TLV320AIC12 [TI]

PRODUCT NOTIFICATION; 产品通知
TLV320AIC12
型号: TLV320AIC12
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

PRODUCT NOTIFICATION
产品通知

文件: 总50页 (文件大小:327K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV320AIC12, TLV320AIC13  
TLV320AIC14, TLV320AIC15, TLV320AIC20  
TLV320AIC21, TLV320AIC24, TLV320AIC25  
OCTOBER 2003  
www.ti.com  
PRODUCT NOTIFICATION  
DEVICE  
TLV320AIC12  
TLV320AIC13  
TLV320AIC14  
TLV320AIC15  
TLV320AIC20  
TLV320AIC21  
TLV320AIC24  
TLV320AIC25  
LITERATURE NO.  
SLWS115  
SLWS139  
SLWS140  
SLWS141  
SLAS363  
SLAS365  
SLAS366  
SLAS367  
Texas Instruments (TI) has recently identified a problem in the product models listed above related to DLL  
clock-generation. When a clock-generation mode is used that powers up the delay-locked-loop (DLL), the DLL  
may not startup properly when initiated, resulting in the audio master clock not functioning. This results in the  
codec in the products not functioning. This issue does not affect applications that do not enable the product’s  
DLL.  
Since this issue does not affect operation if the DLL is not enabled, customers are recommended to ensure their  
system does not enable the product’s DLL. The DLL is enabled anytime the P value in control register #4  
(pertaining to clock generation) is NOT set equal to 8. The DLL is used whenever the part is in fine sampling  
mode, as described in Section 3.1 of the data manual, so the recommended mode to use is the coarse sampling  
mode, which requires P=8.  
At present, TI does not have a screening procedure in place to detect product with the DLL issue, but the  
company also realizes that many customers do not use the DLL in their systems and will be unaffected by this  
issue.  
TI is not confident of the operation of the DLL in this product at this time. To ensure customers have been made  
aware of this issue, orders for these parts will only be filled upon return of a signed waiver until this issue is  
resolved. The company has initiated an investigation to fully understand the root cause of this problem and  
determine what appropriate long-term corrective action should be taken. TI recommends that all customers  
presently using these parts contact the company immediately, so they can receive updates on this investigation  
and plans for its resolution.  
We apologize for the inconvenience placed upon customers in ordering this product. However, we wish to  
ensure that our customers are aware of the device shortcomings from the specification. We are working in  
earnest to remove this waiver requirement.  
For further information, please contact  
Neeraj Magotra  
WW Strategic Marketing Manager for Voice/Audio Systems  
Office: (214) 480-7486  
nmagotra@ti.com  
Copyright 2003, Texas Instruments Incorporated  
ꢁ ꢋ ꢌ ꢍ ꢋ ꢌꢎ ꢏ ꢈ ꢐꢑ ꢒꢓ ꢉ ꢔꢕ ꢖ ꢗꢘꢓ ꢄꢔꢕ ꢙ ꢒꢍ ꢒ ꢈꢋ ꢚꢎ ꢛ ꢜ ꢗꢘꢝ  
ꢒ ꢞꢟ ꢏ ꢘ ꢀꢗ ꢞꢎ ꢠ ꢗ ꢡꢗ ꢢ ꢗ ꢋꢣ ꢐꢤꢥ ꢘꢗꢦꢥꢎꢧꢎꢚ ꢨꢒ ꢐꢆ ꢩꢀ ꢠ ꢐ ꢪ  
ꢒ ꢎ ꢏꢗꢟꢥ ꢍ ꢋ ꢏ ꢘ  
Data Manual  
May 2002  
HPA Data Acquisition  
SLWS140A  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third–party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Mailing Address:  
Texas Instruments  
Post Office Box 655303  
Dallas, Texas 75265  
Copyright 2002, Texas Instruments Incorporated  
Contents  
Section  
Title  
Page  
1
2
3
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–1  
1.1  
1.2  
1.3  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Terminal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1  
2.1  
2.2  
2.3  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Definitions and Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–1  
3.1  
3.2  
Operating Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Internal Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
3.2.1  
3.2.2  
3.2.3  
3.2.4  
3.2.5  
3.2.6  
3.2.7  
3.2.8  
Antialiasing Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Sigma-Delta ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Decimation Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Sigma-Delta DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Interpolation Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Analog/Digital/Side-Tone Loopback . . . . . . . . . . . . . . . . . . . 32  
ADC PGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
DAC PGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
3.3  
Analog Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
3.3.1  
3.3.2  
3.3.3  
3.3.4  
MIC Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
INP and INM Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Single-Ended Analog Input . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Analog Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
3.4  
3.5  
3.6  
IIR/FIR Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
3.4.1  
3.4.2  
Overflow Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
IIR/FIR Bypass Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
System Reset and Power Management . . . . . . . . . . . . . . . . . . . . . . . . 34  
3.5.1  
3.5.2  
Software and Hardware Reset . . . . . . . . . . . . . . . . . . . . . . . . 34  
Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Digital Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
3.6.1  
3.6.2  
3.6.3  
3.6.4  
3.6.5  
3.6.6  
3.6.7  
Clock Source (MCLK, SCLK) . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Serial Data Out (DOUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Serial Data In (DIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Frame-Sync FS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Cascade Mode and Frame-Sync Delayed (FSD) . . . . . . . . 36  
Stand-Alone Slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Asynchronous Sampling (Codecs in cascade  
are sampled at different sampling frequency) . . . . . . . . . . . 36  
v
3.7  
3.8  
Host Port Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
2
3.7.1  
3.7.2  
S C (Start-Stop Communication) . . . . . . . . . . . . . . . . . . . . . 39  
I C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
2
Smart Time Division Multiplexed Serial Port (SMARTDM) . . . . . . . . . 311  
3.8.1  
3.8.2  
3.8.3  
Programming Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311  
Continuous Data Transfer Mode . . . . . . . . . . . . . . . . . . . . . . 312  
Turbo Mode (SCLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313  
3.9  
Control Register Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314  
3.9.1  
3.9.2  
3.9.3  
3.9.4  
Data Frame Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315  
Control Frame Format (Programming Mode) . . . . . . . . . . . 315  
Broadcast Register Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315  
Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316  
4
Control Register Content Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Control Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Control Register 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Control Register 5A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Control Register 5B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Control Register 5C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Control Register 5D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Control Register 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
5
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
5.1  
Absolute Maximum Ratings Over Operating Free-Air  
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
5.2  
5.3  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Electrical Characteristics Over Recommended Operating  
Free-Air Temperature Range, AV  
= 3.3 V,  
DD  
DV  
= 1.8 V, IOV  
= 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
DD  
DD  
5.3.1  
Digital Inputs and Outputs, f = 8 kHz,  
s
Outputs Not Loaded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
5.4  
5.5  
ADC Path Digital Filter, f = 8 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
s
5.4.1  
5.4.2  
FIR Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
IIR Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
ADC Dynamic Performance, f = 8 kHz . . . . . . . . . . . . . . . . . . . . . . . . . 53  
s
5.5.1  
5.5.2  
5.5.3  
5.5.4  
ADC Signal-to-Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
ADC Signal-to-Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
ADC Signal-to-Distortion + Noise . . . . . . . . . . . . . . . . . . . . . 53  
ADC Channel Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 53  
5.6  
5.7  
DAC Path Digital Filter, fs = 8 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
5.6.1  
5.6.2  
FIR Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
IIR Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
DAC Dynamic Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
5.7.1  
5.7.2  
OUTP/OUTM Signal-to-Noise When Load Is 600 . . . . . 54  
OUTP/OUTM Signal-to-Distortion When Load Is 600 . . 54  
vi  
5.7.3  
5.7.4  
OUTP/OUTM Signal-to-Distortion + Noise When Load  
Is 600 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
DAC Channel Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 55  
5.8  
5.9  
BIAS Amplifier Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Power-Supply Rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
5.10 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
5.11 Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
5.12 Layout and Grounding Guidelines for TLV320AIC14 . . . . . . . . . . . . . 513  
List of Illustrations  
Figure  
Title  
Page  
31 Microphone Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
32 INP and INM Internal Self-Biased Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
33 Single-Ended Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
34 OUTP1/OUTM1 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
35 Timing Diagram of FS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
36 Timing Diagram for FSD Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
37 Cascade Connection (To DSP Interface) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
38 Master-Slave Frame-Sync Timing in Continuous Data  
Transfer Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
2
39 S C Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
2
310 I C Write Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
2
311 I C Read Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310  
312 Index Register Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310  
313 Standard Operation/Programming Mode: Stand-Alone Timing . . . . . . . . . 312  
314 Standard Operation/Programming Mode: Master-Slave Cascade Timing 312  
315 Standard Operation/Continuous Data Transfer Mode:  
Stand-Alone Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313  
316 Standard Operation/Continuous Data Transfer Mode:  
Master-Slave Cascade Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313  
317 Timing Diagram for Turbo Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314  
318 Data Frame Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315  
319 Control Frame Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315  
320 Broadcast Register Write Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316  
51 Hardware Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
52 Serial Communication Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
53 FFTADC Channel (3 dB Input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
54 FFTADC Channel (1 dB Input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
55 FFTADC Channel (3 dB Input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
vii  
56 FFTDAC Channel (3 dB Input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
57 FFTDAC Channel (0 dB Input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
58 FFTDAC Channel (3 dB Input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
59 FFTDAC Channel (0 dB Input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
510. FFTADC Channel (1 dB Input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
511 ADC FIR Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510  
512 ADC IIR Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510  
513 DAC IIR Frequency Response (OSR = 512) . . . . . . . . . . . . . . . . . . . . . . . . . 510  
514 DAC IIR Frequency Response (OSR = 256) . . . . . . . . . . . . . . . . . . . . . . . . . 510  
515 DAC IIR Frequency Response (OSR = 128) . . . . . . . . . . . . . . . . . . . . . . . . . 511  
516 DAC FIR Frequency Response (OSR = 512) . . . . . . . . . . . . . . . . . . . . . . . . 511  
517 DAC FIR Frequency Response (OSR = 256) . . . . . . . . . . . . . . . . . . . . . . . . 511  
518 DAC FIR Frequency Response (OSR = 128) . . . . . . . . . . . . . . . . . . . . . . . . 511  
519 Single-Ended Microphone Input (Internal Common Mode) . . . . . . . . . . . . . 512  
520 Pseudo-Differential Microphone Input (External Common Mode) . . . . . . . 513  
List of Tables  
Table  
Title  
Page  
31 SMARTDM Device Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
32 Serial Interface Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311  
33 Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316  
34 Register Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316  
41 Control Register 1 Bit Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
42 Control Register 2 Bit Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
43 Control Register 3 Bit Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
44 Control Register 4 Bit Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
45 Control Register 5A Bit Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
46 A/D PGA Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
47 Control Register 5B Bit Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
48 D/A PGA Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
49 Digital Sidetone Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
410 Input Buffer Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
411 Control Register 6 Bit Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
viii  
1 Introduction  
The TLV320AIC14 is a true low-cost, low-power, high-performance, highly-integrated voiceband codec designed with  
new technological advances. The TLV320AIC14 provides high resolution signal conversion from digital-to-analog  
(D/A) and from analog-to-digital (A/D) using oversampling sigma-delta technology with programmable sampling rate.  
1.1 Description  
The TLV320AIC14 implements the smart time division multiplexed serial port (SMARTDM ). This is TIs design  
innovation to optimize DSP performance with its most advanced synchronous serial port in TDM format for glue-free  
interface to popular DSPs (i.e., C5x, C6x) and microcontrollers. The SMARTDM supports both continuous data  
transfer mode and on-the-fly reconfiguration programming mode. SMARTDM maximizes the bandwidth of data  
transfer between the TLV320AIC14 DSP codec and the DSP. In normal operation, it automatically detects the number  
of codecs in the serial interface and adjusts the number of time slots to match the number of codecs so that no time  
slot in the TDM frame is wasted. In the turbo mode, it maintains the same number of time slots but maximizes the  
bit transferred rate to 25 MHz to give the DSP more bandwidth to process other tasks in the same sampling period.  
The SMARTDM technology allows up to 16 codecs to share a single 4-wire serial bus.  
The TLV320AIC14 also provides a flexible host port. The host port interface is a two-wire serial interface that can be  
2
2
programmed to be either an industrial standard I C or a simple S C (start-stop communication protocol).  
The TLV320AIC14 also integrates all of the critical functions needed for most voice-band applications including MIC  
preamp, handset/headset preamps, antialiasing filter (AAF), input/output programmable gain amplifier (PGA), and  
selectable low-pass IIR/FIR filters.  
The TLV320AIC14 implements an extensive power management; including device power-down, independent  
software control for turning off ADC, DAC, op-amps, and IIR/FIR filter (bypassable) to maximize system power  
conservation. The TLV320AIC14 consumes only 10 mW at 3 V.  
The TLV320AIC14s low power operation from 2.7 V to 3.6 V for analog and I/O and 1.65 V to 1.95 V for digital core  
power supplies, along with extensive power management, make it ideal for portable applications including wireless  
accessories, hands free car kits, VOIP, cable modem, and speech processing. Its low group delay characteristic  
makes it suitable for single or multichannel active control applications.  
The TLV320AIC14 is characterized for commercial operation from 0°C to 70°C and industrial operation from 40°C  
to 85°C.  
1.2 Features  
C54x Software Driver Available  
16-Bit Oversampling Sigma-Delta A/D Converter  
16-Bit Oversampling Sigma-Delta D/A Converter  
Support Maximum Master Clock of 100 MHz to Allow DSPs Output Clock to Be Used as Master Clock  
Selectable FIR/IIR Filter With Bypassing Option  
Programmable Sampling Rate up to:  
Max 26 KSPS With On-Chip IIR/FIR Filter  
Max 104 KSPS With IIR/FIR Bypassed  
On-Chip FIR Produced 84-dB SNR for ADC and 91-dB SNR for DAC Over 13-kHz BW  
External DSPs IIR/FIR for a Final Sampling Rate of 8 Ksps (IIR/FIR Bypassed) Produced 87-dB SNR for  
ADC and 92-dB SNR for DAC.  
SMARTDM is a trademark of Texas Instruments.  
11  
Smart Time Division Multiplexed Serial Port (SMARTDM)  
Glueless 4-Wire Interface to DSP  
Automatic Cascade Detection (ACD) Self-Generates Master/Slave Device Addresses  
Programming Mode to Allow On-the-Fly Reconfiguration  
Continuous Data Transfer Mode to Support DSPs DMA/Autobuffering Mode  
Turbo Mode to Maximize Bit Clock for Faster Data Transfer and Higher Data Bandwidth  
Total Number of Time Slots Dynamically Proportional to Number of Codecs in the Cascade to Eliminate  
Unused Time Slots and Optimize DSP Memory Allocation  
Allows up to 16 Codecs to Be Connected to a Single Serial Port  
Host Port  
2-Wire Interface  
2
2
Selectable I C or S C  
Differential and Single-Ended Analog Input/Output  
Built-In Functions:  
Sidetone  
Antialiasing Filter (AAF)  
Programmable Input and Output Gain Control (PGA)  
Microphone Amplifiers  
Power Management With Hardware/Software Power-Down Modes 30 µW  
Separate Software Control for ADC and DAC Power Down  
Fully Compatible With TI C54x DSP Power Supplies  
1.65 V1.95 V Digital Core Power  
2.7 V3.6 V Digital I/O  
2.7 V3.6 V Analog  
Power Dissipation (P ) 10 mW at 3 V in Standard Operation  
D
Internal Reference Voltage (V  
)
ref  
2s Complement Data Format  
Test Mode Which Includes Digital Loopback and Analog Loopback  
12  
1.3 Functional Block Diagram  
2
s d  
MICIN  
Preamplifier  
24, 12, 6, 0 dB  
INP2  
INM2  
Decimation Filter  
SMARTDM  
Serial  
M/S  
Sigma-  
Delta  
ADC  
FIR Filter  
IIR Filter  
Anti-  
Aliasing  
Filter  
Sinc  
Filter  
Port  
PGA  
MUX  
INP1  
INM1  
42 dB to 20 dB  
Step Size = 1 dB  
DOUT  
DIN  
Digital Loopback  
w/ Sidetone Control  
and Mute  
3 dB to 21 dB  
FS  
SCLK  
FSD  
Analog  
Loopback  
Interpolation Filter  
Sigma-  
Delta  
DAC  
FIR Filter  
IIR Filter  
Low-Pass  
Filter  
Sinc  
Filter  
OUTP1  
(600 Driver)  
OUTM1  
PGA  
42 dB to 20 dB  
Step Size = 1 dB  
V
ref  
SCL  
SDA  
Host Port  
BIAS  
1.35 V/2.35 V @ 5 mA max  
Div  
16xMxNxP  
Internal Clock Circuit  
MCLK  
13  
14  
2 Terminal Descriptions  
DBT PACKAGE  
(TOP VIEW)  
1
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
IOVSS  
IOVDD  
FSD  
FS  
DOUT  
DIN  
DVSS  
DVDD  
SCLK  
SDA  
2
3
4
5
SCL  
6
MCLK  
RESET  
INP1  
INM1  
BIAS  
INM2  
INP2  
MICIN  
AVDD  
AVSS  
7
M/S  
8
PWRDN  
OUTM1  
OUTP1  
DRVDD  
DRVSS  
NC  
9
10  
11  
12  
13  
14  
15  
NC  
NC  
2.1 Ordering Information  
T
30-TSSOP DBT PACKAGE  
TLV320AIC14C  
A
0°C to 70°C  
40°C to 85°C  
TLV320AIC14I  
2.2 Terminal Functions  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
AVDD  
AVSS  
BIAS  
NO.  
17  
16  
21  
6
I
I
Analog power supply  
Analog ground  
O
I
Bias output voltage is software selectable between 1.35 V and 2.35 V. Its output current is 5 mA.  
DIN  
Data input. DIN receives the DAC input data and register data from the external DSP (digital signal processor) and is  
synchronized to SCLK and FS. Data is latched at the falling edge of SCLK when FS is low.  
DOUT  
5
O
Data output. DOUT transmits the ADC output bits and registers data, and is synchronized to SCLK and FS. Data is  
sent out at the rising edge of SCLK when FS is low. Outside data/control frame, DOUT is put in 3-state.  
DRVDD  
DRVSS  
DVDD  
DVSS  
FS  
11  
12  
29  
30  
4
I
I
I
I
Analog power supply for the 600-driver  
Analog ground for the 600-driver  
Digital power supply  
Digital ground  
I/O Frame sync. When FS goes low, DIN begins receiving data bits and DOUT begins transmitting data bits. In master  
mode, FS is internally generated and is low during the data transmission to DIN and from DOUT. In slave mode, FS is  
externally generated.  
FSD  
3
O
Frame sync delayed output. The FSD output synchronizes a slave device to the frame sync of the master device. FSD  
is applied to the slave FS input and is the same duration as the master FS signal. This pin must be pulled low if AIC14 is  
a stand-alone slave. It may be pulled high if the AIC14 is a stand-alone master or the last slave in the cascade.  
INM1  
INM2  
INP1  
INP2  
22  
20  
23  
19  
I
I
I
I
Inverting analog input 1. It must be connected to AVSS if not used.  
Inverting analog input 2. It must be connected to AVSS if not used.  
Noninverting analog input 1. It must be connected to AVSS if not used.  
Noninverting analog input 2. It must be connected to AVSS if not used.  
21  
2.2 Terminal Functions (Continued)  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
IOVDD  
IOVSS  
MCLK  
MICIN  
M/S  
NO.  
2
I
I
Digital I/O power supply  
Digital I/O ground  
1
25  
18  
7
I
Master clock. MCLK derives the internal clocks of the sigma-delta analog interface circuit.  
MIC preamplifier input. It must be connected to AVSS if not used.  
I
I
Master/slave select input. When M/S is high, the device is the master, and when low it is a slave.  
OUTM1  
9
O
Inverting output of the DAC. OUTM1 is functionally identical with and complementary to OUTP1. This differential  
output can drive a minimum load of 600 . This output can also be used alone for single-ended operation.  
NC  
13, 14,  
15  
OUTP1  
PWRDN  
10  
O
I
Noninverting output of the DAC. This differential output can drive a minimum load of 600 . This output can also be  
used alone for single-ended operation.  
8
Power down. When PWRDN is pulled low, the device goes into a power-down mode, the serial interface is disabled,  
and most of the high-speed clocks are disabled. However, all the register values are sustained and the device  
resumes full-power operation without reinitialization when PWRDN is pulled high again. PWRDN resets the  
counters only and preserves the programmed register contents.  
RESET  
24  
I
I
Hardware reset. The reset function is provided to initialize all of the internal registers to their default values. The  
serial port is configured to the default state accordingly.  
2 2  
Programmable host port (I C or S C) clock input.  
SCL  
26  
28  
SCLK  
I/O Shift clock. SCLK signal clocks serial data into DIN and out of DOUT during the frame-sync interval. When  
configured as an output (M/S high), SCLK is generated internally by multiplying the frame-sync signal frequency by  
16 and the number of codecs in cascade in standard and continuous mode. When configured as an input (M/S low),  
SCLK is generated externally and must be synchronous with the master clock and frame sync.  
2 2  
I/O Programmable host port (I C or S C) data line.  
SDA  
27  
2.3 Definitions and Terminology  
Data Transfer  
Interval  
The time during which data is transferred from DOUT and to DIN. The interval is 16 shift clocks and the data  
transfer is initiated by the falling edge of the FS signal in standard and continuous mode.  
Signal Data  
This refers to the input signal and all of the converted representations through the ADC channel and the  
signal through the DAC channel to the analog output. This is contrasted with the purely digital software  
control data.  
Frame Sync  
Frame sync refers only to the falling edge of the signal FS that initiates the data transfer interval  
Frame Sync and Frame sync and sampling period is the time between falling edges of successive FS signals.  
Sampling Period  
f
The sampling frequency  
s
ADC Channel  
ADC channel refers to all signal processing circuits between the analog input and the digital  
conversion result at DOUT.  
DAC channel  
DAC channel refers to all signal processing circuits between the digital data word applied to DIN and the  
differential output analog signal available at OUTP1 and OUTM1.  
Dxx  
DSxx  
PGA  
IIR  
Bit position in the primary data word (xx is the bit number)  
Bit position in the secondary data word (xx is the bit number)  
Programmable gain amplifier  
Infinite impulse response  
FIR  
Finite impulse response  
22  
3 Functional Description  
3.1 Operating Frequencies (see Notes)  
The sampling frequency is the frequency of the frame sync (FS) signal whose falling edge starts digital-data transfer  
for both ADC and DAC. The sampling frequency is derived from the master clock (MCLK) input by the following  
equations:  
Coarse sampling frequency (default):  
The coarse sampling is selected by programming P = 8 in the control register 4, which is the default  
configuration of AIC14 on power-up or reset.  
FS = Sampling (conversion) frequency = MCLK / (16 × M × N x 8)  
Fine sampling frequency (see Note 5):  
FS = Sampling (conversion) frequency = MCLK/ (16 × M × N × P)  
NOTES: 1. Use control register 4 to set the following values of M, N, and P  
2. M = 1,2, . . . ,128  
3. N = 1,2, . . . ,16  
4. P = 1,2, . . . ,8  
5. The fine sampling rate needs an on-chip DLL to generate internal clocks. The DLL requires the relationship  
between MCLK and P to meet the following condition: 10 MHz (MCLK/P) 25 MHz  
6. Both equations of FS require that the following conditions should be met:  
S (M × N × P) (devnum × mode) if the FIR/IIR filter is not bypassed.  
S [Integer(M/4) × N × P] (devnum × mode) if the FIR/IIR filter is bypassed.  
where  
devnum is the number of devices connecting in cascade  
mode is equal to 1 for continuous data transfer mode and 2 for programming mode  
EXAMPLE:  
The MCLK comes from the DSP C5402s CLKOUT and equals to 20.48 MHz and the conversion rate of 8 kHz is  
desired. First, set P = 1 to satisfy the condition 5 so that (MCLK/P) = 20.48 MHz/1 = 20.48 MHz. Next, pick  
M = 10 and N = 16 to satisfy condition 6 and derive 8 kHz for FS. That is,  
FS = 20.48 MHz/ (16 × 10 × 16 × 1) = 8 kHz  
3.2 Internal Architecture  
3.2.1 Antialiasing Filter  
The built-in antialiasing filter is a two-pole filter that has a 20-dB attenuation at 1 MHz.  
3.2.2 Sigma-Delta ADC  
The sigma-delta analog-to-digital converter is a sigma-delta modulator with 128-x oversampling. The ADC provides  
high-resolution, low-noise performance using oversampling techniques. Due to the oversampling employed, only  
single pole R-C filters are required on the analog inputs.  
3.2.3 Decimation Filter  
The decimation filters are either FIR filters or IIR filters, selected by bit D5 of the control register 1. The FIR filter  
provides linear-phase output with 17/f group delay, whereas the IIR filter generates nonlinear phase output with  
negligible group delay. The decimation filters reduce the digital data rate to the sampling rate. This is accomplished  
by decimating with a ratio of 1:128. The output of the decimation filter is a 16-bit 2s-complement data word clocking  
at the sample rate selected for that particular data channel. The BW of the filter is (0.45 × FS) and scales linearly with  
the sample rate.  
31  
3.2.4 Sigma-Delta DAC  
The sigma-delta digital-to-analog converter is a sigma-delta modulator with 128/256/512 x oversampling. The DAC  
provides high-resolution, low-noise performance using oversampling techniques. The oversampling ratio in DAC is  
programmable to 256/512 using bits D4D3 of control register 3, the default being 128. Oversampling ratio of 512  
can be used when FS is a maximum of 8 Ksps and an oversampling ratio of 256 can be used when FS is a maximum  
of 16 Ksps. M should be a multiple of 2 for an oversampling ratio of 256 and 4 for oversampling ratio of 512.  
3.2.5 Interpolation Filter  
The interpolation filters are either FIR filters or IIR filters selected by bit D5 of the control register 1. The FIR filter  
provides linear-phase output with 16/f group delay, whereas the IIR filter generates nonlinear phase output with  
negligible group delay. The interpolation filter resamples the digital data at a rate of 128/256/512 times the incoming  
sample rate, based on the oversampling rate of DAC. The high-speed data output from the interpolation filter is then  
used in the sigma-delta DAC. The BW of the filter is (0.45 × FS) and scales linearly with the sample rate.  
3.2.6 Analog/Digital/Side-Tone Loopback  
The analog and digital loopbacks provide a means of testing the data ADC/DAC channels and can be used for  
in-circuit system level tests. The analog loopback always has the priority to route the DAC low pass filter output into  
the analog input where it is then converted by the ADC to a digital word. The digital loopback routes the ADC output  
to the DAC input on the device. Analog loopback is enabled by writing a 1 to bit D2 in the control register 1. Digital  
loopback is enabled by writing a 1 to bit D1 in control register 1. The side-tone digital loopback attenuates the ADC  
output and mixes it with the input of the DAC. The level of the side tone is set by DSTG, bits D5D3 of the control  
register 5C.  
3.2.7 ADC PGA  
TLV320AIC14 has a built-in PGA for controlling the signal levels at ADC outputs. ADC PGA gain setting can be  
selected by writing into bits D5D0 of register 5A. The PGA range of the ADC channel is 20 dB to 42 dB in steps  
of 1 dB and mute. To avoid sudden jumps in signal levels with PGA changes, the gains are applied internally with  
zero-crossovers.  
3.2.8 DAC PGA  
TLV320AIC14 has a built-in PGA for controlling the analog output signal levels in DAC channel. DAC PGA gain setting  
can selected by writing into bits D5D0 of register 5B. The PGA range of the DAC channel is 20 dB to 42 dB in steps  
of 1 dB, and mute. To avoid sudden pop-sounds with power-up/down and gain changes the power-up/down and gain  
changes for DAC channel are applied internally with zero-crossovers.  
3.3 Analog Input/Output  
The TLV320AIC14 has three programmable analog inputs and three programmable analog outputs. Bits D2D1 of  
control register 6 select the analog input source from MICIN, INP1/M1, or INP2/M2. All analog I/O is either  
single-ended or differential. All analog input signals are self-biased to 1.35 V. The three analog outputs are configured  
by bits D7, D6, D5, and D4D3 of control register 6.  
3.3.1 MIC Input  
TLV320AIC14 supports single ended microphone input. This can be used by connecting the external single ended  
source through ac coupling to the MICIN pin. This channel is selected by writing 01 or 10 into bits D2D1 in control  
register 6. The single ended input is supported in two modes.  
Writing 01 into bits D2D1 chooses self biased MICIN mode. In this mode the device internally self-biases the input  
at 1.35V. For best noise performance the user should bias the microphone circuit using the BIAS voltage generated  
by the device as shown in Figure 519.  
32  
Writing 10 into bits D2D1 chooses pseudo-differential MICIN mode. In this mode the single ended input is connected  
through ac-coupling to MICIN and the bias voltage used to generate the signal is also ac coupled to INM1 as shown  
in Figure 520. For best noise performance the MICIN and INM1 lines must be routed in similar fashion from the  
microphone to the device for noise cancellation.  
For high quality performance the single ended signal is converted internally into differential signal before being  
converted. To improve the dynamic range with different types of microphones the device supports a pre-amp with  
gain settings of 0/6/12/24 dB. This can be chosen by writing into bits D1D0 of control register 5C.  
0.1 µF  
10 kΩ  
0.1 µF  
Electret  
Microphone  
BIAS  
INM1  
BIAS  
10 kΩ  
0.1 µF  
Electret  
Microphone  
MICIN  
MICIN  
TLV320AIC14  
TLV320AIC14  
(a) Single Ended  
(b) Pseudo -Differential (High Quality)  
Figure 31. Microphone Interface  
3.3.2 INP and INM Input  
To produce common-mode rejection of unwanted signal performance, the analog signal is processed differentially  
until it is converted to digital data. The signal applied to the terminals INM1/2 and INP1/2 are differential to preserve  
device specifications (see Figure 32). The signal source driving analog inputs (INP1/2 and INM1/2) should have low  
source impedance for lowest noise performance and accuracy. To obtain maximum dynamic range, the signal should  
be ac-coupled to the input terminal.  
INP1 or INP2  
V
(INP)  
1.35 V  
INM1 or INM2  
V
(INM)  
TLV320AIC14  
Figure 32. INP and INM Internal Self-Biased Circuit  
3.3.3 Single-Ended Analog Input  
The two differential inputs of (INP1/M1 and INP2/M2) can be configured to work as single-ended inputs by connecting  
INP to the analog input and INM to ground (see Figure 33).  
C
INP1 or INP2  
INM1 or INM2  
Analog Input  
C
Figure 33. Single-Ended Input  
33  
3.3.4 Analog Output  
The OUTP1 and OUTM1 are differential output from the DAC channel. The OUTP1 and OUTM1 can drive a load of  
600-directly and be either differential or single-ended (see Figure 34).  
C
OUTP1  
OUTP1  
RL  
RL  
OUTM1  
OUTM1  
Differential Output OUTP/OUTM  
Single-Ended Output OUTP/OUTM  
Figure 34. OUTP1/OUTM1 Output  
3.4 IIR/FIR Control  
3.4.1 Overflow Flags  
The decimation IIR/FIR filter sets an overflow flag (bit D7) of control register 1 indicating that the input analog signal  
has exceeded the range of internal decimation filter calculations. The interpolation IIR/FIR filter sets an overflow flag  
(bit D4) of control register 1 indicating that the digital input has exceeded the range of internal interpolation filter  
calculations. When the IIR/FIR overflow flag is set in the register, it remains set until the user reads the register.  
Reading this value resets the overflow flag. These flags need to be reset after power-up by reading the register. If  
FIR/IIR overflow occurs, the input signal is attenuated by either the PGA or some other method.  
3.4.2 IIR/FIR Bypass Mode  
An option is provided to bypass IIR/FIR filter sections of the decimation filter and the interpolation filter. This mode  
is selected through bit D6 of control register 2 and effectively increases the frequency of the FS signal to four times  
normal output rate of the IIR/FIR-filter. For example, for a normal sampling rate of 8 Ksps (i.e., FS = 8 kHz) with IIR/FIR,  
if the IIR/FIR is bypassed, the frequency of FS is readjusted to 4×8 kHz = 32 kHz. The sinc filters of the two paths  
can not be bypassed. A maximum of eight devices in cascade can be supported in the IIR/FIR bypassed mode.  
In this mode , the ADC channel outputs data which has been decimated only till 4Fs. Similarly DAC channel input  
needs to be pre-interpolated to 4Fs before being given to the device. This mode allows users the flexibility to  
implement their own filter in DSP for decimation and interpolation. M should be a multiple of 4 during IIR/FIR Bypass  
mode.  
3.5 System Reset and Power Management  
3.5.1 Software and Hardware Reset  
The TLV320AIC14 resets internal counters and registers in response to either of two events:  
A low-going reset pulse is applied to terminal RESET  
A 1 is written to the programmable software reset bits (D3 of control register 3)  
NOTE:The TLV320AIC14 requires a power-up reset applied to the RESET pin.  
Either event resets the control registers and clears all sequential circuits in the device. The H/W RESET (active low)  
signal is at least 6 master clock periods long. As soon as the RESET input is applied, the TLV320AIC14 enters the  
34  
initialization cycle that lasts for 132 MCLKs, during which the DSPs serial port is put in 3-state. For a cascaded system  
the rise time of H/W RESET needs to be less than the MCLK period and should satisfy setup time requirement of 2 ns  
with respect to MCLK rise-edge. In stand-alone-slave mode SCLK must be running during RESET. RESET must be  
synchronized with MCLK in all cases.  
3.5.2 Power Management  
Most of the device (except the digital interface) enters the power-down mode when D7 and D6, in control register 3,  
are set to 1. When the PWRDN pin is low, the entire device is powered down. In either case, register contents are  
preserved and the output of the amplifier is held at midpoint voltage to minimize pops and clicks.  
The amount of power drawn during software power down is higher than during a hardware power down because of  
the current required to keep the digital interface active. Additional differences between software and hardware  
power-down modes are detailed in the following paragraphs.  
3.5.2.1 Software Power-Down  
Data bits D7 and D6 of control register 3 are used by TLV320AIC14 to turn on or off the software power-down mode,  
which takes effect in the next frame FS. The ADC and DAC can be powered down individually. In the software  
power-down, the digital interface circuit is still active while the internal ADC and DAC channel and differential output  
OUTP1 and OUTM1 are disabled, and DOUT is put in 3-state in the data frame only. Register data in the control frame  
is still accepted via DIN, but data in the data frame is ignored. The device returns to normal operation when D7 and  
D6 of control register 3 are reset.  
3.5.2.2 Hardware Power-Down  
The TLV320AIC14 requires the PWRDN signal to be synchronized with MCLK. When PWRDN is held low, the device  
enters hardware power-down mode. In this state, the internal clock control circuit and the differential outputs are  
disabled. All other digital I/Os are disabled and DIN can not accept any data input. The device can only be returned  
to normal operation by holding PWRDN high. When not holding the device in the hardware power-down mode,  
PWRDN must be tied high.  
3.6 Digital Interface  
3.6.1 Clock Source (MCLK, SCLK)  
MCLK is the external master clock input. The clock circuit generates and distributes necessary clocks throughout the  
device. SCLK is the bit clock used to receive and transmit data synchronously. When the device is in the master mode,  
SCLK and FS are output and derived from MCLK in order to provide clocking the serial communications between the  
device and a digital signal processor (DSP). When in the slave mode, SCLK and FS are inputs. In the non-turbo mode  
(TURBO = 0), SCLK frequency is defined by:  
SCLK = (16 × FS × #Devices × mode)  
Where:  
FS is the frame-sync frequency.  
#Device is the number of the device in cascade.  
Mode is equal to 1 for continuous data transfer mode and 2 for programming mode.  
In turbo mode, see Section 3.8.3.  
3.6.2 Serial Data Out (DOUT)  
DOUT is placed in the high-impedance state after transmission of the LSB is completed. In data frame, the data word  
is the ADC conversion result. In the control frame, the data is the register read results when requested by the  
read/write (R/W) bit. If a register read is not requested, the low eight bits of the secondary word are all zeroes. Valid  
data on DOUT is taken from the high-impedance state by the falling edge of frame-sync (FS). The first bit transmitted  
on the falling edge of FS is the MSB of valid data.  
35  
3.6.3 Serial Data In (DIN)  
The data format of DIN is the same as that of DOUT, in which MSB is received first on the falling edge of FS. In a data  
frame, the data word is the input digital signal to the DAC channel. If (15+1)-bit data format is used, the LSB (D0) is  
set to 1 to switch from the continuous data transfer mode to the programming mode. In a control frame, the data is  
the control and configuration data that sets the device for a particular function as described in Section 3.9, Control  
Register Programming.  
3.6.4 Frame-Sync FS  
The frame-sync signal (FS) indicates the device is ready to send and receive data. FS is an output if the M/S pin is  
connected to HI (master mode) and an input if the M/S pin is connected to LO (slave mode).  
Data is valid on the falling edge of the FS signal.  
The frequency of FS is defined as the sampling rate of the TLV320AIC14 and derived from the master clock MCLK  
as followed (see Section 3.1 Operating Frequencies for details):  
FS = MCLK / (16× P × N × M)  
0
1
14  
15  
16  
SCLK  
16 SCLKs  
FS  
DIN/DOUT  
(16 Bit)  
D15  
MSB  
D14  
D2  
D1  
LSB  
D0  
Figure 35. Timing Diagram of FS  
3.6.5 Cascade Mode and Frame-Sync Delayed (FSD)  
In cascade mode, the DSP receives all frame-sync pulses from the master though the masters FS. The masters FSD  
is output to the first slave and the first slaves FSD is output to the second slave device and so on. Figure 37 shows  
the cascade of 4 TLV320AIC14s in which the closest one to DSP is the master and the rest are slaves. The FSD output  
of each device is input to the FS terminal of the succeeding device. Figure 38 shows the FSD timing sequence in  
the cascade.  
3.6.6 Stand-Alone Slave  
In the stand-alone slave connection, the FS and SCLK are input in which they need to be synchronized to each other  
and programmed according to Section 3.1 (Operating Frequencies). The FS and SCLK input are not required to  
synchronize to the MCLK input but must remain active at all times to assure continuous sampling in the data converter.  
FS is output for initial 132 MCLK and it must be kept low. DSP needs to keep FS low-or high-impedance state for this  
period to avoid contention on FS.  
3.6.7 Asynchronous Sampling  
(Codecs in cascade are sampled at different sampling frequency)  
The AIC14s SMARTDM support different sampling frequency between the different codecs in cascade connecting  
to a single serial port. In this case, all codecs are required to sample at the same fdrequency that is the frequency  
of FS signal. Then the desired sampling frequency of each codec is calculated by D2D0 of control register 3. For  
example: fs1 and fs2 are desired sampling rates for CODEC1 and CODEC2 respectively:  
36  
1. FS = MCLK/(16xMxNxP)  
2. FS = n1 x fs1 (n1 = 1,2, 0, 8 defined in the control register 3 of CODEC1)  
3. FS = n2 x fs2 (n2 = 1,2, 0, 8 defined in the control register 3 of CODEC2)  
For validating the conversion data from this operation:  
For DAC: DSP need to give same data for n1 samples. CODEC1 picks one of n1 samples.  
For ADC: CODEC1 gives same data for n1 samples. DSP should pick one of n1 samples.  
0
1
13  
14  
15  
SCLK  
FS  
16 SCLKs  
FSD  
(Output)  
DIN/DOUT  
(16 Bit)  
D15  
MSB  
D14  
D1  
D0  
LSB  
D15  
Figure 36. Timing Diagram for FSD Output  
100 MHz Max  
Master  
CLKOUT  
DX  
DR  
Slave 2  
MCLK  
Slave 1  
MCLK  
Slave 0  
MCLK  
MCLK  
FSX  
FSR  
DIN  
DOUT  
FSD  
DIN  
DIN  
DIN  
IOVDD  
1 kΩ  
FS  
DOUT  
FS  
DOUT  
FS  
DOUT  
FS  
FSD  
M/S  
FSD  
M/S  
FSD  
M/S  
CLKX  
CLKR  
IOVDD  
M/S  
SCLK  
SCLK  
SCLK  
SCLK  
TMS320C5x  
Figure 37. Cascade Connection (To DSP Interface)  
37  
Master FS  
DIN/DOUT  
Master  
Slave2  
Slave1  
Slave0  
Master  
Slave2  
Master FSD,  
Slave 2 FS  
Slave 2 FSD,  
Slave 1 FS  
Slave 1 FSD,  
Slave 0 FS  
Slave 0 FSD,  
(see Note)  
NOTE: Slave 0 FSD should be pulled high for stand-alone-master or cascade configuration. FSD must be pulled low for stand-alone-slave  
configuration.  
Figure 38. Master-Slave Frame-Sync Timing in Continuous Data Transfer Mode  
3.7 Host Port Interface  
The host port uses a 2-wire serial interface (SCL, SDA) to program the AIC14s six control registers and selectable  
2
2
2
2
protocol between S C mode and I C mode. The S C is a write-only mode and the I C is a read-write mode selected  
2
by setting the MSB (I CSEL bit) of control register 4 to 1. If the host interface is not needed, the two pins of SCL and  
SDA can be programmed to become general-purpose I/Os by setting the MSB of the control register 4 to 0. If selected  
to be used as I/O pins, the SDA and SCL pins become output and input pins respectively, determined by D1 and D0.  
2
2
Both S C and I C require a SMARTDM device address to communicate with the AIC14. One of SMARTDMs  
advanced features is the automatic cascade detection (ACD) that enablesSMARTDM to automatically detect the total  
number of codecs in the serial connection and use this information to assign each codec a distinct SMARTDM device  
address. Table 31 lists device addresses assigned to each codec in the cascade by the SMARTDM. The master  
always has the highest position in the cascade. For example, if there is a total of 8 codecs in the cascade (i.e., one  
master and 7 slaves), then the device addresses in row 8 are used in which the master is codec 7 with a device  
address of 0111.  
Table 31. SMARTDM Device Addresses  
TOTAL  
CODECS  
CODECs POSITION IN CASCADE  
10  
15  
14  
13  
12  
11  
9
8
7
6
5
4
3
2
1
0
1
2
0000  
0001 0000  
0010 0001 0000  
0011 0010 0001 0000  
0100 0011 0010 0001 0000  
0101 0100 0011 0010 0001 0000  
0110 0101 0100 0011 0010 0001 0000  
0111 0110 0101 0100 0011 0010 0001 0000  
1000 0111 0110 0101 0100 0011 0010 0001 0000  
1001 1000 0111 0110 0101 0100 0011 0010 0001 0000  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000  
1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000  
1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000  
1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000  
1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000  
1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000  
1011  
1011  
1011  
1011  
1011  
1100  
1100  
1100  
1100  
1101  
1101  
1101  
1110  
1110  
1111  
38  
2
3.7.1 S C (Start-Stop Communication)  
2
The S C is a write-only interface selected by programming bits D1-D0 of control register 2 to 01. The SDA input is  
normally in a high state, pulled low (START bit) to start the communication, and pulled high (STOP bit) after the  
2
2
transmission of the LSB. Figure 39 shows the timing diagram of S C. The S C also supports a broadcast mode in  
2
which the same register of all devices in cascade is programmed in a single write. To use S Cs broadcast mode,  
execute the following steps:  
1. Write 111 1000 1111 1111 after the start bit to enable the broadcast mode.  
2. Write data to program control register as specified in with bits D14D11 = XXXX (dont care).  
3. Write 111 1000 0000 0000 after the start bit to disable the broadcast mode.  
SCL  
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDA  
SMARTDM Device  
Address  
Register  
Address  
Register Content  
Start Bit = 0  
Stop Bit = 1  
(see Table 31)  
2
Figure 39. S C Programming  
2
3.7.2 I C  
2
Each I C read-from or write-to AIC14s control register is given by index register address.  
2
Read/write sequence always starts with the first byte as I C address followed by 0. During the second byte,  
default/broadcast mode is set and the index register address is initialized. For write operation control  
register, data to be written is given from the third byte onwards. For read operation, stop-start is performed  
2
after the second byte. Now the first byte is I C address followed by 1. From the second byte onwards, control  
register data appears.  
Each time read/write is performed, the index register address is incremented so that next read/write is  
performed on the next control register.  
During the first write cycle and all write cycles in the broadcast, only the device with address 0000 issues  
2
ACK to the I C.  
2
I C Write Sequence  
SCL  
SDA  
A6 A5 A4 A3 A2  
A0  
0
ACK B7 B6 B5 B4 B3 R2 R1 R0 ACK D7 D6 D5 D4 D3 D2 D1 D0 ACK D7 D6 D5 D4 D3 D2 D1 D0 ACK  
A1  
2
2
2
I C I C I C  
Start Bit = 0  
SMARTDM Device  
Address  
(see Table 3-1)  
Control Register Data for Write  
(Index+1)  
Index Register Address  
(Index)  
6
5
4
00000 = Default  
11111 = Broadcast Mode  
Control Register Data for Write  
(Index)  
2
Programmable I C Device Address  
Set by Control Register 2  
2
Figure 310. I C Write Sequence  
39  
2
I C Read Sequence  
SCL  
ACK  
A6  
A5  
A4  
A3  
A2  
A0  
0
B7  
B6  
B5  
B4  
B3  
R2  
R1  
R0  
ACK  
A1  
SDA  
2
2
2
I C I C I C  
Start Bit = 0  
Stop Bit = 1  
xxxxx = Dont Care  
6
5
4
Index Register Address  
(Index)  
SMARTDM Device Address  
(see Table 3-1)  
2
Programmable I C Device Address  
Set by Control Register 2  
SCL  
ACK  
ACK  
ACK  
A6  
A5  
A4  
A3  
A2  
A0  
0
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A1  
SDA  
2
2
2
I C I C I C  
Start Bit = 0  
6
5
4
Control Register Data  
(Index)  
Control Register Data  
(Index+1)  
SMARTDM Device Address  
(see Table 3-1)  
2
Programmable I C Device Address  
Set by Control Register 2  
2
Figure 311. I C Read Sequence  
Each AIC has an index register address. To perform a write operation, make the LSB of the first byte as 0 (write) (see  
Figure 312). During the second byte, the index register address is initialized and mode (broadcast/default) is set.  
From the third byte onwards, write data to the control register (given by index register) and increment the index  
register until stop or repeated start occurs. For operation, make the LSB of the first byte as 1 (read). From the second  
byte onwards, AIC starts transmitting data from the control register (given by the index register) and increments the  
index register. For setting the index register perform operation the same as write case for 2 bytes, and then give a  
stop or repeated start.  
S/Sr > Start/Repeated Start.  
Write Mode  
Default/Broadcast  
(00000/11111)  
Increment Index Reg. Address  
8 Bit  
7 Bit  
1 Bit  
8 Bit  
8 Bit  
2
S/Sr I C Device Address (3 Bit)+ R/W  
Mode (5 Bit) + Index Reg  
Address  
Ack  
Ack Control Reg. Data  
(Write)  
Ack  
Control Reg. Data  
(Write)  
Dtdmsp Device Address (+)  
= 0  
(3 Bit)  
To The Address Given  
by Index Reg. Address  
To The Address Given  
by Index Reg. Address  
Read Mode  
Increment Index Reg. Address  
Increment Index Reg. Address  
7 Bit  
1 Bit  
8 Bit  
8 Bit  
2
S/Sr I C Device Address (3 Bit)+ R/W  
Control Reg. Data  
(Read)  
Ack  
Ack Control Reg. Data  
(Read)  
Ack  
Dtdmsp Device Address (+)  
= 1  
From The Address Given  
by Index Reg. Address  
From The Address Given  
by Index Reg. Address  
For Initializing Index Reg Address  
Stop  
7 Bit  
1 Bit  
8 Bit  
2
S/Sr I C Device Address (3 Bit)+ R/W  
Mode (5 Bit) + Index Reg.  
Ack  
Ack  
Address  
(3 Bit)  
Dtdmsp Device Address (+) = 0  
Figure 312. Index Register Addresses  
310  
3.8 Smart Time Division Multiplexed Serial Port (SMARTDM)  
The SMART time division multiplexed serial port (SMARTDM) uses the 4 wires of DOUT, DIN, SCLK, and FS to  
transfer data into and out of the AIC14. The TLV320AIC14s SMARTDM supports three serial interface configurations  
(see Table 32): stand-alone master, stand-alone slave, and master-slave cascade, employing a time division  
multiplexed (TDM) scheme (a cascade of only-slaves is not supported). The SMARTDM allows for a serial connection  
of up to 16 codecs to a single serial port. Data communication in these three serial interface configurations can be  
carried out in either standard operation (default) or turbo operation. Each operation has two modes; programming  
mode (default mode) and continuous data transfer mode. To switch from the programming mode to the continuous  
data transfer mode, set bit D6 of control register 1 to 1, which resets after switching back to programming mode. The  
TLV320AIC14 can be switched back from the continuous data transfer mode to the programming mode by setting  
the LSB of the data on DIN to 1, only if the data format is (15+1), as selected by bit 0 of control register 1. The  
SMARTDM automatically adjusts the number of time slots per frame sync (FS) to match the number of codecs in the  
serial interface so that no time slot is wasted. Both the programming mode and the continuous data transfer mode  
of the TLV320AIC14 are compatible with the TLV320AIC10. The TLV320AIC14 provides primary/secondary  
communication and continuous data transfer with improvements and eliminates the requirements for hardware and  
software requests for secondary communication as seen in the TLV320AIC10. The TLV320AIC14 continuous data  
transfer mode now supports both master/slave stand-alone and cascade.  
Table 32. Serial Interface Configurations  
M/S PIN  
FSD PIN  
MASTER  
TLV320AIC14  
CONNECTIONS  
COMMENTS  
MASTER  
SLAVE  
NA  
SLAVE  
NA  
Stand-alone master  
High  
NA  
Pull high  
NA  
Stand-alone slave  
Low  
Pull-low  
Connect to the next slaves FS  
(see Figure 37)  
Master-slave cascade  
Slave-slave cascade  
High  
NA  
Low  
NA  
Last slaves FSD pin is pulled high  
NA  
NA  
Not supported  
3.8.1 Programming Mode  
In the programming mode, the FS signal starts the input/output data stream. Each period of FS contains two frames  
as shown in Figures 313 and 314: data frame and control frame. The data frame contains data transmitted from  
the ADC or to the DAC. The control frame contains data to program the AIC14s control registers. The SMARTDM  
automatically sets the number of time slots per frame equal to 2 times the number of AIC14 codecs in the interface.  
Each time slot contains 16-bit data. The SCLK is used to perform data transfer for the serial interface between the  
AIC14 codecs and the DSP. The frequency of SCLK varies depending on the selected mode of serial interface. In  
the stand-alone mode, there are 32 SCLKs (or two time slots) per sampling period. In the master-slave cascade  
mode, the number of SLCKs equals 32x(Number of codecs in the cascade). The digital output data from the ADC  
is taken from DOUT. The digital input data for the DAC is applied to DIN. The synchronization clock for the serial  
communication data and the frame-sync is taken from SCLK. The frame-sync signal that starts the ADC and DAC  
data transfer interval is taken from FS. The SMARTDM also provides a turbo mode, in which the FSs frequency is  
always the devices sampling frequency, but SCLK is running at a much higher speed. Thus, there are more than 32  
SCLKs per sampling period, in which the data frame and control frame occupy only the first 32 SCLKs from the falling  
edge of the frame-sync FS (also see Section 3.6 for more details).  
311  
Slot Number 0  
Slot Number 1  
SCLK  
FS  
DIN  
16Bit DAC Data  
16Bit ADC Data  
Register Data Write  
Register Data Read  
DOUT  
Figure 313. Standard Operation/Programming Mode: Stand-Alone Timing  
Slot  
Number  
0
1
2
2n3 2n2 2n1  
SCLK  
FS  
16 SCLKs Per Slot  
DIN/  
DOUT  
Master Slave Slave  
n2 n3  
Slave Slave Slave Master Slave Slave  
Slave Slave Slave  
2
1
0
n2  
n3  
2
1
0
Data Frame  
NOTE: n is the total number of AIC14s in the cascade  
Control Frame  
(Register R/W)  
Figure 314. Standard Operation/Programming Mode: Master-Slave Cascade Timing  
3.8.2 Continuous Data Transfer Mode  
The continuous data transfer mode, selected by setting bit D6 of the control register 1 to 1, contains conversion data  
only. In continuous data transfer mode, the control frame is eliminated and the period of FS signal contains only the  
data frame in which the 16-bit data is transferred contiguously, with no inactivity between bits. The control frame can  
be reactivated by setting the LSB of DIN data to 1 if the data is in the 15+1 format. To return the programming mode  
2
2
in the 16-bit DAC data format mode, write 0 in bit D6 of control register 1 using I C or S C, or do a hardware reset  
to come out of continuous data transfer mode. The continuous data transfer mode can support the TI DSP McBSPs  
autobuffering unit (ABU) operation in which the serial port interrupts are not generated with each word transferred  
to prevent CPUs ISR overheads.  
312  
Slot Number 0  
Slot Number 0  
SCLK  
FS  
Data Frame  
Data Frame  
DIN  
(Sample 3)  
(Sample 3)  
16-Bit DAC Data (Sample 2)  
16-Bit DAC Data (Sample 1)  
16-Bit ADC Data (Sample 2)  
DOUT  
16-Bit ADC Data (Sample 1)  
Figure 315. Standard Operation/Continuous Data Transfer Mode: Stand-Alone Timing  
Slot  
Number  
0
1
2
n3  
n2  
n1  
0
1
2
n3  
n2  
n1  
SCLK  
16 SCLKs Per Time Slot  
FS  
DIN/  
DOUT  
Slave Slave Slave Master Slave Slave  
n2 n3  
Slave Slave Slave  
Master Slave Slave  
n2 n3  
2
1
0
2
1
0
Data Frame / Sample 1  
NOTE: n is the total number of AIC14s in the cascade  
Data Frame / Sample 2  
Figure 316. Standard Operation/Continuous Data Transfer Mode: Master-Slave Cascade Timing  
3.8.3 Turbo Mode (SCLK)  
Setting TURBO = 1 (bit D7) in control register 2 enables the turbo mode that requires the following condition to be  
met:  
For master with SCLK as output, M × N > #Devices × mode  
Where:  
M, N, and P are clock divider values defined in the control register 4.  
#Device is the number of the device in cascade.  
Mode is equal to 1 for continuous data transfer mode and 2 for programming mode.  
For slave, SCLK is the input with max allowable speed of 25 MHz (no condition is required)  
The turbo mode is useful for applications that require more bandwidth for multitasking processing per sampling  
period. In the turbo mode (see Figure 317), the FSs frequency is always the devices sampling frequency but the  
SCLK is running at much higher speed than that described in Section 3.6.1. The output SCLK frequency is equal to  
(MCLK/P) in master mode and up to a maximum speed of 25 MHz for both master and slave AIC14. The data/control  
frame is still 16-SCLK long and the FS is one-SCLK pulse. Therefore, the DSP can maximize its data processing  
bandwidth by taking advantage of time available between the end of AIC14s control frame and the next frame-sync  
FS to process other tasks.  
313  
TURBO PROGRAMMING MODE  
Stand-Alone Case:  
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •  
Turbo SCLK  
One SCLK  
Sampling Period  
FS  
Data Frame Control Frame  
Data Frame Control Frame  
Hi-Z  
...  
...  
...  
...  
15 14  
1
0
15 14  
1
0
15 14  
1
0
15 14  
1 0  
DIN / DOUT  
Cascade Case (Master + 4 Slaves):  
Turbo SCLK  
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •  
Sampling Period  
FS  
Control Frame  
Data Frame  
Control Frame  
Data Frame  
Hi-Z  
DIN / DOUT  
TURBO CONTINUOUS DATA TRANSFER MODE  
Stand-Alone Case:  
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •  
Turbo SCLK  
One SCLK  
Sampling Period  
Hi-Z  
FS  
Data Frame  
Data Frame  
Hi-Z  
...  
...  
1
0
15 14  
1 0  
15 14  
DIN / DOUT  
Cascade Case (Master + 4 Slaves):  
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •  
Turbo SCLK  
FS  
Sampling Period  
Data Frame  
Data Frame  
Hi-Z  
Hi-Z  
DIN / DOUT  
NOTE: SCLK is not drawn to scale.  
Figure 317. Timing Diagram for Turbo Operation  
3.9 Control Register Programming  
The TLV320AIC14 contains six control registers that are used to program available modes of operation. All register  
programming occurs during the control frame through DIN. New configuration takes effect after a delay of one frame  
sync FS except the software reset, which happens after 6 MCLKs from the falling edge of the next frame sync FS.  
The TLV320AIC14 is defaulted to the programming mode upon power up. Set bit 6 in control register 1 to switch to  
continuous data transfer mode. If the 15+1 data format of DIN has been selected, the LSB of the DIN to 1 to switch  
from continuous data transfer mode to programming set mode. Otherwise, either the device needs to be reset or the  
host port writes 0 to bit D6 of control register 1 during the continuous data transfer mode to switch back to the  
programming mode.  
314  
3.9.1 Data Frame Format  
DIN  
D0  
D15 D1  
(15+1) Bit Mode  
(Continuous Data Transfer Mode Only)  
Control Frame  
Request  
A/D and D/A Data  
DOUT  
(16 Bit A/D Data)  
D15 D0  
DIN  
16 Bit Mode  
D15 D0  
A/D and D/A Data  
DOUT  
16 Bit Mode  
D15 D0  
Figure 318. Data Frame Format  
3.9.2 Control Frame Format (Programming Mode)  
During the control frame, the DSP sends 16-bit words to the SMARTDM(TM) through DIN to read or write control  
registers shown in Table 33. The upper byte (Bits D15D8) of the 16-bit control-frame word defines the read/write  
command. Bits D15D13 define the control register address with register content occupied the lower byte D7D0.  
Bit D12 is set to 0 for a write or to 1 for a read. Bit D11 in the write command is used to perform the broadcast mode.  
During a register write, the register content is located in the lower byte of DIN. During a register read, the register  
content is output in the lower byte of DOUT in the same control frame, whereas the lower byte of DIN is ignored.  
3.9.3 Broadcast Register Write  
Broadcast operation is very useful for a cascading system of SMARTDM DSP codecs in which all register  
programming can be completed in one control frame. During the control frame and in any register-write time slot, if  
the broadcast bit (D11) is set to 1, the register content of that time slot is written into the specified register of all devices  
in cascade (see Figure 320). This reduces the DSPs overhead of doing multiple writes to program same data into  
cascaded devices.  
Data to be Written Into Register  
DIN (Write) D15 D14 D13  
Register  
0
D11  
1
1
1
D7 D0  
R/W Broadcast  
Dont care  
D7 D0  
Address  
DIN (Read) D15 D14 D13  
1
1
1
1
0
0
Register  
Address  
SMARTDM Device  
Address  
Register Content  
DOUT (Read) D15 D14 D13 D12 D11 D10 D9  
D7 D0  
Figure 319. Control Frame Data Format  
315  
Master FS  
DIN  
Data Frame  
Control Frame  
Slave0 Master Slave2 Slave1 Slave0 Master Slave2 Slave1 Slave0 Master Slave2 Slave1 Slave0  
Reg Addr (D15D13) 001(1) 010(2) 100(4) 110(6)  
Time Slot  
Write  
Command  
R/W (D12)  
Broadcast (D11)  
D10D8  
0
1
0
1
0
1
0
1
111  
111  
111  
111  
NOTE: In this example, the broadcast operation (D11 = 1) is used to program the four control registers of Reg.1, Reg.2, Reg.4, and Reg.6 in all  
4 DSP codecs (Master, Slave2, Slave1, and Slave0) shown in Figure 38. These registers are programmed during the same frame.  
Figure 320. Broadcast Register Write Example  
3.9.4 Register Map  
Bits D15 through D13 represent the control register address that is written with data carried in D7 through D0. Bit D12  
determines a read or a write cycle to the addressed register. When D12 = 0, a write cycle is selected. When  
D12 = 1, a read cycle is selected. Bit D11 controls the broadcast mode as described above, in which the broadcast  
mode is enabled if D11 is set to 1. Always write 1s to bits D10 through D8.  
Table 33 shows the register map.  
Table 33. Register Map  
D15  
D14  
D13  
D12  
RW  
D11  
BC  
D10  
1
D9  
1
D8  
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Register Address  
Control Register Content  
Table 34. Register Addresses  
REGISTER NO.  
D15 D14 D13  
REGISTER NAME  
No operation  
0
1
2
3
4
5
6
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
control 1  
control 2  
control 3  
control 4  
control 5  
control 6  
316  
4 Control Register Content Description  
4.1 Control Register 1  
D7  
ADOVF  
R
D6  
CX  
D5  
IIR  
D4  
DAOVF  
R
D3  
D2  
D1  
D0  
DAC16  
R/W  
BIASV  
R/W  
ALB  
R/W  
DLB  
R/W  
R/W  
R/W  
NOTE: R = Read, W = Write  
Table 41. Control Register 1 Bit Summary  
RESET  
VALUE  
BIT  
NAME  
FUNCTION  
D7  
ADOVF  
0
ADC over flow. This bit indicates whether the ADC is overflow.  
ADOVF = 0 No overflow.  
ADOVF = 1 A/D is overflow.  
D6  
CX  
0
Continuous data transfer mode. This bit selects between programming mode and continuous data transfer  
mode.  
CX = 0  
CX = 1  
Programming mode.  
Continuous data transfer mode.  
D5  
D4  
D3  
D2  
D1  
D0  
IIR  
0
0
0
0
0
0
IIR Filter. This bit selects between FIR and IIR for decimation/interpolation low-pass filter.  
IIR = 0  
IIR = 1  
FIR filter is selected.  
IIR filter is selected.  
DAOVF  
BIASV  
ALB  
DAC over flow. This bit indicates whether the DAC is overflow  
DAOVF = 0 No overflow.  
DAOVF = 1 DAC is overflow  
Bias voltage. This bit selects the output voltage for BIAS pin  
BIASV = 0 BIAS pin = 2.35V  
BIASV = 1 BIAS pin = 1.35V  
Analog loop back  
DLB = 0  
DLB = 1  
Analog loopback disabled  
Analog loopback enabled  
DLB  
Digital loop back  
DLB = 0  
DLB = 1  
Digital loopback disabled  
Digital loopback enabled  
DAC16  
DAC 16-bit data format. This bit applies to the continuous data transfer mode only to enable the 16-bit data  
format for DAC input.  
DAC16 = 0 DAC input data length is 15 bits. Writing a 1 to the LSB of the DAC input to switch from continuous  
data transfer mode to programming mode.  
DAC16 = 1 DAC input data length is 16 bit.  
41  
4.2 Control Register 2  
D7  
TURBO  
R/W  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
2
I C6  
2
I C4  
DIFBP  
R/W  
I2C5  
R/W  
GPO  
R/W  
HPC  
R/W  
R/W  
R/W  
R/W  
NOTE: R = Read, W = Write  
Table 42. Control Register 2 Bit Summary  
RESET  
VALUE  
BIT  
NAME  
FUNCTION  
D7  
TURBO  
0
Turbo mode. This bit is used to set the SCLK rate.  
TURBO = 0 SCLK = (16 × FS × #Device × mode)  
TURBO = 1 SCLK = MCLK/P (P is determined in register 4)  
D6  
DIFBP  
0
Decimation/interpolation filter bypass. This bit is used to bypass both decimation and interpolation filters.  
DIFBP = 0 Decimation/interpolation filters are operated.  
DIFBP = 1 Decimation/interpolation filters are bypassed.  
2
I Cx  
2
2
D5D3  
100  
I C device address. These three bits are programmable to define three MSBs of the I C device address (reset  
2
value is 100). These three bits are combined with the 4-bit SMARTDM device address to form 7-bit I C device  
address.  
D2  
GPO  
HPC  
0
General-purpose output  
D1D0  
00  
Host port control bits.  
Write the following values into D1D0 to select the appropriate configuration for two pins SDA and SCL. SDA pin  
is set to be equal to D2 if D1D0 = 10.  
D1D0  
2
2
0
1
0
1
0
1
0
1
SDA and SCL pins are used for I C interface  
SDA and SCL pins are used for S C interface  
SDA pin = D2, input going into SCL pin is output to DOUT  
SDA pin = Control frame flag.  
4.3 Control Register 3  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
PWDN  
SWRS  
OSR-option  
ASRF  
R/W  
R/W  
R/W  
R/W  
R/W  
NOTE: R = Read, W = Write  
Table 43. Control Register 3 Bit Summary  
RESET  
VALUE  
BIT  
NAME  
FUNCTION  
D7D6  
PWDN  
00  
Power down  
PWDN = 00 No power down  
PWDN = 01 Power-down A/D  
PWDN = 10 Power-down D/A  
PWDN = 11 Software power down the entire device  
D5  
SWRS  
0
Software reset. Set this bit to 1 to reset the device.  
D4-D3  
OSR op-  
tion  
00  
OSR option.  
D4D3=X1 OSR for DAC Channel is 512( Max Fs=8Ksps)  
D4D3=10 OSR for DAC Channel is 256( Max Fs=16Ksps)  
D4D3=00 OSR for DAC Channel is 128(Max Fs=26Ksps)  
D2-D0  
ASRF  
001  
Asynchronous sampling rate factor. These three bits define the ratio n between FS frequency and the  
desired sampling frequency fs (Applied only if different sampling rate between CODEC1 and CODEC2 is  
desired)  
ASRF = 001 n = FS/fs = 1  
ASRF = 010 n = FS/fs = 2  
ASRF = 011 n = FS/fs = 3  
ASRF = 100 n = FS/fs = 4  
ASRF = 101 n = FS/fs = 5  
ASRF = 110 n = FS/fs = 6  
ASRF = 111 n = FS/fs = 7  
ASRF = 000 n = FS/fs = 8  
42  
4.4 Control Register 4  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
FSDIV  
R/W  
MNP  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
NOTE: R = Read, W = Write  
Table 44. Control Register 4 Bit Summary  
RESET  
VALUE  
BIT  
NAME  
FUNCTION  
D7  
FSDIV  
0
Frame sync division factor  
FSDIV = 0 To write value of P to bits D2-D0 and value of N to bits D6-D3  
FSDIV = 1 To write value of M to bits D6-D0  
D6D0  
MNP  
Divider values of M,N, and P to be used in junction with the FSDIV bit for calculation of FS frequency according  
to the formula FS = MCLK / (16xMxNxP)  
M = 1,2,,128 Determined by D6-D0 with FSDIV = 1  
D7-D0 = 10000000 M = 128  
D7-D0 = 10000001 M = 1  
D7-D0 = 11111111 M = 127  
N = 1,2,,16 Determined by D6-D3 with FSDIV = 0  
D7-D0 = 00000xxx N = 16  
D7-D0 = 00001xxx N = 1  
D7-D0 = 01111xxx N = 15  
P = 1,2,,8  
Determined by D2-D0 with FSDIV = 0  
D7-D0 = 0xxxx000 P = 8  
D7-D0 = 0xxxx001 P = 1  
D7-D0 = 0xxxx111 P = 7  
NOTES: 1. It takes 2 sampling periods to update new values of M,N, and P.  
2. In register read operation, first read receives N and P values and second read receives M value.  
3. M(default) = 16, N(default) = 6, P(default) = 8  
4. If P = 8, the device enters the coarse sampling mode as described in Section 3.1 Operating Frequencies  
4.5 Control Register 5A  
D7  
0
D6  
0
D5  
D4  
D3  
D2  
D1  
D0  
ADGAIN  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
NOTE: R = Read, W = Write  
Table 45. Control Register 5A Bit Summary  
FUNCTION  
RESET  
VALUE  
BIT  
NAME  
D7-D6  
Control  
00  
ADC programmable gain amplifier  
Register 5A  
D5-D0  
ADGAIN  
101010  
A/D converter gain (see Table 46)  
NOTES: 5. In register read operation, first read receives ADC gain value, second read receives DAC gain value, third read receives register  
5C contents, and fourth read receives register 5D contents.  
6. PGA default value = 101010 (0dB) for both ADC and DAC.  
b
43  
Table 46. A/D PGA Gain  
D7  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
D6  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
D5  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
D4  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
D3  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
D2  
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
D1  
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
D0  
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
DESCRIPTION  
ADC input PGA gain = MUTE  
ADC input PGA gain = 20 dB  
ADC input PGA gain = 19 dB  
ADC input PGA gain = 18 dB  
ADC input PGA gain = 17 dB  
ADC input PGA gain = 16 dB  
ADC input PGA gain = 15 dB  
ADC input PGA gain = 14 dB  
ADC input PGA gain = 13 dB  
ADC input PGA gain = 12 dB  
ADC input PGA gain = 11 dB  
ADC input PGA gain = 10 dB  
ADC input PGA gain = 9 dB  
ADC input PGA gain = 8 dB  
ADC input PGA gain = 7 dB  
ADC input PGA gain = 6 dB  
ADC input PGA gain = 5 dB  
ADC input PGA gain = 4 dB  
ADC input PGA gain = 3 dB  
ADC input PGA gain = 2 dB  
ADC input PGA gain = 1 dB  
ADC input PGA gain = 0 dB  
ADC input PGA gain = -1 dB  
ADC input PGA gain = -2 dB  
ADC input PGA gain = -3 dB  
ADC input PGA gain = -4 dB  
ADC input PGA gain = -5 dB  
ADC input PGA gain = -6 dB  
ADC input PGA gain = -7 dB  
ADC input PGA gain = -8 dB  
ADC input PGA gain = -9 dB  
ADC input PGA gain = -10 dB  
ADC input PGA gain = -11 dB  
ADC input PGA gain = -12 dB  
ADC input PGA gain = -13 dB  
ADC input PGA gain = -14 dB  
ADC input PGA gain = -15 dB  
ADC input PGA gain = -16 dB  
ADC input PGA gain = -17 dB  
ADC input PGA gain = -18 dB  
ADC input PGA gain = -19 dB  
ADC input PGA gain = -20 dB  
ADC input PGA gain = -21 dB  
ADC input PGA gain = -22 dB  
44  
Table 46. A/D PGA Gain (Continued)  
D7  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
D6  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
D5  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
D4  
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
D3  
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
D2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
D1  
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
D0  
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
DESCRIPTION  
ADC input PGA gain = -23dB  
ADC input PGA gain = -24 dB  
ADC input PGA gain = -25 dB  
ADC input PGA gain = -26 dB  
ADC input PGA gain = -27 dB  
ADC input PGA gain = -28 dB  
ADC input PGA gain = -29 dB  
ADC input PGA gain = -30 dB  
ADC input PGA gain = -31 dB  
ADC input PGA gain = -32 dB  
ADC input PGA gain = -33 dB  
ADC input PGA gain = -34 dB  
ADC input PGA gain = -35 dB  
ADC input PGA gain = -36 dB  
ADC input PGA gain = -37 dB  
ADC input PGA gain = -38 dB  
ADC input PGA gain = -39 dB  
ADC input PGA gain = -40 dB  
ADC input PGA gain = -41 dB  
ADC input PGA gain = -42 dB  
4.6 Control Register 5B  
D7  
0
D6  
1
D5  
D4  
D3  
D2  
DAGAIN  
R/W  
D1  
D0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
NOTE: R = Read, W = Write  
Table 47. Control Register 5B Bit Summary  
RESET  
VALUE  
BIT  
NAME  
FUNCTION  
D7-D6  
Control  
NA  
Register 5B  
D5-D0  
DAGAIN  
101010  
D/A converter gain (see Table 48)  
NOTES: 7. In register read operation, first read receives ADC gain value, second read receives DAC gain value, third receives register 5C, and  
fourth receives register 5D.  
8. PGA default value = 101010 (0dB) for both ADC and DAC.  
b
Table 48. D/A PGA Gain  
D7  
0
D6  
1
D5  
1
D4  
1
D3  
1
D2  
1
D1  
1
D0  
1
DESCRIPTION  
DAC input PGA gain = MUTE  
DAC input PGA gain = 20 dB  
DAC input PGA gain = 19 dB  
DAC input PGA gain = 18 dB  
DAC input PGA gain = 17 dB  
DAC input PGA gain = 16 dB  
DAC input PGA gain = 15 dB  
DAC input PGA gain = 14 dB  
0
1
1
1
1
1
1
0
0
1
1
1
1
1
0
1
0
1
1
1
1
1
0
0
0
1
1
1
1
0
1
1
0
1
1
1
1
0
1
0
0
1
1
1
1
0
0
1
0
1
1
1
1
0
0
0
45  
Table 48. D/A PGA Gain (Continued)  
D7  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
D6  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
D5  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
D4  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
D3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
D2  
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
D1  
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
D0  
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
DESCRIPTION  
DAC input PGA gain = 13 dB  
DAC input PGA gain = 12 dB  
DAC input PGA gain = 11 dB  
DAC input PGA gain = 10 dB  
DAC input PGA gain = 9 dB  
DAC input PGA gain = 8 dB  
DAC input PGA gain = 7 dB  
DAC input PGA gain = 6 dB  
DAC input PGA gain = 5 dB  
DAC input PGA gain = 4 dB  
DAC input PGA gain = 3 dB  
DAC input PGA gain = 2 dB  
DAC input PGA gain = 1 dB  
DAC input PGA gain = 0 dB  
DAC input PGA gain = -1 dB  
DAC input PGA gain = -2 dB  
DAC input PGA gain = -3 dB  
DAC input PGA gain = -4 dB  
DAC input PGA gain = -5 dB  
DAC input PGA gain = -6 dB  
DAC input PGA gain = -7 dB  
DAC input PGA gain = -8 dB  
DAC input PGA gain = -9 dB  
DAC input PGA gain = -10 dB  
DAC input PGA gain = -11 dB  
DAC input PGA gain = -12 dB  
DAC input PGA gain = -13 dB  
DAC input PGA gain = -14 dB  
DAC input PGA gain = -15 dB  
DAC input PGA gain = -16 dB  
DAC input PGA gain = -17 dB  
DAC input PGA gain = -18 dB  
DAC input PGA gain = -19 dB  
DAC input PGA gain = -20 dB  
DAC input PGA gain = -21 dB  
DAC input PGA gain = -22 dB  
DAC input PGA gain = -23dB  
DAC input PGA gain = -24 dB  
DAC input PGA gain = -25 dB  
DAC input PGA gain = -26 dB  
DAC input PGA gain = -27 dB  
DAC input PGA gain = -28 dB  
DAC input PGA gain = -29 dB  
DAC input PGA gain = -30 dB  
46  
Table 48. D/A PGA Gain (Continued)  
D7  
0
0
0
0
0
0
0
0
0
0
0
0
D6  
1
1
1
1
1
1
1
1
1
1
1
1
D5  
0
0
0
0
0
0
0
0
0
0
0
0
D4  
0
0
0
0
0
0
0
0
0
0
0
0
D3  
1
1
1
1
0
0
0
0
0
0
0
0
D2  
0
0
0
0
1
1
1
1
0
0
0
0
D1  
1
1
0
0
1
1
0
0
1
1
0
0
D0  
1
0
1
0
1
0
1
0
1
0
1
0
DESCRIPTION  
DAC input PGA gain = -31 dB  
DAC input PGA gain = -32 dB  
DAC input PGA gain = -33 dB  
DAC input PGA gain = -34 dB  
DAC input PGA gain = -35 dB  
DAC input PGA gain = -36 dB  
DAC input PGA gain = -37 dB  
DAC input PGA gain = -38 dB  
DAC input PGA gain = -39 dB  
DAC input PGA gain = -40 dB  
DAC input PGA gain = -41 dB  
DAC input PGA gain = -42 dB  
4.7 Control Register 5C  
D7  
1
D6  
0
D5  
D4  
D3  
D2  
Reserved  
R
D1  
D0  
DSTG  
R/W  
INBG  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
NOTE: R = Read, W = Write  
Table 49. Digital Sidetone Gain  
D5  
D4  
1
D3  
1
DSTG  
1
1
1
1
0
0
0
0
Digital sidetone gain = Mute (Default)  
Digital sidetone gain = -21 dB  
Digital sidetone gain = -18 dB  
Digital sidetone gain = -15 dB  
Digital sidetone gain = -12 dB  
Digital sidetone gain = -9 dB  
Digital sidetone gain = -6 dB  
Digital sidetone gain = -3 dB  
1
0
0
1
0
0
1
1
1
0
0
1
0
0
Table 410. Input Buffer Gain  
D1  
1
D0  
INBG  
Input buffer gain = 24 dB  
1
1
0
1
0
Input buffer gain = 12 dB  
Input buffer gain = 6 dB  
0
0
Input buffer gain = 0 dB (Default)  
4.8 Control Register 5D  
D7  
1
D6  
1
D5  
D4  
R
D3  
R
D2  
R
D1  
D0  
Reserved  
Chip Version-ID  
R/W  
R/W  
R
R
R
NOTE: R = Read, W = Write  
47  
4.9 Control Register 6  
D7  
D6  
MUTE2  
R/W  
D5  
MUTE3  
R/W  
D4  
D3  
D2  
D1  
D0  
Reserved  
R/W  
PSDO  
R/W  
ODRCT  
AINSEL  
R/W  
R/W  
R/W  
R/W  
NOTE: R = Read, W = Write  
Table 411. Control Register 6 Bit Summary  
RESET  
VALUE  
BIT  
NAME  
FUNCTION  
D7D5 Reserved  
D4D3 Reserved  
D2D1 AINSEL  
00  
Analog input select. These bits select the analog input for the ADC  
AINSEL = 00 The analog input is INP/M1  
AINSEL = 01 The analog input is MICIN self-biased at 1.35 V  
AINSEL =10 The analog input is MICIN with external common mode  
AINSEL = 11 The analog input is INP/M2  
NOTE: For AINSEL = 10, the external common mode is connected to INM1 via an ac-coupled capacitor.  
D0  
Reserved  
48  
5 Electrical Characteristics  
5.1 Absolute Maximum Ratings Over Operating Free-Air Temperature Range  
(Unless Otherwise Noted)  
Supply voltage range: DVDD, AV  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 4 V  
DD  
DRVDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 4 V  
Output voltage range, all digital output signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to DVDD + 0.3 V  
Input voltage range, all digital input signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to DVDD + 0.3 V  
Operating free-air temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
A
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Case temperature for 10 seconds: Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under absolute maximum ratingsmay cause permanent damage to the device. These are stress ratings only and  
functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditionsis not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltage values are with respect to V  
.
SS  
5.2 Recommended Operating Conditions  
MIN NOM  
MAX  
3.6  
3.6  
1.95  
3.6  
2
UNIT  
Supply voltage for analog, AVDD  
2.7  
2.7  
3.3  
V
Supply voltage for analog output driver, DRVDD  
Supply voltage for digital core, DVDD  
Supply voltage for digital I/O, IOVDD  
1.65  
2.7  
1.8  
3.3  
V
V
Analog single-ended peak-to-peak input voltage, V  
I(analog)  
V
Output load resistance, R  
Between OUTP1 and OUTM1 (differential)  
600  
L
Analog output load capacitance, C  
Digital output capacitance  
Master clock  
20  
20  
pF  
pF  
MHz  
kHz  
°C  
L
100  
26  
ADC or DAC conversion rate  
Operating free-air temperature, T  
40  
85  
A
51  
5.3 Electrical Characteristics Over Recommended Operating Free-Air Temperature  
Range, AV = 3.3 V, DV = 1.8 V, IOV = 3.3 V (Unless Otherwise Noted)  
DD  
DD  
DD  
5.3.1 Digital Inputs and Outputs, f = 8 kHz, Outputs Not Loaded  
s
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
0.8  
IOVDD  
V
V
High-level output voltage, any digital output  
V
OH  
0.1  
IOVDD  
Low-level output voltage, any digital output  
V
OL  
I
I
High-level input current, any digital input  
Low-level input current, any digital input  
Input capacitance  
0.5  
0.5  
3
µA  
µA  
pF  
pF  
IH  
IL  
C
C
i
Output capacitance  
5
o
5.4 ADC Path Digital Filter, f = 8 kHz (see Note 2)  
s
5.4.1 FIR Filter  
PARAMETER  
TEST CONDITIONS  
0 to 300 Hz  
300 Hz to 3 kHz  
3.3 kHz  
MIN  
TYP  
MAX  
0.2  
UNIT  
0.5  
0.5  
0.5  
0.25  
0.3  
Filter gain relative to gain at 1020 Hz  
dB  
3.6 kHz  
3  
4 kHz  
35  
74  
4.4 kHz  
NOTE 2: Filter gain outside the passband is measured with respect to gain at 1020 Hz. The analog input test signal is a sinewave with  
0 dB = 4 V as the reference level for the analog input signal. The bandpass is 0 to 3600 Hz for an 8-kHz sample rate. This bandpass  
I(PP)  
scales linearly with the sample rate.  
5.4.2 IIR Filter  
PARAMETER  
TEST CONDITIONS  
0 to 300 Hz  
300 Hz to 3 kHz  
3.3 kHz  
MIN  
0.5  
0.5  
0.5  
TYP  
MAX  
0.2  
UNIT  
0.25  
0.3  
Filter gain relative to gain at 1020 Hz  
dB  
3.6 kHz  
3  
4 kHz  
20  
60  
4.4 kHz  
NOTE 2: Filter gain outside the passband is measured with respect to gain at 1020 Hz. The analog input test signal is a sinewave with  
0 dB = 4 V as the reference level for the analog input signal. The bandpass is 0 to 3600 Hz for an 8-kHz sample rate. This bandpass  
I(PP)  
scales linearly with the sample rate.  
52  
5.5 ADC Dynamic Performance, f = 8 kHz  
s
5.5.1 ADC Signal-to-Noise (see Note 3)  
PARAMETER  
TEST CONDITIONS  
MIN  
82  
TYP  
88  
MAX  
MAX  
MAX  
UNIT  
V = 1 dB  
I
V = 9 dB  
I
79  
82  
SNR  
Signal-to-noise ratio (SNR)  
dB  
V = 40 dB  
I
43  
46  
NOTE 3: Test condition is a 1020-Hz input signal with an 8-kHz conversion rate. Input and output common mode is 1.35 V.  
5.5.2 ADC Signal-to-Distortion (see Note 3)  
PARAMETER  
TEST CONDITIONS  
MIN  
85  
TYP  
90  
UNIT  
V = 1 dB  
I
V = 9 dB  
I
82  
88  
THD  
Total harmonic distortion  
dB  
V = 40 dB  
I
67  
67  
NOTE 3: Test condition is a 1020-Hz input signal with an 8-kHz conversion rate. Input and output common mode is 1.35 V.  
5.5.3 ADC Signal-to-Distortion + Noise (see Note 3)  
PARAMETER  
TEST CONDITIONS  
MIN  
79  
TYP  
87  
UNIT  
V = 1 dB  
I
V = 9 dB  
I
73  
79  
Signal-to-total harmonic distortion + noise (THD + N)  
dB  
V = 40 dB  
I
42  
48  
NOTE 3: Test condition is a 1020-Hz input signal with an 8-kHz conversion rate. Input and output common mode is 1.35 V.  
5.5.4 ADC Channel Characteristics  
PARAMETER  
Singleended input level  
TEST CONDITIONS  
Preamp gain = 6 dB  
MIN  
TYP  
MAX  
UNIT  
V
V
V
2
I(PP)  
Input offset voltage  
Input bias current  
±10  
mV  
µA  
V
IO  
MICIN, INPx, INMx  
I
B
34  
Common-mode voltage  
Dynamic range  
1.35  
85  
80  
87  
0.6  
±10  
50  
50  
30  
2
V = 1 dB  
I
dB  
dB  
dB  
dB  
mV  
dB  
Mute attenuation  
PGA = MUTE  
Intrachannel isolation  
Gain error  
E
E
V = 1 dB at 1020 Hz  
I
G
ADC converter offset error  
Common-mode rejection ratio at INMx and INPx  
Idle channel noise  
O(ADC)  
CMRR  
V = 100 mV at 1020 Hz  
I pp  
V
= 0 V  
100 µVrns  
INP,INM,MICIN  
Input resistance  
kΩ  
pF  
s
ri  
MICIN, INPx, INMx, T = 25°C  
A
C
Input capacitance  
i
IIR  
5/f  
s
Channel delay  
FIR  
17/f  
s
s
53  
5.6 DAC Path Digital Filter, f = 8 kHz (see Note 4)  
s
5.6.1 FIR Filter  
PARAMETER  
TEST CONDITIONS  
0 to 300 Hz  
300 Hz to 3 kHz  
3.3 kHz  
MIN  
0.5  
TYP  
MAX  
0.2  
UNIT  
0.25  
0.35  
0.25  
0.3  
Filter gain relative to gain at 1020 Hz  
dB  
3.6 kHz  
3  
4 kHz  
40  
74  
4.4 kHz  
5.6.2 IIR Filter  
PARAMETER  
TEST CONDITIONS  
0 to 300 Hz  
300 Hz to 3 kHz  
3.3 kHz  
MIN  
0.5  
TYP  
MAX  
0.2  
UNIT  
0.25  
0.35  
0.25  
0.3  
Filter gain relative to gain at 1020 Hz  
dB  
3.6 kHz  
3  
4 kHz  
20  
60  
4.4 kHz  
NOTE 4: Filter gain outside of the bandpass is measured with respect to gain at 1020 Hz. The input signal is the digital equivalent of a sine wave  
(digital full scale = 0 dB). The nominal differential DAC channel output with this input condition is 4 V  
Hz for an 8-kHz sample rate. This pass band scales linearly with the conversion rate.  
. The pass band is 0 Hz to 3600  
I(PP)  
5.7 DAC Dynamic Performance  
5.7.1 OUTP/OUTM Signal-to-Noise When Load Is 600 (see Note 5)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
92  
MAX  
UNIT  
V = 0 dB  
I
80  
75  
40  
V = 9 dB  
I
83  
SNR  
Signal-to-noise ratio (SNR)  
dB  
V = 40 dB  
I
51  
NOTE 5: Test condition is the digital equivalent of a 1020-Hz input signal with an 8-kHz conversion rate. The test is measured at the output of  
the application schematic low-pass filter. The test is conducted in 16-bit mode.  
5.7.2 OUTP/OUTM Signal-to-Distortion When Load Is 600 (see Note 5)  
PARAMETER  
TEST CONDITIONS  
MIN  
78  
TYP  
85  
MAX  
UNIT  
V = 0 dB  
I
V = 9 dB  
I
74  
83  
THD  
Total harmonic distortion  
V = 40 dB  
I
59  
62  
NOTE 5: Test condition is the digital equivalent of a 1020-Hz input signal with an 8-kHz conversion rate. The test is measured at the output of  
the application schematic low-pass filter. The test is conducted in 16-bit mode.  
5.7.3 OUTP/OUTM Signal-to-Distortion + Noise When Load Is 600 (see Note 5)  
PARAMETER  
TEST CONDITIONS  
MIN  
75  
TYP  
82  
MAX  
UNIT  
V = 0 dB  
I
V = 9 dB  
I
70  
77  
Signal-to-total harmonic distortion + noise (THD + N)  
dB  
V = 40 dB  
I
34  
44  
NOTE 5: Test condition is the digital equivalent of a 1020-Hz input signal with an 8-kHz conversion rate. The test is measured at the output of  
the application schematic low-pass filter. The test is conducted in 16-bit mode.  
54  
5.7.4 DAC Channel Characteristics  
PARAMETER  
Dynamic range  
TEST CONDITIONS  
MIN  
TYP  
92  
MAX  
UNIT  
dB  
V = 0 dB at 1020 Hz  
I
Interchannel isolation  
120  
0.5  
1.35  
80  
dB  
E
G
Gain error, 0 dB  
V
= 0 dB at 1020 Hz  
dB  
O
Common mode voltage  
V
Idle channel narrow band noise  
Output offset voltage at OUT (differential)  
Analog output voltage, (3.3 V)  
Maximum output power  
0 kHz4 kHz, See Note 6  
125  
Vrms  
mV  
V
V
V
P
DIN = All zeros  
10  
OO  
OUTP  
0.35  
2.35  
O
600 load at 3.3 V between OUTP1 and OUTM1  
6.7  
mW  
O
IIR  
5/f  
s
Channel delay  
s
FIR  
18/f  
s
NOTE 6: The conversion rate is 8 kHz.  
5.8 BIAS Amplifier Characteristics  
PARAMETER  
Output voltage  
TEST CONDITIONS  
MIN  
TYP  
2.35  
20  
MAX  
UNIT  
V
2.2  
2.4  
Integrated noise  
300 Hz13 kHz  
µV  
Offset voltage  
10  
mV  
mA  
MHz  
dB  
Current drive  
10  
Unity gain bandwidth  
DC gain  
1
140  
5.9 Power-Supply Rejection (see Note 7)  
PARAMETER  
TEST CONDITIONS  
Differential  
MIN  
TYP  
75  
MAX  
UNIT  
AVDD  
DVDD  
Supply-voltage rejection ratio, analog supply (f = 0 to f /2) at 1 kHz  
dB  
(j)  
s
Single-ended  
50  
DAC channel  
ADC channel  
95  
Supply-voltage rejection ratio  
f
(j)  
= 0 kHz to 30 kHz  
dB  
86  
NOTE 7: Power supply rejection measurements are made with both the ADC and DAC channels idle and a 200 mV peak-to-peak signal applied  
to the appropriate supply.  
5.10 Power Supply  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
11.2  
3.4  
0.01  
2
MAX  
16.5  
5
UNIT  
mW  
mA  
P
Power dissipation  
Total current  
D
I
(t)  
Power down  
mA  
ADC  
DAC  
1
Analog  
Digital  
mA  
mA  
I
Supply current  
Ref  
0.4  
1.8  
1
DD  
All sections on  
Coarse sampling  
55  
5.11 Timing Requirements (see Parameter Measurement Information)  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
t
t
t
t
t
t
t
t
t
t
t
Pulse duration, MCLK high  
5
5
3
2
wH  
wL  
su1  
h1  
Pulse duration, MCLK low  
Setup time, RESET, before MCLK high (see Figure 51)  
Hold time, RESET, after MCLK high (see Figure 51)  
Delay time, SCLKto FS/FSD↓  
Delay time, SCLKto FS/FSD↑  
Delay time, SCLKto DOUT  
C
= 20 pF  
L
5
5
ns  
d1  
d2  
15  
15  
15  
d3  
Enable time, SCLKto DOUT  
en  
Disable time, SCLKto DOUT  
dis  
su2  
h2  
Setup time, DIN, before SCLK↓  
Hold time, DIN, after SCLK↓  
10  
10  
t
wH  
2.4 V  
2.4 V  
MCLK  
t
wL  
t
su1  
t
h1  
2.4 V  
RESET  
Figure 51. Hardware Reset Timing  
SCLK  
t
t
d1  
d2  
t
t
d1  
d2  
FS  
FSD  
t
d3  
t
t
en  
dis  
DOUT  
DIN  
D15  
t
su2  
t
h2  
D15  
Figure 52. Serial Communication Timing  
NOTE: Above Figures are meant to show timing delays only.  
56  
AMPLITUDE  
vs  
FREQUENCY  
0
20  
ADC = 8 KSPS  
40  
60  
80  
100  
120  
140  
160  
180  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
f Frequency Hz  
Figure 53. FFTADC Channel (3 dB Input)  
AMPLITUDE  
vs  
FREQUENCY  
0
20  
ADC = 16 KSPS  
40  
60  
80  
100  
120  
140  
160  
180  
0
2000  
4000  
6000  
8000  
f Frequency Hz  
Figure 54. FFTADC Channel (1 dB Input)  
AMPLITUDE  
vs  
FREQUENCY  
0
40  
80  
ADC = 16 KSPS  
120  
160  
0
2000  
4000  
6000  
8000  
f Frequency Hz  
Figure 55. FFTADC Channel (3 dB Input)  
57  
AMPLITUDE  
vs  
FREQUENCY  
0
ADC = 16 KSPS  
20  
40  
60  
80  
100  
120  
140  
160  
0
2000  
4000  
6000  
8000  
f Frequency Hz  
Figure 56. FFTDAC Channel (3 dB Input)  
AMPLITUDE  
vs  
FREQUENCY  
0
20  
40  
60  
80  
DAC = 16 KSPS  
100  
120  
140  
160  
180  
0
2000  
4000  
6000  
8000  
f Frequency Hz  
Figure 57. FFTDAC Channel (0 dB Input)  
AMPLITUDE  
vs  
FREQUENCY  
0
DAC = 8 KSPS  
20  
40  
60  
80  
100  
120  
140  
160  
0
1000  
2000  
3000  
4000  
f Frequency Hz  
Figure 58. FFTDAC Channel (3 dB Input)  
58  
AMPLITUDE  
vs  
FREQUENCY  
0
20  
40  
60  
80  
DAC = 8 KSPS  
100  
120  
140  
160  
180  
0
1000  
2000  
3000  
4000  
f Frequency Hz  
Figure 59. FFTDAC Channel (0 dB Input)  
AMPLITUDE  
vs  
FREQUENCY  
0
20  
40  
60  
80  
ADC = 8 KSPS  
100  
120  
140  
0
1000  
2000  
3000  
4000  
f Frequency Hz  
Figure 510. FFTADC Channel (1 dB Input)  
59  
FILTER GAIN  
vs  
FILTER GAIN  
vs  
FREQUENCY  
FREQUENCY  
5
0
5
0
5  
5  
10  
15  
20  
25  
10  
15  
20  
25  
30  
30  
35  
40  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
f Frequency Hz  
f Frequency Hz  
Figure 512. ADC IIR Frequency Response  
Figure 511. ADC FIR Frequency Response  
FILTER GAIN  
vs  
FREQUENCY  
FILTER GAIN  
vs  
FREQUENCY  
20  
20  
0
0
20  
20  
40  
60  
80  
40  
60  
80  
100  
100  
120  
120  
0
1000 2000 3000 4000 5000 6000 7000 8000  
0
1000 2000 3000 4000 5000 6000 7000 8000  
f Frequency Hz  
f Frequency Hz  
Figure 513. DAC IIR Frequency Response  
Figure 514. DAC IIR Frequency Response  
(OSR = 512)  
(OSR = 256)  
510  
FILTER GAIN  
vs  
FREQUENCY  
FILTER GAIN  
vs  
FREQUENCY  
20  
0
20  
0
20  
40  
60  
80  
100  
20  
40  
60  
80  
120  
140  
100  
120  
0
1000 2000 3000 4000 5000 6000 7000 8000  
0
1000 2000 3000 4000 5000 6000 7000 8000  
f Frequency Hz  
f Frequency Hz  
Figure 516. DAC FIR Frequency Response  
Figure 515. DAC IIR Frequency Response  
(OSR = 512)  
(OSR = 128)  
FILTER GAIN  
vs  
FILTER GAIN  
vs  
FREQUENCY  
FREQUENCY  
20  
20  
0
0
20  
40  
20  
40  
60  
60  
80  
80  
100  
100  
120  
140  
120  
140  
0
1000 2000 3000 4000 5000 6000 7000 8000  
0
1000 2000 3000 4000 5000 6000 7000 8000  
f Frequency Hz  
f Frequency Hz  
Figure 518. DAC FIR Frequency Response  
Figure 517. DAC FIR Frequency Response  
(OSR = 128)  
(OSR = 256)  
511  
IOVDD IOVDD  
1 kΩ  
TLV320AIC14  
1 kΩ  
Microphone  
BIAS  
M/S  
TLV320C5X  
FSK  
FSD  
FS  
MICIN  
INP1  
0.1 µF  
0.1 µF  
FSR  
DX  
DIN  
INM1  
DR  
DOUT  
0.1 µF  
0.1 µF  
0.1 µF  
CLKR  
INP2  
SCLK  
CLKX  
INM2  
From DSP or  
Other Clock Source  
MCLK  
OUTP1  
OUTM1  
From DSP  
From DSP  
RESET  
IOVDD  
1 kΩ  
600 Ω  
PWRDN  
SDA  
2
I C Master  
2
S C  
SCL  
DVDD  
DVSS  
To 1.8 V Digital Supply  
To Digital GND  
0.01 µF  
0.01 µF  
0.1 µF  
0.1 µF  
1 µF  
3.3 V Analog Supply  
AVDD  
0.1 µF  
0.1 µF  
AVSS  
Analog GND  
IOVDD  
IOVSS  
To 3.3 V Digital Supply  
To Digital GND  
DRVDD  
DRVSS  
3.3 V Analog Supply  
1 µF  
Analog GND  
Figure 519. Single-Ended Microphone Input (Internal Common Mode)  
512  
IOVDD IOVDD  
1 kΩ  
TLV320AIC14  
1 kΩ  
Microphone  
BIAS  
M/S  
TLV320C5X  
FSK  
FSD  
FS  
MICIN  
INP1  
0.1 µF  
0.1 µF  
FSR  
DX  
DIN  
INM1  
INP2  
INM2  
DR  
DOUT  
0.1 µF  
0.1 µF  
0.1 µF  
CLKR  
SCLK  
CLKX  
From DSP or  
Other Clock Source  
MCLK  
OUTP1  
OUTM1  
From DSP  
From DSP  
RESET  
IOVDD  
600 Ω  
1 µF  
1 µF  
PWRDN  
SDA  
1 kΩ  
600 Ω  
From DSP  
SCL  
DVDD  
DVSS  
To 1.8 V Digital Supply  
To Digital GND  
0.01 µF  
0.01 µF  
0.1 µF  
0.1 µF  
1 µF  
3.3 V Analog Supply  
AVDD  
0.1 µF  
0.1 µF  
AVSS  
Analog GND  
IOVDD  
IOVSS  
To 3.3 V Digital Supply  
To Digital GND  
DRVDD  
DRVSS  
3.3 V Analog Supply  
1 µF  
Analog GND  
Figure 520. Pseudo-Differential Microphone Input (External Common Mode)  
5.12 Layout and Grounding Guidelines for TLV320AIC14  
TLV320AIC14 has a built-in analog antialias filter, which provides rejection to external noise at high frequencies that  
may couple into the device. Digital filters with high out-of-band attenuation also reject the external noise. If the  
differential inputs are used for the ADC channel, then the noise in the common-mode signal is also rejected by the  
high CMRR of TLV320AIC14. Using external common-mode for microphone inputs also helps reject the external  
noise. However to extract the best performance from TLV320AIC14, care must be taken in board design and layout  
to avoid coupling of external noise into the device.  
TLV320AIC14 supports clock frequencies as high as 100 MHz. To avoid coupling of fast switching digital signals to  
analog signals, the digital and analog sections should be separated on the board. In TLV320AIC14 the digital and  
analog pins are kept separated to aid such a board layout. A separate analog ground plane should be used for the  
analog section of the board. The analog and digital ground planes should be shorted at only one place as close to  
TLV320AIC14 as possible. No digital trace should run under TLV320AIC14 to avoid coupling of external digital noise  
into the device. It is suggested to have the analog ground plane running below the TLV320AIC14. The power supplies  
should be decoupled close to the supply pins, preferably, with 0.1 µF ceramic capacitor and 10 µF tantalum capacitor  
following it. The ground pin should be connected to the ground plane as close as possible to the TLV320AIC14, so  
as to minimize any inductance in the path. Since the MCLK is expected to be a very high frequency signal, it is  
advisable to shield it with digital ground. For best performance of ADC in differential input mode, the differential signals  
should be routed close to each other in similar fashion, so that the noise coupling on both the signals is same and  
can be rejected by the device.  
513  

相关型号:

TLV320AIC12CDBT

LOW-POWER, HIGHLY-INTEGRATED, PROGRAMMABLE 16-Bit, 26-KSPS MONO CODEC
TI

TLV320AIC12CDBTG4

LOW-POWER, HIGHLY-INTEGRATED, PROGRAMMABLE 16-Bit, 26-KSPS MONO CODEC
TI

TLV320AIC12CDBTR

LOW-POWER, HIGHLY-INTEGRATED, PROGRAMMABLE 16-Bit, 26-KSPS MONO CODEC
TI

TLV320AIC12CDBTRG4

LOW-POWER, HIGHLY-INTEGRATED, PROGRAMMABLE 16-Bit, 26-KSPS MONO CODEC
TI

TLV320AIC12IDBT

LOW-POWER, HIGHLY-INTEGRATED, PROGRAMMABLE 16-Bit, 26-KSPS MONO CODEC
TI

TLV320AIC12IDBTG4

LOW-POWER, HIGHLY-INTEGRATED, PROGRAMMABLE 16-Bit, 26-KSPS MONO CODEC
TI

TLV320AIC12IDBTR

LOW-POWER, HIGHLY-INTEGRATED, PROGRAMMABLE 16-Bit, 26-KSPS MONO CODEC
TI

TLV320AIC12IDBTRG4

LOW-POWER, HIGHLY-INTEGRATED, PROGRAMMABLE 16-Bit, 26-KSPS MONO CODEC
TI

TLV320AIC12K

LOW-POWER, HIGHLY-INTEGRATED, PROGRAMMABLE 16-Bit, 26-KSPS MONO CODEC
TI

TLV320AIC12KIDBT

LOW-POWER, HIGHLY-INTEGRATED, PROGRAMMABLE 16-Bit, 26-KSPS MONO CODEC
TI

TLV320AIC12KIDBTG4

LOW-POWER, HIGHLY-INTEGRATED, PROGRAMMABLE 16-Bit, 26-KSPS MONO CODEC
TI

TLV320AIC12KIDBTR

LOW-POWER, HIGHLY-INTEGRATED, PROGRAMMABLE 16-Bit, 26-KSPS MONO CODEC
TI