TCAN4550-Q1 [TI]

具有集成 CAN FD 控制器和收发器的汽车类系统基础芯片 (SBC);
TCAN4550-Q1
型号: TCAN4550-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成 CAN FD 控制器和收发器的汽车类系统基础芯片 (SBC)

控制器
文件: 总154页 (文件大小:3939K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
TCAN4550-Q1 带有集成控制器和收发器的汽车控制器区域网灵活数据速率  
(CAN FD) 系统基础芯片  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准  
TCAN4550-Q1 是带有集成 CAN FD 收发器的 CAN  
FD 控制器支持高达 8Mbps 的数据速率。此 CAN  
FD 控制器符合 ISO11898-1:2015 高速控制器局域网  
(CAN) 数据链路层的规范并满足 ISO118982:2016  
CAN 规范的物理层要求。  
– 温度等140°C 125°CTA  
功能安全质量管理型  
有助于进行功能安全系统设计的文档  
• 带有集CAN FD 收发器和串行外设接(SPI) 的  
CAN FD 控制器  
CAN FD 控制器支ISO 11898-1:2015 Bosch  
M_CAN 修订3.2.1.1  
• 符ISO 11898-2:2016 的要求  
• 支CAN FD 数据速率高8MbpsSPI 时钟  
速率高18MHz  
TCAN4550-Q1 通过串行外设接口 (SPI) CAN 总线  
和系统处理器之间提供了一个接口时支持经典  
CAN CAN FD并为不支持 CAN FD 的处理器提供  
端口扩展或 CAN 支持。TCAN4550-Q1 提供 CAN FD  
收发器功能传输到总线的差分传输能力和从总线接收  
的差分接收能力。该器件支持通过本地唤醒 (LWU) 进  
行唤醒以及使用实现 ISO11898-2:2016 醒模式  
(WUP) CAN 总线进行总线唤醒。  
• 向后兼容经CAN  
• 工作模式正常、待机、睡眠和失效防护  
• 为微处理器提3.3V 5V 输入/输出逻辑支持  
CAN 总线上具有宽工作范围  
为了保证器件和 CAN 总线的稳健耐用性此器件包括  
很多保护特性。这些特性包括失效防护模式、内部显性  
状态超时、宽总线工作范围和超时看门狗等等。  
±58V 总线故障保护  
±12V 共模电压  
• 集成的低压降稳压器CAN 收发器提5V 电压,  
并为外部器件提供高70mA 的电流  
• 优化了未上电时的性能  
器件信息  
封装(1)  
封装尺寸标称值)  
器件型号  
TCAN4550-Q1  
VQFN (20)  
4.50mm x 3.50mm  
– 总线和逻辑终端为高阻抗  
运行总线或应用上无负载)  
– 上电和断电无干扰运行  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
2 应用  
车身电子装置和照明  
信息娱乐系统与仪表组  
工业运输  
3
kΩ  
3 kΩ  
10 µF  
10 µF  
10 nF  
10 nF  
33 kΩ  
33 kΩ  
VBAT  
VBAT  
330 nF  
10 µF  
330 nF  
10 µF  
100 nF  
100 nF  
EN  
EN  
VIN  
VIN  
VSUP  
VCCOUT  
WAKE  
VSUP  
WAKE  
FLTR  
FLTR  
VCCOUT  
Voltage  
Regulator  
(e.g.  
Voltage  
Regulator  
(e.g.  
INH  
INH  
VINT  
VLVRX  
VINT  
VLVRX  
TPSxxxx)  
TPSxxxx)  
LDO(s)  
LDO(s)  
Filter  
VOUT  
VOUT  
Filter  
VIO  
VIO  
Under  
Voltage  
Under  
Voltage  
CNTL  
POR  
CNTL  
POR  
VIO  
VIO  
TCAN4550  
TCAN4550  
100 nF  
100 nF  
10 µF  
10 µF  
CANH  
CANH  
TXD_INT  
RXD_INT  
TXD_INT  
RXD_INT  
VINT  
VINT  
nWKRQ  
VCC  
nWKRQ  
TX/RX Data  
Buffer  
GPIO3  
TX/RX Data  
Buffer  
GPIO3  
VCC  
TX/RX CAN-FD  
Controller with  
Filters  
TX/RX CAN-FD  
Controller with  
Filters  
VIO  
2-wire  
CAN  
bus  
VIO  
2-wire  
CAN  
bus  
RST  
SCLK  
SDI  
RST  
SCLK  
SDI  
Reset  
SCLK  
CAN-FD  
Transceiver  
SPI  
System  
Controller  
Reset  
SCLK  
CAN-FD  
Transceiver  
SPI  
System  
Controller  
MOSI  
MISO  
MOSI  
MISO  
SDO  
MCU  
SDO  
MCU  
nCS  
CANL  
nCS  
CANL  
nCS  
GPIO2  
GPIO1  
GPIO  
nCS  
GPIO2  
GPIO1  
GPIO  
GPO2  
nINT  
GPIO1  
GPO2  
nINT  
GPIO1  
Optional:  
Terminating  
Node  
Optional:  
Terminating  
Node  
Optional:  
Filtering,  
Optional:  
Filtering,  
Transient and  
ESD  
GND  
OSC1  
OSC2  
20 MHz  
GND  
Transient and  
ESD  
OSC1  
OSC2  
OSC1  
OSC2  
40 MHz  
简化版原理图CLKIN MCU  
简化版原理图晶振  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLLSEZ5  
 
 
 
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
Table of Contents  
8.3 Feature Description...................................................25  
8.4 Device Functional Modes..........................................29  
8.5 Programming............................................................ 42  
8.6 Register Maps...........................................................47  
9 Application and Implementation................................131  
9.1 Application Design Consideration...........................131  
9.2 Typical Application.................................................. 135  
10 Power Supply Recommendations............................138  
11 Layout.........................................................................139  
11.1 Layout Guidelines................................................. 139  
11.2 Layout Example.................................................... 140  
12 Device and Documentation Support........................141  
12.1 Documentation Support........................................ 141  
12.2 接收文档更新通知................................................. 141  
12.3 支持资源................................................................141  
12.4 Trademarks...........................................................141  
12.5 Electrostatic Discharge Caution............................141  
12.6 术语表................................................................... 141  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................4  
6 Specification.................................................................... 5  
6.1 Absolute Maximum Ratings ....................................... 5  
6.2 ESD Ratings .............................................................. 5  
6.3 ESD Ratings, IEC ESD and ISO Transient  
Specification .................................................................5  
6.4 Recommended Operating Conditions ........................6  
6.5 Thermal Information ...................................................6  
6.6 Supply Characteristics ............................................... 7  
6.7 Electrical Characteristics ............................................8  
6.8 Timing Requirements ............................................... 11  
6.9 Switching Characteristics .........................................11  
6.10 Typical Characteristics............................................13  
7 Parameter Measurement Information..........................14  
8 Detailed Description......................................................22  
8.1 Overview...................................................................22  
8.2 Functional Block Diagram.........................................23  
Information.................................................................. 142  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision C (October 2020) to Revision D (June 2022)  
Page  
• 更改了数据表标题...............................................................................................................................................1  
• 通篇将英文的“wake up唤醒更改为“wake-up唤醒..................................................................... 1  
Changed description of the OSCI (pin 1) and OSC2 (pin 2) in the Pin Functions table..................................... 4  
Added a second paragraph to the OSC1 and OSC2 Pins section................................................................... 27  
Changed register Timestamp Prescalar to: Timestamp Prescaler .................................................................. 56  
Changed bit 23 from: RSVD to: SMS in 8-28 ..............................................................................................59  
Changed bit 9 description from: Transmission Completed to: Transmission Cancellation Finished................ 90  
Changed bit 32:24 to: 30:24 in 8-56 ..........................................................................................................107  
Changed bullet: This is where the termination is split into two resistors, R5 and R6 To: This is where the  
termination is split into two resistors, R4 and R5 in the Layout Guidelines ................................................... 139  
Added bullet for R8 in the Layout Guidelines ................................................................................................ 139  
Changed the Layout Example: added resistor R8 to Pin 1.............................................................................140  
Changes from Revision B (November 2019) to Revision C (October 2020)  
Page  
Changed UVSUP rising max from 5.9 to 5.7 and added min value of 5.2...........................................................7  
Added UVSUP falling max value of 5.0................................................................................................................7  
Changed bit 2:0 To: 3:0 in 8-29 ...................................................................................................................73  
Changes from Revision A (April 2019) to Revision B (November 2019)  
Page  
• 添加了“功能安全质量管理型”首页项目符号....................................................................................................1  
Changed VIO value IIL for SDI, SCK and nCS inputs in test conditions cell value from 0 V to 5.25 V................ 8  
Changed Power Up Timing diagram VSUP ramp voltage level for INH turn on and timing..............................14  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
Added INH Brownout Behavior section in Application section........................................................................134  
Changes from Revision * (October 2017) to Revision A (April 2019) Page  
• 将文档状态从预告信更改为数据.............................................................................................................1  
Changed footnote Gauranteed to Specied throughout the electric table............................................................7  
Added VIO values for tSOV................................................................................................................................. 11  
Changed Power Up Timing diagram VSUP ramp voltage level for INH turn on and timing. ............................14  
Deleted CLKOUT from the GPIO1 circuit in 8-2 ..........................................................................................23  
Deleted CLKOUT: Off from Sleep Mode section in 8-14 ............................................................................. 35  
Deleted CLKOUT: Off From Sleep Mode section in 8-15 ............................................................................35  
Deleted bits 15 and 14 from GPO1_CONFIG from in 8-16 .........................................................................53  
Changed CLKOUT_GPIO1_CONFIG To: GPIO1_CONFIG for GPO1_CONFIG in 8-16 ...........................53  
Changed the name of offset 1048 From: TDCE To: TDCR ..............................................................................64  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
nWKRQ  
GPIO1  
SCLK  
SDI  
2
3
4
5
6
7
8
9
19  
18  
17  
16  
15  
14  
13  
12  
RST  
FLTR  
V
IO  
Thermal  
Pad  
V
CCOUT  
SDO  
INH  
nCS  
V
SUP  
nINT  
GND  
GPO2  
WAKE  
Not to scale  
5-1. RGY Package  
20 Pin (VQFN)  
(Top View)  
5-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NO.  
1
NAME  
OSC1  
nWKRQ  
GPIO1  
SCLK  
SDI  
I/O  
DO  
DI/O  
DI  
External crystal oscillator output or single-ended clock input  
2
Wake request (active low)  
3
Configurable input/output function pin through SPI  
SPI clock input  
4
5
DI  
SPI target data input from controller output  
SPI target data output to controller input  
SPI chip select  
6
SDO  
DO  
DI  
7
nCS  
8
nINT  
DO  
DO  
Interrupt pin to MCU (active low)  
Configurable output function pin through SPI  
9
GPO2  
CANL  
CANH  
WAKE  
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
HV Bus I/O Low level CAN bus line  
HV Bus I/O High level CAN bus line  
HVI  
Wake input, high voltage input  
Ground connection  
GND  
VSUP  
HV Supply In Supply from battery  
INH  
HVO  
Inhibit to control system voltage regulators and supplies (open drain)  
VCCOUT  
VIO  
Supply Out 5 V regulated output  
Supply In  
Digital I/O voltage supply  
FLTR  
RST  
Internal regulator filter, requires external capacitor to ground  
Device reset  
DI  
I
OSC2  
External crystal oscillator input; when using single-ended input clock to OSC1 this pin should be connected to ground.  
(1) Note: DI = Digital Input; DO = Digital Output; HV = High Voltage; Thermal PAD and GND Pins must be soldered to GND  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
 
 
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
6 Specification  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range for 40 TA 125 (unless otherwise noted)(1)  
MIN  
MAX  
42  
6
UNIT  
V
VSUP  
VIO  
Supply voltage  
0.3  
0.3  
0.3  
58  
Supply voltage I/O level shifter  
5 V output supply  
V
VCCOUT  
VBUS  
VWAKE  
VINH  
6
V
CAN bus I/O voltage (CANH, CANL)  
WAKE pin input voltage  
58  
42  
42  
6
V
V
0.3  
0.3  
0.3  
0.5  
Inhibit pin output voltage  
Logic input terminal voltage  
Digital output terminal voltage  
Digital output current  
V
VLogic_Input  
VSO  
V
6
V
IO(SO)  
IO(INH)  
IO(WAKE)  
TJ  
8
mA  
mA  
mA  
°C  
°C  
Inhibit output current  
4
3
Wake current if due to ground shift V(WAKE) V(GND) 0.3 V  
Junction temperature  
150  
150  
40  
65  
Tstg  
Storage temperature  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE UNIT  
Human body model (HBM) classification level 3A per AEC Q100-002 All  
V(ESD) Electrostatic discharge  
V(ESD) Electrostatic discharge  
V(ESD) Electrostatic discharge  
terminal except for CANH and CANL. (1) WAKE terminals which are with  
respect to ground only (2)  
±4000  
V
V
V
Human body model (HBM) classification level H2 for CANH and CANL (2) ±15000  
Charged device model (CDM)  
classification level C5, per AEC  
Q100-011  
All terminals  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
(2) Terminals stressed with respect to GND  
6.3 ESD Ratings, IEC ESD and ISO Transient Specification  
VALUE  
±8000  
±15 000  
±8000  
±15 000  
-100  
UNIT  
V
Contact discharge  
Air discharge  
Contact discharge  
Air discharge  
Pulse 1  
Electrostatic discharge according to IBEE CAN  
EMC (1)  
V(ESD)  
V
Electrostatic discharge according to  
SAEJ2962-2 (2)  
V(ESD)  
V
Pulse 2  
75  
ISO7637 Transients according to IBEE CAN EMC test spec  
CAN bus terminals (CANH and CANL), VSUP and WAKE (3)  
Pulse 3a  
-150  
Pulse 3b  
100  
(1) IEC 61000-4-2 is a system-level ESD test. Results given here are specific to the IBEE LIN EMC Test specification conditions per IEC  
TS 62228. Different system-level configurations may lead to different results  
(2) SAEJ2962-2 Testing performed at 3rd party US3 approved EMC test facility, test report available upon request.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TCAN4550-Q1  
 
 
 
 
 
 
 
 
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
(3) ISO7637 is a system-level transient test. Results given here are specific to the IBEE CAN EMC Test specification conditions. Different  
system-level configurations may lead to different results.  
6.4 Recommended Operating Conditions  
over operating free-air temperature range for 40 TA 125 (unless otherwise noted)  
MIN  
TYP  
MAX  
30  
UNIT  
V
VSUP  
Supply voltage  
5.5  
VIO  
Logic pin supply voltage  
3.135  
2  
5.25  
V
IOH(DO)  
IOL(DO)  
IO (INH)  
C(FLTR)  
C(VCCOUT)  
CWAKE  
TSDR  
Digital terminal high-level output current  
Digital terminal low-level output current  
INH output current  
mA  
mA  
mA  
nF  
µF  
nF  
2
1
Filter pin capacitance See Power Supply Recommendations  
VCCOUT supply capacitance See Power Supply Recommendations  
External WAKE pin capacitance  
Thermal shutdown rising  
300  
10  
10  
160  
TSDF  
Thermal shutdown falling  
150  
TSD(HYS)  
Thermal shutdown hysteresis  
10  
6.5 Thermal Information  
TCAN4550  
THERMAL METRIC(1)  
PKG DES (RGY)  
UNIT  
20 PINS  
35.2  
28.1  
12.8  
0.3  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ΨJT  
12.7  
1.1  
ΨJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
 
 
 
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
6.6 Supply Characteristics  
over operating free-air temperature range for 40 TA 125 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
See 7-3 RL = 60 Ω, CL =  
open. typical bus load. VCCOUT  
= no load  
80 mA  
Dominant  
See 7-3 RL = 50 Ω, CL =  
90 mA  
180 mA  
15 mA  
open, high bus load. VCCOUT  
no load  
=
Supply current, normal mode  
See 7-3 CANH = - 25 V, RL  
= open, CL = open VCCOUT = no  
load  
Dominant with bus fault  
Recessive  
See 7-3 RL = 60 Ω, CL =  
ISUP  
open, RCM = open, VCCOUT  
no load  
=
See 7-3 RL = 60 Ω, CL =  
open, -40°C < TA < 85°C,  
VCCOUT = no load, CANH/L  
terminated to 2.5 V  
3.5 mA  
3.4 mA  
Supply current, standby mode  
Supply current, sleep mode  
See 7-3 RL = 60 Ω, CL =  
open, -40°C < TA < 85°C,  
VCCOUT = no load CANH/L  
terminated to GND ± 100 mV  
SPI bus, OSC/CLKIN disabled:  
-40°C < TA < 85°C, VIO = 0  
ISUP  
25  
42 µA  
CLKIN = 40 MHz, VIO = 5 V  
Crystal = 40 MHz, VIO = 5 V  
Sleep Mode VIO = 5 V; OSC1 =  
800 µA  
I/O supply current normal mode  
dominant  
IVIO  
I/O supply current  
3
mA  
IVIO  
I/O supply current, sleep mode I/O supply current  
VCCOUT supply current  
CLKIN = 0 V and OSC2 = GND  
9
µA  
(2)  
Normal Mode: VCCOUT = 5 V;  
-40°C < TA < 85°C See  
Section VCCOUT Pin  
IVCCOUT  
70 mA  
Under voltage detection on VSUP rising ramp for protected  
mode  
5.2  
4.5  
5.5  
4.7  
5.7  
5.0  
2.6  
V
V
V
V
See Section Under-Voltage  
Lockout (UVLO) and  
Unpowered Device  
UVSUP  
Under voltage detection on VSUP falling ramp for protected  
mode  
Under voltage detection on VIO rising ramp for protected  
mode  
2.45  
2.25  
See Section Under-Voltage  
Lockout (UVLO) and  
Unpowered Device  
UVIO  
Under voltage detection on VIO falling ramp for protected  
mode  
2.1  
Upon a UVIO event this timer  
starts and provides time for VIO  
input to return. See section  
Thermal Shutdown for  
description of thermal shut  
down.  
tUV/TSD  
Under voltage filter time and thermal shutdown timer (1)  
200  
500 ms  
(1) Specified by design  
(2) When a crystal is used this current will be higher until the crystal's capacitors bleed off their energy. How much current and length of  
time to bleed of the energy is system dependent and will not be specified.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TCAN4550-Q1  
 
 
 
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
MAX UNIT  
6.7 Electrical Characteristics  
over operating free-air temperature range for 40 TA 125 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS (1)  
MIN  
TYP  
CAN DRIVER ELECTRICAL CHARACTERISTICS  
Bus output voltage (dominant) CANH  
2.75  
0.5  
4.5  
V
V
See 7-3 and 7-4, TXD_INT = 0 V,  
EN = 0 V, 50 RL 65 Ω, CL =  
open, RCM = open  
VO(D)  
Bus output voltage (dominant) CANL  
2.25  
See 7-1 and 7-4, TXD_INT = VIO  
RL = open (no load), RCM = open  
,
VO(R)  
Bus output voltage (recessive)  
2
5.0  
0.1  
2.5  
3
10  
V
V
V
V(DIFF)  
Maximum differential voltage rating  
See 7-1 and 7-4  
Bus output voltage (Standby Mode)  
CANH  
0.1  
Bus output voltage (Standby Mode)  
CANL  
See 7-1 and 7-4, TXD_INT = VIO  
RL = open (no load), RCM = open  
,
VO(STB)  
0.1  
0.2  
V
V
0.1  
0.2  
Bus output voltage (Standby Mode)  
CANH - CANL  
See 7-1 and 7-4, TXD_INT = 0 V,  
1.5  
1.4  
3
3
V
V
50 ΩRL 65 Ω, CL = open, RCM  
open  
=
See 7-1 and 7-4, TXD_INT = 0 V,  
45 ΩRL 70 Ω, CL = open, RCM  
VOD(D)  
Differential output voltage (dominant)  
=
open  
See 7-1 and 7-4, TXD_INT = 0 V,  
RL = 2.24 kΩ, CL = open, RCM = open  
1.5  
5
V
See 7-1 and 7-4, TXD_INT = VIO  
RL = 60 Ω, CL = open, RCM = open  
,
12  
mV  
120  
VOD(R)  
Differential output voltage (recessive)  
See 7-1 and 7-4, TXD_INT = VIO  
,
50  
mV  
V/V  
RL = open (no load), CL = open, RCM  
open  
=
50  
Output symmetry (dominant or  
recessive)  
See 7-1 and 7-4, RL = 60 Ω, CL =  
open, RCM = open, C1 = 4.7 nF,  
TXD_INT - 250 kHZ, 1 MHz  
VSYM  
0.9  
1.1  
( VO(CANH) + VO(CANL)) / VCC  
Output symmetry (dominant or  
recessive) (VCC VO(CANH) –  
VO(CANL)) with a frequency that  
corresponds to the highest bit rate for  
which the HS-PMA implementation is  
intended, however, at most 1 MHz (2  
Mbit/s)  
See 7-1 and 7-4, RL = 60 Ω, CL =  
open, RCM = open, C1 = 4.7 nF  
VSYM_DC  
300  
mV  
mA  
300  
100  
See 7-1 and 7-8, -3.0 V VCANH  
18.0 V, CANL = open, TXD_INT = 0  
V
Short-circuit steady-state output current,  
dominant  
IOS_DOM  
IOS_REC  
See 7-1 and 7-8, -3.0 V VCANL  
+18.0 V, CANH = open, TXD_INT = 0  
V
100  
5
mA  
mA  
Short-circuit steady-state output current, See 7-1 and 7-8, 27 V VBUS  
5  
recessive  
32 V, VBUS = CANH = CANL  
CAN RECEIVER ELECTRICAL CHARACTERISTICS  
Receiver dominant state differential  
VITdom  
0.9  
8
V
V
-12.0 V VCANL +12.0 V  
-12.0 V VCANH +12.0 V See 图  
7-5, 8-3  
input voltage range, bus biasing active  
Receiver recessive state differential  
VITrec  
0.5  
3.0  
input voltage range bus biasing active  
Hysteresis voltage for input-threshold,  
normal modes  
VHYS  
120  
mV  
See 7-5, 8-3  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
 
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
6.7 Electrical Characteristics (continued)  
over operating free-air temperature range for 40 TA 125 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS (1)  
MIN  
TYP  
MAX UNIT  
-12.0 V VCANL +12.0 V  
-12.0 V VCANH +12.0 V See 图  
7-5, 8-3  
Receiver dominant state differential  
input voltage range, bus biasing inactive  
(VDiff)  
VIT(ENdom)  
1.15  
8
V
V
-12.0 V VCANL +12.0 V  
-12.0 V VCANH +12.0 V See 图  
7-5, 8-3  
Receiver recessive state differential  
input voltage range, bus biasing inactive  
(VDiff)  
VIT(ENrec)  
0.4  
3  
VCM  
Common mode range: normal  
12  
12  
V
V
See 7-5, 8-3  
See 7-5, 8-3  
12  
12  
VCM(EN)  
Common mode range: standby mode  
VCANH = VCANL = 5 V, Vsup to GND via 0  
and 47 kΩresistor  
Power-off (unpowered) bus input  
leakage current  
IIOFF(LKG)  
5
µA  
Input capacitance to ground (CANH or  
CANL)  
CI  
25  
14  
pF  
pF  
CID  
Differential input capacitance  
TXD_INT = VCCINT, normal mode: -2.0 V  
VCANH +7.0 V; -2.0 V VCANL +  
7.0 V  
RID  
Differential input resistance  
60  
100  
kΩ  
Single ended Input resistance (CANH or -2.0 V VCANH +7.0 V; -2.0 V  
RIN  
30  
50  
1
kΩ  
CANL)  
VCANL + 7.0 V  
Input resistance matching: [1 –  
(RIN(CANH) / (RIN(CANL))] × 100%  
RIN(M)  
VCANH = VCANL = 5.0 V  
%
1  
VCCOUT SUPPLY TERMINAL  
ICCOUT = -70 mA to 0 mA; VSUP = 5.5 V  
to 18 V; -40°C < TA < 85°C  
VCCOUT  
5 V output supply  
Drop out voltage  
Line regulation  
4.75  
5
5.25  
500  
50  
V
VCCOUT = 5 V, VSUP = 12 V, ICCOUT = 70  
mA  
VDROP  
300  
mV  
mV  
VSUP = 5.5 V to 30 V, ΔVCCOUT, ICCOUT  
= 10 mA  
ΔVCC(ΔVSUP)  
VSUP = 14 V, ICCOUT = 1 mA to 70  
mA, ΔVCCOUT, 40TA 125℃  
ΔVCC(Δ  
Load regulation  
60  
mV  
V
VSUPL)  
UVCCOUT  
Under voltage threshold on VCCOUT  
4.2  
4.55  
FLTR TERMINAL  
VMEASURE Voltage measured at FLTR pin  
C(FLTR) Filter pin capacitor  
1.5  
V
External filter capacitor  
300  
330  
nF  
INH OUTPUT TERMINAL (HIGH VOLTAGE OUTPUT)  
High-level voltage drop INH with respect  
to VSUP  
IINH = - 0.5 mA  
0.5  
1
V
ΔVH  
ILKG(INH)  
Leakage current  
INH = 0 V, Sleep Mode  
0.7  
µA  
0.5  
SUP2  
25  
WAKE INPUT TERMINAL (HIGH VOLTAGE INPUT)  
VIH  
VIL  
IIH  
High-level input voltage  
Low-level input voltage  
High-level input current  
Low-level input current  
Standby mode, WAKE pin enabled  
Standby mode, WAKE pin enabled  
V
V
V
V
SUP3  
µA  
µA  
WAKE = VSUP1 V  
15  
IIL  
WAKE = 1 V  
15  
25  
Wake up filter time from a wake edge on  
WAKE; standby, sleep mode  
tWAKE  
WAKE filter time  
50  
µs  
SDI, SCK, GPIO1 INPUT TERMINALS  
VIH  
VIL  
IIH  
High-level input voltage  
0.7  
VIO  
VIO  
µA  
Low-level input voltage  
0.3  
1
High-level input leakage current  
Inputs = VIO = 5.25 V  
1  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
MAX UNIT  
6.7 Electrical Characteristics (continued)  
over operating free-air temperature range for 40 TA 125 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS (1)  
MIN  
TYP  
IIL  
Low-level input leakage current  
Input capacitance  
Inputs = 0 V, VIO = 5.25 V  
µA  
pF  
100  
5  
CIN  
18 MHz  
10  
12  
Unpowered leakage current (SDI and  
SCK only)  
ILKG(OFF)  
Inputs = 5.25 V, VIO = VSUP = 0 V  
1
µA  
1  
nCS INPUT TERMINAL  
VIH  
High-level input voltage  
0.7  
VIO  
VIO  
µA  
µA  
µA  
VIL  
Low-level input voltage  
0.3  
1
IIH  
High-level input leakage current  
Low-level input leakage current  
Unpowered leakage current  
nCS = VIO = 5.25 V  
1  
50  
1  
IIL  
nCS = VIO = 5.25 V  
5  
1
ILKG(OFF)  
nCS = 5.25 V, VIO = VSUP = 0 V  
RST INPUT TERMINAL  
VIH  
High-level input voltage  
0.7  
VIO  
VIO  
µA  
µA  
µA  
µs  
VIL  
Low-level input voltage  
0.3  
10  
1
IIH  
High-level input leakage current  
Low-level input leakage current  
Unpowered leakage current  
RST = VIO = 5.25 V  
RST = 0 V  
1
1  
IIL  
ILKG(OFF)  
RST = VIO, VSUP = 0 V  
7.5  
7.5  
30  
tPULSE_WIDTH Width of the input pulse  
SDO, GPIO1, GPO2 OUTPUT TERMINAL; nINT (OPEN DRAIIN) and nWKRQ (WHEN PROGRAMMED TO WORK OFF OF VIO AND IS  
OPEN DRAIN)  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
0.8  
VIO  
VIO  
0.2  
nWKRQ OUTPUT TERMINAL (DEFAULT INTERNAL VOLTAGE RAIL)  
Default value when based upon internal  
voltage rail  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
2.8  
3.6  
0.7  
V
V
Default value when based upon internal  
voltage rail  
OSC1 TERMINAL AND CRYSTAL SPECIFICATION  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
0.85  
1.10  
0.3  
VIO  
VIO  
Clock-In frequency tolerance , see  
section Crystal and Clock Input  
Requirements  
FOSC1  
20 MHz  
40 MHz  
0.5  
0.5  
%
%
0.5  
Clock-In frequency tolerance, see  
section Crystal and Clock Input  
Requirements  
FOSC1  
0.5  
tDC  
Input duty cycle  
45  
55  
60  
%
ESR  
Crystal ESR for load capacitance (2)  
Ω
(1) All TXD_INT, RXD_INT and EN_INT references are for internal nodes that represent the same functions for a physical layer  
transceiver.  
(2) Specified by design  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
 
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
6.8 Timing Requirements  
over operating free-air temperature range for 40 TA 125 (unless otherwise noted)  
MIN  
TYP  
MAX UNIT  
MODE CHANGE TIMES (FULL DEVICE)  
Standby to normal mode change time based upon SPI  
write  
tMODE_STBY_NOM  
70  
200  
200  
µs  
µs  
µs  
SPI write to go to Sleep from Normal: INH and nWKRQ  
turned off, See 7-15  
tMODE_NOM_SLP  
tMODE_SLP_STBY  
WUP or LWU event until INH and nWKRQ asserted, See  
7-14  
tMODE_SLP_STBY_VCCOUT_ON  
tMODE_NOM_STBY  
1.5  
ms  
µs  
WUP or LWU event until VCCOUT on, See 7-14  
200  
SPI write to go to standby from normal mode, See 7-16  
6.9 Switching Characteristics  
over operating free-air temperature range for 40 TA 125 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SWITCHING CHARACTERISTICS (CAN TRANSCEIVER ONLY)  
Propagation delay time, high TXD_INT  
tpHR  
50  
35  
85  
75  
110  
100  
ns  
ns  
to Driver Recessive (1)  
See 7-4, RST = 0 V. Typical  
conditions: RL = 60 Ω, CL = 100 pF,  
RCM = open  
Propagation delay time, low TXD_INT to  
driver dominant (1)  
tpLD  
tsk(p)  
tR/F  
30  
55  
40  
75  
ns  
ns  
Pulse skew (|tpHR tpLD|)  
Differential output signal rise time:  
8
Propagation delay time, bus recessive  
input to high RXD_INT output  
tpRH  
tpDL  
35  
55  
55  
90  
90  
ns  
ns  
See 7-5, typical conditions: CANL =  
1.5 V, CANH = 3.5 V.  
Propagation delay time, bus dominant  
input to RXD_INT low output  
35  
DEVICE SWITCHING CHARACTERISTICS  
See 7-6, RST = 0 V. typical  
conditions: RL = 60 Ω, CL = 100 pF,  
CRXD = 15 pF  
tLOOP  
Loop delay(3)(CAN transceiver only)  
235  
1.8  
2.9  
ns  
µs  
Bus time to meet filtered bus  
requirements for wake up request  
tWK_FILTER  
0.5  
0.5  
See 8-6, standby mode.  
See 8-6  
Bus wake-up timeout: time that a WUP  
must take place within to be considered  
valid  
tWK_TIMEOUT  
ms  
Timer is reset and restarted when bus  
changes from dominant to recessive or  
vice versa.  
tSILENCE  
Timeout for bus inactivity (6)  
0.6  
2
1.2  
6
s
Time required for the processor to clear  
wake flag or put the device into normal  
mode upon power up, power on reset or  
after wake event otherwise the device  
will enter sleep mode (6)  
tINACTIVE  
4
min  
Time from the start of a dominant-  
recessive-dominant sequence  
Each phase 6 µs until Vsym 0.1.  
See 7-10  
tBias  
250  
250  
5
µs  
µs  
(6)  
tPower_Up  
tTXD_INT_DTO  
Power up time on VSUP  
See 7-13  
Dominant time out(2) (CAN transceiver  
only)(1)  
1
ms  
See 8-7, RL = 60 Ω, CL = open  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TCAN4550-Q1  
 
 
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
MAX UNIT  
6.9 Switching Characteristics (continued)  
over operating free-air temperature range for 40 TA 125 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
TRANSMITTER AND RECEIVER SWITCHING CHARACTERISTICS  
Transmitted recessive bit width @ 2  
Mbps  
tBit(Bus)2M  
tBit(Bus)5M  
435  
155  
530  
210  
ns  
ns  
See 7-5, RST = 0 V typical  
conditions: RL = 60 Ω, CL = 100 pF,  
CRXD = 15 pF  
Transmitted recessive bit width @ 5  
Mbps  
See 7-5, RST = 0 V typical  
conditions: RL = 60 Ω, CL = 100 pF,  
CRXD = 15 pF  
Transmitted recessive bit width @ 8  
Mbps  
(5)  
tBit(Bus)8M  
80  
135  
ns  
tBit(RXD)2M  
tBit(RXD)5M  
Received recessive bit width @ 2 Mbps  
Received recessive bit width @ 5 Mbps  
400  
120  
550  
220  
ns  
ns  
See 7-5, RST = 0 V typical  
conditions: RL = 60 Ω, CL = 100 pF,  
CRXD = 15 pF,  
See 7-5, RST = 0 V typical  
conditions: RL = 60 Ω, CL = 100 pF,  
CRXD = 15 pF  
(5)  
tBit(RXD)8M  
Received recessive bit width @ 8 Mbps  
80  
135  
ns  
Receiver Timing symmetry @ 2 Mbps  
Receiver Timing symmetry @ 5 Mbps  
30  
5
40  
15  
ns  
ns  
See 7-5, RST = 0 V typical  
conditions: RL = 60 Ω, CL = 100 pF,  
CRXD = 15 pF  
65  
45  
(4)  
ΔtRec  
SPI SWITCHING CHARACTERISTICS  
fSCK  
tSCK  
tRSCK  
tFSCK  
tSCKH  
tSCKL  
tCSS  
tCSH  
tCSD  
tSISU  
tSIH  
SCK, SPI clock frequency (6)  
SCK, SPI clock period (6)  
SCK rise time (6)  
18  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
56  
See 7-12  
10  
10  
See 7-11  
SCK fall time (6)  
See 7-11  
SCK, SPI clock high (6)  
SCK, SPI clock low (6)  
Chip select setup time (6)  
Chip select hold time (6)  
Chip select disable time (6)  
Data in setup time (6)  
Data in hold time (6)  
Data out valid (6)  
18  
18  
28  
28  
125  
5
See 7-12  
See 7-12  
See 7-11  
See 7-11  
See 7-11  
See 7-11  
10  
See 7-11  
tSOV  
tRSO  
tFSO  
20  
10  
10  
VIO = 3.135 V to 5.25 V, See 7-12  
See 7-12  
SO rise time (6)  
SO fall time (6)  
See 7-12  
(1) All TXD_INT, RXD_INT, EN_INT and CAN transceiver only references are for internal nodes that represent the same functions for a  
stand-alone transceiver.  
(2) The TXD_INT dominant time out (tTXD_INT_DTO) disables the driver of the transceiver once the TXD_INT has been dominant longer  
than tTXD_INT_DTO, which releases the bus lines to recessive, preventing a local failure from locking the bus dominant. The driver may  
only transmit dominant again after TXD_INT has been returned HIGH (recessive). While this protects the bus from local faults, locking  
the bus dominant, it limits the minimum data rate possible. The CAN protocol allows a maximum of eleven successive dominant bits  
(on TXD_INT) for the worst case, where five successive dominant bits are followed immediately by an error frame. This, along with the  
tTXD_INT_DTO minimum, limits the minimum bit rate. The minimum bit rate may be calculated by: Minimum Bit Rate = 11/ tTXD_INT_DTO =  
11 bits / 1.2 ms = 9.2 kbps.  
(3) Time span from signal edge on TXD_INT input to next signal edge with same polarity on RXD output, the maximum of delay of both  
signal edges is to be considered.  
(4) ΔtRec = tBit(RXD) tBit(Bus)  
(5) Characterized but not 100% tested  
(6) Specified by design  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
 
 
 
 
 
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
6.10 Typical Characteristics  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
105  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
-40 °C  
25 °C  
55 °C  
85 °C  
100 °C  
125 °C  
-40 °C  
25 °C  
55 °C  
85 °C  
100 °C  
125 °C  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
D001  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
D003  
VSUP (V)  
VSUP (V)  
VCCOUT = 0 V  
ICCOUT = 0 mA  
VCCOUT = 5 V  
ICCOUT = 70 mA  
CAN Transceiver Off  
CAN Bus Load = 60 Ω  
6-2. ISUP Current Across Temperature and VSUP  
6-1. ISUP vs VSUP Sleep Mode  
LDO Output Only.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TCAN4550-Q1  
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
7 Parameter Measurement Information  
备注  
All TXD_INT, RXD_INT and EN_INT references are for internal nodes that represent the same  
functions for a physical layer transceiver. In test mode these can be brought out to pins to test the  
transceiver or CAN FD controller.  
Standby Mode (Low  
Normal Mode  
Power)  
CANH  
Vdiff  
Vdiff  
CANL  
Recessive  
Dominant  
Recessive  
Time, t  
7-1. Bus States (Physical Bit Representation)  
CANH  
VCC/2  
A
RXD_INT  
Bias  
Unit  
B
CANL  
A. A: Selective Wake  
B. B: Standby and Sleep Modes (Low Power)  
7-2. Simplified Recessive Common Mode Bias Unit and Receiver  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
 
 
 
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
CANH  
TXD_INT  
RL  
CL  
CANL  
7-3. Supply Test Circuit  
RCM  
CANH  
VCC  
50%  
50%  
TXD_INT  
TXD_INT  
0 V  
RL  
CL  
VOD  
VCM  
VO(CANH)  
tpLD  
tpHR  
90%  
10%  
CANL  
RCM  
0.9 V  
VO(CANL)  
VOD  
0.5 V  
tR  
tF  
7-4. Driver Test Circuit and Measurement  
CANH  
1.5 V  
RXD_INT  
IO  
0.9 V  
VID  
0.5 V  
0 V  
VID  
tpDL  
tpRH  
VOH  
VO  
CL_RXD_INT  
CANL  
90%  
70%  
VO(RXD_INT)  
30%  
10%  
VOL  
tF  
tR  
7-5. Receiver Test Circuit and Measurement  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TCAN4550-Q1  
 
 
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
RCM  
CANH  
VI  
TXD_INT  
tLOOP  
Falling  
edge  
VI  
RL  
CL  
VCM  
70%  
TXD_INT  
30%  
30%  
CANL  
RCM  
EN_INT  
0 V  
0 V  
5 x tBIT(TXD_INT)  
tBIT(TXD_INT)  
RXD_INT  
tBIT(Bus)  
VO  
CL_RXD_INT  
900 mV  
VDiff  
500 mV  
VOH  
70%  
RXD_INT  
30%  
VOL  
tLOOP  
rising  
edge  
tBIT(RXD_INT)  
7-6. Transmitter and Receiver Timing Behavior Test Circuit and Measurement  
CANH  
VIH  
TXD_INT  
30%  
TXD_INT  
RL  
CL  
VOD  
0 V  
VOD(D)  
CANL  
0.9 V  
VOD  
0.5 V  
0 V  
tTXD_INT_DTO  
7-7. TXD_INT Dominant Timeout Test Circuit and Measurement  
200 s  
IOS  
CANH  
TXD_INT  
VBUS  
IOS  
CANL  
VBUS  
VBUS  
0 V  
or  
0 V  
VBUS  
VBUS  
7-8. Driver Short-Circuit Current Test and Measurement  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
 
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
VSUP  
VSUP  
VWAKE  
VSUP - 2  
VWAKE  
VSUP - 3  
VSUP  
INH  
0 V  
CVSUP  
tWAKE  
TCAN4550  
OR  
tWAKE  
VWAKE  
INH = H  
INH = H  
INH  
INH  
VSUP -1 V  
VSUP -1 V  
7-9. tWAKE While Monitoring INH Output  
VDIFF  
2.0 V  
1.15 V  
0.4 V  
t > tWAKE_FILTER(MAX)  
t > tWAKE_FILTER(MAX)  
t > tWAKE_FILTER(MAX)  
VSYM  
0.1  
tBias  
7-10. Test Signal Definition for Bias Reaction Time Measurement  
tCSD  
nCS  
tCSH  
tRSCK  
tFSCK  
tCSS  
SCLK  
tSISU  
tSIH  
SDI  
MSB In  
LSB  
In  
SDO  
7-11. SPI AC Characteristic Write  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TCAN4550-Q1  
 
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
nCS  
tSCK  
tSCKL  
tSCKH  
SCLK  
tSOV  
tRSO  
tFSO  
SDO  
LSB  
Out  
MSB Out  
SDI  
7-12. SPI AC Characteristic Read  
14 V  
~ 5.5 V  
UVSUP  
VSUP  
1.67 V to  
4.14 V  
14 V  
VSUP œ 1V  
INH  
tPower_Up  
nWKRQ  
VIO  
VIO on and ramp time are system dependent and not specified  
FLTR  
VCCOUT  
tMODE_SLP_STBY_VCCOUT_ON  
UVCCOUT Cleared  
CLKIN is dependent on external source  
and timing will not be specified  
tCRYSTAL  
VIO required for Crystal/CLKIN to work.  
This is the stable internal clock.  
Crystal/CLKIN  
STANDBY MODE  
Transceiver Ready  
nINT  
7-13. Power Up Timing  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
 
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
14V  
VSUP  
Wake Event  
WUP or LWU  
14V  
VSUP œ 1V  
INH  
tMODE_SLP_STBY  
nWKRQ  
VIO  
VIO on and ramp time are system dependent and not specified  
FLTR  
VCCOUT  
tMODE_SLP_STBY_VCCOUT_ON  
UVCCOUT Cleared  
VIO required for Crystal/CLKIN to work.  
This is the stable internal clock.  
CLKIN is dependent on external source  
and timing will not be specified  
tCRYSTAL  
Crystal/CLKIN  
nINT  
STANDBY MODE  
Transceiver Ready  
7-14. Sleep to Standby Timing  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TCAN4550-Q1  
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
14V  
VSUP  
SPI Mode  
Change  
Normal to  
Sleep CMD  
14V  
VSUP œ 1V  
INH  
tMODE_NOM_SLP  
nWKRQ  
VIO  
VIO off and ramp time are system dependent and not specified  
FLTR  
EN_VCCOUT_S  
tSILENCE Expires  
VCCOUT off ramp time is system dependent and not specified  
VCCOUT  
Crystal/CLKIN  
VIO required for Crystal/CLKIN to work.  
Mode  
NOM:SLP  
Sleep Mode  
Normal Mode  
7-15. Normal to Sleep Timing  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
14 V  
VSUP  
SPI Mode  
Change  
Normal to  
Standby CMD  
14 V  
INH  
nWKRQ  
Low  
High  
VIO  
FLTR  
5 V  
VCCOUT  
Crystal/CLKIN  
Mode  
NOM:SLP  
Standby Mode  
Normal Mode  
tMODE_NOM_STBY  
Transceiver  
7-16. Normal to Standby Timing  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TCAN4550-Q1  
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TCAN4550-Q1 is a CAN FD controller with an integrated CAN FD transceiver supporting data rates up to 8  
Mbps. The CAN FD controller meets the specifications of the ISO 11898-1:2015 high speed Controller Area  
Network (CAN) data link layer and meets the physical layer requirements of the ISO 11898-2:2016 High Speed  
Controller Area Network (CAN) specification providing an interface between the CAN bus and the CAN protocol  
controller supporting both classical CAN and CAN FD up to 5 megabits per second (Mbps). The TCAN4550-Q1  
provides CAN FD transceiver functionality: differential transmit capability to the bus and differential receive  
capability from the bus. The device includes many protection features providing device and CAN bus robustness.  
The device can also wake-up via remote wake-up using CAN bus implementing the ISO 11898-2:2016 Wake-Up  
Pattern (WUP). Input or Output support for 3.3 V and 5 V microprocessors using VIO pin for seamless interface.  
The TCAN4550-Q1 has a Serial Peripheral Interface (SPI) that connects to a local microprocessor for the  
device's configuration; transmission and reception of CAN frames. The SPI interface supports clock rates up to  
18 MHz.  
The CAN bus has two logical states during operation: recessive and dominant. See 7-1 and 7-2.  
In the recessive bus state, the bus is biased to a common mode of 2.5 V via the high resistance internal input  
resistors of the receiver of each node. Recessive is equivalent to logic high. The recessive state is also the idle  
state.  
In the dominant bus state, the bus is driven differentially by one or more drivers. Current flows through the  
termination resistors and generates a differential voltage on the bus. Dominant is equivalent to logic low. A  
dominant state overwrites the recessive state.  
During arbitration, multiple CAN nodes may transmit a dominant bit at the same time. In this case, the differential  
voltage of the bus is greater than the differential voltage of a single driver.  
Transceivers with low power Standby Mode have a third bus state where the bus terminals are weakly biased to  
ground via the high resistance internal resistors of the receiver. See 7-1 and 7-2. The TCAN4550-Q1  
supports auto biasing, see 9.1.3.1  
The TCAN4550-Q1 has the ability to configure many of the pins for multiple purposes and are described in more  
detail in 8.3 section. Much of the parametric data is based on internal links like the TXD/RXD_INT which  
represent the TXD and RXD of a standalone CAN transceiver. The TCAN4550-Q1 has a test mode that maps  
these signals to an external pin in order to perform compliance testing on the transceiver (TXD/RXD_INT_PHY)  
and CAN core (TXD/RXD_INT_CAN) independently.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
 
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.2 Functional Block Diagram  
VSUP  
VCCOUT  
FLTR  
WAKE  
INH  
VINT  
LDO(s)  
VLVRX  
Filter  
VIO  
Under  
Voltage  
CNTL  
POR  
TCAN4550  
VIO  
CANH  
TXD_INT  
RXD_INT  
VINT  
nWKRQ  
TX/RX Data  
Buffer  
TX/RX CAN-FD  
Controller with  
Filters  
VIO  
RST  
CAN-FD  
SPI  
SCLK  
SDI  
Transceiver  
System  
Controller  
SDO  
nCS  
CANL  
GPO2  
nINT  
GPIO1  
GND  
OSC2  
OSC1  
40 MHz  
备注  
OSC1 pin is either a crystal or external clock input  
When OSC1 is used as an external clock input pin OSC2 must be connected directly to ground  
When using an external clock input on OSC1 the input voltage should be the same as the VIO  
voltage rail  
The recommended crystal or clock rate to meet CAN FD 5 Mbps rates is 40 MHz  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TCAN4550-Q1  
 
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
VCCINT1  
Transceiver Block Diagram  
VSUP  
TXD_INT_PHY  
TXD_INT  
TXD_INT  
CANH  
CANL  
DOMINANT  
TIME OUT  
DRIVER  
Communication Bus  
OVER  
TEMP  
EN_INT  
MODE AND CONTROL LOGIC  
VSUP  
WAKE  
WAKE  
WAKE  
INH_CNTL  
VSUP  
VLVRX  
UNDER  
VOLTAGE  
M
U
X
INH  
WAKE UP LOGIC /  
MONITOR  
RXD_INT_PHY  
RXD_INT  
LOGIC  
OUTPUT  
Low Power Standby Bus  
Receiver & Monitor  
RXD_INT  
8-1. CAN Transceiver Block Diagram  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
VIO  
VIO  
Chip  
Reset  
RST  
VIO  
SCLK  
SCLK  
SDI  
VIO  
SDI  
VIO  
SDO  
SDO  
nCS  
VIO  
GPI  
VIO  
RXD_INT_CAN  
Test Mode  
TXD_INT_PHY  
GPI01  
GPO  
SPI & I/O  
Controller  
VIO  
Test Mode  
TXD_INT_CAN  
GPO2  
RXD_INT_PHY  
GPO2 œ for all non test mode  
VIO  
Test Mode  
EN_INT  
nINT  
3P6_SLEEP  
WKRQ_3P6_SLEEP  
WKRQ_VIO  
nWKRQ  
8-2. SPI and Digital IO Block Diagram  
8.3 Feature Description  
8.3.1 VSUP Pin  
This pin connects to the battery supply. It provides the supply to the internal regulators that support the digital  
core, CAN transceiver and VCCOUT. This Pin requires a 100 nF capacitor at the pin. See 10 for more  
information. Upon power-up, VSUP needs to rise above UVSUP rising threshold.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TCAN4550-Q1  
 
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.3.2 VIO Pin  
The VIO pin provides the digital IO voltage to match the microprocessor IO voltage thus avoiding the  
requirements for a level shifter. VIO supports IO pins SPI IO, GPIO1 and GPO2. It also provides power to the  
oscillator block supporting the crystal or CLKIN pins. It supports a range of 3.3 V to 5 V ± 5% nominal value  
providing the widest range of controller support. This pin requires a 100 nF capacitor at the pin. See 10 for  
more information.  
8.3.3 VCCOUT Pin  
An internal LDO provides power for the integrated CAN transceiver and the VCCOUT pin for a total available  
current of 125 mA. The amount of current that can be sourced is dependent upon the CAN transceiver  
requirements during normal operation. When a bus fault takes place that requires all the current from the LDO,  
the device is not able to source current to external components. During sleep mode this regulator is disabled and  
no current is provided. Once in the other active modes the regulator is enabled for normal operation. This pin  
requires a 10 µF external capacitor as close to the pin as possible. See 10 for more information.  
8.3.4 GND  
This pin is a ground pin as is the thermal pad. Both need to connect to a ground plane to support heat  
dissipation.  
8.3.5 INH Pin  
The INH pin is a high voltage output pin that provides voltage from the VSUP minus a diode drop to enable an  
external high voltage regulator. These regulators are usually used to support the microprocessor and VIO pin.  
The INH function is on in all modes but sleep mode. In sleep mode the INH pin is turned off, going into a high Z  
state. This allows the node to be placed into the lowest power state while in sleep mode. If this function is not  
required it can be disabled by setting register 16'h0800[9] = 1 using the SPI interface. If not required in the end  
application to initiate a system wake-up, INH can be left floating.  
备注  
This terminal should be considered a "high voltage logic" terminal. It is not a power output thus should  
be used to drive the EN terminal of the systems power management device. It should be not used  
as a switch for power management supply itself. This terminal is not reverse battery protected and  
thus should not be connected outside of the system module.  
8.3.6 WAKE Pin  
The WAKE pin is used for a high voltage device local wake-up (LWU). This function is explained further in 节  
8.4.3.2 section. The pin is defaulted to bi-directional edge trigger, meaning it recognizes a LWU on either a rising  
or falling edge of WAKE pin transition. This default value can be changed via a SPI command that disables the  
function, make it a rising edge only or a falling edge only. This is done by using register 16'h0800[31:30]. Pin  
requires a 10 nF capacitor to ground for improved transient immunity in applications that route WAKE externally.  
If local wake-up functionality is not needed in the end application, WAKE can be tied directly to VSUP or GND.  
8.3.7 FLTR Pin  
This pin is used to provide filtering for the internal digital core regulator. Pin requires 300 nF of capacitance to  
ground. See 10 for more information.  
8.3.8 RST Pin  
The RST pin is a device reset pin. It has a weak internal pull-down resistor for normal operation. If  
communication has stopped with the TCAN4550-Q1, the RST pin can be pulsed high and then back low for  
greater than tPULSE_WIDTH to perform a power on reset to the device. This resets the device to the default settings  
and puts the device into standby mode. If the device was in normal or standby mode the INH and nWKRQ pins  
remain active (on) and do not toggle; see 8-3. If the device is in sleep mode and reset is toggled the device  
enters standby mode and at that time INH and nWKRQ turns on; see 8-4.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
After a RST has taken place, a wait time of 700 µs should be used before reading or writing to the  
TCAN4550-Q1.  
14V  
VSUP  
tPULSE_WIDTH  
RST  
14V  
INH  
nWKRQ  
Low  
High  
VIO  
700 µs  
Device ready to be  
read and written to  
Device SPI  
Access  
Standby Mode  
Normal  
or  
Standby  
Mode  
8-3. Timing for RST Pin in Normal and Standby Modes  
14V  
VSUP  
tPULSE_WIDTH  
RST  
14V  
250 µs  
INH  
Low  
Float  
nWKRQ  
Low  
High  
VIO  
700 µs  
Device ready to be  
read and written to  
Device SPI  
Access  
Standby Mode  
Sleep Mode  
8-4. Timing for RST Pin in Sleep Mode  
8.3.9 OSC1 and OSC2 Pins  
These pins are used for a crystal oscillator. The OSC1 pin can also be used as a single-ended clock input from  
the microprocessor or some other clock source. See 9.1 section for further information on the functions of  
these pins. It is recommended to provide a 40 MHz crystal or CLKIN to support CAN FD data rates.  
If using a crystal oscillator rather than a single-ended clock, much care must be taken when choosing the correct  
load capacitance and dampening resistor values. Please see the TCAN455x Clock Optimization and Design  
Guidelines application note for a full, detailed design procedure on the crystal oscillator choice and component  
decisions.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TCAN4550-Q1  
 
 
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.3.10 nWKRQ Pin  
This pin is a dedicated wake-up request pin from a bus wake (WUP) request, local wake (LWU) request and  
power on (PWRON). The nWKRQ pin is defaulted to a wake enable based upon a wake event. In this  
configuration the output is pulled low and latched to serve as an enable for a regulator that does not use the INH  
pin to control voltage level. The nWKRQ pin can be configured by setting 16'h0800[8] = 1 as an interrupt pin that  
pulls the output low, but once the wake interrupt flag is cleared it releases the output back to a high. This pin  
defaults to an internal 3.6 V rail that is active during sleep mode. In this configuration, if a wake event takes  
place, the nWKRQ pin switches from high to low. This output can be configured to be powered from the VIO rail  
through SPI programming, 16'h0800[19]. When powered off of the VIO pin, the device does not insert an interrupt  
until the VIO rail is stable. When configured for VIO, this pin is an open drain output and requires an external pull-  
up resistor to VIO rail. This configuration bit is saved for all modes of operation and does not reset in sleep mode.  
As some external regulators or power management chips may need a digital logic pin for a wake-up request, this  
pin can be used.  
备注  
This pin is active low and is logical OR of CANINT, LWU and WKERR register 16'h0820 that are  
not masked  
If a pull-up resistor is placed on this pin it must be configured for power from the VIO rail  
8.3.11 nINT Interrupt Pin  
The nINT is a dedicated open drain global interrupt output pin. This pin needs an external pull-up resistor to VIO  
to function properly. All interrupt requests are reflected by this pin when pulled low.  
In test mode, this pin is used as an EN pin input for testing the CAN transceiver and is shown as EN_INT  
throughout the document. When this pin is high, the device is in normal mode and when low it is in standby  
mode. This is accomplished by writing 0 to register 16'h0800[0].  
备注  
This pin is an active low and is the logical OR of all faults in registers 16'h0820 and 16'h0824 that are  
not masked.  
8.3.12 GPIO1 Pin  
This pin defaults out as the M_CAN_INT 1 (active low) interrupt. The functionality of the pin can be changed to a  
configurable output function pin by setting register 16'h0800[15:14] = 00. The GPO function is further configured  
by using register 16'h0800[11:10]. To configure the pin to support a watchdog input timer reset pin use SPI  
register 16'h0800[15:14] = 10.  
When in test mode the GPIO1 pin is used to provide the input signal for the transceiver (TXD_INT_PHY) or the  
input to the M_CAN core (RXD_INT_CAN). This is accomplished by first putting the device into test mode using  
register 16'h0800[21] = 1 and then selecting which part of the device is to be tested by setting register  
16'h0800[0]  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.3.13 GPO2 Pin  
The GPO2 pin is an open drain configurable output function pin that provides selected interrupts. This pin needs  
an external pull-up resistor to VIO to function properly. The output function can be changed by using register  
16'h0800[23:22] and can be configured as a watchdog output reset pin.  
In test mode, this pin becomes the RXD_INT_PHY transceiver output or TXD_INT_CAN CAN Controller output  
pin.  
8.3.14 CANH and CANL Bus Pins  
These are the CAN high and CAN low differential bus pins. These pins are connected to the CAN transceiver  
and the low voltage WUP CAN receiver. The functionality of these is explained throughout the document. See  
section 9.1.3.1 for can bus biasing.  
8.4 Device Functional Modes  
The TCAN4550-Q1 has several operating modes: normal, standby, and sleep modes and two protected modes.  
The first three mode selections are made by the SPI register. The two protected modes are modified standby  
modes used to protect the device or bus. The TCAN4550-Q1 automatically goes from sleep to standby mode  
when receiving a WUP or LWU event. See 8-1 for the various modes and what parts of the device are active  
during each mode.  
The TCAN4550-Q1 state diagram figure, see 8-5, shows the biasing of the CAN bus in each of the modes of  
operation.  
8-1. Mode Overview  
Low  
Power  
CAN RX  
WAKE  
Pin  
CAN TX/  
RX  
Memory &  
Configuration  
Mode  
RST Pin  
nINT  
nWKRQ  
INH  
GPO2  
WD  
SPI  
GPIO1  
OSC  
VCCOUT  
Normal  
L
L
On  
On  
On  
On  
On  
On  
On  
On  
Off  
On  
Off  
On  
On  
On  
On  
On  
On  
On  
On  
On  
On  
Off  
On  
Saved  
Saved  
Standby  
On/  
TSD  
Protected  
L
On  
On  
On  
On  
On  
On  
On  
On  
On  
On  
Off  
Off  
Saved  
UVIO  
Protected  
Mode  
Dependent  
L
L
Off  
Off  
On  
On  
Off  
Off  
Off  
Off  
On  
On  
On  
On  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
On  
Off  
Saved  
Sleep  
Off  
Partial Saved  
备注  
In test mode the watchdog (WD) function can be used for Mode 01 CAN FD. The pin function for  
WD is used by other pins in this mode but WD_ACTION reg16'h0800[17:16] = 00 and 01 are  
available and WD_BIT reg16'h0800[18] is how the timer would be reset.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TCAN4550-Q1  
 
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
RST Pin: Set high to  
reset device. Once  
finished set back low  
UVLO VSUP  
Continued decrease below UVSUP  
low the device will reset and clear  
everything and come back on as if  
a power up sequence has taken  
place entering standby mode  
Resets Sleep  
Core  
Power On  
Start Up  
Normal Mode  
TSD = 1  
Power Off  
TSD Protected  
Standby Mode  
Normal Mode  
SPI Write  
MO = 01  
RST: L  
Wake Sources: WAKE  
INH: H  
Wake Pin: Active  
All GPIO: Active  
SPI: Active  
RST: L  
Wake Sources: CAN, WAKE  
INH: H  
RST: L  
INH: H  
SPI Write  
MO = 10  
Wake Pin: Active  
All GPIO: Active  
SPI: Active  
Wake Pin: Active  
All GPIO: Active  
SPI: Active  
SPI Write  
MO = 00  
Sleep Mode  
RST: L  
Wake Sources: CAN, WAKE  
INH: floating  
TSD = 1  
OSC: Active  
VCCOUT: Off  
Timer Start  
OSC: Active  
VCCOUT: Enabled  
OSC: Active  
VCCOUT: Enabled  
SWE timer  
times out  
Wake Pin: Active  
nINT Pin: Off  
nWKRQ Pin: Active  
Other GPIO: Off  
SPI: Off  
TSD = 1 &  
Timer Expires  
TSD = 0 &  
Timer Expires  
TSD State  
TSD Timer  
Wake-up Event:  
CAN bus  
or  
SPI Write  
MO = 00  
OSC: Off  
VCCOUT: Off  
WAKE Pin  
UVIO = 1  
NOTE: Upon a wake event the device will  
transition into Standby mode and must be  
reconfigured using SPI  
UVIO Protected  
UVIO = 0  
RST: L  
Wake Sources: CAN, WAKE  
INH: H  
Normal Mode  
UVIO = 1  
UVIO State  
UVIO Timer  
UVIO = 1 &  
Timer Expires  
Wake Pin: Active  
All GPIO: Off  
SPI: Off  
Note:  
ñ
OSC: Off  
VCCOUT: On  
Timer Start  
UVIO Protected status will lose the CLKIN/Crystal. During this time the digital core will reset and the M_CAN will have to be  
reprogrammed. If timer times out and UVIO = 1 the device goes to sleep at which time all are cleared.  
If a Thermal Shutdown and UVIO event take place at the same time the device will enter sleep mode until the faults are rectified  
ñ
8-5. Device State Diagram  
8.4.1 Normal Mode  
This is the normal operating mode of the device. The CAN driver and receiver are fully operational and CAN  
communication is bi-directional. The driver translates a digital input on the internal TXD_INT signal from the CAN  
FD controller to a differential output on CANH and CANL. The receiver translates the differential signal from  
CANH and CANL to a digital output on the internal RXD_INT signal to the CAN FD controller. Normal mode is  
enabled or disabled via the SPI interface.  
备注  
If an under-voltage event has taken place and cleared, the interrupt flags have to be cleared before  
the device can enter normal mode.  
8.4.2 Standby Mode  
In standby mode, the bus transmitter does not send data nor will the normal mode receiver accept data. There  
are several blocks that are active in this mode. The low power CAN receiver is active, monitoring the bus for the  
wake-up pattern (WUP). The wake pin monitor is active. The SPI interface is active so that the microprocessor  
can read and write registers in the memory for status and configuration. The INH pin is active in order to supply  
an enable to the VIO controller if this function is used. The nWKRQ pin is low in this mode in the default  
configuration and can also be used as a digital enable pin to an external regulator or power management  
integrated circuit (PMIC). All other blocks are put into the lowest power state possible. This is the only mode that  
the TCAN4550-Q1 automatically switches to without a SPI transaction. The device goes from sleep mode to  
standby mode automatically upon a bus WUP event or a local wake-up from the wake pin. Upon entry to  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
Standby Mode, only one wake interrupt is given (either LWU or CANINT). New wake interrupts are not given in  
standby mode unless the device changes to normal or sleep mode and then back to standby. This prevents CAN  
traffic from spamming the processor with interrupts while in standby, and it gives the processor the first wake  
interrupt that was issued.  
Upon power up, a power on reset or wake event from sleep mode the TCAN4550-Q1 enters standby mode. This  
starts a four-minute timer, tINACTIVE, that requires the processor to either reset the interrupt flags or configure the  
device to normal mode. This feature makes sure the node is in the lowest power mode if the processor does not  
come up properly. This automatic mode change also takes place when the device has been put into sleep mode  
and receives a wake event, WUP or LWU. To disable this feature for sleep events, register 16'h0800[1]  
(SWE_DIS) must be set to one. This will not disable the feature when powering up or when a power on reset  
takes place.  
8.4.3 Sleep Mode  
Sleep mode is similar to the standby mode except the SPI interface and INH is disabled. As the low power CAN  
receiver is powered off of VSUP the implementer can turn off VIO. The nWKRQ pin is powered off the VSUP supply  
internal logic level regulator. This allows the TCAN4550-Q1 to provide an interrupt to the MCU when a wake  
event takes place without requiring VIO to be up. When the device goes into sleep mode, the power to the  
registers and memory is removed to conserve power. This requires the device to be re-configured prior to being  
put into normal mode. As the SPI interface is turned off, the only ways to exit sleep mode is by a wake-up event,  
RST pin toggle or power cycle. A sleep mode status flag is provided to determine if the device entered sleep  
mode through normal operation or if a fault caused the mode change. Register 16'h0820[23] provides the status.  
If a fault causes the device to enter sleep mode, this flag is set to a one.  
备注  
Difference between sleep and standby mode  
Sleep mode reduces whole node power by shutting off INH/nWKRQ to MCU VREG and shuts off  
SPI.  
Standby mode reduces TCAN4550-Q1 power as INH and nWKRQ is enabled turning on node  
MCU VREG and SPI interface is active.  
备注  
When entering sleep mode, it is possible for the TCAN4550-Q1 to assert an interrupt due to UVCCOUT  
event as the LDO is powering down. This interrupt should be ignored or can be masked out by using  
16'h830[22] before initiating the go to sleep command.  
8.4.3.1 Bus Wake via RXD_INT Request (BWRR) in Sleep Mode  
The TCAN4550-Q1 supports low power sleep mode, and uses a wake-up from the CAN bus mechanism called  
bus wake via RXD_INT Request (BWRR). Once this pattern is received, the TCAN4550-Q1 automatically  
switches to standby mode and inserts an interrupt onto the nINT and nWKRQ pins to indicate to a host  
microprocessor that the bus is active, and it should wake-up and service the TCAN4550-Q1. The low power  
receiver and bus monitor are enabled in sleep mode to allow for RXD_INT Wake Requests via the CAN bus. A  
wake-up request is output to the internal RXD_INT (driven low) as shown in 8-7. The wake logic monitors  
RXD_INT for transitions (high to low) and reactivate the device to standby mode based on the RXD_INT Wake  
Request. The CAN bus terminals are weakly pulled to GND during this mode, see 7-2.  
These devices use the wake-up pattern (WUP) from ISO 11898-2:2016 to qualify bus traffic into a request to  
wake the host microprocessor. The bus wake request is signaled to the integrated CAN FD controller by a falling  
edge and low corresponding to a filteredbus dominant on the RXD_INT terminal (BWRR).  
The wake-up pattern (WUP) consists of  
A filtered dominant bus of at least tWK_FILTER followed by  
A filtered recessive bus time of at least tWK_FILTER followed by  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
A second filtered dominant bus time of at least tWK_FILTER  
Once the WUP is detected, the device starts issuing wake-up requests (BWRR) on the RXD_INT signal every  
time a filtered dominant time is received from the bus. The first filtered dominant initiates the WUP and the bus  
monitor is now waiting on a filtered recessive, other bus traffic does not reset the bus monitor. Once a filtered  
recessive is received, the bus monitor is now waiting on a filtered dominant and again, other bus traffic does not  
reset the bus monitor. Immediately upon receiving the second filtered dominant and verification of receiving a  
WUP, the device transitions the bus monitor into BWRR mode. This indicates all filtered dominant bus times on  
the RXD_INT internal signal by driving it low for the dominant bus time that is in excess of tWK_FILTER. The  
RXD_INT output during BWRR matches the classical 8-pin CAN devices that used the single, filtered dominant  
on the bus as the wake-up request mechanism from ISO 11898-2:2016.  
For a dominant or recessive to be considered filtered, the bus must be in that state for more than tWK_FILTER  
time. Due to variability in the tWK_FILTER the following scenarios are applicable.  
Bus state times less than tWK_FILTER(MIN) are never detected as part of a WUP, and thus no BWRR is  
generated.  
Bus state times between tWK_FILTER(MIN) and tWK_FILTER(MAX) may be detected as part of a WUP and a BWRR  
may be generated.  
Bus state times more than tWK_FILTER(MAX) is always detected as part of a WUP, and thus, a BWRR is always  
be generated.  
See 8-6 for the timing diagram of the WUP.  
The pattern and tWK_FILTER time used for the WUP and BWRR prevents noise and bus stuck dominant faults  
from causing false wake requests while allowing any CAN or CAN FD message to initiate a BWRR. If the device  
is switched to normal mode or an under-voltage event occurs on VCC, the BWRR is lost. The WUP pattern must  
take place within the tWK_TIMEOUT time; otherwise. the device is in a state waiting for the next recessive and then  
a valid WUP pattern.  
Bus Wake via RXD  
Request  
Wake Up Pattern (WUP) where t ≤ tWK_TIMEOUT  
Filtered  
Dominant  
Filtered  
Dominant  
Filtered  
Recessive  
Waiting for  
Filtered  
Dominant  
Waiting for  
Filtered  
Recessive  
Bus  
Bus VDiff  
≥ tWK_FILTER  
≥ tWK_FILTER  
≥ tWK_FILTER  
≥ tWK_FILTER  
Filtered Dominant RXD Output  
Bus Wake Via RXD Requests  
RXD_INT  
tMODE_SLP_STBY  
INH  
nWKRQ  
8-6. Wake-Up Pattern (WUP) and Bus Wake via RXD_INT Request (BWRR)  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
Fault is repaired & transmission capability  
restored  
TXD fault stuck dominant: example PCB failure or bad software  
tTXD_DTO  
TXD_INT (driver)  
Driver disabled freeing bus for other nodes  
Normal CAN communication  
Bus would be —stuck dominant“ blocking communication for the whole network but TXD DTO  
prevents this and frees the bus for communication after the time tTXD_DTO  
.
CAN Bus  
Signal  
tTXD_DTO  
Communication from other  
bus node(s)  
Communication from repaired  
node  
RXD_INT  
(receiver)  
Communication from other  
bus node(s)  
Communication from repaired  
local node  
Communication from local  
node  
8-7. Example timing diagram with TXD_INT DTO  
8.4.3.2 Local Wake-Up (LWU) via WAKE Input Terminal  
The WAKE terminal is a high voltage input terminal which can be used for local wake-up (LWU) request via a  
voltage transition. The terminal triggers a LWU event on either a low to high or high to low transition as it has bi-  
directional input thresholds. This terminal may be used with a switch to VSUP or ground. If the terminal is not  
used, it should be pulled to ground or VSUP to avoid unwanted wake-up events.  
The LWU circuitry is active in sleep mode and standby mode. If a valid LWU event occurs, the device transitions  
to standby mode. The LWU circuitry is not active in normal mode. To minimize system level current consumption,  
the internal bias voltages of the terminal follows the state on the terminal. The wake filter time for a valid wake to  
avoid glitches on wake pin is provided by filter value of tWAKE(MIN). A constant high level on WAKE has an  
internal pull-up to VSUP and a constant low level on WAKE has an internal pull-down to GND. On power-up, this  
may look like a LWU event and could be flagged as such.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TCAN4550-Q1  
 
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
Wake  
Threshold  
Not Crossed  
t ≤ tWAKE  
No Wake  
UP  
t ≥ tWAKE  
Wake UP  
Wake  
Local Wake Request  
INH  
RXD_INT  
*
Mode  
Sleep Mode  
Standby Mode  
8-8. Local Wake-Up: Rising Edge  
Wake  
Threshold  
Not Crossed  
t ≤ tWAKE  
No Wake  
UP  
t ≥ tWAKE  
Wake UP  
Wake  
Local Wake Request  
INH  
*
RXD_INT  
Mode  
Sleep Mode  
Standby Mode  
8-9. Local Wake-Up: Falling Edge  
备注  
RXD_INT is an internal signal and can be seen in Transceiver test mode when VIO is present.  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.4.4 Test Mode  
The TCAN4550-Q1 includes a test mode that has four configurations. Two are enabled by the SPI interface  
using the configuration register by setting register bit 16'h0800[21] = 1. In this mode the transceiver  
TXD_INT_PHY or CAN core RXD_INT_CAN can be mapped to the GPIO1 pin and RXD_INT_PHY or  
TXD_INT_CAN can be mapped to the GPO2 pin. EN_INT pin is mapped to the nINT pin, see 8-10 and 图  
8-11. This is accomplished by setting register 16'h0800[0] to 0 for transceiver testing or 1 for M_CAN core  
testing. This mapping is only valid when in test mode. There are two M_CAN core specific test modes entered  
using SPI but written to the M_CAN core registers directly, see 8-12 and 8-13.  
EN_INT  
nINT  
GPIO1  
TXD_INT_PHY  
CANH  
CANL  
SCLK  
SDI  
TX  
RX  
SPI  
System  
Controller  
MCAN  
Core  
SDO  
nCS  
RXD_INT_PHY  
GPO2  
8-10. Transceiver Test Mode  
GPIO1  
RXD_INT_CAN  
V
CANH  
CANL  
SCLK  
SDI  
TX  
SPI  
MCAN  
System  
Core  
SDO  
nCS  
Controller  
RX  
TXD_INT_CAN  
GPO2  
8-11. SPI and M_CAN Core Test Mode  
V
CANH  
CANL  
SCLK  
SDI  
= 1  
TX  
RX  
SPI  
System  
Controller  
MCAN  
Core  
SDO  
nCS  
8-12. M_CAN Internal Loop Back Test Mode  
CANH  
CANL  
SCLK  
SDI  
TX  
RX  
SPI  
System  
Controller  
MCAN  
Core  
SDO  
nCS  
8-13. M_CAN External Loop Back Test Mode  
8.4.5 Failsafe Feature  
The TCAN4550-Q1 has three methods the failsafe feature is used in order to reduce node power consumption  
for a node system issue. Failsafe is the method the device uses to enter sleep mode from various other modes  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TCAN4550-Q1  
 
 
 
 
 
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
when specific issues arise. This feature uses the Sleep Wake Error (SWE) timer to determine if the node  
processor can communicate to the TCAN4550-Q1. The SWE timer is default enabled through the SWE_DIS;  
16'h0800[1] = 0 but can be disabled by writing a one to this bit. Even when the timer is disabled, a power on  
reset re-enables the timer and thus be active. Failsafe Feature is default disabled but can be enabled by writing  
a one to 16'h0800[13], FAILSAFE_EN.  
Upon power up, the SWE timer starts, tINACTIVE, the processor has typically four minutes to configure the  
TCAN4550-Q1, clear the PWRON flag or configure the device for normal mode; see 8-14. This feature cannot  
be disabled. If the device has not had the PWRON flag cleared or been placed into normal mode, it enters sleep  
mode. The device wakes up if the CAN bus provides a WUP or a local wake event takes place, thus entering  
standby mode. Once in standby mode, tSILENCE and tINACTIVE timers starts. If tINACTIVE expires, the device re-  
enters sleep mode.  
The second failure mechanism that causes the device to use the failsafe feature, if enabled, is when the device  
receives a CANINT, CAN bus wake (WUP) or WAKE pin (LWU), while in sleep mode such that the device leaves  
sleep mode and enters standby mode. The processor has four minutes to clear the flags and place the device  
into normal mode. If this does not happen the device enters sleep mode.  
The third failure mechanism that causes the device to use the failsafe feature is when in standby or normal mode  
and the CANSLNT flag persists for tINACTIVE, the device enters sleep mode. Examples of events that could  
create this are CLKIN or Crystal stops working, processor is no longer working and not able to exercise the SPI  
bus, a go-to-sleep command comes in and the processor is not able to receive it or is not able to respond. See  
state diagram 8-15.  
Standby Mode  
Power On  
Start Up  
SWE Timer  
tINACTIVE  
No &  
Cleared  
Does timer  
Expire and PWRON  
flag cleared?  
Stays in STBY mode  
or switches to Normal  
mode if programmed  
Timed out  
Sleep Mode  
RST: L  
Wake Sources: CAN, WAKE  
INH: floating  
Wake Pin: Active  
nINT Pin: Off  
nWKRQ Pin: Active  
Other GPIO: Off  
SPI: Off  
OSC: Off  
VCCOUT: Off  
8-14. Power On Failsafe Feature  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
Normal Mode  
0800[13] = 1  
Fail Safe Mode En  
Bus Inactivity  
tSILENCE timer  
expires  
Standby Mode  
0800[13] = 1  
setting CANSLNT  
flag  
Fail Safe Mode En  
Bus Inactivity  
SWE Timer  
tINACTIVE  
Monitoring CAN  
No &  
Cleared  
Activity detected  
leaving device in  
current mode or  
placing in selected  
mode  
Does timer  
Expire and required  
flags cleared?  
Timed out  
Sleep Mode  
RST: L  
Wake Sources: CAN, WAKE  
INH: floating  
Wake Pin: Active  
nINT Pin: Off  
nWKRQ Pin: Active  
Other GPIO: Off  
SPI: Off  
OSC: Off  
VCCOUT: Off  
8-15. Normal and Standby Failsafe Feature  
8.4.6 Protection Features  
The TCAN4550-Q1 has several protection features that are described as follows.  
8.4.6.1 Watchdog Function  
The TCAN4550-Q1 contains a watchdog (WD) timeout function. When using the WD timeout function, the WD  
runs continuously. The WD is default enabled and can be configured with four different timer values. WD is  
active in normal and standby modes and off in sleep mode. Once the device enters standby or normal mode, the  
timer does not start until the first input trigger event. This event can be either writing a one to register  
16'h0800[18] or if selected, by changing the voltage level on the GPIO1 pin either high or low when configured  
for watchdog input. If the first trigger is not set, the watchdog is disabled. The first trigger can happen in standby  
mode or normal mode. This is system implementation specific. While the timer is running, a SPI command  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TCAN4550-Q1  
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
writing a one to 16'h0800[18] resets the WD_TIMER timer or if configured for pin control the GPIO1 behaves as  
the watchdog input bit.  
The TCAN4550-Q1 has two ways of setting the trigger bit: via a SPI command and, if selected, through a GPI  
(GPIO1 configured as GPI). When a GPI pin is used any rising or falling edge resets the timer. A watchdog event  
can be conveyed back to the microprocessor in two methods: interrupt on nINT pin or, if selected, the GPO2 pin  
can be programmed to toggle upon a WD timeout. A timeout can initiate one of three actions by the TCAN4550-  
Q1: interrupt, INH toggle plus putting the device into standby mode or toggle watchdog output reset pin if  
enabled. The input CLKIN or crystal values needs to be entered into reg 16'h0800[27] and is either 20 MHz or 40  
MHz. See 8-2 for the register settings for the watchdog function.  
备注  
If the device enters UVIO protected mode, the watchdog timer is held in reset. When the device  
returns to standby mode, the timer resumes counting.  
Once the command to enter sleep mode takes place, the WD timer is turned off and does not  
trigger a watchdog event.  
If the any of the watchdog registers needs to be changed, the watchdog must be disabled and the  
change made and then re-enabled.  
8-2. Watchdog Registers and Descriptions  
Address  
BIT(S)  
Field  
Type  
Reset  
DESCRIPTION  
WD_TIMER: Watchdog timer  
00 = 60 ms  
01 = 600 ms  
10 = 3 s  
29:28  
WD_TIMER  
R/W  
2'b00  
11 = 6 s  
CLK_REF: CLKIN/Crystal frequency reference  
0 = 20 MHz  
27  
CLK_REF  
R/W  
R/W  
1'b1  
1 = 40 MHz  
GPO2_CONFIG: GPO2 configuration  
00 = No action  
GPO2_CONFI  
G
01 = M_CAN_INT 0 interrupt (active low)  
10 = Watchdog output  
23:22  
2'b00  
11 = Mirrors nINT pin  
16'h0800  
WD_BIT_SET: write a 1 to reset timer: if times out; this bit is set and then  
the selected action from register 16'h0800[17:16] takes place.  
Note: This is a self-clearing bit. Writing a 1 resets the timer and then the bit  
clears.  
18  
WD_BIT_SET  
WD_ACTION  
W1C  
R/W  
1'b0  
WD_ACTION: Selected action when WD_TIMER times out  
00 = Set interrupt flag and if a pin is configured to reflect WD output as an  
interrupt the pin shows a low.  
01 = Pulse INH pin and place device into standby mode high - low - high  
300ms  
17:16  
2'b00  
10 = Pulse watchdog output pin if enabled high - low - high 300ms  
11 = Reserved  
Note: Interrupt flag is always set for a WD timeout event.  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8-2. Watchdog Registers and Descriptions (continued)  
Address  
BIT(S)  
Field  
Type  
Reset  
DESCRIPTION  
GPIO1_CONFIG: GPIO1 Pin Function Select  
00 = GPO  
GPIO1_CONFI  
G
01 = Reserved  
15:14  
RW  
2'b01  
10 = GPI Automatically becomes a WD input trigger pin.  
16'h0800  
11 = Reserved  
WD_EN - Watchdog Enable  
0 = Disable  
3
WD_EN  
RXU  
1'b1  
1 = Enabled  
8.4.6.2 Driver and Receiver Function  
The TXD_INT and RXD_INT are internal signal paths that behave like the TXD and RXD pins for a physical layer  
transceiver. During normal operation they are not accessible to external pins. The TCAN4550-Q1 provides a test  
mode that maps these signals to external pins see 8.4.4. The digital logic input and output levels for these  
devices are CMOS levels with respect to VIO for compatibility with protocol controllers having 3.3 V to 5 V logic  
or I/O. 8-3 and 8-4 provides the states of the CAN driver and CAN receiver in each mode.  
8-3. Driver Function Table  
BUS OUTPUTS  
DEVICE MODE  
TXD_INT INPUT  
DRIVEN BUS STATE  
Dominant  
CANH  
CANL  
L
H
Z
Z
Z
L
Z
Z
Z
Normal  
H or Open  
Biased Recessive  
Weak Pull to GND  
Weak Pull to GND  
Standby  
Sleep  
X
X
8-4. Receiver Function Table Normal and Standby Modes  
CAN DIFFERENTIAL INPUTS  
DEVICE MODE  
BUS STATE  
RXD_INT TERMINAL  
VID = VCANH VCANL  
Dominant  
Undefined  
Recessive  
Dominant  
Undefined  
Recessive  
Open  
L
VID 0.9 V  
Normal  
0.5 V < VID < 0.9 V  
VID 0.5 V  
Undefined  
H
VID 1.15 V  
Standby/Sleep  
Any  
0.4 V < VID < 1.15 V  
VID 0.4 V  
See 8-6  
H
Open (VID 0 V)  
8.4.6.3 Floating Terminals  
There are internal pull-ups and pull-downs on critical terminals to place the device into known states if the  
terminal floats. See 8-5 for details on terminal bias conditions.  
8-5. Terminal Bias  
TERMINAL  
SCLK  
SDI  
PULL-UP or PULL-DOWN  
COMMENT  
Pull-up  
Pull-up  
Pull-up  
Weakly biases input  
Weakly biases input  
nCS  
Weakly biases input so the device is not selected  
Weakly biases output when using internal voltage rail. When using  
open-drain configuration, an external pull-up is needed.  
nWKRQ  
RST  
Pull-up  
Pull-down  
Weakly biases RST terminal towards normal operation mode  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TCAN4550-Q1  
 
 
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
备注  
The internal bias should not be relied upon as only termination, especially in noisy environments but  
should be considered a failsafe protection. Special care needs to be taken when the device is used  
with MCUs utilizing open drain outputs.  
8.4.6.4 TXD_INT Dominant Timeout (DTO)  
The TCAN4550-Q1 supports dominant state timeout. This is an internal function based upon the TXD_INT path.  
The transceiver can be tested for this by placing the device into test mode and putting a dominant on the GPIO1  
pin and monitor the GPO2 for RXD_INT_PHY. The TXD_INT DTO circuit prevents the local node from blocking  
network communication in the event of a hardware or software failure where TXD_INT is held dominant (low)  
longer than the timeout period tTXD_INT_DTO. The TXD_INT DTO circuit is triggered by a falling edge on TXD_INT.  
If no rising edge is seen before the timeout constant of the circuit, tTXD_INT_DTO, the CAN driver is disabled. This  
frees the bus for communication between other nodes on the network. The CAN driver is re-activated when a  
recessive signal (high) is seen on TXD_INT terminal, thus clearing the dominant timeout. The receiver remains  
active and the RXD_INT terminal reflects the activity on the CAN bus and the bus terminals is biased to  
recessive level during a TXD_INT DTO fault.  
备注  
The minimum dominant TXD_INT time allowed by the TXD_INT DTO circuit limits the minimum  
possible transmitted data rate of the device. The CAN protocol allows a maximum of eleven  
successive dominant bits (on TXD_INT) for the worst case, where five successive dominant bits are  
followed immediately by an error frame.  
8.4.6.5 CAN Bus Short Circuit Current Limiting  
This device has several protection features that limit the short circuit current when a CAN bus line is shorted.  
These include CAN driver current limiting. The device has TXD_INT dominant timeout which prevents  
permanently having the higher short circuit current of dominant state in case of a system fault. During CAN  
communication the bus switches between dominant and recessive states, thus the short circuit current may be  
viewed either as the current during each bus state or as a DC average current. For system current and power  
considerations in the termination resistors and common mode choke ratings the average short circuit current  
should be used. The percentage dominant is limited by the TXD_INT dominant timeout and CAN protocol which  
has forced state changes and recessive bits such as bit stuffing, control fields, and inter frame space. These  
ensure there is a minimum recessive amount of time on the bus even if the data field contains a high percentage  
of dominant bits.  
备注  
The short circuit current of the bus depends on the ratio of recessive to dominant bits and their  
respective short circuit currents. The average short circuit current may be calculated using 方程1.  
IOS(AVG) = %Transmit x [(%REC_Bits x IOS(SS)_REC) + (%DOM_Bits x IOS(SS)_DOM)] + [%Receive x IOS(SS)_REC] (1)  
Where  
IOS(AVG) is the average short circuit current.  
%Transmit is the percentage the node is transmitting CAN messages.  
%Receive is the percentage the node is receiving CAN messages.  
%REC_Bits is the percentage of recessive bits in the transmitted CAN messages.  
%DOM_Bits is the percentage of dominant bits in the transmitted CAN messages.  
IOS(SS)_REC is the recessive steady state short circuit current and IOS(SS)_DOM is the dominant steady  
state short circuit current.  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
备注  
The short circuit current and possible fault cases of the network should be taken into consideration  
when sizing the power ratings of the termination resistance, other network components, and the power  
supply used to generate VSUP  
.
8.4.6.6 Thermal Shutdown  
This is a device preservation event. If the junction temperature of the device exceeds the thermal shut down  
threshold, the device turns off the internal 5 V LDO for the CAN transceiver thus blocking the signal to bus  
transmission path as well as turning of the ability to source current and voltage to the VCCOUT pin. A thermal shut  
down interrupt flag is set and an interrupt is inserted so that the microprocessor is informed. If this event  
happens, other interrupt flags may be set as an example a bus fault where the CAN bus is shorted to Vbat. When  
this happens the digital core and SPI interface are still active. After a time of 300 ms the device checks the  
temperature of the junction. The thermal shutdown (TSD) timer starts when TSD fault event starts and exits to  
standby mode when a TSD fault is not present when the TSD timer is expired. While in thermal shut down  
protected mode a SPI write to change the device to either Normal or Standby mode is ignored while writes to  
change to sleep mode is accepted.  
备注  
If a thermal shut down event happens while the device is experiencing a VIO under voltage event the  
device enters sleep mode.  
8.4.6.7 Under-Voltage Lockout (UVLO) and Unpowered Device  
The TCAN4550-Q1 monitors the VSUP , VIO and VCCOUT pin for under-voltage events. These voltage rails have  
under-voltage detection circuitry which places the device into a protected state if an under voltage fault occurs  
for UVSUP and UVIO. This protects the bus during an under-voltage event on these terminals. If VSUP is in under  
voltage, the device loses the source needed to keep the internal regulators active. This causes the device to go  
into a state where communication between the microprocessor and the TCAN4550-Q1 is disabled. The  
TCAN4550-Q1 is not able to receive information from the bus, and thus does not pass any signals from the bus,  
including any Bus Wake via BWRR signals to the microprocessor. See 8-6.  
8.4.6.7.1 UVSUP and UVCCOUT  
When VSUP drops to UVSUP level, the VCC CAN transceiver regulator loses the ability to maintain 5 V output. At  
this point, the UVCCOUT interrupt flag is set and the TCAN4550-Q1 turns off the regulator and place the CAN  
transceiver into a standby state. If VSUP returns to minimum levels the device enters standby mode. If VSUP  
continues to decrease to the power on reset level, the TCAN4550-Q1 shuts everything down. When VSUP  
returns to acceptable levels the device will come up the same as initial power on. All registers are cleared and  
the device has to be reconfigured.  
8.4.6.7.2 UVIO  
If VIO drops below UVIO under the voltage detection threshold, several functions are disabled. The transceiver  
switches off until VIO has recovered. The input clock or crystal circuits are disabled and the IO between the  
TCAN4550-Q1 and microprocessor is not active. When UVIO triggers, the tUV timer starts. If the timer times out  
and the UVIO is still there, the device enters sleep mode, see 8-5. Once in sleep mode, a wake event is  
required to place the TCAN4550-Q1 into standby mode and enables the INH pin. As registers are cleared in  
sleep mode the UVIO interrupt flag is lost. If the UVIO event is still in place, the cycle repeats. If during a thermal  
shut down event a UVIO event happens, the device automatically enters sleep mode.  
The device is designed to be an "ideal passive" or no loadto the CAN bus if the device is unpowered. The  
bus terminals (CANH, CANL) have extremely low leakage currents when the device is unpowered so it does not  
load the bus. This is critical if some nodes of the network are unpowered while the rest of the of network remains  
operational. Logic terminals also have extremely low leakage currents when the device is unpowered, so they do  
not load other circuits which may remain powered.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TCAN4550-Q1  
 
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
The UVLO circuit monitors both rising and falling edge of a power rail when ramping and declining.  
8-6. Under Voltage Lockout I and O Level Shifting Devices  
VSUP  
VIO  
VCCOUT  
> UVCCOUT  
< UVCCOUT  
NA  
DEVICE STATE  
BUS  
RXD_INT  
> UVSUP  
> UVSUP  
< UVSUP  
> UVSUP  
< UVSUP  
> UVVIO  
> UVVIO  
> UVVIO  
< UVVIO  
< UVVIO  
Normal  
Per TXD_INT  
High Impedance  
High Impedance  
Recessive  
Mirrors Bus  
Protected  
Protected  
Protected  
Protected  
High (Recessive)  
High (Recessive)  
High Impedance  
High Impedance  
> UVCCOUT  
NA  
High Impedance  
备注  
Once an under-voltage condition and interrupt flags are cleared and the VSUP supply has returned to  
valid level, the device typically needs tMODE_CHANGE to transition to normal operation. The host  
processor should not attempt to send or receive messages until this transition time has expired. If EN  
is low and VSUP has an under-voltage event, the device goes into a protected mode which disables  
the wake-up receiver and places the RXD_INT output into a high impedance state.  
8.4.6.7.3 Fault and M_CAN Core Behavior:  
During a UVIO, UVCCOUT or TSD fault the TCAN4550-Q1 automatically does the following to keep the M_CAN  
core in a known state. A write of 1 to CCCR.INIT will be issued anytime there is a transition from Normal →  
Standby. Any currently pending TX or RX processing is halted. Once the device re-enters Normal mode, a write  
of 0 to CCCR.INIT is issued, and any pending messages (TXBRP active bits) is automatically transmitted.  
8.4.7 CAN FD  
The TCAN4550-Q1 performs CAN communication according to ISO 11898-1:2015 and Bosch CAN protocol  
specification 3.2.1.1.  
8.5 Programming  
The TCAN4550-Q1 uses 32-bit accesses. The TCAN4550-Q1 provides 2K bytes of MRAM that is fully  
configurable for TX/RX buffer/FIFO as needed based upon the system needs. To avoid ECC errors right after  
initialization, the MRAM should be zeroed out during the initialization, power up, power on reset and wake  
events, a process thus ensuring ECC is properly calculated.  
备注  
At power up, MRAM values are unknown and thus ECC values is not valid. It is important that at least  
2 words (8 bytes) of payload data be written into any TX buffer element, even if the DLC is less than 8.  
Failure to do this results in a M_CAN BEU error, which puts the TCAN4550-Q1 device into  
initialization mode, and require user intervention before CAN communication can continue. One way  
to avoid this, the MRAM should be zeroed out after power up, a power on reset or coming out of sleep  
mode.  
MRAM does not refer to Magnetoresistive Random Access Memory, it refers to Message RAM as  
defined the Bosch MCAN definition.  
8.5.1 SPI Communication  
The SPI communication uses a standard SPI interface. Physically the digital interface pins are nCS (Chip Select  
Not), SDI (Slave Data In), SDO (Slave Data Out) and SCLK (SPI Clock). Each SPI transaction is a 32-bit word  
containing a command byte followed by two address bytes and length bytes. The data shifted out on the SDO  
pin for the transaction always starts with the Global Status Register (byte). This register provides the high-level  
status information about the device status. The two data bytes which are the responseto the command byte  
are shifted out next. Data bytes shifted out during a write command is content of the registers prior to the new  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
 
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
data being written and updating the registers. Data bytes shifted out during a read command are the current  
content of the registers and the registers will not be updated.  
The SPI input data on SDI is sampled on the low to high edge of the SCLK. The SPI output data on SDO is  
changed on the high to low edge of the SCLK.  
8.5.1.1 Chip Select Not (nCS):  
This input pin is used to select the device for a SPI transaction. The pin is active low, so while nCS is high the  
SDO pin of the device is high impedance allowing a SPI bus to be designed. When nCS is low the SDO driver is  
activated and communication may be started. The nCS pin is held low for a SPI transaction. A special feature on  
this device allows the SDO pin to immediately show the Global Fault Flag on a falling edge of nCS.  
8.5.1.2 SPI Clock Input (SCLK):  
This input pin is used to input the clock for the SPI to synchronize the input and output serial data bit streams.  
The SPI Data Input is sampled on the rising edge of SCLK and the SPI Data Output is changed on the falling  
edge of the SCLK.  
SPI CLOCKING  
ACTIONs: C = data capture, S = data shift,  
L = load data out, P = process captured data  
MODE 0 (CPOL = 0, CPHA = 0)  
SCLK  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
SDI. SDO  
ACTION  
L
C
S
C
S
C
S
C
S
C
S
C
S
C
S
C
L
C
S
C
S
C
S
C
S
C
S
C
S
C
S
C
P
P
INTERNAL  
CLK  
INTERNAL_CLK = !CS xor CLK  
8-16. SPI Clocking  
8.5.1.3 SPI Data Input (SDI):  
This input pin is used to shift data into the device. Once the SPI is enabled by a low on nCS the SDI samples,  
the input shifted data on each rising edge of the SCLK. The data is shifted into a 32-bit shift register. If the  
command code was a write, the new data is written into the addressed register only after exactly 32 bits have  
been shifted in by SCLK and the nCS has a rising edge to deselect the device. If there are not exactly a multiple  
of 32 bits shifted in to the device, the during one SPI transaction (nCS low) the last word of the transfer is  
ignored, the SPIERR flag is set.  
备注  
Due to needing multiples of 32 bits on each SPI transaction, the device should be wired for parallel  
operation of the SPI as a bus with control to the device via nCS and not as a daisy chain of shift  
registers.  
8.5.1.4 SPI Data Output (SDO):  
This pin is high impedance until the SPI output is enabled via nCS. Once the SPI is enabled by a low on nCS,  
the SDO is immediately driven high or low showing the Global Fault Flag status which is also the first bit (bit 32)  
to be shifted out if the SPI is clocked. Once SCLK begins, on the first low to high edge of the clock, the SDO  
retains the Global Fault Flag which is the first bit (bit 31) shifted out. On the first falling edge of SCLK, the shifting  
out of the data continues with each falling edge on SCLK until all 32 bits have been shifted out the shift register.  
8.5.2 Register Descriptions  
The Addresses for each area of the device are as follows:  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
Register 16'h0000 through 16'h000C are Device ID and SPI Registers  
Register 16'h0800 through 16'h083C are device configuration registers and Interrupt Flags  
Register 16'h1000 through 16'h10FC are for M_CAN  
Register 16'h8000 through 16'h87FF is for MRAM.  
The start address must be word aligned (32-bit). Any time the registers are accessed, bits [1:0] of the address  
are ignored as the addresses are always word (32-bit/4-byte) aligned. As an example for accessing the M_CAN  
registers, for the register 0x1004, give the SPI address 1004, 1005, 1006 or 1007, and access register 1004.  
The registers are 32-bit and only 1004 is valid in this example.  
When entering the MRAM start address, the 0x8000 prefix is not necessary. For example, if the desired start  
address is 0x8634, then bits SA[15:0] is 0x0634.  
8-7 provides programming op Codes.  
8-7. Access Commands  
NAME  
OP CODE  
DESCRIPTION  
USAGE  
< WRITE_B_FL > <2 address bytes>  
<1 length byte>  
WRITE_B_FL (burst: one  
SPI transfer Length: fixed)  
Write one or more  
addresses  
8'h61  
<length words of write data>  
< READ_B_FL > <2 address bytes>  
<1 length byte>  
READ_B_FL (burst: one  
SPI transfer Length: fixed)  
Read one or more internal  
SPI addresses  
8'h41  
<length words of read data>  
Notes:  
The two low order address bits is ignored  
A length of 8h00 indicates 256 words to be transferred  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
WRITE_B_FL  
nCS  
SCLK  
SDI  
LENGTH[7:0]  
=8'H02  
CMD: WRITE_B_FL = 8'h61  
ADDRESS [15:8]  
ADDRESS [7:0]  
SDO  
Reg0820[7:0]  
nCS  
SCLK  
SDI  
DATA_0[31:24]  
DATA_0[23:16]  
DATA_0[15:8]  
DATA_0[7:0]  
SDO  
nCS  
SCLK  
SDI  
DATA_1[31:24]  
DATA_1[23:16]  
DATA_1[15:8]  
DATA_1[7:0]  
SDO  
8-17. Write  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
READ_B_FL  
nCS  
SCLK  
SDI  
CMD: READ_B_FL  
= 8'h41  
LENGTH[7:0]  
=8'H02  
ADDRESS [15:8]  
ADDRESS [7:0]  
SDO  
Reg0820[7:0]  
nCS  
SCLK  
SDI  
SDO  
DATA_0[31:24]  
DATA_0[23:16]  
DATA_0[15:8]  
DATA_0[7:0]  
nCS  
SCLK  
SDI  
SDO  
DATA_1[31:24]  
DATA_1[23:16]  
DATA_1[15:8]  
DATA_1[7:0]  
8-18. Read (Command OpCode 8h41)  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6 Register Maps  
The TCAN4550-Q1 has a comprehensive register set with 32-bit addressing. The register is broken down into  
several sections:  
8.6.1.  
8.6.2.  
8.6.3.  
8.6.4.  
备注  
All addresses are the lower order 16 address bit within the defined 32-bit address space.  
Upper 16 address bits are ignored.  
8.6.1 Device ID and Interrupt/Diagnostic Flag Registers: 16'h0000 to 16'h002F  
This register block provided the device name and revision level. It provides all the interrupt flags as well.  
8-8. Device ID and Interrupt/Diagnostic Flag Registers  
TCAN4550  
VALUE  
ADDRESS  
REGISTER  
ACCESS  
DEVICE_ID[7:0] "T"  
54  
R
R
R
R
R
R
R
R
DEVICE_ID[15:8] "C"  
DEVICE_ID[23:16] "A"  
DEVICE_ID[31:24] "N"  
DEVICE_ID[39:32] "4"  
DEVICE_ID[47:40] "5"  
DEVICE_ID[55:48] "5"  
DEVICE_ID[63:56] "0"  
43  
h0000  
41  
4E  
34  
35  
h0004  
35  
30  
SPI_2_revision, 8h00 (Reserved), REV_ID Major, REV_ID Minor REV_ID  
Major  
00  
00  
R
R
h0008  
h000C  
Status  
8-9. Device Configuration Access Type Codes  
Access Type  
Code  
Description  
Read Type  
R
R
Read  
Write Type  
W
W
W
Write  
Write  
WC  
Reset or Default Value  
-n  
Value after reset or the default value  
Undefined  
U
U
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TCAN4550-Q1  
 
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.1.1 DEVICE_ID1[31:0] (address = h0000) [reset = h4E414354]  
8-19. Device ID1  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
27  
26  
18  
10  
2
25  
17  
9
24  
16  
8
DEVICE_ID1[31:24]  
RO  
20  
19  
DEVICE_ID1[23:16]  
RO  
12  
11  
DEVICE_ID1[15:8]  
RO  
4
3
1
0
DEVICE_ID1[7:0]  
RO  
8-10. Device ID Field Descriptions  
Bit  
31:0  
Field  
DEVICE_ID1[31:0]  
Type  
Reset  
Description  
RO  
h4E414354  
DEVICE_ID1[31:0]  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.1.2 DEVICE_ID2[31:0] (address = h0004) [reset = h30353534]  
8-20. Device ID2  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
27  
26  
18  
10  
2
25  
17  
9
24  
16  
8
DEVICE_ID2[31:24]  
RO  
20  
19  
DEVICE_ID2[23:16]  
RO  
12  
11  
DEVICE_ID2[15:8]  
RO  
4
3
1
0
DEVICE_ID2[7:0]  
RO  
8-11. Device ID Field Descriptions  
Bit  
31:0  
Field  
DEVICE_ID2[31:0]  
Type  
Reset  
Description  
RO  
h30353534  
DEVICE_ID2[63:32]  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.1.3 Revision (address = h0008) [reset = h00110201]  
8-21. Revision  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
27  
26  
18  
10  
2
25  
17  
9
24  
16  
8
SPI_2_REVISION  
RO  
20  
12  
19  
11  
RSVD  
RO  
REV_ID MAJOR  
RO  
4
3
1
0
REV_ID MINOR  
RO  
8-12. Revision Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31:24  
23:16  
15:8  
7:0  
SPI_2_REVISION  
RSVD  
RO  
h00  
Revision version of the SPI module  
Reserved  
RO  
h11  
REV_ID MAJOR  
REV_ID MINOR  
RO  
h02  
Device REV_ID Major  
Device REV_ID Minor  
RO  
h01  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.1.4 Status (address = h000C) [reset = h0000000U]  
8-22. Status  
31  
30  
29  
28  
27  
26  
25  
24  
RSVD  
RO  
Internal_read_e Internal_write_e Internal_error_l Read_fifo_unde Read_fifo_empt Write_fifo_overfl  
rror  
W1C  
21  
rror  
W1C  
20  
og_write  
W1C  
19  
rflow  
W1C  
18  
y
ow  
W1C  
16  
W1C  
17  
23  
22  
RSVD  
RO  
SPI_end_error Invalid_comma Write_overflow write_underflow Read_overflow read_underflow  
nd  
W1C  
13  
W1C  
12  
W1C  
11  
W1C  
10  
W1C  
9
W1C  
8
15  
7
14  
6
RSVD  
RO  
5
4
3
2
1
0
RSVD  
RO  
Write_fifo_avail Read_fifo_avail Internal_access Internal_error_i SPI_error_interr  
Interrupt  
able  
able  
_active  
nterrupt  
upt  
RO  
RO  
RO  
RO  
RO  
RO  
8-13. Status Field Descriptions  
Bit  
Field  
RSVD  
Type  
Reset  
1b0  
1b0  
1b0  
1b0  
1b0  
1b0  
1b0  
1b0  
1b0  
1b0  
1b0  
Description  
31:30  
29  
RO  
Reserved  
Internal_read_error  
Internal_write_error  
Internal_error_log_write  
Read_fifo_underflow  
Read_fifo_empty  
Write_fifo_overflow  
RSVD  
W1C  
W1C  
W1C  
W1C  
W1C  
W1C  
RO  
Internal read received an error response  
Internal write received an error response  
Entry written to the Internal error log  
28  
27  
26  
Read FIFO underflow after 1 or more read data words returned  
Read FIFO empty for first read data word to return  
Write/command FIFO overflow  
25  
24  
23:22  
21  
Reserved  
SPI_end_error  
W1C  
W1C  
W1C  
SPI transfer did not end on a byte boundary  
Invalid SPI command received  
20  
Invalid_command  
Write_overflow  
19  
SPI write sequence had continue requests after the data transfer  
was completed  
18  
17  
16  
write_underflow  
Read_overflow  
read_underflow  
W1C  
W1C  
W1C  
SPI write sequence ended with less data transferred then  
requested  
1b0  
1b0  
1b0  
SPI read sequence had continue requests after the data transfer  
was completed  
SPI read sequence ended with less data transferred then  
requested  
15:8  
7:6  
5
RSVD  
RO  
RO  
RO  
Reserved  
Reserved  
8h00  
1b0  
1b0  
RSVD  
Write_fifo_available  
write fifo empty entries is greater than or equal to the  
write_fifo_threshold  
4
Read_fifo_available  
RO  
Read fifo entries is greater than or equal to the  
read_fifo_threshold  
1b0  
3
2
1
0
Internal_access_active  
Internal_error_interrupt  
SPI_error_interrupt  
Interrupt  
RO  
RO  
RO  
RO  
U
Internal Multiple transfer mode access in progress  
Unmasked Internal error set  
1b0  
1b0  
U
Unmasked SPI error set  
Value of interrupt input level (active high)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.1.5 SPI Error status mask (address = h0010) [reset = h00000000]  
8-23. SPI Error status mask  
31  
30  
29  
28  
27  
26  
25  
24  
RSVD  
RO  
Mask_Internal_r Mask_Internal_ Mask_Internal_ Mask_Read_fifo Mask_Read_fifo Mask_Write_fifo  
ead_error  
write_error  
error_log_write  
_underflow  
_empty  
_overflow  
23  
22  
21  
20  
19  
18  
17  
16  
RSVD  
RO  
Mask_SPI_end Mask_Invalid_c Mask_Write_ov Mask_write_un Mask_Read_ov Mask_read_und  
_error  
ommand  
erflow  
derflow  
erflow  
erflow  
15  
7
14  
6
13  
12  
11  
10  
9
8
RSVD  
RO  
5
4
3
2
1
0
RSVD  
RO  
8-14. SPI Error status mask Field Descriptions  
Bit  
Field  
RSVD  
Type  
RO  
RW  
RW  
RW  
RW  
RW  
RW  
RO  
RW  
RW  
RW  
RW  
RW  
RW  
RO  
RO  
Reset  
1b0  
1b0  
1b0  
1b0  
1b0  
1b0  
1b0  
1b0  
1b0  
1b0  
1b0  
1b0  
1b0  
1b0  
8h00  
8h00  
Description  
31:30  
29  
Reserved  
Mask_Internal_read_error  
Mask_Internal_write_error  
Mask_Internal_error_log_write  
Mask_Read_fifo_underflow  
Mask_Read_fifo_empty  
Mask_Write_fifo_overflow  
RSVD  
When set the corresponding error bit will be masked  
When set the corresponding error bit will be masked  
When set the corresponding error bit will be masked  
When set the corresponding error bit will be masked  
When set the corresponding error bit will be masked  
When set the corresponding error bit will be masked  
Reserved  
28  
27  
26  
25  
24  
23:22  
21  
Mask_SPI_end_error  
Mask_Invalid_command  
Mask_Write_overflow  
Mask_write_underflow  
Mask_Read_overflow  
Mask_read_underflow  
RSVD  
When set the corresponding error bit will be masked  
When set the corresponding error bit will be masked  
When set the corresponding error bit will be masked  
When set the corresponding error bit will be masked  
When set the corresponding error bit will be masked  
When set the corresponding error bit will be masked  
Reserved  
20  
19  
18  
17  
16  
15:8  
7:0  
RSVD  
Reserved  
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.2 Device Configuration Registers: 16'h0800 to 16'h08FF  
Registers not listed are reserved and return h00.  
8-15. Device Configuration Registers  
ADDRESS  
0800  
REGISTER  
VALUE  
ACCESS  
R/W/U  
R/W  
R/W  
R/W/U  
R
Modes of Operation and Pin Configurations  
Timestamp Prescaler  
Read and Write Test Registers  
ECC and TDR Registers  
Reserved  
h'C8000468  
h00000002  
h00000000  
h'00000000  
h'00000000  
h'00000000  
h00000000  
h'00000000  
0804  
0808  
080C 0810  
0814 -081C  
0820  
Interrupt Flags  
R
0824  
MCAN Interrupt Flags  
Reserved  
R
R
0829 082F  
0830  
Interrupt Enable  
R/W  
R
hFFFFFFFF  
Reserved  
h'00000000  
0834 083F  
备注  
The following bits are being saved when entering sleep mode and will show up bold in register maps.  
16'h0800 bits 0, 1, 8, 9, 10, 11, 13, 14, 15, 19, 21, 22, 23, 30 and 31.  
16'h0820 bits 18, 19 and 21  
16'h0830 bits 14 and 15  
8.6.2.1 Modes of Operation and Pin Configuration Registers (address = h0800) [reset = hC8000468]  
8-24. Modes of Operation and Pin Configuration Registers  
31  
WAKE_CONFIG  
R/W  
30  
29  
28  
27  
CLK_REF  
R/W  
26  
RSVD  
R
25  
RSVD  
R
24  
RSVD  
R
WD_TIMER  
R/W  
23  
22  
21  
20  
19  
18  
17  
16  
GPO2_CONFIG  
TEST_MODE_  
EN  
RSVD  
nWKRQ_VOLT WD_BIT_SET  
WD_ACTION  
R/W  
AGE  
R/W  
R/W  
R
12  
R/W  
R/W  
15  
14  
13  
11  
10  
9
8
GPIO1_CONFIG  
FAIL_SAFE_E  
N
RSVD  
GPIO1_GPO_CONFIG  
INH_DIS  
nWKRQ_CONF  
IG  
R/W  
R/W  
5
R
4
R/W  
R/W  
1
R/W  
7
6
3
2
0
MODE_SEL  
R/W/U  
RSVD  
RSVD  
WD_EN  
DEVICE_RESE  
T
SWE_DIS  
TEST_MODE_  
CONFIG  
R
R
R/W/U  
R/W/U  
R/W  
R/W  
8-16. Modes of Operation and Pin Configuration Registers Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
WAKE_CONFIG: Wake pin configuration  
00 = Disabled  
01 = Rising edge  
31:30  
WAKE_CONFIG  
R/W  
2b11  
10 = Falling edge  
11 = Bi-Directional either edge  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: TCAN4550-Q1  
 
 
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8-16. Modes of Operation and Pin Configuration Registers Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
WD_TIMER: Watchdog timer  
00 = 60 ms  
29:28  
WD_TIMER  
R/W  
01 = 600 ms  
2b00  
10 = 3 s  
11 = 6 s  
CLK_REF: CLKIN/Crystal Frequency Reference  
27  
CLK_REF  
RSVD  
R/W  
R
1'b1  
0 = 20 MHz  
1 = 40 MHz  
26:24  
3'b000  
Reserved  
GPO2_CONFIG: GPO2 Pin GPO Configuration  
00 = No Action  
01 = MCAN_INT 0 interrupt (Active low)  
10 = Watchdog output  
23:22  
GPO2_CONFIG  
R/W  
2b00  
11 = Mirrors nINT pin (Active low)  
See NOTE section  
TEST_MODE_EN: Test mode enable. When set device is in test  
mode  
0 = Disabled  
1 = Enabled  
21  
20  
19  
TEST_MODE_EN  
RSVD  
R/W  
R
1'b0  
1'b0  
Reserved  
nWKRQ_VOLTAGE: nWKRQ Pin GPO buffer voltage rail  
configuration:  
0 = Internal voltage rail  
nWKRQ_VOLTAGE  
R/W  
1b0  
1 = VIO voltage rail  
WD_BIT_SET: Write a 1 to reset timer: if times out, this bit will  
set and then the selected action from 0800[17:16] will take  
place. (TCAN4x50 Only otherwise reserved) This is a self-  
clearing bit. Writing a 1 resets the timer and then the bit clears  
18  
WD_BIT_SET  
WD_ACTION  
R/W  
R/W  
1b0  
WD_ACTION: Selected action when WD_TIMER times out  
00 = Set interrupt flag, and if a pin is configure to reflect WD  
output as an interrupt the pin will show a low.  
01 = Pulse INH pin and places the device into standby mode –  
high to low to high 300 ms  
17:16  
2b00  
10 = Pulse watchdog output pin if enabled high to low to high  
300 ms  
11 = Reserved  
NOTE: Interrupt flag is always set for a WD timeout event.  
GPIO1_CONFIG: GPIO1 Pin Function Select  
00 = GPO  
01 = Reserved  
15:14  
GPIO1_CONFIG  
R/W  
2b00  
10 = GPI Automatically becomes a WD input trigger pin.  
11 = Reserved  
FAIL_SAFE_EN: Fail safe mode enable:  
0 = Disabled  
1 = Enabled  
13  
FAIL_SAFE_EN  
R/W  
R
1'b0  
1'b0  
NOTE: Excludes power up fail safe.  
12  
RSVD  
Reserved  
GPIO1_GPO_CONFIG: GPIO1 pin GPO1 function select  
00 = SPI fault Interrupt (Active low)  
11:10  
GPIO1_GPO_CONFIG  
R/W  
01 = MCAN_INT 1 (Active low)  
2b01  
10 = Under voltage or thermal event interrupt (Active low)  
11 = Reserved  
INH_DIS: INH Pin Disable  
0 = Pin enabled  
1 = Pin disabled  
9
8
INH_DIS  
R/W  
R/W  
1'b0  
1'b0  
nWKRQ_CONFIG: nWKRQ Pin Function  
0 = Mirrors INH function  
nWKRQ_CONFIG  
1 = Wake request interrupt  
Copyright © 2022 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8-16. Modes of Operation and Pin Configuration Registers Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
MODE_SEL: Mode of operation select  
00 = Sleep  
01 = Standby  
10 = Normal  
7:6  
MODE_SEL  
R/W  
2'b01  
11 = Reserved  
See NOTE section  
5
4
RSVD  
RSVD  
R
R
1'b1  
1'b0  
If this bit is written to it must be a 1  
Reserved  
WD_EN: Watchdog Enable  
0 = Disabled  
1 = Enabled  
3
2
WD_EN  
R/X/U  
R/WC  
1b1  
DEVICE_RESET: Device Reset  
0 = Current configuration  
1 = Device resets to default  
NOTE: Same function as RST pin  
DEVICE_RESET  
1'b0  
SWE_DIS: Sleep Wake Error Disable:  
0 = Enabled  
1 = Disabled  
NOTE: This disables the device from starting the four-minute  
timer when coming out of sleep mode on a wake event. If this is  
enabled, a SPI read or write must take place within this four  
minute window or the device will go back to sleep. This does not  
disable the function for initial power on or in case of a power on  
reset.  
1
0
SWE_DIS  
R/W  
R/W  
1'b0  
1'b0  
Test Mode Configuration  
0 = Phy Test with TXD/RXD_INT_PHY and EN_INT are mapped  
to external pins  
TEST_MODE_CONFIG  
1 = CAN Controller test with TXD/RXD_INT_CAN mapped to  
external pins  
备注  
The Mode of Operation changes the mode, but will read back the current mode of the device.  
When the device is changing, the device to normal mode a write of 0 to CCCR.INIT is  
automatically issued. When changing from normal mode to standby or sleep modes, a write of 1 to  
CCCR.INIT is automatically issued.  
When GPIO1 is configured as a GPO for interrupts, the interrupts list represent the following and  
are active low:  
00: SPI Fault Interrupt. Matches SPIERR if not masked  
01: MCAN_INT:1 m_can_int1.  
10: Under-Voltage or Thermal Event Interrupt: Logical OR of UVCCOUT, UVSUP , UVVIO, TSD  
faults that are not masked.  
When GPIO1 is configured as a GPO for interrupts, the interrupts list represent the following and  
are active low:  
00: SPI Fault Interrupt. Matches SPIERR if not masked  
01: MCAN_INT:1 m_can_int1.  
10: Under Voltage or Thermal Event Interrupt: Logical OR of UVCCOUT, UVSUP , UVVIO, TSD  
faults that are not masked.  
nWKRQ pin defaults to a push-pull active low configuration based off an internal voltage rail. When  
configuring this to work off of VIO, the pin becomes and open drain output and a external pull-up  
resistor to the VIO rail is required.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.2.2 Timestamp Prescaler (address = h0804) [reset = h00000002]  
8-25. Timestamp Prescaler  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
RSVD  
R
RSVD  
R
1
0
Timestamp Prescaler  
R/W  
8-17. EMC Enhancement and Timestamp Prescaler Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Reserved  
Reserved  
Reserved  
31:24  
23:16  
15:8  
RSVD  
RSVD  
RSVD  
R
8h00  
8h00  
8h00  
R
R
Writing to this register resets the internal timestamp counter to 0  
and will set the internal CAN clock divider used for MCAN  
Timestamp generation to (Timestamp Prescaler x 8)  
7:0  
Timestamp Prescaler  
R/W  
8'h02  
Copyright © 2022 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.2.3 Test Register and Scratch Pad (address = h0808) [reset = h00000000]  
Saved in sleep mode  
8-26. Test and Scratch Pad Register  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
27  
26  
18  
10  
2
25  
17  
9
24  
16  
8
Test Read and Write  
R/W  
20  
19  
Test Read and Write  
R/W  
12  
11  
Scratch Pad 1  
R/W  
4
3
1
0
Scratch Pad 2  
R/W  
8-18. Test and Scratch Pad Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31:24  
23:16  
15:8  
7:0  
Test Read and Write  
Test Read and Write  
Scratch Pad 1  
RW  
Test Read and Write Register  
Test Read and Write Register  
8h00  
8h00  
8h00  
8h00  
R/W  
R/W  
R/W  
Bits 15:8 are saved when device is configured for sleep mode  
Bits 7:0 are saved when device is configured for sleep mode  
Scratch Pad 2  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.2.4 Test Register (address = h080C) [reset = h00000000]  
8-27. Test Register  
31  
30  
29  
21  
28  
20  
12  
27  
26  
18  
25  
17  
24  
16  
RSVD  
R
23  
RSVD  
R
22  
RSVD  
R
19  
ECC_ERR_FORCE_BIT_SEL  
R/W  
15  
14  
13  
11  
10  
9
8
RSVD  
R
RSVD  
ECC_ERR_FO ECC_ERR_CH  
RSVD  
RSVD  
RSVD  
RCE  
R/W  
4
ECK  
R/W  
3
R
5
R
2
R
1
R
0
7
6
RSVD  
R
8-19. Test Register Field Descriptions  
Bit  
Field  
Type  
Reset  
8h00  
2'b00  
Description  
Reserved  
Reserved  
31:24  
23:22  
RSVD  
RSVD  
R
R
ECC_ERR_FORCE_BIT_SEL  
000000 = Bit 0  
000001 = Bit 1  
....  
6’  
b000000  
21:16  
ECC_ERR_FORCE_BIT_SEL  
R/W  
100110 = Bit 38  
All other bit combinations are Reserved  
15:13  
12  
RSVD  
R
Reserved  
3b000  
1b0  
ECC_ERR_FORCE  
0 = No Force  
ECC_ERR_FORCE  
R/W  
1 = Force a single bit ECC error  
ECC_ERR_CHECK  
11  
ECC_ERR_CHECK  
R/W  
0 = No Single Bit ECC error detected  
1 = Single Bit ECC error detected  
1b0  
10  
RSVD  
RSVD  
R
R
1b'0  
Reserved  
10'b000 Reserved  
0000000  
9:0  
Copyright © 2022 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.3 Interrupt/Diagnostic Flag and Enable Flag Registers: 16'h0820/0824 and 16'h0830  
This register block provides all the interrupt flags for the device. As the M-CAN interrupt flags 16'h0824 are  
described in 16'h1050 MCAN register description section and will be shown here but need to go to 16'h1050 for  
description. 16h0830 is Interrupt enable to trigger an interrupt for 16'h0820.  
8.6.3.1 Interrupts (address = h0820) [reset = h00100000]  
8-28. Interrupts  
31  
30  
RSVD  
R
29  
RSVD  
R
28  
RSVD  
R
27  
RSVD  
R
26  
RSVD  
R
25  
24  
RSVD  
R
CANBUSNOM  
RSVD  
RU  
R
23  
22  
21  
20  
19  
18  
17  
16  
SMS  
UVSUP  
R/WC  
14  
UVIO  
R/WC  
13  
PWRON  
R/WC/U  
12  
TSD  
R/WC  
11  
WDTO  
RU/WC  
10  
RSVD  
ECCERR  
R/WC  
8
R
R
15  
9
CANINT  
LWU  
R/WC  
6
WKERR  
R/WC  
5
RSVD  
R
RSVD  
R
CANSLNT  
R/WC  
2
RSVD  
CANDOM  
R/WC  
0
R/WC  
R
7
GLOBALERR  
R
4
3
1
M_CAN_INT  
R
nWKRQ  
R
CANERR  
R
RSVD  
R
SPIERR  
R
RSVD  
R
VTWD  
R
8-20. Interrupts Field Descriptions  
Bit  
31  
Field  
CANBUSNOM  
Type  
Reset Description  
CAN Bus normal (Flag and Not Interrupt)  
RU  
1'b0  
Will change to 1 when in normal mode after first Dom to Rec  
transition  
30:24  
23  
RSVD  
SMS  
R
7b'0000 Reserved  
000  
R/WC  
1'b0  
Sleep Mode Status (Flag & Not an interrupt) Only sets when  
sleep mode is entered by a WKERR, UVIO timeout, or  
UVIO+TSD fault  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
UVSUP  
UVIO  
R/WC  
R/WC  
1'b0  
1'b0  
Under-Voltage VSUP and UVCCOUT  
Under-Voltage VIO  
Power ON  
PWRON  
TSD  
R/WC/U 1'b1  
R/WC 1'b0  
RU/WC 1'b0  
Thermal Shutdown  
Watchdog Time Out  
Reserved  
WDTO  
RSVD  
R
1'b0  
1'b0  
1'b0  
1'b0  
1'b0  
1'b0  
1'b0  
1'b0  
1'b0  
1'b0  
1'b0  
1'b0  
1'b0  
1'b0  
ECCERR  
CANINT  
LWU  
R/WC  
R/WC  
R/WC  
R/WC  
R
Uncorrectable ECC error detected  
Can Bus Wake-Up Interrupt  
Local Wake-Up  
Wake Error  
WKERR  
RSVD  
Reserved  
RSVD  
R
Reserved  
CANSLNT  
RSVD  
R/WC  
R
CAN Silent  
Reserved  
8
CANDOM  
GLOBALERR  
WKRQ  
R/WC  
R
CAN Stuck Dominant  
Global Error (Any Fault)  
Wake Request  
7
6
R
5
CANERR  
RSVD  
R
CAN Error  
4
R
RSVD  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: TCAN4550-Q1  
 
 
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8-20. Interrupts Field Descriptions (continued)  
Bit  
3
Field  
Type  
Reset Description  
SPIERR  
RSVD  
R
1'b0  
1'b0  
1'b0  
1'b0  
SPI Error  
2
R
Reserved  
1
M_CAN_INT  
VTWD  
R
M_CAN global INT  
Global Voltage, Temp or WDTO  
0
R
GLOBALERR: Logical OR of all faults in registers 0x0820-0824.  
WKRQ: Logical OR of CANINT, LWU and WKERR.  
CANBUSNOM is not an interrupt but a flag. In normal mode after the first dominant-recessive transition it will set.  
It will reset to 0 when entering Standby or Sleep modes or when a bus fault condition takes place in normal  
mode.  
CANERR: Logical OR of CANSLNT and CANDOM faults.  
SPIERR: Will be set if any of the SPI status register 16'h000C[30:16] is set.  
In the event of a SPI underflow, the error is not detected/alerted until the start of the next SPI transaction.  
16'h0010[30:16] are the mask for these errors  
VTWD: Logical or of UVCCOUT, UVSUP, UVVIO, TSD, WDTO (Watchdog time out) and ECCERR.  
CANINT: Indicates a WUP has occurred; Once a CANINT flag is set, LWU events will be ignored. Flag can be  
cleared by changing to Normal or Sleep modes.  
LWU: Indicates a local wake event, from toggling the WAKE pin, has occurred. Once a LWU flag is set, CANINT  
events will be ignored. Flag can be cleared by changing to Normal or Sleep modes.  
WKERR: If the device receives a wake-up request WUP and does not transition to Normal mode or clear the  
PWRON or Wake flag before tINACTIVE, the device will transition to Sleep Mode. After the wake event, a Wake  
Error (WKERR) will be reported and the SMS flag will be set to 1.  
备注  
PWRON Flag is cleared by either writing a 1 or by going to sleep mode or normal mode from standby  
mode.  
Copyright © 2022 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.3.2 MCAN Interrupts (address = h0824) [reset = h00000000]  
8-29. MCAN Interrupts  
31  
30  
29  
ARA  
R
28  
PED  
R
27  
PEA  
R
26  
WDI  
R
25  
BO  
R
24  
EW  
R
RSVD  
R
23  
EP  
R
22  
ELO  
R
21  
20  
19  
18  
17  
16  
BEU  
R
BEC  
R
DRX  
R
TOO  
R
MRAF  
R
TSW  
R
15  
14  
13  
12  
11  
10  
9
8
TEFL  
R
TEFF  
R
TEFW  
R
TEFN  
R
TFE  
R
TCF  
R
TC  
R
HPM  
R
7
6
5
4
3
2
1
0
RF1L  
R
RF1F  
R
RF1W  
R
RF1N  
R
RF0L  
R
RF0F  
R
RF0W  
R
RF0N  
R
8-21. MCAN Interrupts Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31:30  
29  
RSVD  
ARA  
PED  
PEA  
R
1'b0  
Reserved  
R
1'b0  
ARA: Access to Reserved Address  
28  
R
1'b0  
PED: Protocol Error in Data Phase (Data Bit Time is used)  
27  
R
PEA: Protocol Error in Arbitration Phase (Nominal Bit Time is  
used)  
1b0  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
WDI  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
1'b0  
1'b0  
1'b0  
1'b0  
1'b0  
1'b0  
1'b0  
1b0  
1'b0  
1'b0  
1'b0  
1'b0  
1'b0  
1'b0  
1'b0  
1b0  
1'b0  
1'b0  
1'b0  
1'b0  
1'b0  
1'b0  
1'b0  
1b0  
1'b0  
WDI: Watchdog Interrupt  
BO  
BO: Bus_Off Status  
EW  
EW: Warning Status  
EP  
EP: Error Passive  
ELO  
BEU  
BEC  
DRX  
TOO  
MRAF  
TSW  
TEFL  
TEFF  
TEFW  
TEFN  
TFE  
ELO: Error Logging Overflow  
BEU: Bit Error Uncorrected  
BEC: Bit Error Corrected  
DRX: Message stored to Dedicated Rx Buffer  
TOO: Timeout Occurred  
MRAF: Message RAM Access Failure  
TSW: Timestamp Wraparound  
TEFL: Tx Event FIFO Element Lost  
TEFF: Tx Event FIFO Full  
TEFW: Tx Event FIFO Watermark Reached  
TEFN: Tx Event FIFO New Entry  
TFE: Tx FIFO Empty  
TCF  
TCF: Transmission Cancellation Finished  
TC: Transmission Completed  
HPM: High Priority Message  
RF1L: Rx FIFO 1 Message Lost  
RF1F: Rx FIFO 1 Full  
TC  
8
HPM  
RF1L  
RF1F  
RF1W  
RF1N  
RF0L  
RF0F  
7
6
5
RF1W: Rx FIFO 1 Watermark Reached  
RF1N: Rx FIFO 1 New Message  
RF0L: Rx FIFO 0 Message Lost  
RF0F: Rx FIFO 0 Full  
4
3
2
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8-21. MCAN Interrupts Field Descriptions (continued)  
Bit  
1
Field  
Type  
Reset  
Description  
RF0W  
RF0N  
R
1'b0  
RF0W: Rx FIFO 0 Watermark Reached  
RF0N: Rx FIFO 0 New Message  
0
R
1'b0  
Copyright © 2022 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.3.3 Interrupt Enables (address = h0830 ) [reset = hFFFFFFFF]  
8-30. 32-bit, 4 Rows  
31  
RSVD  
R
30  
RSVD  
R
29  
RSVD  
R
28  
RSVD  
R
27  
RSVD  
R
26  
25  
RSVD  
R
24  
RSVD  
RSVD  
R
R
23  
22  
21  
20  
19  
18  
RSVD  
R
17  
16  
RSVD  
R
UVSUP  
R/W  
14  
UVIO  
R/W  
13  
RSVD  
R
TSD  
R/W  
11  
RSVD  
R
ECCERR  
R/W  
15  
12  
10  
9
8
CANINT  
R/W  
7
LWU  
R/W  
6
RSVD  
R
RSVD  
R
RSVD  
R
CANSLNT  
R/W  
2
RSVD  
R
CANDOM  
R
0
5
4
3
1
RSVD  
R
8-22. Interrupt Enables Field Descriptions  
Bit  
31:24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
Field  
Type  
Reset  
8'hFF  
1'b1  
1'b1  
1'b1  
1'b1  
1'b1  
1'b1  
1'b1  
1'b1  
1'b1  
1'b1  
1'b1  
1'b1  
1'b1  
1'b1  
1'b1  
1'b1  
8hFF  
Description  
RSVD  
RSVD  
UVSUP  
UVIO  
R
Reserved  
R
Reserved  
R/W  
R/W  
R
Under-Voltage VSUP and UVCC  
Under-Voltage VIO  
Reserved  
RSVD  
TSD  
R/W  
R
Thermal Shutdown  
Reserved  
RSVD  
RSVD  
ECCERR  
CANINT  
LWU  
R
Reserved  
R/W  
R/W  
R/W  
R
Uncorrectable ECC error detected  
Can Bus Wake-Up Interrupt  
Local Wake-Up  
Reserved  
RSVD  
RSVD  
RSVD  
R
Reserved  
R
Reserved  
10  
9
CANSLNT  
RSVD  
R/W  
R
CAN Silent  
Reserved  
8
CANDOM  
RSVD  
R/W  
R
CAN Stuck Dominant  
Reserved  
7:0  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4 CAN FD Register Set: 16'h1000 to 16'h10FF  
The following tables provide the CAN FD programming register sets starting at 16'h1000.  
The MRAM and start address for the following registers has special consideration:  
SIDFC (0x1084)  
XIDFC (0x1088)  
RXF0C (0x10A0)  
RXF1C (0x10B0)  
TXBC (0x10C0)  
TXEFC (0x10F0)  
The start address must be word aligned (32-bit) in the MRAM. The 2 least significant bits are ignored on a write  
to ensure this behavior.  
When entering the MRAM start address, the 0x8000 prefix is NOT necessary. For example, if the desired start  
address is 0x8634, then bits SA[15:0] will be 0x0634.  
8-23. Legend  
Code  
Description  
R
C
d
Read  
Clear on Write  
date  
n
Value after Reset  
Protected Set  
Protected Write  
Release  
p
P
r
S
t
Set on Read  
Test Value  
Undefined  
Write  
U
W
X
Reset on Read  
8-24. CAN FD Register Set  
ADDRESS  
1000  
1004  
1008  
100C  
1010  
1014  
1018  
101C  
1020  
1024  
1028  
102C  
1030  
1034  
1038  
103C  
1040  
SYMBOL  
CREL  
ENDN  
CUST  
DBTP  
TEST  
RWD  
NAME  
RESET  
ACC  
R
Core Release Register  
rrrd dddd  
Endian Register  
8765 4321  
0000 0000  
0000 0A33  
0000 0000  
0000 0000  
0000 0019  
0600 0A03  
0000 0000  
0000 0000  
FFFF 0000  
0000 FFFF  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
R
Customer Register  
R
Data Bit Timing & Prescaler Register  
Test Register  
RP  
RP  
RP  
RWPp  
RP  
RP  
RC  
RP  
RC  
R
RAM Watchdog  
CCCR  
NBTP  
TSCC  
TSCV  
TOCC  
TOCV  
RSVD  
RSVD  
RSVD  
RSVD  
ECR  
CC Control Register  
Nominal Bit Timing & Prescaler Register  
Timestamp Counter Configuration  
Timestamp Counter Value  
Timeout Counter Configuration  
Timeout Counter Value  
Reserved  
Reserved  
R
Reserved  
R
Reserved  
R
Error Counter Register  
RX  
Copyright © 2022 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8-24. CAN FD Register Set (continued)  
ADDRESS  
1044  
1048  
104C  
1050  
1054  
1058  
105C  
1060  
1064  
1068  
106C  
1070  
1074  
1078  
107C  
1080  
1084  
1088  
108C  
1090  
1094  
1098  
109C  
10A0  
10A4  
10A8  
10AC  
10B0  
10B4  
10B8  
10BC  
10C0  
10C4  
10C8  
10CC  
10D0  
10D4  
10D8  
10DC  
10E0  
10E4  
10E8  
10EC  
10F0  
10F4  
SYMBOL  
PSR  
NAME  
RESET  
ACC  
RXS  
RP  
R
Protocol Status Register  
0000 0707  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
1FFF FFFF  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
TDCR  
RSVD  
IR  
Transmitter Delay Compensation Register  
Reserved  
Interrupt Register  
RW  
RW  
RW  
RW  
R
IE  
Interrupt Enable  
ILS  
Interrupt Line Select  
Interrupt Line Enable  
Reserved  
ILE  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
GFC  
Reserved  
R
Reserved  
R
Reserved  
R
Reserved  
R
Reserved  
R
Reserved  
R
Reserved  
R
Global Filter Configuration  
Standard ID Filter Configuration  
Extended ID Filter Configuration  
Reserved  
RP  
RP  
RP  
R
SIDFC  
XIDFC  
RSVD  
XIDAM  
HPMS  
NDAT1  
NDAT2  
RXF0C  
RXF0S  
RXF0A  
RXBC  
RXF1C  
RXF1S  
RXF1A  
RXESC  
TXBC  
TXFQS  
TXESC  
TXBRP  
TXBAR  
TXBCR  
TXBTO  
TXBCF  
TXBTIE  
TXBCIE  
RSVD  
RSVD  
TXEFC  
TXEFS  
Extended ID and MASK  
High Priority Message Status  
New Data 1  
RP  
R
RW  
RW  
RP  
R
New Data 2  
Rx FIFO 0 Configuration  
Rx FIFO 0 Status  
Rx FIFO 0 Acknowledge  
Rx Buffer Configuration  
Rx FIFO 1 Configuration  
Rx FIFO 1 Status  
RW  
RP  
RP  
R
Rx FIFO 1 Acknowledge  
Rx Buffer/FIFO Element Size Configuration  
Tx Buffer Configuration  
Tx FIFO/Queue Status  
Tx Buffer Element Size Configuration  
Tx Buffer Request Pending  
Tx Buffer Add Request  
Tx Buffer Cancellation Request  
Tx Buffer Transmission Occurred  
Tx Buffer Cancellation Finished  
Tx Buffer Transmission Interrupt Enable  
Tx Buffer Cancellation Finished Interrupt Enable  
Reserved  
RW  
RP  
RP  
R
RP  
R
RW  
RW  
R
R
RW  
RW  
R
Reserved  
R
Tx Event FIFO Configuration  
Tx Event FIFO Status  
RP  
R
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8-24. CAN FD Register Set (continued)  
ADDRESS  
10F8  
SYMBOL  
TXEFA  
RSVD  
NAME  
RESET  
ACC  
RW  
R
Tx Event FIFO Acknowledge  
0000 0000  
0000 0000  
10FC  
Reserved  
8-25. CAN FD Register Set Description  
MSB  
Offset  
Name  
Bit Pos.  
7:0  
LSB  
Access  
Day[7:0] (two digit, BCD-Coded)  
R
R
R
R
R
R
R
R
15:8  
23:16  
31:24  
7:0  
Month[15:8] (two digit, BCD-Coded)  
1000  
CREL  
ENDN  
CUST  
DBTP  
TEST  
RWD  
SUBSTEP[7:4] (One digit, BCD-Coded)  
REL[7:4] (One digit, BCD-Coded)  
Year[3:0] (one digit, BCD-Coded)  
STEP[3:0] (one digit, BCD-Coded)  
ETV[7:0] (Endianness Test Value)  
15:8  
23:16  
31:24  
7:0  
ETV[15:8] (Endianness Test Value)  
ETV[23:16] (Endianness Test Value)  
ETV[31:24] (Endianness Test Value)  
1004  
1008  
100C  
1010  
1014  
1018  
101C  
1020  
1024  
1028  
15:8  
23:16  
31:24  
7:0  
DTSEG2(Data Time Seg before Sample Point)  
Reserved  
Reserved  
DSJW (Data (Re)Synchronization Jump Width)  
RP  
RP  
RP  
R
15:8  
23:16  
31:24  
7:0  
DTSEG1(Data Time Seg before Sample Point)  
DBRP (Data Bit Rate Prescaler)  
TDC  
Reserved  
RX  
TX  
LBCK  
Reserved  
RP-U  
R
15:8  
23:16  
31:24  
7:0  
Reserved  
Reserved  
Reserved  
R
R
WDC (Watchdog Configuration)  
WDV (Watchdog Counter Value)  
Reserved  
RP  
R
15:8  
23:16  
31:24  
7:0  
R
Reserved  
R
TEST  
NISO  
DAR  
TXP  
MON  
EFBI  
CSR  
CSA  
ASM  
CCE  
INIT  
RWp  
RP  
R
15:8  
23:16  
31:24  
7:0  
PXHD  
Reserved  
BRSE  
FDOE  
CCCR  
NBTP  
TSCC  
TSCV  
TOCC  
Reserved  
Reserved  
R
Reserved  
NTSEG2 (Nominal time Segment After Sample Point)  
RP  
RP  
RP  
15:8  
23:16  
31:24  
7:0  
NTSEG1 (Nominal Time Segment Before Sample Point)  
NBRP[7:0] (Nominal Bit Rate Prescaler)  
NSJW[6;0] (Nominal (RE)Synchronization Jump Width)  
NBRP[8]  
TSS[1:0] Timestamp Select  
RP  
RP  
R
Reserved  
Reserved  
15:8  
23:16  
31:24  
7:0  
Reserved  
TCP (Timestamp Counter Prescaler)  
RP  
R
Reserved  
RC  
RC  
R
TSC[15:0] (Timestamp Counter)  
15:8  
23:16  
31:24  
7:0  
Reserved  
Reserved  
R
Reserved  
TOS (Timeout SEL)  
ETOC  
RP  
R
15:8  
23:16  
31:24  
7:0  
Reserved  
RP  
RP  
RC  
RC  
R
TOP[15:0] (Timeout Period)  
TOC[15:0] (Timeout Counter)  
15:8  
23:16  
31:24  
31:0  
102C  
TOCV  
RSVD  
Reserved  
Reserved  
Reserved  
R
R
1030 103C  
Copyright © 2022 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8-25. CAN FD Register Set Description (continued)  
Offset  
Name  
Bit Pos.  
7:0  
MSB  
LSB  
Access  
R
TEC (Transmit Error Counter)  
REC (Receive Error Counter)  
CEL (CAN Error Logging)  
Reserved  
15:8  
23:16  
31:24  
7:0  
R
1040  
ECR  
X
R
BO  
EW  
EP  
ACT (Activity)  
LEC (Last Error Code)  
DLEC (Data Phase Last Error Code)  
RS  
RSX  
R
15:8  
23:16  
31:24  
7:0  
Reserved  
Reserved  
PXE  
RFDF  
RBRS  
RESI  
1044  
PSR  
TDCV[6:0] (Transmitter Delay Compensation Value)  
Reserved  
R
Reserved  
Reserved  
TDCF (Transmitter Delay Compensation Filter Window Length)  
RP  
RP  
R
15:8  
23:16  
31:24  
31:0  
7:0  
TDCO (Transmitter Delay Compensation Offset)  
1048  
104C  
1050  
TDCR  
RSVD  
IR  
Reserved  
Reserved  
Reserved  
R
R
RF1L  
TEFL  
EP  
RF1F  
TEFF  
ELO  
RF1W  
TEFW  
BEU  
RF1N  
TEFN  
BEC  
RF0L  
TFE  
RF0F  
TCF  
RF0W  
TC  
RF0N  
HPM  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
15:8  
23:16  
31:24  
7:0  
DRX  
TOO  
MRAF  
BO  
TSW  
Reserved  
ARA  
PED  
PEA  
WDI  
EW  
RF1LE  
TEFLE  
EPE  
RF1FE  
TEFFE  
ELOE  
RF1WE  
TEFWE  
BEUE  
ARAE  
RF1WL  
TEFWL  
BEUL  
RF1NE  
TEFNE  
BECE  
PEDE  
RF1NL  
TEFNL  
BECL  
PEDL  
RF0LE  
TFEE  
DRXE  
PEAE  
RF0LL  
TFEL  
DRXL  
PEAL  
RF0FE  
TCFE  
TOOE  
WDIE  
RF0FL  
TCFL  
TOOL  
WDIL  
RF0WE  
TCE  
RF0NE  
HPME  
TSWE  
EWE  
15:8  
23:16  
31:24  
7:0  
1054  
1058  
IE  
MRAFE  
BOE  
Reserved  
RF1LL  
TEFLL  
EPL  
RF1FL  
TEFFL  
ELOL  
RF0WL  
TCL  
RF0NL  
HPML  
TSWL  
EWL  
15:8  
23:16  
31:24  
7:0  
ILS  
MRAFL  
BOL  
Reserved  
ARAL  
Reserved  
EINT1  
EINT0  
15:8  
23:16  
31:24  
31:0  
7:0  
Reserved  
105C  
1060 107C  
1080  
ILE  
RSVD  
GFC  
Reserved  
Reserved  
Reserved  
R
R
R
Reserved  
ANFS  
ANFE  
RRFS  
RRFE  
RP  
R
15:8  
23:16  
31:24  
7:0  
Reserved  
Reserved  
Reserved  
R
R
FLSS[7:2] (Filter List Standard Start Address)  
Reserved  
RP  
RP  
RP  
R
15:8  
23:16  
31:24  
7:0  
FLSS[15:8] (Filter List Standard Start Address)  
LSS (List Size Standard)  
Reserved  
1084  
SIDFC  
FLESA[7:2] (Filter List Extended Start Address)  
Reserved  
RP  
RP  
RP  
R
15:8  
23:16  
31:24  
31:0  
7:0  
FLESA[15:8] (Filter List Extended Start Address)  
LSE (List Size Extended)  
1088  
108C  
1090  
XIDFC  
RSVD  
XIDAM  
Reserved  
Reserved  
Reserved  
R
EIDM[7:0] (Extended ID AND MASK)  
EIDM[15:8] (Extended ID AND MASK)  
EIDM[23:16] (Extended ID AND MASK)  
RP  
RP  
RP  
RP  
15:8  
23:16  
31:24  
Reserved  
EIDM[28:24] (Extended ID AND MASK)  
BIDX (Buffer Index)  
MSI (Message Storage  
Index)  
7:0  
R
15:8  
23:16  
31:24  
FLST  
FIDX (Filter Index)  
Reserved  
R
R
R
1094  
HPMS  
Reserved  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8-25. CAN FD Register Set Description (continued)  
Offset  
Name  
Bit Pos.  
7:0  
MSB  
LSB  
ND0  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RP  
RP  
RP  
RP  
R
ND7  
ND6  
ND5  
ND4  
ND3  
ND2  
ND1  
ND9  
15:8  
23:16  
31:24  
7:0  
ND15  
ND23  
ND31  
ND39  
ND47  
ND55  
ND63  
ND14  
ND22  
ND30  
ND38  
ND46  
ND54  
ND62  
ND13  
ND21  
ND29  
ND37  
ND45  
ND53  
ND61  
ND12  
ND20  
ND28  
ND36  
ND44  
ND52  
ND60  
ND11  
ND19  
ND27  
ND35  
ND43  
ND51  
ND59  
ND10  
ND18  
ND26  
ND34  
ND42  
ND50  
ND58  
ND8  
1098  
NDAT1  
ND17  
ND25  
ND33  
ND41  
ND49  
ND57  
ND16  
ND24  
ND32  
ND40  
ND48  
ND56  
15:8  
23:16  
31:24  
7:0  
109C  
10A0  
10A4  
10A8  
10AC  
10B0  
10B4  
10B8  
10BC  
10C0  
10C4  
10C8  
NDAT2  
RXF0C  
RXF0S  
RXF0A  
RXBC  
F0SA[7:2] (RX FIFO 0 Start Address)  
Reserved  
15:8  
23:16  
31:24  
7:0  
F0SA[15:8] (RX FIFO 0 Start Address)  
F0S (RX FIFO 0 Size)  
Reserved  
F0OM  
F0WM (RX FIFO 0 Watermark)  
Reserved  
15:8  
23:16  
31:24  
7:0  
Reserved  
R
Reserved  
Reserved  
R
Reserved  
R
F0A (RX FIFO 0 Acknowledge Index)  
R/W  
R
15:8  
23:16  
31:24  
7:0  
Reserved  
Reserved  
Reserved  
R
R
RBSA[7:2] (RX Buffer Configuration)  
RBSA[15:8] (RX Buffer Configuration)  
Reserved  
Reserved  
RP  
RP  
R
15:8  
23:16  
31:24  
7:0  
Reserved  
Reserved  
R
F1SA[7:2] (RX FIFO 1 Start Address)  
RP  
RP  
RP  
RP  
R
15:8  
23:16  
31:24  
7:0  
F1SA[15:8] (RX FIFO 1 Start Address)  
RXF1C  
RXF1S  
RXF1A  
RXESC  
TXBC  
Reserved  
F1S (RX FIFO 1 Size)  
F1WM (RX FIFO 1 Watermark)  
F1FL (RX FIFO 1 Fill Level)  
F1GI (RX FIFO 1 Get Index)  
F1PI (RX FIFO 1 Put Index)  
Reserved  
F1OM  
Reserved  
15:8  
23:16  
31:24  
7:0  
Reserved  
Reserved  
R
R
DMS (Data Message Status)  
Reserved  
RF1L  
F1F  
R
F1AI (RX FIFO 1 Acknowledge Index)  
Reserved  
R/W  
R
15:8  
23:16  
31:24  
7:0  
Reserved  
R
Reserved  
R
Reserved  
F1DS (RX FIFO 1 Data Field Size)  
Reserved  
Reserved  
F0DS (RX FIFO 0 Data Field Size)  
RBDS (RX Buffer Data Field Size)  
RP  
RP  
R
15:8  
23:16  
31:24  
7:0  
Reserved  
Reserved  
TBSA[7:2] (TX Buffer Start Address)  
TBSA[15:8] (TX Buffer Start Address)  
NDTB (Number of Dedicated Transmit Buffers)  
R
Reserved  
RP  
RP  
RP  
RP  
R
15:8  
23:16  
31:24  
7:0  
Reserved  
Reserved TFQM  
Reserved  
Reserved  
Reserved  
TFQS (Transmit FIFO/Queue Size)  
TFFL (TX FIFO Free Level)  
15:8  
23:16  
31:24  
7:0  
TFGI (TX FIFO Get Index)  
R
TXQFS  
TXESC  
TFQF  
TFQP (TX FIFO/Queue Put Index)  
R
Reserved  
R
Reserved  
TBDS (TX Buffer Data Field Size)  
RP  
R
15:8  
23:16  
31:24  
Reserved  
Reserved  
Reserved  
R
R
Copyright © 2022 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8-25. CAN FD Register Set Description (continued)  
Offset  
Name  
Bit Pos.  
7:0  
MSB  
TRP7  
TRP15  
TRP23  
TRP31  
AR7  
LSB  
TRP0  
TRP8  
TRP16  
TRP24  
AR0  
Access  
R
TRP6  
TRP14  
TRP22  
TRP30  
AR6  
TRP5  
TRP13  
TRP21  
TRP29  
AR5  
TRP4  
TRP12  
TRP20  
TRP28  
AR4  
TRP3  
TRP11  
TRP19  
TRP27  
AR3  
TRP2  
TRP10  
TRP18  
TRP26  
AR2  
TRP1  
TRP9  
TRP17  
TRP25  
AR1  
15:8  
23:16  
31:24  
7:0  
R
10CC  
TXBRP  
R
R
R/W  
R/W  
R/W  
R/W  
RW  
RW  
RW  
RW  
R
15:8  
23:16  
31:24  
7:0  
AR15  
AR23  
AR31  
CR7  
AR14  
AR22  
AR30  
CR6  
AR13  
AR21  
AR29  
CR5  
AR12  
AR20  
AR28  
CR4  
AR11  
AR19  
AR27  
CR3  
AR10  
AR18  
AR26  
CR2  
AR9  
AR8  
10D0  
10D4  
10D8  
10DC  
TXBAR  
TXBCR  
TXBTO  
TXBCF  
AR17  
AR25  
CR1  
AR16  
AR24  
CR0  
15:8  
23:16  
31:24  
7:0  
CR15  
CR23  
CR31  
TO7  
CR14  
CR22  
CR30  
TO6  
CR13  
CR21  
CR29  
TO5  
CR12  
CR20  
CR28  
TO4  
CR11  
CR19  
CR27  
TO3  
CR10  
CR18  
CR26  
TO2  
CR9  
CR8  
CR17  
CR25  
TO1  
CR16  
CR24  
TO0  
15:8  
23:16  
31:24  
7:0  
TO15  
TO23  
TO31  
CF7  
TO14  
TO22  
TO30  
CF6  
TO13  
TO21  
TO29  
CF5  
TO12  
TO20  
TO28  
CF4  
TO11  
TO19  
TO27  
CF3  
TO10  
TO18  
TO26  
CF2  
TO9  
TO8  
R
TO17  
TO25  
CF1  
TO16  
TO24  
CF0  
R
R
R
15:8  
23:16  
31:24  
7:0  
CF15  
CF23  
CF31  
TIE7  
CF14  
CF22  
CF30  
TIE6  
CF13  
CF21  
CF29  
TIE5  
CF12  
CF20  
CF28  
TIE4  
CF11  
CF19  
CF27  
TIE3  
CF10  
CF18  
CF26  
TIE2  
CF9  
CF8  
R
CF17  
CF25  
TIE1  
CF16  
CF24  
TIE0  
R
R
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
15:8  
23:16  
31:24  
7:0  
TIE15  
TIE23  
TIE31  
CFIE7  
CFIE15  
CFIE23  
CFIE31  
TIE14  
TIE22  
TIE30  
CFIE6  
CFIE14  
CFIE22  
CFIE30  
TIE13  
TIE21  
TIE29  
CFIE5  
CFIE13  
CFIE21  
CFIE29  
TIE12  
TIE20  
TIE28  
CFIE4  
CFIE12  
CFIE20  
CFIE28  
TIE11  
TIE19  
TIE27  
CFIE3  
CFIE11  
CFIE19  
CFIE27  
TIE10  
TIE18  
TIE26  
CFIE2  
CFIE10  
CFIE18  
CFIE26  
TIE9  
TIE8  
10E0  
TXBTIE  
TIE17  
TIE25  
CFIE1  
CFIE9  
CFIE17  
CFIE25  
TIE16  
TIE24  
CFIE0  
CFIE8  
CFIE16  
CFIE24  
15:8  
23:16  
31:24  
31:0  
7:0  
10E4  
10E8 - 10EC  
10F0  
TXBCIE  
RSVD  
Reserved  
EFSA[7:2] (Event FIFO Start Address)  
EFSA[15:8] (Event FIFO Start Address)  
Reserved  
RP  
RP  
RP  
RP  
15:8  
23:16  
31:24  
7:0  
TXEFC  
Reserved  
EFS (Event FIFO Size)  
EFWM (Event FIFO Watermark)  
EFFL (Event FIFO Fill Level)  
Reserved  
Reserved  
15:8  
23:16  
31:24  
7:0  
Reserved  
EFGI (Event FIFO Get Index)  
EFPI (Event FIFO Put Index)  
10F4  
TXEFS  
Reserved  
Reserved  
Reserved  
TEFL  
EFA (Event FIFO Acknowledge Index)  
EFF  
R
RW  
R
15:8  
23:16  
31:24  
31:0  
Reserved  
Reserved  
Reserved  
Reserved  
10F8  
10FC  
TXEFA  
RSVD  
R
R
R
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.1 Core Release Register (address = h1000) [reset = hrrrddddd]  
8-31. Core Release Register  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
REL[3:0]  
R
STEP[3:0]  
R
SUBSTEP[3:0]  
R
YEAR[3:0]  
R
MONTH[7:0]  
R
1
0
DAY[7:0]  
R
8-26. Core Release Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31:28  
27:24  
23:20  
19:16  
15:8  
REL[3:0]  
STEP[3:0]  
R
r
one digit, BCD-coded  
one digit, BCD-coded  
one digit, BCD-coded  
one digit, BCD-coded  
two digit, BCD-coded  
two digit, BCD-coded  
R
r
SUBSTEP[3:0]  
YEAR[3:0]  
R
r
R
d
d
d
MONTH[7:0]  
DAY[7:0]  
R
7:0  
R
Copyright © 2022 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.2 Endian Register (address = h1004) [reset = h87654321]  
8-32. Endian Register  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
ETV[31:24]  
R
ETV[23:16]  
R
ETV[15:8]  
R
1
0
ETV[7:0]  
R
8-27. Endian Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x87  
0x65  
0x43  
0x21  
Description  
31:24  
23:16  
15:8  
7:0  
ETV[31:24]  
ETV[23:16]  
ETV[15:8]  
ETV[7:0]  
R
Endianness Test Value  
Endianness Test Value  
Endianness Test Value  
Endianness Test Value  
R
R
R
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.3 Customer Register (address = h1008) [reset = h00000000]  
8-33. Customer Register  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
RSVD  
R
RSVD  
R
1
0
RSVD  
R
8-28. Customer Register Field Descriptions  
Bit  
31:0  
Field  
Type  
Reset  
Description  
RSVD  
R
h00000000 Reserved  
Copyright © 2022 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.4 Data Bit Timing & Prescaler (address = h100C) [reset = h0000A33]  
8-34. Data Bit Timing & Prescaler  
31  
30  
22  
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
25  
17  
9
24  
16  
8
RSVD  
R
23  
TDC  
n
18  
RSVD  
R
DBRP[4:0]  
RP  
15  
14  
RSVD  
R
10  
DTSEG1[4:0]  
RP  
2
7
6
1
0
DTSEG2[3:0]  
RP  
DSJW[3:0]  
RP  
8-29. Data Bit Timing & Prescaler Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31:24  
RSVD  
R
0x0  
Reserved  
Transmitter Delay Compensation  
0 TDC Disabled  
23  
TDC  
RP  
0x0  
1 TDC Enabled  
22:21  
20:16  
15:13  
12:8  
7:4  
RSVD  
R
0x0  
0x0  
0x0  
0xA  
0x3  
0x3  
Reserved  
DBRP[4:0]  
RSVD  
RP  
R
Data Bit Rate Prescaler  
Reserved  
DTSEG1[4:0]  
DTSEG2[3:0]  
DSJW[3:0]  
RP  
RP  
RP  
Data time Segment before sample point  
Data time Segment before sample point  
Data (Re)Synchronization Jump Width  
3:0  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: TCAN4550-Q1  
 
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.5 Test Register (address = h1010 ) [reset = h00000000]  
8-35. Test Register  
31  
23  
15  
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
RSVD  
R
RSVD  
R
7
RX  
R
4
1
0
TX[1:0]  
RP  
LBCK  
RP  
RSVD  
R
8-30. Test Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Reserved  
Reserved  
Reserved  
31:24  
23:16  
15:8  
RSVD  
RSVD  
RSVD  
R
0x0  
R
0x0  
R
0x0  
Receive Pin (m_can_rx)  
7
RX  
R
U
0 CAN Bus is Dominant  
1 CAN Bus is Recessive  
Control of Transmit Pin (m_can_tx)  
00 Reset Value, updated at the end of the CAN bit time  
01 Sample Point can be monitored at PIN m_can_tx  
10 Dominant (0) level at pin  
6:5  
TX[1:0]  
RP  
0x0  
11 Recessive (1) level at pin  
LBCK: Loop Back Mode  
4
LBCK  
RSVD  
RP  
R
0
0 Reset Value, Loop Back Mode is Disabled  
1 Loop Back Mode is Enabled  
3:0  
0x0  
Reserved  
Copyright © 2022 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.6 RAM Watchdog (address = h1014) [reset = h00000000]  
8-36. RAM Watchdog  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
RSVD  
R
WDV[7:0]  
R
1
0
WDC[7:0]  
RP  
8-31. RAM Watchdog Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31:24  
23:16  
15:8  
7:0  
RSVD  
R
0x0  
Reserved  
RSVD  
R
0x0  
Reserved  
WDV[7:0]  
WDC[7:0]  
R
0x0  
Watchdog Counter Value  
Watchdog Configuration  
RP  
0x0  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.7 Control Register (address = h1018) [reset = 0000 0019]  
8-37. Control Register  
31  
23  
30  
22  
29  
21  
28  
27  
19  
11  
26  
18  
10  
25  
17  
24  
16  
RSVD  
R
20  
RSVD  
R
15  
NISO  
RP  
14  
TXP  
RP  
6
13  
EFBI  
RP  
12  
PXHD  
RP  
9
BRSE  
RP  
8
FDOE  
RP  
RSVD  
R
7
5
4
3
CSA  
R
2
1
0
TEST  
Rp  
DAR  
RP  
MON  
Rp  
CSR  
R/W  
ASM  
Rp  
CCE  
RP  
INIT  
R/W  
8-32. Control Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31:24  
23:16  
RSVD  
RSVD  
R
0x0  
Reserved  
R
0x0  
Reserved  
Non-ISO Operation  
0 CAN FD Frame format according to ISO 11898-1:2015  
1 CAN FD Frame format according to Bosch CAN FD  
Specification V1.0  
15  
14  
13  
NISO  
TXP  
RP  
RP  
RP  
0
0
0
Transmitter Pause  
0 Transmitter Pause Disabled  
1 Transmitter Pause Enabled  
Edge Filtering during Bus Integration  
0 Edge Filtering Disabled  
1 Two Consecutive Dominant tq required to detect an edge  
for hard synchronization  
EFBI  
Protocol Exception Handling Disable  
12  
11:10  
9
PXHD  
RSVD  
BRSE  
RP  
R
0
0 Protocol Exception Handling Enabled  
1 Protocol Exception Handling Disabled  
0x0  
0
Reserved  
Bit Rate Switch Enable  
0 Bit Rate Switching for Transmission Disabled  
1 Bit Rate Switching for Transmission Enabled  
RP  
FD Operation Enable  
8
7
FDOE  
TEST  
RP  
Rp  
0
0
0 FD Operation Disabled  
1 FD Operation Enabled  
Test Mode Enable  
0 Normal Mode of Operation, Register TEST Holds Reset  
Value  
1 Test Mode, Write Access to Register TEST Enabled  
Disable Automatic Retransmission  
0 Automatic Retransmission of Messages not Transmitted  
Successfully Enabled  
1 Automatic Retransmission Disabled  
6
5
DAR  
RP  
Rp  
0
0
Bus Monitoring Mode is Disabled  
0 Bus Monitoring Mode is Disabled  
1 Bus Monitoring Mode is Enabled  
MON  
Copyright © 2022 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8-32. Control Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
Clock Stop Request  
0 No clock Stop is requested  
1 Clock Stop Requested. When requested first INIT and then  
CSA will be set after all pending transfer request have  
completed and the CAN bus reached idle  
See NOTE section  
4
CSR  
R/W  
1
Clock Stop Acknowledge  
0 No Clock Stop Requested  
1 m_can may be set in power down by stopping m_can-hclk  
and m_can_cclk  
3
2
CSA  
ASM  
R
1
0
Restricted Operation Mode  
0 Normal CAN Operation  
Rp  
1 Restricted Operation Mode Active  
Configuration Change Enable  
0 CPU has no write access to the protected configuration  
registers  
1 CPU has write access to the protected configuration  
registers (While CCCR.INIT =1)  
1
0
CCE  
INIT  
RP  
0
1
Initialization  
0 Normal Operation  
1 Initialization has started  
R/W  
备注  
The TCAN4550-Q1 handles stop request through hardware. The means that a 1 should not be written  
to CCCR.CSR (Clock Stop Request) as this will interfere with normal operation. If a Read-Modify-  
Write operation is performed in Standby mode a CSR = 1 will be read back but a 0 should be written  
to it.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.8 Nominal Bit Timing & Prescaler Register (address = h101C) [reset = h06000A03]  
8-38. Nominal Bit Timing & Prescaler Register  
31  
23  
15  
30  
22  
14  
6
29  
21  
13  
5
28  
NSJW[6:0]  
RP  
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
NBRP[8]  
RP  
20  
16  
NBRP[7:0]  
RP  
12  
4
8
0
NTSEG1[7:0]  
RP  
7
RSVD  
R
1
NTSEG2[6:0]  
RP  
8-33. Nominal Bit Timing & Prescaler Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Nominal (RE)Synchronization Jump Width  
0x00 - 0x7F Valid values are 0 to 127 - The actual  
interpretation by the hardware of this value is such that one  
more than the value programmed here is used.  
31:25  
24:16  
NSJW[6:0]  
RP  
0x3  
Nominal Bit Rate Prescaler  
0x000 - 0x1FF Value by which the oscillator frequency is  
divided for generating the bit time quanta. Valid values are 0 to  
511. - The actual interpretation by the hardware of this value is  
such that one more than the value programmed here is used.  
NBRP[8:0]  
RP  
0x0  
Nominal Time Segment Before Sample Point)  
0x01-0xFF Valid values are 1 to 255 - The actual  
interpretation by the hardware of this value is such that one  
more than the value programmed here is used.  
15:8  
7
NTSEG1[7:0]  
RSVD  
RP  
R
0xA  
0
Reserved  
Nominal Time Segment After Sample Point  
0x01-0x7F Valid values are 1 to 127 - The actual  
interpretation by the hardware of this value is such that one  
more than the value programmed here is used.  
6:0  
NTSEG2[6:0]  
RP  
0x3  
Copyright © 2022 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.9 Timestamp Counter Configuration (address = h1020) [reset = h00000000]  
8-39. Timestamp Counter Configuration  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
RSVD  
R
TCP[3:0]  
RP  
RSVD  
R
1
0
RSVD  
R
TSS[1:0]  
RP  
8-34. Timestamp Counter Configuration Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31:24  
23:20  
RSVD  
RSVD  
R
0x0  
Reserved  
R
0x0  
Reserved  
Timestamp Counter Prescaler  
19:16  
TCP[3:0]  
RP  
0x0  
0x0 - 0xF Configures timestamp and timeout counters time  
unit in multiples of CAN bit times [116]  
15:8  
7:2  
RSVD  
RSVD  
R
R
0x0  
0x0  
Reserved  
Reserved  
Timestamp Select  
00 Timestamp counter value always 0x0000  
01 Timestamp counter value incremented according to TCP  
10 External timestamp counter value used  
11 Same as "00"  
1:0  
TSS[1:0]  
RP  
0x0  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.10 Timestamp Counter Value (address = h1024) [reset = h00000000]  
8-40. Timestamp Counter Value  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
RSVD  
R
TSC[15:8]  
RC  
1
0
TSC[7:0]  
RC  
8-35. Timestamp Counter Value Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31:24  
23:20  
15:8  
RSVD  
RSVD  
R
0x0  
Reserved  
R
0x0  
Reserved  
Timestamp Counter  
The internal/external Timestamp Counter value is captured on  
start of frame (both Rx and Tx). When TSCC.TSS = 01, the  
Timestamp Counter is incremented in multiples of CAN bit times  
[116] depending on the configuration of TSCC.TCP. A wrap  
around sets interrupt flag IR.TSW. Write access resets the  
counter to zero. When TSCC.TSS = 10, TSC reflects the  
external  
TSC[7:0]  
RC  
0x0  
Timestamp Counter value. A write access has no impact.  
7:0  
Timestamp Counter  
The internal/external Timestamp Counter value is captured on  
start of frame (both Rx and Tx). When TSCC.TSS = 01, the  
Timestamp Counter is incremented in multiples of CAN bit times  
[116] depending on the configuration of TSCC.TCP. A wrap  
around sets interrupt flag IR.TSW. Write access resets the  
counter to zero. When TSCC.TSS = 10, TSC reflects the  
external  
TSC[7:0]  
RC  
0x0  
Timestamp Counter value. A write access has no impact.  
Copyright © 2022 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.11 Timeout Counter Configuration (address = h1028) [reset = hFFFF0000]  
8-41. Timeout Counter Configuration  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
TOP[15:8]  
R
TOP[7:0]  
R
RSVD  
R
5
RSVD  
R
1
0
TOS[1:0]  
RP  
ETOC  
RP  
8-36. Timeout Counter Configuration Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Timeout Period  
31:24  
23:16  
TOP[15:8]  
RP  
0xFF  
Start value of the timeout counter (down-counter). Configures  
the timeout period  
Timeout Period  
TOP[7:0]  
RP  
0xFF  
Start value of the timeout counter (down-counter). Configures  
the timeout period  
15:8  
7:3  
RSVD  
RSVD  
R
R
0x0  
0x0  
Reserved  
Reserved  
Timeout Select  
When operating in Continuous mode, a write to TOCV presets  
the counter to the value configured by TOCC.TOP and  
continues down-counting. When the Timeout Counter is  
controlled by one of the FIFOs, an empty FIFO presets the  
counter to the value configured by TOCC.TOP. Down-counting is  
started when the first FIFO element is stored  
00 Continuous Operation  
01 Timeout controlled by TX Event FIFO  
10 Timeout controlled by Rx FIFO 0  
11 Timeout controlled by Rx FIFO 1  
2:1  
TOS[1:0]  
RP  
RP  
0x0  
Enable Timeout Counter  
0 Timeout counter disabled  
1 Timeout counter enabled  
0
ETOC  
0
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.12 Timeout Counter Value (address = h102C) [reset = h0000FFFF]  
8-42. Timeout Counter Value  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
RSVD  
R
TOC[15:8]  
RC  
1
0
TOC[7:0]  
RC  
8-37. Timeout Counter Value Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31:24  
23:16  
RSVD  
RSVD  
R
0x0  
Reserved  
R
0x0  
Reserved  
Timeout Counter  
The Timeout Counter is decremented in multiples of CAN bit  
times [116] depending on the configuration of TSCC.TCP.  
When decremented to zero, interrupt flag IR.TOO is set and the  
Timeout Counter is stopped. Start and reset/restart conditions  
are configured via TOCC.TOS  
15:8  
7:0  
TOC[15:8]  
TOC[7:0]  
RC  
RC  
0xFF  
0xFF  
Timeout Counter  
The Timeout Counter is decremented in multiples of CAN bit  
times [116] depending on the configuration of TSCC.TCP.  
When decremented to zero, interrupt flag IR.TOO is set and the  
Timeout Counter is stopped. Start and reset/restart conditions  
are configured via TOCC.TOS  
Copyright © 2022 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.13 Reserved (address = h1030 - h103C) [reset = h00000000]  
8-43. Reserved  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
RSVD  
R
RSVD  
R
1
0
RSVD  
R
8-38. Reserved Field Descriptions  
Bit  
31:0  
Field  
Type  
Reset  
Description  
RSVD  
R
0
Reserved  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.14 Error Counter Register (address = h1040) [reset = h00000000]  
8-44. Error Counter Register  
31  
23  
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
19  
CEL[7:0]  
X
15  
RP  
R
11  
REC[6:0]  
R
3
7
1
0
TEC[7:0]  
R
8-39. Error Counter Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31:24  
RSVD  
R
0x0  
Reserved  
CAN Error Logging  
The counter is incremented each time when a CAN protocol  
error causes the Transmit Error Counter or the Receive Error  
Counter to be incremented. It is reset by read access to CEL.  
The counter stops at 0xFF; the next increment of TEC or REC  
sets interrupt flag IR.ELO  
23:16  
CEL[7:0]  
X
R
0x0  
0 The Receive Error Counter is below the error passive level  
of 128  
1 The Receive Error Counter has reached the error passive  
15  
RP  
0
level of 128  
Actual state of the Receive Error Counter, values between 0 and  
127  
14:8  
7:0  
REC[6:0]  
TEC[7:0]  
R
R
0x0  
0x0  
Actual state of the Transmit Error Counter, values between 0  
and 255  
备注  
When CCCR.ASM is set, the CAN protocol controller does not increment TEC and REC when a CAN  
protocol error is detected, but CEL is still incremented.  
Copyright © 2022 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.15 Protocol Status Register (address = h1044) [reset = h00000707]  
8-45. Protocol Status Register  
31  
30  
22  
29  
21  
28  
27  
26  
18  
10  
2
25  
17  
24  
16  
8
RSVD  
R
23  
RSVD  
R
20  
19  
TDCV[6:0]  
R
11  
15  
14  
PXE  
X
13  
RFDF  
X
12  
RBRS  
X
9
RSVD  
R
RESI  
X
DLEC[2:0]  
S
7
6
5
4
3
1
LEC[2:0]  
S
0
BO  
R
EW  
R
EP  
R
ACT[1:0]  
R
8-40. Protocol Status Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Reserved  
Reserved  
31:24  
23  
RSVD  
RSVD  
R
0x0  
R
0x0  
Transmitter Delay Compensation Value  
0x00-0x7F Position of the secondary sample point, defined  
by the sum of the measured delay from m_can_tx to m_can_rx  
and TDCR.TDCO. The SSP position is, in the data phase, the  
number of mtq between the start of the transmitted bit and the  
secondary sample point. Valid values are 0 to 127 mtq.  
22:16  
TDCV[6:0]  
R
0x0  
15  
14  
RSVD  
PXE  
R
X
0
0
Reserved  
Protocol Exception Event  
0 No protocol exception event occurred since last read  
access  
1 Protocol exception event occurred  
Received a CAN FD Message  
This bit is set independent of acceptance filtering  
0 Since this bit was reset by the CPU, no CAN FD message  
has been received  
1 Message in CAN FD format with FDF flag set has been  
received  
13  
12  
RFDF  
X
X
X
X
0
BRS flag of last received CAN FD Message  
This bit is set together with RFDF, independent of acceptance  
filtering.  
0 Last received CAN FD message did not have its BRS flag  
set  
RBRS  
0
1 Last received CAN FD message had its BRS flag set  
ESI flag of last received CAN FD Message  
This bit is set together with RFDF, independent of acceptance  
filtering.  
0 Last received CAN FD message did not have its ESI flag  
set  
11  
RESI  
0
1 Last received CAN FD message had its ESI flag set  
Data Phase Last Error Code  
Type of last error that occurred in the data phase of a CAN FD  
format frame with its BRS flag set. Coding is the same as for  
LEC. This field will be cleared to zero when a CAN FD format  
frame with its BRS flag set has been transferred (reception or  
transmission) without error.  
10:8  
DLEC[2:0]  
0x7  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8-40. Protocol Status Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
Bus_Off Status  
7
BO  
R
0
0 The M_CAN is not Bus_Off  
1 The M_CAN is in Bus_Off state  
Warning Status  
0 Both error counters are below the Error_Warning limit of 96  
1 At least one of error counter has reached the  
Error_Warning limit of 96  
6
5
EW  
EP  
R
R
0
0
Error Passive  
0 The M_CAN is in the Error_Active state. It normally takes  
part in bus communication and sends an active error flag when  
an error has been detected  
1 The M_CAN is in the Error_Passive state  
Activity  
Monitors the modules CAN communication state.  
00 Synchronizing - node is synchronizing on CAN  
communication  
4:3  
ACT[1:0]  
R
0x0  
01 Idle - node is neither receiver nor transmitter  
10 Receiver - node is operating as receiver  
11 Transmitter - node is operating as transmitter  
Last Error Code  
The LEC indicates the type of the last error to occur on the CAN  
bus. This field will be cleared to 0when a message has  
been transferred (reception or transmission) without error.  
0 No Error: No error occurred since LEC has been reset by  
successful reception or transmission  
1 Stuff Error: More than 5 equal bits in a sequence have  
occurred in a part of a received message where this is not  
allowed.  
2 Form Error: A fixed format part of a received frame has the  
wrong format.  
3 AckError: The message transmitted by the M_CAN was not  
acknowledged by another node.  
4 Bit1Error: During the transmission of a message (with the  
exception of the arbitration field), the device wanted to send a  
recessive level (bit of logical value 1), but the monitored bus  
value was dominant.  
2:0  
LEC[2:0]  
S
0x7  
5 Bit0Error: During the transmission of a message (or  
acknowledge bit, or active error flag, or overload flag), the  
device wanted to send a dominant level (data or identifier bit  
logical value 0), but the monitored bus value was recessive.  
During Bus_Off recovery this status is set each time a sequence  
of 11 recessive bits has been monitored. This enables the CPU  
to monitor the proceeding of the Bus_Off recovery sequence  
(indicating the bus is not stuck at dominant or continuously  
disturbed).  
6 CRCError: The CRC check sum of a received message  
was incorrect. The CRC of an incoming message does not  
match with the CRC calculated from the received data.  
7 NoChange: Any read access to the Protocol Status  
Register re-initializes the LEC to 7. When the LEC shows  
the value 7, no CAN bus event was detected since the last  
CPU read access to the Protocol Status Register.  
备注  
When a frame in CAN FD format has reached the data phase with BRS flag set, the next CAN event  
(error or valid frame) will be shown in DLEC instead of LEC. An error in a fixed stuff bit of a CAN FD  
CRC sequence will be shown as a Form Error, not Stuff Error  
Copyright © 2022 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
备注  
The Bus_Off recovery sequence (see ISO 11898-1:2015) cannot be shortened by setting or resetting  
CCCR.INIT. If the device goes Bus_Off, it will set CCCR.INIT of its own accord, stopping all bus  
activities. Once CCCR.INIT has been cleared by the CPU, the device will then wait for 129  
occurrences of Bus Idle (129 * 11 consecutive recessive bits) before resuming normal operation. At  
the end of the Bus_Off recovery sequence, the Error Management Counters will be reset. During the  
waiting time after the resetting of CCCR.INIT, each time a sequence of 11 recessive bits has been  
monitored, a Bit0Error code is written to PSR.LEC, enabling the CPU to readily checkup whether the  
CAN bus is stuck at dominant or continuously disturbed and to monitor the Bus_Off recovery  
sequence. ECR.REC is used to count these sequences.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.16 Transmitter Delay Compensation Register (address = h1048) [reset = h00000000]  
8-46. Transmitter Delay Compensation Register  
31  
23  
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
19  
RSVD  
R
15  
RSVD  
R
11  
TDCO[6:0]  
RP  
7
3
1
0
RSVD  
R
TDCF[6:0]  
RP  
8-41. Transmitter Delay Compensation Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x0  
0x0  
0
Description  
31:24  
23:16  
15  
RSVD  
RSVD  
RSVD  
R
Reserved  
R
Reserved  
R
Reserved  
Transmitter Delay Compensation Offset  
0x00-0x7F - Offset value defining the distance between the  
measured delay from m_can_tx to m_can_rx and the secondary  
sample point. Valid values are 0 to 127 mtq.  
14:8  
7
TDCO[6:0]  
RSVD  
RP  
R
0x0  
0
Reserved  
Transmitter Delay Compensation Filter Window Length  
0x00-0x7F - Defines the minimum value of the SSP position,  
dominant edges on m_can_rx that would result in an earlier SSP  
position are ignored for transmitter delay measurement. The  
feature is enabled when TDCF is configured to a value greater  
than TDCO. Valid values are 0 to 127 mtq.  
6:0  
TDCF[6:0]  
RP  
0x0  
Copyright © 2022 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.17 Reserved (address = h104C) [reset = h00000000]  
8-47. Reserved  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
RSVD  
R
RSVD  
R
1
0
RSVD  
R
8-42. Reserved Field Descriptions  
Bit  
31:0  
Field  
Type  
Reset  
Description  
RSVD  
R
0
Reserved  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.18 Interrupt Register (address = h1050) [reset = h00000000]  
8-48. Interrupt Register  
31  
30  
29  
ARA  
R/W  
21  
28  
PED  
R/W  
20  
27  
PEA  
R/W  
19  
26  
WDI  
R/W  
18  
25  
BO  
24  
EW  
R/W  
16  
RSVD  
R
R/W  
17  
23  
EP  
22  
ELO  
R/W  
14  
BEU  
R/W  
13  
BEC  
R/W  
12  
DRX  
R/W  
11  
TOO  
R/W  
10  
MRF  
R/W  
9
TSW  
R/W  
8
R/W  
15  
TEFL  
R/W  
7
TEFF  
R/W  
6
TEFW  
R/W  
5
TEFN  
R/W  
4
TFE  
R/W  
3
TCF  
R/W  
2
TC  
HPM  
R/W  
0
R/W  
1
RF1L  
R/W  
RF1F  
R/W  
RF1W  
R/W  
RF1N  
R/W  
RF0L  
R/W  
RF0F  
R/W  
RF0W  
R/W  
RF0N  
R/W  
8-43. Interrupt Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31:30  
RSVD  
R
0x0  
Reserved  
Access to Reserved Address  
29  
ARA  
R/W  
R/W  
0
0
0 No access to reserved address occurred  
1 Access to reserved address occurred  
Protocol Error in Data Phase (Data Bit Time is used)  
0 No protocol error in data phase  
1 Protocol error in data phase detected (PSR.DLEC 0,7)  
28  
27  
PED  
PEA  
Protocol Error in Arbitration Phase (Nominal Bit Time is used)  
0 No protocol error in arbitration phase  
1 Protocol error in arbitration phase detected (PSR.LEC ≠  
0,7)  
R/W  
0
Watchdog Interrupt  
26  
25  
24  
23  
22  
WDI  
BO  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
0 No Message RAM Watchdog event occurred  
1 Message RAM Watchdog event due to missing READY  
Bus_Off Status  
0 Bus_Off status unchanged  
1 Bus_Off status changed  
Warning Status  
0 Error_Warning status unchanged  
1 Error_Warning status changed  
EW  
EP  
Error Passive  
0 Error_Passive status unchanged  
1 Error_Passive status changed  
ELO: Error Logging Overflow  
0 CAN Error Logging Counter did not overflow  
1 Overflow of CAN Error Logging Counter occurred  
ELO  
Bit Error Uncorrected  
Message RAM bit error detected, uncorrected. Controlled by  
input signal m_can_aeim_berr[1] generated by an optional  
external parity / ECC logic attached to the Message RAM. An  
uncorrected Message RAM bit error sets CCCR.INIT to 1.  
This is done to avoid transmission of corrupted data.  
0 No bit error detected when reading from Message RAM  
1 Bit error detected, uncorrected (e.g. parity logic)  
21  
BEU  
R/W  
0
Copyright © 2022 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8-43. Interrupt Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
Bit Error Corrected  
Message RAM bit error detected and corrected. Controlled by  
input signal m_can_aeim_berr[0] generated by an optional  
external parity / ECC logic attached to the Message RAM.  
0 No bit error detected when reading from Message RAM  
1 Bit error detected and corrected (e.g. ECC)  
20  
BEC  
R/W  
0
Message stored to Dedicated Rx Buffer  
The flag is set whenever a received message has been stored  
into a dedicated Rx Buffer.  
0 No Rx Buffer updated  
1 At least one received message stored into an Rx Buffer  
19  
18  
DRX  
TOO  
R/W  
R/W  
0
0
Timeout Occurred  
0 No timeout  
1 Timeout reached  
Message RAM Access Failure  
The flag is set, when the Rx Handler  
has not completed acceptance filtering or storage of an  
accepted message until the arbitration field of the following  
message has been received. In this case acceptance  
filtering or message storage is aborted and the Rx Handler  
start processing of the following message  
was not able to write a message to the Message RAM. In  
this case message storage is aborted.  
17  
MRF  
R/W  
0
In both cases the FIFO put index is not updated resp. the New  
Data flag for a dedicated Rx Buffer is not set, a partly stored  
message is overwritten when the next message is stored to this  
location. The flag is also set when the Tx Handler was not able  
to read a message from the Message RAM in time. In this case  
message transmission is aborted. In case of a Tx Handler  
access failure the M_CAN is switched into Restricted Operation  
Mode. To leave restricted Operation Mode, the Host CPU has to  
reset CCCR.ASM.  
0 No Message RAM access failure occurred  
1 Message RAM access failure occurred  
Timestamp Wraparound  
16  
15  
TSW  
R/W  
R/W  
0
0
0 No timestamp counter wrap-around  
1 Timestamp counter wrapped around  
Tx Event FIFO Element Lost  
0 No Tx Event FIFO element lost  
1 Tx Event FIFO element lost, also set after write attempt to  
Tx Event FIFO of size zero  
TEFL  
Tx Event FIFO Full  
14  
13  
12  
11  
10  
TEFF  
TEFW  
TEFN  
TFE  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
0 Tx Event FIFO not full  
1 Tx Event FIFO full  
Tx Event FIFO Watermark Reached  
0 Tx Event FIFO fill level below watermark  
1 Tx Event FIFO fill level reached watermark  
Tx Event FIFO New Entry  
0 Tx Event FIFO unchanged  
1 Tx Handler wrote Tx Event FIFO element  
Tx FIFO Empty  
0 Tx FIFO non-empty  
1 Tx FIFO empty  
Transmission Cancellation Finished  
0 No transmission cancellation finished  
1 Transmission cancellation finished  
TCF  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8-43. Interrupt Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
Transmission Cancellation Finished  
0 No transmission completed  
1 Transmission completed  
9
TC  
R/W  
0
High Priority Message  
8
7
HPM  
R/W  
R/W  
0
0
0 No high priority message received  
1 High priority message received  
Rx FIFO 1 Message Lost  
0 No Rx FIFO 1 message lost  
1 Rx FIFO 1 message lost, also set after write attempt to Rx  
RF1L  
FIFO 1 of size zero  
Rx FIFO 1 Full  
6
5
4
RF1F  
RF1W  
RF1N  
R/W  
R/W  
R/W  
0
0
0
0 Rx FIFO 1 not full  
1 Rx FIFO 1 full  
Rx FIFO 1 Watermark Reached  
0 Rx FIFO 1 fill level below watermark  
1 Rx FIFO 1 fill level reached watermark  
Rx FIFO 1 New Message  
0 No new message written to Rx FIFO  
1 New message written to Rx FIFO 1  
Rx FIFO 0 Message Lost  
0 No Rx FIFO 0 message lost  
1 Rx FIFO 0 message lost, also set after write attempt to Rx  
FIFO 0 of size zero  
3
RF0L  
R/W  
0
Rx FIFO 0 Full  
2
1
0
RF0F  
RF0W  
RF0N  
R/W  
R/W  
R/W  
0
0
0
0 Rx FIFO 0 not full  
1 Rx FIFO 0 full  
Rx FIFO 0 Watermark Reached  
0 Rx FIFO 0 fill level below watermark  
1 Rx FIFO 0 fill level reached watermark  
Rx FIFO 0 New Message  
0 No new message written to Rx FIFO 0  
1 New message written to Rx FIFO 0  
Copyright © 2022 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.19 Interrupt Enable (address = h1054) [reset = h00000000]  
The settings in the Interrupt Enable register determine which status changes in the Interrupt Register will be  
signaled on an interrupt line.  
0 Interrupt disabled  
1 Interrupt enabled  
8-49. Interrupt Enable Register  
31  
30  
29  
ARAE  
R/W  
21  
28  
PEDE  
R/W  
20  
27  
PEAE  
R/W  
19  
26  
WDIE  
R/W  
18  
25  
BOE  
R/W  
17  
24  
EWE  
R/W  
16  
RSVD  
R
23  
EPE  
R/W  
15  
22  
ELOE  
R/W  
14  
BEUE  
R/W  
13  
BECE  
R/W  
12  
DRXE  
R/W  
11  
TOOE  
R/W  
10  
MRAFE  
R/W  
9
TSWE  
R/W  
8
TEFLE  
R/W  
7
TEFFE  
R/W  
6
TEFW  
R/W  
5
TEFNE  
R/W  
4
TFEE  
R/W  
3
TCFE  
R/W  
2
TCE  
R/W  
1
HPME  
R/W  
0
RF1LE  
R/W  
RF1FE  
R/W  
RF1WE  
R/W  
RF1NE  
R/W  
RF0LE  
R/W  
RF0FE  
R/W  
RF0WE  
R/W  
RF0NE  
R/W  
8-44. Interrupt Enable Field Descriptions  
Bit  
31:30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
Field  
Type  
Reset  
Description  
RSVD  
ARAE  
PEDE  
PEAE  
WDIE  
BOE  
R
0x0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Reserved  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Access to Reserved Address Enable  
Protocol Error in Data Phase Enable  
Protocol Error in Arbitration Phase Enable  
Watchdog Interrupt Enable  
Bus_Off Status Interrupt Enable  
Warning Status Interrupt Enable  
Error Passive Interrupt Enable  
EWE  
EPE  
ELOE  
BEUE  
BECE  
DRXE  
TOOE  
MRAFE  
TSWE  
TEFLE  
TEFFE  
TEFW  
TEFNE  
TFEE  
TCFE  
TCE  
Error Logging Overflow Interrupt Enable  
Bit Error Uncorrected Interrupt Enable  
Bit Error Corrected Interrupt Enable  
Message stored to Dedicated Rx Buffer Interrupt Enable  
Timeout Occurred Interrupt Enable  
Message RAM Access Failure Interrupt Enable  
Timestamp Wraparound Interrupt Enable  
Tx Event FIFO Event Lost Interrupt Enable  
Tx Event FIFO Full Interrupt Enable  
Tx Event FIFO Watermark Reached Interrupt Enable  
Tx Event FIFO New Entry Interrupt Enable  
Tx FIFO Empty Interrupt Enable  
Transmission Cancellation Finished Interrupt Enable  
Transmission Completed Interrupt Enable  
High Priority Message Interrupt Enable  
Rx FIFO 1 Message Lost Interrupt Enable  
Rx FIFO 1 Full Interrupt Enable  
8
HPME  
RF1LE  
RF1FE  
RF1WE  
7
6
5
Rx FIFO 1 Watermark Reached Interrupt Enable  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8-44. Interrupt Enable Field Descriptions (continued)  
Bit  
4
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
RF1NE  
RF0LE  
RF0FE  
RF0WE  
RF0NE  
0
0
0
0
0
Rx FIFO 1 New Message Interrupt Enable  
Rx FIFO 0 Message Lost Interrupt Enable  
Rx FIFO 0 Full Interrupt Enable  
3
2
1
Rx FIFO 0 Watermark Reached Interrupt Enable  
Rx FIFO 0 New Message Interrupt Enable  
0
Copyright © 2022 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.20 Interrupt Line Select (address = h1058) [reset = h00000000]  
The Interrupt Line Select register assigns an interrupt generated by a specific interrupt flag from the Interrupt  
Register to one of the two module interrupt lines. For interrupt generation the respective interrupt line has to be  
enabled via ILE.EINT0 and ILE.EINT1.  
0 Interrupt assigned to interrupt line m_can_int0  
1 Interrupt assigned to interrupt line m_can_int1  
8-50. Interrupt Line Select Register  
31  
30  
29  
ARAL  
R/W  
21  
28  
PEDL  
R/W  
20  
27  
PEAL  
R/W  
19  
26  
WDIL  
R/W  
18  
25  
BOL  
R/W  
17  
24  
EWL  
R/W  
16  
RSVD  
R
23  
EPL  
R/W  
15  
22  
ELOL  
R/W  
14  
BEUL  
R/W  
13  
BECL  
R/W  
12  
DRXL  
R/W  
11  
TOOL  
R/W  
10  
MRAFL  
R/W  
9
TSWL  
R/W  
8
TEFLL  
R/W  
7
TEFFL  
R/W  
6
TEFWL  
R/W  
5
TEFNL  
R/W  
4
TFEL  
R/W  
3
TCFL  
R/W  
2
TCL  
R/W  
1
HPML  
R/W  
0
RF1LL  
R/W  
RF1FL  
R/W  
RF1WL  
R/W  
RF1NL  
R/W  
RF0LL  
R/W  
RF0FL  
R/W  
RF0WL  
R/W  
RF0NL  
R/W  
8-45. Interrupt Line Select Field Descriptions  
Bit  
31:30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
Field  
Type  
Reset  
Description  
RSVD  
ARAL  
PEDL  
PEAL  
WDIL  
BOL  
R
0x0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Reserved  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Access to Reserved Address Line  
Protocol Error in Data Phase Line  
Protocol Error in Arbitration Phase Line  
Watchdog Interrupt Line  
Bus_Off Status Interrupt Line  
Warning Status Interrupt Line  
Error Passive Interrupt Line  
EWL  
EPL  
ELOL  
BEUL  
BECL  
DRXL  
TOOL  
MRAFL  
TSWL  
TEFLL  
TEFFL  
TEFWL  
TEFNL  
TFEL  
TCFL  
TCL  
Error Logging Overflow Interrupt Line  
Bit Error Uncorrected Interrupt Line  
Bit Error Corrected Interrupt Line  
Message stored to Dedicated Rx Buffer Interrupt Line  
Timeout Occurred Interrupt Line  
Message RAM Access Failure Interrupt Line  
Timestamp Wraparound Interrupt Line  
Tx Event FIFO Event Lost Interrupt Line  
Tx Event FIFO Full Interrupt Line  
Tx Event FIFO Watermark Reached Interrupt Line  
Tx Event FIFO New Entry Interrupt Line  
Tx FIFO Empty Interrupt Line  
Transmission Cancellation Finished Interrupt Line  
Transmission Completed Interrupt Line  
High Priority Message Interrupt Line  
Rx FIFO 1 Message Lost Interrupt Line  
Rx FIFO 1 Full Interrupt Line  
8
HPML  
RF1LL  
RF1FL  
7
6
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8-45. Interrupt Line Select Field Descriptions (continued)  
Bit  
5
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
RF1WL  
RF1NL  
RF0LL  
RF0FL  
RF0WL  
RF0NL  
0
0
0
0
0
0
Rx FIFO 1 Watermark Reached Interrupt Line  
Rx FIFO 1 New Message Interrupt Line  
Rx FIFO 0 Message Lost Interrupt Line  
Rx FIFO 0 Full Interrupt Line  
4
3
2
1
Rx FIFO 0 Watermark Reached Interrupt Line  
Rx FIFO 0 New Message Interrupt Line  
0
Copyright © 2022 Texas Instruments Incorporated  
96  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.21 Interrupt Line Enable (address = h105C) [reset = h00000000]  
8-51. Interrupt Line Enable Register  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
RSVD  
R
RSVD  
R
1
0
RSVD  
R
EINT1  
R/W  
EINT0  
R/W  
8-46. Interrupt Line Enable Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31:24  
23:16  
15:8  
7:2  
RSVD  
RSVD  
RSVD  
RSVD  
R
0x0  
Reserved  
R
0x0  
Reserved  
R
0x0  
Reserved  
R
0x0  
Reserved  
Enable Interrupt Line 1  
1
0
EINT1  
EINT0  
R/W  
R/w  
0
0
0 - Interrupt line m_can_int1 disabled  
1 - Interrupt line m_can_int1 enabled  
Enable Interrupt Line 0  
0 - Interrupt line m_can_int0 disabled  
1 - Interrupt line m_can_int0 enabled  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.22 Reserved (address = h1060 - h107C) [reset = h00000000]  
8-52. Reserved  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
RSVD  
R
RSVD  
R
1
0
RSVD  
R
8-47. Reserved Field Descriptions  
Bit  
31:0  
Field  
Type  
Reset  
Description  
RSVD  
R
0
Reserved  
Copyright © 2022 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.23 Global Filter Configuration (address = h1080) [reset = h00000000]  
8-53. Global Filter Configuration Register  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
RSVD  
R
RSVD  
R
1
0
RSVD  
R
ANFS[1:0]  
RP  
ANFE[1:0]  
RP  
RRFS  
RP  
RRFE  
RP  
8-48. Global Filter Configuration Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
31:24  
23:16  
15:8  
7:6  
RSVD  
RSVD  
RSVD  
RSVD  
R
0x0  
R
0x0  
R
0x0  
R
0x0  
Accept Non-matching Frames Standard  
Defines how received messages with 11-bit IDs that do not  
match any element of the filter list are treated.  
00 - Accept in Rx FIFO 0  
01 - Accept in Rx FIFO 1  
10 - Reject  
5:4  
3:2  
ANFS[1:0]  
ANFE[1:0]  
RP  
RP  
0x0  
0x0  
11 - Reject  
Accept Non-matching Frames Extended  
Defines how received messages with 29-bit IDs that do not  
match any element of the filter list are treated.  
00 - Accept in Rx FIFO 0  
01 - Accept in Rx FIFO 1  
10 - Reject  
11 - Reject  
Reject Remote Frames Standard  
1
0
RRFS  
RRFE  
RP  
RP  
0
0
0 - Filter remote frames with 11-bit standard IDs  
1 - Reject all remote frames with 11-bit standard IDs  
Reject Remote Frames Extended  
0 - Filter remote frames with 29-bit extended IDs  
1 - Reject all remote frames with 29-bit extended IDs  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.24 Standard ID Filter Configuration (address = h1084) [reset = h00000000]  
The MRAM and start address for this register, FLSSA, has special consideration.  
The start address must be word aligned (32-bit) in the MRAM. The 2 least significant bits are ignored on a  
write to ensure this behavior.  
When entering the MRAM start address, the 0x8000 prefix is NOT necessary. For example, if the desired  
start address is 0x8634, then bits SA[15:0] will be 0x0634.  
8-54. Standard ID Filter Configuration Register  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
LSS[7:0]  
RP  
FLSSA[15:8]  
RP  
1
0
FLSSA[7:0]  
RP  
8-49. Standard ID Filter Configuration Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31:24  
RSVD  
R
0x0  
Reserved  
List Size Standard  
0 - No standard Message ID filter  
1-128 - Number of standard Message ID filter elements  
>128 - Values greater than 128 are interpreted as 128  
23:16  
LSS[7:0]  
RP  
RP  
0x0  
0x0  
Filter List Standard Start Address  
Start address of standard Message ID filter list  
15:0  
FLSSA[15:0]  
Copyright © 2022 Texas Instruments Incorporated  
100 Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.25 Extended ID Filter Configuration (address = h1088) [reset = h00000000]  
The MRAM and start address for this register, FLSEA, has special consideration.  
The start address must be word aligned (32-bit) in the MRAM. The 2 least significant bits are ignored on a  
write to ensure this behavior.  
When entering the MRAM start address, the 0x8000 prefix is NOT necessary. For example, if the desired  
start address is 0x8634, then bits SA[15:0] will be 0x0634.  
8-55. Extended ID Filter Configuration Register  
31  
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
23  
RSVD  
R
19  
LSE[6:0]  
RP  
15  
11  
FLSEA[15:8]  
RP  
7
3
1
0
FLSEA[7:0]  
RP  
8-50. Extended ID Filter Configuration Field Descriptions  
Bit  
Field  
Type  
Reset  
0x0  
0
Description  
Reserved  
Reserved  
31:24  
23  
RSVD  
RSVD  
R
R
List Size Extended  
0 - No extended Message ID filter  
1-64 - Number of extended Message ID filter elements  
>64 - Values greater than 64 are interpreted as 64  
22:16  
15:0  
LSE[6:0]  
RP  
RP  
0x0  
0x0  
Filter List Extended Start Address  
Start address of extended Message ID filter list  
FLSEA[15:0]  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 101  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.26 Reserved (address = h108C) [reset = h00000000]  
8-56. Reserved  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
RSVD  
R
RSVD  
R
1
0
RSVD  
R
8-51. Reserved Field Descriptions  
Bit  
31:0  
Field  
Type  
Reset  
Description  
RSVD  
R
0
Reserved  
Copyright © 2022 Texas Instruments Incorporated  
102 Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.27 Extended ID AND Mask (address = h1090) [reset = h1FFFFFFF]  
8-57. Extended ID AND Mask Register  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
EIDM[28:24]  
RP  
EIDM[23:16]  
RP  
EIDM[15:8]  
RP  
1
0
RP-0xFF  
RP  
8-52. Extended ID AND Mask Field Descriptions  
Bit  
Field  
RSVD  
Type  
Reset  
Description  
31:30  
R
2'b00  
Reserved  
Extended ID Mask  
For acceptance filtering of extended frames, the Extended ID  
AND Mask is ANDed with the Message ID of a received frame.  
Intended for masking of 29-bit IDs in SAE J1939. With the reset  
value of all bits set to one, the mask is not active.  
29:24  
EIDM[28:24]  
RP  
RP  
6'b011111  
Extended ID Mask  
For acceptance filtering of extended frames, the Extended ID  
0xFFFFFF AND Mask is ANDed with the Message ID of a received frame.  
Intended for masking of 29-bit IDs in SAE J1939. With the reset  
value of all bits set to one, the mask is not active.  
23:0  
EIDM[23:16] to EIDM[7:0]  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 103  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.28 High Priority Message Status (address = h1094) [reset = h00000000]  
8-58. High Priority Message Status Register  
31  
23  
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
19  
RSVD  
R
15  
FLST  
R
11  
FIDX[6:0]  
R
3
7
1
0
MSI[1:0]  
R
BIDX[5:0]  
R
8-53. High Priority Message Status Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Reserved  
Reserved  
Filter List  
31:24  
23:16  
RSVD  
RSVD  
R
0x0  
R
0x0  
Indicates the filter list of the matching filter element.  
0 - Standard Filter List  
1 - Extended Filter List  
15  
FLST  
R
R
0x0  
0x0  
Filter Index  
14:8  
FIDX[6:0]  
Index of matching filter element.  
Range is 0 to SIDFC.LSS - 1 resp. XIDFC.LSE - 1.  
Message Storage Indicator  
00 - No FIFO selected  
7:6  
5:0  
MSI[1:0]  
R
R
0x0  
0x0  
01 - FIFO message lost  
10 - Message stored in FIFO 0  
11 - Message stored in FIFO 1  
Buffer Index  
Index of Rx FIFO element to which the message was stored.  
BIDX[5:0]  
Only valid when MSI[1] = 1’  
Copyright © 2022 Texas Instruments Incorporated  
104 Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.29 New Data 1 (address = h1098) [reset = h00000000]  
8-59. New Data 1 Register  
31  
ND31  
R/W  
23  
30  
ND30  
R/W  
22  
29  
ND29  
R/W  
21  
28  
ND28  
R/W  
20  
27  
ND27  
R/W  
19  
26  
ND26  
R/W  
18  
25  
ND25  
R/W  
17  
24  
ND24  
R/W  
16  
ND23  
R/W  
15  
ND22  
R/W  
14  
ND21  
R/W  
13  
ND20  
R/W  
12  
ND19  
R/W  
11  
ND18  
R/W  
10  
ND17  
R/W  
9
ND16  
R/W  
8
ND15  
R/W  
7
ND14  
R/W  
6
ND13  
R/W  
5
ND12  
R/W  
4
ND11  
R/W  
3
ND10  
R/W  
2
ND9  
R/W  
1
ND8  
R/W  
0
ND7  
R/W  
ND6  
R/W  
ND5  
R/W  
ND4  
R/W  
ND3  
R/W  
ND2  
R/W  
ND1  
R/W  
ND1  
R/W  
8-54. New Data 1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
The register holds the New Data flags of Rx Buffers 0 to 31. The  
flags are set when the respective Rx Buffer has been updated  
from a received frame. The flags remain set until the Host clears  
them. A flag is cleared by writing a 1to the corresponding  
bit position. Writing a 0has no effect. A hard reset will clear  
the register.  
31:0  
ND31 to ND0  
R/W  
0
0 - Rx Buffer not updated  
1 - Rx Buffer updated from new message  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 105  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.30 New Data 2 (address = h109C) [reset = h00000000]  
8-60. New Data 2 Register  
31  
ND63  
R/W  
23  
30  
ND62  
R/W  
22  
29  
ND61  
R/W  
21  
28  
ND60  
R/W  
20  
27  
ND59  
R/W  
19  
26  
ND58  
R/W  
18  
25  
ND57  
R/W  
17  
24  
ND56  
R/W  
16  
ND55  
R/W  
15  
ND54  
R/W  
14  
ND53  
R/W  
13  
ND52  
R/W  
12  
ND51  
R/W  
11  
ND50  
R/W  
10  
ND49  
R/W  
9
ND48  
R/W  
8
ND47  
R/W  
7
ND46  
R/W  
6
ND45  
R/W  
5
ND44  
R/W  
4
ND43  
R/W  
3
ND42  
R/W  
2
ND41  
R/W  
1
ND40  
R/W  
0
ND39  
R/W  
ND38  
R/W  
ND37  
R/W  
ND36  
R/W  
ND35  
R/W  
ND34  
R/W  
ND33  
R/W  
ND32  
R/W  
8-55. New Data 2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
The register holds the New Data flags of Rx Buffers 32 to 63.  
The flags are set when the respective Rx Buffer has been  
updated from a received frame. The flags remain set until the  
Host clears them. A flag is cleared by writing a 1to the  
corresponding bit position. Writing a 0has no effect. A hard  
reset will clear the register  
31:0  
ND63 to ND32  
R/W  
0
0 - Rx Buffer not updated  
1 - Rx Buffer updated from new message  
Copyright © 2022 Texas Instruments Incorporated  
106 Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.31 Rx FIFO 0 Configuration (address = h10A0) [reset = h00000000]  
The MRAM and start address for this register, F0SA, has special consideration.  
The start address must be word aligned (32-bit) in the MRAM. The 2 least significant bits are ignored on a  
write to ensure this behavior.  
When entering the MRAM start address, the 0x8000 prefix is NOT necessary. For example, if the desired  
start address is 0x8634, then bits SA[15:0] will be 0x0634.  
8-61. Rx FIFO 0 Configuration Register  
31  
F0OM  
RP  
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
F0WM[6:0]  
RP  
26  
18  
10  
2
25  
17  
9
24  
16  
8
23  
19  
RSVD  
R
F0S[6:0]  
RP  
15  
11  
F0SA[15:8]  
RP  
7
3
1
0
F0SA[7:0]  
RP  
8-56. Rx FIFO 0 Configuration Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
FIFO 0 Operation Mode  
FIFO 0 can be operated in blocking or in overwrite mode  
0 - FIFO 0 blocking mode  
31  
F0OM  
RP  
0
1 - FIFO 0 overwrite mode  
Rx FIFO 0 Watermark  
0 - Watermark interrupt disabled  
1-64 - Level for Rx FIFO 0 watermark interrupt (IR.RF0W)  
>64 - Watermark interrupt disabled  
30:24  
23  
F0WM[6:0]  
RSVD  
RP  
R
0x0  
0
Reserved  
Rx FIFO 0 Size  
0 - No Rx FIFO 0  
22:16  
15:0  
F0S[6:0]  
RP  
RP  
0x0  
1-64 - Number of Rx FIFO 0 elements  
>64 - Values greater than 64 are interpreted as 64  
The Rx FIFO 0 elements are indexed from 0 to F0S-1  
Rx FIFO 0 Start Address  
Start address of Rx FIFO 0 in Message RAM  
F0SA[15:0]  
0x00  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 107  
Product Folder Links: TCAN4550-Q1  
 
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.32 Rx FIFO 0 Status (address = h10A4) [reset = h00000000]  
8-62. Rx FIFO 0 Status Register  
31  
23  
15  
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
RF0L  
R
24  
F0F  
R
RSVD  
R
17  
16  
RSVD  
R
F0PI[5:0]  
R
9
1
8
0
RSVD  
R
F0GI[5:0]  
R
7
RSVD  
R
F0FL[6:0]  
R
8-57. Rx FIFO 0 Status Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31:26  
RSVD  
R
0x0  
Reserved  
Rx FIFO 0 Message Lost  
This bit is a copy of interrupt flag IR.RF0L. When IR.RF0L is  
reset, this bit is also reset.  
0 - No Rx FIFO 0 message lost  
1 - Rx FIFO 0 message lost; also set after write attempt to Rx  
FIFO 0 of size zero  
25  
RF0L  
R
0
Note: Overwriting the oldest message when RXF0C.F0OM =  
1will not set this flag  
Rx FIFO 0 Full  
24  
F0F  
R
0
0 - Rx FIFO 0 not full  
1 - Rx FIFO 0 full  
23:22  
21:16  
15:14  
13:8  
7
RSVD  
R
R
R
R
R
R
0x0  
0x0  
0x0  
0x0  
0
Reserved  
Rx FIFO 0 Put Index  
Rx FIFO 0 write index pointer, range 0 to 63  
F0PI[5:0]  
RSVD  
Reserved  
Rx FIFO 0 Get Index  
Rx FIFO 0 read index pointer, range 0 to 63  
F0GI[5:0]  
RSVD  
Reserved  
Rx FIFO 0 Fill Level  
Number of elements stored in Rx FIFO 0, range 0 to 64.  
6:0  
F0FL[6:0]  
0x0  
Copyright © 2022 Texas Instruments Incorporated  
108 Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.33 Rx FIFO 0 Acknowledge (address = h10A8) [reset = h00000000]  
8-63. Rx FIFO 0 Acknowledge Register  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
RSVD  
R
RSVD  
R
1
0
RSVD  
R
F0AI[5:0]  
R/W  
8-58. Rx FIFO 0 Acknowledge Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31:24  
23:16  
15:8  
7:6  
RSVD  
RSVD  
RSVD  
RSVD  
R
0x0  
Reserved  
R
0x0  
Reserved  
R
0x0  
Reserved  
R
0x0  
Reserved  
Rx FIFO 0 Acknowledge Index  
After the Host has read a message or a sequence of messages  
from Rx FIFO 0 it has to write the buffer index of the last  
element read from Rx FIFO 0 to F0AI. This will set the Rx FIFO  
0 Get Index RXF0S.F0GI to F0AI + 1 and update the FIFO 0 Fill  
Level RXF0S.F0FL.  
5:0  
F0AI[5:0]  
R/W  
0x0  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 109  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.34 Rx Buffer Configuration (address = h10AC) [reset = h00000000]  
8-64. Rx Buffer Configuration Register  
31  
23  
30  
22  
29  
28  
27  
26  
25  
17  
24  
16  
RSVD  
21  
20  
19  
18  
RSVD  
R
15  
7
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
8
0
RBSA[15:8]  
RP  
RBSA[7:0]  
RP  
8-59. Rx Buffer Configuration Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31:24  
23:16  
RSVD  
RSVD  
R
0x0  
Reserved  
R
0x0  
Reserved  
Rx Buffer Start Address  
15:0  
RBSA[15:0]  
RP  
0x0  
Configures the start address of the Rx Buffers section in the  
Message RAM . Also used to reference debug messages A,B,C  
Copyright © 2022 Texas Instruments Incorporated  
110  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.35 Rx FIFO 1 Configuration (address = h10B0) [reset = h00000000]  
The MRAM and start address for this register, F1SA, has special consideration.  
The start address must be word aligned (32-bit) in the MRAM. The 2 least significant bits are ignored on a  
write to ensure this behavior.  
When entering the MRAM start address, the 0x8000 prefix is NOT necessary. For example, if the desired  
start address is 0x8634, then bits SA[15:0] will be 0x0634.  
8-65. Rx FIFO 1 Configuration Register  
31  
F10M  
RP  
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
F1WM[6:0]  
RP  
26  
18  
10  
2
25  
17  
9
24  
16  
8
23  
19  
RSVD  
R
F1S[6:0]  
RP  
15  
11  
F1SA[15:8]  
RP  
7
3
1
0
F1SA[7:0]  
RP  
8-60. Rx FIFO 1 Configuration Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
FIFO 1 Operation Mode  
FIFO 1 can be operated in blocking or in overwrite mode  
0 - FIFO 1 blocking mode  
31  
F10M  
RP  
0
1- FIFO 1 overwrite mode  
Rx FIFO 1 Watermark  
0 - Watermark interrupt disabled  
1-64 - Level for Rx FIFO 1 watermark interrupt (IR.RF1W)  
>64 - Watermark interrupt disabled  
30:24  
23  
F1WM[6:0]  
RSVD  
RP  
R
0x0  
0
Reserved  
Rx FIFO 1 Size  
0 - No Rx FIFO 1  
20:16  
15:0  
F1S[6:0]  
RP  
RP  
0x0  
0x0  
1-64 - Number of Rx FIFO 1 elements  
>64 - Values greater than 64 are interpreted as 64  
The Rx FIFO 1 elements are indexed from 0 to F1S - 1  
Rx FIFO 1 Start Address  
Start address of Rx FIFO 1 in Message RAM  
F1SA[15:0]  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
111  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.36 Rx FIFO 1 Status (address = h10B4) [reset = h00000000]  
8-66. Rx FIFO 1 Status Register  
31  
23  
15  
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
26  
18  
10  
2
25  
RF1L  
R
24  
F1F  
R
DMS[1:0]  
R
RSVD  
R
17  
16  
RSVD  
R
F1PI[5:0]  
R
9
1
8
0
RSVD  
R
F1GI[5:0]  
R
3
7
RSVD  
R
F1FL[6:0]  
R
8-61. Rx FIFO 1 Status Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Debug Message Status  
00 - Idle state, wait for reception of debug messages, DMA  
request is cleared  
01 - Debug message A received  
10 - Debug messages A, B received  
11 - Debug messages A, B, C received, DMA request is set  
31:30  
29:26  
DMS[1:0]  
RSVD  
R
0x0  
R
0x0  
Reserved  
Rx FIFO 1 Message Lost  
This bit is a copy of interrupt flag IR.RF1L. When IR.RF1L is  
reset, this bit is also reset  
0 - No Rx FIFO 1 message lost  
1 - Rx FIFO 1 message lost, also set after write attempt to Rx  
FIFO 1 of size zero  
25  
RF1L  
R
0
Note: Overwriting the oldest message when RXF1C.F1OM =  
1will not set this flag.  
Rx FIFO 1 Full  
24  
F1F  
R
0
0 - Rx FIFO 1 not full  
1 - Rx FIFO 1 full  
23:22  
21:16  
15:14  
13:8  
7
RSVD  
R
R
R
R
R
R
0x0  
0x0  
0x0  
0x0  
0
Reserved  
Rx FIFO 1 Put Index  
Rx FIFO 1 write index pointer, range 0 to 63  
F1PI[5:0]  
RSVD  
Reserved  
Rx FIFO 1 Get Index  
Rx FIFO 1 read index pointer, range 0 to 63.  
F1GI[5:0]  
RSVD  
Reserved  
Rx FIFO 1 Fill Level  
Number of elements stored in Rx FIFO 1, range 0 to 64.  
6:0  
F1FL[6:0]  
0x0  
Copyright © 2022 Texas Instruments Incorporated  
112  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.37 Rx FIFO 1 Acknowledge (address = h10B8) [reset = h00000000]  
8-67. Rx FIFO 1 Acknowledge Register  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
RSVD  
R
RSVD  
R
1
0
RSVD  
R
F1AI[5:0]  
R/W  
8-62. Rx FIFO 1 Acknowledge Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31:24  
23:16  
15:8  
7:6  
RSVD  
RSVD  
RSVD  
RSVD  
R
0x0  
Reserved  
R
0x0  
Reserved  
R
0x0  
Reserved  
R
0x0  
Reserved  
Rx FIFO 1 Acknowledge Index  
After the Host has read a message or a sequence of messages  
from Rx FIFO 1 it has to write the buffer index of the last  
element read from Rx FIFO 1 to F1AI. This will set the Rx FIFO  
1 Get Index RXF1S.F1GI to F1AI + 1 and update the FIFO 1 Fill  
Level RXF1S.F1FL.  
5:0  
F1AI[5:0]  
R/W  
0x0  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
113  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.38 Rx Buffer/FIFO Element Size Configuration (address = h10BC) [reset = h00000000]  
8-68. Rx Buffer/FIFO Element Size Configuration Register  
31  
23  
15  
30  
22  
14  
6
29  
28  
20  
12  
4
27  
19  
11  
26  
18  
10  
2
25  
17  
24  
16  
8
RSVD  
R
21  
RSVD  
R
13  
9
RBDS[2:0]  
RP  
RSVD  
R
7
RSVD  
R
5
3
RSVD  
R
1
0
F1DS[2:0]  
RP  
F0DS[2:0]  
RP  
8-63. Rx Buffer/FIFO Element Size Configuration Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Reserved  
Reserved  
Reserved  
31:24  
31:24  
31:24  
RSVD  
RSVD  
RSVD  
R
0x0  
R
0x0  
R
0x0  
Rx Buffer Data Field Size  
000 - 8 byte data field  
001 - 12 byte data field  
010 - 16 byte data field  
011 - 20 byte data field  
100 - 24 byte data field  
101 - 32 byte data field  
110 - 48 byte data field  
111 - 64 byte data field  
10:8  
RBDS[2:0]  
RSVD  
RP  
R
0x0  
7
0
Reserved  
Rx FIFO 1 Data Field Size  
000 - 8 byte data field  
001 - 12 byte data field  
010 - 16 byte data field  
011 - 20 byte data field  
100 - 24 byte data field  
101 - 32 byte data field  
110 - 48 byte data field  
111 - 64 byte data field  
6:4  
3
F1DS[2:0]  
RSVD  
RP  
R
0x0  
0
Reserved  
Rx FIFO 0 Data Field Size  
000 - 8 byte data field  
001 - 12 byte data field  
010 - 16 byte data field  
011 - 20 byte data field  
100 - 24 byte data field  
101 - 32 byte data field  
110 - 48 byte data field  
111 - 64 byte data field  
2:0  
F0DS[2:0]  
RP  
0x0  
Copyright © 2022 Texas Instruments Incorporated  
114  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.39 Tx Buffer Configuration (address = h10C0) [reset = h00000000]  
The MRAM and start address for this register, TBSA, has special consideration.  
The start address must be word aligned (32-bit) in the MRAM. The 2 least significant bits are ignored on a  
write to ensure this behavior.  
When entering the MRAM start address, the 0x8000 prefix is NOT necessary. For example, if the desired  
start address is 0x8634, then bits SA[15:0] will be 0x0634.  
8-69. Tx Buffer Configuration Register  
31  
RSVD  
R
30  
TFQM  
RP  
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
TFQS[5:0]  
RP  
23  
22  
RSVD  
R
NDTB[5:0]  
RP  
15  
7
14  
6
TBSA[15:8]  
RP  
1
0
TBSA[7:0]  
RP  
8-64. Tx Buffer Configuration Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31  
RSVD  
R
0
Reserved  
Tx FIFO/Queue Mode  
0 - Tx FIFO operation  
1 - Tx Queue operation  
30  
TFQM  
RP  
0
Transmit FIFO/Queue Size  
0 - No Tx FIFO/Queue  
1-32 - Number of Tx Buffers used for Tx FIFO/Queue  
>32 - Values greater than 32 are interpreted as 32  
29:24  
23:22  
21:16  
TFQS[5:0]  
RSVD  
RP  
R
0x0  
0x0  
0x0  
Reserved  
Number of Dedicated Transmit Buffers  
0 - No Dedicated Tx Buffers  
1-32 - Number of Dedicated Tx Buffers  
>32 - Values greater than 32 are interpreted as 32  
NDTB[5:0]  
RP  
Tx Buffers Start Address  
Start address of Tx Buffers section in Message RAM  
Note: Be aware that the sum of TFQS and NDTB may be not  
greater than 32. There is no check for erroneous configurations.  
The Tx Buffers section in the Message RAM starts with the  
dedicated Tx Buffers.  
15:0  
TBSA[15:0]  
RP  
0x0  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
115  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.40 Tx FIFO/Queue Status (address = h10C4) [reset = h00000000]  
8-70. Tx FIFO/Queue Status Register  
31  
23  
15  
7
30  
22  
29  
28  
20  
12  
4
27  
19  
11  
3
26  
25  
17  
9
24  
16  
8
RSVD  
R
21  
TFQF  
R
18  
RSVD  
R
TFQPI[4:0]  
R
14  
RSVD  
R
13  
10  
TFGI[4:0]  
R
2
6
5
1
0
RSVD  
R
TFFL[5:0]  
R
8-65. Tx FIFO/Queue Status Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Reserved  
Reserved  
31:24  
23:22  
RSVD  
RSVD  
R
0x0  
R
0x0  
Tx FIFO/Queue Full  
21  
TFQF  
R
0
0 - Tx FIFO/Queue not full  
1 - Tx FIFO/Queue full  
Tx FIFO/Queue Put Index  
Tx FIFO/Queue write index pointer, range 0 to 31.  
20:16  
15:13  
TFQPI[4:0]  
RSVD  
R
R
0x0  
0x0  
Reserved  
Tx FIFO Get Index  
Tx FIFO read index pointer, range 0 to 31. Read as zero when  
Tx Queue operation is configured (TXBC.TFQM = 1).  
12:8  
7:6  
TFGI[4:0]  
RSVD  
R
R
0x0  
0x0  
Reserved  
Tx FIFO Free Level  
Number of consecutive free Tx FIFO elements starting from  
TFGI, range 0 to 32. Read as zero when Tx Queue operation is  
configured (TXBC.TFQM = 1)  
Note: In case of mixed configurations where dedicated Tx  
Buffers are combined with a Tx FIFO or a Tx Queue, the Put  
and Get Indices indicate the number of the Tx Buffer starting  
with the first dedicated Tx Buffers  
5:0  
TFFL[5:0]  
R
0x0  
Example: For a configuration of 12 dedicated Tx Buffers and a  
Tx FIFO of 20 Buffers a Put Index of 15 points to the fourth  
buffer of the Tx FIFO  
Copyright © 2022 Texas Instruments Incorporated  
116  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.41 Tx Buffer Element Size Configuration (address = h10C8) [reset = h00000000]  
8-71. Tx Buffer Element Size Configuration Register  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
RSVD  
R
RSVD  
R
5
RSVD  
R
1
0
TBDS[2:0]  
RP  
8-66. Tx Buffer Element Size Configuration Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
31:24  
23:16  
15:8  
7:3  
RSVD  
RSVD  
RSVD  
RSVD  
R
0x0  
R
0x0  
R
0x0  
R
0x0  
Tx Buffer Data Field Size  
000 - 8 byte data field  
001 - 12 byte data field  
010 - 16 byte data field  
011 - 20 byte data field  
100 - 24 byte data field  
101 - 32 byte data field  
110 - 48 byte data field  
111 - 64 byte data field  
2:0  
TBDS[2:0]  
RP  
0x0  
Note: In case the data length code DLC of a Tx Buffer element  
is configured to a value higher than the Tx Buffer data field size  
TXESC.TBDS, the bytes not defined by the Tx Buffer are  
transmitted as 0xCC(padding bytes).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
117  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.42 Tx Buffer Request Pending (address = h10CC) [reset = h00000000]  
8-72. Tx Buffer Request Pending Register  
31  
TRP31  
R
30  
TRP30  
R
29  
TRP29  
R
28  
TRP28  
R
27  
TRP27  
R
26  
TRP26  
R
25  
TRP22  
R
24  
TRP24  
R
16  
23  
22  
21  
20  
19  
18  
17  
TRP23  
R
TRP22  
R
TRP21  
R
TRP20  
R
TRP19  
R
TRP18  
R
TRP17  
R
TRP16  
R
15  
14  
13  
12  
11  
10  
9
8
TRP15  
R
TRP14  
R
TRP13  
R
TRP12  
R
TRP11  
R
TRP10  
R
TRP9  
R
TRP8  
R
7
6
5
4
3
2
1
0
TRP7  
R
TRP6  
R
TRP5  
R
TRP4  
R
TRP3  
R
TRP2  
R
TRP1  
R
TRP0  
R
8-67. Tx Buffer Request Pending Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Transmission Request Pending  
Each Tx Buffer has its own Transmission Request Pending bit.  
The bits are set via register TXBAR.  
The bits are reset after a requested transmission has completed  
or has been cancelled via register TXBCR. TXBRP bits are set  
only for those Tx Buffers configured via TXBC. After a TXBRP  
bit has been set, a Tx scan is started to check for the pending  
Tx request with the highest priority (Tx Buffer with lowest  
Message ID).  
A cancellation request resets the corresponding transmission  
request pending bit of register TXBRP. In case a transmission  
has already been started when a cancellation is requested, this  
is done at the end of the transmission, regardless whether the  
transmission was successful or not. The cancellation request  
bits are reset directly after the corresponding TXBRP bit has  
been reset.  
After a cancellation has been requested, a finished cancellation  
is signaled via TXBCF  
31:0  
TRP31 to TRP0  
R
0
after successful transmission together with the  
corresponding TXBTO bit  
when the transmission has not yet been started at the point  
of cancellation  
when the transmission has been aborted due to lost  
arbitration  
when an error occurred during frame transmission  
In DAR mode all transmissions are automatically cancelled if  
they are not successful. The corresponding TXBCF bit is set for  
all unsuccessful transmissions.  
0 - No transmission request pending  
1- Transmission request pending  
Note: TXBRP bits which are set while a Tx scan is in progress  
are not considered during this particular Tx scan. In case a  
cancellation is requested for such a Tx Buffer, this Add Request  
is cancelled immediately, the corresponding TXBRP bit is reset.  
Copyright © 2022 Texas Instruments Incorporated  
118  
Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.43 Tx Buffer Add Request (address = h10D0) [reset = h00000000]  
8-73. Tx Buffer Add Request Register  
31  
AR31  
R/W  
23  
30  
AR30  
R/W  
22  
29  
AR29  
R/W  
21  
28  
AR28  
R/W  
20  
27  
AR27  
R/W  
19  
26  
AR26  
R/W  
18  
25  
AR25  
R/W  
17  
24  
AR24  
R/W  
16  
AR23  
R/W  
15  
AR22  
R/W  
14  
AR21  
R/W  
13  
AR20  
R/W  
12  
AR19  
R/W  
11  
AR18  
R/W  
10  
AR17  
R/W  
9
AR16  
R/W  
8
AR14  
R/W  
7
AR14  
R/W  
6
AR13  
R/W  
5
AR12  
R/W  
4
AR11  
R/W  
3
AR10  
R/W  
2
AR9  
R/W  
1
AR8  
R/W  
0
AR7  
R/W  
AR6  
R/W  
AR5  
R/W  
AR4  
R/W  
AR3  
R/W  
AR2  
R/W  
AR1  
R/W  
AR0  
R/W  
8-68. Tx Buffer Add Request Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Add Request  
Each Tx Buffer has its own Add Request bit. Writing a 1will  
set the corresponding Add Request bit; writing a 0has no  
impact. This enables the Host to set transmission requests for  
multiple Tx Buffers with one write to TXBAR. TXBAR bits are set  
only for those Tx Buffers configured via TXBC. When no Tx  
scan is running, the bits are reset immediately, else the bits  
remain set until the Tx scan process has completed.  
0 - No transmission request added  
31:0  
AR31 to AR0  
R/W  
0
1 - Transmission requested added  
Note: If an add request is applied for a Tx Buffer with pending  
transmission request (corresponding TXBRP bit already set),  
this add request is ignored.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
119  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.43.1 Tx Buffer Cancellation Request (address = h10D4 [reset = h00000000]  
8-74. Tx Buffer Cancellation Request Register  
31  
CR31  
R/W  
23  
30  
CR30  
R/W  
22  
29  
CR29  
R/W  
21  
28  
CR28  
R/W  
20  
27  
CR27  
R/W  
19  
26  
CR26  
R/W  
18  
25  
CR25  
R/W  
17  
24  
CR24  
R/W  
16  
CR23  
R/W  
15  
CR22  
R/W  
14  
CR21  
R/W  
13  
CR20  
R/W  
12  
CR19  
R/W  
11  
CR18  
R/W  
10  
CR17  
R/W  
9
CR16  
R/W  
8
CR15  
R/W  
7
CR14  
R/W  
6
CR13  
R/W  
5
CR12  
R/W  
4
CR11  
R/W  
3
CR10  
R/W  
2
CR9  
R/W  
1
CR8  
R/W  
0
CR7  
R/W  
CR6  
R/W  
CR5  
R/W  
CR4  
R/W  
CR3  
R/W  
CR2  
R/W  
CR1  
R/W  
CR0  
R/W  
8-69. Tx Buffer Cancellation Request Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Cancellation Request  
Each Tx Buffer has its own Cancellation Request bit. Writing a  
1will set the corresponding Cancellation Request bit;  
writing a 0has no impact. This enables the Host to set  
cancellation requests for multiple Tx Buffers with one write to  
TXBCR. TXBCR bits are set only for those Tx Buffers configured  
via TXBC. The bits remain set until the corresponding bit of  
TXBRP is reset.  
31:0  
CR31 to CR0  
R/W  
0
0 - No cancellation pending  
1 - Cancellation pending  
Copyright © 2022 Texas Instruments Incorporated  
120 Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.43.2 Tx Buffer Add Request Transmission Occurred (address = h10D8) [reset = h00000000]  
8-75. Tx Buffer Add Request Transmission Occurred Register  
31  
TO31  
R
30  
TO30  
R
29  
TO29  
R
28  
TO28  
R
27  
TO27  
R
26  
TO26  
R
25  
TO25  
R
24  
TO24  
R
23  
22  
21  
20  
19  
18  
17  
16  
TO23  
R
TO22  
R
TO21  
R
TO20  
R
TO19  
R
TO18  
R
TO17  
R
TO16  
R
15  
14  
13  
12  
11  
10  
9
8
TO15  
R
TO14  
R
TO13  
R
TO12  
R
TO11  
R
TO10  
R
TO9  
R
TO8  
R
7
6
5
4
3
2
1
0
TO7  
R
TO6  
R
TO5  
R
TO4  
R
TO3  
R
TO2  
R
TO1  
R
TO0  
R
8-70. Tx Buffer Add Request Transmission Occurred Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Transmission Occurred  
Each Tx Buffer has its own Transmission Occurred bit. The bits  
are set when the corresponding TXBRP bit is cleared after a  
successful transmission. The bits are reset when a new  
transmission is requested by writing a 1to the  
corresponding bit of register TXBAR.  
31:0  
TO31 to TO0  
R
0
0 - No transmission occurred  
1 - Transmission occurred  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 121  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.43.3 Tx Buffer Cancellation Finished (address = h10DC) [reset = h00000000]  
8-76. Tx Buffer Cancellation Finished Register  
31  
CF31  
R
30  
CF30  
R
29  
CF29  
R
28  
CF28  
R
27  
CF27  
R
26  
CF26  
R
25  
CF25  
R
24  
CF24  
R
23  
22  
21  
20  
19  
18  
17  
16  
CF23  
R
CF22  
R
CF21  
R
CF20  
R
CF19  
R
CF18  
R
CF17  
R
CF16  
R
15  
14  
13  
12  
11  
10  
9
8
CF15  
R
CF14  
R
CF13  
R
CF12  
R
CF11  
R
CF10  
R
CF9  
R
CF8  
R
7
6
5
4
3
2
1
0
CF7  
R
CF6  
R
CF5  
R
CF4  
R
CF3  
R
CF2  
R
CF1  
R
CF0  
R
8-71. Tx Buffer Cancellation Finished Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Cancellation Finished  
Each Tx Buffer has its own Cancellation Finished bit. The bits  
are set when the corresponding TXBRP bit is cleared after a  
cancellation was requested via TXBCR. In case the  
corresponding TXBRP bit was not set at the point of  
cancellation, CF is set immediately. The bits are reset when a  
new transmission is requested by writing a 1to the  
corresponding bit of register TXBAR.  
31:0  
CF31 to CF0  
R
0
0 - No transmit buffer cancellation  
1 - Transmit buffer cancellation finished  
Copyright © 2022 Texas Instruments Incorporated  
122 Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.43.4 Tx Buffer Transmission Interrupt Enable (address = h10E0) [reset = h00000000]  
8-77. Tx Buffer Transmission Interrupt Enable Register  
31  
TIE31  
R/W  
23  
30  
TIE30  
R/W  
22  
29  
TIE29  
R/W  
21  
28  
TIE28  
R/W  
20  
27  
TIE27  
R/W  
19  
26  
TIE26  
R/W  
18  
25  
TIE25  
R/W  
17  
24  
TIE24  
R/W  
16  
TIE23  
R/W  
15  
TIE22  
R/W  
14  
TIE21  
R/W  
13  
TIE20  
R/W  
12  
TIE19  
R/W  
11  
TIE18  
R/W  
10  
TIE17  
R/W  
9
TIE16  
R/W  
8
TIE15  
R/W  
7
TIE14  
R/W  
6
TIE13  
R/W  
5
TIE12  
R/W  
4
TIE11  
R/W  
3
TIE10  
R/W  
2
TIE9  
R/W  
1
TIE8  
R/W  
0
TIE7  
R/W  
TIE6  
R/W  
TIE5  
R/W  
TIE4  
R/W  
TIE3  
R/W  
TIE2  
R/W  
TIE1  
R/W  
TIE0  
R/W  
8-72. Tx Buffer Transmission Interrupt Enable Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Transmission Interrupt Enable  
Each Tx Buffer has its own Transmission Interrupt Enable bit.  
0 - Transmission interrupt disabled  
TIE31 to TIE0  
R/W  
0
1 - Transmission interrupt enable  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 123  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.43.5 Tx Buffer Cancellation Finished Interrupt Enable (address = h10E4) [reset = h00000000]  
8-78. Tx Buffer Cancellation Finished Interrupt Enable Register  
31  
CFIE31  
R/W  
30  
CFIE30  
R/W  
29  
CFIE29  
R/W  
28  
CFIE28  
R/W  
27  
CFIE27  
R/W  
26  
CFIE26  
R/W  
25  
CFIE25  
R/W  
17  
24  
CFIE24  
R/W  
16  
23  
22  
21  
20  
19  
18  
CFIE23  
R/W  
CFIE22  
R/W  
CFIE21  
R/W  
CFIE20  
R/W  
CFIE19  
R/W  
CFIE18  
R/W  
CFIE17  
R/W  
9
CFIE16  
R/W  
8
15  
14  
13  
12  
11  
10  
CFIE15  
R/W  
CFIE14  
R/W  
CFIE13  
R/W  
CFIE12  
R/W  
CFIE11  
R/W  
CFIE10  
R/W  
CFIE9  
R/W  
1
CFIE8  
R/W  
0
7
6
5
4
3
2
CFIE7  
R/W  
CFIE6  
R/W  
CFIE5  
R/W  
CFIE4  
R/W  
CFIE3  
R/W  
CFIE2  
R/W  
CFIE1  
R/W  
CFIE0  
R/W  
8-73. Tx Buffer Cancellation Finished Interrupt Enable Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Bit 31:0 CFIE[31:0]: Cancellation Finished Interrupt Enable  
Each Tx Buffer has its own Cancellation Finished Interrupt  
Enable bit.  
31:0  
CFIE31 to CFIE0  
RW  
0
0 - Cancellation finished interrupt disabled  
1 - Cancellation finished interrupt enabled  
Copyright © 2022 Texas Instruments Incorporated  
124 Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.43.6 Reserved (address = h10E8) [reset = h00000000]  
8-79. Reserved  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
RSVD  
R
RSVD  
R
1
0
RSVD  
R
8-74. Reserved Field Descriptions  
Bit  
31:0  
Field  
Type  
Reset  
Description  
RSVD  
R
0
Reserved  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 125  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.43.7 Reserved (address = h10EC) [reset = h00000000]  
8-80. Reserved  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
RSVD  
R
RSVD  
R
1
0
RSVD  
R
8-75. Reserved Field Descriptions  
Bit  
31:0  
Field  
Type  
Reset  
Description  
RSVD  
R
0
Reserved  
Copyright © 2022 Texas Instruments Incorporated  
126 Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.43.8 Tx Event FIFO Configuration (address = h10F0) [reset = h00000000]  
The MRAM and start address for this register, EFSA, has special consideration.  
The start address must be word aligned (32-bit) in the MRAM. The 2 least significant bits are ignored on a  
write to ensure this behavior.  
When entering the MRAM start address, the 0x8000 prefix is NOT necessary. For example, if the desired  
start address is 0x8634, then bits SA[15:0] will be 0x0634.  
8-81. Tx Event FIFO Configuration Register  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
EFWM[5:0]  
RP  
RSVD  
R
EFS[5:0]  
RP  
EFSA[15:8]  
RP  
1
0
EFSA[7:0]  
RP  
8-76. Tx Event FIFO Configuration Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31:30  
29:24  
23:22  
RSVD  
R
0x0  
Reserved  
Event FIFO Watermark  
0 - Watermark interrupt disabled  
1-32 - Level for Tx Event FIFO watermark interrupt (IR.TEFW)  
>32 - Watermark interrupt disabled  
EFWM[5:0]  
RSVD  
RP  
R
0x0  
0x0  
Reserved  
Event FIFO Size  
0 - Tx Event FIFO disabled  
21:16  
15:0  
EFS[5:0]  
RP  
RP  
0x0  
0x0  
1-32 - Number of Tx Event FIFO elements  
>32 - Values greater than 32 are interpreted as 32  
The Tx Event FIFO elements are indexed from 0 to EFS - 1  
Event FIFO Start Address  
Start address of Tx Event FIFO in Message RAM  
EFSA[15:0]  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 127  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.43.9 Tx Event FIFO Status (address = h10F4) [reset = h00000000]  
8-82. Tx Event FIFO Status Register  
31  
23  
15  
7
30  
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
25  
TEFL  
R
24  
EFF  
R
RSVD  
R
22  
RSVD  
R
18  
17  
16  
EFPI[4:0]  
R
14  
10  
9
1
8
0
RSVD  
R
REFGI[4:0]  
R
2
6
RSVD  
R
EFFL[5:0]  
R
8-77. Tx Event FIFO Status Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31:26  
RSVD  
R
0x0  
Reserved  
Tx Event FIFO Element Lost  
This bit is a copy of interrupt flag IR.TEFL. When IR.TEFL is  
reset, this bit is also reset.  
0 - No Tx Event FIFO element lost  
25  
TEFL  
R
0
1 - Tx Event FIFO element lost, also set after write attempt to Tx  
Event FIFO of size zero.  
Event FIFO Full  
24  
EFF  
R
0
0 - Tx Event FIFO not full  
1 - Tx Event FIFO full  
23:21  
20:16  
15:13  
12:8  
7:6  
RSVD  
R
R
R
R
R
R
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Reserved  
Event FIFO Put Index  
Tx Event FIFO write index pointer, range 0 to 31.  
EFPI[4:0]  
RSVD  
Reserved  
Event FIFO Get Index  
Tx Event FIFO read index pointer, range 0 to 31.  
REFGI[4:0]  
RSVD  
Reserved  
Event FIFO Fill Level  
Number of elements stored in Tx Event FIFO, range 0 to 32  
5:0  
EFFL[5:0]  
Copyright © 2022 Texas Instruments Incorporated  
128 Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.43.10 Tx Event FIFO Acknowledge (address = h10F8) [reset = h00000000]  
8-83. Tx Event FIFO Acknowledge Register  
31  
23  
15  
7
30  
22  
14  
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
25  
17  
9
24  
16  
8
RSVD  
R
RSVD  
R
RSVD  
R
6
RSVD  
R
2
1
0
EFAI[4:0]  
R/W  
8-78. Tx Event FIFO Acknowledge Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31:24  
23:16  
15:18  
7:5  
RSVD  
RSVD  
RSVD  
RSVD  
R
0x0  
Reserved  
R
0x0  
Reserved  
R
0x0  
Reserved  
R
0x0  
Reserved  
Event FIFO Acknowledge Index  
After the Host has read an element or a sequence of elements  
from the Tx Event FIFO it has to write the index of the last  
element read from Tx Event FIFO to EFAI. This will set the Tx  
Event FIFO Get Index TXEFS.EFGI to EFAI + 1 and update the  
Event FIFO Fill Level TXEFS.EFFL.  
4:0  
EFAI[4:0]  
E/W  
0x0  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 129  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
8.6.4.43.11 Reserved (address = h10FC) [reset = h00000000]  
8-84. Reserved  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
RSVD  
R
RSVD  
R
1
0
RSVD  
R
8-79. Reserved Field Descriptions  
Bit  
31:0  
Field  
Type  
Reset  
Description  
RSVD  
R
0
Reserved  
Copyright © 2022 Texas Instruments Incorporated  
130 Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Design Consideration  
9.1.1 Crystal and Clock Input Requirements  
Selecting the crystal or clock input depends upon system implementation. To support 2 and 5 Mbps CAN FD the  
clock in or crystal needs to have 0.5% frequency accuracy. The minimum value of 20 MHz is needed to support  
CAN FD with a rate of 2 Mbps. The recommended value for CLKIN or crystal is 40 MHz to meet CAN FD rates  
up to 5 Mbps data rates in order to support higher data throughout. If a crystal is used see the manufacturers  
documentation on proper biasing.  
备注  
The TCAN4550-Q1 was evaluated with the NX2016SA 20MHz and 40MHz crystals  
9.1.2 Bus Loading, Length and Number of Nodes  
A typical CAN application can have a maximum bus length of 40 m and maximum stub length of 0.3 m. However,  
with careful design, users can have longer cables, longer stub lengths, and many more nodes to a bus. A high  
number of nodes require a transceiver with high input impedance such as this transceiver family.  
Many CAN organizations and standards have scaled the use of CAN for applications outside the original ISO  
11898-2:2016 standard. They made system level trade off decisions for data rate, cable length, and parasitic  
loading of the bus. Examples of these CAN systems level specifications are ARINC825, CANopen, DeviceNet,  
SAE J2284, SAE J1939, and NMEA200.  
A CAN system design is a series of tradeoffs. In ISO 11898-2:2016 the driver differential output is specified with  
a bus load that can range from 50 Ω to 65 Ω where the differential output must be greater than 1.5 V. The  
TCAN4550-Q1 is specified to meet the 1.5 V requirement with a across this load range and is specified to meet  
1.4 V differential output at 45 Ω bus load. The differential input resistance of this family of transceiver is a  
minimum of 30 kΩ. If 167 of these transceivers are in parallel on a bus, this is equivalent to a 180 Ω differential  
load in parallel with the 60 Ω from termination gives a total bus load of 45 Ω. Therefore, this family theoretically  
supports over 167 transceivers on a single bus segment with margin to the 1.2 V minimum differential input  
voltage requirement at each receiving node. However, for CAN network design margin must be given for signal  
loss across the system and cabling, parasitic loadings, timing, network imbalances, ground offsets and signal  
integrity thus a practical maximum number of nodes is much lower. Bus length may also be extended beyond the  
original ISO 11898-2:2016 standard of 40 m by careful system design and data rate tradeoffs. For example,  
CANopen network design guidelines allow the network to be up to 1 km with changes in the termination  
resistance, cabling, less than 64 nodes and significantly lowered data rate.  
This flexibility in CAN network design is one of its key strengths allowing for these system level network  
extensions and additional standards to build on the original ISO 11898-2 CAN standard. However, when using  
this flexibility, the CAN network system designer must take the responsibility of good network design to ensure  
robust network operation.  
9.1.3 CAN Termination  
The standard CAN bus interconnection to be a single twisted pair cable (shielded or unshielded) with 120 Ω  
characteristic impedance (ZO).  
Termination  
Resistors equal to the characteristic impedance of the line should be used to terminate both ends of the cable to  
prevent signal reflections. Unterminated drop-lines (stubs) connecting nodes to the bus should be kept as short  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 131  
Product Folder Links: TCAN4550-Q1  
 
 
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
as possible to minimize signal reflections. The termination may be in a node but is generally not recommended,  
especially if the node may be removed from the bus. Termination must be carefully placed so that it is not  
removed from the bus. System level CAN implementations such as CANopen allow for different termination and  
cabling concepts for example to add cable length.  
Node 2  
Node 3  
Node n  
(with termination)  
MCU or DSP  
MCU or DSP  
Node 1  
MCU or DSP  
CAN  
Controller  
CAN  
Controller  
MCU or DSP  
TCAN4550  
RTERM  
TCAN4550  
TCAN1051/G  
TCAN1042/G  
RTERM  
9-1. Typical CAN Bus  
Termination may be a single 120 Ω resistor at each end of the bus, either on the cable or in a terminating node.  
If filtering and stabilization of the common mode voltage of the bus is desired then split terminationmay be  
used, see 9-2. Split termination improves the electromagnetic emissions behavior of the network by  
eliminating fluctuations in the bus common mode voltage levels at the start and end of message transmissions.  
Split Termination  
Standard Termination  
CANH  
CANH  
RTERM/2  
CAN  
Transceiver  
CAN  
Transceiver  
RTERM  
CSPLIT  
RTERM/2  
CANL  
CANL  
9-2. CAN Bus Termination Concepts  
9.1.3.1 CAN Bus Biasing  
Bus biasing can be normal biasing, active in normal mode and inactive in low-power mode. Automatic voltage  
biasing is where the bus is active in normal mode but is controlled by the voltage between CANH and CANL in  
lower power modes. See 9-3 for the state diagram on how the TCAN4550-Q1 performs automatic biasing. 图  
9-4 provides the bus biasing based upon the mode of operation.  
Copyright © 2022 Texas Instruments Incorporated  
132 Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
 
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
Recessive state > tWK-FILTER  
Wait  
Bus Biasing Inactive  
Bus Biasing Inactive  
Power On  
Dominant state > tWK-FILTER  
tWK_TIMEOUT  
1
Bus Biasing Inactive  
Recessive state > tWK-FILTER  
tWK_TIMEOUT  
2
Bus Biasing Inactive  
Dominant state > tWK-FILTER  
On implementation  
enters Normal Mode  
tSILENCE expired and implementation  
In low power mode  
3
Bus Biasing Active  
From all other nodes  
Low Power Mode:  
Dominant state > tWK-FILTER  
Normal Mode: Dominant state  
Low Power Mode:  
Recessive state > tWK-FILTER  
Normal Mode: Recessive state  
tSILENCE expired and implementation  
In low power mode  
4
Bus Biasing  
Active  
9-3. Automatic bus biasing state diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 133  
Product Folder Links: TCAN4550-Q1  
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
Power Up &  
Reset  
Prog to  
Sleep  
Prog to  
Normal  
Sleep Mode  
Bus Bias: GND  
Standby Mode  
Bus Bias: GND  
Normal Mode  
Bus Bias: 2.5 V  
Fail-Safe  
WAKE Pin  
Prog to  
Sleep  
Prog to  
Standby or  
Fault  
Yes  
tSILENCE  
Expired  
Yes  
tSILENCE  
Expired  
No  
No  
tSILENCE  
Expired  
WAKE  
Pin  
Standby Mode  
Bus Bias: 2.5 V  
Sleep Mode  
Bus Bias: 2.5 V  
WUP  
WUP  
tSILENCE  
Expired  
9-4. Bus Biasing Based on Modes of Operation  
9.1.4 INH Brownout Behavior  
A brownout condition takes place when VSUP ramps down below the minimum recommended operation  
conditions and then ramps back above the recommended operating conditions. 9-5 provides the behavior of  
the INH pin based upon process, voltage and temperature during this condition. Once VSUP drops below the  
digital core going into reset, the device will have to be reprogrammed as all registers will be set back to default.  
~ 5.5 V  
UVSUP rise  
VSUP  
Digital core out  
of reset  
UVSUP fall  
~ 4.7 V  
~ 3.6 V  
~ 4.25 V  
Digital core into reset  
1.67 V > INH on > 4.15 V  
1.42 V < INH off < 3.14 V  
INH  
9-5. INH Brownout Behavior  
Copyright © 2022 Texas Instruments Incorporated  
134 Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
 
 
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
9.2 Typical Application  
The TCAN4550-Q1 is typically used in applications with a host microprocessor or FPGA that does not include  
the link layer portion of the CAN protocol. Below is a typical application configuration for 3.3 V microprocessor  
applications.  
3 kΩ  
10 µF  
10 nF  
33 kΩ  
VBAT  
330 nF  
10 µF  
100 nF  
EN  
VIN  
VSUP  
WAKE  
FLTR  
VCCOUT  
Voltage  
Regulator  
(e.g.  
INH  
VINT  
VLVRX  
TPSxxxx)  
LDO(s)  
Filter  
VOUT  
VIO  
Under  
Voltage  
CNTL  
POR  
TCAN4550  
VIO  
100 nF  
10 µF  
CANH  
TXD_INT  
RXD_INT  
VINT  
nWKRQ  
VCC  
TX/RX Data  
Buffer  
GPIO3  
TX/RX CAN-FD  
Controller with  
Filters  
VIO  
2-wire  
CAN  
bus  
RST  
SCLK  
SDI  
Reset  
SCLK  
CAN-FD  
SPI  
Transceiver  
System  
Controller  
MOSI  
MISO  
SDO  
MCU  
CANL  
nCS  
nCS  
GPIO2  
GPIO1  
GPIO  
GPO2  
nINT  
GPIO1  
Optional:  
Terminating  
Node  
Optional:  
Filtering,  
GND  
OSC1  
OSC2  
Transient and  
ESD  
40 MHz  
9-6. Typical CAN Applications for TCAN4550-Q1 for 3.3 V µC and Crystal  
Note: Add decoupling capacitors as needed.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 135  
Product Folder Links: TCAN4550-Q1  
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
3 kΩ  
10 µF  
10 nF  
33 kΩ  
VBAT  
330 nF  
10 µF  
100 nF  
EN  
VIN  
VSUP  
WAKE  
FLTR  
VCCOUT  
Voltage  
Regulator  
(e.g.  
INH  
VINT  
VLVRX  
TPSxxxx)  
LDO(s)  
Filter  
VOUT  
VIO  
Under  
Voltage  
CNTL  
POR  
VIO  
TCAN4550  
100 nF  
10 µF  
CANH  
TXD_INT  
RXD_INT  
VINT  
nWKRQ  
TX/RX Data  
Buffer  
GPIO3  
VCC  
TX/RX CAN-FD  
Controller with  
Filters  
VIO  
2-wire  
CAN  
bus  
RST  
SCLK  
SDI  
Reset  
SCLK  
CAN-FD  
SPI  
Transceiver  
System  
Controller  
MOSI  
MISO  
SDO  
MCU  
CANL  
nCS  
nCS  
GPIO2  
GPIO1  
GPIO  
GPO2  
nINT  
GPIO1  
Optional:  
Terminating  
Node  
Optional:  
Filtering,  
GND  
OSC1  
OSC2  
Transient and  
ESD  
20 MHz  
OSC1  
OSC2  
9-7. Typical CAN Applications for TCAN4550-Q1 for 3.3 V µC; Clock from MCU  
9.2.1 Detailed Requirements  
The TCAN4550-Q1 works with 3.3 V and 5 V microprocessors when using the VIO pin from the microprocessor  
voltage regulator. The bus termination is shown for illustrative purposes.  
9.2.2 Detailed Design Procedures  
The TCAN4550-Q1 is designed to work in application using the ISO 11898 standard supporting bus loads from  
50 Ω to 65 Ω. As the TCAN4550-Q1 supports CAN FD data rates up to 8 Mbps it is recommended to use a 40  
MHz crystal and keep trace lengths matched and short as feasible between the processor and device. As the  
CAN stub length are defined in the standard it is recommended to design the system according to these. As the  
TCAN4550-Q1 CAN transceiver is self-powered but also allows for up to 70 mA at 5 V to be sourced on VCCOUT  
,
the system design needs to account for the CAN transceiver requirements when determining the load the LDO is  
to support. With this and the high temperature and input voltage range it is recommended to use a high-k board  
using proper thermal dissipation methods to ensure the highest performance.  
9.2.3 Application Curves  
9-8 and 9-9 shows the behavior of the 5 V LDO in relationship to ISUP, VSUP, LDO load of 70 mA, CAN bus  
dominant and ambient temperature. The ISUP current is based upon a 70 mA load on VCCOUT and the CAN bus  
held dominant for about a total of 120 mA. As can be seen, an ambient temperature of 125°C can cause a  
thermal shut down event when VSUP reaches 20 V and VCCOUT is providing 70 mA to a load. The load on the  
CAN bus is 60 Ω. When the CAN bus load is 50 Ωa VSUP of 19 V and ambient temperature of 125 can trigger  
a thermal shut down event. The reason the curve shows ISUP leveling out to approximately 74.5 mA is due to  
thermal shut down where the device shuts off the LDO and CAN transceiver. The device cools below TSD  
leaving thermal shutdown quickly. When the TSD event goes away the device then enters standby mode, turning  
on the LDO. The 74.5 mA is the 70 mA LDO load and a dominant on the CAN bus in standby mode. This is  
happening quickly enough that LDO shut off is not seen. If the TSD event is prolonged the current would drop to  
micro-amps and VCCOUT would be 0 V once the decoupling capacitor discharges.  
Copyright © 2022 Texas Instruments Incorporated  
136 Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
140  
120  
100  
80  
5.5  
5
4.5  
4
3.5  
3
2.5  
2
60  
40  
1.5  
1
-40°C  
25°C  
55°C  
85°C  
105°C  
125°C  
-40°C  
25°C  
55°C  
85°C  
105°C  
125°C  
20  
0.5  
0
0
0
3
6
9
12  
15  
VSUP (V)  
18  
21  
24  
27  
30  
D003  
0
3
6
9
12  
15  
VSUP (V)  
18  
21  
24  
27  
30  
D005  
A.  
VCCOUT = 5 V at 70  
mA  
CAN Bus =  
Dominant  
A.  
VCCOUT = 5 V at 70  
mA  
CAN Bus =  
Dominant  
CAN Load = 60 Ω  
CAN Load = 60 Ω  
9-8. ISUP vs VSUP CAN Dominant with 70 mA  
9-9. VCCOUT vs VSUP  
Load on VCCOUT  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 137  
Product Folder Links: TCAN4550-Q1  
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
10 Power Supply Recommendations  
The TCAN4550-Q1 is designed to operate off of the battery Vbat. It has internal regulators to reduce the voltage  
to acceptable low power levels supporting the CAN FD controller, CAN transceiver and low voltage CAN  
receiver. In order to support a wide range of microprocessors the SPI and GPIO are powered off of the VIO pin  
which supports levels from 3 V to 5.5 V. Bulk capacitance, should be placed on the VSUP and the VIO voltage  
rails where system requirements are met. It is recommended that a capacitance of a 100 nF is placed near the  
TCAN4550-Q1 VSUP and the VIO supply terminals. The FLTR terminal requires a minimum of 300 nF  
capacitance to ground to regulate the internal digital power rail. VCCOUT needs a minimum capacitance to ground  
of 10 µF at the terminal.  
备注  
The capacitance values selected should take into consideration the degradation over time such  
that the values do not fall below the minimum values shown  
Above is a minimum amount of capacitance but due to system considerations more may be  
needed  
Copyright © 2022 Texas Instruments Incorporated  
138 Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
 
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
11 Layout  
Robust and reliable bus node design often requires the use of external transient protection device in order to  
protect against EFT and surge transients that may occur in industrial environments. Because ESD and transients  
have a wide frequency bandwidth from approximately 3 MHz to 3 GHz, high-frequency layout techniques must  
be applied during PCB design. The family comes with high on-chip IEC ESD protection, but if higher levels of  
system level immunity are desired external TVS diodes can be used. TVS diodes and bus filtering capacitors  
should be placed as close to the on-board connectors as possible to prevent noisy transient events from  
propagating further into the PCB and system.  
11.1 Layout Guidelines  
Place the protection and filtering circuitry as close to the bus connector, J1, to prevent transients, ESD and noise  
from propagating onto the board. The layout example provides information on components around the device  
itself. Transient voltage suppression (TVS) device can be added for extra protection, shown as D1. The  
production solution can be either a bi-directional TVS diode or a varistor with ratings matching the application  
requirements. This example also shows optional bus filter capacitors C10 and C11. A series common mode  
choke (CMC) is placed on the CANH and CANL lines between TCAN4550-Q1 and connector J1.  
Design the bus protection components in the direction of the signal path. Do not force the transient current to  
divert from the signal path to reach the protection device. Use supply and ground planes to provide low  
inductance.  
备注  
High-frequency currents follows the path of least impedance and not the path of least resistance.  
Use at least two vias for supply and ground connections of bypass capacitors and protection devices to minimize  
trace and via inductance.  
Bypass and bulk capacitors should be placed as close as possible to the supply terminals of transceiver,  
examples are C3, C4 and C5 on the FLTR, VIO, VCCOUT, pins and C6 and C7 on the VSUP supply.  
Bus termination: this layout example shows split termination. This is where the termination is split into two  
resistors, R4 and R5, with the center or split tap of the termination connected to ground via capacitor C9. Split  
termination provides common mode filtering for the bus. When bus termination is placed on the board instead  
of directly on the bus, additional care must be taken to ensure the terminating node is not removed from the  
bus thus also removing the termination.  
As terminal 8 (nINT) and 9 (GPO2) are open drain an external resistor to VIO is required. These can have a  
value between 2 kΩand 10 kΩ.  
Terminal 12 (WAKE) is a bi-directional triggered wake-up input that is usually connected to an external switch.  
It should be configured as shown with a 10 nF (C8) to GND where R2 is 33 kΩand R3 is 3 kΩ.  
Terminal 15 (INH) can be left floating if not used but a 100 kΩpull-down resistor can be used to discharge  
the INH to a sufficient level when the INH output is high-Z.  
Terminal 1 should have a series resistor (R8) when using a crystal oscillator. More information about sizing  
this resistor can be found in the TCAN455x Clock Optimization and Design Guidelines application note.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 139  
Product Folder Links: TCAN4550-Q1  
 
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
11.2 Layout Example  
GND  
Crystal  
40 MHz  
50 Ω  
Traces for Pin 1 and 20  
need to be Matched length  
C1  
C2  
R8  
GND  
19  
nWKRQ  
GPIO1  
SCLK  
2
RST  
FLTR  
C3  
GND  
VIO  
C4  
GND  
SDI  
VCCOUT  
C5  
GND  
SDO  
INH  
R1  
GND  
nCS  
VIO  
VSUP  
C6  
C7  
GND  
C8  
R7  
R6  
nINT  
VIO  
R2  
9
12  
VSUP  
GPO2  
R3  
WAKE  
To Switch  
Choke  
R5  
R4  
C9  
C11  
C10  
CANH  
CANL  
GND  
D1  
J1  
11-1. Example Layout  
Copyright © 2022 Texas Instruments Incorporated  
140 Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
 
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
12.1.1.1 CAN Transceiver Physical Layer Standards:  
ISO 11898-2:2016: High speed medium access unit with low power mode  
ISO 8802-3: CSMA/CD referenced for collision detection from ISO11898-2  
CAN FD 1.0 Spec and Papers  
Bosch Configuration of CAN Bit Timing, Paper from 6th International CAN Conference (ICC), 1999. This  
is repeated a lot in the DCAN IP CAN Controller spec copied into this system spec.  
SAE J2284-2: High Speed CAN (HSC) for Vehicle Applications at 250 kbps  
SAE J2284-3: High Speed CAN (HSC) for Vehicle Applications at 500 kbps  
Bosch M_CAN Controller Area Network Revision 3.2.1.1 (3/24/2016)  
12.1.1.2 EMC requirements:  
SAE J2962-2: US3 requirements for CAN Transceivers  
HW Requirements for CAN, LIN,FR V1.3:  
12.1.1.3 Conformance Test requirements:  
HS_TRX_Test_Spec_V_1_0: GIFT / ICT CAN test requirements for High Speed Physical Layer  
12.1.1.4 Support Documents  
• “A Comprehensible Guide to Controller Area Network, Wilfried Voss, Copperhill Media Corporation  
• “CAN System Engineering: From Theory to Practical Applications, 2nd Edition, 2013; Dr. Wolfhard  
Lawrenz, Springer.  
12.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 141  
Product Folder Links: TCAN4550-Q1  
 
 
 
 
 
 
 
TCAN4550-Q1  
ZHCSJK5D JANUARY 2018 REVISED JUNE 2022  
www.ti.com.cn  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
142 Submit Document Feedback  
Product Folder Links: TCAN4550-Q1  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Apr-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TCAN4550RGYRQ1  
TCAN4550RGYTQ1  
ACTIVE  
VQFN  
VQFN  
RGY  
20  
20  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU | SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
TCAN  
4550Q1  
Samples  
Samples  
ACTIVE  
RGY  
NIPDAU | SN  
TCAN  
4550Q1  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Apr-2023  
OTHER QUALIFIED VERSIONS OF TCAN4550-Q1 :  
Catalog : TCAN4550  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-May-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TCAN4550RGYRQ1  
TCAN4550RGYRQ1  
TCAN4550RGYTQ1  
VQFN  
VQFN  
VQFN  
RGY  
RGY  
RGY  
20  
20  
20  
3000  
3000  
250  
330.0  
330.0  
180.0  
12.4  
12.4  
12.4  
3.8  
3.71  
3.8  
4.8  
4.71  
4.8  
1.18  
1.1  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
1.18  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-May-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TCAN4550RGYRQ1  
TCAN4550RGYRQ1  
TCAN4550RGYTQ1  
VQFN  
VQFN  
VQFN  
RGY  
RGY  
RGY  
20  
20  
20  
3000  
3000  
250  
367.0  
367.0  
213.0  
367.0  
367.0  
191.0  
38.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RGY 20  
3.5 x 4.5, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FGLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225264/A  
www.ti.com  
PACKAGE OUTLINE  
RGY0020C  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.6  
3.4  
B
A
PIN 1 INDEX AREA  
4.6  
4.4  
0.1 MIN  
(0.05)  
SECTION A-A  
SCALE 30.000  
SECTION A-A  
TYPICAL  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2.2 0.1  
2X 1.5  
SYMM  
EXPOSED  
THERMAL PAD  
(0.2) TYP  
10  
11  
14X 0.5  
9
12  
4.2 0.1  
3.2 0.1  
21  
SYMM  
2X  
3.5  
A
A
2
19  
0.3  
0.2  
1
20  
PIN 1 ID  
(OPTIONAL)  
20X  
0.1  
0.05  
C A B  
4X 0.25 0.05  
0.5  
0.3  
20X  
4223814/A 06/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGY0020C  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(2.2)  
4X (0.75)  
(0.85)  
SYMM  
1
20  
20X (0.6)  
2
19  
20X (0.25)  
(R0.05) TYP  
(1.35)  
(4.2)  
4X  
21  
SYMM  
(3.2)  
(4.3)  
14X (0.5)  
12  
9
(
0.2) TYP  
VIA  
10  
4X (0.25)  
11  
2X (0.75)  
(3.3)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4223814/A 06/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGY0020C  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X (0.98)  
20  
2X (0.25)  
1
2X (0.2)  
20X (0.6)  
2
19  
24X (0.25)  
4X  
(1.43)  
(R0.05) TYP  
21  
SYMM  
4X  
(4.3)  
(0.82)  
TYP  
14X (0.5)  
12  
9
EXPOSED METAL  
TYP  
10  
11  
4X (0.75)  
(0.59) TYP  
SYMM  
(3.3)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 21  
80% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4223814/A 06/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
RGY0020F  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.6  
3.4  
A
B
PIN 1 INDEX AREA  
4.6  
4.4  
0.1 MIN  
(0.13)  
A
-
A
3
0
.
0
0
0
SECTION A-A  
TYPICAL  
1.0  
0.8  
C
SEATING PLANE  
0.05  
0.00  
0.08 C  
2.2 0.1  
2X 1.5  
SYMM  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
11  
10  
9
(0.16)  
TYP  
12  
4.2 0.1  
3.2 0.1  
SYMM  
21  
2X 3.5  
A
A
20X 0.5  
19  
2
1
20  
0.5  
0.3  
0.3  
0.2  
PIN 1 ID  
(45 X 0.3)  
24X  
20X  
0.1  
C A B  
C
0.05  
4229006/A 09/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGY0020F  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(2.2)  
SYMM  
20  
SEE SOLDER MASK  
DETAIL  
1
20X (0.6)  
24X (0.25)  
19  
2
20X (0.5)  
(3.2)  
21  
SYMM  
(4.3)  
(4.2)  
(R0.05) TYP  
0.2) TYP  
(1.35)  
(
VIA  
12  
9
10  
11  
4X  
(0.75)  
(0.85)  
(3.3)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4229006/A 09/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGY0020F  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.59) TYP  
2X (0.72)  
2X (0.25)  
1
20  
20X (0.6)  
24X (0.25)  
2
19  
20X (0.5)  
(0.815) TYP  
(4.3)  
21  
SYMM  
4X (1.43)  
(R0.05) TYP  
12  
9
EXPOSED METAL  
TYP  
10  
11  
4X (0.98)  
4X  
(0.75)  
SYMM  
(3.3)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 20X  
EXPOSED PAD 21  
80% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4229006/A 09/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TCAN4550RGYR

具有集成收发器的 CAN FD 控制器 | RGY | 20 | -40 to 125
TI

TCAN4550RGYRQ1

具有集成 CAN FD 控制器和收发器的汽车类系统基础芯片 (SBC) | RGY | 20 | -40 to 125
TI

TCAN4550RGYT

具有集成收发器的 CAN FD 控制器 | RGY | 20 | -40 to 125
TI

TCAN4550RGYTQ1

具有集成 CAN FD 控制器和收发器的汽车类系统基础芯片 (SBC) | RGY | 20 | -40 to 125
TI

TCAN4551-Q1

具有集成收发器的汽车控制局域网灵活数据速率 (CAN FD) 控制器
TI

TCAN4551RGYRQ1

具有集成收发器的汽车控制局域网灵活数据速率 (CAN FD) 控制器 | RGY | 20 | -40 to 125
TI

TCAQ22340HDH

Silicon Controlled Rectifier, 6440A I(T)RMS, 2200V V(DRM), 2200V V(RRM), 1 Element, HERMETIC SEALED, CERAMIC PACKAGE-4
POWEREX

TCAW-T10-N05

Fixed Attenuator,
APITECH

TCB100

Current Transformer, CURRENT TRANSFORMER
VISHAY

TCB4F-617DB1643

Balun Transformer General Information
TOKEN

TCB4F-617DB1644

Balun Transformer General Information
TOKEN

TCB4F-617DB1645

Balun Transformer General Information
TOKEN