THS4509-Q1 [TI]

WIDEBAND LOW-NOISE LOW-DISTORTION FULLY DIFFERENTIAL AMPLIFIER; 宽带低,噪声低失真全差动放大器
THS4509-Q1
型号: THS4509-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

WIDEBAND LOW-NOISE LOW-DISTORTION FULLY DIFFERENTIAL AMPLIFIER
宽带低,噪声低失真全差动放大器

放大器
文件: 总37页 (文件大小:1687K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
THS4509-Q1  
www.ti.com ........................................................................................................................................................................................... SLOS547NOVEMBER 2008  
WIDEBAND LOW-NOISE LOW-DISTORTION FULLY DIFFERENTIAL AMPLIFIER  
1
FEATURES  
DESCRIPTION  
Qualified for Automotive Applications  
Fully Differential Architecture  
Centered Input Common-Mode Range  
Minimum Gain of 2 V/V (6 dB)  
Bandwidth: 1900 MHz  
The THS4509 is  
a
wideband, fully differential  
operational  
amplifier designed for 5-V  
data-acquisition systems. It has very low noise at  
1.9 nV/Hz, and extremely low harmonic distortion of  
–75-dBc HD2 and –80-dBc HD3 at 100 MHz with  
2 Vpp, G = 10 dB, and 1-kload. Slew rate is very  
high at 6600 V/µs and with settling time of 2 ns to 1%  
(2-V step), it is ideal for pulsed applications. It is  
designed for minimum gain of 6 dB but is optimized  
for gain of 10 dB.  
Slew Rate: 6600 V/µs  
1% Settling Time: 2 ns  
HD2: –75 dBc at 100 MHz  
HD3: –80 dBc at 100 MHz  
OIP2: 73 dBm at 70 MHz  
To allow for dc coupling to analog-to-digital  
converters (ADCs), its unique output common-mode  
control circuit maintains the output common-mode  
voltage within 3-mV offset (typ) from the set voltage,  
when set within 0.5 V of mid-supply, with less than  
4-mV differential offset voltage. The common-mode  
set point is set to mid-supply by internal circuitry,  
which may be overdriven from an external source.  
OIP3: 37 dBm at 70 MHz  
Input Voltage Noise: 1.9 nV/Hz (f > 10 MHz)  
Noise Figure: 17.1 dB  
Output Common-Mode Control  
Power Supply:  
Voltage: 3 V (±1.5 V) to 5 V (±2.5 V)  
Current: 37.7 mA  
The input and output are optimized for best  
performance with their common-mode voltages set to  
mid-supply. Along with high-performance at low  
power-supply voltage, this makes for extremely  
high-performance single-supply 5-V data-acquisition  
systems. The combined performance of the THS4509  
in a gain of 10 dB driving the ADS5500 ADC,  
sampling at 125 MSPS, is 81-dBc SFDR and  
69.1-dBc SNR with a –1-dBFS signal at 70 MHz.  
Power-Down Capability: 0.65 mA  
APPLICATIONS  
5-V Data Acquisition Systems High Linearity  
ADC Amplifier  
Wireless Communication  
Medical Imaging  
Test and Measurement  
The THS4509 is offered in a quad 16-pin leadless  
QFN package (RGT) and is characterized for  
operation over the full automotive temperature range  
from –40°C to 125°C.  
RELATED PRODUCTS  
DEVICE  
MINIMUM  
GAIN  
COMMON-MODE  
RANGE OF INPUT(1)  
100 Ω  
348 Ω  
2.5 V  
V
IN  
From  
50 Ω  
Source  
THS4509  
6 dB  
0.75 V to 4.25 V  
69.8 Ω  
(1) Assumes a 5-V single-ended power supply  
V
OUT  
487 Ω  
487 Ω  
1:1  
To 50 Ω  
Test  
Equipment  
56.3 Ω  
THS 4509  
100 Ω  
0.22 µF  
49.9 Ω  
CM  
69.8 Ω  
Open  
−2.5 V  
348 Ω  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2008, Texas Instruments Incorporated  
THS4509-Q1  
SLOS547NOVEMBER 2008........................................................................................................................................................................................... www.ti.com  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
ORDERING INFORMATION(1)  
TA  
PACKAGE(2)  
ORDERABLE PART NUMBER  
TOP-SIDE MARKING  
–40°C to 125°C  
QFN – RGT  
Reel of 3000  
THS4509QRGTRQ1  
OOSQ  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
web site at www.ti.com.  
(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)  
VS– to VS+  
Supply voltage  
6 V  
VI  
Input voltage  
±VS  
4 V  
VID  
IO  
Differential input voltage  
Output current(1)  
200 mA  
Continuous power dissipation  
Maximum junction temperature  
Operating free-air temperature range  
Storage temperature range  
See Dissipation Rating Table  
150°C  
TJ  
TA  
–40°C to 125°C  
–65°C to 150°C  
2000 V  
Tstg  
Human-Body Model (HBM)  
ESD ratings  
Charged-Device Model (CDM)  
Machine Model (MM)  
1500 V  
100 V  
(1) The THS4509 incorporates a (QFN) exposed thermal pad on the underside of the chip. This acts as a heatsink and must be connected  
to a thermally dissipative plane for proper power dissipation. Failure to do so may result in exceeding the maximum junction  
temperature, which could permanently damage the device. See TI technical brief SLMA002 and SLMA004 for more information about  
utilizing the QFN thermally enhanced package.  
DISSIPATION RATINGS  
POWER RATING  
PACKAGE  
θJC  
θJA  
TA 25°C  
TA = 85°C  
RGT (16)  
2.4°C/W  
39.5°C/W  
2.3 W  
225 mW  
2
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): THS4509-Q1  
THS4509-Q1  
www.ti.com ........................................................................................................................................................................................... SLOS547NOVEMBER 2008  
DEVICE INFORMATION  
RGT PACKAGE  
(TOP VIEW)  
V
S–  
16  
15  
14  
13  
NC  
PD  
V
1
2
3
4
12  
11  
10  
9
V
IN–  
OUT+  
CM  
IN+  
V
V
OUT–  
CM  
6
7
5
8
V
S+  
TERMINAL FUNCTIONS  
TERMINAL  
NO.  
DESCRIPTION  
NAME  
NC  
1
No internal connection  
Inverting amplifier input  
Noninverted amplifier output  
VIN–  
VOUT+  
CM  
2
3
4,9  
Common-mode voltage input  
Positive amplifier power-supply input  
Inverted amplifier output  
VS+  
5, 6, 7, 8  
10  
VOUT–  
VIN+  
PD  
11  
Noninverting amplifier input  
12  
Power down, PD = logic low puts part into low-power mode, PD = logic high or open for normal operation  
VS–  
13, 14, 15, 16 Negative amplifier power supply input  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): THS4509-Q1  
THS4509-Q1  
SLOS547NOVEMBER 2008........................................................................................................................................................................................... www.ti.com  
SPECIFICATIONS, VS+ – VS– = 5 V  
Test conditions unless otherwise noted: VS+ = +2.5 V, VS– = –2.5 V, G = 10 dB, CM = open, VO = 2 Vpp, RF = 349 ,  
RL = 200 differential, TA = 25°C, single-ended input, differential output, input and output referenced to mid-supply  
TEST  
PARAMETER  
AC Performance  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LEVEL(1)  
G = 6 dB, VO = 100 mVpp  
2.0  
1.9  
GHz  
MHz  
G = 10 dB, VO = 100 mVpp  
G = 14 dB, VO = 100 mVpp  
G = 20 dB, VO = 100 mVpp  
G = 20 dB  
Small-signal bandwidth  
600  
275  
3
Gain-bandwidth product  
Bandwidth for 0.1-dB flatness  
Large-signal bandwidth  
Slew rate (differential)  
Rise time  
GHz  
MHz  
GHz  
V/µs  
ns  
G = 10 dB, VO = 2 Vpp  
G = 10 dB, VO = 2 Vpp  
300  
1.5  
6600  
0.5  
Fall time  
2-V step  
0.5  
ns  
Settling time to 1%  
Settling time to 0.1%  
2
ns  
10  
ns  
f = 10 MHz  
f = 50 MHz  
f = 100 MHz  
f = 10 MHz  
f = 50 MHz  
f = 100 MHz  
–104  
–80  
–68  
–108  
–92  
–81  
–78  
–64  
–95  
–78  
78  
Second-order harmonic distortion  
Third-order harmonic distortion  
dBc  
dBc  
C
fC = 70 MHz  
fC = 140 MHz  
fC = 70 MHz  
fC = 140 MHz  
fC = 70 MHz  
200-kHz tone spacing,  
RL = 499  
Second-order intermodulation distortion  
Third-order intermodulation distortion  
dBc  
dBc  
200-kHz tone spacing,  
RL = 499 Ω  
200-kHz tone spacing,  
RL = 100 , referenced to  
50-output  
Second-order output intercept point  
dBm  
fC = 140 MHz  
fC = 70 MHz  
fC = 140 MHz  
58  
43  
38  
200-kHz tone spacing,  
RL = 100 , referenced to  
50-output  
Third-order output intercept point  
1-dB compression point  
dBm  
dBm  
fC = 70 MHz  
12.2  
10.8  
17.1  
1.9  
fC = 140 MHz  
50-system, 10 MHz  
f > 10 MHz  
Noise figure  
dB  
Input voltage noise  
Input current noise  
DC Performance  
nV/Hz  
pA/Hz  
f > 10 MHz  
2.2  
Open-loop voltage gain (AOL  
)
68  
1
dB  
mV  
C
A
B
A
B
A
B
TA = 25°C  
4
5
Input offset voltage  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
TA = 25°C  
1
mV  
Average offset voltage drift  
Input bias current  
Average bias current drift  
Input offset current  
Average offset current drift  
2.6  
8
V/°C  
15.5  
18.5  
A
TA = –40°C to 125°C  
TA = –40°C to 125°C  
TA = 25°C  
8
20  
1.6  
1.6  
4
nA/°C  
A
3.6  
7
TA = –40°C to 125°C  
TA = –40°C to 125°C  
nA/°C  
(1) Test levels: A = 100% tested at 25°C, overtemperature limits by characterization and simulation; B = Limits set by characterization and  
simulation; C = Typical value only for information.  
4
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): THS4509-Q1  
THS4509-Q1  
www.ti.com ........................................................................................................................................................................................... SLOS547NOVEMBER 2008  
SPECIFICATIONS, VS+ – VS– = 5 V (continued)  
Test conditions unless otherwise noted: VS+ = +2.5 V, VS– = –2.5 V, G = 10 dB, CM = open, VO = 2 Vpp, RF = 349 ,  
RL = 200 differential, TA = 25°C, single-ended input, differential output, input and output referenced to mid-supply  
TEST  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LEVEL(1)  
Input  
Common-mode input range high  
Common-mode input range low  
Common-mode rejection ratio  
Differential input impedance  
Common-mode input impedance  
Output  
1.75  
–1.75  
V
B
90  
dB  
1.35 || 1.77  
1.02 || 2.26  
M|| pF  
M|| pF  
C
C
TA = 25°C  
1.2  
1.1  
1.4  
1.4  
Each output with 100 to  
mid-supply  
Maximum output voltage high  
Minimum output voltage low  
Differential output voltage swing  
V
V
V
TA = –40°C to 125°C  
TA = 25°C  
A
C
–1.4  
–1.4  
5.6  
–1.2  
–1.1  
Each output with 100 to  
mid-supply  
TA = –40°C to 125°C  
4.8  
4.4  
TA = –40°C to 125°C  
RL = 10 Ω  
Differential output current drive  
Output balance error  
96  
–49  
0.3  
mA  
dB  
VO = 100 mV, f = 1 MHz  
f = 1 MHz  
Closed-loop output impedance  
Output Common-Mode Voltage Control  
Small-signal bandwidth  
Slew rate  
700  
110  
1
MHz  
V/µs  
V/V  
Gain  
Output common-mode offset  
from CM input  
1.25 V < CM < 3.5 V  
1.25 V < CM < 3.5 V  
5
mV  
C
CM input bias current  
CM input voltage range  
CM input impedance  
CM default voltage  
±40  
–1.5 to 1.5  
23 || 1  
A
V
k|| pF  
V
0
Power Supply  
Specified operating voltage  
3
5
37.7  
37.7  
37.7  
37.7  
90  
5.25  
40.9  
41.9  
V
C
A
C
TA = 25°C  
Maximum quiescent current  
Minimum quiescent current  
mA  
TA = –40°C to 125°C  
TA = 25°C  
34.5  
33.5  
mA  
dB  
TA = –40°C to 125°C  
Power-supply rejection (PSRR)  
Power Down  
Referenced to Vs–  
Enable voltage threshold  
Disable voltage threshold  
Assured on above 2.1 V + VS–  
Assured off below 0.7 V + VS–  
TA = 25°C  
>2.1 + VS–  
<0.7 + VS–  
0.65  
V
V
C
A
0.9  
1
Powerdown quiescent current  
mA  
TA = –40°C to 125°C  
PD = VS–  
0.65  
Input bias current  
Input impedance  
Turn-on time delay  
Turn-off time delay  
100  
A
k|| pF  
ns  
50 || 2  
55  
C
Measured to output on  
Measured to output off  
10  
s
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): THS4509-Q1  
THS4509-Q1  
SLOS547NOVEMBER 2008........................................................................................................................................................................................... www.ti.com  
SPECIFICATIONS, VS+ – VS– = 3 V  
Test conditions unless otherwise noted: VS+ = +1.5 V, VS– = –1.5 V, G = 10 dB, CM = open, VO = 1 Vpp, RF = 349 ,  
RL = 200 differential, TA = 25°C, single-ended input, differential output, input and output referenced to mid-supply  
TEST  
PARAMETER  
AC Performance  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LEVEL(1)  
G = 6 dB, VO = 100 mVpp  
1.9  
1.6  
GHz  
MHz  
G = 10 dB, VO = 100 mVpp  
G = 14 dB, VO = 100 mVpp  
G = 20 dB, VO = 100 mVpp  
G = 20 dB  
Small-signal bandwidth  
625  
260  
3
Gain-bandwidth product  
Bandwidth for 0.1-dB flatness  
Large-signal bandwidth  
Slew rate (differential)  
Rise time  
GHz  
MHz  
GHz  
V/µs  
ns  
G = 10 dB, VO = 1 Vpp  
G = 10 dB, VO = 1 Vpp  
400  
1.5  
3500  
0.25  
0.25  
1
Fall time  
2-V step  
ns  
Settling time to 1%  
Settling time to 0.1%  
ns  
10  
ns  
f = 10 MHz  
f = 50 MHz  
f = 100 MHz  
f = 10 MHz  
f = 50 MHz  
f = 100 MHz  
–107  
–83  
–60  
–87  
–65  
–54  
–77  
–54  
–77  
–62  
72  
Second-order harmonic distortion  
Third-order harmonic distortion  
dBc  
dBc  
C
fC = 70 MHz  
fC = 140 MHz  
fC = 70 MHz  
fC = 140 MHz  
fC = 70 MHz  
fC = 140 MHz  
fC = 70 MHz  
fC = 140 MHz  
200-kHz tone spacing,  
RL = 499 Ω  
Second-order intermodulation distortion  
Third-order intermodulation distortion  
Second-order output intercept point  
Third-order output intercept point  
1-dB compression point  
dBc  
dBc  
200-kHz tone spacing,  
RL = 499 Ω  
200-kHz tone spacing  
RL = 100 Ω  
dBm  
dBm  
dBm  
52  
38.5  
30  
200-kHz tone spacing  
RL = 100 Ω  
fC = 70 MHz  
2.2  
fC = 140 MHz  
50-system, 10 MHz  
f > 10 MHz  
0.25  
17.1  
1.9  
Noise figure  
dB  
Input voltage noise  
Input current noise  
DC Performance  
nV/Hz  
pA/Hz  
f > 10 MHz  
2.2  
Open-loop voltage gain (AOL  
)
68  
1
dB  
mV  
Input offset voltage  
TA = 25°C  
Average offset voltage drift  
Input bias current  
Average bias current drift  
Input offset current  
Average offset current drift  
TA = –40°C to 125°C  
TA = 25°C  
2.6  
6
V/°C  
A
C
TA = –40°C to 125°C  
TA = 25°C  
20  
1.6  
4
nA/°C  
A
TA = –40°C to 125°C  
nA/°C  
(1) Test levels: A = 100% tested at 25°C, overtemperature limits by characterization and simulation; B = Limits set by characterization and  
simulation; C = Typical value only for information.  
6
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): THS4509-Q1  
THS4509-Q1  
www.ti.com ........................................................................................................................................................................................... SLOS547NOVEMBER 2008  
SPECIFICATIONS, VS+ – VS– = 3 V (continued)  
Test conditions unless otherwise noted: VS+ = +1.5 V, VS– = –1.5 V, G = 10 dB, CM = open, VO = 1 Vpp, RF = 349 ,  
RL = 200 differential, TA = 25°C, single-ended input, differential output, input and output referenced to mid-supply  
TEST  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LEVEL(1)  
Input  
Common-mode input range high  
Common-mode input range low  
Common-mode rejection ratio  
Differential input impedance  
Common-mode input impedance  
Output  
0.75  
–0.75  
V
V
B
80  
dB  
1.35 || 1.77  
1.02 || 2.26  
M|| pF  
M|| pF  
C
C
Each output with 100 to  
mid-supply  
Maximum output voltage high  
Minimum output voltage low  
TA = 25°C  
TA = 25°C  
0.45  
V
V
Each output with 100 to  
mid-supply  
–0.45  
C
Differential output voltage swing  
Differential output current drive  
Output balance error  
1.8  
50  
V
mA  
dB  
RL = 10 Ω  
VO = 100 mV, f = 1 MHz  
f = 1 MHz  
–49  
0.3  
Closed-loop output impedance  
Output Common-Mode Voltage Control  
Small-signal bandwidth  
Slew rate  
570  
60  
1
MHz  
V/µs  
V/V  
Gain  
Output common-mode offset  
from CM input  
1.25 V < CM < 3.5 V  
1.25 V < CM < 3.5 V  
4
mV  
C
CM input bias current  
CM input voltage range  
CM input impedance  
CM default voltage  
±40  
–1.5 to 1.5  
20 || 1  
A
V
k|| pF  
V
0
Power Supply  
Specified operating voltage  
Quiescent current  
3
34.8  
70  
V
C
A
C
TA = 25°C  
mA  
dB  
Power-supply rejection (PSRR)  
Power Down  
Referenced to Vs–  
Enable voltage threshold  
Disable voltage threshold  
Power-down quiescent current  
Input bias current  
Assured on above 2.1 V + VS–  
Assured off below 0.7 V + VS–  
>2.1 + VS–  
<0.7 + VS–  
0.46  
V
V
mA  
PD = VS–  
65  
A
k|| pF  
ns  
C
Input impedance  
50 || 2  
100  
Turn-on time delay  
Measured to output on  
Measured to output off  
Turn-off time delay  
10  
s
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): THS4509-Q1  
THS4509-Q1  
SLOS547NOVEMBER 2008........................................................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS  
TYPICAL AC PERFORMANCE: VS+ – VS– = 5 V  
Test conditions unless otherwise noted: VS+ = +2.5 V, VS– = –2.5V, CM = open, VO = 2 Vpp, RF = 349 , RL = 200 Ω  
differential, G = 10 dB, single-ended input, input and output referenced to midrail  
Small-Signal Frequency Response  
Large Signal Frequency Response  
Figure 1  
Figure 2  
HD2, G = 6 dB, VOD = 2 VPP  
HD3, G = 6 dB, VOD = 2 VPP  
HD2, G = 10 dB, VOD = 2 VPP  
HD3, G = 10 dB, VOD = 2 VPP  
HD2, G = 14 dB, VOD = 2 VPP  
HD3, G = 14 dB, VOD = 2 VPP  
HD2, G = 10 dB  
vs Frequency  
Figure 3  
vs Frequency  
Figure 4  
vs Frequency  
Figure 5  
vs Frequency  
Figure 6  
vs Frequency  
Figure 7  
Harmonic Distortion  
vs Frequency  
Figure 8  
vs Output Voltage  
vs Output Voltage  
vs Common-Mode Output Voltage  
vs Common-Mode Output Voltage  
vs Frequency  
Figure 9  
HD3, G = 10 dB  
Figure 10  
Figure 11  
Figure 12  
Figure 13  
Figure 14  
Figure 15  
Figure 16  
Figure 17  
Figure 18  
Figure 19  
Figure 20  
Figure 21  
Figure 22  
Figure 23  
Figure 24  
Figure 25  
Figure 26  
Figure 27  
Figure 28  
Figure 29  
Figure 30  
Figure 31  
Figure 32  
Figure 33  
Figure 34  
Figure 35  
Figure 36  
Figure 37  
Figure 38  
Figure 39  
Figure 40  
Figure 41  
Figure 42  
Figure 43  
HD2, G = 10 dB  
HD3, G = 10 dB  
IMD2, G = 6 dB, VOD = 2 VPP  
IMD3, G = 6 dB, VOD = 2 VPP  
IMD2, G = 10 dB, VOD = 2 VPP  
IMD3, G = 10 dB, VOD = 2 VPP  
IMD2, G = 14 dB, VOD = 2 VPP  
IMD3, G = 14 dB, VOD = 2 VPP  
OIP2  
vs Frequency  
vs Frequency  
Intermodulation Distortion  
Output Intercept Point  
vs Frequency  
vs Frequency  
vs Frequency  
vs Frequency  
OIP3  
vs Frequency  
0.1-dB Flatness  
S-Parameters  
vs Frequency  
Transition Rate  
vs Output Voltage  
Transient Response  
Settling Time  
Rejection Ratio  
vs Frequency  
vs Frequency  
Output Impedance  
Overdrive Recovery  
Output Voltage Swing  
Turn-Off Time  
vs Load Resistance  
Turn-On Time  
Input Offset Voltage  
Open-Loop Gain and Phase  
Input Referred Noise  
Noise Figure  
vs Input Common-Mode Voltage  
vs Frequency  
vs Frequency  
vs Frequency  
Quiescent Current  
Power-Supply Current  
Output Balance Error  
CM Input Impedance  
vs Supply Voltage  
vs Supply Voltage in Power-Down Mode  
vs Frequency  
vs Frequency  
CM Small-Signal Frequency Response  
CM Input Bias Current  
vs CM Input Voltage  
vs CM Input Voltage  
vs CM Input Voltage  
Differential Output Offset Voltage  
Output Common-Mode Offset  
8
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): THS4509-Q1  
THS4509-Q1  
www.ti.com ........................................................................................................................................................................................... SLOS547NOVEMBER 2008  
SMALL-SIGNAL FREQUENCY RESPONSE  
LARGE-SIGNAL FREQUENCY RESPONSE  
22  
22  
20  
G = 20 dB  
V
= 100 mV  
PP  
V
= 2 V  
PP  
OD  
OD  
20  
18  
G = 20 dB  
G = 14 dB  
18  
16  
16  
14  
12  
G = 14 dB  
G = 10 dB  
14  
12  
10  
G = 10 dB  
G = 6 dB  
10  
8
8
6
4
G = 6 dB  
6
4
2
2
0
0
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
f - Frequency - MHz  
f − Frequency − MHz  
Figure 1.  
Figure 2.  
HD2 vs FREQUENCY  
HD3 vs FREQUENCY  
−60  
−70  
−60  
−70  
−80  
G = 6 dB,  
= 2 V  
G = 6 dB,  
= 2 V  
V
V
OD  
PP  
OD  
PP  
= 100 W  
R
L
−80  
R
= 100 W  
L
−90  
−90  
R
= 200 W  
L
R
= 1 kW  
L
−100  
−100  
R
= 1 kW  
R
= 500 W  
L
L
−110  
−120  
−110  
−120  
R
= 200 W  
L
R
= 500 W  
L
1000  
10  
100  
1
10  
100  
1000  
1
f − Frequency − MHz  
f − Frequency − MHz  
Figure 3.  
Figure 4.  
HD2 vs FREQUENCY  
HD3 vs FREQUENCY  
−60  
−70  
−60  
−70  
−80  
G = 10 dB,  
V
G = 10 dB,  
= 2 V  
= 2 V  
PP  
V
OD  
OD  
PP  
R
= 200 W  
−80  
L
R
= 100 W  
R
= 500 W  
L
L
−90  
−90  
R
L
= 1 kW  
−100  
−100  
R
= 1 kW  
L
R
= 100 W  
L
−110  
−120  
−110  
−120  
R
= 200 W  
R
= 500 W  
L
L
1000  
1
10  
100  
f − Frequency − MHz  
1
10  
100  
1000  
f − Frequency − MHz  
Figure 5.  
Figure 6.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): THS4509-Q1  
THS4509-Q1  
SLOS547NOVEMBER 2008........................................................................................................................................................................................... www.ti.com  
HD2 vs FREQUENCY  
HD3 vs FREQUENCY  
−60  
−70  
−60  
−70  
−80  
G = 14 dB,  
= 2 V  
G = 14 dB,  
= 2 V  
V
OD  
PP  
= 100 W  
V
OD  
PP  
R
L
−80  
R
= 200 W  
L
R
= 100 W  
L
R
= 500 W  
L
−90  
−90  
R
= 1 kW  
L
−100  
−100  
R
= 200 W  
L
−110  
−120  
−110  
−120  
R
= 500 W  
L
R
= 1 kW  
L
10  
1
100  
1000  
1
10  
100  
1000  
f − Frequency − MHz  
f − Frequency − MHz  
Figure 7.  
Figure 8.  
HD2 vs OUTPUT VOLTAGE  
HD3 vs OUTPUT VOLTAGE  
f = 64 MHz  
-60  
-60  
-70  
-80  
-70  
-80  
f = 32 MHz  
f = 64 MHz  
f = 32 MHz  
f = 8 MHz  
-90  
-90  
f = 16 MHz  
-100  
-100  
-110  
-120  
f = 8 MHz  
-110  
f = 16 MHz  
-120  
4
0
1
3
2
0
1
2
- V  
3
4
V
- V  
OD  
PP  
V
OD  
PP  
Figure 9.  
HD2 vs COMMON-MODE OUTPUT VOLTAGE  
Figure 10.  
HD3 vs COMMON-MODE OUTPUT VOLTAGE  
0
-20  
-20  
-30  
-40  
-50  
-60  
-70  
V
V
= -1 V to 1 V  
CM  
V
V
= -1 V to 1 V  
CM  
OD  
= 2 V  
PP  
OD  
= 2 V  
PP  
G = 10 dB  
= 200 W  
G = 10 dB  
= 200 W  
R
L
R
L
-40  
150 MHz  
150 MHz  
-60  
100 MHz  
64 MHz  
100 MHz  
64 MHz  
32 MHz  
-80  
-90  
-80  
32 MHz  
-100  
-110  
-120  
16 MHz  
-100  
-120  
1 MHz  
4 MHz  
0.2 0.4 0.6 0.8  
16 MHz  
1 MHz  
0.2 0.4 0.6 0.8  
4 MHz  
-1  
-0.8 -0.6 -0.4 -0.2  
0
1
-1 -0.8 -0.6 -0.4 -0.2  
0
1
V
− Common-Mode Output Voltage − V  
V
− Common-Mode Output Voltage − V  
IC  
IC  
Figure 11.  
Figure 12.  
10  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): THS4509-Q1  
THS4509-Q1  
www.ti.com ........................................................................................................................................................................................... SLOS547NOVEMBER 2008  
IMD2 vs FREQUENCY  
Gain = 6 dB,  
IMD3 vs FREQUENCY  
−60  
-30  
Gain = 6 dB,  
= 2 V  
R = 100 Ω  
L
R
= 200 W  
L
V
Envelope  
PP  
OD  
V
= 2 V Envelop  
PP  
−65  
−70  
OD  
-40  
-50  
R = 200 Ω  
L
R
= 100 W  
L
R = 1 kΩ  
L
−75  
−80  
-60  
-70  
R
= 500 W  
−85  
L
-80  
-90  
−90  
−95  
R
= 1 kW  
L
R = 500 Ω  
L
−100  
-100  
0
100  
f − Frequency − MHz  
150  
200  
50  
0
50  
100  
150  
200  
f - Frequency - Mhz  
Figure 13.  
Figure 14.  
IMD2 vs FREQUENCY  
IMD3 vs FREQUENCY  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-30  
-40  
-50  
-60  
Gain = 10 dB,  
V
R
= 100 W  
L
Gain = 10 dB,  
= 2 V Envelope  
= 2 V Envelope  
PP  
OD  
V
R = 200 W  
L
OD  
PP  
R
L
= 200 W  
R
= 100 W  
L
-70  
-80  
R
= 500 W  
L
R = 1 kW  
L
R
= 1 kW  
L
R
= 500 W  
-90  
L
-95  
-100  
-100  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
F - Frequency - MHz  
f - Frequency - Mhz  
Figure 15.  
Figure 16.  
IMD2 vs FREQUENCY  
IMD3 vs FREQUENCY  
−30  
−60  
−65  
−70  
−75  
−80  
Gain = 14 dB,  
= 2 V  
R
= 100 W  
L
Gain = 14 dB  
= 2 V  
V
Envelope  
PP  
CO  
−40  
−50  
−60  
−70  
V
Envelope  
PP  
R
= 200 W  
OD  
L
R
= 100 W  
R
= 200 W  
L
L
R
L
= 500 W  
−85  
−90  
−80  
−90  
R
= 1 kW  
L
R
= 1 kW  
L
−95  
R
= 500 W  
L
−100  
−100  
0
100  
150  
200  
0
50  
100  
f − Frequency − MHz  
150  
50  
200  
f − Frequency − MHz  
Figure 17.  
Figure 18.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): THS4509-Q1  
THS4509-Q1  
SLOS547NOVEMBER 2008........................................................................................................................................................................................... www.ti.com  
OIP2 vs FREQUENCY  
OIP3 vs FREQUENCY  
45  
43  
90  
85  
80  
Gain = 6 dB  
Gain = 6 dB  
Gain = 14 dB  
41  
39  
37  
35  
33  
75  
Gain = 10 dB  
70  
65  
Gain = 10 dB  
60  
55  
50  
31  
29  
27  
25  
Gain = 14 dB  
45  
40  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
250  
f − Frequency − MHz  
f − Frequency − MHz  
Figure 19.  
Figure 20.  
0.1-dB FLATNESS  
S-PARAMETERS vs FREQUENCY  
10.2  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
S21  
V
= 2V  
OD  
PP  
10.1  
10  
S11  
S22  
9.9  
9.8  
S12  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
f − Frequency − MHz  
f - Frequency - MHz  
Figure 21.  
Figure 22.  
TRANSITION RATE vs OUTPUT VOLTAGE  
TRANSIENT RESPONSE  
1.5  
8000  
7000  
6000  
5000  
4000  
3000  
2000  
1
Rise  
Fall  
0.5  
V
= 2 V  
step  
OD  
0
−0.5  
−1  
1000  
0
−1.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
STEP  
4
t − Time − 500 ps/div  
V
- Differential Outrput Voltage - V  
OD  
Figure 23.  
Figure 24.  
12  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): THS4509-Q1  
THS4509-Q1  
www.ti.com ........................................................................................................................................................................................... SLOS547NOVEMBER 2008  
SETTLING TIME  
REJECTION RATIO vs FREQUENCY  
5
4
3
2
1
0
100  
90  
V
=2V  
step  
OD  
PSRR−  
80  
PSRR+  
70  
60  
CMRR  
50  
40  
30  
20  
10  
0
−1  
−2  
−3  
−4  
−5  
0.01  
0.1  
1
10  
100  
1000  
t − Time − 500 ps/div  
f − Frequency − MHz  
Figure 25.  
Figure 26.  
OUTPUT IMPEDANCE vs FREQUENCY  
OVERDRIVE RECOVERY  
5
100  
1
0.8  
4
0.6  
0.4  
3
2
1
0
Input  
10  
Output  
0.2  
0
−0.2  
−1  
1
−0.4  
−0.6  
−2  
−3  
−4  
−5  
−0.8  
−1  
0.1  
0.1  
1
10  
100  
1000  
t − Time − 200 ns/div  
f − Frequency− MHz  
Figure 27.  
Figure 28.  
OUTPUT VOLTAGE SWING vs LOAD RESISTANCE  
TURN-OFF TIME  
2
5
4
7
6
1.6  
1.2  
0.8  
Output  
5
4
3
3
2
PD  
2
0.4  
0
1
0
1
0
10  
100  
1000  
t − Time − 2 ms/div  
RL - Load Resistance - W  
Figure 29.  
Figure 30.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): THS4509-Q1  
THS4509-Q1  
SLOS547NOVEMBER 2008........................................................................................................................................................................................... www.ti.com  
INPUT OFFSET VOLTAGE vs  
INPUT COMMON-MODE VOLTAGE  
TURN-ON TIME  
5
4
3
2
40  
35  
30  
25  
20  
15  
10  
5
2
1.6  
1.2  
PD  
0.8  
Output  
1
0
0.4  
0
0
−5  
2.5  
−2.5 −2 −1.5 −1 −0.5  
0
0.5  
1
1.5  
2
t − Time − 50 ns/div  
Input Common-Mode Voltage − V  
Figure 31.  
Figure 32.  
OPEN-LOOP GAIN AND PHASE vs FREQUENCY  
INPUT REFERRED NOISE vs FREQUENCY  
1000  
90  
40  
80  
70  
60  
50  
40  
30  
20  
10  
0
10  
-20  
100  
Gain  
-50  
Phase  
In  
-80  
-110  
-140  
-170  
10  
Vn  
-200  
-230  
1
1 k  
10  
100  
10 k  
10 M  
100 k  
1 M  
1
100  
10 k  
1 M  
100 M  
10 G  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 33.  
Figure 34.  
NOISE FIGURE vs FREQUENCY  
QUIESCENT CURRENT vs SUPPLY VOLTAGE  
20  
40  
35  
30  
25  
T
= 25°C  
19  
18  
A
50 - W System  
Gain = 6 dB  
T
= -40°C  
A
17  
16  
1.35 V  
Gain = 10 dB  
Gain = 14 dB  
Gain = 20 dB  
T
= 85°C  
A
15  
14  
13  
12  
11  
10  
0
50  
100  
f − Frequency − MHz  
150  
200  
1
1.5  
2
2.5  
V
- Supply Voltage - V  
S
Figure 35.  
Figure 36.  
14  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): THS4509-Q1  
THS4509-Q1  
www.ti.com ........................................................................................................................................................................................... SLOS547NOVEMBER 2008  
POWER-SUPPLY CURRENT  
vs SUPPLY VOLTAGE IN POWER-DOWN MODE  
OUTPUT BALANCE ERROR vs FREQUENCY  
800  
700  
10  
0
°
C
T = 85  
A
°
T = 25 C  
A
600  
500  
400  
300  
200  
100  
0
−10  
−20  
°
C
T = −40  
A
−30  
−40  
−50  
−60  
1000  
0
0.5  
1
1.5  
2
2.5  
0.1  
1
10  
100  
f − Frequency − MHz  
− Supply Voltage −  
V
V
S
Figure 37.  
Figure 38.  
CM INPUT IMPEDANCE vs FREQUENCY  
CM SMALL-SIGNAL FREQUENCY RESPONSE  
1
0
100  
100 mVPP  
-1  
-2  
10  
-3  
-4  
1
-5  
-6  
-7  
0.1  
-8  
-9  
0.01  
-10  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
f − Frequency − MHz  
f − Frequency − MHz  
Figure 39.  
Figure 40.  
DIFFERENTIAL OUTPUT OFFSET VOLTAGE vs  
CM INPUT VOLTAGE  
CM INPUT BIAS CURRENT vs CM INPUT VOLTAGE  
5
300  
200  
4
3
2
1
100  
0
−100  
−200  
−300  
0
−1  
−2.5 −2 −1.5 −1 −0.5  
0
0.5  
1
1.5  
2
2.5  
−2.5 −2 −1.5 −1 −0.5  
0
0.5  
1
1.5  
2
2.5  
CM Input Voltage − V  
CM Input V  
oltage − V  
Figure 41.  
Figure 42.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): THS4509-Q1  
THS4509-Q1  
SLOS547NOVEMBER 2008........................................................................................................................................................................................... www.ti.com  
OUTPUT COMMON-MODE OFFSET vs  
CM INPUT VOLTAGE  
50  
40  
30  
20  
10  
0
−10  
−20  
−30  
−40  
−50  
2
−2.5  
−2 −1.5  
−1  
0
1
1.5  
2.5  
−0.5  
0.5  
CM Input Voltage − V  
Figure 43.  
16  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): THS4509-Q1  
THS4509-Q1  
www.ti.com ........................................................................................................................................................................................... SLOS547NOVEMBER 2008  
TYPICAL AC PERFORMANCE: VS+ – VS– = 3 V  
Test conditions unless otherwise noted: VS+ = +1.5 V, VS– = –1.5 V, CM = open, VOD = 1 Vpp, RF = 349 ,  
RL = 200 differential, G = 10 dB, single-ended input, input and output referenced to midrail  
Small-Signal Frequency Response  
Large-Signal Frequency Response  
Figure 44  
Figure 45  
Figure 46  
Figure 47  
Figure 48  
Figure 49  
Figure 50  
Figure 51  
Figure 52  
Figure 53  
Figure 54  
Figure 55  
Figure 56  
Figure 57  
Figure 58  
Figure 59  
Figure 60  
Figure 61  
Figure 62  
Figure 63  
Figure 64  
Figure 65  
Figure 66  
Figure 67  
Figure 68  
Figure 69  
Figure 70  
Figure 71  
Figure 72  
Figure 73  
Figure 74  
Figure 75  
HD2, G = 6 dB, VOD = 1 VPP  
HD3, G = 6 dB, VOD = 1 VPP  
HD2, G = 10 dB, VOD = 1 VPP  
HD3, G = 10 dB, VOD = 1 VPP  
HD2, G = 14 dB, VOD = 1 VPP  
HD3, G = 14 dB, VOD = 1 VPP  
IMD2, G = 6 dB, VOD = 1 VPP  
IMD3, G = 6 dB, VOD = 1 VPP  
IMD2, G = 10 dB, VOD = 1 VPP  
IMD3, G = 10 dB, VOD = 1 VPP  
IMD2, G = 14 dB, VOD = 1 VPP  
IMD3, G = 14 dB, VOD = 1 VPP  
OIP2  
vs Frequency  
vs Frequency  
vs Frequency  
vs Frequency  
vs Frequency  
vs Frequency  
vs Frequency  
vs Frequency  
vs Frequency  
vs Frequency  
vs Frequency  
vs Frequency  
vs Frequency  
vs Frequency  
Harmonic Distortion  
Intermodulation Distortion  
Output Intercept Point  
OIP3  
0.1-dB Flatness  
S-Parameters  
vs Frequency  
Transition Rate  
vs Output Voltage  
Transient Response  
Settling Time  
Output Voltage Swing  
Rejection Ratio  
vs Load Resistance  
vs Frequency  
Overdrive Recovery  
Output Impedance  
Turn-Off Time  
vs Frequency  
Turn-On Time  
Output Balance Error  
Noise Figure  
vs Frequency  
vs Frequency  
CM Input Impedance  
Differential Output Offset Voltage  
Output Common-Mode Offset  
vs Frequency  
vs CM Input Voltage  
vs CM Input Voltage  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): THS4509-Q1  
THS4509-Q1  
SLOS547NOVEMBER 2008........................................................................................................................................................................................... www.ti.com  
SMALL-SIGNAL FREQUENCY RESPONSE  
LARGE-SIGNAL FREQUENCY RESPONSE  
22  
20  
22  
20  
18  
16  
14  
V
= 100 mV  
PP  
OD  
V
= 1 V  
PP  
OD  
G = 20 dB  
G = 20 dB  
G = 14 dB  
18  
16  
14  
12  
10  
8
G = 14 dB  
G = 10 dB  
12  
10  
8
G = 10 dB  
G = 6 dB  
G = 6 dB  
6
4
2
0
6
4
2
0
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
f - Frequency - MHz  
f− Frequency − MHz  
Figure 44.  
Figure 45.  
HD2 vs FREQUENCY  
HD3 vs FREQUENCY  
G = 6 dB,  
V
G = 6 dB,  
= 1 V  
= 1 V  
PP  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
V
OD  
OD  
PP  
R
= 100 W  
L
= 100  
R
L
R
= 1 k  
R
= 200 W  
L
L
R
= 200  
L
R
= 1 kW  
L
110  
R
= 500 Ω  
1000  
R = 500 W  
L
L
−120  
1
10  
100  
1
10  
100  
1000  
f − Frequency − MHz  
f − Frequency − MHz  
Figure 46.  
Figure 47.  
HD2 vs FREQUENCY  
HD3 vs FREQUENCY  
−40  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
G = 10 dB,  
= 1 V  
G = 10 dB,  
= 1 V  
C
OD  
PP  
−50  
−60  
V
OD  
PP  
−70  
−80  
R
L
= 200Ω  
R
L
= 1 kW  
−90  
R
= 500 W  
L
−100  
R
L
= 1 kΩ  
L
R
= 200 W  
L
−110  
R
= 500 Ω  
100  
−120  
1
1
100  
10  
f − Frequency − MHz  
1000  
1000  
10  
f − Frequency − MHz  
Figure 48.  
Figure 49.  
18  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): THS4509-Q1  
THS4509-Q1  
www.ti.com ........................................................................................................................................................................................... SLOS547NOVEMBER 2008  
HD2 vs FREQUENCY  
HD3 vs FREQUENCY  
−40  
−50  
−40  
−50  
G = 14 dB,  
= 1 V  
G = 14 dB,  
V = 1 V  
OD  
V
OD  
PP  
PP  
−60  
−70  
−60  
−70  
−80  
R
= 100Ω  
R
= 100 W  
L
L
−80  
−90  
R
= 200Ω  
L
R
= 200 W  
L
−100  
R
= 500 W  
L
R
= 500  
L
−90  
−110  
−120  
R
= 1 kW  
R
= 1 k  
L
L
−100  
1
10  
100  
1000  
1
10  
100  
1000  
f − Frequency − MHz  
f − Frequency − MHz  
Figure 50.  
Figure 51.  
IMD2 vs FREQUENCY  
IMD3 vs FREQUENCY  
−30  
−40  
−50  
−30  
−40  
−50  
−60  
−70  
−80  
Gain = 6 dB,  
= 1 V  
Gain = 6 dB,  
V
R
= 500 W  
L
V
= 1 V Envelope  
OD  
PP  
OD PP  
R
= 1 kW  
L
R
= 100 W  
L
−60  
−70  
−80  
R
L
= 1 kW  
= 500 W  
R
= 100 W  
L
R
L
R
= 200 W  
L
−90  
−90  
R
= 200 W  
L
−100  
−100  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
f − Frequency − MHz  
f − Frequency − MHz  
Figure 52.  
Figure 53.  
IMD2 vs FREQUENCY  
IMD3 vs FREQUENCY  
−30  
−40  
−50  
−60  
−70  
−80  
−30  
−40  
−50  
−60  
Gain = 10 dB,  
V
R
= 500 W  
L
Gain = 10 dB,  
V
= 1 V Envolope  
PP  
OD  
= 1 V Envelope  
PP  
OD  
R
= 100 W  
L
R
= 1 kW  
R
= 100 W  
L
R
= 500 W  
L
L
−70  
−80  
R
= 200 W  
L
R
= 1 kW  
L
−90  
−90  
R
= 200 W  
L
−100  
−100  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
f − Frequency − MHz  
f − Frequency − MHz  
Figure 54.  
Figure 55.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): THS4509-Q1  
THS4509-Q1  
SLOS547NOVEMBER 2008........................................................................................................................................................................................... www.ti.com  
IMD2 vs FREQUENCY  
IMD3 vs FREQUENCY  
−30  
−40  
−30  
−40  
−50  
−60  
−70  
Gain = 14 dB,  
V
Gain = 14 dB,  
V
R
= 500 W  
L
= 1 V Envelope  
PP  
= 1 V Envelope  
PP  
OD  
OD  
R
= 100 W  
L
−50  
−60  
−70  
−80  
R
= 1 kW  
R
= 100 W  
L
R
L
= 500 W  
L
R
= 1 kW  
L
R
= 200 W  
L
−80  
−90  
R
= 200 W  
L
−90  
−100  
−100  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
f − Frequency − MHz  
f − Frequency − MHz  
Figure 56.  
Figure 57.  
OIP2 vs FREQUENCY  
OIP3 vs FREQUENCY  
80  
75  
45  
40  
35  
Gain = 6 dB  
Gain = 6 dB  
Gain = 10 dB  
70  
65  
60  
55  
50  
45  
40  
Gain = 10 dB  
30  
25  
Gain = 14 dB  
Gain = 14 dB  
20  
15  
35  
30  
250  
0
50  
150  
200  
100  
150  
0
200  
50  
100  
f − Frequency − MHz  
f − Frequency − MHz  
Figure 58.  
Figure 59.  
0.1-dB FLATNESS  
S-PARAMETERS vs FREQUENCY  
10.2  
10.1  
10  
0
V
= 1 V  
PP  
S21  
OD  
-10  
-20  
-30  
S11  
S22  
-40  
-50  
-60  
-70  
9.9  
9.8  
S12  
10000  
0.1  
1
10  
100  
1000  
1
10  
100  
1000  
f − Frequency − MHz  
f = Frequency - MHz  
Figure 60.  
Figure 61.  
20  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): THS4509-Q1  
THS4509-Q1  
www.ti.com ........................................................................................................................................................................................... SLOS547NOVEMBER 2008  
TRANSITION RATE vs OUTPUT VOLTAGE  
TRANSIENT RESPONSE  
4000  
3500  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
Rising  
3000  
2500  
2000  
V
= 1 V  
step  
OD  
Falling  
−0.1  
−0.2  
−0.3  
−0.4  
1500  
1000  
500  
0
−0.5  
−0.6  
0.2  
1
1.2  
1.4  
0
0.4  
0.6  
− Differential Output Voltage - V  
0.8  
t − Time − 500 ps/div  
V
OD  
STEP  
Figure 62.  
Figure 63.  
SETTLING TIME  
OUTPUT VOLTAGE SWING vs LOAD RESISTANCE  
2.5  
5
4
3
2
1
0
V
= 1 V  
step  
OD  
2
1.5  
−1  
−2  
1
−3  
−4  
−5  
0.5  
0
1000  
100  
0
t − Time − 500 ps/div  
R
- Load Resistance - W  
L
Figure 64.  
Figure 65.  
REJECTION RATIO vs FREQUENCY  
OVERDRIVE RECOVERY  
90  
80  
70  
3
2.5  
2
0.6  
0.4  
0.2  
0
PSRR−  
CMRR  
Input  
1.5  
1
60  
50  
PSRR+  
0.5  
Output  
0
−0.5  
−1  
40  
30  
20  
−0.2  
−0.4  
−0.6  
−1.5  
−2  
10  
0
−2.5  
−3  
0.01  
0.1  
1
10  
100  
1000  
t − Time − 200 ns/div  
f − Frequency − MHz  
Figure 66.  
Figure 67.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): THS4509-Q1  
THS4509-Q1  
SLOS547NOVEMBER 2008........................................................................................................................................................................................... www.ti.com  
OUTPUT IMPEDANCE vs FREQUENCY  
TURN-OFF TIME  
100  
3
1
0.8  
0.6  
0.4  
2.5  
2
Output  
PD  
10  
1.5  
1
1
0.2  
0
0.5  
0
0.1  
1000  
0.1  
1
10  
100  
t – Time – 2 ms/div  
f − Frequency− MHz  
Figure 68.  
Figure 69.  
TURN-ON TIME  
OUTPUT BALANCE ERROR vs FREQUENCY  
3
10  
0
1.2  
2.5  
1
−10  
−20  
−30  
PD  
2
0.8  
0.6  
0.4  
1.5  
Output  
1
−40  
−50  
−60  
0.5  
0
0.2  
0
0.1  
1
10  
100  
1000  
t − Time − 50 ns/div  
f − Frequency − MHz  
Figure 70.  
Figure 71.  
NOISE FIGURE vs FREQUENCY  
CM INPUT IMPEDANCE vs FREQUENCY  
20  
100  
10  
19  
18  
17  
16  
15  
14  
13  
12  
50 - W System  
Gain = 6 dB  
Gain = 10 dB  
Gain = 14 dB  
1
0.1  
Gain = 20 dB  
50  
11  
10  
0.01  
0
100  
150  
200  
1000  
100  
0.1  
1
10  
f − Frequency − MHz  
f − Frequency − MHz  
Figure 72.  
Figure 73.  
22  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): THS4509-Q1  
THS4509-Q1  
www.ti.com ........................................................................................................................................................................................... SLOS547NOVEMBER 2008  
DIFFERENTIAL OUTPUT OFFSET VOLTAGE vs  
CM INPUT VOLTAGE  
OUTPUT COMMON-MODE OFFSET vs  
CM INPUT VOLTAGE  
50  
40  
30  
20  
5
4
3
2
1
10  
0
−10  
−20  
−30  
−40  
−50  
0
−1  
−1.5  
−1  
−0.5  
0
0.5  
1
1.5  
−1.5  
−1  
−0.5  
0
0.5  
1
1.5  
CM Input Voltage - V  
CM Input Voltage − V  
Figure 74.  
Figure 75.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): THS4509-Q1  
THS4509-Q1  
SLOS547NOVEMBER 2008........................................................................................................................................................................................... www.ti.com  
TEST CIRCUITS  
of the network analyzer is 50 . RIT and RG are  
chosen to impedance match to 50 , and to maintain  
the proper gain. To balance the amplifier, a 0.22-F  
capacitor and 49.9-resistor to ground are inserted  
across RIT on the alternate input.  
The THS4509 is tested with the following test circuits  
built on the EVM. For simplicity, power-supply  
decoupling is not shown  
– see layout in the  
applications section for recommendations. Depending  
on the test conditions, component values are  
changed per the following tables, or as otherwise  
noted. The signal generators used are ac coupled  
50-sources and a 0.22-µF capacitor and a 49.9-Ω  
resistor to ground are inserted across RIT on the  
alternate input to balance the circuit. A split power  
supply is used to ease the interface to common test  
equipment, but the amplifier can be operated single  
supply, as described in the applications section, with  
no impact on performance.  
The output is probed using  
a high-impedance  
differential probe across the 100-resistor. The gain  
is referred to the amplifier output by adding back the  
6-dB loss due to the voltage divider on the output.  
V
IN  
R
R
F
G
G
From  
50  
Source  
V
S+  
R
R
IT  
49.9 Ω  
49.9 Ω  
Output Measured  
Here With High  
Impedance  
100 Ω  
THS4509  
CM  
R
Differential Probe  
0.22 µF  
49.9 Ω  
Open  
0.22 µF  
IT  
Table 1. Gain Component Values  
V
S−  
GAIN  
6 dB  
RF  
RG  
RIT  
R
F
348  
348 Ω  
348 Ω  
348 Ω  
165 Ω  
100 Ω  
56.2 Ω  
16.5 Ω  
61.9 Ω  
69.8 Ω  
88.7 Ω  
287 Ω  
Figure 76. Frequency Response Test Circuit  
10 dB  
14 dB  
20 dB  
Distortion and 1-dB Compression  
The circuit shown in Figure 77 is used to measure  
harmonic distortion, intermodulation distortion, and  
1-db compression point of the amplifier.  
Note the gain setting includes 50-source  
impedance. Components are chosen to achieve  
gain and 50-input termination.  
A signal generator is used as the signal source and  
the output is measured with a spectrum analyzer. The  
output impedance of the signal generator is 50 . RIT  
and RG are chosen to impedance-match to 50 , and  
to maintain the proper gain. To balance the amplifier,  
a 0.22-F capacitor and 49.9-resistor to ground are  
inserted across RIT on the alternate input.  
Table 2. Load Component Values  
RL  
RO  
ROT  
ATTEN  
6 dB  
100 Ω  
200 Ω  
499 Ω  
1k Ω  
25 Ω  
open  
86.6 Ω  
237 Ω  
487 Ω  
69.8 Ω  
56.2 Ω  
52.3 Ω  
16.8 dB  
25.5 dB  
31.8 dB  
A low-pass filter is inserted in series with the input to  
reduce harmonics generated at the signal source.  
The level of the fundamental is measured, then a  
high-pass filter is inserted at the output to reduce the  
fundamental so that it does not generate distortion in  
the input of the spectrum analyzer.  
Note the total load includes 50-termination by  
the test equipment. Components are chosen to  
achieve load and 50-line termination through a  
1:1 transformer.  
Due to the voltage divider on the output formed by  
the load component values, the amplifier's output is  
attenuated. The column ATTEN in Table 2 shows the  
attenuation expected from the resistor divider. When  
using a transformer at the output, as shown in  
Figure 77, the signal sees slightly more loss, and  
these numbers are approximate.  
The transformer used in the output to convert the  
signal from differential to single ended is an  
ADT1-1WT. It limits the frequency response of the  
circuit so that measurements cannot be made below  
approximately 1 MHz.  
V
IN  
R
R
F
G
From  
50 Ω  
Source  
Frequency Response  
V
S+  
R
R
IT  
V
OUT  
R
R
O
To 50 Ω  
Test  
Equipment  
1:1  
The circuit shown in Figure 76 is used to measure the  
frequency response of the circuit.  
R
OT  
THS 4509  
CM  
R
IT  
G
O
A network analyzer is used as the signal source and  
as the measurement device. The output impedance  
0.22 µF  
49.9 Ω  
Open  
0.22 µF  
V
S−  
R
F
Figure 77. Distortion Test Circuit  
24  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): THS4509-Q1  
 
 
 
 
THS4509-Q1  
www.ti.com ........................................................................................................................................................................................... SLOS547NOVEMBER 2008  
CM Input  
The 1-dB compression point is measured with a  
spectrum analyzer with 50-double termination or  
100-termination as shown in Table 2. The input  
power is increased until the output is 1 dB lower than  
expected. The number reported in the table data is  
the power delivered to the spectrum analyzer input.  
Add 3 dB to refer to the amplifier output.  
The circuit shown in Figure 79 is used to measure the  
frequency response and input impedance of the CM  
input. Frequency response is measured single ended  
at VOUT+ or VOUT– with the input injected at VIN, RCM  
=
0 , and RCMT = 49.9 . The input impedance is  
measured with RCM = 49.9 with RCMT = open, and  
calculated by measuring the voltage drop across RCM  
to determine the input current.  
S-Parameter, Slew Rate, Transient Response,  
Settling Time, Output Impedance, Overdrive,  
Output Voltage, and Turn-On/Turn-Off Time  
RG  
RF  
The circuit shown in Figure 78 is used to measure  
s-parameters, slew rate, transient response, settling  
time, output impedance, overdrive recovery, output  
voltage swing, and turn-on/turn-off times of the  
amplifier. For output impedance, the signal is injected  
at VOUT with VIN left open and the drop across the  
49.9-resistor is used to calculate the impedance  
seen looking into the amplifier’s output.  
VS+  
0.22 mF  
49.9 W  
RIT  
49.9 W  
To  
VOUT–  
50-ohm  
Test  
Equipment  
THS4509  
CM  
RG  
RIT  
49.9 W  
VOUT+  
0.22 mF  
49.9 W  
RCM  
VIN From  
50-ohm  
source  
VS–  
RF  
RCMT  
Because S21 is measured single ended at the load  
with 50-double termination, add 12 dB to refer to  
the amplifier’s output as a differential signal.  
Figure 79. CM Input Test Circuit  
CMRR and PSRR  
V
IN  
From  
50 Ω  
R
R
F
G
G
Source  
V
The circuit shown in Figure 80 is used to measure the  
CMRR and PSRR of VS+ and VS–. The input is  
switched appropriately to match the test being  
performed.  
S+  
R
R
IT  
49.9 Ω  
49.9 Ω  
V
V
OUT+  
To 50 Ω  
Test  
Equipment  
THS 4509  
CM  
R
OUT−  
348 Ω  
0.22 µF  
49.9 Ω  
V
S+  
Open  
0.22 µF  
IT  
V
V
S+  
S−  
PSRR+  
V
IN  
49.9 Ω  
49.9 Ω  
Output  
From  
50 Ω  
Source  
R
100 Ω  
100 Ω  
F
Measured  
Here  
CMRR  
PSRR−  
THS4509  
CM  
100 Ω  
With High  
Impedance  
Differential  
Probe  
Figure 78. S-Parameter, SR, Transient Response,  
Settling Time, ZO, Overdrive Recovery, VOUT  
Swing, and Turn-On/Turn-Off Test Circuit  
Open  
0.22 µF  
V
S−  
69.8 Ω  
V
S−  
348 Ω  
Figure 80. CMRR and PSRR Test Circuit  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s): THS4509-Q1  
 
 
 
THS4509-Q1  
SLOS547NOVEMBER 2008........................................................................................................................................................................................... www.ti.com  
APPLICATION INFORMATION  
R
R
F
G
Single-Ended  
Input  
APPLICATIONS  
V
Differential  
Output  
S
The following circuits show application information for  
the THS4509. For simplicity, power supply decoupling  
capacitors are not shown in these diagrams. See  
section THS4509 EVM for recommendations. For  
more detail on the use and operation of fully  
differential op amps see the application report  
Fully-Differential Amplifiers (SLOA054) .  
V
+
OUT–  
THS  
4509  
R
G
+
V
OUT+  
V
S
Differential Input to Differential Output Amplifier  
R
F
The THS4509 is a fully differential op amp, and can  
be used to amplify differential input signals to  
differential output signals. A basic block diagram of  
the circuit is shown in Figure 81 (CM input not  
shown). The gain of the circuit is set by RF divided by  
RG.  
Figure 82. Single-Ended Input to Differential  
Output Amplifier  
Input Common-Mode Voltage Range  
R
F
The input common-model voltage of a fully differential  
op amp is the voltage at the '+' and '–' input pins of  
the op amp.  
Differential  
Output  
Differential  
Input  
V
S+  
It is important to not violate the input common-mode  
voltage range (VICR) of the op amp. Assuming the op  
amp is in linear operation the voltage across the input  
pins is only a few millivolts at most. So finding the  
voltage at one input pin will determine the input  
common-mode voltage of the op amp.  
R
G
G
V
V
V
IN+  
OUT–  
+
THS4509  
R
+
V
IN–  
OUT+  
Treating the negative input as a summing node, the  
voltage is given by Equation 1:  
V
S–  
æ
ö
÷
÷
ø
æ
ö
÷
÷
ø
RG  
RF  
ç
ç
VIC = VOUT+  
´
+ VIN-  
´
R
F
ç
ç
RG + RF  
RG + RF  
è
è
(1)  
Figure 81. Differential Input to Differential Output  
Amplifier  
To determine the VICR of the op amp, the voltage at  
the negative input is evaluated at the extremes of  
VOUT+  
.
Depending on the source and load, input and output  
termination can be accomplished by adding RIT and  
RO.  
As the gain of the op amp increases, the input  
common-mode voltage becomes closer and closer to  
the input common-mode voltage of the source.  
Single-Ended Input to Differential Output  
Amplifier  
Setting the Output Common-Mode Voltage  
The THS4509 can be used to amplify and convert  
single-ended input signals to differential output  
signals. A basic block diagram of the circuit is shown  
in Figure 82 (CM input not shown). The gain of the  
circuit is again set by RF divided by RG.  
The output common-mode voltage is set by the  
voltage at the CM pin(s). The internal common-mode  
control circuit maintains the output common-mode  
voltage within 3-mV offset (typ) from the set voltage,  
when set within 0.5 V of mid-supply, with less than  
4-mV differential offset voltage. If left unconnected,  
the common-mode set point is set to mid-supply by  
internal circuitry, which may be overdriven from an  
external source. Figure 83 is representative of the  
CM input. The internal CM circuit has about 700 MHz  
of –3-dB bandwidth, which is required for best  
26  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): THS4509-Q1  
 
 
 
THS4509-Q1  
www.ti.com ........................................................................................................................................................................................... SLOS547NOVEMBER 2008  
performance, but it is intended to be a dc bias input  
RS  
RG  
RT  
RF  
pin. Bypass capacitors are recommended on this pin  
to reduce noise at the output. The external current  
required to overdrive the internal resistor divider is  
given by Equation 2:  
VS+  
VSignal  
VBias= VCM  
RS  
RO  
RO  
VCM  
VOUT-  
VOUT+  
2VCM - (VS+ - VS- )  
50 kW  
THS4509  
CM  
RG  
RT  
IEXT  
=
(2)  
VS–  
where VCM is the voltage applied to the CM pin.  
VCM  
VCM VCM  
RF  
V
S+  
Figure 84. THS4509 DC-Coupled Single Supply  
With Input Biased to VCM  
50 kW  
I
EXT  
In Figure 85 the source is referenced to ground and  
so is the input termination resistor. RPU is added to  
the circuit to avoid violating the VICR of the op amp.  
The proper value of resistor to add can be calculated  
from Equation 3:  
to internal  
CM circuit  
CM  
50 kW  
V
(VIC - VS+ )  
S–  
RPU  
=
æ
ö
æ
ö
1
1
1
Figure 83. CM Input Circuit  
ç
ç
÷
÷
ç
ç
÷
÷
VCM  
- VIC  
+
RF  
RIN RF  
è
ø
è
ø
(3)  
Single-Supply Operation (3 V to 5 V)  
VIC is the desire input common-mode voltage, VCM  
=
CM, and RIN = RG + RS||RT. To set to mid-supply,  
make the value of RPU = RG+ RS||RT.  
To facilitate testing with common lab equipment, the  
THS4509 EVM allows split-supply operation, and the  
characterization data presented in this data sheet  
was taken with split-supply power inputs. The device  
can easily be used with a single-supply power input  
without degrading the performance. Figure 84,  
Figure 85, and Figure 86 show dc and ac-coupled  
single-supply circuits with single-ended inputs. These  
configurations all allow the input and output  
common-mode voltage to be set to mid-supply  
allowing for optimum performance. The information  
presented here can also be applied to differential  
input sources.  
Table 3 is a modification of Table 1 to add the proper  
values with RPU assuming a 50 source impedance  
and setting the input and output common-mode  
voltage to mid-supply.  
There are two drawbacks to this configuration. One is  
it requires additional current from the power supply.  
Using the values shown for a gain of 10 dB requires  
37 mA more current with 5-V supply, and 22 mA  
more current with 3-V supply.  
The other drawback is this configuration also  
increases the noise gain of the circuit. In the 10-dB  
gain case, noise gain increases by a factor of 1.5.  
In Figure 84, the source is referenced to the same  
voltage as the CM pin (VCM). VCM is set by the  
internal circuit to mid-supply. RT along with the input  
impedance of the amplifier circuit provides input  
Table 3. RPU Values for Various Gains  
termination, which is also referenced to VCM  
.
Gain  
6 dB  
RF  
RG  
RIT  
RPU  
348 Ω  
348 Ω  
348 Ω  
348 Ω  
169 Ω  
102 Ω  
61.9 Ω  
40.2 Ω  
64.9 Ω  
78.7 Ω  
115 Ω  
221 Ω  
200 Ω  
133 Ω  
97.6 Ω  
80.6 Ω  
Note RS and RT are added to the alternate input from  
the signal input to balance the amplifier. Alternately,  
one resistor can be used equal to the combined value  
RG+ RS||RT on this input. This is also true of the  
circuits shown in Figure 85 and Figure 86.  
10 dB  
14 dB  
20 dB  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Link(s): THS4509-Q1  
 
 
 
 
THS4509-Q1  
SLOS547NOVEMBER 2008........................................................................................................................................................................................... www.ti.com  
input capacitance of the ADS5500 limit the bandwidth  
VS+  
of the signal to 115 MHz (–3 dB). For testing, a signal  
generator is used for the signal source. The  
RPU  
RS  
RG  
RF  
generator is an ac-coupled 50-source. A band-pass  
filter is inserted in series with the input to reduce  
harmonics and noise from the signal source. Input  
termination is accomplished via the 69.8-resistor  
and 0.22-µF capacitor to ground in conjunction with  
the input impedance of the amplifier circuit. A 0.22-µF  
capacitor and 49.9-resistor are inserted to ground  
across the 69.8-resistor and 0.22-µF capacitor on  
the alternate input to balance the circuit. Gain is a  
function of the source impedance, termination, and  
348-feedback resistor. See Table 3 for component  
values to set proper 50-termination for other  
common gains. A split power supply of +4 V and –1 V  
is used to set the input and output common-mode  
voltages to approximately mid-supply while setting  
the input common-mode of the ADS5500 to the  
recommended +1.55 V. This maintains maximum  
headroom on the internal transistors of the THS4509  
to ensure optimum performance.  
VS+  
RT  
VS+  
VSignal  
RO  
RO  
VOUT-  
VOUT+  
RPU  
RG  
THS 4509  
CM  
RS  
RT  
VS-  
RF  
Figure 85. THS4509 DC-Coupled Single Supply  
With RPU Used to Set VIC  
Figure 86 shows ac coupling to the source. Using  
capacitors in series with the termination resistors  
allows the amplifier to self bias both input and output  
to mid-supply.  
C
RS  
RG  
RF  
VIN  
From  
50-W  
source  
100 W  
348 W  
VS+=3V to 5V  
RT  
VSignal  
4 V  
69.3 W  
14-bit,  
125 MSPS  
RO  
RO  
C
100 W  
VOUT-  
0.22 mF  
100 W  
AIN +  
THS 4509  
CM  
RG  
ADS5500  
AIN -  
THS 4509  
CM  
2.7 pF  
100 W  
VOUT+  
CM  
RS  
C
RT  
C
VS-  
49.9 W  
49.9 W  
0.22 mF  
69.8 W  
0.22 mF  
V
-1  
0.1 mF  
0.1 mF  
RF  
348 W  
Figure 87. THS4509 + ADS5500 Circuit  
Figure 86. THS4509 AC-Coupled Single Supply  
THS4509 + ADS5500 Combined Performance  
90  
85  
80  
75  
70  
65  
SFDR (dBc)  
The THS4509 is designed to be a high performance  
drive amplifier for high performance data converters  
like the ADS5500 14-bit 125-MSPS ADC. Figure 87  
shows a circuit combining the two devices, and  
Figure 88 shows the combined SNR and SFDR  
performance versus frequency with –1-dBFS input  
signal level sampling at 125 MSPS. The THS4509  
amplifier circuit provides 10 dB of gain, converts the  
single-ended input to differential, and sets the proper  
input common-mode voltage to the ADS5500. The  
100-resistors and 2.7-pF capacitor between the  
THS4509 outputs and ADS5500 inputs along with the  
SNR (dBFS)  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100 110  
Input Frequency - MHz  
Figure 88. THS4509 + ADS5500 SFDR and SNR  
Performance versus Frequency  
28  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): THS4509-Q1  
 
 
 
THS4509-Q1  
www.ti.com ........................................................................................................................................................................................... SLOS547NOVEMBER 2008  
Figure 89 shows the two-tone FFT of the THS4509 +  
ADS5500 circuit with 65-MHz and 70-MHz input  
frequencies. The SFDR is 90 dBc.  
VIN  
100 W  
348 W  
From  
50-W  
source  
5 V  
69.8 W  
14-bit,  
105 MSPS  
225 W  
225 W  
0.22 mF  
AIN+  
THS4509  
CM  
2.7pF  
ADS5424  
AIN–  
100  
VBG  
49.9 W  
0.22 mF  
69.8 W  
0.22 mF  
49.9 W  
0.1 mF  
0.1 mF  
348 W  
Figure 90. THS4509 + ADS5424 Circuit  
95  
90  
85  
80  
75  
70  
SFDR (dBc)  
Figure 89. THS4509 + ADS5500 Two-Tone FFT  
with 65-MHz and 70-MHz Input  
SNR (dBFS)  
THS4509 + ADS5424 Combined Performance  
Figure 90 shows the THS4509 driving the ADS5424  
ADC, and Figure 91 shows their combined SNR and  
SFDR performance versus frequency with –1-dBFS  
input signal level and sampling at 80 MSPS.  
10  
20  
30  
40  
50  
60  
70  
Input Frequency - MHz  
Figure 91. THS4509 + ADS5424 SFDR and  
SNR Performance vs Frequency  
As before, the THS4509 amplifier provides 10 dB of  
gain, converts the single-ended input to differential,  
and sets the proper input common-mode voltage to  
the ADS5424. Input termination and circuit testing is  
the same as previously described for the THS4509 +  
ADS5500 circuit.  
The 225-resistors and 2.7-pF capacitor between  
the THS4509 outputs and ADS5424 inputs (along  
with the input capacitance of the ADC) limit the  
bandwidth of the signal to about 100 MHz (–3 dB).  
Since  
the  
ADS5424's  
recommended  
input  
common-mode voltage is 2.4 V, the THS4509 is  
operated from a single power-supply input with  
VS+ = 5 V and VS– = 0 V (ground).  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Link(s): THS4509-Q1  
 
 
 
THS4509-Q1  
SLOS547NOVEMBER 2008........................................................................................................................................................................................... www.ti.com  
Layout Recommendations  
8. A single-point connection to ground on L2 is  
recommended for the input termination resistors  
R1 and R2. This should be applied to the input  
gain resistors if termination is not used.  
It is recommended to follow the layout of the external  
components near the amplifier, ground plane  
construction, and power routing of the EVM as  
closely as possible. General guidelines are:  
9. The THS4509 recommended PCB footprint is  
shown in Figure 92.  
1. Signal routing should be direct and as short as  
possible into and out of the op amp circuit.  
0.144  
0.049  
2. The feedback path should be short and direct  
avoiding vias.  
3. Ground or power planes should be removed from  
directly under the amplifier’s input and output  
pins.  
0.012  
Pin 1  
0.0095  
4. An output resistor is recommended on each  
output, as near to the output pin as possible.  
0.015  
0.144  
0.0705  
0.0195  
5. Two 10-µF and two 0.1-µF power-supply  
decoupling capacitors should be placed as near  
to the power-supply pins as possible.  
0.010  
vias  
0.032  
6. Two 0.1-µF capacitors should be placed between  
the CM input pins and ground. This limits noise  
coupled into the pins. One each should be placed  
to ground near pin 4 and pin 9.  
0.030  
0.0245  
Top View  
7. It is recommended to split the ground pane on  
layer 2 (L2) and to use a solid ground on layer 3  
(L3). A single-point connection should be used  
between each split section on L2 and L3.  
Figure 92. QFN Etch and Via Pattern  
30  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): THS4509-Q1  
 
THS4509-Q1  
www.ti.com ........................................................................................................................................................................................... SLOS547NOVEMBER 2008  
THS4509 EVM  
Figure 93 is the THS4509 EVAL1 EVM schematic, layers 1 through 4 of the PCB are shown in Figure 94, and  
Table 4 is the bill of material for the EVM as supplied from TI.  
GND  
J5  
V
V
S−  
S+  
J4  
J6  
VEE  
VCC  
0.1 µF  
C10  
0.1 µF  
C4  
10 µF  
10 µF  
10 µF  
10 µF  
0.1 µF  
0.1 µF  
C12  
TP1  
C9  
C6  
C3  
C5  
C13  
J8  
R5  
348 Ω  
R1  
69.8 Ω  
VCC  
VCC  
8
R9  
open  
6
5
J1  
7
R3  
12  
PD  
J3  
C15  
3
100 Ω  
R12  
R7  
C1  
open  
T1  
2
V
V
O+  
6
1
R11  
69.8 Ω  
86.6 Ω  
R8  
49.9 Ω  
U1  
0.22 µF  
11  
C8  
open  
C7  
open  
+
5
4
O−  
PwrPad10  
J2  
R4  
4
3
86.6 Ω  
Vocm  
9
XFMR_ADT1−1WT  
C2  
open  
100 Ω  
R2  
69.8 Ω  
15 13  
14 16  
R10  
open  
VEE  
R6  
J7  
348 Ω  
TP3  
VEE  
TP2  
C14  
0.1 µF  
C11  
0.1 µF  
Figure 93. THS4509 EVAL1 EVM Schematic  
Figure 94. THS4509 EVAL1 EVM Layer 1 Through 4  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Link(s): THS4509-Q1  
 
 
THS4509-Q1  
SLOS547NOVEMBER 2008........................................................................................................................................................................................... www.ti.com  
Table 4. THS4509 EVAL1 EVM Bill of Materials  
ITEM  
DESCRIPTION  
SMD  
SIZE  
REFERENCE  
DESIGNATOR  
PCB  
QTY  
MANUFACTURER'S  
PART NUMBER  
1
2
CAP, 10.0 F, Ceramic, X5R, 6.3 V  
CAP, 0.1 F, Ceramic, X5R, 10 V  
CAP, 0.22 F, Ceramic, X5R, 6.3 V  
OPEN  
0805 C3, C4, C5, C6  
0402 C9, C10, C11, C12, C13, C14  
0402 C15  
4
6
1
4
2
1
3
2
2
2
1
3
(AVX) 08056D106KAT2A  
(AVX) 0402ZD104KAT2A  
(AVX) 04026D224KAT2A  
3
4
0402 C1, C2, C7, C8  
0402 R9, R10  
0402 R12  
5
OPEN  
6
Resistor, 49.9 , 1/16 W, 1%  
Resistor, 69.8 , 1/16 W, 1%  
Resistor, 86.6 , 1/16 W, 1%  
Resistor, 100 , 1/16 W, 1%  
Resistor, 348 , 1/16 W, 1%  
Transformer, RF  
(KOA) RK73H1ETTP49R9F  
(KOA) RK73H1ETTP69R8F  
(KOA) RK73H1ETTP86R6F  
(KOA) RK73H1ETTP1000F  
(KOA) RK73H1ETTP3480F  
(MINI-CIRCUITS) ADT1-1WT  
(HH SMITH) 101  
8
0402 R1, R2, R11  
0402 R7, R8  
9
10  
11  
12  
13  
0402 R3, R4  
0402 R5, R6  
T1  
Jack, banana receptacle, 0.25" diameter  
hole  
J4, J5, J6  
14  
15  
16  
17  
18  
19  
20  
OPEN  
J1, J7, J8  
J2, J3  
3
2
3
1
4
4
1
Connector, edge, SMA PCB Jack  
Test point, Red  
(JOHNSON) 142-0701-801  
(KEYSTONE) 5000  
(TI) THS4509RGT  
TP1, TP2, TP3  
U1  
IC, THS4509  
Standoff, 4-40 HEX, 0.625" length  
Screw, Phillips, 4-40, 0.250"  
Printed circuit board  
(KEYSTONE) 1808  
SHR-0440-016-SN  
(TI) EDGE# 6468901  
EVM WARNINGS AND RESTRICTIONS  
It is important to operate this EVM within the input and output voltage ranges as specified in the following table.  
Input Range, VS+ to VS–  
Input range, VI  
3.0 V to 6.0 V  
3.0 V to 6.0 V not to exceed VS+ or VS-  
3.0 V to 6.0 V not to exceed VS+ or VS-  
Output range, VO  
Exceeding the specified input range may cause unexpected operation and/or irreversible damage to the EVM. If  
there are questions concerning the input range, please contact a TI field representative prior to connecting the  
input power.  
Applying loads outside of the specified output range may result in unintended operation and/or possible  
permanent damage to the EVM. Please consult the product data sheet or EVM user's guide (if user's guide is  
available) prior to connecting any load to the EVM output. If there is uncertainty as to the load specification,  
please contact a TI field representative.  
During normal operation, some circuit components may have case temperatures greater than 30°C. The EVM is  
designed to operate properly with certain components above 50°C as long as the input and output ranges are  
maintained. These components include but are not limited to linear regulators, switching transistors, pass  
transistors, and current sense resistors. These types of devices can be identified using the EVM schematic  
located in the material provided. When placing measurement probes near these devices during operation, please  
be aware that these devices may be very warm to the touch.  
32  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): THS4509-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Jun-2012  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
THS4509QRGTRQ1  
ACTIVE  
QFN  
RGT  
16  
3000  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-2-260C-1 YEAR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF THS4509-Q1 :  
Catalog: THS4509  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 1  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TIs terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TIs standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Audio  
Applications  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Medical  
Logic  
Security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
www.ti.com/video  
OMAP Mobile Processors www.ti.com/omap  
Wireless Connectivity www.ti.com/wirelessconnectivity  
TI E2E Community Home Page  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2012, Texas Instruments Incorporated  

相关型号:

THS4509QRGTRQ1

WIDEBAND LOW-NOISE LOW-DISTORTION FULLY DIFFERENTIAL AMPLIFIER
TI

THS4509RGTR

WIDEBAND, LOW NOISE, LOW DISTORTION FULLY DIFFERENTIAL AMPLIFIER
TI

THS4509RGTR

WIDEBAND, LOW-NOISE, LOW-DISTORTION, FULLY-DIFFERENTIAL AMPLIFIER
NSC

THS4509RGTRG4

WIDEBAND, LOW-NOISE, LOW-DISTORTION, FULLY-DIFFERENTIAL AMPLIFIER
NSC

THS4509RGTT

WIDEBAND, LOW NOISE, LOW DISTORTION FULLY DIFFERENTIAL AMPLIFIER
TI

THS4509RGTT

WIDEBAND, LOW-NOISE, LOW-DISTORTION, FULLY-DIFFERENTIAL AMPLIFIER
NSC

THS4509RGTTG4

1.9GHz、宽带、低噪声、低失真、全差分放大器 | RGT | 16 | -40 to 85
TI

THS4509RGTTG4

WIDEBAND, LOW-NOISE, LOW-DISTORTION, FULLY-DIFFERENTIAL AMPLIFIER
NSC

THS4509_14

WIDEBAND, LOW-NOISE, LOW-DISTORTION, FULLY-DIFFERENTIAL AMPLIFIER
TI

THS4511

WIDEBAND, LOW NOISE, LOW DISTORTION FULLY DIFFERENTIAL AMPLIFIER
TI

THS4511-SP

RAD-TOLERANT CLASS V, WIDEBAND, FULLY DIFFERENTIAL AMPLIFIER
TI

THS4511-SP_V01

RAD-TOLERANT CLASS V, WIDEBAND, FULLY DIFFERENTIAL AMPLIFIER
TI