180.0  
180.0  
178.0  
8.4  
8.4  
8.4  
3.2  
3.2  
1.7  
3.2  
3.2  
1.7  
1.4  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q2  
SOT-23-  
THIN  
1.4  
WSON  
3000  
0.95  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV6703DDCR  
TLV6703DDCT  
TLV6703DSER  
SOT-23-THIN  
SOT-23-THIN  
WSON  
DDC  
DDC  
DSE  
6
6
6
3000  
250  
213.0  
213.0  
205.0  
191.0  
191.0  
200.0  
35.0  
35.0  
33.0  
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DDC0006A  
SOT-23 - 1.1 max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
3.05  
2.55  
1.1  
0.7  
1.75  
1.45  
0.1 C  
B
A
PIN 1  
INDEX AREA  
1
6
4X 0.95  
1.9  
3.05  
2.75  
4
3
0.5  
0.3  
0.1  
6X  
TYP  
0.0  
0.2  
C A B  
C
0 -8 TYP  
0.25  
GAGE PLANE  
SEATING PLANE  
0.20  
0.12  
TYP  
0.6  
0.3  
TYP  
4214841/C 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC MO-193.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDC0006A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
6X (1.1)  
1
6
6X (0.6)  
SYMM  
4X (0.95)  
4
3
(R0.05) TYP  
(2.7)  
LAND PATTERN EXAMPLE  
EXPLOSED METAL SHOWN  
SCALE:15X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDERMASK DETAILS  
4214841/C 04/2022  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDC0006A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
6X (1.1)  
1
6
6X (0.6)  
SYMM  
4X(0.95)  
4
3
(R0.05) TYP  
(2.7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:15X  
4214841/C 04/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DSE0006A  
WSON - 0.8 mm max height  
SCALE 6.000  
PLASTIC SMALL OUTLINE - NO LEAD  
1.55  
1.45  
A
B
1.55  
1.45  
PIN 1 INDEX AREA  
0.8 MAX  
C
SEATING PLANE  
0.08 C  
(0.2) TYP  
0.05  
0.00  
0.6  
0.4  
5X  
3
4
2X 1  
4X 0.5  
6
1
0.3  
6X  
0.7  
0.5  
0.2  
0.1  
0.05  
PIN 1 ID  
C A B  
C
4220552/A 04/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSE0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
PKG  
(0.8)  
5X (0.7)  
1
6
6X (0.25)  
SYMM  
4X 0.5  
4
3
(R0.05) TYP  
(1.6)  
LAND PATTERN EXAMPLE  
SCALE:40X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
PADS 4-6  
NON SOLDER MASK  
DEFINED  
PADS 1-3  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4220552/A 04/2021  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSE0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
PKG  
5X (0.7)  
(0.8)  
6X (0.25)  
1
6
SYMM  
4X (0.5)  
4
3
(R0.05) TYP  
(1.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:40X  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TLV6703DSER

具有集成基准电压的 18V 比较器 | DSE | 6 | -40 to 125
TI

TLV6703QDSERQ1

具有集成基准的汽车类 18V 比较器 | DSE | 6 | -40 to 125
TI

TLV6710

采用集成基准的低功耗高电压窗口比较器
TI

TLV6710DDCR

采用集成基准的低功耗高电压窗口比较器

| DDC | 6 | -40 to 125
TI

TLV6710DDCT

采用集成基准的低功耗高电压窗口比较器

| DDC | 6 | -40 to 125
TI

TLV6713

具有集成基准电压的 36V 比较器
TI

TLV6713DDCR

具有集成基准电压的 36V 比较器 | DDC | 6 | -40 to 125
TI

TLV6713DDCT

具有集成基准电压的 36V 比较器 | DDC | 6 | -40 to 125
TI

TLV6741

单路、5.5V、10MHz、低噪声 (4.6nV/√Hz) 运算放大器
TI

TLV6741DCKR

Single, 5.5-V, 10-MHz, low noise (4.6-nV/√Hz) operational amplifier | DCK | 5 | -40 to 125
TI

TLV6741DCKT

Single, 5.5-V, 10-MHz, low noise (4.6-nV/√Hz) operational amplifier | DCK | 5 | -40 to 125
TI

TLV6741_V04

TLV6741, TLV6742, TLV6744 10-MHz, Low Broadband Noise, RRO, Operational Amplifier
TI