TLV2401-Q1 [TI]

汽车级、单路、16V、5.5kHz 运算放大器;
TLV2401-Q1
型号: TLV2401-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车级、单路、16V、5.5kHz 运算放大器

放大器 运算放大器
文件: 总33页 (文件大小:1578K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TLV2401-Q1, TLV2402-Q1  
SLOS716A APRIL 2011REVISED FEBRUARY 2020  
TLV2401-Q1, TLV2402-Q1 16-V, Ultra-Low Power, 880-nA, RRIO Operational Amplifiers  
With Reverse Battery Protection  
The low supply current is coupled with extremely low  
input bias currents enabling them to be used with  
mega-Ω resistors making them ideal for portable, long  
active-life applications. DC accuracy is ensured with a  
low typical offset voltage of 390 µV, CMRR of 120 dB  
and minimum open loop gain of 130 V/mV at 2.7 V.  
1 Features  
1
AEC-Q100 qualified for automotive applications  
Device temperature grade 1:  
–40°C to 125°C TA  
Nano-power operation: 880 nA/channel  
Input common-mode range exceeds the rails: –0.1  
V to VCC + 5 V  
The supply voltage extends from 2.5 V to 16 V, with  
electrical characteristics specified at 2.7 V, 5 V, and  
15 V. The 2.5-V operation makes it compatible with  
Li-Ion battery-powered systems and many micro-  
power microcontrollers including TI’s MSP430 and  
MSP432.  
Reverse battery protection up to 18 V  
Rail-to-rail input or output  
Gain bandwidth product: 5.5 kHz  
Wide supply voltage range: 2.5 V to 16 V  
Industry standard packaging  
The single channel TLV2401-Q1 is available in a 5-  
pin SOT-23 package, and the dual channel TLV2402-  
Q1 is available in an 8-pin VSSOP. Both packages  
are fully specified from –40°C to 125°C.  
5-pin SOT-23 (TLV2401-Q1)  
8-pin MSOP (TLV2402-Q1)  
Device Information(1)  
2 Applications  
PART NUMBER  
TLV2401-Q1  
PACKAGE  
SOT-23 (5)  
VSSOP (8)  
BODY SIZE (NOM)  
2.90 mm × 1.60 mm  
3.00 mm × 3.00 mm  
Hybrid, electric, and power train systems  
DC/DC converter  
TLV2402-Q1  
On-board charger (OBC) and wireless charger  
Fuel cell and gasoline engine  
Inverter and motor control  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
Operational Amplifier  
Telematics control unit  
3 Description  
The TLV240x-Q1 (TLV2401-Q1 and TLV2402-Q1) is  
a
family of high voltage (16-V) nano-power  
operational amplifiers (op amps). The TLV240x-Q1  
has an impressively low quiescent current of just 880  
nA (typical) and is ideal for battery-powered or  
"always-on" applications, such as electric vehicle  
monitoring and protection applications. Reverse  
battery protection guards the amplifier from an  
overcurrent condition due to improper battery  
installation. For harsh environments, the inputs can  
be taken 5 V above the positive supply rail without  
damage to the device.  
Supply Current vs Supply Voltage  
1.4  
A
V
= 1  
V
= V  
/ 2  
CC  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
IN  
= 25 °C  
T
A
0
2
4
6
8
10 12 14 16  
Supply Voltage, V (V)  
CC  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
 
TLV2401-Q1, TLV2402-Q1  
SLOS716A APRIL 2011REVISED FEBRUARY 2020  
www.ti.com  
Table of Contents  
7.4 Device Functional Modes........................................ 16  
Application and Implementation ........................ 17  
8.1 Application Information............................................ 17  
8.2 Typical Application ................................................. 17  
Power Supply Recommendations...................... 19  
1
2
3
4
5
6
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information for Single Channel ................... 5  
6.5 Thermal Information for Dual Channel...................... 5  
6.6 Electrical Characteristics........................................... 6  
6.7 Typical Characteristics.............................................. 9  
Detailed Description ............................................ 15  
7.1 Overview ................................................................. 15  
7.2 Functional Block Diagram ....................................... 15  
7.3 Feature Description................................................. 15  
8
9
10 Layout................................................................... 20  
10.1 Layout Guidelines ................................................. 20  
10.2 Layout Example .................................................... 20  
11 Device and Documentation Support ................. 22  
11.1 Device Support...................................................... 22  
11.2 Related Links ........................................................ 22  
11.3 Support Resources ............................................... 22  
11.4 Trademarks........................................................... 22  
11.5 Electrostatic Discharge Caution............................ 22  
11.6 Glossary................................................................ 22  
7
12 Mechanical, Packaging, and Orderable  
Information ........................................................... 23  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Original (April 2011) to Revision A  
Page  
Added Device Information table, ESD Ratings table, Feature Description section, Device Functional Modes,  
Application and Implementation section, Power Supply Recommendations section, Layout section, Device and  
Documentation Support section, and Mechanical, Packaging, and Orderable Information section. .................................... 1  
Removed TLV2404-Q1 information from the data sheet........................................................................................................ 1  
Changed TLV2401-Q1 information from Preview to Active.................................................................................................... 1  
2
Submit Documentation Feedback  
Copyright © 2011–2020, Texas Instruments Incorporated  
Product Folder Links: TLV2401-Q1 TLV2402-Q1  
 
TLV2401-Q1, TLV2402-Q1  
www.ti.com  
SLOS716A APRIL 2011REVISED FEBRUARY 2020  
5 Pin Configuration and Functions  
TLV2401-Q1 DBV Package  
5-Pin SOT-23  
Top View  
OUT  
Vœ  
1
2
3
5
V+  
IN+  
4
INœ  
Not to scale  
Table 1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
3
IN+  
IN–  
I
Noninverting input  
4
I
Inverting input  
Output  
OUT  
V+  
1
O
5
Positive (high) supply  
V–  
2
Negative (low) supply or ground (for single-supply operation)  
TLV2402-Q1 DGK Package  
8-Pin VSSOP  
Top View  
OUT1  
IN1œ  
IN1+  
Vœ  
1
2
3
4
8
7
6
5
V+  
OUT2  
IN2œ  
IN2+  
Not to scale  
Table 2. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
3
IN1+  
IN1–  
IN2+  
IN2–  
OUT1  
OUT2  
V+  
I
I
Noninverting input, channel 1  
Inverting input, channel 1  
Noninverting input, channel 2  
Inverting input, channel 2  
Output, channel 1  
2
5
I
6
I
1
O
O
7
Output, channel 2  
8
Positive (high) supply  
V–  
4
Negative (low) supply or ground (for single-supply operation)  
Copyright © 2011–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: TLV2401-Q1 TLV2402-Q1  
TLV2401-Q1, TLV2402-Q1  
SLOS716A APRIL 2011REVISED FEBRUARY 2020  
www.ti.com  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating ambient temperature range (unless otherwise noted)(1)  
MIN  
0
MAX  
17  
UNIT  
V
Supply voltage, VS = (V+) – (V–)  
Differential voltage(2)  
Current(2)  
–20  
20  
V
Input pins  
–10  
10  
mA  
Output short-circuit(3)  
Continuous  
–40  
Operating ambient temperature, TA  
Junction temperature, TJ  
Storage temperature, Tstg  
125  
150  
150  
°C  
°C  
°C  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Input pins are diode-clamped to the power-supply rails. Input signals that may swing more than 0.5 V beyond the supply rails must be  
current limited to 10 mA or less.  
(3) Short-circuit to ground, one amplifier per package.  
6.2 ESD Ratings  
VALUE  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Electrostatic discharge Machine-model (MM)  
Charged-device model (CDM), per JEDEC specification JESD22-C101  
V(ESD)  
±200  
V
±1000  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
2.5  
MAX  
UNIT  
V
Single supply  
Split supply  
16  
±8  
VS  
Supply voltage, (V+) – (V–)  
±1.25  
V
VI  
Input voltage range  
(V–) – 0.1  
–40  
(V+) + 5  
125  
V
TA  
Specified temperature  
°C  
4
Submit Documentation Feedback  
Copyright © 2011–2020, Texas Instruments Incorporated  
Product Folder Links: TLV2401-Q1 TLV2402-Q1  
 
TLV2401-Q1, TLV2402-Q1  
www.ti.com  
SLOS716A APRIL 2011REVISED FEBRUARY 2020  
6.4 Thermal Information for Single Channel  
TLV2401-Q1  
THERMAL METRIC(1)  
DBV (SOT-23)  
5 PINS  
324.1  
55  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
TBD  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
TBD  
ψJB  
TBD  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.5 Thermal Information for Dual Channel  
TLV2402-Q1  
THERMAL METRIC(1)  
DGK (VSSOP)  
8 PINS  
259.9  
54.2  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
TBD  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
TBD  
ψJB  
TBD  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
Copyright © 2011–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: TLV2401-Q1 TLV2402-Q1  
TLV2401-Q1, TLV2402-Q1  
SLOS716A APRIL 2011REVISED FEBRUARY 2020  
www.ti.com  
6.6 Electrical Characteristics  
For VS = (V+) – (V–) = 2.7 V to 16 V (±1.35 V to ±8 V) at TA = 25°C, RL = 500 kconnected to VS / 2, VCM = VS / 2, and VOUT  
= VS / 2, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
390  
±1950  
±2800  
VOS  
Input offset voltage  
RS = 50  
RS = 50 Ω  
µV  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
Input offset voltage  
drift  
dVOS/dT  
±3  
µV/  
TLV2401-Q1  
±1  
±1  
±15  
±10  
±70  
±10  
VCC = 2.7 V to 5 V  
TLV2402-Q1  
TA = –40°C to 125°C  
Power supply rejection  
ratio  
±1  
PSRR  
No load  
μV/V  
TLV2401-Q1, TA  
–40°C to 125°C  
=
=
±35  
±14  
VCC = 5 V to 15 V  
TLV2402-Q1, TA  
–40°C to 125°C  
INPUT BIAS CURRENT  
±100  
±100  
±25  
±1000  
±4000  
±300  
TLV2401-Q1  
TLV2402-Q1  
TLV2401-Q1  
TLV2402-Q1  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
IB  
Input bias current  
RS = 50 Ω  
pA  
pA  
±900  
±1000  
±1500  
±250  
IOS  
Input offset current  
RS = 50 Ω  
±25  
±400  
NOISE  
eN  
f = 10 Hz  
f = 100 Hz  
f = 1 kHz  
800  
500  
8
Input voltage noise  
density  
nV/Hz  
fA/Hz  
iN  
Input current noise  
INPUT VOLTAGE RANGE  
Common-mode  
VCM  
(V–) –  
0.1  
(V+) + 5  
V
voltage range  
56  
54  
62  
58  
71  
68  
60  
56  
65  
58  
73  
73  
100  
106  
112  
120  
120  
120  
VS = 2.7 V, (V–) < VCM  
< (V+), RS = 50 Ω  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
VS = 5 V, (V–) < VCM  
<
TLV2401-Q1  
(V+), RS = 50 Ω  
VS = 15 V, (V–) < VCM  
(V+), RS = 50 Ω  
<
Common-mode  
CMRR  
dB  
rejection ratio  
VS = 2.7 V, (V–) < VCM  
< (V+), RS = 50 Ω  
VS = 5 V, (V–) < VCM  
<
TLV2402-Q1  
(V+), RS = 50 Ω  
VS = 15 V, (V–) < VCM  
(V+), RS = 50 Ω  
<
INPUT CAPACITANCE  
Differential input  
resistance  
RID  
300  
3
MΩ  
Common-mode input  
capacitance  
CICM  
pF  
6
Submit Documentation Feedback  
Copyright © 2011–2020, Texas Instruments Incorporated  
Product Folder Links: TLV2401-Q1 TLV2402-Q1  
TLV2401-Q1, TLV2402-Q1  
www.ti.com  
SLOS716A APRIL 2011REVISED FEBRUARY 2020  
Electrical Characteristics (continued)  
For VS = (V+) – (V–) = 2.7 V to 16 V (±1.35 V to ±8 V) at TA = 25°C, RL = 500 kconnected to VS / 2, VCM = VS / 2, and VOUT  
= VS / 2, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
112  
120  
125  
112  
120  
125  
MAX  
UNIT  
OPEN-LOOP GAIN  
91  
72  
VS = 2.7 V, VO(pp) = 1 V  
VS = 5 V, VO(pp) = 1 V(1)  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
100  
94  
TLV2401-Q1  
106  
98  
VS = 15 V, VO(pp) = 6  
V(1)  
Open-loop voltage  
gain  
AOL  
dB  
102  
81  
VS = 2.7 V, VO(pp) = 1 V  
VS = 5 V, VO(pp) = 1 V  
VS = 15 V, VO(pp) = 6 V  
109  
91  
TLV2402-Q1  
120  
96  
FREQUENCY RESPONSE  
Gain-bandwidth  
product  
GBW  
RL = 500 kΩ, CL = 100 pF  
5.5  
2.5  
kHz  
SR  
Slew rate  
V/ms  
VS = 2.7 V or 5 V, VSTEP = 1 V, G = –1, CL = 100  
pF, RL = 100 kΩ  
To 0.1%  
1.84  
tS  
Settling time  
ms  
To 0.1%  
6.1  
32  
60  
15  
VS = 15 V, VSTEP = 1 V, G = –1, CL = 100 pF, RL  
100 kΩ  
=
To 0.01%  
Phase margin  
Gain margin  
°
G = +1, RL = 10 k, CL = 20 pF  
dB  
OUTPUT  
2.65  
2.63  
4.95  
4.93  
14.95  
14.93  
2.62  
2.6  
2.68  
4.98  
14.98  
2.65  
4.95  
14.95  
90  
VCC = 2.7 V  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
VCM = VCC / 2, IOH = –2  
µA  
VCC = 5 V(1)  
VCC = 15 V(1)  
VCC = 2.7 V  
High-level output  
voltage  
VOH  
V
4.92  
4.9  
VCM = VCC / 2, IOH = –50  
µA  
VCC = 5 V(1)  
14.92  
14.9  
VCC = 15 V(1)  
150  
180  
230  
260  
VCM = VCC / 2, IOL = 2 µA(1)  
Low-level output  
voltage  
VOL  
mV  
µA  
180  
VCM = VCC / 2, IOL = 50 µA(1)  
VO = 0.5 V from rail  
ISC  
Short-circuit current  
±200  
(1) Assured by design and characterization only. This condition applies for TLV2401-Q1 only.  
Copyright © 2011–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: TLV2401-Q1 TLV2402-Q1  
TLV2401-Q1, TLV2402-Q1  
SLOS716A APRIL 2011REVISED FEBRUARY 2020  
www.ti.com  
Electrical Characteristics (continued)  
For VS = (V+) – (V–) = 2.7 V to 16 V (±1.35 V to ±8 V) at TA = 25°C, RL = 500 kconnected to VS / 2, VCM = VS / 2, and VOUT  
= VS / 2, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
880  
900  
880  
900  
MAX  
UNIT  
POWER SUPPLY  
1050  
1400  
1050  
1550  
990  
VCC = 2.7 V or 5 V, IO  
0 A  
=
TA = –40°C to 125°C  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
TLV2401-Q1  
TLV2402-Q1  
VCC = 15 V, IO = 0 A  
Quiescent current per  
amplifier  
IQ  
nA  
nA  
VCC = 2.7 V or 5 V, IO  
0 A  
=
1300  
1050  
1400  
VCC = 15 V, IO = 0 A  
Reverse supply  
current  
VCC = –18 V, VIN = 0 V, RL = ∞  
50  
8
Submit Documentation Feedback  
Copyright © 2011–2020, Texas Instruments Incorporated  
Product Folder Links: TLV2401-Q1 TLV2402-Q1  
TLV2401-Q1, TLV2402-Q1  
www.ti.com  
SLOS716A APRIL 2011REVISED FEBRUARY 2020  
6.7 Typical Characteristics  
100  
0
1400  
V
T
= 2.7 V  
CC  
= 25°C  
1200  
1000  
800  
600  
400  
200  
0
A
–100  
–200  
–300  
–400  
V
T
= 5 V  
CC  
= 25 °C  
A
–200  
–0.1 0.20 0.60 1.00 1.40 1.80 2.20 2.60 2.9  
Common-Mode Input Voltage, V (V)  
–0.1 0.4 1.0 1.6 2.2 2.8 3.4 4.0 4.6 5.2  
Common-Mode Input Voltage, V (V)  
ICR  
ICR  
Figure 1. Input Offset Voltage vs Common-Mode Input  
Voltage  
Figure 2. Input Offset Voltage vs Common-Mode Input  
Voltage  
400  
600  
V
T
= 15 V  
CC  
= 25 °C  
V
V
= 2.7 V  
CC  
= 1.35 V  
300  
200  
500  
400  
300  
200  
100  
0
A
IC  
100  
0
–100  
–200  
–300  
–400  
I
IO  
I
IB  
–100  
–200  
–0.1 2.0  
4.2 6.4 8.6 10.8 13.0 15.2  
(V)  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
Common-Mode Input Voltage, V  
Free-Air Temperature, T (°C)  
A
ICR  
Figure 3. Input Offset Voltage vs Common-Mode Input  
Voltage  
Figure 4. Input Bias and Offset Current vs Free-Air  
Temperature  
400  
350  
600  
V
V
= 5 V  
CC  
= 2.5 V  
V
T
= 2.7 V  
CC  
= 25 °C  
500  
400  
300  
200  
100  
0
IC  
A
300  
250  
200  
150  
100  
50  
I
IO  
I
IO  
0
–50  
–100  
–150  
I
IB  
I
IB  
–100  
–200  
–0.1 0.2 0.6 1.0 1.4 1.8 2.2 2.6 2.9  
Common-Mode Input Voltage, V (V)  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
Free-Air Temperature, T (°C)  
A
ICR  
Figure 5. Input Bias and Offset Current vs Common-Mode  
Voltage  
Figure 6. Input Bias and Offset Current vs Free-Air  
Temperature  
Copyright © 2011–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: TLV2401-Q1 TLV2402-Q1  
 
TLV2401-Q1, TLV2402-Q1  
SLOS716A APRIL 2011REVISED FEBRUARY 2020  
www.ti.com  
Typical Characteristics (continued)  
200  
700  
600  
500  
400  
300  
200  
100  
0
V
V
= 15 V  
CC  
= 7.5 V  
V
T
= 5 V  
CC  
= 25 °C  
150  
100  
50  
IC  
A
I
IO  
0
I
IO  
–50  
–100  
–150  
I
IB  
–100  
I
IB  
–200  
–0.1 0.4 1.0 1.6 2.2 2.8 3.4 4.0 4.6 5.2  
Common-Mode Input Voltage, V (V)  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
Free-Air Temperature, T (°C)  
ICR  
A
Figure 7. Input Bias and Offset Current vs Common-Mode  
Voltage  
Figure 8. Input Bias and Offset Current vs Free-Air  
Temperature  
250  
120  
V
T
= 15 V  
CC  
= 25 °C  
200  
150  
100  
50  
100  
80  
60  
40  
20  
0
A
I
IO  
0
–50  
–100  
–150  
I
IB  
–0.1  
2.0  
4.2  
6.4  
8.6 10.8 13.0 15.2  
(V)  
1
10  
100  
Frequency, f (Hz)  
1k  
10k  
Common-Mode Input Voltage, V  
ICR  
Figure 9. Input Bias and Offset Current vs Common-Mode  
Input Voltage  
Figure 10. Common-Mode Rejection Ratio vs Frequency  
2.7  
1.50  
V
T
= 2.7 V  
CC  
V
= 2.7 V  
CC  
1.25  
1.00  
0.75  
0.50  
0.25  
0
= 25 °C  
= 0 °C  
A
2.4  
2.1  
1.8  
1.5  
1.2  
T
A
T
A
= –40°C  
T
= –40°C  
A
T
= –0°C  
A
T
= 25 °C  
= 70 °C  
= 125 °C  
A
T
= 70 °C  
A
T
A
T
= 125 °C  
A
T
A
0
100  
150  
OH  
200  
50  
0
100  
150  
200  
50  
High-Level Output Current, I  
(mA)  
Low-Level Output Current, I (mA)  
OL  
Figure 11. High-Level Output Voltage vs High-Level Output  
Current  
Figure 12. Low-Level Output Voltage vs Low-Level Output  
Current  
10  
Submit Documentation Feedback  
Copyright © 2011–2020, Texas Instruments Incorporated  
Product Folder Links: TLV2401-Q1 TLV2402-Q1  
TLV2401-Q1, TLV2402-Q1  
www.ti.com  
SLOS716A APRIL 2011REVISED FEBRUARY 2020  
Typical Characteristics (continued)  
5.0  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
V
T
= 5 V  
CC  
V
= 5 V  
CC  
T
= –40°C  
A
= 0 °C  
A
4.5  
4.0  
3.5  
3.0  
T
= –40°C  
A
T
= –0°C  
A
T
= 25 °C  
= 70 °C  
= 125 °C  
A
T
A
T
A
T
A
= 25 °C  
= 70 °C  
= 125 °C  
T
A
T
A
0
100  
150  
200  
50  
0
100  
150  
200  
50  
High-Level Output Current, I  
(mA)  
Low-Level Output Current, I (mA)  
OL  
OH  
Figure 13. High-Level Output Voltage vs High-Level Output  
Current  
Figure 14. Low-Level Output Voltage vs Low-Level Output  
Current  
15.0  
1.50  
V
= 15 V  
CC  
1.25  
1.00  
0.75  
0.50  
0.25  
0
14.5  
T
A
= –40°C  
T
= –0°C  
T
= –0°C  
A
A
T
= 25 °C  
= 70 °C  
= 125 °C  
T
= 25 °C  
= 70 °C  
= 125 °C  
14.0  
13.5  
13  
A
A
T
T
A
A
T
T
A
A
T
= –40°C  
A
V
= 15 V  
CC  
0
100  
150  
200  
0
100  
150  
OL  
200  
50  
50  
High-Level Output Current, I  
(mA)  
Low-Level Output Current, I (mA)  
OH  
Figure 15. High-Level Output Voltage vs High-Level Output  
Current  
Figure 16. Low-Level Output Voltage vs Low-Level Output  
Current  
10k  
16  
14  
12  
10  
8
V
= 15 V  
CC  
AV = 10  
1k  
AV = 1  
6
R
C
T
= 100 kΩ  
= 100 pF  
= 25°C  
L
L
4
V
= 5 V  
CC  
100  
2
A
V
= 2.7 V  
CC  
V
T
= 2.7, 5, & 15 V  
CC  
= 25°C  
0
A
10  
100  
1k  
10k  
100  
1k  
Frequency, f (Hz)  
10k  
Frequency, f (Hz)  
Figure 18. Output Impedance vs Frequency  
Figure 17. Output Voltage Peak-to-Peak vs Frequency  
Copyright © 2011–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: TLV2401-Q1 TLV2402-Q1  
TLV2401-Q1, TLV2402-Q1  
SLOS716A APRIL 2011REVISED FEBRUARY 2020  
www.ti.com  
Typical Characteristics (continued)  
1.4  
120  
110  
100  
90  
V
T
= 2.7, 5, & 15 V  
CC  
1.2  
1.0  
0.8  
0.6  
= 25°C  
A
80  
T
= 125°C  
= 70 °C  
= 25 °C  
= 0 °C  
A
70  
T
A
0.4  
0.2  
0
T
A
60  
T
A
T
= –40°C  
A
V
= 1  
50  
A
V
= V  
/ 2  
CC  
IN  
40  
2.5 4.0 5.5 7.0 8.5 10.0 11.5 13.0 14.5 16.0  
1
10  
100  
1k  
10k  
Supply Voltage, V (V)  
CC  
Frequency, f (Hz)  
Figure 19. Supply Current vs Supply Voltage  
Figure 20. Power Supply Rejection Ratio vs Frequency  
7
60  
135  
T
= 25°C  
A
50  
R
C
= 100 kΩ  
= 100 pF  
L
6
5
4
3
2
1
0
L
40  
30  
20  
10  
90  
f = 1 kHz  
45  
0
0
V
= 2.7, 5, & 15 V  
= 500 kΩ  
= 100 pF  
= 25°C  
CC  
L
L
R
C
T
–10  
A
–20  
–45  
2.5 4.0 5.5 7.0 8.5 10.0 11.5 13.0 14.5 16.0  
100  
1k  
10k  
10  
Frequency, f (Hz)  
Supply Voltage, V (V)  
CC  
Figure 21. Differential Voltage Gain and Phase vs Frequency  
Figure 22. Gain Bandwidth Product vs Supply Voltage  
3.5  
80  
70  
60  
50  
40  
30  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
SR+  
V
= 5, 15 V  
CC  
V
= 2.7 V  
CC  
V
= 2.7, 5, & 15 V  
CC  
V
= 2.7, 5, & 15 V  
= 500 kΩ  
SR–  
CC  
20  
10  
0
R
T
L
= 25°C  
A
100  
1k  
10k  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
10  
Free-Air Temperature, T (°C)  
A
Capacitive Load, C (pF)  
L
Figure 23. Slew Rate vs Free-Air Temperature  
Figure 24. Phase Margin vs Capacitive Load  
12  
Submit Documentation Feedback  
Copyright © 2011–2020, Texas Instruments Incorporated  
Product Folder Links: TLV2401-Q1 TLV2402-Q1  
TLV2401-Q1, TLV2402-Q1  
www.ti.com  
SLOS716A APRIL 2011REVISED FEBRUARY 2020  
Typical Characteristics (continued)  
60  
55  
25  
R
T
= 500 kΩ  
= 25°C  
L
T
= 25°C  
A
A
50  
45  
40  
20  
15  
10  
5
V
= 15 V  
CC  
35  
30  
25  
20  
15  
10  
V
= 2.7 & 5 V  
CC  
5
0
0
–18 –16 –14 –12 –10 –8 –6 –4 –2  
0
100  
1k  
10k  
10  
Reverse Voltage, V (V)  
CC  
Capacitive Load, C (pF)  
L
Figure 26. Supply Current vs Reverse Voltage  
Figure 25. Gain Margin vs Capacitive Load  
4
2
V
= 5 V  
CC  
f = 0.1 Hz to 10 Hz  
= 25°C  
3
T
A
1
0
V
IN  
2
1
V
A
= 2.7 V  
CC  
= 1  
V
0
2
–1  
R
= 100 kΩ  
= 100 pF  
= 25°C  
L
L
C
T
–1  
–2  
–3  
–4  
1
A
V
O
0
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
Time, t (s)  
Time, t (ms)  
Figure 27. 0.1 Hz to 10 Hz Voltage Noise  
Figure 28. Large Signal Follower Pulse Response  
15  
4
3
2
8
7
V
A
= 15 V  
CC  
V
A
= 5 V  
CC  
= 1  
15  
10  
5
V
10  
5
= 1  
V
R
= 100 kΩ  
= 100 pF  
= 25°C  
V
L
L
V
IN  
R
= 100 kΩ  
= 100 pF  
= 25°C  
IN  
L
L
6
C
T
C
T
A
5
1
0
A
0
4
–5  
3
–1  
V
2
O
V
O
1
0
0
0
2
4
6
8
10 12 14 16  
0
1
2
3
4
5
6
Time, t (ms)  
Time, t (ms)  
Figure 30. Large Signal Follower Pulse Response  
Figure 29. Large Signal Follower Pulse Response  
Copyright © 2011–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: TLV2401-Q1 TLV2402-Q1  
TLV2401-Q1, TLV2402-Q1  
SLOS716A APRIL 2011REVISED FEBRUARY 2020  
www.ti.com  
Typical Characteristics (continued)  
Time, t (ms)  
Time, t (ms)  
Figure 32. Large Signal Follower Pulse Response  
Figure 31. Small Signal Follower Pulse Response  
Time, t (ms)  
Time, t (ms)  
Figure 34. Large Signal Follower Pulse Response  
Figure 33. Large Signal Follower Pulse Response  
Time, t (ms)  
Frequency, f (Hz)  
Figure 35. Small Signal Follower Pulse Response  
Figure 36. Crosstalk  
14  
Submit Documentation Feedback  
Copyright © 2011–2020, Texas Instruments Incorporated  
Product Folder Links: TLV2401-Q1 TLV2402-Q1  
TLV2401-Q1, TLV2402-Q1  
www.ti.com  
SLOS716A APRIL 2011REVISED FEBRUARY 2020  
7 Detailed Description  
7.1 Overview  
The TLV240x-Q1 (TLV2401-Q1 and TLV2402-Q1) is a family of high voltage (16-V) general purpose operational  
amplifiers (op amps). The TLV240x-Q1 has an impressively low quiescent current of just 880 nA (typ) and is  
ideal for battery-powered or "always-on" applications, such as electric vehicle monitoring and protection  
applications. Reverse battery protection guards the amplifier from an overcurrent condition due to improper  
battery installation. For harsh environments, the inputs can be taken 5 V above the positive supply rail without  
damage to the device.  
The low supply current is coupled with extremely low input bias currents enabling them to be used with mega-Ω  
resistors making them ideal for portable, long active-life applications. DC accuracy is ensured with a low typical  
offset voltage as low as 390 µV, CMRR of 120 dB and minimum open loop gain of 130 V/mV at 2.7 V.  
The maximum recommended supply voltage is as high as 16 V and ensured operation down to 2.5 V, with  
electrical characteristics specified at 2.7 V, 5 V and 15 V. The 2.5-V operation makes it compatible with Li-Ion  
battery-powered systems and many micro-power microcontrollers including TI’s MSP430 and MSP432.  
7.2 Functional Block Diagram  
7.3 Feature Description  
7.3.1 Reverse Battery Protection  
The TLV240x-Q1 are protected against reverse battery voltage up to 18 V. When subjected to reverse battery  
condition the supply current is typically less than 100 nA at 25°C (inputs grounded and outputs open). This  
current is determined by the leakage of 6 Schottky diodes; and therefore, increases as the ambient temperature  
increases.  
When subjected to reverse battery conditions and negative voltages applied to the inputs or outputs, the input  
ESD structure turns on—this current should be limited to less than 10 mA. If the inputs or outputs are referred to  
ground, rather than midrail, no extra precautions need be taken.  
7.3.1.1 Common-Mode Input Range  
The TLV240x-Q1 has rail-to-rail input and outputs. For common-mode inputs from –0.1 V to VCC – 0.8 V a PNP  
differential pair provides the gain.  
For inputs between VCC – 0.8 V and VCC, two NPN emitter followers buffering a second PNP differential pair  
provide the gain. This special combination of NPN/PNP differential pair enables the inputs to be taken 5 V above  
the rails, because as the inputs go above VCC, the NPNs switch from functioning as transistors to functioning as  
diodes. This leads to an increase in input bias current. The second PNP differential pair continues to function  
normally as the inputs exceed VCC  
.
The TLV240x-Q1 has a negative common-input range that exceeds ground by 100 mV. If the inputs are taken  
much below this, reduced open loop gain is observed with the ultimate possibility of phase inversion.  
Copyright © 2011–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: TLV2401-Q1 TLV2402-Q1  
TLV2401-Q1, TLV2402-Q1  
SLOS716A APRIL 2011REVISED FEBRUARY 2020  
www.ti.com  
Feature Description (continued)  
7.3.2 Offset Voltage  
The output offset voltage, (VOO) is the sum of the input offset voltage (VIO) and both input bias currents (IIB) times  
the corresponding gains. The following schematic and formula can be used to calculate the output offset voltage:  
R
F
I
IB–  
R
G
+
V
V
O
I
+
R
S
I
IB+  
R
R
R
R
F
F
V
V
1
I
R
1
I
R
OO  
IO  
IB  
S
IB–  
F
G
G
Figure 37. Output Offset Voltage Model  
7.4 Device Functional Modes  
The TLV240x-Q1 has a single functional mode. The devices are powered on as long as the power supply voltage  
is between 2.5 V (±1.25 V) and 16 V (±8 V).  
16  
Submit Documentation Feedback  
Copyright © 2011–2020, Texas Instruments Incorporated  
Product Folder Links: TLV2401-Q1 TLV2402-Q1  
TLV2401-Q1, TLV2402-Q1  
www.ti.com  
SLOS716A APRIL 2011REVISED FEBRUARY 2020  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often required  
to maximize accuracy. A low-pass filter using different topologies can offer circuit designers the flexibility to  
design their circuit optimally.  
8.2 Typical Application  
The simplest way to accomplish this a low-pass filter is to place an RC filter at the non-inverting terminal of the  
amplifier (see Figure 38). If even more attenuation is needed, a multiple pole filter is required. The Figure 39 can  
be used for this task. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter  
frequency bandwidth. Failure to do this can result in phase shift of the amplifier.  
R
R
F
G
V
1
O
+
V
I
R1  
C1  
f
–3dB  
2 R1C1  
V
R
O
F
1
1
V
R
1
sR1C1  
I
G
Figure 38. Single-Pole Low-Pass Filter  
C1  
R1 = R2 = R  
C1 = C2 = C  
Q = Peaking Factor  
(Butterworth Q = 0.707)  
+
_
V
I
1
2 RC  
R1  
R2  
f
–3dB  
C2  
R
F
R
G
=
1
R
F
2 –  
)
(
R
Q
G
Figure 39. 2-Pole Low-Pass Sallen-Key Filter  
8.2.1 Design Requirements  
The design requirements for this circuit are:  
Supply voltage: 5 V  
Low quiescent current: 5-µA typical  
–3-dB bandwidth: 100 Hz  
Gain at 0 Hz: 2  
Copyright © 2011–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: TLV2401-Q1 TLV2402-Q1  
 
 
TLV2401-Q1, TLV2402-Q1  
SLOS716A APRIL 2011REVISED FEBRUARY 2020  
www.ti.com  
Typical Application (continued)  
8.2.2 Detailed Design Procedure  
Considering the equations shown in Figure 39, we can derive that RF = RG if the gain must equal 2 at DC. To  
minimize power dissipation of the system, we can set RF = RG = 1 MΩ. With a supply voltage of 5 V, this will give  
a worst-possible feedback current of about 2.5 µA.  
To set the –3-dB pole at 100 Hz, we can calculate that the ratio R1 × C1 must equal 1.6 × 10–4. With this in  
mind, we can set R1 = 100 kΩ and C1 = 1.6 pF.  
With these values, we have achieved all of our design goals for the circuit.  
8.2.3 Application Curve  
The frequency response of the filter circuit is shown below.  
20  
0
-20  
-40  
-60  
-80  
Circuit response  
3 dB  
-100  
1
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
RCLP  
Figure 40. RC Low Pass Filter Frequency Response  
18  
Submit Documentation Feedback  
Copyright © 2011–2020, Texas Instruments Incorporated  
Product Folder Links: TLV2401-Q1 TLV2402-Q1  
TLV2401-Q1, TLV2402-Q1  
www.ti.com  
SLOS716A APRIL 2011REVISED FEBRUARY 2020  
9 Power Supply Recommendations  
The TLV240x-Q1 is specified for operation from 2.5 V to 16 V (±1.25 V to ±8 V); many specifications apply from  
–40°C to 125°C. Parameters that can exhibit significant variance with regard to operating voltage or temperature  
are presented in the Typical Characteristics.  
CAUTION  
Supply voltages larger than 16 V can permanently damage the device; see the  
Absolute Maximum Ratings.  
Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-  
impedance power supplies. For more detailed information on bypass capacitor placement, refer to the .  
Copyright © 2011–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: TLV2401-Q1 TLV2402-Q1  
TLV2401-Q1, TLV2402-Q1  
SLOS716A APRIL 2011REVISED FEBRUARY 2020  
www.ti.com  
10 Layout  
10.1 Layout Guidelines  
To achieve the levels of high performance of the TLV240x-Q1, follow proper printed-circuit board design  
techniques. A general set of guidelines is given in the following.  
Ground planes – It is highly recommended that a ground plane be used on the board to provide all  
components with a low inductive ground connection. However, in the areas of the amplifier inputs and output,  
the ground plane can be removed to minimize the stray capacitance.  
Proper power supply decoupling – Use a 6.8-mF tantalum capacitor in parallel with a 0.1-mF ceramic  
capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers  
depending on the application, but a 0.1-mF ceramic capacitor should always be used on the supply terminal  
of every amplifier. In addition, the 0.1-mF capacitor should be placed as close as possible to the supply  
terminal. As this distance increases, the inductance in the connecting trace makes the capacitor less  
effective. The designer should strive for distances of less than 0.1 in between the device power terminals and  
the ceramic capacitors.  
Sockets – Sockets can be used but are not recommended. The additional lead inductance in the socket pins  
will often lead to stability problems. Surface-mount packages soldered directly to the printed-circuit board is  
the best implementation.  
Short trace runs/compact part placements – Optimum high performance is achieved when stray series  
inductance has been minimized. To realize this, the circuit layout should be made as compact as possible,  
thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting input of the  
amplifier. Its length should be kept as short as possible. This will help to minimize stray capacitance at the  
input of the amplifier.  
Surface-mount passive components – Using surface-mount passive components is recommended for high  
performance amplifier circuits for several reasons. First, because of the extremely low lead inductance of  
surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small  
size of surface-mount components naturally leads to a more compact layout thereby minimizing both stray  
inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be kept  
as short as possible.  
10.2 Layout Example  
VIN  
+
VOUT  
RG  
RF  
Figure 41. Schematic Representation  
20  
Submit Documentation Feedback  
Copyright © 2011–2020, Texas Instruments Incorporated  
Product Folder Links: TLV2401-Q1 TLV2402-Q1  
TLV2401-Q1, TLV2402-Q1  
www.ti.com  
SLOS716A APRIL 2011REVISED FEBRUARY 2020  
Layout Example (continued)  
Place components close  
to device and to each  
other to reduce parasitic  
errors  
Run the input traces  
as far away from  
the supply lines  
as possible  
VS+  
RF  
NC  
NC  
Use a low-ESR,  
ceramic bypass  
capacitor  
RG  
GND  
œIN  
+IN  
Vœ  
V+  
OUTPUT  
NC  
VIN  
GND  
GND  
VSœ  
VOUT  
Ground (GND) plane on another layer  
Use low-ESR,  
ceramic bypass  
capacitor  
Figure 42. Operational Amplifier Board Layout for Noninverting Configuration  
Copyright © 2011–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: TLV2401-Q1 TLV2402-Q1  
TLV2401-Q1, TLV2402-Q1  
SLOS716A APRIL 2011REVISED FEBRUARY 2020  
www.ti.com  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Development Support  
11.1.1.1 TINA-TI™ (Free Software Download)  
TINA™ is a simple, powerful, and easy-to-use circuit simulation program based on a SPICE engine. TINA-TI is a  
free, fully-functional version of the TINA software, preloaded with a library of macro models in addition to a range  
of both passive and active models. TINA-TI provides all the conventional dc, transient, and frequency domain  
analysis of SPICE, as well as additional design capabilities.  
Available as a free download from the Analog eLab Design Center, TINA-TI offers extensive post-processing  
capability that allows users to format results in a variety of ways. Virtual instruments offer the ability to select  
input waveforms and probe circuit nodes, voltages, and waveforms, creating a dynamic quick-start tool.  
NOTE  
These files require that either the TINA software (from DesignSoft™) or TINA-TI software  
be installed. Download the free TINA-TI software from the TINA-TI folder.  
11.2 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to order now.  
Table 3. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
ORDER NOW  
TLV2401-Q1  
TLV2402-Q1  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
11.3 Support Resources  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.4 Trademarks  
E2E is a trademark of Texas Instruments.  
TINA-TI is a trademark of Texas Instruments, Inc and DesignSoft, Inc.  
TINA, DesignSoft are trademarks of DesignSoft, Inc.  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
22  
Submit Documentation Feedback  
Copyright © 2011–2020, Texas Instruments Incorporated  
Product Folder Links: TLV2401-Q1 TLV2402-Q1  
TLV2401-Q1, TLV2402-Q1  
www.ti.com  
SLOS716A APRIL 2011REVISED FEBRUARY 2020  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2011–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: TLV2401-Q1 TLV2402-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV2401QDBVRQ1  
TLV2402QDGKRQ1  
ACTIVE  
ACTIVE  
SOT-23  
VSSOP  
DBV  
DGK  
5
8
3000 RoHS & Green  
2500 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
1WU9  
QWX  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
OTHER QUALIFIED VERSIONS OF TLV2401-Q1, TLV2402-Q1 :  
Catalog: TLV2401, TLV2402  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Apr-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV2401QDBVRQ1  
TLV2402QDGKRQ1  
SOT-23  
VSSOP  
DBV  
DGK  
5
8
3000  
2500  
180.0  
330.0  
8.4  
3.2  
5.3  
3.2  
3.4  
1.4  
1.4  
4.0  
8.0  
8.0  
Q3  
Q1  
12.4  
12.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Apr-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV2401QDBVRQ1  
TLV2402QDGKRQ1  
SOT-23  
VSSOP  
DBV  
DGK  
5
8
3000  
2500  
210.0  
346.0  
185.0  
346.0  
35.0  
29.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

TLV2401CD

FAMILY OF 900-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION
TI

TLV2401CDBV

FAMILY OF 900-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION
TI

TLV2401CDBVR

FAMILY OF 880-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION
TI

TLV2401CDBVRG4

FAMILY OF 880-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION
TI

TLV2401CDBVT

FAMILY OF 880-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION
TI

TLV2401CDBVTG4

FAMILY OF 880-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION
TI

TLV2401CDG4

FAMILY OF 880-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION
TI

TLV2401CDR

FAMILY OF 880-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION
TI

TLV2401CDRG4

FAMILY OF 880-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION
TI

TLV2401CP

FAMILY OF 900-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION
TI

TLV2401ID

FAMILY OF 900-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION
TI

TLV2401IDBV

FAMILY OF 900-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION
TI