TLE2037AMFK [TI]

EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS; EXCALIBUR低噪声高速精密运算放大器
TLE2037AMFK
型号: TLE2037AMFK
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS
EXCALIBUR低噪声高速精密运算放大器

运算放大器 放大器电路
文件: 总35页 (文件大小:560K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192 – FEBRUARY 1997  
D, JG, OR P PACKAGE  
Outstanding Combination of dc Precision  
and AC Performance:  
(TOP VIEW)  
Unity-Gain Bandwidth . . . 15 MHz Typ  
OFFSET N1  
IN –  
OFFSET N2  
1
2
3
4
8
7
6
5
V
. . . . 3.3 nV/Hz at f = 10 Hz Typ,  
2.5 nV/Hz at f = 1 kHz Typ  
. . . . 25 µV Max  
n
V
CC +  
IN +  
OUT  
NC  
V
A
IO  
V
CC –  
. . . 45 V/µV Typ With R = 2 k,  
VD  
L
19 V/µV Typ With R = 600 Ω  
L
Available in Standard-Pinout Small-Outline  
Package  
FK PACKAGE  
(TOP VIEW)  
Output Features Saturation Recovery  
Circuitry  
Macromodels and Statistical information  
description  
3
2 1 20 19  
NC  
NC  
18  
17  
16  
15  
14  
4
The TLE20x7 and TLE20x7A contain innovative  
circuit design expertise and high-quality process  
control techniques to produce a level of ac  
performance and dc precision previously unavail-  
able in single operational amplifiers. Manufac-  
tured using Texas Instruments state-of-the-art  
Excalibur process, these devices allow upgrades  
to systems that use lower-precision devices.  
V
IN–  
NC  
IN+  
NC  
5
6
7
8
CC+  
NC  
OUT  
NC  
9 10 11 12 13  
In the area of dc precision, the TLE20x7 and  
TLE20x7A offer maximum offset voltages of  
100 µV and 25 µV, respectively, common-mode  
rejection ratio of 131 dB (typ), supply voltage  
rejection ratio of 144 dB (typ), and dc gain of  
45 V/µV (typ).  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
CHIP  
FORM  
(Y)  
V
IO  
max AT  
25°C  
CHIP  
CARRIER  
(FK)  
CERAMIC  
PLASTIC  
DIP  
SMALL  
OUTLINE  
(D)  
T
A
DIP  
(JG)  
(P)  
TLE2027ACD  
TLE2037ACD  
TLE2027ACP  
TLE2037ACP  
TLE2027Y  
TLE2037Y  
25 µV  
100 µV  
25 µV  
0°C to 70°C  
40°C to 105°C  
55
°
C to 125
°
C  
TLE2027CD  
TLE2037CD  
TLE2027CP  
TLE2037CP  
TLE2027Y  
TLE2037Y  
TLE2027AID  
TLE2037AID  
TLE2027AIP  
TLE2037AIP  
TLE2027ID  
TLE2037ID  
TLE2027IP  
TLE2037IP  
100 µV  
25 µV  
TLE2027AMD  
TLE2037AMD  
TLE2027AMFK  
TLE2037AMFK  
TLE2027AMJG  
TLE2037AMJG  
TLE2027AMP  
TLE2037AMP  
TLE2027MD  
TLE2037MD  
TLE2027MFK  
TLE2037MFK  
TLE2027MJG  
TLE2037MJG  
TLE2027MP  
TLE2037MP  
100 µV  
The D packages are available taped and reeled. Add R suffix to device type (e.g., TLE2027ACDR).  
Chip forms are tested at 25°C only.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 1997, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192 – FEBRUARY 1997  
description (continued)  
The ac performance of the TLE2027 and TLE2037 is highlighted by a typical unity-gain bandwidth specification  
of 15 MHz, 55° of phase margin, and noise voltage specifications of 3.3 nV/Hz and 2.5 nV/Hz at frequencies  
of 10 Hz and 1 kHz respectively. The TLE2037 and TLE2037A have been decompensated for faster slew rate  
(–7.5 V/µs, typical) and wider bandwidth (50 MHz). To ensure stability, the TLE2037 and TLE2037A should be  
operated with a closed-loop gain of 5 or greater.  
Both the TLE20x7 and TLE20x7A are available in a wide variety of packages, including the industry-standard  
8-pin small-outline version for high-density system applications. The C-suffix devices are characterized for  
operation from 0°C to 70°C. The I-suffix devices are characterized for operation from 40°C to 105°C. The  
M-suffix devices are characterized for operation over the full military temperature range of 55°C to 125°C.  
symbol  
OFFSET N1  
IN +  
+
OUT  
IN –  
OFFSET N2  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192 – FEBRUARY 1997  
TLE202xY chip information  
This chip, when properly assembled, displays characteristics similar to the TLE202xC. Thermal compression  
or ultrasonic bonding may be used on the doped-aluminum bonding pads. The chip may be mounted with  
conductive epoxy or a gold-silicon preform.  
BONDING PAD ASSIGNMENTS  
(1)  
(3)  
V
CC+  
(7)  
(6)  
OFFSET N1  
IN+  
(4)  
+
(6)  
OUT  
(2)  
(8)  
IN–  
(4)  
OFFSET N2  
V
CC–  
90  
(3)  
(7)  
CHIP THICKNESS: 15 MILS TYPICAL  
(2)  
BONDING PADS: 4 × 4 MILS MINIMUM  
T max = 150°C  
J
TOLERANCES ARE ±10%.  
ALL DIMENSIONS ARE IN MILS.  
(8)  
PIN (4) IS INTERNALLY CONNECTED  
TO BACKSIDE OF CHIP.  
(1)  
73  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
equivalent schematic  
OFFSET N2  
OFFSET N1  
V
CC+  
R9  
R20  
R15  
Q36  
R1  
Q10  
R2  
R4  
R5  
Q5  
Q2  
R25  
Q42  
Q61  
Q49  
Q58  
Q59  
Q27  
C1  
Q9  
Q46  
Q55  
Q56  
Q13  
Q30  
Q6  
Q3  
R21  
Q11  
Q14  
Q38  
R16  
R17  
R8 R11  
Q32  
R13  
Q19  
Q39  
Q57  
IN +  
Q12 Q17  
Q37  
OUT  
Q25 Q28  
Q4  
Q8  
C3  
Q44  
Q7  
Q1  
R22  
Q52  
Q43  
IN –  
C2  
Q48  
Q50  
Q53  
Q54  
Q62  
Q47  
C4  
Q18  
Q34  
Q23 Q24  
Q41  
Q20  
Q33  
Q21  
Q15  
Q51  
Q60  
Q26  
Q29  
Q45  
R23  
Q22  
Q40  
Q35  
Q31  
R12 R14  
Q16  
R3  
R24 R26  
R6  
R7 R10  
R18  
R19  
V
CC  
ACTUAL DEVICE COMPONENT COUNT  
COMPONENT  
TLE2027  
TLE2037  
Transistors  
Resistors  
epiFET  
61  
26  
1
61  
26  
1
Capacitors  
4
4
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192 – FEBRUARY 1997  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
Supply voltage, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 19 V  
CC+  
CC–  
Differential input voltage, V (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±1.2 V  
Input voltage range, V (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
ID  
V
I
CC±  
Input current, I (each Input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±1 mA  
I
Output current, I  
Total current into V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA  
O
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
CC+  
CC–  
Total current out of V  
Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating free-air temperature range, T : C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 105°C  
M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 55°C to 125°C  
Storage temperature range, T  
Case temperature for 60 seconds, T : FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C  
stg  
C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package . . . . . . . . . . . . . . . . 260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package . . . . . . . . . . . . . . . . . . . 300°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V  
and V  
.
CC +  
CC –  
2. Differential voltages are at IN+ with respect to IN. Excessive current flows if a differential input voltage in excess of approximately  
±1.2 V is applied between the inputs unless some limiting resistance is used.  
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum  
dissipation rating is not exceeded.  
DISSIPATION RATING TABLE  
T 25°C  
DERATING FACTOR  
T
= 70°C  
T
= 105°C  
T = 125°C  
A
POWER RATING  
A
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING  
POWER RATING  
A
D
FK  
JG  
P
725 mW  
5.8 mW/°C  
11.0 mW/°C  
8.4 mW/°C  
8.0 mW/°C  
464 mW  
261 mW  
145 mW  
1375 mW  
880 mW  
495 mW  
275 mW  
1050 mW  
672 mW  
378 mW  
210 mW  
1000 mW  
640 mW  
360 mW  
200 mW  
recommended operating conditions  
C SUFFIX  
I SUFFIX  
M SUFFIX  
UNIT  
V
MIN  
±4  
MAX  
± 19  
11  
MIN  
±4  
MAX  
±19  
11  
MIN  
±4  
MAX  
±19  
11  
Supply voltage, V  
CC±  
T
= 25°C  
11  
10.5  
0
11  
11  
A
Common-mode input voltage, V  
V
IC  
Operating free-air temperature, T  
T
A
= Full range  
10.5  
70  
10.4  
40  
10.4  
105  
10.2  
55  
10.2  
125  
°C  
A
Full range is 0°C to 70°C for C-suffix devices, 40°C to 105°C for I-suffix devices, and 55°C to 125°C for M-suffix devices.  
6–5  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192 – FEBRUARY 1997  
TLE20x7C electrical characteristics at specified free-air temperature, V  
otherwise noted)  
= ±15 V (unless  
±
CC  
TLE20x7C  
TLE20x7AC  
MIN TYP MAX  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP MAX  
25°C  
20  
100  
145  
10  
25  
70  
V
IO  
Input offset voltage  
µV  
Full range  
Temperature coefficient of  
input offset voltage  
α
Full range  
0.4  
1
1
0.2  
1
1
µV/°C  
VIO  
Input offset voltage  
long-term drift (see Note 4)  
25°C  
0.006  
6
0.006  
6
µV/mo  
V
IC  
= 0,  
R
= 50 Ω  
S
25°C  
Full range  
25°C  
90  
150  
90  
90  
150  
90  
I
I
Input offset current  
Input bias current  
nA  
nA  
IO  
15  
15  
IB  
Full range  
150  
150  
–11  
to  
13  
to  
–11  
to  
13  
to  
25°C  
11  
13  
11  
13  
Common-mode input  
voltage range  
V
R
R
= 50 Ω  
V
ICR  
S
L
10.5  
to  
10.5  
10.5  
to  
10.5  
Full range  
25°C  
Full range  
25°C  
10.5  
10  
12.9  
10.5  
10  
12.9  
13.2  
13  
= 600 Ω  
= 2 kΩ  
Maximum positive peak  
output voltage swing  
V
V
V
V
OM +  
12  
12  
13.2  
R
L
L
L
Full range  
25°C  
11  
11  
10.5  
10  
13  
10.5  
10  
R
R
= 600 Ω  
= 2 kΩ  
Full range  
25°C  
Maximum negative peak  
output voltage swing  
OM –  
– 12 13.5  
– 11  
– 12 13.5  
– 11  
Full range  
25°C  
V
V
= ±11 V,  
= ±10 V,  
R
R
= 2 kΩ  
= 2 kΩ  
5
2
45  
38  
19  
10  
4
45  
38  
19  
O
L
Full range  
25°C  
O
L
3.5  
1
8
Large-signal differential  
voltage amplification  
A
VD  
V
= ±10 V,  
R
= 1 kΩ  
V/µV  
O
O
L
Full range  
25°C  
2.5  
5
2
V
R
= ±10 V,  
= 600 Ω  
Full range  
25°C  
0.5  
2
L
C
Input capacitance  
8
50  
8
50  
pF  
i
Open-loop output  
impedance  
z
I
O
= 0  
25°C  
o
25°C  
100  
98  
131  
117  
114  
131  
Common-mode rejection  
ratio  
V
R
= V  
= 50 Ω  
min,  
IC  
S
ICR  
CMRR  
dB  
dB  
Full range  
V
R
= ±4 V to ±18 V,  
= 50 Ω  
CC±  
25°C  
94  
92  
144  
3.8  
110  
106  
144  
3.8  
S
Supply-voltage rejection  
k
SVR  
ratio (V  
CC  
/V  
IO  
)
V
R
= ±4 V to ±18 V,  
±
CC±  
= 50 Ω  
Full range  
S
25°C  
5.3  
5.6  
5.3  
5.6  
I
Supply current  
V
= 0,  
No load  
mA  
CC  
O
Full range  
Full range is 0°C to 70°C.  
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
6–6  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192 – FEBRUARY 1997  
TLE20x7C operating characteristics at specified free-air temperature, V  
(unless otherwise specified)  
= ±15 V, T = 25°C  
CC ±  
A
TLE20x7C  
TLE20x7AC  
UNIT  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
MIN  
TYP MAX  
R
C
= 2 k,  
= 100 pF,  
TLE2027  
TLE2037  
1.7  
2.8  
1.7  
2.8  
L
L
6
7.5  
6
7.5  
See Figure 1  
SR  
Slew rate at unity gain  
V/µs  
R
C
= 2 k,  
= 100 pF,  
= 0°C to 70°C,  
L
L
TLE2027  
TLE2037  
1.2  
1.2  
T
A
5
5
See Figure 1  
R
R
= 20 ,  
= 20 ,  
f = 10 Hz  
f = 1 kHz  
3.3  
2.5  
8
3.3  
2.5  
4.5  
3.8  
Equivalent input noise volt-  
age (see Figure 2)  
S
S
V
n
nV/Hz  
4.5  
Peak-to-peak equivalent in-  
put noise voltage  
V
f = 0.1 Hz to 10 Hz  
50  
250  
50  
130  
nV  
N(PP)  
f = 10 Hz  
f = 1 kHz  
1.5  
0.4  
4
1.5  
0.4  
4
Equivalent input noise cur-  
rent  
I
n
pA/Hz  
0.6  
0.6  
V
= +10 V,  
= 1,  
O
A
TLE2027  
TLE2037  
<0.002%  
<0.002%  
<0.002%  
<0.002%  
VD  
See Note 5  
THD  
Total harmonic distortion  
V
= +10 V,  
= 5,  
O
A
VD  
See Note 5  
TLE2027  
TLE2037  
TLE2027  
TLE2037  
TLE2027  
TLE2037  
7
13  
50  
9
13  
50  
Unity-gain bandwidth  
(see Figure 3)  
R
C
= 2 k,  
= 100 pF  
L
L
B
B
MHz  
kHz  
1
35  
35  
30  
30  
Maximum output-swing  
bandwidth  
R
= 2 kΩ  
OM  
L
80  
80  
55°  
50°  
55°  
50°  
Phase margin at unity gain  
(see Figure 3)  
R
C
= 2 k,  
= 100 pF  
L
L
φ
m
NOTE 5: Measured distortion of the source used in the analysis was 0.002%.  
6–7  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192 – FEBRUARY 1997  
TLE20x7I electrical characteristics at specified free-air temperature, V  
otherwise noted)  
= ±15 V (unless  
CC±  
TLE20x7I  
TLE20x7AI  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP  
MAX  
100  
MIN  
TYP  
MAX  
25  
25°C  
20  
10  
V
IO  
Input offset voltage  
µV  
Full range  
180  
105  
Temperature coefficient of  
input offset voltage  
α
Full range  
0.4  
1
1
0.2  
1
1
µV/°C  
VIO  
Input offset voltage  
long-term drift (see Note 4)  
25°C  
0.006  
6
0.006  
6
µV/mo  
V
IC  
= 0,  
R = 50 Ω  
S
25°C  
Full range  
25°C  
90  
150  
90  
90  
150  
90  
I
I
Input offset current  
Input bias current  
nA  
nA  
IO  
15  
15  
IB  
Full range  
150  
150  
–11  
to  
13  
to  
–11  
to  
13  
to  
25°C  
11  
13  
11  
13  
Common-mode input  
voltage range  
V
R
R
= 50 Ω  
V
ICR  
S
L
10.4  
to  
10.4  
10.4  
to  
10.4  
Full range  
25°C  
Full range  
25°C  
10.5  
10  
12.9  
10.5  
10  
12.9  
13.2  
13  
= 600 Ω  
= 2 kΩ  
Maximum positive peak  
output voltage swing  
V
V
V
V
OM +  
12  
12  
13.2  
R
L
L
L
Full range  
25°C  
11  
11  
10.5  
10  
13  
10.5  
10  
R
R
= 600 Ω  
= 2 kΩ  
Full range  
25°C  
Maximum negative peak  
output voltage swing  
OM –  
– 12 13.5  
– 11  
– 12 13.5  
– 11  
Full range  
25°C  
V
V
= ±11 V, R = 2 kΩ  
5
2
45  
38  
19  
10  
3.5  
8
45  
38  
19  
O
L
= ±10 V, R = 2 kΩ  
Full range  
25°C  
O
L
3.5  
1
Large-signal differential  
voltage amplification  
A
VD  
V
= ±10 V, R = 1 kΩ  
V/µV  
O
O
L
Full range  
25°C  
2.2  
5
2
V
= ±10 V, R = 600 Ω  
L
Full range  
25°C  
0.5  
1.1  
C
Input capacitance  
8
50  
8
50  
pF  
i
Open-loop output  
impedance  
z
I
O
= 0  
25°C  
o
25°C  
100  
96  
131  
117  
113  
131  
Common-mode rejection  
ratio  
V
R
= V  
= 50 Ω  
min,  
IC  
S
ICR  
CMRR  
dB  
dB  
Full range  
V
R
= ±4 V to ±18 V,  
= 50 Ω  
CC±  
25°C  
94  
90  
144  
3.8  
110  
105  
144  
3.8  
S
Supply-voltage rejection  
k
SVR  
ratio (V  
CC  
/V )  
IO  
V
R
= ±4 V to ±18 V,  
±
CC±  
= 50 Ω  
Full range  
S
25°C  
5.3  
5.6  
5.3  
5.6  
I
Supply current  
V
= 0,  
No load  
mA  
CC  
O
Full range  
Full range is – 40°C to 105°C.  
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
6–8  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192 – FEBRUARY 1997  
TLE20x7I operating characteristics at specified free-air temperature, V  
(unless otherwise specified)  
= ±15 V, T = 25°C  
CC ±  
A
TLE20x7I  
TLE20x7AI  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
R
C
= 2 k,  
= 100 pF,  
TLE2027  
TLE2037  
1.7  
2.8  
1.7  
2.8  
L
L
6
7.5  
6
7.5  
See Figure 1  
SR  
Slew rate at unity gain  
V/µs  
R
C
= 2 k,  
= 100 pF,  
= 40°C to 85°C,  
L
L
TLE2027  
TLE2037  
1.1  
1.1  
T
A
4.7  
4.7  
See Figure 1  
R
R
= 20 ,  
= 20 ,  
f = 10 Hz  
f = 1 kHz  
3.3  
2.5  
8
3.3  
2.5  
4.5  
3.8  
Equivalent input noise  
voltage (see Figure 2)  
S
S
V
n
nV/Hz  
4.5  
Peak-to-peak equivalent  
input noise voltage  
V
f = 0.1 Hz to 10 Hz  
50  
250  
50  
130  
nV  
N(PP)  
f = 10 Hz  
f = 1 kHz  
1.5  
0.4  
4
1.5  
0.4  
4
Equivalent input noise  
current  
I
n
pA/Hz  
0.6  
0.6  
V
= +10 V,  
= 1,  
O
A
TLE2027  
TLE2037  
< 0.002%  
< 0.002%  
< 0.002%  
< 0.002%  
VD  
See Note 5  
THD  
Total harmonic distortion  
V
= +10 V,  
= 5,  
O
A
VD  
See Note 5  
TLE2027  
TLE2037  
TLE2027  
TLE2037  
TLE2027  
TLE2037  
7
13  
50  
9
13  
50  
Unity-gain bandwidth  
(see Figure 3)  
R
C
= 2 k,  
= 100 pF  
L
L
B
B
MHz  
kHz  
1
35  
35  
30  
30  
Maximum output-swing  
bandwidth  
R
= 2 kΩ  
OM  
L
80  
80  
55°  
50°  
55°  
50°  
Phase margin at unity  
gain (see Figure 3)  
R
C
= 2 k,  
= 100 pF  
L
L
φ
m
NOTE 5: Measured distortion of the source used in the analysis was 0.002%.  
6–9  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192 – FEBRUARY 1997  
TLE20x7M electrical characteristics at specified free-air temperature, V  
otherwise noted)  
= ±15 V (unless  
±
CC  
TLE20x7M  
TLE20x7AM  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP  
MAX  
100  
MIN  
TYP  
MAX  
25  
25°C  
20  
10  
V
IO  
Input offset voltage  
µV  
Full range  
200  
105  
Temperature coefficient of  
input offset voltage  
α
Full range  
0.4  
1*  
1*  
0.2  
1* µV/°C  
1* µV/mo  
VIO  
Input offset voltage  
long-term drift (see Note 4)  
25°C  
0.006  
6
0.006  
6
V
IC  
= 0,  
R = 50 Ω  
S
25°C  
Full range  
25°C  
90  
150  
90  
90  
nA  
I
I
Input offset current  
Input bias current  
IO  
150  
15  
15  
90  
nA  
IB  
Full range  
150  
150  
–11  
to  
13  
to  
–11  
to  
13  
to  
25°C  
11  
13  
11  
13  
Common-mode input  
voltage range  
V
R
R
= 50 Ω  
V
ICR  
S
L
10.3  
to  
10.3  
10.4  
to  
10.4  
Full range  
25°C  
Full range  
25°C  
10.5  
10  
12.9  
13.2  
13  
10.5  
10  
12.9  
13.2  
13  
= 600 Ω  
= 2 kΩ  
Maximum positive peak  
output voltage swing  
V
V
V
V
OM +  
12  
12  
R
L
L
L
Full range  
25°C  
11  
11  
10.5  
10  
10.5  
10  
R
R
= 600 Ω  
= 2 kΩ  
Full range  
25°C  
Maximum negative peak  
output voltage swing  
OM –  
– 12 13.5  
– 11  
– 12 13.5  
– 11  
Full range  
25°C  
V
V
= ±11 V, R = 2 kΩ  
5
2.5  
3.5  
1.8  
2
45  
10  
3.5  
8
45  
O
L
= ±10 V, R = 2 kΩ  
Full range  
25°C  
O
L
Large-signal differential  
voltage amplification  
38  
38  
A
VD  
V/µV  
V
= ±10 V, R = 1 kΩ  
L
O
O
Full range  
25°C  
2.2  
5
V
= ±10 V, R = 600 Ω  
19  
8
19  
8
L
Input capacitance  
25°C  
pF  
Ci  
Open-loop output  
impedance  
z
I
O
= 0  
25°C  
50  
50  
o
25°C  
100  
96  
131  
117  
113  
131  
Common-mode rejection  
ratio  
V
R
= V  
= 50 Ω  
min,  
IC  
S
ICR  
CMRR  
dB  
dB  
Full range  
V
R
= ±4 V to ±18 V,  
= 50 Ω  
CC±  
25°C  
94  
90  
144  
3.8  
110  
105  
144  
3.8  
S
Supply-voltage rejection  
k
SVR  
ratio (V  
CC  
/V  
IO  
)
V
R
= ±4 V to ±18 V,  
±
CC±  
= 50 Ω  
Full range  
S
25°C  
5.3  
5.6  
5.3  
5.6  
I
Supply current  
V
= 0,  
No load  
mA  
CC  
O
Full range  
* On products compliant to MIL-PRF-38535, this parameter is not production tested.  
Full range is – 55°C to 125°C.  
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
6–10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192 – FEBRUARY 1997  
TLE20x7M operating characteristics at specified free-air temperature, V  
(unless otherwise specified)  
= ±15 V, T = 25°C  
A
CC ±  
TLE20x7M  
TLE20x7AM  
TYP  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
MIN  
MAX  
R
C
= 2 k,  
= 100 pF,  
TLE2027  
TLE2037  
1.7  
2.8  
1.7  
2.8  
7.5  
L
L
6*  
1
7.5  
6*  
1
See Figure 1  
SR  
Slew rate at unity gain  
V/µs  
R
C
= 2 k,  
= 100 pF,  
= 55°C to 125°C,  
L
L
TLE2027  
TLE2037  
T
A
4.4*  
4.4*  
See Figure 1  
R
R
= 20 ,  
= 20 ,  
f = 10 Hz  
f = 1 kHz  
3.3  
2.5  
8*  
3.3  
2.5  
4.5*  
3.8*  
Equivalent input noise  
voltage (see Figure 2)  
S
S
V
n
nV/Hz  
4.5*  
Peak-to-peak equivalent  
input noise voltage  
V
f = 0.1 Hz to 10 Hz  
50  
250*  
50  
130*  
nV  
N(PP)  
f = 10 Hz  
f = 1 kHz  
1.5  
0.4  
4*  
1.5  
0.4  
4*  
Equivalent input noise  
current  
I
n
pA/Hz  
0.6*  
0.6*  
V
= +10 V,  
= 1,  
O
A
TLE2027  
TLE2037  
< 0.002%  
< 0.002%  
< 0.002%  
< 0.002%  
VD  
See Note 5  
THD  
Total harmonic distortion  
V
= +10 V,  
= 5,  
O
A
VD  
See Note 5  
TLE2027  
TLE2037  
TLE2027  
TLE2037  
TLE2027  
TLE2037  
7*  
13  
50  
9*  
13  
50  
Unity-gain bandwidth  
(see Figure 3)  
R
C
= 2 k,  
= 100 pF  
L
L
B
B
MHz  
kHz  
1
35  
35  
30  
30  
Maximum output-swing  
bandwidth  
R
= 2 kΩ  
OM  
L
80  
80  
55°  
50°  
55°  
50°  
Phase margin at unity  
gain (see Figure 3)  
R
C
= 2 k,  
= 100 pF  
L
L
φ
m
* On products compliant to MIL-PRF-38535, this parameter is not production tested.  
NOTE 5: Measured distortion of the source used in the analysis was 0.002%.  
6–11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192 – FEBRUARY 1997  
TLE20x7Y electrical characteristics, V  
= ±15 V, T = 25°C (unless otherwise noted)  
±
CC  
A
TLE20x7Y  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP MAX  
V
IO  
Input offset voltage  
20  
µV  
Input offset voltage  
long-term drift (see Note 4)  
0.006  
µV/mo  
V
IC  
= 0,  
R
= 50 Ω  
S
I
I
Input offset current  
Input bias current  
6
nA  
nA  
IO  
15  
IB  
13  
to  
13  
V
Common-mode input voltage range  
R
R
= 50 Ω  
V
ICR  
S
L
= 600 Ω  
= 2 kΩ  
12.9  
V
V
Maximum positive peak output voltage swing  
V
V
OM +  
R
L
L
13.2  
13  
R
R
= 600 Ω  
= 2 kΩ  
Maximum negative peak output voltage swing  
Large-signal differential voltage amplification  
OM –  
13.5  
45  
L
V
V
V
= ±11 V,  
= ±10 V,  
R
R
= 2 kΩ  
= 1 kΩ  
O
O
O
L
38  
L
A
VD  
V/µV  
= ±10 V,  
= 600 Ω  
19  
R
L
C
Input capacitance  
8
pF  
i
z
Open-loop output impedance  
I
O
= 0  
50  
o
V
R
= V  
= 50 Ω  
min,  
IC  
S
ICR  
CMRR Common-mode rejection ratio  
131  
dB  
V
R
= ±4 V to ±18 V,  
= 50 Ω  
CC±  
S
k
Supply-voltage rejection ratio (V  
/V  
IO  
)
144  
3.8  
dB  
SVR  
CC  
±
I
Supply current  
V
= 0,  
No load  
mA  
CC  
O
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
6–12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192 – FEBRUARY 1997  
TLE20x7Y operating characteristics at specified free-air temperature, V  
= ±15 V  
CC ±  
TLE20x7Y  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP MAX  
TLE2027  
TLE2037  
2.8  
7.5  
3.3  
2.5  
50  
R
= 2 k,  
C = 100 pF,  
L
L
SR  
Slew rate at unity gain  
V/µs  
See Figure 1  
R
R
= 20 , f = 10 Hz  
= 20 , f = 1 kHz  
S
S
V
n
Equivalent input noise voltage (see Figure 2)  
Peak-to-peak equivalent input noise voltage  
Equivalent input noise current  
nV/Hz  
V
f = 0.1 Hz to 10 Hz  
f = 10 Hz  
nV  
N(PP)  
1.5  
0.4  
I
n
pA/Hz  
f = 1 kHz  
V
= +10 V, A  
= 1,  
= 5,  
O
VD  
TLE2027  
TLE2037  
<0.002%  
<0.002%  
See Note 5  
THD  
Total harmonic distortion  
V
O
= +10 V, A  
VD  
See Note 5  
TLE2027  
TLE2037  
TLE2027  
TLE2037  
TLE2027  
TLE2037  
13  
50  
B
B
Unity-gain bandwidth (see Figure 3)  
Maximum output-swing bandwidth  
Phase margin at unity gain (see Figure 3)  
R
R
R
= 2 k,  
= 2 kΩ  
= 2 k,  
C
C
= 100 pF  
MHz  
kHz  
1
L
L
L
L
L
30  
OM  
80  
55°  
50°  
φ
m
= 100 pF  
NOTE 5: Measured distortion of the source used in the analysis was 0.002%.  
6–13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192 – FEBRUARY 1997  
PARAMETER MEASUREMENT INFORMATION  
2 kΩ  
R
f
15 V  
15 V  
+
V
O
V
O
R
I
+
V
I
R
= 2 kΩ  
– 15 V  
L
C
=
– 15 V  
L
20 Ω  
20 Ω  
100 pF  
(see Note A)  
NOTE A: C includes fixture capacitance.  
L
Figure 1. Slew-Rate Test Circuit  
Figure 2. Noise-Voltage Test Circuit  
R
f
10 kΩ  
15 V  
15 V  
100 Ω  
+
+
V
I
V
O
R
I
V
O
V
I
C
=
2 kΩ  
L
– 15 V  
–15 V  
2 kΩ  
C
=
100 pF  
(see Note A)  
L
100 pF  
(see Note A)  
NOTE A: C includes fixture capacitance.  
NOTES: A.  
B. For the TLE2037 and TLE2037A,  
must be 5.  
C includes fixture capacitance.  
L
L
A
VD  
Figure 3. Unity-Gain Bandwidth and  
Phase-Margin Test Circuit (TLE2027 Only)  
Figure 4. Small-Signal Pulse-  
Response Test Circuit  
6–14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192 – FEBRUARY 1997  
typical values  
Typical values presented in this data sheet represent the median (50% point) of device parametric performance.  
initial estimates of parameter distributions  
In the ongoing program of improving data sheets and supplying more information to our customers, Texas  
Instrumentshasaddedanestimateofnotonlythetypicalvaluesbutalsothespreadaroundthesevalues. These  
are in the form of distribution bars that show the 95% (upper) points and the 5% (lower) points from the  
characterization of the initial wafer lots of this new device type (see Figure 5). The distribution bars are shown  
at the points where data was actually collected. The 95% and 5% points are used instead of ± 3 sigma since  
some of the distributions are not true Gaussian distributions.  
The number of units tested and the number of different wafer lots used are on all of the graphs where distribution  
bars are shown. As noted in Figure 5, there were a total of 835 units from two wafer lots. In this case, there is  
a good estimate for the within-lot variability and a possibly poor estimate of the lot-to-lot variability. This is always  
the case on newly released products since there can only be data available from a few wafer lots.  
The distribution bars are not intended to replace the minimum and maximum limits in the electrical tables. Each  
distribution bar represents 90% of the total units tested at a specific temperature. While 10% of the units tested  
fell outside any given distribution bar, this should not be interpreted to mean that the same individual devices  
fell outside every distribution bar.  
SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
5
95% point on the distribution bar  
(5% of the devices fell above this point.)  
V
V
= ±15 V  
CC  
O
±
= 0  
No Load  
4.5  
4
90% of the devices were within the upper  
and lower points on the distribution bar.  
Sample Size = 835 Units  
From 2 Water Lots  
5% point on the distribution bar  
(5% of the devices fell below this point.)  
3.5  
3
2.5  
– 75 – 50 – 25  
0
25 50 75 100 125 150  
T
A
– Free-Air Temperature – °C  
Figure 5. Sample Graph With Distribution Bars  
6–15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192 – FEBRUARY 1997  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
6, 7  
V
IO  
Input offset voltage  
Distribution  
Input offset voltage change  
Input offset current  
vs Time after power on  
vs Free-air temperature  
8, 9  
V  
IO  
I
IO  
I
IB  
I
I
10  
vs Free-air temperature  
vs Common-mode input voltage  
11  
12  
Input bias current  
Input current  
vs Differential input voltage  
vs Frequency  
13  
V
Maximum peak-to-peak output voltage  
14, 15  
O(PP)  
Maximum (positive/negative) peak output  
voltage  
vs Load resistance  
vs Free-air temperature  
16, 17  
18, 19  
V
OM  
vs Supply voltage  
vs Load resistance  
vs Frequency  
20  
21  
22 – 25  
26  
A
VD  
Large-signal differential voltage amplification  
vs Free-air temperature  
z
Output impedance  
vs Frequency  
vs Frequency  
vs Frequency  
27  
28  
29  
o
CMRR  
Common-mode rejection ratio  
Supply-voltage rejection ratio  
k
SVR  
vs Supply voltage  
vs Elapsed time  
vs Free-air temperature  
30, 31  
32, 33  
34, 35  
I
Short-circut output current  
OS  
vs Supply voltage  
vs Free-air temperature  
36  
37  
I
Supply current  
CC  
Small signal  
Large signal  
38, 40  
39, 41  
Voltage-follower pulse response  
V
B
Equivalent input noise voltage  
Noise voltage (referred to input)  
vs Frequency  
42  
43  
n
Over 10-second interval  
vs Supply voltage  
vs Load capacitance  
44  
45  
Unity-gain bandwidth  
1
vs Supply voltage  
vs Load capacitance  
46  
47  
Gain bandwidth product  
Slew rate  
SR  
vs Free-air temperature  
48, 49  
vs Supply voltage  
vs Load capacitance  
vs Free-air temperature  
50, 51  
52, 53  
54, 55  
Phase margin  
Phase shift  
φ
m
vs Frequency  
22 – 25  
6–16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192 – FEBRUARY 1997  
TYPICAL CHARACTERISTICS  
DISTRIBUTION  
INPUT OFFSET VOLTAGE  
INPUT OFFSET VOLTAGE CHANGE  
16  
14  
12  
10  
8
vs  
1568 Amplifiers Tested From 2 Wafer Lots  
TIME AFTER POWER ON  
V
T
A
= +15 V  
= 25°C  
CC  
±
12  
10  
8
D Package  
6
6
4
4
50 Amplifiers Tested From 2 Wafer Lots  
2
V
T
= ±15 V  
2
CC  
±
= 25°C  
A
D Package  
0
– 120 – 90 – 60 – 30  
0
30  
60  
90  
120  
0
0
10 20  
30  
40  
50  
60  
V
IO  
– Input Offset Voltage – µV  
t – Time After Power On – s  
Figure 6  
Figure 7  
INPUT OFFSET CURRENT  
vs  
INPUT OFFSET VOLTAGE CHANGE  
vs  
FREE-AIR TEMPERATURE  
TIME AFTER POWER ON  
6
5
4
3
2
1
0
30  
25  
20  
15  
10  
5
V
V
= ±15 V  
CC  
IC  
±
= 0  
Sample Size = 833 Units  
From 2 Wafer Lots  
50 Amplifiers Tested From 2 Wafer Lots  
V
T
A
= ±15 V  
CC  
±
= 25°C  
P Package  
0
0
20 40 60 80 100 120 140 160 180  
t – Time After Power On – s  
Figure 8  
– 75 – 50 – 25  
0
25 50 75 100 125 150  
T
A
– Free-Air Temperature – °C  
Figure 9  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
6–17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192 – FEBRUARY 1997  
TYPICAL CHARACTERISTICS  
INPUT BIAS CURRENT  
vs  
INPUT BIAS CURRENT  
vs  
COMMON-MODE INPUT VOLTAGE  
FREE-AIR TEMPERATURE  
60  
50  
40  
35  
30  
25  
20  
15  
10  
5
V
= ± 15 V  
= 25°C  
V
V
= ± 15 V  
CC  
±
CC  
±
T
A
= 0  
IC  
Sample Size = 836 Units  
From 2 Wafer Lots  
40  
30  
20  
10  
0
10  
20  
0
75 50 25  
0
25 50 75 100 125 150  
–12  
– 8  
– 4  
0
4
8
12  
T
A
– Free-Air Temperature – °C  
V
IC  
– Common-Mode Input Voltage – V  
Figure 10  
Figure 11  
TLE2027  
MAXIMUM PEAK-TO-PEAK  
OUTPUT VOLTAGE  
INPUT CURRENT  
vs  
DIFFERENTIAL INPUT VOLTAGE  
vs  
FREQUENCY  
30  
25  
20  
15  
10  
5
1
0.8  
V
R
= ±15 V  
CC±  
= 2 kΩ  
L
V
V
T
= ± 15 V  
IC  
= 25°C  
CC  
±
= 0  
0.6  
A
0.4  
0.2  
0
T
= 125°C  
A
– 0.2  
– 0.4  
– 0.6  
– 0.8  
– 1  
T
A
= – 55°C  
0
– 1.8  
– 1.2  
– 0.6  
0
0.6  
1.2 1.8  
10 k  
100 k  
1 M  
10 M  
V
ID  
– Differential Input Voltage – V  
f – Frequency – Hz  
Figure 12  
Figure 13  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
6–18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192 – FEBRUARY 1997  
TYPICAL CHARACTERISTICS  
TLE2037  
MAXIMUM PEAK-TO-PEAK  
MAXIMUM POSITIVE PEAK  
OUTPUT VOLTAGE  
vs  
OUTPUT VOLTAGE  
vs  
FREQUENCY  
LOAD RESISTANCE  
30  
25  
20  
15  
10  
5
14  
12  
10  
8
V
= ± 15 V  
= 2 kΩ  
CC  
±
R
L
T
A
= 125°C  
6
4
T
A
= – 55°C  
V
= ± 15 V  
= 25°C  
2
0
CC  
±
T
A
0
10 k  
100 k  
1 M  
10 M  
100 M  
100  
1 k  
10 k  
f – Frequency – Hz  
R
– Load Resistance – Ω  
L
Figure 14  
Figure 15  
MAXIMUM POSITIVE PEAK  
MAXIMUM NEGATIVE PEAK  
OUTPUT VOLTAGE  
vs  
OUTPUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
LOAD RESISTANCE  
13.5  
13.4  
13.3  
13.2  
13.1  
– 14  
– 12  
– 10  
– 8  
V
R
= ± 15 V  
CC  
L
±
= 2 kΩ  
Sample Size = 832 Units  
From 2 Wafer Lots  
– 6  
– 4  
13  
V
= ± 15 V  
= 25°C  
CC  
±
– 2  
0
T
A
12.9  
– 75 – 50 – 25  
0
25 50 75 100 125 150  
100  
1 k  
10 k  
R
– Load Resistance – Ω  
T
A
– Free-Air Temperature – °C  
L
Figure 16  
Figure 17  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
6–19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192 – FEBRUARY 1997  
TYPICAL CHARACTERISTICS  
LARGE-SIGNAL DIFFERENTIAL  
MAXIMUM NEGATIVE PEAK  
VOLTAGE AMPLIFICATION  
vs  
OUTPUT VOLTAGE  
SUPPLY VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
50  
40  
30  
20  
10  
0
T
A
= 25°C  
– 13  
– 13.2  
– 13.4  
– 13.6  
V
= ± 15 V  
= 2 kΩ  
R
R
= 2 kΩ  
= 1 kΩ  
CC  
±
L
L
R
L
Sample Size = 831 Units  
From 2 Wafer Lots  
R
= 600 Ω  
L
– 13.8  
– 14  
0
4
8
12  
16  
20  
– 75 – 50 – 25  
0
25 50 75 100 125 150  
V
CC±  
– Supply Voltage – V  
T
A
– Free-Air Temperature – °C  
Figure 18  
Figure 19  
LARGE-SIGNAL DIFFERENTIAL  
VOLTAGE AMPLIFICATION  
vs  
LOAD RESISTANCE  
50  
40  
30  
20  
10  
0
V
= ± 15 V  
= 25°C  
CC  
±
T
A
100  
200  
400  
1 k  
2 k  
4 k  
10 k  
R
– Load Resistance – Ω  
L
Figure 20  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
6–20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192 – FEBRUARY 1997  
TYPICAL CHARACTERISTICS  
TLE2027  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE SHIFT  
vs  
FREQUENCY  
75°  
160  
140  
120  
100  
80  
Phase Shift  
100°  
125°  
150°  
175°  
200°  
225°  
250°  
275°  
A
VD  
60  
40  
V
R
C
= ± 15 V  
= 2 kΩ  
= 100 pF  
= 25°C  
CC±  
L
L
20  
T
A
0
0.1  
100  
100 k  
100 M  
f – Frequency – Hz  
Figure 21  
TLE2037  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE SHIFT  
vs  
FREQUENCY  
75°  
160  
100°  
125°  
150°  
175°  
200°  
225°  
250°  
275°  
140  
120  
100  
80  
Phase Shift  
A
VD  
60  
V
= ± 15 V  
= 2 kΩ  
= 100 pF  
40  
CC  
±
R
C
L
L
20  
T
A
= 25°C  
0
0.1  
100  
100 k  
100 M  
f – Frequency – MHz  
Figure 22  
6–21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192 – FEBRUARY 1997  
TYPICAL CHARACTERISTICS  
TLE2027  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE SHIFT  
vs  
FREQUENCY  
6
3
100°  
125°  
150°  
175°  
200°  
225°  
250°  
275°  
300°  
0
– 3  
– 6  
– 9  
– 12  
– 15  
– 18  
A
VD  
Phase Shift  
V
R
C
= ± 15 V  
= 2 kΩ  
= 100 pF  
= 25°C  
CC±  
L
L
T
A
10  
20  
40  
70  
100  
f – Frequency – MHz  
Figure 23  
TLE2037  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE SHIFT  
vs  
FREQUENCY  
30  
100  
125  
150  
175  
200  
225  
250  
275  
300  
°
°
°
°
°
°
°
°
°
25  
20  
15  
10  
5
A
Phase Shift  
VD  
V
= ± 15 V  
= 2 kΩ  
= 100 pF  
= 25°C  
0
CC  
±
R
C
T
A
L
L
– 5  
–10  
1
2
4
10  
20  
40  
100  
f – Frequency – MHz  
Figure 24  
6–22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192 – FEBRUARY 1997  
TYPICAL CHARACTERISTICS  
LARGE-SIGNAL DIFFERENTIAL  
VOLTAGE AMPLIFICATION  
OUTPUT IMPEDANCE  
vs  
vs  
FREE-AIR TEMPERATURE  
FREQUENCY  
60  
50  
40  
30  
100  
10  
V
= ± 15 V  
CC ±  
V
= ± 15 V  
CC ±  
= 25°C  
T
A
R
= 2 kΩ  
= 1 kΩ  
L
A
VD  
= 100  
See Note A  
1
R
L
A
VD  
= 10  
10  
100  
75 50 25  
0
25 50 75 100 125 150  
10  
100  
1 k  
f – Frequency – Hz  
NOTE A: For this curve, the TLE2027 is A  
10 k 100 k 1 M 10 M 100 M  
T
A
– Free-Air Temperature – °C  
= 1 and the  
VD  
TLE2037 is A  
VD  
= 5.  
Figure 25  
Figure 26  
COMMON-MODE REJECTION RATIO  
SUPPLY-VOLTAGE REJECTION RATIO  
vs  
vs  
FREQUENCY  
FREQUENCY  
140  
120  
100  
80  
140  
120  
100  
80  
V
= ± 15 V  
CC ±  
= 25°C  
V
T
= ± 15 V  
CC ±  
= 25°C  
T
A
A
k
SVR–  
60  
60  
k
SVR+  
40  
40  
20  
20  
0
0
10  
10  
100  
1 k  
10 k 100 k 1 M 10 M 100 M  
100  
1 k  
10 k 100 k 1 M 10 M 100 M  
f – Frequency – Hz  
f – Frequency – Hz  
Figure 27  
Figure 28  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
6–23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192 – FEBRUARY 1997  
TYPICAL CHARACTERISTICS  
SHORT-CIRCUIT OUTPUT CURRENT  
SHORT-CIRCUIT OUTPUT CURRENT  
vs  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
44  
42  
40  
38  
36  
34  
32  
30  
42  
40  
38  
36  
34  
32  
30  
V
V
T
= – 100 mV  
= 0  
= 25°C  
V
V
T
= 100 mV  
= 0  
= 25°C  
ID  
O
A
ID  
O
A
P Package  
P Package  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
V
CC±  
– Supply Voltage – V  
V
CC±  
– Supply Voltage – V  
Figure 29  
Figure 30  
SHORT-CIRCUIT OUTPUT CURRENT  
SHORT-CIRCUIT OUTPUT CURRENT  
vs  
vs  
ELAPSED TIME  
ELAPSED TIME  
– 45  
44  
42  
40  
38  
36  
34  
V
= ± 15 V  
V
CC ±  
= ± 15 V  
CC ±  
V
V
T
= 100 mV  
V
V
T
= 100 mV  
= 0  
O
= 25°C  
ID  
= 0  
O
A
ID  
– 43  
– 41  
– 39  
– 37  
– 35  
= 25°C  
A
P Package  
P Package  
0
30  
60  
90  
120  
150  
180  
0
30  
60  
90  
120  
150  
180  
t – Elasped Time – s  
t – Elasped Time – s  
Figure 31  
Figure 32  
6–24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192 – FEBRUARY 1997  
TYPICAL CHARACTERISTICS  
SHORT-CIRCUIT OUTPUT CURRENT  
SHORT-CIRCUIT OUTPUT CURRENT  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
– 48  
– 44  
– 40  
– 36  
– 32  
– 28  
– 24  
46  
42  
38  
34  
30  
26  
V
V
V
= ± 15 V  
V
= ± 15 V  
CC ±  
CC ±  
= 100 mV  
V
ID  
V
O
= 100 mV  
= 0  
ID  
O
= 0  
P Package  
P Package  
– 75 – 50 – 25  
0
25 50 75 100 125 150  
– 75 – 50 – 25  
0
25 50 75 100 125 150  
T
A
– Free-Air Temperature – °C  
T
A
– Free-Air Temperature – °C  
Figure 33  
Figure 34  
SUPPLY CURRENT  
SUPPLY CURRENT  
vs  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
6
5
4
3
2
1
0
5
4.5  
4
V
V
= ± 15 V  
CC ±  
= 0  
V
= 0  
O
O
No Load  
No Load  
Sample Size = 836 Units  
From 2 Wafer Lots  
T
= 125°C  
A
T
A
= 25°C  
T
A
= – 55°C  
3.5  
3
2.5  
0
2
4
6
8
10 12 14 16 18 20  
– 75 – 50 – 25  
0
25 50 75 100 125 150  
T
A
– Free-Air Temperature – °C  
V
CC  
– Supply Voltage – V  
±
Figure 35  
Figure 36  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
6–25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192 – FEBRUARY 1997  
TYPICAL CHARACTERISTICS  
TLE2027  
TLE2027  
VOLTAGE-FOLLOWER  
SMALL-SIGNAL  
VOLTAGE-FOLLOWER  
LARGE-SIGNAL  
PULSE RESPONSE  
PULSE RESPONSE  
100  
50  
15  
10  
V
R
C
= ±15 V  
= 2 kΩ  
= 100 pF  
= 25°C  
V
R
C
= ±15 V  
= 2 kΩ  
= 100 pF  
= 25°C  
CC±  
L
L
CC±  
L
L
T
T
A
A
See Figure 4  
See Figure 1  
5
0
0
– 5  
– 10  
– 15  
– 50  
– 100  
0
200  
400  
600 800  
1000  
0
5
10  
15  
20  
25  
t – Time – ns  
t – Time – µs  
Figure 37  
Figure 38  
TLE2037  
VOLTAGE-FOLLOWER  
LARGE-SIGNAL  
PULSE RESPONSE  
TLE2037  
VOLTAGE-FOLLOWER  
SMALL-SIGNAL  
PULSE RESPONSE  
100  
15  
10  
5
V
= ± 15 V  
CC ±  
= 5  
A
VD  
R
C
= 2 kΩ  
= 100 pF  
= 25°C  
L
L
50  
0
T
A
See Figure 1  
0
V
= ± 15 V  
CC ±  
= 5  
L
– 5  
A
VD  
R
= 2 kΩ  
– 50  
– 100  
C
= 100 pF  
= 25°C  
L
– 10  
– 15  
T
A
See Figure 4  
0
100  
200  
300  
400  
0
2
4
6
8
10  
t – Time – µs  
t – Time – ns  
Figure 39  
Figure 40  
6–26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192 – FEBRUARY 1997  
TYPICAL CHARACTERISTICS  
NOISE VOLTAGE  
(REFERRED TO INPUT)  
OVER A 10-SECOND INTERVAL  
EQUIVALENT INPUT NOISE VOLTAGE  
vs  
FREQUENCY  
10  
8
50  
40  
V
= ± 15 V  
CC ±  
= 20 Ω  
V
= ± 15 V  
CC ±  
f = 0.1 to 10 Hz  
R
S
T
= 25°C  
A
T
A
= 25°C  
See Figure 2  
30  
Sample Size = 100 Units  
From 2 Wafer Lots  
20  
6
10  
0
4
– 10  
– 20  
– 30  
– 40  
– 50  
2
0
1
10  
100  
1 k  
10 k  
100 k  
0
2
4
6
8
10  
f – Frequency – Hz  
t – Time – s  
Figure 41  
Figure 42  
TLE2027  
UNITY-GAIN BANDWIDTH  
vs  
TLE2037  
GAIN-BANDWIDTH PRODUCT  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
20  
18  
16  
14  
12  
10  
52  
51  
50  
R
C
= 2 kΩ  
= 100 pF  
= 25°C  
L
L
f = 100 kHz  
R
C
T
A
= 2 kΩ  
= 100 pF  
= 25°C  
L
L
T
A
See Figure 3  
49  
48  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20 22  
| V  
| – Supply Voltage – V  
V
CC±  
– Supply Voltage – V  
CC  
±
Figure 43  
Figure 44  
6–27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192 – FEBRUARY 1997  
TYPICAL CHARACTERISTICS  
TLE2027  
UNITY-GAIN BANDWIDTH  
TLE2037  
GAIN-BANDWIDTH PRODUCT  
vs  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
16  
12  
8
52  
51  
50  
49  
48  
V
R
= ±15 V  
CC±  
= 2 kΩ  
V
CC±  
= ±15 V  
L
T
= 25°C  
R = 2 kΩ  
A
L
A
See Figure 3  
T
= 25°C  
4
0
100  
1000  
10000  
100  
1000  
10000  
C
– Load Capacitance – pF  
C
– Load Capacitance – pF  
L
L
Figure 45  
TLE2027  
Figure 46  
TLE2037  
SLEW RATE  
SLEW RATE  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
3
2.8  
2.6  
2.4  
2.2  
2
10  
9
V
A
= ± 15 V  
= 5  
= 2 kΩ  
= 100 pF  
CC ±  
VD  
R
C
L
L
See Figure 1  
8
7
V
A
= ±15 V  
CC±  
= 1  
VD  
6
R
C
= 2 kΩ  
= 100 pF  
L
L
See Figure 1  
5
– 75 – 50 – 25  
0
25  
50  
75 100 125 150  
– 75 – 50 – 25  
0
25 50 75 100 125 150  
T
A
– Free-Air Temperature – °C  
T
A
– Free-Air Temperature – °C  
Figure 47  
Figure 48  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
6–28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192 – FEBRUARY 1997  
TYPICAL CHARACTERISTICS  
TLE2027  
PHASE MARGIN  
vs  
TLE2037  
PHASE MARGIN  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
58°  
56°  
54°  
52°  
50°  
48°  
46°  
44°  
42°  
52°  
R
C
= 2 kΩ  
= 100 pF  
= 25°C  
L
L
A
R
C
= 5  
VD  
L
L
= 2 kΩ  
= 100 pF  
= 25°C  
T
A
50°  
48°  
See Figure 3  
T
A
46°  
44°  
42°  
40°  
38°  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20 22  
| V  
| – Supply Voltage – V  
V
CC±  
– Supply Voltage – V  
CC  
±
Figure 49  
Figure 50  
TLE2027  
PHASE MARGIN  
vs  
TLE2037  
PHASE MARGIN  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
60°  
50°  
60°  
50°  
40°  
30°  
20°  
V
= ±15 V  
CC±  
= 2 kΩ  
V
= ± 15 V  
CC ±  
= 2 kΩ  
R
T
L
R
T
A
L
= 25°C  
A
= 25°C  
See Figure 3  
40°  
30°  
20°  
10°  
10°  
0°  
0°  
100  
1000  
10000  
100  
1000  
C
– Load Capacitance – pF  
C
– Load Capacitance – pF  
L
L
Figure 51  
Figure 52  
6–29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192 – FEBRUARY 1997  
TYPICAL CHARACTERISTICS  
TLE2027  
PHASE MARGIN  
TLE2037  
PHASE MARGIN  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
65°  
60°  
55°  
50°  
45°  
40°  
35°  
55°  
V
= ±15 V  
= 2 kΩ  
= 25°C  
V
A
= ± 15 V  
= 5  
= 2 kΩ  
= 100 pF  
CC±  
L
CC ±  
R
T
VD  
R
C
A
L
L
53°  
51°  
See Figure 3  
49°  
47°  
45°  
– 75 – 50 – 25  
0
25 50 75 100 125 150  
– 75 – 50 – 25  
0
25  
50  
75 100 125 150  
T
A
– Free-Air Temperature – °C  
T
A
– Free-Air Temperature – °C  
Figure 53  
Figure 54  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
6–30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192 – FEBRUARY 1997  
APPLICATION INFORMATION  
input offset voltage nulling  
The TLE2027 and TLE2037 series offers external null pins that can be used to further reduce the input offset  
voltage. The circuits of Figure 55 can be connected as shown if the feature is desired. If external nulling is not  
needed, the null pins may be left disconnected.  
1 kΩ  
V
CC +  
10 kΩ  
4.7 kΩ  
V
CC +  
4.7 kΩ  
IN –  
IN +  
+
IN –  
OUT  
OUT  
IN +  
+
V
V
CC –  
CC –  
(b) ADJUSTMENT WITH IMPROVED SENSITIVITY  
(a) STANDARD ADJUSTMENT  
Figure 55. Input Offset Voltage Nulling Circuits  
voltage-follower applications  
The TLE2027 circuitry includes input-protection diodes to limit the voltage across the input transistors; however,  
no provision is made in the circuit to limit the current if these diodes are forward biased. This condition can occur  
when the device is operated in the voltage-follower configuration and driven with a fast, large-signal pulse. It  
is recommended that a feedback resistor be used to limit the current to a maximum of 1 mA to prevent  
degradation of the device. Also, this feedback resistor forms a pole with the input capacitance of the device.  
For feedback resistor values greater than 10 k, this pole degrades the amplifier phase margin. This problem  
can be alleviated by adding a capacitor (20 pF to 50 pF) in parallel with the feedback resistor (see Figure 56).  
C
= 20 to 50 pF  
F
I 1 mA  
F
R
F
V
CC  
V
O
V
I
+
V
CC–  
Figure 56. Voltage Follower  
6–31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192 – FEBRUARY 1997  
APPLICATION INFORMATION  
macromodel information  
Macromodel information provided was derived using Microsim Parts , the model generation software used  
with Microsim PSpice . The Boyle macromodel (see Note 6) and subcircuit in Figure 57, Figure 58, and  
Figure 59 were generated using the TLE20x7 typical electrical and operating characteristics at 25°C. Using this  
information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most  
cases):  
Maximum positive output voltage swing  
Maximum negative output voltage swing  
Slew rate  
Gain-bandwidth product  
Common-mode rejection ratio  
Phase margin  
Quiescent power dissipation  
Input bias current  
DC output resistance  
AC output resistance  
Open-loop voltage amplification  
Short-circuit output current limit  
NOTE 6: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers”, IEEE Journal  
of Solid-State Circuits, SC-9, 353 (1974).  
99  
+
3
dln  
91  
V
egnd  
CC +  
9
92  
fb  
rc1  
11  
rc2  
12  
c1  
+
ro2 90  
hlim  
rp  
+
+ dip  
vb  
1
vip  
IN +  
IN –  
vin  
+
+
vc  
53  
Q1  
Q2  
r2  
C2  
6
7
2
dp  
13  
+
14  
ree  
re2  
cee  
vlim  
ga  
gcm  
dc  
re1  
8
10  
ro1  
lee  
de  
54  
V
CC –  
5
+
4
ve  
OUT  
Figure 57. Boyle Macromodel  
PSpice and Parts are trademarks of MicroSim Corporation.  
6–32  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y  
EXCALIBUR LOW-NOISE HIGH-SPEED  
PRECISION OPERATIONAL AMPLIFIERS  
SLOS192 – FEBRUARY 1997  
APPLICATION INFORMATION  
macromodel information (continued)  
q2  
12  
6
1
9
14 qx  
100.0E3  
530.5  
530.5  
–393.2  
–393.2  
3.571E6  
25  
.subckt TLE2027 1 2 3 4 5  
*
r2  
rc1  
rc2  
re1  
re2  
ree  
ro1  
ro2  
rp  
3
11  
12  
10  
10  
99  
5
c1  
11  
6
12  
7
4.003E-12  
3
c2  
20.00E-12  
13  
14  
10  
8
dc  
5
53  
5
dz  
de  
54  
90  
92  
4
dz  
dlp  
dln  
dp  
91  
90  
3
dz  
dx  
7
99  
4
25  
dz  
3
8.013E3  
egnd  
99  
0
poly(2) (3,0)  
vb  
9
0
dc  
0
(4,0) 0 5 .5  
vc  
3
53  
4
dc 2.400  
dc 2.100  
fb  
7
99  
poly(5) vb vc  
ve  
54  
7
ve vlp vln 0 954.8E6 –1E9 1E9 1E9  
–1E9  
vlim  
vlp  
vln  
8
dc  
0
91  
0
0
dc 40  
dc 40  
ga  
6
0
11 12  
92  
2.062E-3  
gcm  
.modeldx D(Is=800.0E-18)  
.modelqx NPN(Is=800.0E-18  
Bf=7.000E3)  
0
6
10 99  
531.3E-12  
iee  
10  
90  
11  
4
0
2
dc 56.01E-6  
vlim 1K  
.ends  
hlim  
q1  
13 qx  
Figure 58. TLE2027 Macromodel Subcircuit  
.subckt TLE2037 1 2 3 4 5  
*
q2  
r2  
12  
6
1
9
14 qz  
100.0E3  
471.5  
471.5  
A448  
c1  
11  
6
12  
7
4.003E–12  
rc1  
rc2  
re1  
re2  
ree  
ro1  
ro2  
rp  
3
11  
12  
10  
10  
99  
5
c2  
7.500E–12  
3
dc  
5
53  
5
dz  
13  
14  
10  
8
de  
54  
90  
92  
4
dz  
A448  
dlp  
dln  
dp  
91  
90  
3
dz  
3.555E6  
25  
dx  
dz  
7
99  
4
25  
egnd  
99  
0
poly(2) (3,0)  
3
8.013E3  
dc 0  
(4,0)  
0
.5 .5  
vb  
9
0
fb  
7
99  
poly(5) vb vc  
vc  
3
53  
4
dc 2.400  
dc 2.100  
ve vip vln 0 923.4E6 A800E6  
800E6 800E6 A800E6  
ve  
54  
7
vlim  
vlp  
vln  
.model  
.model  
8
dc  
0
ga  
6
0
0
6
4
0
2
11 12 2.121E–3  
10 99 597.7E–12  
dc 56.26E–6  
vlim 1K  
91  
0
0
dc 40  
dc 40  
gcm  
iee  
hlim  
q1  
92  
10  
90  
11  
dxD(Is=800.0E–18)  
qxNPN(Is=800.0E–18  
13 qx  
Bf=7.031E3)  
.ends  
Figure 59. TLE2037 Macromodel Subcircuit  
6–33  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
6–34  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1998, Texas Instruments Incorporated  

相关型号:

TLE2037AMFKB

IC,OP-AMP,SINGLE,BIPOLAR,LLCC,20PIN,CERAMIC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLE2037AMJG

EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLE2037AMJGB

EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLE2037AMP

EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLE2037AQDRG4Q1

EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION POERATIONAL AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLE2037AQDRQ1

EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION POERATIONAL AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLE2037CD

EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLE2037CDG4

EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLE2037CDR

EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLE2037CDRG4

EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLE2037CP

EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLE2037ID

EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI