THS4509RGTR [TI]

WIDEBAND, LOW NOISE, LOW DISTORTION FULLY DIFFERENTIAL AMPLIFIER; 宽带,低噪声,低失真全差动放大器
THS4509RGTR
型号: THS4509RGTR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

WIDEBAND, LOW NOISE, LOW DISTORTION FULLY DIFFERENTIAL AMPLIFIER
宽带,低噪声,低失真全差动放大器

放大器
文件: 总30页 (文件大小:2105K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
THS4509  
www.ti.com  
SLOS454JANUARY 2005  
WIDEBAND, LOW NOISE, LOW DISTORTION FULLY DIFFERENTIAL AMPLIFIER  
To allow for dc coupling to ADCs, its unique output  
common-mode control circuit maintains the output  
common-mode voltage within 3 mV offset (typ) from  
the set voltage, when set within 0.5 V of mid-supply,  
with less than 4 mV differential offset voltage. The  
common-mode set point is set to mid-supply by  
internal circuitry, which may be over-driven from an  
external source.  
FEATURES  
Fully Differential Architecture  
Centered Input Common-mode Range  
Minimum Gain of 2V/V (6 dB)  
Bandwidth: 1900 MHz (100 mVpp, G = 10 dB,  
RL = 200 )  
Slew Rate: 6600 V/µs (2V step, G = 10 dB)  
1% Settling Time: 2 ns (2 V step, G = 10 dB)  
The input and output are optimized for best perform-  
ance with their common-mode voltages set to  
mid-supply. Along with high performance at low  
power supply voltage, this makes for extremely high  
performance single supply 5 V data acquisition sys-  
tems. The combined performance of the THS4509 in  
a gain of 10 dB driving the ADS5500 ADC, sampling  
at 125 MSPS, is 81 dBc SFDR and 69.1 dBc SNR  
with a –1 dBFS signal at 70 MHz.  
HD2: –75 dBc at 100 MHz (2 Vpp, G = 10 dB,  
RL = 1 k)  
HD3: –80 dBc at 100 MHz (2 Vpp, G = 10 dB,  
RL = 1 k)  
OIP2: 79 dBm at 70 MHz (2 Vpp envelope,  
G = 10 dB)  
OIP3: 43 dBm at 70 MHz (2 Vpp envelope,  
G = 10 dB)  
The THS4509 is offered in a Quad 16-pin leadless  
QFN package (RGT), and is characterized for oper-  
ation over the full industrial temperature range from  
–40°C to 85°C.  
Input Voltage Noise: 1.9 nV/Hz (f >10 MHz)  
Noise Figure: 17.1 dB (50 System, G = 10  
dB)  
V
IN  
100 Ω  
348 Ω  
2.5 V  
From  
50 Ω  
Source  
Output Common-Mode Control  
Power Supply:  
69.8 Ω  
V
OUT  
487 Ω  
487 Ω  
1:1  
To 50 Ω  
– Voltage: 3 V (±1.5 V) to 5 V (±2.5 V)  
– Current: 37.7 mA  
Test  
Equipment  
56.3 Ω  
THS 4509  
100 Ω  
0.22 µF  
49.9 Ω  
CM  
69.8 Ω  
Open  
Power-Down Capability: 0.65 mA  
−2.5 V  
APPLICATIONS  
348 Ω  
5 V Data Acquisition Systems High  
Linearity ADC Amplifier  
Wireless Communication  
Medical Imaging  
Test and Measurement  
-75  
-80  
-85  
-90  
-95  
G = 10 dB,  
V
= 2 V  
,
O
PP  
R
L
= 1 kW  
DESCRIPTION  
HD  
3
The THS4509 is a wideband, fully differential op amp  
designed for 5 V data acquisition systems. It has very  
low noise at 1.9 nV/Hz, and extremely low harmonic  
distortion of –75 dBc HD2 and –80 dBc HD3 at 100  
MHz with 2 Vpp, G = 10 dB, and 1 kload. Slew rate  
is very high at 6600 Vµs and with settling time of 2 ns  
to 1% (2 V step) it is ideal for pulsed applications. It is  
designed for minimum gain of 6 dB, but is optimized  
for gain of 10 dB.  
-100  
-105  
-110  
HD  
2
10  
100  
1
f - Frequency - MHz  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 2005, Texas Instruments Incorporated  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
THS4509  
www.ti.com  
SLOS454JANUARY 2005  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated  
circuits be handled with appropriate precautions. Failure to observe proper handling and installation  
procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision  
integrated circuits may be more susceptible to damage because very small parametric changes could  
cause the device not to meet its published specifications.  
PACKAGING/ORDERING INFORMATION  
PACKAGED DEVICES  
QUAD QFN(1)(2)  
(RGT-16)  
TEMPERATURE  
SYMBOL  
THS4509RGTT  
THS4509RGTR  
–40°C to 85°C  
(1) This package is available taped and reeled. The R suffix standard quantity is 3000. The T suffix standard quantity is 250.  
(2) The exposed thermal pad is electrically isolated from all other pins.  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)  
UNIT  
VS– to VS+  
Supply voltage  
6 V  
VI  
Input voltage  
±VS  
VID  
IO  
Differential input voltage  
Output current(1)  
4 V  
200 mA  
Continuous power dissipation  
Maximum junction temperature  
Operating free-air temperature range  
Storage temperature range  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds  
HBM  
See Dissipation Rating Table  
TJ  
150°C  
–40°C to 85°C  
–65°C to 150°C  
300°C  
TA  
Tstg  
2000  
ESD ratings  
CDM  
MM  
1500  
100  
(1) The THS4509 incorporates a (QFN) exposed thermal pad on the underside of the chip. This acts as a heatsink and must be connected  
to a thermally dissipative plane for proper power dissipation. Failure to do so may result in exceeding the maximum junction temperature  
which could permanently damage the device. See TI technical brief SLMA002 and SLMA004 for more information about utilizing the  
QFN thermally enhanced package.  
DISSIPATION RATINGS TABLE PER PACKAGE  
POWER RATING  
PACKAGE  
θJC  
θJA  
TA25°C  
TA = 85°C  
RGT (16)  
2.4°C/W  
39.5°C/W  
2.3 W  
225 mW  
2
THS4509  
www.ti.com  
SLOS454JANUARY 2005  
SPECIFICATIONS; VS+– VS– = 5 V:  
Test conditions unless otherwise noted: VS+ = +2.5 V, VS– = –2.5 V, CM = open, VO = 2 Vpp, RF = 349 , RL = 200 Ω  
Differential, G = 10 dB, Single-Ended Input, Differential Output, Input and Output Referenced to Mid-supply  
TYP  
OVER TEMPERATURE  
PARAMETER  
TEST CONDITIONS  
–40°C to  
85°C  
MIN/  
MAX  
TEST  
LEVEL(1)  
25°C  
25°C  
UNITS  
AC PERFORMANCE  
G = 6 dB, VO = 100 mVpp  
2.0  
1.9  
GHz  
GHz  
MHz  
MHz  
GHz  
MHz  
GHz  
V/µs  
ns  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
G = 10 dB, VO = 100 mVpp  
G = 14 dB, VO = 100 mVpp  
G = 20 dB, VO = 100 mVpp  
G = 20 dB  
Small-Signal Bandwidth  
600  
275  
3
Gain-Bandwidth Product  
Bandwidth for 0.1dB flatness  
Large-Signal Bandwidth  
Slew Rate (Differential)  
Rise Time  
G = 10 dB, VO = 2 Vpp  
G = 10 dB, VO = 2 Vpp  
2V Step  
300  
1.5  
6600  
0.5  
2V Step  
Fall Time  
2V Step  
0.5  
ns  
Settling Time to 1%  
Settling Time to 0.1%  
VO = 2 V Step  
VO = 2 V Step  
f = 10 MHz  
2
ns  
10  
ns  
–104  
–80  
–68  
–108  
–92  
–81  
–78  
–64  
–95  
–78  
78  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBm  
dBm  
dBm  
dBm  
2nd Order Harmonic Distortion  
(Single-ended input)  
f = 50 MHz  
f = 100 MHz  
f = 10 MHz  
C
3rd Order Harmonic Distortion  
(Single-ended input)  
f = 50 MHz  
f = 100 MHz  
fC = 70 MHz  
fC = 140 MHz  
fC = 70 MHz  
fC = 140 MHz  
fC = 70 MHz  
fC = 140 MHz  
fC = 70 MHz  
fC = 140 MHz  
2nd Order Intermodulation Distortion  
(Single-ended input)  
VO = 2 Vpp envelope,  
200 kHz Tone Spacing,  
RL = 499 Ω  
3rd Order Intermodulation Distortion  
(Single-ended input)  
2nd Order Output Intercept Point  
(Single-ended input)  
58  
200 kHz Tone Spacing  
43  
3rd Order Output Intercept Point  
(Single-ended input)  
38  
fC = 70 MHz  
12.2  
10.8  
17.1  
1.9  
1-dB Compression Point(2)  
dBm  
Typ  
fC = 140 MHz  
50 System, 10 MHz  
f > 10 MHz  
Noise Figure  
dB  
Typ  
Typ  
Typ  
Input Voltage Noise  
Input Current Noise  
DC PERFORMANCE  
nV/Hz  
pA/Hz  
f > 10 MHz  
2.2  
Open-Loop Voltage Gain (AOL  
)
68  
dB  
mV  
Typ  
Max  
Typ  
Max  
Typ  
Max  
Typ  
C
B
Input Offset Voltage  
0.5  
0.8  
8
1
Average Offset Voltage Drift  
Input Bias Current  
2.6  
13  
20  
4.5  
4
µV/°C  
µA  
6
A
B
A
B
Average Bias Current Drift  
Input Offset Current  
nA/°C  
µA  
1.6  
3.6  
Average Offset Current Drift  
INPUT  
nA/°C  
Common-Mode Input Range High  
Common-Mode Input Range Low  
Common-Mode Rejection Ratio  
1.75  
–1.75  
90  
V
V
Max  
Min  
Min  
A
B
dB  
(1) Test levels: (A) 100% tested at 25°C. Overtemperature limits by characterization and simulation. (B) Limits set by characterization and  
simulation. (C) Typical value only for information.  
(2) The 1-dB compression point is measured at the load with 50-double termination. Add 3 dB to refer to amplifier output.  
3
THS4509  
www.ti.com  
SLOS454JANUARY 2005  
SPECIFICATIONS; VS+– VS– = 5 V: (continued)  
Test conditions unless otherwise noted: VS+ = +2.5 V, VS– = –2.5 V, CM = open, VO = 2 Vpp, RF = 349 , RL = 200 Ω  
Differential, G = 10 dB, Single-Ended Input, Differential Output, Input and Output Referenced to Mid-supply  
TYP  
OVER TEMPERATURE  
PARAMETER  
TEST CONDITIONS  
–40°C to  
85°C  
MIN/  
MAX  
TEST  
LEVEL(1)  
25°C  
25°C  
UNITS  
OUTPUT  
Maximum Output Voltage High  
Minimum Output Voltage Low  
Differential Output Voltage Swing  
Differential Output Current Drive  
Output Balance Error  
1.4  
–1.4  
5.6  
1.35  
–1.35  
5.4  
1.13  
–1.13  
4.5  
V
V
Min  
Max  
Min  
Typ  
Typ  
Typ  
Each output with 100 to mid-supply  
A
C
V
RL = 10 Ω  
96  
mA  
dB  
VO = 100 mV, f = 1 MHz  
f = 1 MHz  
–49  
0.3  
Closed-Loop Output Impedance  
OUTPUT COMMON-MODE VOLTAGE CONTROL  
Small-Signal Bandwidth  
700  
110  
1
MHz  
V/µs  
V/V  
mV  
Typ  
Typ  
Typ  
Typ  
Typ  
Slew Rate  
Gain  
Output Common-Mode Offset from CM input  
CM Input Bias Current  
–1 V < CM < 1 V  
–1 V < CM < 1 V  
5
C
±40  
µA  
–1.5 to  
1.5  
CM Input Voltage Range  
V
Typ  
CM Input Impedance  
23  
1
kpF  
Typ  
Typ  
CM Default Voltage  
0
5
V
POWER SUPPLY  
Specified Operating Voltage  
Maximum Quiescent Current  
Minimum Quiescent Current  
Power Supply Rejection (±PSRR)  
POWERDOWN  
5.5  
5.5  
38.7  
36  
V
Max  
Max  
Min  
Min  
C
A
C
37.7  
37.7  
90  
38.6  
36.4  
mA  
mA  
dB  
Referenced to Vs–  
Device Assured on above 2.1 V  
,
Enable Voltage Threshold  
Disable Voltage Threshold  
1.6  
1.6  
V
V
Min  
C
A
Referenced to Vs–  
,
Max  
Device Assured off below 0.7 V  
Powerdown Quiescent Current  
Input Bias Current  
0.65  
100  
0.76  
0.89  
mA  
µA  
Max  
Typ  
Typ  
Typ  
Typ  
PD = VS–  
Input Impedance  
50  
2
kpF  
ns  
C
Turn-on Time Delay  
Turn-off Time Delay  
Measured to output on  
Measured to output off  
55  
10  
µs  
4
THS4509  
www.ti.com  
SLOS454JANUARY 2005  
SPECIFICATIONS; VS+– VS– = 3 V:  
Test conditions unless otherwise noted: VS+ = +1.5 V, VS– = –1.5 V, CM = open, VO = 1 Vpp, RF = 349 , RL = 200 Ω  
Differential, G = 10 dB, Single-Ended Input, Differential Output, Input and Output Referenced to Mid-supply  
TYP  
OVER TEMPERATURE  
PARAMETER  
TEST CONDITIONS  
–40°C to  
85°C  
MIN/  
MAX  
TEST  
LEVEL(1)  
25°C  
25°C  
UNITS  
AC PERFORMANCE  
G = 6 dB, VO = 100 mVpp  
1.9  
1.6  
GHz  
GHz  
MHz  
MHz  
GHz  
MHz  
GHz  
V/µs  
ns  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
G = 10 dB, VO = 100 mVpp  
G = 14 dB, VO = 100 mVpp  
G = 20 dB, VO = 100 mVpp  
G = 20 dB  
Small-Signal Bandwidth  
625  
260  
3
Gain-Bandwidth Product  
Bandwidth for 0.1dB flatness  
Large-Signal Bandwidth  
Slew Rate (Differential)  
Rise Time  
G = 10 dB, VO = 1 Vpp  
G = 10 dB, VO = 1 Vpp  
1V Step  
400  
1.5  
3500  
0.25  
0.25  
1
1V Step  
Fall Time  
1V Step  
ns  
Settling Time to 1%  
VO = 1 V Step  
f = 10 MHz  
ns  
–107  
–83  
–60  
–87  
–65  
–54  
–77  
–54  
–77  
–62  
72  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBm  
dBm  
dBm  
dBm  
2nd Order Harmonic Distortion  
(Single-ended input)  
f = 50 MHz  
f = 100 MHz  
f = 10 MHz  
C
3rd Order Harmonic Distortion  
(Single-ended input)  
f = 50 MHz  
f = 100 MHz  
fC = 70 MHz  
fC = 140 MHz  
fC = 70 MHz  
fC = 140 MHz  
fC = 70 MHz  
fC = 140 MHz  
fC = 70 MHz  
fC = 140 MHz  
2nd Order Intermodulation Distortion  
(Single-ended input)  
VO = 1 Vpp envelope,  
200 kHz Tone Spacing,  
RL = 200 Ω  
3rd Order Intermodulation Distortion  
(Single-ended input)  
2nd Order Output Intercept Point  
(Single-ended input)  
52  
200 kHz Tone Spacing  
38.5  
30  
3rd Order Output Intercept Point  
(Single-ended input)  
fc = 70 MHz  
2.2  
1-dB Compression Point(2)  
dBm  
Typ  
fc = 140 MHz  
50 System, 10 MHz  
f > 10 MHz  
0.25  
17.1  
1.9  
Noise Figure  
dB  
Typ  
Typ  
Typ  
Input Voltage Noise  
Input Current Noise  
DC PERFORMANCE  
nV/Hz  
pA/Hz  
f > 10 MHz  
2.2  
Open-Loop Voltage Gain (AOL  
)
68  
dB  
mV  
Typ  
Max  
Typ  
Max  
Typ  
Max  
Typ  
C
B
Input Offset Voltage  
0.5  
0.8  
8
1
Average Offset Voltage Drift  
Input Bias Current  
2.6  
13  
20  
4.5  
4
µV/°C  
µA  
6
A
B
A
B
Average Bias Current Drift  
Input Offset Current  
nA/°C  
µA  
1.6  
3.6  
Average Offset Current Drift  
INPUT  
nA/°C  
Common-Mode Input Range High  
Common-Mode Input Range Low  
Common-Mode Rejection Ratio  
0.75  
–0.75  
80  
V
V
Max  
Min  
Min  
A
B
dB  
(1) Test levels: (A) 100% tested at 25°C. Overtemperature limits by characterization and simulation. (B) Limits set by characterization and  
simulation. (C) Typical value only for information.  
(2) The 1-dB compression point is measured at the load with 50-double termination. Add 3 dB to refer to amplifier output.  
5
THS4509  
www.ti.com  
SLOS454JANUARY 2005  
SPECIFICATIONS; VS+– VS– = 3 V: (continued)  
Test conditions unless otherwise noted: VS+ = +1.5 V, VS– = –1.5 V, CM = open, VO = 1 Vpp, RF = 349 , RL = 200 Ω  
Differential, G = 10 dB, Single-Ended Input, Differential Output, Input and Output Referenced to Mid-supply  
TYP  
OVER TEMPERATURE  
PARAMETER  
TEST CONDITIONS  
–40°C to  
85°C  
MIN/  
MAX  
TEST  
LEVEL(1)  
25°C  
25°C  
UNITS  
OUTPUT  
Maximum Output Voltage High  
Minimum Output Voltage Low  
Differential Output Voltage Swing  
Differential Output Current Drive  
Output Balance Error  
0.45  
–0.45  
1.8  
0.43  
–0.43  
1.65  
18  
0.2  
–0.2  
0.8  
18  
V
V
Min  
Max  
Min  
Min  
Typ  
Typ  
Each output with 100to mid-supply  
A
C
V
RL = 20 Ω  
20  
mA  
dB  
VO = 100 mV, f = 1 MHz  
f = 1 MHz  
–49  
0.3  
Closed-Loop Output Impedance  
OUTPUT COMMON-MODE VOLTAGE CONTROL  
Small-Signal Bandwidth  
Slew Rate  
570  
60  
1
MHz  
V/µs  
V/V  
mV  
Typ  
Typ  
Typ  
Typ  
Typ  
Gain  
Output Common-Mode Offset from CM input  
CM Input Bias Current  
–0.5 V < CM < 0.5 V  
4
C
–0.5 V < CM < 0.5 V  
±40  
µA  
–1.5 to  
1.5  
CM Input Voltage Range  
V
Typ  
CM Input Impedance  
20  
1
kpF  
Typ  
Typ  
CM Default Voltage  
0
3
V
POWER SUPPLY  
Specified Operating Voltage  
Maximum Quiescent Current  
Minimum Quiescent Current  
Power Supply Rejection (±PSRR)  
POWERDOWN  
5.5  
5.5  
36  
33  
V
Max  
Max  
Min  
Min  
34.8  
34.8  
78  
35.8  
33.8  
mA  
mA  
dB  
A
C
Referenced to Vs–  
Device Assured on above 2.1 V  
Enable Voltage Threshold  
Disable Voltage Threshold  
V
V
Min  
C
A
Referenced to Vs–  
Device Assured off below 0.7 V  
Max  
Powerdown Quiescent Current  
Input Bias Current  
0.46  
65  
0.53  
0.67  
mA  
µA  
Max  
Typ  
Typ  
Typ  
Typ  
PD = VS–  
Input Impedance  
50  
2
kpF  
ns  
C
Turn-on Time Delay  
Turn-off Time Delay  
Measured to output on  
Measured to output off  
100  
10  
µs  
6
THS4509  
www.ti.com  
SLOS454JANUARY 2005  
DEVICE INFORMATION  
TOP VIEW  
RGT Package  
THS4509  
V
S−  
16  
15  
14  
13  
NC  
PD  
V
1
2
3
4
12  
11  
10  
9
V
IN−  
IN+  
V
V
OUT−  
OUT+  
CM  
CM  
6
7
5
8
V
S+  
TERMINAL FUNCTIONS  
TERMINAL  
(RGT PACKAGE)  
DESCRIPTION  
NO.  
NAME  
NC  
1
No internal connection  
2
VIN–  
Inverting amplifier input  
3
VOUT+  
CM  
Non-inverted amplifier output  
Common-mode voltage input  
Positive amplifier power supply input  
Inverted amplifier output  
4,9  
5,6,7,8  
10  
VS+  
VOUT–  
VIN+  
PD  
11  
Non-inverting amplifier input  
12  
Powerdown, PD = logic low puts part into low power mode, PD = logic high or open for normal operation  
Negative amplifier power supply input  
13,14,15,16 VS–  
7
THS4509  
www.ti.com  
SLOS454JANUARY 2005  
TYPICAL CHARACTERISTICS  
TYPICAL AC PERFORMANCE: VS+– VS– = 5 V  
Test conditions unless otherwise noted: VS+ = +2.5 V, VS– = –2.5V, CM = open, VO = 2 Vpp, RF = 349 , RL = 200 Ω  
Differential, G = 10 dB, Single-Ended Input, Input and Output Referenced to Midrail  
Small-Signal Frequnecy Response  
Large Signal Frequnecy Response  
0.1 dB Flatness  
Figure 1  
Figure 2  
Figure 3  
HD2, G = 6 dB, VOD = 2 VPP  
HD3, G = 6 dB, VOD = 2 VPP  
HD2, G = 10 dB, VOD = 2 VPP  
HD3, G = 10 dB, VOD = 2 VPP  
HD2, G = 14 dB, VOD = 2 VPP  
HD3, G = 14 dB, VOD = 2 VPP  
HD2, G = 10 dB  
vs Frequency  
vs Frequency  
vs Frequency  
vs Frequency  
vs Frequency  
vs Frequency  
vs Output voltage  
vs Output voltage  
vs Frequency  
vs Frequency  
vs Frequency  
vs Frequency  
vs Frequency  
vs Frequency  
vs Frequency  
vs Frequency  
vs Frequency  
vs Output Voltage  
Figure 4  
Figure 5  
Figure 6  
Figure 7  
Harmonic  
Distortion  
Figure 8  
Figure 9  
Figure 10  
Figure 11  
Figure 12  
Figure 13  
Figure 14  
Figure 15  
Figure 16  
Figure 17  
Figure 18  
Figure 19  
Figure 20  
Figure 21  
Figure 22  
Figure 23  
Figure 24  
Figure 25  
Figure 26  
Figure 27  
Figure 28  
Figure 29  
Figure 30  
Figure 31  
Figure 32  
Figure 33  
Figure 34  
Figure 35  
Figure 36  
Figure 37  
Figure 38  
Figure 39  
Figure 40  
Figure 41  
HD3, G = 10 dB  
IMD2, G = 6 dB, VOD = 2 VPP  
IMD3, G = 6 dB, VOD = 2 VPP  
IMD2, G = 10 dB, VOD = 2 VPP  
IMD3, G = 10 dB, VOD = 2 VPP  
IMD2, G = 14 dB, VOD = 2 VPP  
IMD3, G = 14 dB, VOD = 2 VPP  
OIP2  
Intermodulation  
Distortion  
Output Intercept Point  
OIP3  
S-Parameters  
Slew Rate  
Transient Response  
Settling Time  
Rejection Ratio  
vs Frequency  
vs Frequency  
Output Impedance  
Overdrive Recovery  
Output Voltage Swing  
Turn-Off Time  
vs Load Resistance  
Turn-On Time  
Input Offset Voltage  
Open Loop Gain  
Input Referred Noise  
Noise Figure  
vs Input Common-Mode Voltage  
vs Frequency  
vs Frequency  
vs Frequency  
Quiescent Current  
Power Supply Current  
Output Balance Error  
CM Input Impedence  
vs Supply Voltage  
vs Supply Voltage in Powerdown Mode  
vs Frequency  
vs Frequency  
CM Small-Signal Frequency Response  
CM Input Bias Current  
vs CM Input Voltage  
vs CM Input Voltage  
vs CM Input Voltage  
Differential Output Offset Voltage  
Output Common-Mode Offset  
8
THS4509  
www.ti.com  
SLOS454JANUARY 2005  
SMALL-SIGNAL  
FREQUNECY RESPONSE  
LARGE-SIGNAL  
FREQUNECY RESPONSE  
0.1-dB FLATNESS  
22  
20  
18  
16  
14  
12  
10  
8
22  
20  
18  
16  
14  
12  
10  
8
10.2  
10.1  
10  
G = 20 dB  
mV  
= 100  
V
PP  
OD  
V
= 2 V  
PP  
OD  
V
= 2 V  
PP  
OD  
G = 20 dB  
G = 14 dB  
G = 14 dB  
G = 10 dB  
G = 10 dB  
G = 6 dB  
G = 6 dB  
6
6
9.9  
4
4
2
2
0
0
9.8  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000 10000  
0.1  
1
10  
100  
1000  
f - Frequency - MHz  
f − Frequency − MHz  
f − Frequency − MHz  
Figure 1.  
Figure 2.  
Figure 3.  
HD2  
vs  
FREQUENCY  
HD3  
vs  
FREQUENCY  
HD2  
vs  
FREQUENCY  
−60  
−70  
−60  
−70  
−60  
−70  
G = 10 dB,  
G = 6 dB,  
= 2 V  
G = 6 dB,  
= 2 V  
V
= 2 V  
V
OD  
PP  
OD  
PP  
V
OD  
PP  
R
L
= 100  
−80  
−80  
−80  
−90  
R
= 200  
L
R
L
= 100 Ω  
R
L
= 100  
−90  
−90  
R
L
= 200 Ω  
R
L
= 1 kΩ  
−100  
−100  
110  
−120  
−100  
110  
−120  
R
L
= 1 kΩ  
R
= 1 kΩ  
R
= 500 Ω  
L
L
110  
−120  
R
L
= 200 Ω  
R
L
= 500 Ω  
R
L
= 500 Ω  
10  
100  
1000  
1
1
10  
100  
1000  
1
10  
100  
1000  
f − Frequency − MHz  
f − Frequency − MHz  
f − Frequency − MHz  
Figure 4.  
Figure 5.  
Figure 6.  
HD3  
vs  
FREQUENCY  
HD2  
vs  
FREQUENCY  
HD3  
vs  
FREQUENCY  
−60  
−70  
−60  
−60  
−70  
G = 14 dB,  
G = 14 dB,  
= 2 V  
G = 10 dB,  
= 2 V  
V
= 2 V  
OD  
PP  
V
V
OD  
PP  
OD  
PP  
−70  
−80  
R
L
= 100  
−80  
−80  
R
L
= 200 Ω  
R
L
= 100  
R
L
= 500 Ω  
R
L
= 500  
−90  
−90  
−90  
R
L
= 1 kΩ  
R
L
= 1 kΩ  
−100  
110  
−120  
R
= 200 Ω  
−100  
110  
−120  
L
−100  
R
= 100 Ω  
L
R
L
= 500 Ω  
110  
−120  
R
= 200 Ω  
R
L
= 1 kΩ  
L
1
10  
100  
1000  
1
10  
100  
1000  
1
10  
100  
1000  
f − Frequency − MHz  
f − Frequency − MHz  
f − Frequency − MHz  
Figure 7.  
Figure 8.  
Figure 9.  
9
THS4509  
www.ti.com  
SLOS454JANUARY 2005  
HD2  
vs  
HD3  
vs  
IMD2  
vs  
FREQUENCY  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
-60  
−30  
−40  
−50  
-60  
f = 64 MHz  
Gain = 6 dB,  
= 2 V Envelope  
R
L
= 200  
V
OD  
PP  
-70  
-70  
R
L
= 100 Ω  
f = 32 MHz  
f = 64 MHz  
-80  
-80  
f = 32 MHz  
−60  
−70  
f = 8 MHz  
-90  
-90  
f = 16 MHz  
R
= 500 Ω  
L
-100  
-110  
-120  
-100  
-110  
-120  
−80  
R
= 1 kΩ  
L
−90  
f = 8 MHz  
f = 16 MHz  
−100  
0
50  
100  
150  
200  
4
0
1
3
2
0
1
2
3
4
f − Frequency − MHz  
V
OD  
- V  
PP  
V
OD  
- V  
PP  
Figure 10.  
Figure 11.  
Figure 12.  
IMD3  
vs  
FREQUENCY  
IMD2  
vs  
FREQUENCY  
IMD3  
vs  
FREQUENCY  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−60  
−65  
−70  
−75  
−80  
−85  
−90  
−95  
−100  
−60  
−65  
−70  
−75  
−80  
−85  
−90  
−95  
−100  
R
= 100  
Gain = 6 dB,  
= 2 V Envelope  
Gain = 10 dB,  
= 2 V Envelope  
L
R
= 100  
L
Gain = 10 dB,  
= 2 V Envelope  
V
V
OD  
PP  
OD  
PP  
V
OD  
PP  
R
= 200  
L
R
L
= 200 Ω  
R
L
= 200 Ω  
R
L
= 100 Ω  
R
L
= 1 kΩ  
R
= 500 Ω  
L
R
= 1 kΩ  
L
R
L
= 1 kΩ  
R
= 500 Ω  
L
R
= 500 Ω  
L
−100  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
f − Frequency − MHz  
f − Frequency − MHz  
f − Frequency − MHz  
Figure 13.  
Figure 14.  
Figure 15.  
IMD2  
vs  
FREQUENCY  
IMD3  
vs  
FREQUENCY  
OIP2  
vs  
FREQUENCY  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−60  
−65  
−70  
−75  
−80  
−85  
−90  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
Gain = 6 dB  
Gain = 14 dB,  
= 2 V Envelope  
R
= 100  
L
V
Gain = 14 dB,  
= 2 V Envelope  
OD  
PP  
Gain = 14 dB  
V
OD  
PP  
R
= 200  
L
R
L
= 200 Ω  
R
L
= 100 Ω  
Gain = 10 dB  
R
L
= 500 Ω  
R
= 1 kΩ  
L
R
L
= 1 kΩ  
−95  
R
L
= 500 Ω  
−100  
−100  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
f − Frequency − MHz  
f − Frequency − MHz  
f − Frequency − MHz  
Figure 16.  
Figure 17.  
Figure 18.  
10  
THS4509  
www.ti.com  
SLOS454JANUARY 2005  
OIP3  
vs  
FREQUENCY  
S-PARAMETERS  
vs  
FREQUENCY  
SLEW RATE  
vs  
OUTPUT VOLTAGE  
50  
48  
46  
44  
42  
40  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
8000  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
S21  
Gain = 6 dB  
Rise  
Fall  
S11  
Gain = 14 dB  
Gain = 10 dB  
38  
36  
34  
32  
30  
S22  
S12  
0
50  
100  
150  
200  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
1
10  
100  
1000  
f − Frequency − MHz  
V
− Differential Output Voltage − V  
STEP  
f = Frequency - MHz  
OD  
Figure 19.  
Figure 20.  
Figure 21.  
REJECTION RATIO  
vs  
TRANSIENT RESPONSE  
SETTLING TIME  
FREQUENCY  
1.5  
5
4
3
2
1
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 2 V step  
OD  
PSRR−  
1
PSRR+  
CMRR  
0.5  
V
= 2 V step  
OD  
0
−0.5  
−1  
−1  
−2  
−3  
−4  
−5  
−1.5  
−0.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5 5  
0
0.5  
1
1.5  
2
2.5  
3
0.01  
0.1  
1
10  
100  
1000  
t − Time − ns  
t − Time − ns  
f − Frequency − MHz  
Figure 22.  
Figure 23.  
Figure 24.  
OUTPUT IMPEDANCE  
vs  
OUTPUT VOLTAGE SWING  
vs  
FREQUENCY  
OVERDRIVE RECOVERY  
LOAD RESISTANCE  
7
6
5
4
3
2
1
0
100  
10  
1
5
4
3
2
1
0
1
Input  
0.8  
0.6  
0.4  
0.2  
Output  
0
−1  
−2  
−3  
−0.2  
−0.4  
−0.6  
−0.8  
−1  
−4  
−5  
0.1  
0
0.2  
0.4  
0.6  
0.8  
1
0.1  
1
10  
100  
1000  
0
500  
1000  
1500  
2000  
t − Time − µs  
f − Frequency− MHz  
R
- Load Resistance - W  
L
Figure 25.  
Figure 26.  
Figure 27.  
11  
THS4509  
www.ti.com  
SLOS454JANUARY 2005  
INPUT OFFSET VOLTAGE  
vs  
INPUT COMMON-MODE VOLTAGE  
TURN-OFF TIME  
TURN-ON TIME  
5
40  
5
4
3
2
1
0
2
1.6  
1.2  
0.8  
0.4  
0
2
1.6  
1.2  
0.8  
0.4  
0
35  
30  
25  
20  
15  
10  
5
4
3
PD  
Output  
Output  
PD  
2
1
0
0
−5  
−2  
0
2
4
6
8
10 12 14  
−50  
0
50  
100  
150  
200  
250  
−2.5 −2 −1.5 −1 −0.5  
0
0.5  
1
1.5  
2
2.5  
t − Time − µs  
t − Time − ns  
Input Common-Mode Voltage − V  
Figure 28.  
Figure 29.  
Figure 30.  
OPEN LOOP GAIN AND PHASE  
INPUT REFERRED NOISE  
NOISE FIGURE  
vs  
FREQUENCY  
vs  
vs  
FREQUENCY  
FREQUENCY  
90  
80  
70  
60  
50  
40  
30  
20  
10  
1000  
100  
10  
20  
50  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
Gain = 6 dB  
50−System  
0
Phase  
Gain  
−50  
Gain = 10 dB  
Gain = 14 dB  
In  
−100  
−150  
−200  
−250  
Vn  
0
Gain = 20 dB  
−10  
1
1
100  
10 k  
1 M  
100 M 10 G  
10  
100  
1 k  
10 k 100 k 1 M  
10 M  
0
50  
100  
150  
200  
f − Frequency − Hz  
f − Frequency − Hz  
f − Frequency − MHz  
Figure 31.  
Figure 32.  
Figure 33.  
POWER SUPPLY CURRENT  
vs  
QUIESCENT CURRENT  
vs  
SUPPLY VOLTAGE  
OUTPUT BALANCE ERROR  
SUPPLY VOLTAGE IN  
POWERDOWN MODE  
vs  
FREQUENCY  
800  
700  
600  
500  
400  
300  
200  
100  
40  
10  
T
= 85°C  
A
T
= 25°C  
= 85°C  
A
0
−10  
−20  
−30  
−40  
−50  
−60  
T
= 25°C  
T
A
= −40°C  
A
±1.35  
V
35  
30  
25  
T
A
T
A
= −40°C  
0
1
1.5  
2
2.5  
0.1  
1
10  
100  
1000  
0
0.5  
1
1.5  
2
2.5  
V
− Supply Voltage − + V  
S
V
− Supply Voltage − + V  
f − Frequency − MHz  
S
Figure 34.  
Figure 35.  
Figure 36.  
12  
THS4509  
www.ti.com  
SLOS454JANUARY 2005  
CM INPUT IMPEDANCE  
CM INPUT BIAS CURRENT  
vs  
CM SMALL SIGNAL  
FREQUENCY RESPONSE  
vs  
FREQUENCY  
CM INPUT VOLTAGE  
9
8
7
6
5
4
3
2
1
300  
100  
10  
200  
100  
100 mV  
PP  
1
0.1  
0
0
−1  
−100  
−2  
−3  
−4  
−5  
−6  
−200  
−300  
0.01  
−2.5 −2 −1.5 −1 −0.5  
0
0.5  
1
1.5  
2
2.5  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
f − Frequency − MHz  
f − Frequency − MHz  
CM Input Voltage − V  
Figure 37.  
Figure 38.  
Figure 39.  
DIFFERENTIAL OUTPUT  
OFFSET VOLTAGE  
vs  
OUTPUT COMMON-MODE OFFSET  
vs  
CM INPUT VOLTAGE  
CM INPUT VOLTAGE  
5
4
3
2
1
50  
40  
30  
20  
10  
0
−10  
−20  
−30  
−40  
−50  
0
−1  
−2.5 −2 −1.5 −1 −0.5  
0
0.5  
1
1.5  
2
2.5  
−2.5 −2 −1.5 −1 −0.5  
0
0.5  
1
1.5  
2
2.5  
CM Input Voltage − V  
CM Input Voltage − V  
Figure 40.  
Figure 41.  
13  
THS4509  
www.ti.com  
SLOS454JANUARY 2005  
TYPICAL AC PERFORMANCE: VS+– VS– = 3 V  
Test conditions unless otherwise noted: VS+ = +1.5 V, VS– = –1.5V, CM = open, VOD = 1 Vpp, RF = 349 , RL = 200 Ω  
Differential, G = 10 dB, Single-Ended Input, Input and Output Referenced to Midrail  
Small-Signal Frequnecy Response  
Large Signal Frequnecy Response  
0.1 dB Flatness  
Figure 42  
Figure 43  
Figure 44  
Figure 45  
Figure 46  
Figure 47  
Figure 48  
Figure 49  
Figure 50  
Figure 51  
Figure 52  
Figure 53  
Figure 54  
Figure 55  
Figure 56  
Figure 57  
Figure 58  
Figure 59  
Figure 60  
Figure 61  
Figure 62  
Figure 63  
Figure 64  
Figure 65  
Figure 66  
Figure 67  
Figure 68  
Figure 69  
Figure 70  
Figure 71  
Figure 72  
Figure 73  
Figure 74  
HD2, G = 6 dB, VOD = 1 VPP  
HD3, G = 6 dB, VOD = 1 VPP  
HD2, G = 10 dB, VOD = 1 VPP  
HD3, G = 10 dB, VOD = 1 VPP  
HD2, G = 14 dB, VOD = 1 VPP  
HD3, G = 14 dB, VOD = 1 VPP  
IMD2, G = 6 dB, VOD = 1 VPP  
IMD3, G = 6 dB, VOD = 1 VPP  
IMD2, G = 10 dB, VOD = 1 VPP  
IMD3, G = 10 dB, VOD = 1 VPP  
IMD2, G = 14 dB, VOD = 1 VPP  
IMD3, G = 14 dB, VOD = 1 VPP  
OIP2  
vs Frequency  
vs Frequency  
vs Frequency  
vs Frequency  
vs Frequency  
vs Frequency  
vs Frequency  
vs Frequency  
vs Frequency  
vs Frequency  
vs Frequency  
vs Frequency  
vs Frequency  
vs Frequency  
vs Frequency  
vs Output Voltage  
Harmonic  
Distortion  
Intermodulation  
Distortion  
Ouput Intercept Point  
OIP3  
S-Parameters  
Slew Rate  
Transient Response  
Settling Time  
Output Voltage Swing  
Rejection Ratio  
vs Load Resistance  
vs Frequency  
Overdrive Recovery  
Output Impedance  
Turn-Off Time  
vs Frequency  
Turn-On Time  
Ouput Balance Error  
Noise Figure  
vs Frequency  
vs Frequency  
CM Small-Signal Frequency Response  
CM Input Impedance  
Differential Output Offset Voltage  
Output Common-Mode Offset  
vs Frequency  
vs CM Input Voltage  
vs CM Input Voltage  
14  
THS4509  
www.ti.com  
SLOS454JANUARY 2005  
SMALL-SIGNAL  
FREQUNECY RESPONSE  
LARGE-SIGNAL  
FREQUNECY RESPONSE  
0.1 dB FLATNESS  
10.2  
10.1  
10  
22  
20  
18  
16  
14  
12  
10  
8
22  
20  
18  
16  
14  
12  
10  
8
G = 20 dB  
V
= 1 V  
PP  
V
= 100 mV  
PP  
OD  
OD  
V
= 1 V  
PP  
OD  
G = 20 dB  
G = 14 dB  
G = 14 dB  
G = 10 dB  
G = 6 dB  
G = 10 dB  
G = 6 dB  
6
6
9.9  
4
4
2
2
9.8  
0
0
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
f − Frequency − MHz  
f − Frequency − MHz  
f− Frequency − MHz  
Figure 42.  
Figure 43.  
Figure 44.  
HD2  
vs  
FREQUENCY  
HD3  
vs  
FREQUENCY  
HD2  
vs  
FREQUENCY  
−40  
−50  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
G = 10 dB,  
= 1 V  
PP  
G = 6 dB,  
G = 6 dB,  
= 1 V  
V
V
= 1 V  
OD  
V
OD  
PP  
OD  
PP  
−60  
−70  
−80  
R
L
= 200  
R
L
= 100  
R
L
= 100  
−90  
R
= 1 kΩ  
L
R
L
= 200 Ω  
R = 200 Ω  
L
−100  
110  
−120  
R
L
= 1 kΩ  
R
L
= 1 kΩ  
110  
−120  
R
L
= 500 Ω  
R
L
= 500 Ω  
R
L
= 500 Ω  
1
10  
100  
1000  
10  
100  
1000  
1
10  
100  
1000  
1
f − Frequency − MHz  
f − Frequency − MHz  
f − Frequency − MHz  
Figure 45.  
Figure 46.  
Figure 47.  
HD3  
vs  
FREQUENCY  
HD2  
vs  
FREQUENCY  
HD3  
vs  
FREQUENCY  
−40  
−50  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
G = 10 dB,  
= 1 V  
G = 14 dB,  
= 1 V  
G = 14 dB,  
V
OD  
PP  
V
OD  
PP  
V
= 1 V  
OD  
PP  
−60  
R
= 100  
−70  
R
L
= 100  
L
−80  
R
L
= 200 Ω  
R
L
= 200 Ω  
R
= 1 k  
L
−90  
R
L
= 500 Ω  
−100  
110  
−120  
R
= 500 Ω  
R
L
= 500 Ω  
L
L
R
L
= 200 Ω  
R
= 1 kΩ  
L
R
= 1 kΩ  
10  
100  
1000  
1
1
10  
100  
1000  
10  
100  
1000  
1
f − Frequency − MHz  
f − Frequency − MHz  
f − Frequency − MHz  
Figure 48.  
Figure 49.  
Figure 50.  
15  
THS4509  
www.ti.com  
SLOS454JANUARY 2005  
IMD2  
IMD3  
vs  
FREQUENCY  
IMD2  
vs  
FREQUENCY  
vs  
FREQUENCY  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
−30  
−40  
−50  
−60  
−70  
R
= 500  
Gain = 6 dB,  
OD  
Gain = 6 dB,  
= 1 V Envelope  
R
= 500  
Gain = 10 dB,  
OD  
L
L
V
= 1 V Envelope  
PP  
V
V
= 1 V Envelope  
PP  
OD  
PP  
R
L
= 1 kΩ  
R
= 100  
L
R
L
= 1 kΩ  
R = 1 kΩ  
L
R
L
= 100 Ω  
R
L
= 100 Ω  
R
L
= 500 Ω  
R
= 200 Ω  
L
R
L
= 200 Ω  
−80  
−90  
R
L
= 200 Ω  
−100  
0
50  
100  
150  
200  
0
0
0
50  
100  
150  
200  
200  
150  
0
50  
100  
150  
200  
f − Frequency − MHz  
f − Frequency − MHz  
f − Frequency − MHz  
Figure 51.  
Figure 52.  
Figure 53.  
IMD3  
vs  
IMD2  
vs  
IMD3  
vs  
FREQUENCY  
FREQUENCY  
FREQUENCY  
−30  
−40  
−50  
−60  
−70  
−80  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
Gain = 10 dB,  
= 1 V Envelope  
Gain = 14 dB,  
= 1 V Envelope  
R
L
= 500  
Gain = 14 dB,  
= 1 V Envelope  
V
OD  
PP  
V
V
OD  
PP  
OD  
PP  
R
= 100  
L
R
L
= 100  
R
L
= 1 kΩ  
R
L
= 100 Ω  
R
L
= 500 Ω  
R
L
= 500 Ω  
R
L
= 1 kΩ  
R
L
= 200 Ω  
R
L
= 1 kΩ  
R
L
= 200 Ω  
−90  
R
L
= 200 Ω  
−100  
−100  
0
50  
100  
150  
200  
50  
100  
150  
0
50  
100  
150  
200  
f − Frequency − MHz  
f − Frequency − MHz  
f − Frequency − MHz  
Figure 54.  
Figure 55.  
Figure 56.  
OIP2, dBm  
vs  
FREQUENCY  
OIP3, dBm  
vs  
S-PARAMETERS  
vs  
FREQUENCY  
FREQUENCY  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
50  
48  
46  
44  
42  
40  
38  
36  
34  
32  
30  
Gain = 6 dB  
S21  
Gain = 6 dB  
Gain = 10 dB  
S11  
Gain = 10 dB  
S22  
Gain = 14 dB  
Gain = 14 dB  
50  
S12  
100  
0
50  
100  
150  
1
10  
100  
1000  
f − Frequency − MHz  
f − Frequency − MHz  
f = Frequency - MHz  
Figure 57.  
Figure 58.  
Figure 59.  
16  
THS4509  
www.ti.com  
SLOS454JANUARY 2005  
SLEW RATE  
vs  
OUTPUT VOLTAGE  
TRANSIENT RESPONSE  
SETTLING TIME  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
5
4
V
= 1 V step  
OD  
3
V
= 1 V step  
OD  
Rising  
2
1
Falling  
0
0
−0.1  
−0.2  
−1  
−2  
−3  
−4  
−5  
−0.3  
−0.4  
−0.5  
−0.6  
0
0
0.2 0.4 0.6 0.8  
1
1.2 1.4  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
−0.5  
0
0.5  
1
1.5  
2
2.5  
3
V
− Differential Output Voltage −V  
OD  
STEP  
t − Time − ns  
t − Time − ns  
Figure 60.  
Figure 61.  
Figure 62.  
OUTPUT VOLTAGE SWING  
vs  
REJECTION RATIO  
vs  
LOAD RESISTANCE  
FREQUENCY  
OVERDRIVE RECOVERY  
2.5  
0.6  
0.4  
0.2  
3
2.5  
2
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Input  
PSRR−  
CMRR  
2
1.5  
1
PSRR+  
1.5  
0.5  
Output  
0
−0.5  
−1  
0
1
−0.2  
−0.4  
−0.6  
−1.5  
−2  
0.5  
−2.5  
−3  
0
0
0.2  
0.4  
0.6  
0.8  
1
0.01  
0.1  
1
10  
100  
1000  
0
500  
1000  
1500  
2000  
t − Time − µs  
f − Frequency − MHz  
W
R
- Load Resistance -  
L
Figure 63.  
Figure 64.  
Figure 65.  
OUTPUT IMPEDANCE  
vs  
FREQUENCY  
TURN-OFF TIME  
TURN-ON TIME  
1
0.8  
0.6  
1.2  
1
3
100  
10  
1
3
2.5  
2
2.5  
2
PD  
Output  
0.8  
0.6  
0.4  
0.2  
0
1.5  
1
1.5  
1
Output  
0.4  
0.2  
0
PD  
0.5  
0
0.5  
0
0.1  
0
50  
100  
150  
200  
250  
−2  
0
2
4
6
8
10 12 14  
0.1  
1
10  
100  
1000  
t − Time − µs  
t − Time − ns  
f − Frequency− MHz  
Figure 66.  
Figure 67.  
Figure 68.  
17  
THS4509  
www.ti.com  
SLOS454JANUARY 2005  
OUTPUT BALANCE ERROR  
NOISE FIGURE  
vs  
FREQUENCY  
vs  
CM SMALL SIGNAL  
FREQUENCY RESPONSE  
FREQUENCY  
5
4
3
2
1
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
100 mV  
PP  
Gain = 6 dB  
50−System  
0
−10  
Gain = 10 dB  
Gain = 14 dB  
−20  
−30  
−40  
−50  
−60  
0
−1  
−2  
−3  
−4  
−5  
−6  
Gain = 20 dB  
50  
11  
10  
0
100  
150  
200  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
f − Frequency − MHz  
f − Frequency − MHz  
f − Frequency − MHz  
Figure 69.  
Figure 70.  
Figure 71.  
DIFFERENTIAL OUTPUT OFFSET  
CM INPUT IMPEDANCE  
VOLTAGE  
vs  
OUTPUT COMMON-MODE OFFSET  
vs  
vs  
FREQUENCY  
CM INPUT VOLTAGE  
CM INPUT VOLTAGE  
50  
100  
10  
5
4
3
2
1
0
40  
30  
20  
10  
1
0
−10  
−20  
0.1  
0.01  
−30  
−40  
−50  
−1  
−1.5  
−1.5  
−1  
−0.5  
0
0.5  
1
1.5  
−1  
−0.5  
0
0.5  
1
1.5  
0.1  
1
10  
100  
1000  
f − Frequency − MHz  
CM Input Voltage − V  
CM Input Voltage − V  
Figure 72.  
Figure 73.  
Figure 74.  
18  
THS4509  
www.ti.com  
SLOS454JANUARY 2005  
TEST CIRCUITS  
The output is probed using a high-impedance differ-  
ential probe across the 100-resistor. The gain is  
referred to the amplifier output by adding back the  
6-dB loss due to the voltage divider on the output.  
The THS4509 is tested with the following test circuits  
built on the EVM. For simplicity, power supply de-  
coupling is not shown – see layout in the applications  
section for recommendations. Depending on the test  
conditions, component values are changed per the  
following tables, or as otherwise noted. The signal  
generators used are ac coupled 50-sources and a  
0.22-µF capacitor and a 49.9-resistor to ground are  
inserted across RIT on the alternate input to balance  
the circuit. A split power supply is used to ease the  
interface to common test equipment, but the amplifier  
can be operated single-supply as described in the  
applications section with no impact on performance.  
V
IN  
R
R
F
G
From  
50  
Source  
V
S+  
R
R
IT  
49.9 Ω  
49.9 Ω  
Output Measured  
Here With High  
Impedance  
100 Ω  
THS4509  
CM  
R
G
Differential Probe  
0.22 µF  
49.9 Ω  
Open  
0.22 µF  
IT  
V
S−  
R
F
Figure 75. Frequency Response Test Circuit  
Table 1. Gain Component Values  
GAIN  
6 dB  
RF  
RG  
RIT  
Distortion and 1dB Compression  
348 Ω  
348 Ω  
348 Ω  
348 Ω  
165 Ω  
100 Ω  
56.2 Ω  
16.5 Ω  
61.9 Ω  
69.8 Ω  
88.7 Ω  
287 Ω  
The circuit shown in Figure 76 is used to measure  
harmonic distortion, intermodulation distortion, and  
1-db compression point of the amplifier.  
10 dB  
14 dB  
20 dB  
A signal generator is used as the signal source and  
the output is measured with a spectrum analyzer. The  
output impedance of the signal generator is 50 . RIT  
and RG are chosen to impedance-match to 50 , and  
to maintain the proper gain. To balance the amplifier,  
a 0.22-µF capacitor and 49.9-resistor to ground are  
inserted across RIT on the alternate input.  
Note the gain setting includes 50-source im-  
pedance. Components are chosen to achieve gain  
and 50-input termination.  
Table 2. Load Component Values  
RL  
RO  
ROT  
Atten.  
6 dB  
A low-pass filter is inserted in series with the input to  
reduce harmonics generated at the signal source.  
The level of the fundamental is measured, then a  
high-pass filter is inserted at the output to reduce the  
fundamental so that it does not generate distortion in  
the input of the spectrum analyzer.  
100 Ω  
200 Ω  
499 Ω  
1k Ω  
25 Ω  
open  
86.6 Ω  
237 Ω  
487 Ω  
69.8 Ω  
56.2 Ω  
52.3 Ω  
16.8 dB  
25.5 dB  
31.8 dB  
Note the total load includes 50-termination by  
the test equipment. Components are chosen to  
achieve load and 50-line termination through a  
1:1 transformer.  
The transformer used in the output to convert the  
signal from differential to single ended is an  
ADT1-1WT. It limits the frequency response of the  
circuit so that measurements cannot be made below  
approximately 1MHz.  
Due to the voltage divider on the output formed by  
the load component values, the amplifier's output is  
attenuated. The column Atten in Table 2 shows the  
attenuation expected from the resistor divider. When  
using a transformer at the output as shown in  
Figure 76, the signal will see slightly more loss, and  
these numbers will be approximate.  
V
IN  
R
R
F
G
From  
50 Ω  
Source  
V
S+  
R
R
IT  
V
OUT  
R
R
O
To 50 Ω  
Test  
Equipment  
1:1  
R
OT  
THS 4509  
CM  
R
IT  
G
O
0.22 µF  
49.9 Ω  
Frequency Response  
Open  
0.22 µF  
V
S−  
The circuit shown in Figure 75 is used to measure the  
frequency response of the circuit.  
R
F
Figure 76. Distortion Test Circuit  
A network analyzer is used as the signal source and  
as the measurement device. The output impedance  
of the network analyzer is 50 . RIT and RG are  
chosen to impedance match to 50 , and to maintain  
the proper gain. To balance the amplifier, a 0.22-µF  
capacitor and 49.9-resistor to ground are inserted  
across RIT on the alternate input.  
The 1-dB compression point is measured with a  
spectrum analyzer with 50-double termination or  
19  
 
 
THS4509  
www.ti.com  
SLOS454JANUARY 2005  
100-termination as shown in Table 2. The input  
power is increased until the output is 1 dB lower than  
expected. The number reported in the table data is  
the power delivered to the spectrum analyzer input.  
Add 3 dB to refer to the amplifier output.  
at VOUT+ or VOUT– with the input injected at VIN, RCM =  
0 and RCMT = 49.9 . The input impedance is  
measured with RCM = 49.9 with RCMT = open, and  
calculated by measuring the voltage drop across RCM  
to determine the input current.  
RG  
RF  
S-Parameter, Slew Rate, Transient Response, Set-  
tling Time, Output Impedance, Overdrive, Output  
Voltage, and Turn-On/Off Time  
VS+  
0.22 mF  
RIT  
49.9 W  
To  
49.9 W  
VOUT–  
The circuit shown in Figure 77 is used to measure  
s-parameters, slew rate, transient response, settling  
time, output impedance, overdrive recovery, output  
voltage swing, and turn-on/turn-off times of the ampli-  
fier. For output impedance, the signal is injected at  
VOUT with VIN left open and the drop across the 49.9  
resistor is used to calculate the impedance seen  
looking into the amplifier’s output.  
50-ohm  
Test  
THS4509  
RG  
49.9 W  
VOUT+  
Equipment  
0.22 mF  
CM  
RCM  
RIT  
VIN From  
50-ohm  
source  
VS–  
RF  
49.9 W  
RCMT  
Figure 78. CM Input Test Circuit  
CMRR and PSRR  
Because S21 is measured single-ended at the load  
with 50-double termination, add 12 dB to refer to  
the amplifier’s output as a differential signal.  
The circuit shown in Figure 79 is used to measure the  
CMRR and PSRR of VS+ and VS–. The input is  
switched appropriately to match the test being per-  
formed.  
V
IN  
From  
50 Ω  
R
R
F
G
G
Source  
V
S+  
R
R
IT  
49.9 Ω  
49.9 Ω  
V
V
348 Ω  
OUT+  
V
To 50 Ω  
Test  
Equipment  
S+  
THS 4509  
CM  
R
V
S+  
PSRR+  
OUT−  
V
IN  
0.22 µF  
49.9 Ω  
49.9 Ω  
49.9 Ω  
Output  
Measured  
Here  
With High  
Impedance  
Differential  
Probe  
From  
50 Ω  
Source  
100 Ω  
100 Ω  
Open  
0.22 µF  
IT  
CMRR  
PSRR−  
V
THS4509  
CM  
100 Ω  
S−  
R
F
Open  
0.22 µF  
V
S−  
69.8 Ω  
V
S−  
Figure 77. S-Parameter, SR, Transient Response,  
Settling Time, ZO, Overdrive Recovery, VOUT  
Swing, and Turn-on/off Test Circuit  
348 Ω  
Figure 79. CMRR and PSRR Test Circuit  
CM Input  
The circuit shown in Figure 78 is used to measure the  
frequency response and input impedance of the CM  
input. Frequency response is measured single-ended  
20  
 
 
 
THS4509  
www.ti.com  
SLOS454JANUARY 2005  
APPLICATION INFORMATION  
R
R
G
F
Single-Ended  
APPLICATIONS  
Input  
V
Differential  
S
The following circuits show application information for  
the THS4509. For simplicity, power supply decoupling  
capacitors are not shown in these diagrams. Please  
see the Subsection 1 section for recommendations.  
For more detail on the use and operation of fully  
differential op amps refer to application report  
Fully-Differential Amplifiers (SLOA054) .  
Output  
V
OUT–  
+
THS  
4509  
R
G
+
V
OUT+  
V
S
Differential Input to Differential Output Amplifier  
R
F
The THS4509 is a fully differential op amp, and can  
be used to amplify differential input signals to differ-  
ential output signals. A basic block diagram of the  
circuit is shown in Figure 80 (CM input not shown).  
The gain of the circuit is set by RF divided by RG.  
Figure 81. Single-Ended Input to Differential  
Output Amplifier  
Input Common-Mode Voltage Range  
R
F
The input common-model voltage of a fully differential  
op amp is the voltage at the '+' and '–' input pins of  
the op amp.  
Differential  
Differential  
V
S+  
Input  
Output  
It is important to not violate the input common-mode  
voltage range (VICR) of the op amp. Assuming the op  
amp is in linear operation the voltage across the input  
pins is only a few millivolts at most. So finding the  
voltage at one input pin will determine the input  
common-mode voltage of the op amp.  
R
G
V
V
IN+  
OUT–  
+
THS4509  
R
G
V
IN–  
+
V
OUT+  
V
S–  
Treating the negative input as a summing node, the  
voltage is given by Equation 1:  
R
F
æ
ö
æ
ö
R
R
G
F
ç
= V  
ç
÷
ç
+ V  
IN-  
ç
÷
V
IC  
´
´
OUT+  
÷
÷
R
+ R  
R
+ R  
Figure 80. Differential Input to Differential Ouput  
Amplifier  
G
F
G
F
ø
è
ø
è
(1)  
To determine the VICR of the op amp, the voltage at  
the negative input is evaluated at the extremes of  
Depending on the source and load, input and output  
termination can be accomplished by adding RIT and  
RO.  
VOUT+  
.
As the gain of the op amp increases, the input  
common-mode voltage becomes closer and closer to  
the input common-mode voltage of the source.  
Single-Ended Input to Differential Output Ampli-  
fier  
Setting the Output Common-Mode Voltage  
The THS4509 can be used to amplify and convert  
single-ended input signals to differential output sig-  
nals. A basic block diagram of the circuit is shown in  
Figure 81 (CM input not shown). The gain of the  
circuit is again set by RF divided by RG.  
The output common-mode voltage is set by the  
voltage at the CM pin(s). The internal common-mode  
control circuit maintains the output common-mode  
voltage within 3-mV offset (typ) from the set voltage,  
when set within 0.5 V of mid-supply, with less than  
4mV differential offset voltage. If left unconnected,  
the common-mode set point is set to mid-supply by  
internal circuitry, which may be over-driven from an  
external source. Figure 82 is representative of the  
CM input. The internal CM circuit has about 700 MHz  
of –3-dB bandwidth, which is required for best per-  
21  
 
 
THS4509  
www.ti.com  
SLOS454JANUARY 2005  
formance, but it is intended to be a DC bias input pin.  
Bypass capacitors are recommended on this pin to  
reduce noise at the output. The external current  
required to overdrive the internal resistor divider is  
given by Equation 2:  
RS  
RG  
RF  
VS+  
RT  
VSignal  
VBias= VCM  
RS  
RO  
VCM  
VOUT-  
2V - (V - V )  
CM S+ S-  
THS4509  
RG  
RO  
I
=
EXT  
VOUT+  
50 kW  
CM  
(2)  
RT  
VS–  
where VCM is the voltage applied to the CM pin.  
VCM  
VCM VCM  
RF  
V
S+  
Figure 83. THS4509 DC Coupled Single-Supply  
with Input Biased to VCM  
50 kW  
I
EXT  
to internal  
In Figure 84 the source is referenced to ground and  
so is the input termination resistor. RPU is added to  
the circuit to avoid violating the VICR of the op amp.  
The proper value of resistor to add can be calculated  
from Equation 3:  
CM  
CM circuit  
50 kW  
V
(V - V )  
IC S+  
S–  
R
=
PU  
æ
ö
æ
ö
1
1
1
Figure 82. CM Input Circuit  
ç
CMç  
÷
÷
ç
IC ç  
÷
÷
V
- V  
+
R
R
R
F
IN  
F
ø
è
ø
è
(3)  
Single-Supply Operation (3V to 5V)  
VIC is the desire input common-mode voltage, VCM  
=
CM, and RIN = RG+ RS||RT. To set to mid-supply,  
make the value of RPU = RG+ RS||RT.  
To facilitate testing with common lab equipment, the  
THS4509 EVM allows split-supply operation, and the  
characterization data presented in this data sheet  
was taken with split-supply power inputs. The device  
can easily be used with a single-supply power input  
without degrading the performance. Figure 83, Fig-  
ure 84, and Figure 85 show DC and AC-coupled  
single-supply circuits with single-ended inputs. These  
configurations all allow the input and output com-  
mon-mode voltage to be set to mid-supply allowing  
for optimum performance. The information presented  
here can also be applied to differential input sources.  
Table 3 is a modification of Table 1 to add the proper  
values with RPU assuming a 50 source impedance  
and setting the input and output common-mode  
voltage to mid-supply.  
There are two drawbacks to this configuration. One is  
it requires additional current from the power supply.  
Using the values shown for a gain of 10 dB requires  
37 mA more current with 5 V supply, and 22 mA  
more current with 3 V supply.  
In Figure 83, the source is referenced to the same  
voltage as the CM pin (VCM). VCM is set by the  
internal circuit to mid-supply. RT along with the input  
impedance of the amplifier circuit provides input  
The other drawback is this configuration also in-  
creases the noise gain of the circuit. In the 10 dB  
gain case, noise gain increases by a factor of 1.5.  
termination, which is also referenced to VCM  
.
Table 3. RPU Values for Various Gains  
Gain  
6 dB  
RF  
RG  
RIT  
RPU  
Note RS and RT are added to the alternate input from  
the signal input to balance the amplifier. Alternately,  
one resistor can be used equal to the combined value  
RG+ RS||RT on this input. This is also true of the  
circuits shown in Figure 84 and Figure 85.  
348 Ω  
348 Ω  
348 Ω  
348 Ω  
169 Ω  
102 Ω  
61.9 Ω  
40.2 Ω  
64.9 Ω  
78.7 Ω  
115 Ω  
221 Ω  
200 Ω  
133 Ω  
97.6 Ω  
80.6 Ω  
10 dB  
14 dB  
20 dB  
22  
 
THS4509  
www.ti.com  
SLOS454JANUARY 2005  
is inserted in series with the input to reduce harmon-  
ics and noise from the signal source. Input termin-  
ation is accomplished via the 69.8-resistor and  
0.22-µF capacitor to ground in conjunction with the  
input impedance of the amplifier circuit. A 0.22-µF  
capacitor and 49.9-resistor is inserted to ground  
across the 69.8-resistor and 0.22-µF capacitor on  
the alternate input to balance the circuit. Gain is a  
function of the source impedance, termination, and  
348-feedback resistor. Refer to Table 3 for  
component values to set proper 50-termination for  
other common gains. A split power supply of +4V and  
-1V is used to set the input and output common-mode  
voltages to approximately mid-supply while setting  
the input common-mode of the ADS5500 to the  
recommended +1.55V. This maintains maximum  
headroom on the internal transistors of the THS4509  
to insure optimum performance.  
VS+  
RPU  
RS  
RG  
RF  
VS+  
RT  
VS+  
VSignal  
RO  
VOUT-  
RPU  
RG  
THS 4509  
RO  
VOUT+  
CM  
RS  
RT  
VS-  
RF  
Figure 84. THS4509 DC Coupled Single-Supply  
with RPU Used to Set VIC  
Figure 85 shows AC coupling to the source. Using  
capacitors in series with the termination resistors  
allows the amplifier to self-bias both input and output  
to mid-supply.  
VIN  
From  
100 W  
348 W  
50-W  
source  
4 V  
69.3 W  
14-bit,  
C
125 MSPS  
RS  
RG  
RF  
100 W  
0.22 mF  
100 W  
AIN +  
ADS5500  
THS 4509  
2.7 pF  
100 W  
VS+=3V to 5V  
RT  
AIN -  
CM  
VSignal  
CM  
RO  
49.9 W  
49.9 W  
69.8 W  
0.22 mF  
C
VOUT-  
V
-1  
0.22 mF  
THS 4509  
RG  
RO  
0.1 mF  
0.1 mF  
348 W  
VOUT+  
CM  
RS  
RT  
VS-  
Figure 86. THS4509 + ADS5500 Circuit  
C
C
RF  
90  
85  
80  
75  
70  
65  
SFDR (dBc)  
Figure 85. THS4509 AC Coupled Single-Supply  
THS4509 + ADS5500 Combined Performance  
SNR (dBFS)  
The THS4509 is designed to be a high performance  
drive amplifier for high performance data converters  
like the ADS5500 14-bit 125-MSPS ADC. Figure 86  
shows a circuit combining the two devices, and  
Figure 87 shows the combined SNR and SFDR  
performance versus frequency with –1 dBFS input  
signal level sampling at 125 MSPS. The THS4509  
amplifier circuit provides 10 dB of gain, converts the  
single-ended input to differential, and sets the proper  
input common-mode voltage to the ADS5500. The  
100-resistors and 2.7-pF capacitor between the  
THS4509 outputs and ADS5500 inputs along with the  
input capacitance of the ADS5500 limit the bandwidth  
of the signal to 115 MHz (–3 dB). For testing, a signal  
generator is used for the signal source. The gener-  
ator is an AC-coupled 50-source. A band-pass filter  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100 110  
Input Frequency - MHz  
Figure 87. THS4509 + ADS5500 SFDR and SNR  
Performance versus Frequency  
Figure 88 shows the 2-tone FFT of the THS4509 +  
ADS5500 circuit with 65 MHz and 70 MHz input  
frequencies. The SFDR is 90 dBc.  
23  
 
 
 
THS4509  
www.ti.com  
SLOS454JANUARY 2005  
VIN  
100 W  
348 W  
From  
50-W  
5 V  
source  
69.8 W  
14-bit,  
105 MSPS  
225 W  
0.22 mF  
AIN+  
THS4509  
2.7pF  
ADS5424  
100  
225 W  
AIN–  
VBG  
CM  
49.9 W  
69.8 W  
49.9 W  
0.22 mF  
0.22 mF  
0.1 mF  
0.1 mF  
348 W  
Figure 89. THS4509 + ADS5424 Circuit  
95  
90  
85  
80  
75  
70  
SFDR (dBc)  
Figure 88. THS4509 + ADS5500 2-Tone FFT with  
65 MHz and 70 MHz Input  
THS4509 + ADS5424 Combined Performance  
SNR (dBFS)  
Figure 89 shows the THS4509 driving the ADS5424  
ADC, and Figure 90 shows their combined SNR and  
SFDR performance versus frequency with –1 dBFS  
input signal level and sampling at 80 MSPS.  
10  
20  
30  
40  
50  
60  
70  
As before, the THS4509 amplifier provides 10 dB of  
gain, converts the single-ended input to differential,  
and sets the proper input common-mode voltage to  
the ADS5424. Input termination and circuit testing is  
the same as described above for the THS4509 +  
ADS5500 circuit.  
Input Frequency - MHz  
Figure 90. THS4509 + ADS5424 SFDR and SNR  
Performance vs Frequency  
The 225-resistors and 2.7-pF capacitor between  
the THS4509 outputs and ADS5424 inputs (along  
with the input capacitance of the ADC) limit the  
bandwidth of the signal to about 100MHz (-3dB).  
Since the ADS5424s recommended input com-  
mon-mode voltage is 2.4 V, the THS4509 is operated  
from a single power supply input with VS+ = 5 V and  
VS– = 0 V (ground).  
24  
 
 
THS4509  
www.ti.com  
SLOS454JANUARY 2005  
Layout Recommendations  
0.144  
0.049  
It is recommended to follow the layout of the external  
components near the amplifier, ground plane con-  
struction, and power routing of the EVM as closely as  
possible. General guidelines are:  
0.012  
Pin 1  
1. Signal routing should be direct and as short as  
possible into and out of the opamp circuit.  
0.0095  
2. The feedback path should be short and direct  
avoiding vias.  
0.015  
0.144  
0.0705  
0.0195  
3. Ground or power planes should be removed from  
directly under the amplifier’s input and output  
pins.  
0.010  
vias  
0.032  
4. An output resistor is recommended on each  
output, as near to the output pin as possible.  
0.030  
5. Two 10-µF and two 0.1-µF power-supply decoup-  
ling capacitors should be placed as near to the  
power-supply pins as possible.  
0.0245  
Top View  
Figure 91. QFN Etch and Via Pattern  
6. Two 0.1-µF capacitors should be placed between  
the CM input pins and ground. This limits noise  
coupled into the pins. One each should be placed  
to ground near pin 4 and pin 9.  
7. It is recommended to split the ground pane on  
layer 2 (L2) as shown below and to use a solid  
ground on layer 3 (L3). A single-point connection  
should be used between each split section on L2  
and L3.  
8. A single-point connection to ground on L2 is  
recommended for the input termination resistors  
R1 and R2. This should be applied to the input  
gain resistors if termination is not used.  
9. The THS4509 recommended PCB footprint is  
shown in Figure 91.  
25  
 
THS4509  
www.ti.com  
SLOS454JANUARY 2005  
THS4509 EVM  
Figure 92 is the THS4509 EVAL1 EVM schematic, layers 1 through 4 of the PCB are shown Figure 93, and  
Table 4 is the bill of material for the EVM as supplied from TI.  
GND  
J5  
V
V
S−  
J4  
S+  
J6  
VEE  
VCC  
0.1 µF  
C10  
0.1 µF  
C4  
10 µF  
10 µF  
10 µF  
10 µF  
0.1 µF  
0.1 µF  
C12  
TP1  
C9  
C6  
C3  
C5  
C13  
J8  
R5  
348 Ω  
R1  
69.8 Ω  
VCC  
VCC  
8
R9  
open  
6
5
J1  
7
R3  
12  
PD  
J3  
C15  
3
100 Ω  
R12  
R7  
C1  
open  
T1  
2
V
V
O+  
6
1
R11  
69.8 Ω  
86.6 Ω  
R8  
49.9 Ω  
U1  
0.22 µF  
11  
C8  
open  
C7  
open  
+
5
4
O−  
PwrPad10  
J2  
R4  
4
3
86.6 Ω  
Vocm  
9
XFMR_ADT4−1WT  
C2  
open  
100 Ω  
R2  
69.8 Ω  
15 13  
14 16  
R10  
open  
VEE  
R6  
J7  
348 Ω  
TP3  
VEE  
TP2  
C14  
0.1 µF  
C11  
0.1 µF  
Figure 92. THS4509 EVAL1 EVM Schematic  
Figure 93. THS4509 EVAL1 EVM Layer 1 through 4  
26  
 
 
THS4509  
www.ti.com  
SLOS454JANUARY 2005  
Table 4. THS4509 EVAL1 EVM Bill of Materials  
ITEM  
DESCRIPTION  
SMD  
SIZE  
REFERENCE  
DESIGNATOR  
PCB  
QTY  
MANUFACTURER'S  
PART NUMBER  
1
2
CAP, 10.0 µF, Ceramic, X5R, 6.3V  
CAP, 0.1 µF, Ceramic, X5R, 10V  
CAP, 0.22 µF, Ceramic, X5R, 6.3V  
OPEN  
0805 C3, C4, C5, C6  
0402 C9, C10, C11, C12, C13, C14  
0402 C15  
4
6
1
4
2
1
3
2
2
2
1
3
(AVX) 08056D106KAT2A  
(AVX) 0402ZD104KAT2A  
(AVX) 04026D224KAT2A  
3
4
0402 C1, C2, C7, C8  
0402 R9, R10  
0402 R12  
5
OPEN  
6
Resistor, 49.9 , 1/16W, 1%  
Resistor, 69.8 , 1/16W, 1%  
Resistor, 86.6 , 1/16W, 1%  
Resistor, 100 , 1/16W, 1%  
Resistor, 348 , 1/16W, 1%  
Transformer, RF  
(KOA) RK73H1ETTP49R9F  
(KOA) RK73H1ETTP69R8F  
(KOA) RK73H1ETTP86R6F  
(KOA) RK73H1ETTP1000F  
(KOA) RK73H1ETTP3480F  
(MINI-CIRCUITS) ADT1-1WT  
(HH SMITH) 101  
8
0402 R1, R2, R11  
0402 R7, R8  
9
10  
11  
12  
13  
0402 R3, R4  
0402 R5, R6  
T1  
Jack, banana receptance, 0.25" diameter  
hole  
J4, J5, J6  
14  
15  
16  
17  
18  
19  
20  
OPEN  
J1, J7, J8  
J2, J3  
3
2
3
1
4
4
1
Connector, edge, SMA PCB Jack  
Test point, Red  
(JOHNSON) 142-0701-801  
(KEYSTONE) 5000  
(TI) THS4509RGT  
TP1, TP2, TP3  
U1  
IC, THS4509  
Standoff, 4-40 HEX, 0.625" length  
SCREW, PHILLIPS, 4-40, 0.250"  
Printed circuit board  
(KEYSTONE) 1808  
SHR-0440-016-SN  
(TI) EDGE# 6468901  
27  
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Jan-2005  
PACKAGING INFORMATION  
Orderable Device  
THS4509RGTR  
THS4509RGTT  
Status (1)  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
QFN  
RGT  
16  
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
QFN  
RGT  
16  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional  
product content details.  
None: Not yet available Lead (Pb-Free).  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens,  
including bromine (Br) or antimony (Sb) above 0.1% of total product weight.  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

THS4509RGTRG4

WIDEBAND, LOW-NOISE, LOW-DISTORTION, FULLY-DIFFERENTIAL AMPLIFIER
NSC

THS4509RGTT

WIDEBAND, LOW NOISE, LOW DISTORTION FULLY DIFFERENTIAL AMPLIFIER
TI

THS4509RGTT

WIDEBAND, LOW-NOISE, LOW-DISTORTION, FULLY-DIFFERENTIAL AMPLIFIER
NSC

THS4509RGTTG4

1.9GHz、宽带、低噪声、低失真、全差分放大器 | RGT | 16 | -40 to 85
TI

THS4509RGTTG4

WIDEBAND, LOW-NOISE, LOW-DISTORTION, FULLY-DIFFERENTIAL AMPLIFIER
NSC

THS4509_14

WIDEBAND, LOW-NOISE, LOW-DISTORTION, FULLY-DIFFERENTIAL AMPLIFIER
TI

THS4511

WIDEBAND, LOW NOISE, LOW DISTORTION FULLY DIFFERENTIAL AMPLIFIER
TI

THS4511-SP

RAD-TOLERANT CLASS V, WIDEBAND, FULLY DIFFERENTIAL AMPLIFIER
TI

THS4511-SP_V01

RAD-TOLERANT CLASS V, WIDEBAND, FULLY DIFFERENTIAL AMPLIFIER
TI

THS4511HKT/EM

RAD-TOLERANT CLASS V, WIDEBAND, FULLY DIFFERENTIAL AMPLIFIER
TI

THS4511RGT

WIDEBAND, LOW NOISE, LOW DISTORTION FULLY DIFFERENTIAL AMPLIFIER
TI

THS4511RGTR

WIDEBAND, LOW NOISE, LOW DISTORTION FULLY DIFFERENTIAL AMPLIFIER
TI