TCAN337GDCNT [TI]

具有 CAN FD(灵活数据速率)的 3.3V CAN 收发器 | DCN | 8 | -40 to 125;
TCAN337GDCNT
型号: TCAN337GDCNT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 CAN FD(灵活数据速率)的 3.3V CAN 收发器 | DCN | 8 | -40 to 125

文件: 总45页 (文件大小:2163K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TCAN330, TCAN332, TCAN334, TCAN337  
TCAN330G, TCAN332G, TCAN334G, TCAN337G  
ZHCSEG6E DECEMBER 2015REVISED DECEMBER 2019  
TCAN33x 具备 CAN FD(灵活数据速率)的 3.3V CAN 收发器  
1 特性  
3 说明  
1
3.3V 单电源运行  
数据速率高达 5MbpsTCAN33xG 器件)  
TCAN33x 系列器件兼容 ISO 11898 高速 CAN(控制  
器局域网)物理层标准。TCAN330TCAN332、  
TCAN334 TCAN337 的数据传输速率均高达  
1MbpsTCAN330GTCAN332GTCAN334G 和  
TCAN337G 器件的 ISO 11898-2 更新版本发布正在审  
理中(包括 CAN FD 和定义环路延迟对称的附加时序  
参数)。这些器件具有许多保护 特性, 包括驱动器和  
接收器显性超时 (DTO),用以确保 CAN 网络的稳定  
性。该系列器件还集成有 12kV IEC-61000-4-2 ESD  
接触放电保护,无需使用附加组件即可确保系统级的稳  
定性。  
符合 ISO 11898-2 标准  
SOIC-8 SOT-23 封装选项  
工作模式:  
正常模式(所有器件)  
具有唤醒功能的低功耗待机模式 (TCAN334)  
静音模式(TCAN330TCAN337)  
关断模式(TCAN330TCAN334)  
±12V 的宽共模工作电压范围  
±14V 的总线引脚故障保护  
总环路延迟 < 135ns  
器件信息(1)  
宽工作环境温度范围:–40°C 125°C  
优化了未上电时的性能:  
器件型号  
TCAN330/G  
封装  
SOIC (8)  
封装尺寸(标称值)  
4.90mm × 3.91mm  
TCAN332/G  
TCAN334/G  
TCAN337/G  
总线和逻辑引脚为高阻抗(运行总线或应用上无  
负载)  
SOT-23 (8)  
2.90mm x 1.60mm  
上电/断电无干扰运行  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
出色的 EMC 性能  
保护 功能:  
方框图  
总线终端的 ESD 保护  
VCC  
3
SHDN/NC/FAULT  
Note C  
HBM ESD 保护超过 ±25kV  
5
FAULT LOGIC  
Note B  
VCC  
IEC61000-4-2 ESD 接触放电保护超过  
VCC  
VCC  
±12kV  
DOMINANT  
TIME OUT  
TXD  
1
驱动器显性超时 (TXD DTO)  
接收器显性超时 (RXD DTO)  
故障输出引脚(仅 TCAN337)  
CANH  
CANL  
7
6
UNDER  
VOLTAGE  
VCC 欠压保护  
Note C  
CONTROL  
AND  
MODE  
LOGIC  
热关断保护  
8
总线引脚限流  
Sleep Receiver  
WAKE  
DETECT  
Note A  
2 应用  
MUX  
Normal Receiver  
具有灵活数据速率网络的 CAN 中的 5Mbps 运行  
TCAN33xG 器件)  
DOMINANT  
TIME OUT  
RXD  
4
2
高负载 CAN 网络中的 1Mbps 运行  
工业自动化、控制、传感器和驱动系统  
楼宇、安全和温度控制自动化  
电信基站状态和控制  
GND  
Copyright © 2016, Texas Instruments Incorporated  
A: Sleep Receiver and Wake Detect are device dependent options and are only available in TCAN334.  
B: Fault Logic are only available in TCAN337.  
C: Pin 5 and 8 functions are device dependent. Refer to Device Comparison Table.  
CANopenDeviceNetNMEA2000、  
ARINC825ISO11783CANaerospace CAN  
总线标准  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLLSEQ7  
 
 
 
 
 
TCAN330, TCAN332, TCAN334, TCAN337  
TCAN330G, TCAN332G, TCAN334G, TCAN337G  
ZHCSEG6E DECEMBER 2015REVISED DECEMBER 2019  
www.ti.com.cn  
目录  
10.1 Overview ............................................................... 18  
10.2 Functional Block Diagram ..................................... 18  
10.3 Feature Description............................................... 19  
10.4 Device Functional Modes...................................... 22  
11 Application and Implementation........................ 26  
11.1 Application Information.......................................... 26  
11.2 Typical Application ............................................... 26  
11.3 System Examples ................................................. 28  
12 Power Supply Recommendations ..................... 29  
13 Layout................................................................... 30  
13.1 Layout Guidelines ................................................. 30  
13.2 Layout Example .................................................... 31  
14 器件和文档支持 ..................................................... 32  
14.1 相关链接................................................................ 32  
14.2 支持资源................................................................ 32  
14.3 ....................................................................... 32  
14.4 静电放电警告......................................................... 32  
14.5 Glossary................................................................ 32  
15 机械、封装和可订购信息....................................... 32  
1
2
3
4
5
6
7
8
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明 (续.............................................................. 3  
Device Options....................................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
8.1 Absolute Maximum Ratings ...................................... 5  
8.2 ESD Ratings.............................................................. 5  
8.3 Recommended Operating Conditions....................... 5  
8.4 Thermal Information.................................................. 5  
8.5 Electrical Characteristics........................................... 6  
8.6 Switching Characteristics.......................................... 8  
8.7 Typical Characteristics............................................ 10  
8.8 Typical Characteristics, TCAN330 Receiver........... 11  
8.9 Typical Characteristics, TCAN330 Driver ............... 12  
Parameter Measurement Information ................ 13  
9
10 Detailed Description ........................................... 18  
4 修订历史记录  
Changes from Revision D (April 2016) to Revision E  
Page  
Changed the Pin Configuration image appearance ............................................................................................................... 4  
Changed the titles of Figure 21 and Figure 22..................................................................................................................... 14  
Changes from Revision C (April 2016) to Revision D  
Page  
应用 列表中的 ARNIC825 更改成了 ARINC825.................................................................................................................. 1  
Changes from Revision B (April 2016) to Revision C  
Page  
Removed the Preview Note from TCAN337 and TCAN337G in the Device Options table.................................................... 3  
Changes from Revision A (January 2016) to Revision B  
Page  
Removed the Preview Note from all device except for TCAN337 and TCAN337G in the Device Comparison table ........... 3  
Changed FAULT Pin ICL MIN value From: 5 mA To: 4 mA in the Electrical Characteristics.................................................. 7  
Changes from Original (December 2015) to Revision A  
Page  
特性 中的总环路延迟 < 150ns”更改成了总环路延迟 < 135ns” ......................................................................................... 1  
Changed VIT(SLEEP) To: VIT(STB) and added Test conditions in the Electrical Characteristics ................................................. 7  
Added –12 V < VCM < 12 V to tWK_FILTER in the Test Conditions of Switching Characteristics ............................................... 8  
2
版权 © 2015–2019, Texas Instruments Incorporated  
 
TCAN330, TCAN332, TCAN334, TCAN337  
TCAN330G, TCAN332G, TCAN334G, TCAN337G  
www.ti.com.cn  
ZHCSEG6E DECEMBER 2015REVISED DECEMBER 2019  
5 说明 (续)  
该系列收发器采用 3.3V 单电源供电,因此可以直接连接 3.3V CAN 控制器/微控制器 (MCU)。此外,这些器件完全  
兼容同一总线上的其他 5V CAN 收发器。  
由于显性共模和隐性共模相匹配,这些器件具有卓越的 EMC 性能。这些器件具有超低功耗的关断模式和待机模  
式,对于电池供电型应用而言极具 吸引力中的数字输入 D 类音频放大器。  
该系列器件提供便于插接的标准 8 引脚 SOIC 封装以及面向空间受限类应用的小型 SOT-23 封装提供了出色的功能  
性与安全性。  
6 Device Options  
DEVICE  
TCAN330  
TCAN332  
TCAN334  
TCAN337  
TCAN330G  
TCAN332G  
TCAN334G  
TCAN337G  
PIN 5  
SHDN  
NC  
PIN 8  
S
DERATE  
1 Mbps  
1 Mbps  
1 Mbps  
1 Mbps  
5 Mbps  
5 Mbps  
5 Mbps  
5 Mbps  
DESCRIPTION  
Shutdown and silent modes  
NC  
STB  
S
Normal mode only  
SHDN  
FAULT  
SHDN  
NC  
Shutdown and standby with wake  
Fault output and silent mode  
Shutdown and silent modes  
Normal mode only  
S
NC  
STB  
S
SHDN  
FAULT  
Shutdown and standby with wake  
Fault output and silent mode  
Copyright © 2015–2019, Texas Instruments Incorporated  
3
 
TCAN330, TCAN332, TCAN334, TCAN337  
TCAN330G, TCAN332G, TCAN334G, TCAN337G  
ZHCSEG6E DECEMBER 2015REVISED DECEMBER 2019  
www.ti.com.cn  
7 Pin Configuration and Functions  
TCAN330 D, DCN Packages  
8-Pin SOIC, SOT-23  
Top View  
TCAN334 D, DCN Packages  
8-Pin SOIC, SOT-23  
Top View  
TXD  
GND  
VCC  
1
2
3
4
8
7
6
5
S
TXD  
GND  
VCC  
1
2
3
4
8
7
6
5
STB  
CANH  
CANL  
SHDN  
CANH  
CANL  
SHDN  
RXD  
RXD  
Not to scale  
Not to scale  
TCAN332 D, DCN Packages  
8-Pin SOIC, SOT-23  
Top View  
TCAN337 D, DCN Packages  
8-Pin SOIC, SOT-23  
Top View  
TXD  
GND  
VCC  
1
2
3
4
8
7
6
5
NC  
TXD  
GND  
VCC  
1
2
3
4
8
7
6
5
S
CANH  
CANL  
NC  
CANH  
CANL  
FAULT  
RXD  
RXD  
Not to scale  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
TCAN330 TCAN332 TCAN334 TCAN337  
CAN transmit data input (LOW for dominant and HIGH for recessive bus states),  
integrated pull up  
TXD  
1
1
1
1
I
GND  
VCC  
2
3
2
3
2
3
2
3
GND  
Ground connection  
3.3-V supply voltage  
Supply  
CAN receive data output (LOW for dominant and HIGH for recessive bus  
states), tri-state  
RXD  
4
4
4
4
O
SHDN  
NC  
5
6
5
5
6
5
I
Drive high for shutdown mode. Internal pull-down.  
No Connect – Not internally connected  
Open drain fault output pin.  
NC  
O
FAULT  
CANL  
CANH  
S
6
6
I/O  
I/O  
I
Low level CAN bus line  
7
7
7
7
High level CAN bus line  
8
8
8
8
Drive high for silent mode, integrated pull down  
No Connect – Not internally connected  
Drive high for low power standby mode, integrated pull down  
NC  
NC  
I
STB  
4
Copyright © 2015–2019, Texas Instruments Incorporated  
TCAN330, TCAN332, TCAN334, TCAN337  
TCAN330G, TCAN332G, TCAN334G, TCAN337G  
www.ti.com.cn  
ZHCSEG6E DECEMBER 2015REVISED DECEMBER 2019  
8 Specifications  
8.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
–0.3  
–14  
MAX  
5
UNIT  
V
Supply Voltage range, VCC  
Voltage at any bus terminal (CANH or CANL), V(BUS)  
Logic input terminal voltage range V(Logic_Input)  
Logic output terminal voltage range, V(Logic_Output)  
Logic output current, IO(LOGIC)  
14  
5
V
–0.3  
–0.3  
V
5
V
8
mA  
°C  
°C  
Operating junction temperature range, TJ  
Storage temperature, Tstg  
–40  
150  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values, except differential I/O bus voltages, are with respect to ground terminal.  
8.2 ESD Ratings  
VALUE  
±4000  
UNIT  
All pins except CANH and  
CANL  
Human-body model (HBM), per  
ANSI/ESDA/JEDEC JS-001(1)  
Pins CANH and CANL  
All pins  
±25000  
±1500  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC  
specification JESD22-C101(2)  
CANH and CANL terminals to  
GND  
IEC 61400-4-2 Contact Discharge  
±12000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. .  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
8.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3
NOM  
MAX  
UNIT  
VCC  
Supply voltage  
3.6  
V
IOH(LOGIC)  
IOL(LOGIC)  
TA  
Logic terminal HIGH level output current  
Logic terminal LOW level output current  
Operational free-air temperature  
–2  
mA  
°C  
2
–40  
125  
8.4 Thermal Information  
TCAN33x  
TCAN33x  
THERMAL METRIC(1)  
D (SOIC)  
8 PINS  
114.4  
58.7  
DCN (SOT-23)  
8 PINS  
154.4  
76.6  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-board thermal resistance  
55.2  
49.2  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
11.7  
11.9  
ψJB  
54.6  
49.2  
RθJC(bot)  
N/A  
N/A  
VCC = 3.3 V, TJ = 27°C, RL = 60 , SHDN, S and  
PD  
Average power dissipation  
STB at 0 V, Input to TXD at 500 kHz, 50% duty cycle  
square wave, CL(RXD) = 15 pF  
65  
65  
mW  
TSD  
Thermal shutdown temperature  
Thermal shutdown hysteresis  
175  
5
175  
5
°C  
°C  
THYS  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2015–2019, Texas Instruments Incorporated  
5
TCAN330, TCAN332, TCAN334, TCAN337  
TCAN330G, TCAN332G, TCAN334G, TCAN337G  
ZHCSEG6E DECEMBER 2015REVISED DECEMBER 2019  
www.ti.com.cn  
8.5 Electrical Characteristics  
over operating free-air temperature range, TJ = –40°C to 150°C. All typical values are at 25°C and supply voltages of VCC  
=
3.3 V, RL = 60 , (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Supply  
See Figure 18. TXD = 0 V, RL = 60 ,  
CL = open, S, STB and SHDN = 0 V.  
Typical Bus Load.  
55  
60  
Dominant  
See Figure 18. TXD = 0 V, RL = 50 ,  
CL = open, S, STB and SHDN = 0 V.  
High Bus Load.  
Supply current Normal Mode  
See Figure 18. TXD = 0 V, S, STB and  
SHDN = 0 V, CANH = -12 V, RL = open,  
CL = open  
mA  
Dominant with  
bus fault  
180  
See Figure 18. TXD = VCC, RL = 50 ,  
CL = open, S, STB and SHDN = 0 V  
Recessive  
3.5  
2.5  
ICC  
See Figure 18. TXD = VCC, RL = 50 ,  
CL = open, S = VCC  
Supply Current: Silent Mode  
Supply Current: Standby Mode  
TA < 85°C, STB at VCC, RXD floating,  
TXD at VCC  
15  
20  
1
STB at VCC, RXD floating, TXD at VCC  
µA  
TA < 85°C, SHDN at VCC, RXD floating,  
TXD at VCC  
Supply Current: Shutdown Mode  
SHDN = VCC, RXD floating, TXD at VCC  
2.5  
2.6  
Rising under voltage detection on VCC for protected  
mode  
2.2  
UV(VCC)  
V
Falling under voltage detection on VCC for protected  
mode  
1.65  
2
2.5  
VHYS(UVVCC)  
Hysteresis voltage on UV(VCC)  
200  
mV  
Driver  
CANH  
See Figure 31 and Figure 19, TXD = 0  
V, S, STB and SHDN = 0 V, RL = 60 ,  
CL = open  
2.45  
0.5  
VCC  
VO(D)  
Bus output voltage (dominant)  
V
V
CANL  
1.25  
See Figure 31 and Figure 19, TXD =  
VCC, STB, SHDN = 0 V, S = 0 V or VCC  
(1), RL = open (no load)  
VO(R)  
Bus output voltage (recessive)  
1.85  
See Figure 31 and Figure 19, TXD = 0  
V, S, STB and SHDN = 0 V, 50 Ω ≤ RL  
65 , CL = open  
1.6  
1.5  
3
3
VOD(D)  
Differential output voltage (dominant)  
V
See Figure 31 and Figure 19, TXD = 0  
V, S, STB and SHDN = 0 V, 45 Ω ≤ RL  
50 , CL = open  
<
See Figure 31 and Figure 19, TXD =  
VCC, S, STB and SHDN = 0 V, RL = 60  
, CL = open  
–120  
–50  
12  
50  
TA < 85°C, See Figure 31 and Figure 19,  
TXD = VCC, S, STB and SHDN = 0 V, RL  
= open (no load), CL = open  
VOD(R)  
Differential output voltage (recessive)  
mV  
See Figure 31 and Figure 19, TXD =  
VCC, S, STB and SHDN = 0 V, RL  
open (no load), CL = open  
=
–50  
100  
400  
Output symmetry (dominant and recessive)  
(CANHREC + CANLREC – CANHDOM – CANLDOM  
See Figure 31 and Figure 19, S, STB  
and SHDN = 0 V, RL = 60 , CL = open  
V(SYM)  
–400  
–200  
mV  
mA  
mA  
)
See Figure 26, V(CANH) = –12 V, CANL =  
open, TXD = 0 V  
IOS(DOM)  
Short-circuit steady-state output current, Dominant  
Short-circuit steady-state output current, Recessive  
See Figure 26, V(CANL) = 12 V, CANH =  
open, TXD = 0 V  
200  
5
See Figure 26, –12 V VBUS 12 V,  
VBUS = CANH = CANL, TXD = VCC  
IOS(REC)  
–5  
(1) The bus output voltage (recessive) will be the same if the device is in normal mode with S terminal LOW or if the device is in silent  
mode with the S terminal is HIGH.  
6
Copyright © 2015–2019, Texas Instruments Incorporated  
TCAN330, TCAN332, TCAN334, TCAN337  
TCAN330G, TCAN332G, TCAN334G, TCAN337G  
www.ti.com.cn  
ZHCSEG6E DECEMBER 2015REVISED DECEMBER 2019  
Electrical Characteristics (continued)  
over operating free-air temperature range, TJ = –40°C to 150°C. All typical values are at 25°C and supply voltages of VCC  
=
3.3 V, RL = 60 , (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Receiver  
Input threshold voltage, normal modes and selective  
wake modes  
VIT  
500  
900  
mV  
Hysteresis voltage for input threshold, normal  
modes and selective wake modes  
See Figure 20 and Table 7  
VHYS  
VCM  
120  
Common Mode Range: normal and silent modes  
–12  
400  
12  
V
–2 V < VCM < 7 V  
See Figure 20 and Table 7  
1150  
mV  
VIT(STB)  
Input Threshold, standby mode  
–12 V < VCM < 12 V  
See Figure 20 and Table 7  
400  
1350  
6
mV  
µA  
TA < 85°C, CANH = CANL = 3.3 V, VCC  
to GND via 0-Ω and 47-kΩ resistor  
IIOFF(LKG)  
Power-off (unpowered) bus input leakage current  
CANH = CANL = 3.3 V, VCC to GND via  
0-Ω and 47-kΩ resistor  
12  
CI  
Input capacitance to ground (CANH or CANL)  
Differential input capacitance  
20  
10  
80  
40  
pF  
CID  
RID  
RIN  
Differential input resistance  
TXD = VCC, Normal Mode  
TXD = VCC, Normal mode  
30  
15  
kΩ  
Input resistance (CANH or CANL)  
Input resistance matching: [1 – (RIN(CANH) /  
RIN(CANL))] × 100 %  
RIN(M)  
V(CANH) = V(CANL)  
–3%  
3%  
TXD Terminal (CAN Transmit Data Input)  
VIH  
HIGH level input voltage  
LOW level input voltage  
2
V
VIL  
0.8  
3
V
IIH  
HIGH level input leakage current  
LOW level input leakage current  
Unpowered leakage current  
Input Capacitance  
TXD = VCC = 3.6 V  
–2.5  
–4  
0
0
µA  
µA  
µA  
pF  
IIL  
TXD = 0 V, VCC = 3.6 V  
TXD = 3.6 V, VCC = 0 V  
0
ILKG(OFF)  
I(CAP)  
–2  
0
2.5  
2.5  
RXD Terminal (CAN Receive Data Output)  
VOH  
HIGH level output voltage  
LOW level output voltage  
Unpowered leakage current  
See Figure 20, IO = –2 mA  
See Figure 20, IO = 2 mA  
RXD = 3.6 V, VCC = 0 V  
0.8 x VCC  
V
V
VOL  
0.2  
0
0.4  
1
ILKG(OFF)  
–1  
2
µA  
STB/S/SHDN Terminals  
VIH  
HIGH level input voltage  
V
VIL  
LOW level input voltage  
0.8  
10  
1
V
IIH  
HIGH level input leakage current  
LOW level input leakage current  
Unpowered leakage current  
STB, S, SHDN = VCC = 3.6 V  
–3  
–4  
–3  
0
0
0
µA  
µA  
µA  
IIL  
STB, S, SHDN = 0 V, VCC = 3.6 V  
STB, S, SHDN = 3.6 V, VCC = 0 V  
ILKG(OFF)  
5
FAULT Pin (Fault Output), TCAN337 only  
ICH  
ICL  
Output current high level  
Output current low level  
FAULT = VCC, See Figure 28  
FAULT = 0.4 V, See Figure 28  
–10  
4
µA  
12  
mA  
Copyright © 2015–2019, Texas Instruments Incorporated  
7
TCAN330, TCAN332, TCAN334, TCAN337  
TCAN330G, TCAN332G, TCAN334G, TCAN337G  
ZHCSEG6E DECEMBER 2015REVISED DECEMBER 2019  
www.ti.com.cn  
8.6 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Device Switching Characteristics  
Total loop delay, driver input (TXD) to  
receiver output (RXD), recessive to  
dominant and dominant to recessive  
See Figure 23, S, STB and SHDN = 0 V,  
RL = 60 , CL = 100 pF, CL(RXD) = 15 pF  
tPROP(LOOP)  
100  
120  
135  
180  
ns  
ns  
See Figure 23, S, STB and SHDN = 0 V,  
RL = 120 , CL = 200 pF,  
CL(RXD) = 15 pF  
Total Loop delay in highly loaded  
network  
tPROP(LOOP)  
tBUS_SYM_2  
tREC_SYM_2  
2 Mbps transmitted recessive bit width  
2 Mbps received recessive bit width  
2 Mbps receiver timing symmetry  
435  
400  
530  
550  
ns  
ns  
See Figure 24, S or STB = 0 V, RL = 60  
, CL = 100 pF, CL(RXD) = 15 pF,  
tBIT = 500 ns  
TCAN330G, TCAN332G, TCAN334G  
and TCAN337G only  
ΔtSYM_2  
–65  
40  
ns  
(tREC_SYM_2 - tBUS_SYM_2  
)
tBUS_SYM_5  
tREC_SYM_5  
5 Mbps transmitted recessive bit width  
5 Mbps received recessive bit width  
5 Mbps receiver timing symmetry  
155  
120  
210  
220  
ns  
ns  
See Figure 24, S or STB = 0 V, RL = 60  
, CL = 100 pF, CL(RXD) = 15 pF,  
tBIT = 200 ns  
TCAN330G, TCAN332G, TCAN334G  
and TCAN337G only  
ΔtSYM_5  
–45  
15  
10  
ns  
µs  
(tREC_SYM_5 - tBUS_SYM_5  
)
See Figure 21 and Figure 22.  
RL = 60 Ω, CL = 100 pF,  
CL(RXD) = 15 pF  
tMODE  
Mode change time  
5
Time for device to return to normal  
operation from UV(VCC) under voltage  
event  
tUV_RE-ENABLE  
Re-enable time after UV event  
1000  
4
µs  
µs  
Bus time to meet Filtered Bus  
Requirements for Wake Up Request  
See Figure 33, Standby mode.  
–12 V < VCM < 12 V  
tWK_FILTER  
0.5  
Driver Switching Characteristics  
Propagation delay time, HIGH TXD to  
Driver Recessive  
tpHR  
tpLD  
25  
20  
Propagation delay time, LOW TXD to  
Driver Dominant  
See Figure 19, S, STB and SHDN = 0 V.  
ns  
RL = 60 , CL = 100 pF,  
tsk(p)  
Pulse skew (|tpHR - tpLD|)  
5
17  
9
tr  
tf  
Differential output signal rise time  
Differential output signal fall time  
See Figure 25,  
RL = 60 Ω, CL = 100 pF  
(1)  
tTXD_DTO  
Driver dominant time out  
1.2  
2.6  
3.8  
ms  
Receiver Switching Characteristics  
Propagation delay time, bus recessive  
tpRH  
62  
56  
input to high RXD output  
Propagation delay time, bus dominant  
input to RXD low output  
See Figure 20, CL(RXD) = 15 pF CANL =  
1.5 V, CANH = 3.5 V  
tpDL  
ns  
tr  
Output signal rise time (RXD)  
Output signal fall time (RXD)  
7
6
3
tf  
(2)  
tRXD_DTO  
Receiver dominant time out  
See Figure 27, CL(RXD) = 15 pF  
1.6  
5
ms  
(1) The TXD dominant time out (tTXD_DTO) disables the driver of the transceiver once the TXD has been dominant longer than tTXD_DTO,  
which releases the bus lines to recessive, preventing a local failure from locking the bus dominant. The driver may only transmit  
dominant again after TXD has been returned HIGH (recessive). While this protects the bus from local faults, locking the bus dominant, it  
limits the minimum data rate possible. The CAN protocol allows a maximum of eleven successive dominant bits (on TXD) for the worst  
case, where five successive dominant bits are followed immediately by an error frame. This, along with the tTXD_DTO minimum, limits the  
minimum bit rate. The minimum bit rate may be calculated by: Minimum Bit Rate = 11/ tTXD_DTO = 11 bits / 1.2 ms = 9.2 kbps.  
(2) The RXD timeout (tRXD_DTO) disables the RXD output in the case that the bus has been dominant longer than tRXD_DTO, which releases  
RXD pin to the recessive state (high), thus preventing a dominant bus failure from permanently keeping the RXD pin low. The RXD pin  
will automatically resume normal operation once the bus has been returned to a recessive state. While this protects the protocol  
controller from a permanent dominant state, it limits the minimum data rate possible. The CAN protocol allows a maximum of eleven  
successive dominant bits (on RXD) for the worst case, where five successive dominant bits are followed immediately by an error frame.  
This, along with the tRXD_DTO minimum, limits the minimum bit rate. The minimum bit rate may be calculated by: Minimum Bit Rate = 11 /  
tRXD_DTO = 11 bits / 1.6 ms = 6.9 kbps.  
8
Copyright © 2015–2019, Texas Instruments Incorporated  
TCAN330, TCAN332, TCAN334, TCAN337  
TCAN330G, TCAN332G, TCAN334G, TCAN337G  
www.ti.com.cn  
ZHCSEG6E DECEMBER 2015REVISED DECEMBER 2019  
TXD fault stuck dominant, example PCB  
failure or bad software  
Fault is repaired & transmission  
capability restored  
tTXD_DTO  
TXD (driver)  
Driver disabled freeing bus for other nodes  
Bus would be —stuck dominant“ blocking communication for the  
whole network but TXD DTO prevents this and frees the bus for  
Normal CAN  
communication  
communication after the time tTXD_DTO  
.
CAN  
Bus  
Signal  
tTXD_DTO  
Communication from  
other bus node(s)  
Communication from  
repaired node  
FAULT is signaled to link layer / protocol.  
Fault indication is removed.  
TXDDTO  
Flag  
RXD  
(receiver)  
Communication from  
other bus node(s)  
Communication from  
repaired local node  
Communication from  
local node  
Figure 1. Example Timing Diagram for TXD DTO and FAULT Pin  
Fault is repaired and normal  
communication returns  
Normal CAN  
communication  
Bus Fault stuck dominant, example CANH  
short to supply and CAN L short to GND.  
CAN Bus  
Signal  
RXD mirrors  
bus  
RXD  
(reciever)  
tRXD_DTO  
RXD output is returned recessive (high) and  
FAULT is signaled to link layer / protocol.  
FAULT cleared  
signal is given  
RXDDTO  
FLAG  
Figure 2. Example Timing Diagram for RXD DTO and FAULT Pin  
Copyright © 2015–2019, Texas Instruments Incorporated  
9
TCAN330, TCAN332, TCAN334, TCAN337  
TCAN330G, TCAN332G, TCAN334G, TCAN337G  
ZHCSEG6E DECEMBER 2015REVISED DECEMBER 2019  
www.ti.com.cn  
8.7 Typical Characteristics  
21  
20.8  
20.6  
20.4  
20.2  
20  
0.16  
0.14  
0.12  
0.1  
RL = Open  
RL = 60 W  
0.08  
0.06  
0.04  
0.02  
0
19.8  
19.6  
19.4  
0
200  
400 600  
Frequency (kbps)  
800  
1000  
0
1
2
3
VO(CANL) - Low-Level Output Voltage (V)  
4
D001  
D002  
VCC = 3.3 V  
Normal Mode  
Temp = 25°C  
VO = 0.5 to 3.3 V  
VCC = 3.3 V  
Normal Mode  
Temp = 25°C  
60 Ω Load  
Figure 3. Supply Current (RSM) vs Frequency  
Figure 4. Driver Low-Level Output Current vs Low-level  
Output Voltage  
160  
140  
120  
100  
80  
3.0  
RL = Open  
RL = 60 W  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
60  
40  
VCC = 3 V  
VCC = 3.3 V  
VCC = 3.6 V  
20  
0
0
1
2
3
VO(CANH) - High-Level Output Voltage (V)  
4
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Free-Air Temperature (èC)  
D003  
D004  
VO = 0.5 to 3.3 V  
VCC = 3.3 V  
Normal Mode  
Temp = 25°C  
VO = 0.5 to 3.3 V  
VCC = 3.3 V  
Normal Mode  
Temp = 25°C  
60 Ω Load  
Figure 5. Driver High-Level Output Current vs High-level  
Output Voltage  
Figure 6. Dominant Voltage (VOD) vs Free-Air Temperature  
10  
Copyright © 2015–2019, Texas Instruments Incorporated  
TCAN330, TCAN332, TCAN334, TCAN337  
TCAN330G, TCAN332G, TCAN334G, TCAN337G  
www.ti.com.cn  
ZHCSEG6E DECEMBER 2015REVISED DECEMBER 2019  
8.8 Typical Characteristics, TCAN330 Receiver  
68  
67  
66  
65  
64  
63  
62  
61  
61  
60  
59  
58  
57  
56  
55  
60  
VCC = 3 V  
VCC = 3.3 V  
VCC = 3.6 V  
VCC = 3 V  
VCC = 3.3 V  
VCC = 3.6 V  
54  
53  
59  
58  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Free-Air Temperature (èC)  
Free-Air Temperature (èC)  
D005  
D006  
Figure 7. Receiver Bus Recessive Input to High RXD Output  
Propagation Delay Time vs Free-Air Temperature  
Figure 8. Receiver Bus Dominant Input to Low RXD Output  
Propagation Delay Time vs Free-Air Temperature  
9
8
7
6
5
4
3
6.6  
6.5  
6.4  
6.3  
6.2  
6.1  
6
5.9  
5.8  
2
5.7  
5.6  
5.5  
VCC = 3 V  
VCC = 3.3 V  
VCC = 3.6 V  
VCC = 3 V  
VCC = 3.3 V  
VCC = 3.6 V  
1
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Free-Air Temperature (èC)  
Free-Air Temperature (èC)  
D007  
D008  
Figure 9. Receiver Rise Time vs Free-Air Temperature  
Figure 10. Receiver Fall Time vs Free-Air Temperature  
Copyright © 2015–2019, Texas Instruments Incorporated  
11  
TCAN330, TCAN332, TCAN334, TCAN337  
TCAN330G, TCAN332G, TCAN334G, TCAN337G  
ZHCSEG6E DECEMBER 2015REVISED DECEMBER 2019  
www.ti.com.cn  
8.9 Typical Characteristics, TCAN330 Driver  
35  
30  
25  
20  
15  
35  
30  
25  
20  
15  
10  
5
10  
VCC = 3 V  
VCC = 3.3 V  
VCC = 3.6 V  
VCC = 3 V  
VCC = 3.3 V  
VCC = 3.6 V  
5
0
-40  
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-20  
0
20  
40  
60  
80  
100 120 140  
Free-Air Temperature (èC)  
Free-Air Temperature (èC)  
D009  
D010  
Figure 11. Driver High TXD Input to Driver Recessive Output  
Propagation Delay Time vs Free-Air Temperature  
Figure 12. Driver Low TXD Input to Driver Dominant Output  
Propagation Delay Time vs Free-Air Temperature  
35  
30  
25  
20  
15  
16  
14  
12  
10  
8
6
10  
4
VCC = 3 V  
VCC = 3.3 V  
VCC = 3.6 V  
VCC = 3 V  
VCC = 3.3 V  
VCC = 3.6 V  
5
2
0
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Free-Air Temperature (èC)  
Free-Air Temperature (èC)  
D011  
D012  
Figure 13. Differential Output Signal Rise Time vs Free-Air  
Temperature  
Figure 14. Differential Output Signal Fall Time vs Free-Air  
Temperature  
100  
90  
80  
70  
60  
50  
40  
30  
9
VCC = 3 V  
VCC = 3.3 V  
VCC = 3.6 V  
8
7
6
5
4
3
2
1
0
20  
VCC = 3 V  
VCC = 3.3 V  
VCC = 3.6 V  
10  
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Free-Air Temperature (èC)  
Free-Air Temperature (èC)  
D013  
D014  
Figure 15. Pulse Skew (|tpHR - tpLD|) vs Free-Air Temperature  
Figure 16. Total Loop Delay Recessive to Dominant  
tPROP(LOOP1) vs Free-Air Temperature  
12  
Copyright © 2015–2019, Texas Instruments Incorporated  
TCAN330, TCAN332, TCAN334, TCAN337  
TCAN330G, TCAN332G, TCAN334G, TCAN337G  
www.ti.com.cn  
ZHCSEG6E DECEMBER 2015REVISED DECEMBER 2019  
Typical Characteristics, TCAN330 Driver (continued)  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
VCC = 3 V  
VCC = 3.3 V  
VCC = 3.6 V  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Free-Air Temperature (èC)  
D015  
Figure 17. Total Loop Delay Dominant to Recessive tPROP(LOOP2) vs Free-Air Temperature  
9 Parameter Measurement Information  
CANH  
RL  
TXD  
CL  
CANL  
Figure 18. Supply Test Circuit  
CANH  
RL  
VCC  
0V  
50%  
tpLD  
50%  
tpHR  
TXD  
TXD  
CL  
VOD  
VO(CANH)  
90%  
10%  
CANL  
0.9V  
VO(CANL)  
VOD  
0.5V  
tR  
tF  
Figure 19. Driver Test Circuit and Measurement  
Copyright © 2015–2019, Texas Instruments Incorporated  
13  
TCAN330, TCAN332, TCAN334, TCAN337  
TCAN330G, TCAN332G, TCAN334G, TCAN337G  
ZHCSEG6E DECEMBER 2015REVISED DECEMBER 2019  
www.ti.com.cn  
Parameter Measurement Information (continued)  
CANH  
1.5 V  
0.9 V  
+
VID  
IO  
RXD  
0.5 V  
0 V  
VOH  
VID  
+
tpDL  
90%  
œ
tpRH  
VO  
CL_RXD  
CANL  
VO(RXD)  
50%  
10%  
œ
VOL  
tF  
tR  
Figure 20. Receiver Test Circuit and Measurement  
CANH  
VIH  
VIH  
TXD  
0 V  
RL  
CL  
S
SHDN/S/STB  
50%  
50%  
CANL  
SHDN/S/STB  
0V  
0 V  
VI  
tMODE  
tMODE  
RXD  
+
VOH  
VO  
CL_RXD  
CANH - CANL  
RXD  
50%  
œ
500mV  
VOL  
Figure 21. tMODE Test Circuit and Measurement, from Normal to Shutdown, Standby or Silent Mode  
VIH  
VIH  
TXD  
TXD  
CANH  
TXD  
VI  
RL  
CL  
0 V  
VIH  
0 V  
VIH  
200 ns  
200 ns  
CANL  
SHDN/S/STB  
VI  
50%  
S
SHDN/S/STB  
50%  
RXD  
0 V  
0 V  
+
tMODE  
tMODE  
VO  
CL_RXD  
VOH  
VOH  
œ
RXD  
900 mV  
50%  
CANH - CANL  
VOL  
Figure 22. tMODE Test Circuit and Measurement, from Shutdown, Standby or Silent to Normal Mode  
14  
Copyright © 2015–2019, Texas Instruments Incorporated  
TCAN330, TCAN332, TCAN334, TCAN337  
TCAN330G, TCAN332G, TCAN334G, TCAN337G  
www.ti.com.cn  
ZHCSEG6E DECEMBER 2015REVISED DECEMBER 2019  
Parameter Measurement Information (continued)  
CANH  
VCC  
TXD  
CL  
VI  
RL  
50%  
TXD  
CANL  
0 V  
tPROP(LOOP2)  
tPROP(LOOP1)  
RXD  
+
VOH  
VO  
CL_RXD  
50%  
RXD  
œ
VOL  
Figure 23. tPROP(LOOP) Test Circuit and Measurement  
VI  
70%  
TXD  
30%  
30%  
CANH  
0V  
5 x tBIT  
tBIT  
TXD  
VI  
RL  
CANL  
900mV  
CANH - CANL  
500mV  
RXD  
tBUS_SYM  
VO  
CL_RXD  
VOH  
70%  
RXD  
30%  
VOL  
tREC_SYM  
Figure 24. Loop Delay Symmetry Test Circuit and Measurement  
Copyright © 2015–2019, Texas Instruments Incorporated  
15  
TCAN330, TCAN332, TCAN334, TCAN337  
TCAN330G, TCAN332G, TCAN334G, TCAN337G  
ZHCSEG6E DECEMBER 2015REVISED DECEMBER 2019  
www.ti.com.cn  
Parameter Measurement Information (continued)  
CANH  
VIH  
TXD  
TXD  
0 V  
RL  
CL  
VOD  
VOD(D)  
CANL  
0.9 V  
VOD  
0.5 V  
0 V  
tTXD_DTO  
Figure 25. TXD Dominant Time Out Test Circuit and Measurement  
200 s  
IOS  
CANH  
TXD  
VBUS  
IOS  
CANL  
VBUS  
VBUS  
or  
0 V  
0 V  
VBUS  
VBUS  
Figure 26. Driver Short-Circuit Current Test and Measurement  
VID(D)  
CANH  
+
0.9 V  
VID  
0.5 V  
0 V  
RXD  
VID  
+
œ
CL_RXD  
VO  
CANL  
VOH  
0 V  
RXD  
50%  
œ
tRXD_DTO  
Figure 27. RXD Dominant Timeout Test Circuit and Measurement  
16  
Copyright © 2015–2019, Texas Instruments Incorporated  
TCAN330, TCAN332, TCAN334, TCAN337  
TCAN330G, TCAN332G, TCAN334G, TCAN337G  
www.ti.com.cn  
ZHCSEG6E DECEMBER 2015REVISED DECEMBER 2019  
Parameter Measurement Information (continued)  
IFAULT  
TXD  
DTO  
FAULT  
RXD  
DTO  
+
œ
Thermal  
Shutdown  
UV  
Lockout  
GND  
Figure 28. FAULT Test and Measurement  
Copyright © 2015–2019, Texas Instruments Incorporated  
17  
TCAN330, TCAN332, TCAN334, TCAN337  
TCAN330G, TCAN332G, TCAN334G, TCAN337G  
ZHCSEG6E DECEMBER 2015REVISED DECEMBER 2019  
www.ti.com.cn  
10 Detailed Description  
10.1 Overview  
This family of CAN transceivers is compatible with the ISO11898-2 High-Speed CAN (controller area network)  
physical layer standard. They are designed to interface between the differential bus lines in CAN and the CAN  
protocol controller.  
10.2 Functional Block Diagram  
SHDN / NC / FAULT  
VCC  
Note C  
5
3
FAULT LOGIC  
Note B  
VCC  
VCC  
VCC  
DOMINANT  
TIME OUT  
TXD  
S / NC / STB  
RXD  
1
7
CANH  
CANL  
Under  
Voltage  
6
Note C  
8
CONTROL and  
MODE  
LOGIC  
Sleep Receiver  
Note A  
WAKE  
DETECT  
MUX  
Normal Receiver  
4
DOMINANT  
TIME OUT  
2
GND  
Copyright © 2016, Texas Instruments Incorporated  
A. Sleep Receiver and Wake Detect are device dependent options and are only available in TCAND334.  
B. Fault Logic is only available in TCAND337.  
C. Pin 5 and 8 functions are device dependent. Refer to Device Options.  
18  
Copyright © 2015–2019, Texas Instruments Incorporated  
TCAN330, TCAN332, TCAN334, TCAN337  
TCAN330G, TCAN332G, TCAN334G, TCAN337G  
www.ti.com.cn  
ZHCSEG6E DECEMBER 2015REVISED DECEMBER 2019  
10.3 Feature Description  
10.3.1 TXD Dominant Timeout (TXD DTO)  
During normal mode (the only mode where the CAN driver is active), the TXD DTO circuit prevents the  
transceiver from blocking network communication in the event of a hardware or software failure where TXD is  
held dominant longer than the timeout period tTXD_DTO. The DTO circuit timer starts on a falling edge on TXD.  
The DTO circuit disables the CAN bus driver if no rising edge is seen before the timeout period expires. This  
frees the bus for communication between other nodes on the network. The CAN driver is re-activated when a  
recessive signal is seen on TXD pin, thus clearing the TXD DTO condition. The receiver and RXD pin still reflect  
the CAN bus, and the bus pins are biased to recessive level during a TXD dominant timeout.  
10.3.2 RXD Dominant Timeout (RXD DTO)  
All devices have a RXD DTO circuit that prevents a bus stuck dominant fault from permanently driving the RXD  
output dominant (low) when the bus is held dominant longer than the timeout period tRXD_DTO. The RXD DTO  
timer starts on a falling edge on RXD (bus going dominant). If no rising edge (bus returning recessive) is seen  
before the timeout constant of the circuit expires (tRXD_DTO), the RXD pin returns high (recessive). The RXD  
output is re-activated to mirror the bus receiver output when a recessive signal is seen on the bus, clearing the  
RXD dominant timeout. The CAN bus pins are biased to the recessive level during a RXD DTO.  
10.3.3 Thermal Shutdown  
If the junction temperature of the device exceeds the thermal shutdown threshold, the device turns off the CAN  
driver circuits thus blocking the TXD-to-bus transmission path. The shutdown condition is cleared when the  
junction temperature of the device drops below the thermal shutdown temperature of the device. If the fault  
condition that caused the thermal shutdown is still present, the temperature may rise again and the device will  
enter thermal shut down again. Prolonged operation with thermal shutdown conditions may affect device  
reliability. The thermal shutdown circuit includes hysteresis to avoid oscillation of the driver output.  
During thermal shutdown the CAN bus drivers are turned off, thus no transmission is possible from TXD to the  
bus. The CAN bus pins are biased to recessive level during a thermal shutdown and the receiver to RXD path  
remains operational.  
10.3.4 Undervoltage Lockout and Unpowered Device  
The VCC supply terminal has under voltage detection which will place the device in protected mode if the supply  
drops below the UVLO threshold. This protects the bus during an under voltage event on VCC by placing the bus  
into a high impedance biased to ground state and the RXD terminal into a tri-stated (high impedance) state.  
During undervoltage the device does not pass any signals from the bus. If the device is in normal mode and VCC  
supply is lost the device will transition to a protected mode.  
The device is designed to be an "ideal passive" or “no load” to the CAN bus if the device is unpowered. The bus  
terminals (CANH, CANL) have low leakage currents when the device is unpowered, so the device does not load  
the bus. This is critical if some nodes of the network are unpowered while the rest of the of network remains  
operational. Logic pins also have low leakage currents when the device is unpowered, so the device does not  
load other circuits which may remain powered.  
Table 1. Undervoltage Protection 3.3-V Single Supply Devices  
VCC  
GOOD  
DEVICE STATE  
Operational  
Protected  
BUS  
RXD  
Per Operating Mode  
Per Operating Mode  
High Impedance  
High Impedance  
BAD  
Common mode bias to GND  
High Impedance (no load)  
UNPOWERED  
Unpowered  
Copyright © 2015–2019, Texas Instruments Incorporated  
19  
 
TCAN330, TCAN332, TCAN334, TCAN337  
TCAN330G, TCAN332G, TCAN334G, TCAN337G  
ZHCSEG6E DECEMBER 2015REVISED DECEMBER 2019  
www.ti.com.cn  
10.3.5 Fault Pin (TCAN337)  
If one or more of the faults (TXD-Dominant Timeout, RXD dominant Timeout, Thermal Shutdown or  
Undervoltage Lockout) occurs, the FAULT pin (open-drain) turns off, resulting in a high level when externally  
pulled up to VCC supply.  
VCC  
P  
FAULT  
Input  
TXD  
DTO  
FAULT  
RXD  
DTO  
Thermal  
Shutdown  
UV  
Lockout  
GND  
Figure 29. FAULT Pin Function Diagram and Application  
10.3.6 Floating Pins  
The device has internal pull ups and pull downs on critical terminals to place the device into known states if the  
pin floats. See Table 1 for details on pin bias conditions.  
Table 2. Pin Bias  
PIN  
PULL UP or PULL DOWN  
COMMENT  
Weakly biases TXD toward recessive to prevent bus blockage or TXD DTO  
triggering.  
TXD  
Pull up  
STB  
S
Pull down  
Pull down  
Pull down  
Weakly biases STB terminal towards normal mode.  
Weakly biases S terminal towards normal mode.  
Weakly biases SHDN terminal towards normal mode.  
SHDN  
The internal bias should not be relied on by design, especially in noisy environments, but should be considered a  
fall back protection. Special care needs to be taken when the device is used with MCUs using open drain  
outputs. TXD is weakly internally pulled up. The TXD pull up strength and CAN bit timing require special  
consideration when this device is used with an open drain TXD output on the microprocessor's CAN controller.  
An adequate external pull up resistor must be used to ensure that the TXD output of the microprocessor  
maintains adequate bit timing input to the CAN transceiver.  
10.3.7 CAN Bus Short Circuit Current Limiting  
The device has several protection features that limit the short circuit current when a CAN bus line is shorted.  
These include CAN driver current limiting (dominant and recessive). The device has TXD dominant time out  
which prevents permanently having the higher short circuit current of dominant state in case of a system fault.  
During CAN communication the bus switches between dominant and recessive states, thus the short circuit  
current may be viewed either as the current during each bus state or as a DC average current. For system  
current and power considerations in the termination resistors and common mode choke ratings the average short  
circuit current should be used. The percentage dominant is limited by the TXD dominant time out and CAN  
protocol which has forced state changes and recessive bits such as bit stuffing, control fields, and interframe  
space. These ensure there is a minimum recessive amount of time on the bus even if the data field contains a  
high percentage of dominant bits.  
20  
Copyright © 2015–2019, Texas Instruments Incorporated  
TCAN330, TCAN332, TCAN334, TCAN337  
TCAN330G, TCAN332G, TCAN334G, TCAN337G  
www.ti.com.cn  
ZHCSEG6E DECEMBER 2015REVISED DECEMBER 2019  
The short circuit current of the bus depends on the ratio of recessive to dominant bits and their respective short  
circuit currents. The average short circuit current may be calculated with the following formula:  
IOS(AVG) = %Transmit x [(%REC_Bits x IOS(SS)_REC ) + (%DOM_Bits x IOS(SS)_DOM)] + [%Receive x IOS(SS)_REC  
]
(1)  
Where:  
IOS(AVG) is the average short circuit current  
%Transmit is the percentage the node is transmitting CAN messages  
%Receive is the percentage the node is receiving CAN messages  
%REC_Bits is the percentage of recessive bits in the transmitted CAN messages  
%DOM_Bits is the percentage of dominant bits in the transmitted CAN messages  
IOS(SS)_REC is the recessive steady state short circuit current  
IOS(SS)_DOM is the dominant steady state short circuit current  
The short circuit current and possible fault cases of the network should be taken into consideration when sizing  
the power ratings of the termination resistance and other network components.  
10.3.8 ESD Protection  
The bus pins of the TCAN33x family possess on-chip ESD protection against ±25-kV human body model (HBM)  
and ±12-kV IEC61000-4-2 contact discharge. The IEC-ESD test is far more severe than the HBM-ESD test. The  
50% higher charge capacitance, CS, and 78% lower discharge resistance, RD of the IEC model produce  
significantly higher discharge currents than the HBM-model.  
As stated in the IEC 61000-4-2 standard, contact discharge is the preferred test method; although IEC air-gap  
testing is less repeatable than contact testing, air discharge protection levels are inferred from the contact  
discharge test results.  
R
R
D
C
40  
35  
30  
25  
20  
15  
10  
5
50M  
(1M)  
330Ω  
(1.5k)  
10kV IEC  
High-Voltage  
Pulse  
Generator  
Device  
Under  
Test  
150pF  
(100pF)  
C
S
10kV HBM  
0
0
50  
100  
150  
200  
250  
300  
Time - ns  
Figure 30. HBM and IEC-ESD Models and Currents in Comparison (HBM Values in Parenthesis)  
10.3.9 Digital Inputs and Outputs  
All the devices in this family are single 3.3-V nominal supply devices. The digital logic input and output levels for  
these devices have TTL threshold levels.  
Copyright © 2015–2019, Texas Instruments Incorporated  
21  
TCAN330, TCAN332, TCAN334, TCAN337  
TCAN330G, TCAN332G, TCAN334G, TCAN337G  
ZHCSEG6E DECEMBER 2015REVISED DECEMBER 2019  
10.4 Device Functional Modes  
10.4.1 CAN Bus States  
www.ti.com.cn  
The CAN bus has two logical states during operation: recessive and dominant. See Figure 31 and Figure 32.  
Recessive bus state is when the high resistive internal input resistors of each node's receiver bias the bus to a  
common mode of about 1.85 V across the bus termination resistors. Recessive is equivalent to logic high and is  
typically a differential voltage on the bus of about 0 V. Recessive state is also the idle state.  
Dominant bus state is when the bus is driven differentially by one or more drivers. Current is induced to flow  
through the termination resistors and generate a differential voltage on the bus. Dominant is equivalent to logic  
low and is a differential voltage on the bus greater than the minimum threshold for a CAN dominant. A dominant  
state overwrites the recessive state.  
During arbitration, multiple CAN nodes may transmit a dominant bit at the same time. In this case the differential  
voltage of the bus will be greater than the differential voltage of a single driver.  
The host microprocessor of the CAN node will use the TXD terminal to drive the bus and will receive data from  
the bus on the RXD pin.  
Transceivers with low power Standby Mode have a third bus state where the bus terminals are weakly biased to  
ground via the high resistance internal resistors of the receiver. See Figure 31 and Figure 32.  
Standby and Shutdown  
Modes  
Normal and Silent Modes  
CANH  
CANH  
Vdiff  
1.85 V  
A
B
RXD  
Bias  
Unit  
Vdiff  
CANL  
CANL  
A. Normal and Silent Modes  
Recessive  
Dominant  
Recessive  
Time, t  
B. Standby and Shutdown Modes  
Figure 31. Bus States (Physical Bit  
Representation)  
Figure 32. Simplified Recessive Common Mode  
Bias Unit and Receiver  
The devices have four main operating modes:  
1. Normal mode (all devices)  
2. Silent mode (TCAN330, TCAN337)  
3. Standby mode with wake (TCAN334)  
4. Shutdown mode (TCAN330, TCAN334)  
Table 3. CAN Transceivers with Silent Mode  
S
Device MODE  
DRIVER  
RECEIVER  
RXD PIN  
Reduced Power Silent  
(Listen) Mode  
HIGH  
Disabled (OFF)(1)  
Enabled (ON)  
Enabled (ON)  
Enabled (ON)  
Mirrors Bus State(2)  
LOW/NC  
Normal Mode  
(1) See Figure 31 for bus state.  
(2) Mirrors bus state: low if CAN bus is dominant, high if CAN bus is recessive.  
22  
Copyright © 2015–2019, Texas Instruments Incorporated  
 
TCAN330, TCAN332, TCAN334, TCAN337  
TCAN330G, TCAN332G, TCAN334G, TCAN337G  
www.ti.com.cn  
ZHCSEG6E DECEMBER 2015REVISED DECEMBER 2019  
Table 4. CAN Transceivers with Standby Mode with Wake  
STB  
Device MODE  
DRIVER  
RECEIVER  
RXD Terminal  
High (Recessive) until  
Ultra Low Current Standby  
Mode  
Low Power Receiver and  
Bus Monitor Enabled (ON)  
HIGH  
Disabled (OFF)(1)  
Enabled (ON)  
WUP, then filtered mirrors  
(2)  
of Bus State  
(3)  
LOW/NC  
Normal Mode  
Enabled (ON)  
Mirrors Bus State  
(1) See Figure 31 for bus state.  
(2) Standby Mode RXD behavior: See Figure 33.  
(3) Mirrors bus state: low if CAN bus is dominant, high if CAN bus is recessive.  
Table 5. CAN Transceivers with Shutdown Mode  
SHDN  
HIGH  
Device MODE  
Lowest Current  
Normal Mode  
DRIVER  
Disabled (OFF)(1)  
RECEIVER  
Disabled (OFF)  
Enabled (ON)  
RXD Terminal  
High (Recessive)  
(2)  
LOW/NC  
Enabled (ON)  
Mirrors Bus State  
(1) See Figure 31 for bus state.  
(2) Mirrors bus state: low if CAN bus is dominant, high if CAN bus is recessive.  
10.4.2 Normal Mode  
This is the normal operating mode of the device. The CAN driver and receiver are fully operational and CAN  
communication is bi-directional. The driver is translating a digital input on TXD to a differential output on CANH  
and CANL. The receiver is translating the differential signal from CANH and CANL to a digital output on RXD.  
10.4.3 Silent Mode  
This is the silent or receive only mode of the device. The CAN driver is disabled but the receiver is fully  
operational. CAN communication is unidirectional and only flows from the CAN bus through the receive path of  
the transceiver to the CAN protocol controller via the RXD output pin. The receiver is translating the differential  
signal from CANH and CANL to a digital output on RXD.  
10.4.4 Standby Mode with Wake  
This is the low power mode of the device. The CAN driver and main receiver are turned off and bi-directional  
CAN communication is not possible. The low power receiver and bus monitor are enabled to allow for RXD Wake  
Requests via the CAN bus. A wake up request will be output to RXD (driven low) as shown in Figure 33. The  
local CAN protocol microprocessor should monitor RXD for transitions (high to low) and reactivate the device to  
normal mode based on the RXD Wake Request. The CAN bus pins are weakly pulled to GND during this mode,  
see Figure 32.  
10.4.5 Bus Wake via RXD Request (BWRR) in Standby Mode  
The TCAN334 with low power standby mode, offers a wake up from the CAN bus mechanism called bus wake  
via RXD Request (BWRR) to indicate to a host microprocessor that the bus is active and it should wake up and  
return to normal CAN communication.  
This device uses the multiple filtered dominant wake-up pattern (WUP) from ISO11898-5 to qualify bus traffic into  
a request to wake the host microprocessor. The bus wake request is signaled to the microprocessor by a falling  
edge and low corresponding to a “filtered” bus dominant on the RXD terminal (BWRR).  
The wake up pattern (WUP) consists of a filtered dominant bus, then a filtered recessive bus time followed by a  
second filtered bus time. Once the WUP is detected the device will start issuing wake up requests (BWRR) on  
the RXD terminal every time a filtered dominant time is received from the bus. The first filtered dominant initiates  
the WUP and the bus monitor waits on a filtered recessive; other bus traffic does not reset the bus monitor. Once  
a filtered recessive is received, the bus monitor waits on a filtered dominant and again; other bus traffic does not  
reset the bus monitor. Immediately upon receiving of the second filtered dominant, the bus monitor recognizes  
the WUP and transitions to BWRR mode. In this mode, RXD is driven low for all dominant bits lasting for longer  
than tWK_FILTER. The RXD output during BWRR matches the classical 8-pin CAN devices, such as the  
TCANA1040A-Q1 device, that used the single filtered dominant on the bus as the wake up request mechanism  
from ISO11898-5.  
Copyright © 2015–2019, Texas Instruments Incorporated  
23  
TCAN330, TCAN332, TCAN334, TCAN337  
TCAN330G, TCAN332G, TCAN334G, TCAN337G  
ZHCSEG6E DECEMBER 2015REVISED DECEMBER 2019  
www.ti.com.cn  
For a dominant or recessive to be considered filtered, the bus must be in that state for more than tWK_FILTER time.  
Due to variability in the tWK_FILTER the following scenarios are applicable. Bus state times less than tWK_FILTER(MIN)  
are never detected as part of a WUP and thus no BWRR is generated. Bus state times between tWK_FILTER(MIN)  
and tWK_FILTER(MAX) may be detected as part of a WUP and a BWRR may be generated. Bus state times more  
than tWK_FILTER(MAX) are always detected as part of a WUP and thus a BWRR is always generated.  
See Figure 33 for the timing diagram of the WUP. The pattern, tWK_FILTER time used for the WUP and BWRR  
prevent noise and bus stuck dominant faults from causing false wake requests. If the device is switched to  
normal mode, or an under voltage event occurs on VCC the BWRR will be lost.  
Wake Up Pattern (WUP)  
Wake Request via RXD  
Filtered  
Dominant  
Filtered  
Dominant  
Filtered  
Recessive  
Waiting for  
Filtered  
Dominant  
Waiting for  
Filtered  
Recessive  
Bus  
Bus VDiff  
tWK_FILTER  
tWK_FILTER  
tWK_FILTER  
tWK_FILTER  
RXD  
Figure 33. Wake Up Pattern (WUP) and Bus Wake via RXD Request (BWRR)  
10.4.6 Shutdown Mode  
This is the lowest power mode of all of the devices. The CAN driver and receiver are turned off and bi-directional  
CAN communication is not possible. It is not possible to receive a remote wake request via the CAN bus in this  
mode. The CAN bus pins are pulled to GND during this mode as shown in Figure 31.  
24  
Copyright © 2015–2019, Texas Instruments Incorporated  
 
TCAN330, TCAN332, TCAN334, TCAN337  
TCAN330G, TCAN332G, TCAN334G, TCAN337G  
www.ti.com.cn  
ZHCSEG6E DECEMBER 2015REVISED DECEMBER 2019  
10.4.7 Driver and Receiver Function Tables  
Table 6. Driver Function Table  
BUS OUTPUTS(2)  
(3)  
DEVICE MODE  
TXD(1) INPUT  
DRIVEN BUS STATE  
CANH  
CANL  
L
H
Z
Z
Z
Z
L
Z
Z
Z
Z
Dominant  
Normal  
H or Open  
Biased Recessive  
Biased Recessive  
Weak Pull to GND  
Weak Pull to GND  
Silent  
X
X
X
Standby  
Shutdown  
(1) H = high level, L = low level, X = irrelevant.  
(2) H = high level, L = low level, Z = high Z receiver bias.  
(3) For Bus state and bias see Figure 31 and Figure 32.  
Table 7. Receiver Function Table Normal and Standby Modes  
CAN DIFFERENTIAL INPUTS  
BUS STATE  
DEVICE MODE  
RXD PIN(1)  
V(ID) = V(CANH) – V(CANL)  
V
(ID) 0.9 V  
0.5 V < V(ID) < 0.9 V  
(ID) 0.5 V  
(ID) 1.15 V  
0.4 V < V(ID) < 1.15 V  
Dominant  
?
L
?
Normal or Silent  
V
Recessive  
Dominant  
?
H
V
Standby  
See Figure 33  
V
(ID) 0.4 V  
Recessive  
Recessive  
Open  
Shutdown  
Any  
Any  
H
H
Open (V(ID) 0 V)  
(1) I = high level, L = low level, ? = indeterminate.  
Copyright © 2015–2019, Texas Instruments Incorporated  
25  
TCAN330, TCAN332, TCAN334, TCAN337  
TCAN330G, TCAN332G, TCAN334G, TCAN337G  
ZHCSEG6E DECEMBER 2015REVISED DECEMBER 2019  
www.ti.com.cn  
11 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
11.1 Application Information  
11.1.1 Bus Loading, Length and Number of Nodes  
The ISO 11898 standard specifies a data rate up to 1 Mbps, maximum CAN bus cable length of 40 m, maximum  
drop line (stub) length of 0.3 m and a maximum of 30 nodes. However, with careful network design, the system  
may have longer cables, longer stub lengths, and many more nodes to a bus. Many CAN organizations and  
standards have scaled the use of CAN for applications outside the original ISO 11898 standard. They have made  
system level trade-offs for data rate, cable length, and parasitic loading of the bus. Examples of some of these  
specifications are ARINC825, CANopen, CAN Kingdom, DeviceNet and NMEA200.  
A high number of nodes requires a transceiver with high input impedance and wide common mode range such  
as the TCAN33x CAN family. ISO 11898-2 specifies the driver differential output with a 60-load (two 120- Ω  
termination resistors in parallel) and the differential output must be greater than 1.5 V. The TCAN33x devices are  
specified to meet the 1.5-V requirement with a 50-load across a common mode range of –12 V to 12 V  
through a 330-coupling network. This network represents the bus loading of 120 TCAN33x transceivers based  
on their minimum differential input resistance of 40 k.  
For CAN network design, margin must be given for signal loss across the system and cabling, parasitic loadings,  
network imbalances, ground offsets and signal integrity, thus a practical maximum number of nodes may be  
lower. Bus length may also be extended beyond the original ISO 11898 standard of 40 m by careful system  
design and data rate tradeoffs. For example, CANopen network design guidelines allow the network to be up to  
1 km with changes in the termination resistance, cabling, number of nodes and data rate.  
This flexibility in CAN network design is one of the key strengths of the various extensions and additional  
standards that have been built on the original ISO 11898 CAN standard.  
11.2 Typical Application  
VCC  
3
SHDN/  
FAULT  
5
TCAN33x  
VCC  
VOUT  
VIN  
VIN  
S / STB  
CANH  
8
7
CAN Transceiver  
3-V Voltage  
Regulator  
3-V MCU  
(e.g. TPSxxxx)  
RXD  
TXD  
RXD  
TXD  
4
1
CANL  
6
Optional:  
Terminating  
Node  
2
GND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 34. Typical 3.3-V Application  
26  
Copyright © 2015–2019, Texas Instruments Incorporated  
TCAN330, TCAN332, TCAN334, TCAN337  
TCAN330G, TCAN332G, TCAN334G, TCAN337G  
www.ti.com.cn  
ZHCSEG6E DECEMBER 2015REVISED DECEMBER 2019  
Typical Application (continued)  
11.2.1 Design Requirements  
11.2.1.1 CAN Termination  
The ISO 11898 standard specifies the interconnect to be a twisted-pair cable (shielded or unshielded) with 120-Ω  
characteristic impedance (ZO). Resistors equal to the characteristic impedance of the line should be used to  
terminate both ends of the cable to prevent signal reflections. Unterminated drop lines (stubs) connecting nodes  
to the bus should be kept as short as possible to minimize signal reflections. The termination may be on the  
cable or in a node, but if nodes may be removed from the bus the termination must be carefully placed so that it  
is not removed from the bus.  
11.2.2 Detailed Design Procedure  
Termination is typically a 120-Ω resistor at each end of the bus. If filtering and stabilization of the common mode  
voltage of the bus is desired, then split termination may be used (see Figure 8). Split termination uses two 60-Ω  
resistors with a capacitor in the middle of these resistors to ground. Split termination improves the  
electromagnetic emissions behavior of the network by eliminating fluctuations in the bus common mode voltages  
at the start and end of message transmissions.  
Care should be taken in the power ratings of the termination resistors used. Typically the worst case condition  
would be if the system power supply was shorted across the termination resistance to ground. In most cases the  
current flow through the resistor in this condition would be much higher than the transceiver's current limit.  
Node n  
(with termination)  
Node 1  
Node 2  
Node 3  
MCU or DSP  
MCU or DSP  
MCU or DSP  
MCU or DSP  
CAN  
Controller  
CAN  
Controller  
CAN  
Controller  
CAN  
Controller  
CAN Transceiver  
RTERM  
CAN Transceiver  
CAN Transceiver  
CAN Transceiver  
RTERM  
Figure 35. Typical CAN Bus  
Copyright © 2015–2019, Texas Instruments Incorporated  
27  
TCAN330, TCAN332, TCAN334, TCAN337  
TCAN330G, TCAN332G, TCAN334G, TCAN337G  
ZHCSEG6E DECEMBER 2015REVISED DECEMBER 2019  
www.ti.com.cn  
Typical Application (continued)  
Standard Termination  
Split Termination  
CANH  
CANH  
RTERM/2  
CAN  
Transceiver  
CAN  
Transceiver  
RTERM  
CSPLIT  
RTERM/2  
CANL  
CANL  
Figure 36. CAN Bus Termination Concepts  
11.2.3 Application Curves  
1 Mbps  
Temp = 25°C  
VCC = 3.3 V  
5 Mbps  
Temp = 25°C  
VCC = 3.3 V  
60 Ω Load  
60 Ω Load  
Figure 37. TXD, CANH/L and RXD Waveforms  
Figure 38. TXD, CANH/L and RXD Waveforms  
11.3 System Examples  
11.3.1 ISO11898 Compliance of TCAN33x Family of 3.3-V CAN Transceivers Introduction  
Many users value the low power consumption of operating their CAN transceivers from a 3.3-V supply. However,  
some are concerned about the interoperability with 5 V supplied transceivers on the same bus. This report  
analyzes this situation to address those concerns.  
28  
Copyright © 2015–2019, Texas Instruments Incorporated  
TCAN330, TCAN332, TCAN334, TCAN337  
TCAN330G, TCAN332G, TCAN334G, TCAN337G  
www.ti.com.cn  
ZHCSEG6E DECEMBER 2015REVISED DECEMBER 2019  
System Examples (continued)  
11.3.2 Differential Signal  
CAN is a differential bus where complementary signals are sent over two wires and the voltage difference  
between the two wires defines the logical state of the bus. The differential CAN receiver monitors this voltage  
difference and outputs the bus state with a single ended logic level output signal.  
NOISE MARGIN  
900 mV Threshold  
RECEIVER DETECTION WINDOW  
75% SAMPLE POINT  
500 mV Threshold  
NOISE MARGIN  
Figure 39. Typical Differential Output Waveform  
The CAN driver creates the differential voltage between CANH and CANL in the dominant state. The dominant  
differential output of the TCAN33x is greater than 1.5 V and less than 3 V across a 60-Ω load as defined by the  
ISO11898 standard. These are the same limiting values for 5 V supplied CAN transceivers. The bus termination  
resistors drive the recessive bus state and not the CAN driver.  
A CAN receiver is required to output a recessive state when less than 500 mV of differential voltage exists on the  
bus, and a dominant state when more than 900 mV of differential voltage exists on the bus. The CAN receiver  
must do this with common-mode input voltages from –2 V to 7 V. The TCAN33x family receivers meet these  
same input specifications as 5 V supplied receivers.  
11.3.3 Common-Mode Signal and EMC Performance  
A common-mode signal is an average voltage of the two signal wires that the differential receiver rejects. The  
common-mode signal comes from the CAN driver, ground noise, and coupled bus noise. Since the bias voltage  
of the recessive state of the device is dependent on VCC, any noise present or variation of VCC has an effect on  
this bias voltage seen by the bus. The TCAN33x family has the recessive bias voltage set higher than 0.5 x VCC  
to match common mode in recessive mode to dominant mode. This results in superior EMC performance.  
12 Power Supply Recommendations  
To ensure reliable operation at all data rates and supply voltages, each supply should be decoupled with a 100-  
nF ceramic capacitor located as close to the VCC supply pins as possible. The TPS76333 is a linear voltage  
regulator suitable for the 3.3 V supply.  
Copyright © 2015–2019, Texas Instruments Incorporated  
29  
TCAN330, TCAN332, TCAN334, TCAN337  
TCAN330G, TCAN332G, TCAN334G, TCAN337G  
ZHCSEG6E DECEMBER 2015REVISED DECEMBER 2019  
www.ti.com.cn  
13 Layout  
13.1 Layout Guidelines  
TCAN33x family of devices incorporates integrated IEC 61000-4-2 ESD protection. Should the system requires  
additional protection against ESD, EFT or surge, additional external protection and filtering circuitry may be  
needed.  
In order for the PCB design to be successful, start with design of the protection and filtering circuitry. Because  
ESD and EFT transients have a wide frequency bandwidth from approximately 3 MHz to 3 GHz, high frequency  
layout techniques must be applied during PCB design.  
Design the bus protection components in the direction of the signal path. Do not force the transient current to  
divert from the signal path to reach the protection device. Below is a list of layout recommendations when  
designing a CAN transceiver into an application.  
Transient Protection on CANH and CANL: Transient Voltage Suppression (TVS) and capacitors (D1, C5 and  
C7 shown in Figure 40) can be used for additional system level protection. These devices must be placed as  
close to the connector as possible. This prevents the transient energy and noise from penetrating into other  
nets on the board.  
Bus Termination on CANH and CANL: Figure 40 shows split termination where the termination is split into two  
resistors, R5 and R6, with the center or split tap of the termination connected to ground through capacitor C6.  
Split termination provides common mode filtering for the bus. When termination is placed on the board  
instead of directly on the bus, care must be taken to ensure the terminating node is not removed from the  
bus, as this causes signal integrity issues if the bus is not properly terminated on both ends.  
Decoupling Capacitors on VCC: Bypass and bulk capacitors must be placed as close as possible to the supply  
pins of transceiver (examples are C2 and C3).  
Ground and power connections: Use at least two vias for VCC and ground connections of bypass capacitors  
and protection devices to minimize trace and via inductance.  
Digital inputs and outputs: To limit current of digital lines, serial resistors may be used. Examples are R1, R2,  
R3 and R4.  
Filtering noise on digital inputs and outputs: To filter noise on the digital I/O lines, a capacitor may be used  
close to the input side of the I/O as shown by C1, C8 and C4.  
Fault Output Pin (TCAN337 only): Because the FAULT output pin is an open drain output, an external pullup  
resistor is required to pull the pin voltage high for normal operation (R7).  
TXD input pin: If an open-drain host processor is used to drive the TXD pin of the device, an external pullup  
resistor between 1 kΩ and 10 kΩ must be used to help drive the recessive input state of the device (weak  
internal pullup resistor).  
30  
版权 © 2015–2019, Texas Instruments Incorporated  
TCAN330, TCAN332, TCAN334, TCAN337  
TCAN330G, TCAN332G, TCAN334G, TCAN337G  
www.ti.com.cn  
ZHCSEG6E DECEMBER 2015REVISED DECEMBER 2019  
13.2 Layout Example  
1
8
TXD  
S/STB  
R3  
R1  
GND  
VCC  
C4  
2
3
4
7
R5  
U1  
TCAN33x  
C6  
6
R6  
5
RXD  
R2  
SHDN  
R4  
C8  
R7  
VCC  
FAULT  
Figure 40. Layout Example  
版权 © 2015–2019, Texas Instruments Incorporated  
31  
TCAN330, TCAN332, TCAN334, TCAN337  
TCAN330G, TCAN332G, TCAN334G, TCAN337G  
ZHCSEG6E DECEMBER 2015REVISED DECEMBER 2019  
www.ti.com.cn  
14 器件和文档支持  
14.1 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品的快速链  
接。  
8. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
TCAN330  
TCAN332  
TCAN334  
TCAN337  
TCAN330G  
TCAN332G  
TCAN334G  
TCAN337G  
14.2 支持资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
14.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
14.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
14.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
15 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
32  
版权 © 2015–2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TCAN330D  
TCAN330DCNR  
TCAN330DCNT  
TCAN330DR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOT-23  
SOT-23  
SOIC  
D
DCN  
DCN  
D
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
75  
RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
TC330  
3000 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
75 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
75 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
75 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
75 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
330  
330  
TC330  
TC330  
330  
TCAN330GD  
SOIC  
D
TCAN330GDCNR  
TCAN330GDCNT  
TCAN330GDR  
TCAN332D  
SOT-23  
SOT-23  
SOIC  
DCN  
DCN  
D
330  
TC330  
TC332  
332  
SOIC  
D
TCAN332DCNR  
TCAN332DCNT  
TCAN332DR  
SOT-23  
SOT-23  
SOIC  
DCN  
DCN  
D
332  
TC332  
TC332  
332  
TCAN332GD  
SOIC  
D
TCAN332GDCNR  
TCAN332GDCNT  
TCAN332GDR  
TCAN334D  
SOT-23  
SOT-23  
SOIC  
DCN  
DCN  
D
332  
TC332  
TC334  
334  
SOIC  
D
TCAN334DCNR  
TCAN334DCNT  
TCAN334DR  
SOT-23  
SOT-23  
SOIC  
DCN  
DCN  
D
334  
TC334  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TCAN334GD  
TCAN334GDCNR  
TCAN334GDCNT  
TCAN334GDR  
TCAN337D  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOT-23  
SOT-23  
SOIC  
D
DCN  
DCN  
D
8
8
8
8
8
8
8
8
8
8
8
8
75  
RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
TC334  
3000 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
75 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
75 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
334  
334  
TC334  
TC337  
337  
SOIC  
D
TCAN337DCNR  
TCAN337DCNT  
TCAN337DR  
SOT-23  
SOT-23  
SOIC  
DCN  
DCN  
D
337  
TC337  
TC337  
337  
TCAN337GD  
SOIC  
D
TCAN337GDCNR  
TCAN337GDCNT  
TCAN337GDR  
SOT-23  
SOT-23  
SOIC  
DCN  
DCN  
D
337  
TC337  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TCAN330DCNR  
TCAN330DCNT  
TCAN330DR  
SOT-23  
SOT-23  
SOIC  
DCN  
DCN  
D
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
3000  
250  
180.0  
180.0  
330.0  
180.0  
180.0  
330.0  
180.0  
180.0  
330.0  
180.0  
180.0  
330.0  
180.0  
180.0  
330.0  
180.0  
180.0  
330.0  
8.4  
8.4  
3.23  
3.23  
6.4  
3.17  
3.17  
5.2  
1.37  
1.37  
2.1  
4.0  
4.0  
8.0  
4.0  
4.0  
8.0  
4.0  
4.0  
8.0  
4.0  
4.0  
8.0  
4.0  
4.0  
8.0  
4.0  
4.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q1  
Q3  
Q3  
Q1  
Q3  
Q3  
Q1  
Q3  
Q3  
Q1  
Q3  
Q3  
Q1  
Q3  
Q3  
Q1  
2500  
3000  
250  
12.4  
8.4  
12.0  
8.0  
TCAN330GDCNR  
TCAN330GDCNT  
TCAN330GDR  
TCAN332DCNR  
TCAN332DCNT  
TCAN332DR  
SOT-23  
SOT-23  
SOIC  
DCN  
DCN  
D
3.23  
3.23  
6.4  
3.17  
3.17  
5.2  
1.37  
1.37  
2.1  
8.4  
8.0  
2500  
3000  
250  
12.4  
8.4  
12.0  
8.0  
SOT-23  
SOT-23  
SOIC  
DCN  
DCN  
D
3.23  
3.23  
6.4  
3.17  
3.17  
5.2  
1.37  
1.37  
2.1  
8.4  
8.0  
2500  
3000  
250  
12.4  
8.4  
12.0  
8.0  
TCAN332GDCNR  
TCAN332GDCNT  
TCAN332GDR  
TCAN334DCNR  
TCAN334DCNT  
TCAN334DR  
SOT-23  
SOT-23  
SOIC  
DCN  
DCN  
D
3.23  
3.23  
6.4  
3.17  
3.17  
5.2  
1.37  
1.37  
2.1  
8.4  
8.0  
2500  
3000  
250  
12.4  
8.4  
12.0  
8.0  
SOT-23  
SOT-23  
SOIC  
DCN  
DCN  
D
3.23  
3.23  
6.4  
3.17  
3.17  
5.2  
1.37  
1.37  
2.1  
8.4  
8.0  
2500  
3000  
250  
12.4  
8.4  
12.0  
8.0  
TCAN334GDCNR  
TCAN334GDCNT  
TCAN334GDR  
SOT-23  
SOT-23  
SOIC  
DCN  
DCN  
D
3.23  
3.23  
6.4  
3.17  
3.17  
5.2  
1.37  
1.37  
2.1  
8.4  
8.0  
2500  
12.4  
12.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TCAN337DCNR  
TCAN337DCNT  
TCAN337DR  
SOT-23  
SOT-23  
SOIC  
DCN  
DCN  
D
8
8
8
8
8
8
3000  
250  
180.0  
180.0  
330.0  
180.0  
180.0  
330.0  
8.4  
8.4  
3.23  
3.23  
6.4  
3.17  
3.17  
5.2  
1.37  
1.37  
2.1  
4.0  
4.0  
8.0  
4.0  
4.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q1  
Q3  
Q3  
Q1  
2500  
3000  
250  
12.4  
8.4  
12.0  
8.0  
TCAN337GDCNR  
TCAN337GDCNT  
TCAN337GDR  
SOT-23  
SOT-23  
SOIC  
DCN  
DCN  
D
3.23  
3.23  
6.4  
3.17  
3.17  
5.2  
1.37  
1.37  
2.1  
8.4  
8.0  
2500  
12.4  
12.0  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TCAN330DCNR  
TCAN330DCNT  
TCAN330DR  
SOT-23  
SOT-23  
SOIC  
DCN  
DCN  
D
8
8
8
8
8
8
8
8
8
8
8
3000  
250  
202.0  
202.0  
340.5  
202.0  
202.0  
340.5  
202.0  
202.0  
340.5  
202.0  
202.0  
201.0  
201.0  
336.1  
201.0  
201.0  
336.1  
201.0  
201.0  
336.1  
201.0  
201.0  
28.0  
28.0  
25.0  
28.0  
28.0  
25.0  
28.0  
28.0  
25.0  
28.0  
28.0  
2500  
3000  
250  
TCAN330GDCNR  
TCAN330GDCNT  
TCAN330GDR  
TCAN332DCNR  
TCAN332DCNT  
TCAN332DR  
SOT-23  
SOT-23  
SOIC  
DCN  
DCN  
D
2500  
3000  
250  
SOT-23  
SOT-23  
SOIC  
DCN  
DCN  
D
2500  
3000  
250  
TCAN332GDCNR  
TCAN332GDCNT  
SOT-23  
SOT-23  
DCN  
DCN  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TCAN332GDR  
TCAN334DCNR  
TCAN334DCNT  
TCAN334DR  
SOIC  
SOT-23  
SOT-23  
SOIC  
D
8
8
8
8
8
8
8
8
8
8
8
8
8
2500  
3000  
250  
340.5  
202.0  
202.0  
340.5  
202.0  
202.0  
340.5  
202.0  
202.0  
340.5  
202.0  
202.0  
340.5  
336.1  
201.0  
201.0  
336.1  
201.0  
201.0  
336.1  
201.0  
201.0  
336.1  
201.0  
201.0  
336.1  
25.0  
28.0  
28.0  
25.0  
28.0  
28.0  
25.0  
28.0  
28.0  
25.0  
28.0  
28.0  
25.0  
DCN  
DCN  
D
2500  
3000  
250  
TCAN334GDCNR  
TCAN334GDCNT  
TCAN334GDR  
TCAN337DCNR  
TCAN337DCNT  
TCAN337DR  
SOT-23  
SOT-23  
SOIC  
DCN  
DCN  
D
2500  
3000  
250  
SOT-23  
SOT-23  
SOIC  
DCN  
DCN  
D
2500  
3000  
250  
TCAN337GDCNR  
TCAN337GDCNT  
TCAN337GDR  
SOT-23  
SOT-23  
SOIC  
DCN  
DCN  
D
2500  
Pack Materials-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
TCAN330D  
TCAN330GD  
TCAN332D  
TCAN332GD  
TCAN334D  
TCAN334GD  
TCAN337D  
TCAN337GD  
D
D
D
D
D
D
D
D
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
8
8
8
8
8
8
8
8
75  
75  
75  
75  
75  
75  
75  
75  
507  
507  
507  
507  
507  
507  
507  
507  
8
8
8
8
8
8
8
8
3940  
3940  
3940  
3940  
3940  
3940  
3940  
3940  
4.32  
4.32  
4.32  
4.32  
4.32  
4.32  
4.32  
4.32  
Pack Materials-Page 4  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TCAN337GDR

具有 CAN FD(灵活数据速率)的 3.3V CAN 收发器 | D | 8 | -40 to 125
TI

TCAN3403-Q1

具有灵活 IO 和待机模式的汽车级 3.3V CAN FD 收发器
TI

TCAN3404-Q1

具有关断和待机模式的 3.3V 汽车 CAN FD 收发器
TI

TCAN3413

3.3-V CAN FD transceiver with flexible IO and standby mode
TI

TCAN3414

3.3-V CAN FD transceiver with shut-down and standby mode
TI

TCAN4420

具有极性控制功能的 CAN 收发器
TI

TCAN4420DR

具有极性控制功能的 CAN 收发器 | D | 8 | -40 to 125
TI

TCAN4550

具有集成收发器的 CAN FD 控制器
TI

TCAN4550-Q1

具有集成 CAN FD 控制器和收发器的汽车类系统基础芯片 (SBC)
TI

TCAN4550RGYR

具有集成收发器的 CAN FD 控制器 | RGY | 20 | -40 to 125
TI

TCAN4550RGYRQ1

具有集成 CAN FD 控制器和收发器的汽车类系统基础芯片 (SBC) | RGY | 20 | -40 to 125
TI

TCAN4550RGYT

具有集成收发器的 CAN FD 控制器 | RGY | 20 | -40 to 125
TI