TAS6424-Q1 [TI]

汽车类 75W、2MHz、4 通道、4.5V 至 26.4V 数字输入 D 类音频放大器;
TAS6424-Q1
型号: TAS6424-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类 75W、2MHz、4 通道、4.5V 至 26.4V 数字输入 D 类音频放大器

放大器 音频放大器
文件: 总64页 (文件大小:2132K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TAS6424-Q1  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
TAS6424-Q1 75W2MHz 数字输入、4 通道汽车用 D 类音频放大器,具  
有负载突降保护和 I2C 诊断功能  
1 特性  
过热  
欠压和过压  
1
高级负载诊断  
常规运行  
无输入时钟的情况下也可运行  
4.5V 26.4V 电源电压  
交流诊断功能通过阻抗和相位响应实现高频扬声  
器检测  
I2C 控制,共 4 个地址选项  
轻松满足 CISPR25-L5 EMC 规范  
符合汽车应用 标准  
音频输入  
削波检测和热警告  
2 应用  
4 通道 I2S 4/8 通道 TDM 输入  
汽车音响主机  
汽车外部放大器模块  
输入采样率:44.1kHz48kHz96kHz  
输入格式:16 位至 32 I2S TDM  
3 说明  
音频输出  
TAS6424-Q1 器件是一款采用 2.1MHz PWM 开关频率  
的四通道数字输入 D 类音频放大器,以非常小的 PCB  
尺寸实现成本优化的解决方案,可针对启停事件在低至  
4.5V 的电压下全面运行,并可在高达 40kHz 的音频带  
宽下提供出色的音质  
4 通道桥接负载 (BTL),可选并行桥接负载  
(PBTL)  
高达 2.1MHz 的输出开关频率  
4Ω 负载、25V 电源电压和 10% 总谐波失真  
(THD) 的条件下,输出功率为 75W  
2Ω 负载、14.4V 电源电压和 10% THD 的条  
件下,输出功率为 45W  
TAS6424-Q1 D 类音频放大器专为汽车音响主机和外  
部放大器模块而设计。在 14.4V 电源电压条件下,当  
负载为 4THD+N 10% 时,该器件可提供 4 通  
道的 27W 输出功率;当负载为 2THD+N 10%  
时,该器件可提供 45W 的输出功率。在 25V 电源电  
压条件下,当负载为 4THD+N 10% 时,该器件  
可提供 75W 的输出功率。与传统的线性放大器解决方  
案相比,D 类拓扑技术显著提高了器件效率。输出开  
关频率既可以设置为高于 AM 频带,以便消除 AM 频  
带干扰并降低输出滤波器尺寸及成本;也可以设置为低  
AM 频带,以便优化效率。  
2Ω 负载、25V 电源电压和 10% THD 的条件  
下,输出功率为 150W  
4Ω 负载和 14.4V 电源电压条件下的音频性能  
输出功率为 1W 时的总谐波失真 + 噪声  
(THD+N) < 0.03%  
42µVRMS 输出噪声  
-90dB 串扰  
负载诊断功能  
输出负载开路和短路  
输出至电池短路或接地短路  
线路输出检测能力高达 6kΩ  
独立于主机运行  
如需了解引脚兼容的双通道放大器,请参阅 TAS6422-  
Q1  
通过可编程性实现灵活的生产线测试  
该器件采用 56 引脚 HTSSOP PowerPAD ™封装,外  
露散热焊盘朝上。  
保护  
输出限流  
器件信息(1)  
输出短路保护  
器件型号  
封装  
封装尺寸(标称值)  
40V 负载突降  
TAS6424-Q1  
HSSOP (56)  
18.41mm × 7.49mm  
可承受接地开路和电源开路  
直流偏移  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLOS870  
 
 
 
 
 
TAS6424-Q1  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
www.ti.com.cn  
PCB 区域  
27 mm  
25-W 4-channel  
5.9 cm2  
2
版权 © 2016–2017, Texas Instruments Incorporated  
TAS6424-Q1  
www.ti.com.cn  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
目录  
9.4 Device Functional Modes........................................ 29  
9.5 Programming........................................................... 29  
9.6 Register Maps......................................................... 33  
10 Application and Implementation........................ 49  
10.1 Application Information.......................................... 49  
10.2 Typical Applications .............................................. 50  
11 Power Supply Recommendations ..................... 56  
12 Layout................................................................... 56  
12.1 Layout Guidelines ................................................. 56  
12.2 Layout Example .................................................... 58  
12.3 Thermal Considerations........................................ 58  
13 器件和文档支持 ..................................................... 59  
13.1 文档支持................................................................ 59  
13.2 接收文档更新通知 ................................................. 59  
13.3 社区资源................................................................ 59  
13.4 ....................................................................... 59  
13.5 静电放电警告......................................................... 59  
13.6 Glossary................................................................ 59  
14 机械、封装和可订购信息....................................... 60  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 3  
Device Comparison Table..................................... 4  
Pin Configuration and Functions......................... 5  
Specifications......................................................... 7  
7.1 Absolute Maximum Ratings ...................................... 7  
7.2 ESD Ratings.............................................................. 7  
7.3 Recommended Operating Conditions....................... 8  
7.4 Thermal Information.................................................. 8  
7.5 Electrical Characteristics........................................... 8  
7.6 Timing Requirements.............................................. 11  
7.7 Typical Characteristics............................................ 12  
Parameter measurement Information ................ 17  
Detailed description............................................. 18  
9.1 Overview ................................................................. 18  
9.2 Functional Block Diagram ....................................... 18  
9.3 Feature Description................................................. 19  
8
9
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (October 2016) to Revision B  
Page  
已更改 特性 说明 部分以便改善产品文件夹布局............................................................................................................... 1  
Changes from Original (September 2016) to Revision A  
Page  
发布了完整版数据表 ............................................................................................................................................................... 1  
Copyright © 2016–2017, Texas Instruments Incorporated  
3
 
TAS6424-Q1  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
www.ti.com.cn  
5 Device Comparison Table  
PART  
NUMBER  
CHANNEL  
COUNT  
POWER-SUPPLY  
VOLTAGE RANGE  
OUTPUT CURRENT  
LIMIT  
MAXIMUM PWM  
FREQUENCY  
INPUT TYPE  
TAS6424-Q1  
TAS5414C-Q1  
TAS5424C-Q1  
Digital  
4
4
4
4.5 V to 26.4 V  
5.6 V to 24 V  
5.6 v to 24 V  
6.5 A  
12.7 A  
12.7 A  
2.1 MHz  
Analog, Single-Ended  
Analog, Differential  
500 kHz  
500 kHz  
4
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS6424-Q1  
www.ti.com.cn  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
6 Pin Configuration and Functions  
DKQ Package  
56-Pin HSSOP With Exposed Thermal Pad  
Top View  
GND  
PVDD  
VBAT  
1
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
PVDD  
2
PVDD  
3
BST_4P  
OUT_4P  
GND  
AREF  
4
VREG  
VCOM  
AVSS  
5
6
OUT_4M  
BST_4M  
GND  
7
AVDD  
GVDD  
GVDD  
GND  
8
9
BST_3P  
OUT_3P  
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
MCLK  
SCLK  
OUT_3M  
BST_3M  
PVDD  
FSYNC  
SDIN1  
SDIN2  
GND  
Thermal  
Pad  
PVDD  
BST_2P  
OUT_2P  
GND  
GND  
VDD  
OUT_2M  
BST_2M  
GND  
SCL  
SDA  
I2C_ADDR0  
I2C_ADDR1  
STANDBY  
MUTE  
FAULT  
WARN  
GND  
BST_1P  
OUT_1P  
GND  
OUT_1M  
BST_1M  
PVDD  
PVDD  
Not to scale  
Copyright © 2016–2017, Texas Instruments Incorporated  
5
TAS6424-Q1  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
www.ti.com.cn  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
4
AREF  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
DO  
VREG and VCOM bypass capacitor return  
AVDD  
8
Voltage regulator bypass  
AVSS  
7
AVDD bypass capacitor return  
BST_1M  
BST_1P  
BST_2M  
BST_2P  
BST_3M  
BST_3P  
BST_4M  
BST_4P  
FAULT  
FSYNC  
31  
35  
37  
41  
44  
48  
50  
54  
26  
14  
1
Bootstrap capacitor connection pins for high-side gate driver  
Bootstrap capacitor connection pins for high-side gate driver  
Bootstrap capacitor connection pins for high-side gate driver  
Bootstrap capacitor connection pins for high-side gate driver  
Bootstrap capacitor connection pins for high-side gate driver  
Bootstrap capacitor connection pins for high-side gate driver  
Bootstrap capacitor connection pins for high-side gate driver  
Bootstrap capacitor connection pins for high-side gate driver  
Reports a fault (active low, open drain), 100-kΩ internal pullup resistor  
Audio frame clock input  
DI  
11  
17  
18  
28  
33  
36  
39  
46  
49  
52  
9
GND  
GND  
Ground  
Gate drive voltage regulator for channel 3 and 4, derived from VBAT input pin.  
Gate drive voltage regulator for channel 1 and 2, derived from VBAT input pin.  
GVDD  
PWR  
DI  
10  
22  
23  
12  
25  
32  
34  
38  
40  
45  
47  
51  
53  
2
I2C_ADDR0  
I2C_ADDR1  
MCLK  
I2C address pins  
DI  
Audio master clock input  
MUTE  
DI  
Mutes the device outputs (active low), 100-kΩ internal pulldown resistor  
Negative output for the channel  
Positive output for the channel  
OUT_1M  
OUT_1P  
OUT_2M  
OUT_2P  
OUT_3M  
OUT_3P  
OUT_4M  
OUT_4P  
NO  
PO  
NO  
PO  
NO  
PO  
NO  
PO  
Negative output for the channel  
Positive output for the channel  
Negative output for the channel  
Positive output for the channel  
Negative output for the channel  
Positive output for the channel  
29  
30  
42  
43  
55  
56  
PVDD  
PWR  
PVDD voltage input (can be connected to battery)  
(1) GND = ground, PWR = power, PO = positive output, NO = negative output, DI = digital input, DO = digital output, DI/O = digital input  
and output, NC = no connection  
6
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS6424-Q1  
www.ti.com.cn  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
Pin Functions (continued)  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
SCL  
NO.  
20  
13  
21  
15  
16  
24  
3
DI  
DI  
I2C clock input  
SCLK  
SDA  
Audio bit and serial clock input  
I2C data input and output  
TDM data input and audio I2S data input for channels 1 and 2  
Audio I2S data input for channels 3 and 4  
Enables low power standby state (active Low), 100-kΩ internal pulldown resistor  
Battery voltage input  
DI/O  
DI  
SDIN1  
SDIN2  
STANDBY  
VBAT  
VCOM  
VDD  
DI  
DI  
PWR  
PWR  
PWR  
PWR  
DO  
6
Bias voltage  
19  
5
3.3-V external supply voltage  
VREG  
WARN  
Voltage regulator bypass  
27  
Clip and overtemperature warning (active low, open drain), 100-kΩ internal pullup resistor  
Provides both electrical and thermal connection for the device. Heatsink must be connected to  
GND.  
Thermal Pad  
GND  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–0.3  
–1  
MAX  
30  
UNIT  
PVDD, VBAT DC supply voltage relative to GND  
V
V
VMAX  
Transient supply voltage: PVDD, VBAT  
Supply-voltage ramp rate: PVDD, VBAT  
DC supply voltage relative to GND  
t 400 ms exposure  
40  
VRAMP  
VDD  
75  
V/ms  
V
–0.3  
3.5  
8
IMAX  
Maximum current per pin (PVDD, VBAT, OUT_xP, OUT_xM, GND)  
Pulsed supply current per PVDD pin (one shot) t < 100 ms  
A
IMAX_PULSED  
12  
A
Input voltage for logic pins (SCL, SDA, SDIN1, SDIN2, MCLK, BCLK, LRCLK, MUTE,  
STANDBY, I2C_ADDRx)  
VLOGIC  
–0.3  
VDD + 0.5  
V
VGND  
TJ  
Maximum voltage between GND pins  
Maximum operating junction temperature  
Storage temperature  
–0.3  
–55  
–55  
0.3  
150  
150  
V
°C  
°C  
Tstg  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per AEC Q100–002(1)  
Charged-device model (CDM), per AEC Q100–011  
±3000  
±500  
Electrostatic  
V(ESD)  
All pins  
V
discharge  
Corner pins (1, 28, 29 and 56)  
±1000  
(1) AEC Q100–002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS–001 specification.  
Copyright © 2016–2017, Texas Instruments Incorporated  
7
 
TAS6424-Q1  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
www.ti.com.cn  
7.3 Recommended Operating Conditions  
MIN  
4.5  
NOM  
MAX  
26.4  
18  
UNIT  
V
PVDD  
VBAT  
VDD  
TA  
Output FET supply voltage  
Battery supply voltage input  
DC logic supply  
Relative to GND  
Relative to GND  
Relative to GND  
4.5  
14.4  
3.3  
V
3.0  
3.5  
V
Ambient temperature  
–40  
125  
°C  
An adequate thermal design is  
required  
TJ  
Junction temperature  
–40  
150  
°C  
BTL Mode  
2
1
1
4
2
RL  
Nominal speaker load impedance  
Ω
PBTL Mode  
I2C pullup resistance on SDA and SCL pins  
External capacitance on bypass pins  
RPU_I2C  
CBypass  
COUT  
LO  
4.7  
1
10  
kΩ  
µF  
µF  
Pin 2, 3, 5, 6, 8, 9, 10, 19  
External capacitance to GND on OUT pins  
Limit set by DC-diagnostic timing  
1
3.3  
Minimum inductance at ISD current  
levels  
Output filter inductance  
1
µH  
7.4 Thermal Information  
TAS6424-Q1(2)  
TAS6424-Q1(3)  
THERMAL METRIC(1)  
DKQ (HSSOP)  
DKQ (HSSOP) UNIT  
56 PINS  
56 PINS  
RθJA  
Junction-to-ambient thermal resistance  
1.1  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
0.7  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
10  
10  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report (SPRA953).  
(2) JEDEC Standard 4 Layer PCB.  
(3) Measured using the TAS6424-Q1 EVM layout and heat sink. The device is not intended to be used without a heat sink.  
7.5 Electrical Characteristics  
Test conditions (unless otherwise noted): TC = 25°C, PVDD = VBAT = 14.4 V, VDD = 3.3 V, RL = 4 Ω, Pout = 1 W/ch, ƒ = 1  
kHz, fSW = 2.11 MHz, AES17 Filter, default I2C settings, see 79 and 82  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
OPERATING CURRENT  
IPVDD_IDLE  
IVBAT_IDLE  
IPVDD_STBY  
IVBAT_STBY  
IVDD  
PVDD idle current  
All channels playing, no audio input  
75  
90  
1
90  
100  
10  
mA  
mA  
μA  
VBAT idle current  
All channels playing, no audio input  
STANDBYActive, VDD = 0 V  
PVDD standby current  
VBAT standby current  
VDD supply current  
STANDBYActive, VDD = 0 V  
4
10  
μA  
All channels playing, –60-dB signal  
15  
18  
mA  
OUTPUT POWER  
4 Ω, PVDD = 14.4 V, THD+N = 1%, TC = 75°C  
4 Ω, PVDD = 14.4 V, THD+N = 10%, TC = 75°C  
2 Ω, PVDD = 14.4 V, THD+N = 1%, TC = 75°C  
2 Ω, PVDD = 14.4 V, THD+N = 10%, TC = 75°C  
4 Ω, PVDD = 25 V, THD+N = 1%, TC = 75°C  
4 Ω, PVDD = 25 V, THD+N = 10%, TC = 75°C  
2 Ω, PVDD = 14.4 V, THD+N = 1%, TC = 75°C  
2 Ω, PVDD = 14.4 V, THD+N = 10%, TC = 75°C  
1 Ω, PVDD = 14.4 V, THD+N = 1%, TC = 75°C  
1 Ω, PVDD = 14.4 V, THD+N = 10%, TC = 75°C  
2 Ω, PVDD = 25 V, THD+N = 1%, TC = 75°C  
2 Ω, PVDD = 25 V, THD+N = 10%, TC = 75°C  
20  
25  
38  
42  
50  
70  
35  
45  
72  
80  
98  
138  
22  
27  
40  
PO_BTL  
Output power per channel, BTL  
W
45  
55  
75  
40  
50  
80  
Output power per channel in parallel mode,  
PBTL  
PO_PBTL  
W
90  
120  
150  
8
Copyright © 2016–2017, Texas Instruments Incorporated  
 
TAS6424-Q1  
www.ti.com.cn  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
Electrical Characteristics (continued)  
Test conditions (unless otherwise noted): TC = 25°C, PVDD = VBAT = 14.4 V, VDD = 3.3 V, RL = 4 Ω, Pout = 1 W/ch, ƒ = 1  
kHz, fSW = 2.11 MHz, AES17 Filter, default I2C settings, see 79 and 82  
PARAMETER  
Power efficiency  
AUDIO PERFORMANCE  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
4 channels operating, 25-W output power/ch 4-Ω load, PVDD  
= 14.4 V, TC = 25°C, including indcutor losses(1)  
EFFP  
86%  
Zero input, A-weighting, gain level 1, PVDD = 14.4 V  
Zero input, A-weighting, gain level 2, PVDD = 14.4 V  
Zero input, A-weighting, gain level 3, PVDD = 18 V  
Zero input, A-weighting, gain level 4, PVDD = 25 V  
Gain level 1, Register 0x01, bit 1-0 = 00  
42  
55  
μV  
67  
Vn  
Output noise voltage  
85  
7.5  
Gain level 2, Register 0x01, bit 1-0 = 01  
15  
GAIN  
Peak output voltage/dBFS  
V/FS  
21  
Gain level 3, Register 0x01, bit 1-0 = 10  
Gain level 4, Register 0x01, bit 1-0 = 11  
29  
Crosstalk  
PSRR  
Channel crosstalk  
PVDD = 14.4 Vdc + 1 VRMS, ƒ = 1 kHz  
–90  
75  
–75  
dB  
dB  
Power-supply rejection ratio  
PVDD = 14.4 Vdc + 1 VRMS, ƒ = 1 kHz  
0.05  
%
THD+N  
GCH  
Total harmonic distortion + noise  
Channel-to-channel gain variation  
0.02%  
0
–0.5  
0.5  
dB  
LINE OUTPUT PERFORMANCE  
Vn_LINEOUT LINE output noise voltage  
VO_LINEOUT LINE output voltage  
Zero input, A-weighting, channel set to LINE MODE  
0-dB input, channel set to LINE MODE  
42  
μV  
5.5  
VRMS  
0.03  
%
THD+N  
Line output total harmonic distortion + noise VO = 2 VRMS , channel set to LINE MODE  
0.01%  
DIGITAL INPUT PINS  
VIH  
VIL  
IIH  
Input logic level high  
70  
%VDD  
Input logic level low  
30 %VDD  
Input logic current, high  
Input logic current, low  
VI = VDD  
VI = 0  
15  
µA  
µA  
IIL  
–15  
PWM OUTPUT STAGE  
RDS(on)  
FET drain-to-source resistance  
Not including bond wire and package resistance  
90  
mΩ  
OVERVOLTAGE (OV) PROTECTION  
VPVDD_OV  
PVDD overvoltage shutdown  
27.0  
19.3  
27.8  
0.8  
20  
28.8  
22  
V
V
V
V
VPVDD_OV_HY  
PVDD overvoltage shutdown hysteresis  
VBAT overvoltage shutdown  
S
VVBAT_OV  
VVBAT_OV_HY  
VBAT overvoltage shutdown hysteresis  
0.6  
S
UNDERVOLTAGE (UV) PROTECTION  
VBATUV VBAT undervoltage shutdown  
VBATUV_HYS VBAT undervoltage shutdown hysteresis  
4
0.2  
4
4.5  
4.5  
V
V
V
PVDDUV  
PVDD undervoltage shutdown  
PVDDUV_HY  
PVDD undervoltage shutdown hysteresis  
0.2  
V
S
BYPASS VOLTAGES  
VGVDD  
VAVDD  
VVCOM  
VVREG  
Gate drive bypass pin voltage  
7
6
V
V
V
V
Analog bypass pin voltage  
Common bypass pin voltage  
Regulator bypass pin voltage  
2.5  
5.5  
POWER-ON RESET (POR)  
VPOR  
VDD voltage for POR  
VDD POR recovery hysteresis voltage  
2.1  
0.5  
2.7  
V
V
VPOR_HY  
OVERTEMPERATURE (OT) PROTECTION  
OTW(i) Channel overtemperature warning  
150  
°C  
Copyright © 2016–2017, Texas Instruments Incorporated  
9
TAS6424-Q1  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
Test conditions (unless otherwise noted): TC = 25°C, PVDD = VBAT = 14.4 V, VDD = 3.3 V, RL = 4 Ω, Pout = 1 W/ch, ƒ = 1  
kHz, fSW = 2.11 MHz, AES17 Filter, default I2C settings, see 79 and 82  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
OTSD(i)  
OTW  
Channel overtemperature shutdown  
Global junction overtemperature warning  
Global junction overtemperature shutdown  
Overtemperature hysteresis  
175  
130  
160  
15  
°C  
°C  
°C  
°C  
Set by register 0x01 bit 5-6, default value  
OTSD  
OTHYS  
LOAD OVER CURRENT PROTECTION  
OC Level 1  
4
6
4.8  
6.5  
7
ILIM  
Overcurrent cycle-by-cycle limit  
Overcurrent shutdown  
A
A
OC Level 2  
OC Level 1, Any short to supply, ground, or other channels  
OC Level 2, Any short to supply, ground, or other channels  
ISD  
9
MUTE MODE  
GMUTE  
Output attenuation  
100  
7
dB  
mV  
CLICK AND POP  
VCP  
Output click and pop voltage  
ITU-R 2k filter, High-Z/MUTE to Play, Play to Mute/High-Z  
DC OFSET  
VOFFSET  
Output offset voltage  
2
5
mV  
DC DETECT  
DCFAULT  
Output DC fault protection  
2
2.5  
V
DIGITAL OUTPUT PINS  
VOH  
VOL  
Output voltage for logic level high  
I = ±2 mA  
I = ±2 mA  
90  
%VDD  
Output voltage for logic level low  
10 %VDD  
tDELAY_CLIPD  
Signal delay when output clipping detected  
20  
μs  
ET  
LOAD DIAGNOSTICS  
Maximum resistance to detect a short from  
OUT pins to PVDD  
S2P  
S2G  
500  
Ω
Ω
Maximum resistance to detect a short from  
OUT pins to ground  
200  
SL  
Shorted load detection tolerance  
Open load  
Other channels in Hi-Z  
Other channels in Hi-Z  
All 4 Channels  
±0.5  
Ω
OL  
40  
70  
Ω
TDC_DIAG  
LO  
DC diagnostic time  
Line output  
230  
ms  
kΩ  
ms  
6
TLINE_DIAG  
Line output diagnostic time  
40  
Gain linearity, ƒ = 19 kHz, RL = 2 Ω to 16 Ω,  
25%  
±0.5  
ACIMP  
AC impedance accuracy  
AC diagnostic time  
Offset  
Ω
TAC_DIAG  
All 4 Channels  
520  
300  
ms  
I2C_ADDR PINS  
Time delay needed for I2C address set-up  
tI2C_ADDR  
μs  
(1) Tested with Output Inductor DFEG7030D-3R3M.  
10  
Copyright © 2016–2017, Texas Instruments Incorporated  
TAS6424-Q1  
www.ti.com.cn  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
7.6 Timing Requirements  
Test conditions (unless otherwise noted): TC = 25 °C, PVDD = VBAT = 14.4 V, VDD = 3.3 V, RL = 4 Ω, PO = 1 W/ch, ƒ = 1  
kHz, fSW = 2.11 MHz, AES17 Filter, default I2C settings, see 79 and 82  
MIN  
TYP MAX UNIT  
I2C CONTROL PORT (See 42)  
tBUS  
Bus free time between start and stop conditions  
1.3  
0
μs  
ns  
μs  
tHOLD1  
tHOLD2  
tSTART  
tRISE  
tFALL  
tSU1  
Hold time, SCL to SDA  
Hold time, start condition to SCL  
I2C startup time after VDD power on reset  
Rise time, SCL and SDA  
0.6  
12  
300  
300  
ms  
ns  
ns  
ns  
μs  
μs  
μs  
μs  
Fall time, SCL and SDA  
Setup, SDA to SCL  
100  
0.6  
0.6  
0.6  
1.3  
tSU2  
Setup, SCL to start condition  
Setup, SCL to stop condition  
Required pulse duration SCL High  
Required pulse duration SCL Low  
tSU3  
tW(H)  
tW(L)  
SERIAL AUDIO PORT (See 36)  
DMCLK  
DSCLK  
,
Allowable input clock duty cycle  
45%  
128  
50%  
55%  
ƒMCLK  
Supported MCLK frequencies: 128, 256, or 512  
Maximum frequency  
512  
25  
xFS  
MHz  
ns  
ƒMCLK_Max  
tSCY  
tSCL  
tSCH  
trise/fall  
tSF  
SCLK pulse cycle time  
40  
16  
16  
4
SCLK pulse-with LOW  
ns  
SCLK pulse-with HIGH  
ns  
Rise and fall time  
ns  
SCLK rising edge to FSYNC edge  
FSYNC rising edge to SCLK edge  
DATA set-up time  
8
ns  
tFS  
8
ns  
tDS  
8
ns  
tDH  
DATA hold time  
8
ns  
ci  
Input capacitance, pins MCLK, SCLK, FSYNC, SDIN1, SDIN2  
10  
30  
12  
pF  
FSYNC = 44.1 kHz or 48 kHz  
FSYNC = 96 kHz  
Latency from input to output measured in FSYNC  
sample count  
TLA  
版权 © 2016–2017, Texas Instruments Incorporated  
11  
 
TAS6424-Q1  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
www.ti.com.cn  
7.7 Typical Characteristics  
TA = 25 ºC, VVDD = 3.3 V, VBAT = PVDD = 14.4 V, RL = 4 Ω, fIN = 1 kHz, fs = 48 kHz, fSW = 2.11 MHz, AES17 filter, default I2C  
settings, see 79 and 82 (unless otherwise noted)  
0
-20  
0
-20  
Ch 1 to Ch 2  
Ch 2 to Ch 1  
PVDD = 14.4 V  
PVDD = 24 V  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency  
D002  
D022  
PO = 1 W  
PO = 1 W  
2. PVDD PSRR vs Frequency  
1. Crosstalk vs Frequency  
0
-20  
10  
1
PVDD = 14.4 V  
PVDD = 24 V  
2 W Load  
4 W Load  
-40  
-60  
0.1  
-80  
0.01  
-100  
-120  
0.001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency  
Frequency (Hz)  
D024  
D005  
PO = 1 W  
3. VBAT PSRR vs Frequency  
PO = 1 W  
384-kHz fSW  
4. THD+N vs Frequency  
10  
1
10  
1
2 W Load  
4 W Load  
2 W Load  
4 W Load  
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
D006  
D007  
PO = 1 W  
2.11-MHz fSW  
PO = 1 W  
24 V  
384-kHz fSW  
5. THD+N vs Frequency  
6. THD+N vs Frequency  
12  
版权 © 2016–2017, Texas Instruments Incorporated  
TAS6424-Q1  
www.ti.com.cn  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
Typical Characteristics (接下页)  
TA = 25 ºC, VVDD = 3.3 V, VBAT = PVDD = 14.4 V, RL = 4 Ω, fIN = 1 kHz, fs = 48 kHz, fSW = 2.11 MHz, AES17 filter, default I2C  
settings, see 79 and 82 (unless otherwise noted)  
10  
10  
2 W Load  
4 W Load  
2 W Load  
4 W Load  
1
1
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
20  
100  
1k  
10k 20k  
10m  
100m  
1
10 20  
100  
Frequency (Hz)  
Output Power (W)  
D008  
D009  
PO = 1 W  
24 V  
2.11-MHz fSW  
384-kHz fSW  
7. THD+N vs Frequency  
8. THD+N vs Power  
10  
1
10  
1
2 W Load  
4 W Load  
2 W Load  
4 W Load  
0.1  
0.1  
0.01  
0.01  
0.001  
10m  
100m  
1
10  
100  
10m  
100m  
1
10 20  
100  
Output Power (W)  
Output Power (W)  
D010  
D011  
2.11-MHz fSW  
24 V  
384-kHz fSW  
9. THD+N vs Power  
10. THD+N vs Power  
100  
80  
60  
40  
20  
0
10  
1
2 W Load  
4 W Load  
2 W Load  
4 W Load  
0.1  
0.01  
0.001  
10m  
100m  
1
10 20  
100  
5
10  
15  
20  
25  
Output Power (W)  
Supply Voltage (V)  
D012  
D013  
24 V  
2.11-MHz fSW  
10% THD  
384-kHz fSW  
11. THD+N vs Power  
12. Output Power vs Supply Voltage  
版权 © 2016–2017, Texas Instruments Incorporated  
13  
TAS6424-Q1  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
TA = 25 ºC, VVDD = 3.3 V, VBAT = PVDD = 14.4 V, RL = 4 Ω, fIN = 1 kHz, fs = 48 kHz, fSW = 2.11 MHz, AES17 filter, default I2C  
settings, see 79 and 82 (unless otherwise noted)  
100  
80  
60  
40  
20  
0
140  
120  
100  
80  
2 W Load  
4 W Load  
Gain Level 1  
Gain Level 2  
Gain Level 3  
Gain Level 4  
60  
40  
20  
0
5
10  
15  
20  
25  
5
10  
15  
20  
25  
Supply Voltage (V)  
Supply Voltage (V)  
D014  
D015  
10% THD  
2.11-MHz fSW  
A-weighted Noise  
384-kHz fSW  
13. Output Power vs Supply Voltage  
14. Noise vs Supply Voltage  
140  
120  
100  
80  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Gain Level 1  
Gain Level 2  
Gain Level 3  
Gain Level 4  
60  
40  
20  
PVDD = 14.4 V  
PVDD = 24 V  
0
5
10  
15  
20  
25  
0
20  
40  
60  
80  
100 120  
Supply Voltage (V)  
Output Power (W)  
D016  
D019  
A-weighted Noise  
2.11-MHz fSW  
4 Ω  
384-kHz fSW  
15. Noise vs Supply voltage  
16. Power Efficiency vs Output Power  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVDD = 14.4 V  
PVDD = 24 V  
PVDD = 14.4 V  
PVDD = 24 V  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
120  
Total Output Power (W)  
Output Power (W)  
D020  
D017  
4 Ω  
2.1-MHz fSW  
2 Ω  
384-kHz fSW  
17. Power Efficiency vs Output Power  
18. Power Efficiency vs Output Power  
14  
版权 © 2016–2017, Texas Instruments Incorporated  
TAS6424-Q1  
www.ti.com.cn  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
Typical Characteristics (接下页)  
TA = 25 ºC, VVDD = 3.3 V, VBAT = PVDD = 14.4 V, RL = 4 Ω, fIN = 1 kHz, fs = 48 kHz, fSW = 2.11 MHz, AES17 filter, default I2C  
settings, see 79 and 82 (unless otherwise noted)  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
PVDD = 12 V  
PVDD = 24 V  
FPWM = 384 kHz  
FPWM = 2.1 MHz  
0
20  
40  
60  
80  
100  
120  
5
10  
15  
20  
25  
Output Power (W)  
Supply Voltage (V)  
D018  
D025  
2 Ω  
2.1-MHz fSW  
19. Power Efficiency vs Output Power  
20. PVDD Current vs Voltage  
100  
95  
90  
85  
80  
75  
70  
65  
60  
6
4
2
0
6
8
10  
12  
14  
16  
18  
5
10  
15  
20  
25  
Supply Voltage (V)  
Supply Voltage (V)  
D026  
D027  
21. VBAT Current vs Voltage  
22. PVDD Standby Current vs Voltage  
10  
10  
1
2 W Load  
4 W Load  
2 W Load  
4 W Load  
1
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
D028  
D029  
1 W  
384-kHz fSW  
PO = 1 W  
2.1-MHz fSW  
23. PBTL THD+N vs Frequency  
24. PBTL THD+N vs Frequency  
版权 © 2016–2017, Texas Instruments Incorporated  
15  
TAS6424-Q1  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
TA = 25 ºC, VVDD = 3.3 V, VBAT = PVDD = 14.4 V, RL = 4 Ω, fIN = 1 kHz, fs = 48 kHz, fSW = 2.11 MHz, AES17 filter, default I2C  
settings, see 79 and 82 (unless otherwise noted)  
10  
10  
2 W Load  
4 W Load  
2 W Load  
4 W Load  
1
1
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
D030  
D031  
PO = 1 W  
384-kHz fSW  
24-V PVDD  
Po = 1 W  
2.1-MHz fSW  
24-V PVDD  
25. PBTL THD+N vs Frequency  
26. PBTL THD+N vs Frequency  
10  
1
10  
1
2 W Load  
4 W Load  
2 W Load  
4 W Load  
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
10m  
100m  
1
10 20  
100  
10m  
100m  
1
10 20  
100  
Output Power (W)  
Output Power (W)  
D032  
D033  
384-kHz fSW  
2.1-MHz fSW  
27. PBTL THD+N vs Power  
28. PBTL THD+N vs Power  
10  
1
10  
1
2 W Load  
4 W Load  
2 W Load  
4 W Load  
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
10m  
100m  
1
10 20  
100  
10m  
100m  
1
10 20  
100  
Output Power (W)  
Output Power (W)  
D034  
D035  
384-kHz fSW  
2.1-MHz fSW  
24-V PVDD  
29. PBTL THD+N vs Power  
30. PBTL THD+N vs Power  
16  
版权 © 2016–2017, Texas Instruments Incorporated  
TAS6424-Q1  
www.ti.com.cn  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
Typical Characteristics (接下页)  
TA = 25 ºC, VVDD = 3.3 V, VBAT = PVDD = 14.4 V, RL = 4 Ω, fIN = 1 kHz, fs = 48 kHz, fSW = 2.11 MHz, AES17 filter, default I2C  
settings, see 79 and 82 (unless otherwise noted)  
200  
180  
160  
140  
120  
100  
80  
100  
80  
60  
40  
20  
0
2 W Load  
4 W Load  
2 W Load  
4 W Load  
60  
40  
20  
0
5
10  
15  
20  
25  
5
10  
15  
20  
25  
Supply Voltage (V)  
Supply Voltage (V)  
D036  
D037  
384-kHz fSW  
2.1-MH fSW  
31. Output Power vs Voltage  
32. Output Power vs Voltage  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
PVDD = 14.4 V 2W Load  
PVDD = 24 V 2W Load  
PVDD = 14.4 V 4W Load  
PVDD = 24 V 4W Load  
PVDD = 14.4 V 2W Load  
PVDD = 24 V 2W Load  
PVDD = 14.4 V 4W Load  
PVDD = 24 V 4W Load  
0
20  
40  
60  
80  
100  
120  
140150  
0
20  
40  
60  
80  
100  
120  
140150  
Total Output Power (W)  
Total Output Power (W)  
D038  
D039  
384-kHz fSW  
2.1-MHz fSW  
33. Power Dissipation vs Output Power  
34. Power Dissipation vs Output Power  
8 Parameter measurement Information  
The parameters for the TAS6424-Q1 device were measured using the circuit in 79.  
版权 © 2016–2017, Texas Instruments Incorporated  
17  
TAS6424-Q1  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
www.ti.com.cn  
9 Detailed description  
9.1 Overview  
The TAS6424-Q1 device is a four-channel digital-input Class-D audio amplifier for use in the automotive  
environment. The device is designed for vehicle battery operation or boosted voltage systems. The design uses  
ultra-efficient class-D technology developed by Texas Instruments specifically tailored for the automotive  
industry. This technology allows for reduced power consumption, reduced PCB area, reduced heat, and reduced  
peak currents in the electrical system. The device realizes an audio sound-system design with smaller size and  
lower weight than traditional class-AB solutions.  
The core design blocks are as follows:  
Serial audio port  
Clock management  
High-pass filter and volume control  
Pulse width modulator (PWM) with output stage feedback  
Gate drive  
Power FETs  
Diagnostics  
Protection  
Power supply  
I2C serial communication bus  
9.2 Functional Block Diagram  
VDD  
VCOM VREG  
VBAT  
GVDD  
PVDD  
MUTE  
Gate Drive  
Regulator  
Reference  
Regulators  
STANDBY  
Digital Core  
WARN  
Closed Loop Class D Amplifier  
OUT_1P  
OUT_1M  
Channel 1  
Powerstage  
FAULT  
Digital to PWM  
MCLK  
SCLK  
OUT_2P  
OUT_2M  
OUT_3P  
OUT_3M  
Channel 2  
Powerstage  
Serial  
Audio  
Port  
Volume Control  
-100 to +24 dB  
0.5 dB steps  
Gate  
Drives  
FSYNC  
SDIN1  
SDIN2  
Channel 3  
Powerstage  
Clip  
Detection  
OUT_4P  
OUT_4M  
Channel 4  
Powerstage  
PLL and Clock  
Management  
Protection  
DC Load Diagnostics  
Short to GND  
Short to Power  
Open Load  
Overcurrent Limit  
Overcurrent  
SCL  
SDA  
2
I C Control  
Overtemperature  
I2C_ADDR0  
I2C_ADDR1  
Overvoltage and Undervoltage  
DC Detection  
Shorted Load  
AC Load Diagnostics  
Copyright © 2016, Texas Instruments Incorporated  
18  
版权 © 2016–2017, Texas Instruments Incorporated  
TAS6424-Q1  
www.ti.com.cn  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
9.3 Feature Description  
9.3.1 Serial Audio Port  
The serial audio port (SAP) receives audio in either I2S, left justified, right justified, or TDM formats.  
Settings for the serial audio port are programmed in the SAP control register (address 0x03), see the SAP  
Control (Serial Audio-Port Control) Register (address = 0x03) [default = 0x04] section.  
35 shows the digital audio data connections for I2S and TDM8 mode for an eight channel system.  
i2S  
TDM8  
SOC  
MCLK  
SOC  
MCLK  
Device A  
MCLK  
Device A  
MCLK  
SCLK  
FSYNC  
DATA1  
DATA2  
DATA3  
DATA4  
SCLK  
SCLK  
FSYNC  
DATA  
SCLK  
FSYNC  
SDIN1  
SDIN2  
FSYNC  
SDIN1  
SDIN2  
Device B  
Device B  
MCLK  
SCLK  
MCLK  
SCLK  
FSYNC  
SDIN1  
SDIN2  
FSYNC  
SDIN1  
SDIN2  
35. Digital-Audio Data Connection  
9.3.1.1 I2S Mode  
I2S timing uses the FSYNC pin to define when the data being transmitted is for the left channel and when it is for  
the right channel. The FSYNC pin is low for the left channel and high for the right channel. The bit clock, SCLK,  
runs at 32 or 64 × fS and is used to clock in the data. A delay of one bit clock occurs from the time the FSYNC  
signal changes state to the first bit of data on the data lines. The data is presented in 2s-complement form (MSB-  
first). The data is valid on the rising edge of the bit clock and is used to clock in the data.  
9.3.1.2 Left-Justified Timing  
Left-justified (LJ) timing also uses the FSYNC pin to define when the data being transmitted is for the left channel  
and when it is for the right channel. The FSYNC pin is high for the left channel and low for the right channel. A bit  
clock running at 32 or 64 × fS is used to clock in the data. The first bit of data appears on the data lines at the  
same time FSYNC toggles. The data is written MSB-first and is valid on the rising edge of the bit clock. Digital  
words can be 16-bits or 24-bits wide and pad any unused trailing data-bit positions in the left-right (L/R) frame  
with zeros.  
9.3.1.3 Right-Justified Timing  
Right-justified (RJ) timing also uses the FSYNC pin to define when the data being transmitted is for the left  
channel and when it is for the right channel. The FSYNC pin is high for the left channel and low for the right  
channel. A bit clock running at 32 or 64 × fS is used to clock in the data. The first bit of data appears on the data  
8-bit clock periods (for 24-bit data) after the FSYNC pin toggles. In RJ mode the LSB of data is always clocked  
by the last bit clock before the FSYNC pin transitions. The data is written MSB-first and is valid on the rising  
edge of bit clock. The device pads the unused leading data-bit positions in the L/R frame with zeros.  
版权 © 2016–2017, Texas Instruments Incorporated  
19  
 
TAS6424-Q1  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
www.ti.com.cn  
Feature Description (接下页)  
9.3.1.4 TDM Mode  
TDM mode supports 4 or 8 channels of audio data. The device can be configured through I2C to use different  
stereo pairs in the TDM data stream. The TDM mode supports 16-bit, 24-bit, and 32-bit input data lengths.  
In TDM mode, the SCLK pin must be 128 or 256, depending on the TDM slot size. In TDM mode SCLK and  
MCLK can be connected together  
In TDM mode, the SDIN1 pin (pin 15) is used for digital audio data. TI recommends to connect the unused  
SDIN2 pin (pin 16) to ground. 1 lists register settings for the TDM channel selection.  
1. TDM Channel Selection  
REGISTER SETTING  
TDM8 CHANNEL SLOT  
0x03  
BIT 5  
0x03  
BIT 3  
1
2
3
4
5
6
7
8
0
1
0
1
0
0
1
1
CH1  
CH2  
CH3  
CH4  
CH1  
CH2  
CH3  
CH4  
CH3  
CH4  
CH1  
CH2  
CH3  
CH4  
CH1  
CH2  
If PBTL mode is programmed for channel 1/2 or channel 3/4 the datasource can be set according to 2.  
2. TDM Channel Selection in PBTL Mode  
REGISTER SETTING  
TDM8 CHANNEL SLOT  
0x03  
BIT 5  
0x03  
BIT 3  
0x21  
BIT 6  
1
2
3
4
5
6
7
8
PBTL  
CH1/2  
PBTL  
CH3/4  
0
1
0
1
0
1
0
1
0
0
0
0
1
1
1
1
0
PBTL  
CH1/2  
PBTL  
CH3/4  
0
1
1
0
0
1
1
PBTL  
CH1/2  
PBTL  
CH3/4  
PBTL  
CH1/2  
PBTL  
CH3/4  
PBTL  
CH3/4  
PBTL  
CH1/2  
PBTL  
CH3/4  
PBTL  
CH1/2  
PBTL  
CH3/4  
PBTL  
CH1/2  
PBTL  
CH3/4  
PBTL  
CH1/2  
9.3.1.5 Supported Clock Rates  
The device supports MCLK rates of 128 × fS, 256 × fS, or 512 × fS.  
The device supports SCLK rates of 32 × fS, 48 × fS or 64 × fS.  
The device supports FSYNC rates of 44.1 kHz, 48 kHz, or 96 kHz.  
The maximum clock frequency is 25 MHz. Therefore, for a 96-kHz FSYNC rate, the maximum MCLK rate is  
256 × fS.  
The MCLK clock must not be in phase to sync to SCLK. Duty cycle of 50% is required for 128x FSYNC, for 256x  
and 512x 50% duty is not required.  
20  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
TAS6424-Q1  
www.ti.com.cn  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
9.3.1.6 Audio-Clock Error Handling  
When any kind of clock error, MCLK-FSYNC or SCLK-FSYNC ratio, or clock halt is detected, the device puts all  
channels into the Hi-Z state. When all audio clocks are within the expected range, the device automatically  
returns to the state it was in. See the Timing Requirements table for timing requirements.  
FSYNC  
(Input)  
0.5 × DVDD  
t
t
t
FS  
SCH  
SCL  
SCLK  
(Input)  
0.5 × DVDD  
t
t
SF  
SCY  
DATA  
(Input)  
0.5 × DVDD  
t
t
DH  
DS  
36. Serial Audio Timing  
1/f  
S
FSYNC  
SCLK  
L-channel  
R-channel  
Audio data word = 16 bit, SCLK = 64 f  
S
S
0
1
14 15  
0
1
14 15  
SDIN  
MSB  
LSB  
MSB  
LSB  
Audio data word = 24 bit, SCLK = 64 f  
0
1
22 23  
0
1
22 23  
SDIN  
MSB  
LSB  
MSB  
LSB  
Audio data word = 32 bit, SCLK = 64 f  
S
0
1
30 31  
0
1
30 31  
LSB  
SDIN  
MSB  
LSB  
MSB  
37. Left-Justified Audio Data Format  
版权 © 2016–2017, Texas Instruments Incorporated  
21  
TAS6424-Q1  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
www.ti.com.cn  
1/f  
S
FSYNC  
L-channel  
R-channel  
SCLK  
Audio data word = 16 bit, SCLK = 64 f  
S
S
0
1
14 15  
0
1
14 15  
SDIN  
MSB  
LSB  
MSB  
LSB  
Audio data word = 24 bit, SCLK = 64 f  
0
1
22 23  
0
1
22 23  
SDIN  
MSB  
LSB  
MSB  
LSB  
Audio data word = 32 bit, SCLK = 64 f  
S
0
1
30 31  
LSB  
0
1
30 31  
SDIN  
MSB  
MSB  
LSB  
38. I2S Audio Data Format  
22  
版权 © 2016–2017, Texas Instruments Incorporated  
TAS6424-Q1  
www.ti.com.cn  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
1/Fs (256 sbclks)  
FSYNC  
SCLK  
SDIN (I2S mode)  
23  
22  
1
0
23  
22  
1
0
23  
22  
1
0
23  
22  
1
0
23  
22  
1
0
23  
22  
1
0
23  
22  
1
0
23  
22  
1
0
23  
22  
32 SCLK  
32 SCLK  
32 SCLK  
32 SCLK  
32 SCLK  
32 SCLK  
32 SCLK  
32 SCLk  
Audio Data Format: TDM8 mode  
39. TDM Audio Data Format  
版权 © 2016–2017, Texas Instruments Incorporated  
23  
TAS6424-Q1  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
www.ti.com.cn  
9.3.2 High-Pass Filter  
Direct-current (DC) content in the audio signal can damage speakers. The data path has a high-pass filter to  
remove any DC from the input signal. The corner frequency is selectable from 4 Hz, 8 Hz, or 15 Hz to 30 Hz with  
bits 0 through 3 in register 0x26. The default value of –3 dB is approximately 4 Hz for 44.1 kHz or 48 kHz and  
approximately 8 Hz for 96-kHz sampling rates.  
9.3.3 Volume Control and Gain  
Each channel has a independent digital-volume control with a range from –100 dB to +24 dB with 0.5-dB steps.  
The volume control is set through I2C. The gain-ramp rate is programmable through I2C to take one step every 1,  
2, 4, or 8 FSYNC cycles.  
The peak output-voltage swing is also configurable in the gain control register through I2C. The four gain settings  
are 7.5 V, 15 V, 21 V, and 29 V. TI recommends selecting the lowest possible for the expected PVDD operation  
to optimize output noise and dynamic range performance.  
9.3.4 High-Frequency Pulse-Width Modulator (PWM)  
The PWM converts the PCM input data into a switched signal of varying duty cycle. The PWM modulator is an  
advanced design with high bandwidth, low noise, low distortion, and excellent stability. The output switching rate  
is synchronous to the serial audio-clock input and is programmed through I2C to be between 8× and 48× the  
input-sample rate. The option to switch at high frequency allows the use of smaller and lower cost external  
filtering components. 3 lists the switch frequency options for bits 4 through 6 in the miscellaneous control 2  
register (address 0x02).  
3. Output Switch Frequency Option  
INPUT SAMPLE RATE  
BIT 6:4 SETTINGS  
010 to 100  
000  
001  
101  
110  
111  
44.1 kHz  
48 kHz  
96 kHz  
352.8 kHz  
384 kHz  
384 kHz  
441 kHz  
480 kHz  
480 kHz  
RESERVED  
RESERVED  
RESERVED  
1.68 MHz  
1.82 MHz  
1.82 MHz  
1.94 MHz  
2.11 MHz  
2.11 MHz  
2.12 MHz  
Not supported  
Not supported  
9.3.5 Gate Drive  
The gate driver accepts the low-voltage PWM signal and level shifts it to drive a high-current, full-bridge, power-  
FET stage. The device uses proprietary techniques to optimize EMI and audio performance.  
The gate-driver power-supply voltage, GVDD, is internally generated and a decoupling capacitor is connected at  
pin 9 and pin 10.  
The full H-bridge output stages use only NMOS transistors. Therefore, bootstrap capacitors are required for the  
proper operation of the high side NMOS transistors. A 1-µF ceramic capacitor of quality X7R or better, rated for  
at least 16 V, must be connected from each output to the corresponding bootstrap input (see the application  
circuit diagram in 79). The bootstrap capacitors connected between the BST pins and corresponding output  
function as a floating power supply for the high-side N-channel power MOSFET gate drive circuitry. During each  
high-side switching cycle, the bootstrap capacitors hold the gate-to-source voltage high keeping the high-side  
MOSFETs turned on.  
9.3.6 Power FETs  
The BTL output for each channel comprises four N-channel 90-mFETs for high efficiency and maximum power  
transfer to the load. These FETs are designed to handle the fast switching frequency and large voltage transients  
during load dump.  
9.3.7 Load Diagnostics  
The device incorporates both DC-load and AC-load diagnostics which are used to determine the status of the  
load. The DC diagnostics are turned on by default but if a fast startup without diagnostics is required the DC  
diagnostics can be bypassed through I2C. The DC diagnostics runs when any channel is directed to leave the Hi-  
Z state and enter the MUTE or PLAY state. The DC diagnostics can also be enabled manually to run on any or  
all channels even if the other channels are playing audio. DC Diagnostics can be started from any operating  
24  
版权 © 2016–2017, Texas Instruments Incorporated  
 
TAS6424-Q1  
www.ti.com.cn  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
condition but if the channel is in play state then the time to complete the diagnostic is longer because the device  
must ramp down the audio signal of that channel before transitioning to the Hi-Z state. The DC diagnostics are  
available as soon as the device supplies are within the recommended operating range. The DC diagnostics do  
not rely on the audio input clocks to be available to function. DC Diagnostic results are reported for each channel  
separately through the I2C registers.  
9.3.7.1 DC Load Diagnostics  
The DC load diagnostics are used to verify the load connected. The DC diagnostics consists of four tests: short-  
to-power (S2P), short-to-ground (S2G), open-load (OL), and shorted-load (SL). The S2P and S2G tests trigger if  
the impedance to GND or a power rail is below that specified in the Specifications section. The diagnostic  
detects a short to vehicle battery even when the supply is boosted. The SL test has an I2C-configurable threshold  
depending on the expected load to be connected. Because the speakers connected to each channel might be  
different, each channel can be assigned a unique threshold value. The OL test reports if the select channel has a  
load impedance greater than the limits in the Specifications section.  
Open Load  
Open Load Detected  
OL Maximum  
Open Load (OL)  
Detection Threshold  
Normal or Open Load  
May Be Detected  
OL Minimum  
SL Maximum  
SL Minimum  
Normal Load  
Play Mode  
Shorted Load (SL)  
Detection Threshold  
Normal or Shorted Load  
May Be Detected  
Shorted Load  
Shorted Load Detected  
40. DC Load Diagnostic Reporting Thresholds  
9.3.7.2 Line Output Diagnostics  
The device also includes an optional test to detect a line-output load. A line-output load is a high-impedance load  
that is above the open-load (OL) threshold such that the DC-load diagnostics report an OL condition. After an OL  
condition is detected on a channel, if the line output detection bit is also set, the channel checks if a line-output  
load is present as well. This test is not pop free, so if an external amplifier is connected it should be muted.  
9.3.7.3 AC Load Diagnostics  
The AC load diagnostic is used to determine the proper connection of a capacitively coupled speaker or tweeter  
when used with a passive crossover. The AC load diagnostic is controlled through I2C. The AC diagnostics  
requires an external input signal and reports the approximate load impedance and phase. The selected signal  
frequency should create current flow through the desired speaker for proper detection. If multiple channels must  
be tested, the diagnostics should be run in series. The AC load-diagnostic test procedure is as follows.  
For load-impedance detection, use the following test procedure:  
1. Set the channels to be tested into the Hi-Z state.  
2. Set the AC_DIAGS_LOOPBACK bit (bit 7 in register 0x16) to 0.  
3. Apply a full-scale input signal from the DSP for the tested channels with the desired frequency  
(recommended 10 kHz to 20 kHz).  
The device ramps the signal up and down automatically to prevent pops and clicks.  
4. Set the device into the AC diagnostic mode (set bits 3:0 in register 0x15 to 1 for CH1 to CH4, set bit 3 in  
register 0x15 to 1, and set bit 1 in register 0x15 to 1 for PBTL12 and PBTL34).  
版权 © 2016–2017, Texas Instruments Incorporated  
25  
TAS6424-Q1  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
www.ti.com.cn  
5. Read back the AC impedance (register 0x17 through register 0x1A).  
When the test is complete the channel reporting register indicates the status change from the AC diagnostic  
mode to the Hi-Z state. The detected impedance is stored in the appropriate I2C register.  
For loopback delay detection, use the following test procedure for either BTL mode or PBTL mode:  
BTL mode  
1. Set the AC_DIAGS_LOOPBACK bit (bit 7 in register 0x16) to 1 to enable AC loopback mode.  
2. Apply a 0-dBFS 19K signal and enable AC load diagnostics. CH1 and CH2 reuse the AC sensing loop of  
CH1 (set bit 3 in register 0x15 to 1). CH3, CH4 reuse the AC sensing loop of CH3 (set bit 1 in register  
0x15 to 1)  
3. Read back the AC_LDG_PHASE1 value (register 0x1B and register 0x1C).  
When the test is complete, the channel reporting register indicates the status change from the AC  
diagnostic mode to the Hi-Z state. The detected impedance is stored in the appropriate I2C register.  
PBTL mode  
1. Set the AC_DIAGS_LOOPBACK bit (bit 7 in register 0x16) to 1 to enable AC loopback mode.  
2. Set the PBTL CH12 and PBTL CH34 bits (bits 5 and 4 in register 0x00) to 0 without toggling SDz pin to  
enter BTL mode only for load diagnostics.  
3. Apply a 0-dBFS 19K signal and enable AC load diagnostics. For PBTL_12, enable the AC sensing loop of  
CH1 (set bit 3 in register 0x15 to 1). For PBTL_34, enable the AC sensing loop of CH3 (set bit 1 in  
register 0x15 to 1).  
4. Read back the AC_LDG_PHASE1 (register 0x1B and register 0x1C).  
5. Set the PBTL CH12 and PBTL CH34 bits (bits 5 and 4 in register 0x00) to 1 to go back to PBTL mode for  
load diagnostics.  
4. AC Impedance Code to Magnitude  
MAPPING FROM CODE  
MEASUREMENT RANGE  
SETTING  
GAIN AT 19 kHz  
I(A)  
TO MAGNITUDE  
(Ω)  
(Ω/Code)  
Gain = 4, I = 10 mA  
(recommended)  
4.28  
4.28  
1
0.01  
0.019  
0.01  
12  
6
0.05832  
0.0307  
0.2496  
0.1314  
Gain = 4, I = 19 mA  
Gain = 1, I = 10 mA  
(recommended)  
48  
24  
Gain = 1, I = 19 mA  
1
0.019  
9.3.8 Protection and Monitoring  
9.3.8.1 Overcurrent Limit (ILIMIT  
)
The overcurrent limit terminates each PWM pulse to limit the output current flow when the current limit (ILIMIT) is  
exceeded. Power is limited but operation continues without disruption and prevents undesired shutdown for  
transient music events. ILIMIT is not reported as a fault condition to either registers or the FAULT pin. Each  
channel is independently monitored and limited. The two programable levels can be set by bit 4 in the  
miscellaneous control 1 register (address 0x01).  
9.3.8.2 Overcurrent Shutdown (ISD  
)
If the output load current reaches ISD, such as an output short to GND, then a peak current limit occurs which  
shuts down the channel. The time to shutdown the channel varies depending on the severity of the short  
condition. The affected channel is placed into the Hi-Z state, the fault is reported to the register, and the FAULT  
pin is asserted. If the diagnostics are enabled then the device automatically starts diagnostics on the channel  
and, if no load failure is found, the device restarts. If a load fault is found the device continues to rerun the  
diagnostics once per second. Because this hiccup mode is using the diagnostics, no high current is created. If  
the diagnostics are disabled the device sets the state for that channel to Hi-Z and requires the MCU to take the  
appropriate action.  
There are two programable levels that can be set by bit 4 in the miscellaneous control 1 register (address 0x01).  
26  
版权 © 2016–2017, Texas Instruments Incorporated  
TAS6424-Q1  
www.ti.com.cn  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
9.3.8.3 DC Detect  
This circuit detects a DC offset continuously during normal operation at the output of the amplifier. If the DC  
offset exceeds the threshold, that channel is placed in the Hi-Z state, the fault is reported to the I2C register, and  
the FAULT pin is asserted. A register bit can be used to mask reporting to the FAULT pin if needed.  
9.3.8.4 Clip Detect  
The clip detect is reported on the WARN pin if 100% duty-cycle PWM if reached for a minimum of 20 cycles. If  
any channel is clipping, the clipping is reported to the pin. The clip detect is latched and can be cleared by I2C .  
Masking the clip reporting to the pin is possible through I2C.  
9.3.8.5 Global Overtemperature Warning (OTW), Overtemperature Shutdown (OTSD)  
Four overtemperature warning levels are available in the device that can be selected (see the Register Maps  
section for thresholds). When the junction temperature exceeds the warning level, the WARN pin is asserted  
unless the mask bit has been set to disable reporting. The device functions until the OTSD value is reached at  
which point all channels are placed in the Hi-Z state and the FAULT pin is asserted. When the junction  
temperature returns to normal levels, the device automatically recovers and places all channels into the state  
indicated by the register settings.  
9.3.8.6 Channel Overtemperature Warning [OTW(i)] and Shutdown [OTSD(i)]  
In addition to the global OTW, each channel also has an individual overtemperature warning and shutdown. If a  
channel exceeds the OTW(i) threshold, the warning register bit is set as the WARN pin is asserted unless the  
mask bit has been set to disable reporting. If the channel temperature exceeds the OTSD(i) threshold then that  
channel goes to the Hi-Z state until the temperature drops below the OTW(i) threshold at which point the channel  
goes to the state indicated by the state control register.  
9.3.8.7 Undervoltage (UV) and Power-On-Reset (POR)  
The undervoltage (UV) protection detects low voltages on the PVDD and VBAT pins. In the event of an UV  
condition, the FAULT pin is asserted and the I2C register is updated. A power-on reset (POR) on the VDD pin  
causes the I2C to goes to the high-impedance (Hi-Z) state and all registers are reset to default values. At power-  
on or after a POR event, the POR warning bit and WARN pin are asserted.  
9.3.8.8 Overvoltage (OV) and Load Dump  
The overvoltage (OV) protection detects high voltages on the PVDD pin. If the PVDD pin reaches the OV  
threshold, the FAULT pin is asserted and the I2C register is updated. The device can withstand 40-V load-dump  
voltage spikes.  
9.3.9 Power Supply  
The device has three power supply inputs, VDD, PVDD, and VBAT, which are described as follows:  
VDD  
This pin is a 3.3-V supply pin that provides power to the low voltage circuitry.  
VBAT  
This pin is a higher voltage supply that can be connected to the vehicle battery or the regulated  
voltage rail in a boosted system within the recommended limits. For best performance, this rail  
should be 10 V or higher. See the Recommended Operating Conditions table for the maximum  
supply voltage. This supply rail is used for higher voltage analog circuits but not the output FETs.  
PVDD  
This pin is a high-voltage supply that can either be connected to the vehicle battery or to another  
voltage rail in a boosted system. The PVDD pin supplies the power to the output FETs and can be  
within the recommended operating limits, even if that is below the VBAT supply, to allow for  
dynamic voltage systems.  
Several on-chip regulators are included generating the voltages necessary for the internal circuitry. The external  
pins are provided only for bypass capacitors to filter the supply and should not be used to power other circuits.  
The device can withstand fortuitous open ground and power conditions within the absolute maximum ratings for  
the device. Fortuitous open ground usually occurs when a speaker wire is shorted to ground, allowing for a  
second ground path through the body diode in the output FETs.  
版权 © 2016–2017, Texas Instruments Incorporated  
27  
TAS6424-Q1  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
www.ti.com.cn  
9.3.9.1 Vehicle-Battery Power-Supply Sequence  
The device can accept any sequence of the VBAT, PVDD and VDD supply.  
In a typical system, the VBAT and PVDD supplies are both connected to the vehicle battery and power up at the  
same time. The VDD supply should be applied after the VBAT and PVDD supplies are within the recommended  
operating range. When removing power from the device, TI recommends to deassert the VDD supply first then  
the VBAT, PVDD, or both supplies which provides the lowest click and pop performance.  
9.3.9.2 Boosted Power-Supply Sequence  
In this case, the VBAT and PVDD inputs are not connected to the same supply.  
When powering up, apply the VBAT supply first, the VDD supply second, and the PVDD supply last.  
When powering down, remove the PVDD supply first, the VDD supply second, and the VBAT supply last.  
9.3.10 Hardware Control Pins  
The device has four pins for control and device status: FAULT, MUTE, WARN, and STANDBY.  
9.3.10.1 FAULT  
The FAULT pin reports faults and is active low under any of the following conditions:  
Any channel faults (overcurrent or DC detection)  
Overtemperature shutdown  
Overvoltage or undervoltage conditions on the VBAT or PVDD pins  
Clock errors  
The FAULT pin is deactivated when none of the previously listed conditions exist.  
Register bits are available to mask fault categories from reporting to the FAULT pin. These bits only mask the  
setting of the pin and do not affect the register reporting or protection of the device. By default all faults are  
reported to the pin. See the Register Maps section for a description of the mask settings.  
This pin is an open-drain output with an internal 100-kΩ pullup resistor to VDD.  
9.3.10.2 WARN  
This active-low output pin reports audio clipping, overtemperature warnings, and POR events.  
Clipping is reported if any channel is at the maximum modulation for 20 consecutive PWM clocks which results in  
a 10-µs delay to report the onset of clipping. The warning bit is sticky and can be cleared by the CLEAR FAULT  
bit (bit 7) in register 0x21.  
An overtemperature warning (OTW) is reported if the general temperature or any of the channel temperature  
warnings are set. The warning temperature can be set through bits 5 and 6 in register 0x01.  
Register bits are available to mask either clipping or OTW reporting to the pin. These bits only mask the setting  
of the pin and do not affect the register reporting. By default both clipping and OTW are reported.  
The WARN pin is latched and can be cleared by writing the CLEAR FAULT bit (bit 7) in register 0x21.  
This pin is an open-drain output with an internal 100-kΩ pullup resistor to VDD.  
9.3.10.3 MUTE  
This active-low input pin is used for hardware control of the mute and unmute function for all channels.  
This pin has a 100-kΩ internal pulldown resistor.  
9.3.10.4 STANDBY  
When this active-low input pin is asserted, the device goes into shutdown and current draw is limited. This pin  
can be used to shut down the device rapidly. The outputs are ramped down in less than 5 ms if the device is not  
already in the Hi-Z state. The I2C bus goes into the high-impedance (Hi-Z) state when in STANDBY.  
This pin has a 100-kΩ internal pulldown resistor.  
28  
版权 © 2016–2017, Texas Instruments Incorporated  
TAS6424-Q1  
www.ti.com.cn  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
9.4 Device Functional Modes  
9.4.1 Operating Modes and Faults  
The operating modes and faults are listed in the following tables.  
5. Operating Modes  
STATE NAME  
STANDBY  
Hi-Z  
OUTPUT FETS  
Hi-Z  
OSCILLATOR  
I2C  
Stopped  
Active  
Active  
Active  
Stopped  
Active  
Active  
Active  
Hi-Z  
MUTE  
Switching at 50%  
Switching with audio  
PLAY  
6. Global Faults and Actions  
FAULT/  
EVENT  
FAULT/EVENT  
CATEGORY  
MONITORING  
MODES  
REPORTING  
METHOD  
ACTION  
RESULT  
POR  
VBAT UV  
PVDD UV  
VBAT or PVDD OV  
OTW  
All  
I2C + WARN pin  
Standby  
Voltage fault  
Hi-Z, mute, normal  
I2C + FAULT pin  
Hi-Z  
Thermal warning  
Hi-Z, mute, normal  
Hi-Z, mute, normal  
I2C + WARN pin  
I2C + FAULT pin  
None  
Hi-Z  
OTSD  
Thermal shutdown  
7. Channel Faults and Actions  
FAULT/  
EVENT  
FAULT/EVENT  
CATEGORY  
MONITORING  
MODES  
REPORTING  
METHOD  
ACTION  
TYPE  
Clipping  
Overcurrent limiting  
Overcurrent fault  
DC detect  
Warning  
None  
WARN pin  
Protection  
Current limit  
Mute and play  
Output channel fault  
I2C + FAULT pin  
Hi-Z  
9.5 Programming  
9.5.1 I2C Serial Communication Bus  
The device communicates with the system processor through the I2C serial communication bus as an I2C slave-  
only device. The processor can poll the device through I2C to determine the operating status, configure settings,  
or run diagnostics. For a complete list and description of all I2C controls, see the Register Maps section.  
The device includes two I2C address pins, so up to four devices can be used together in a system with no  
additional bus switching hardware. The I2C ADDRx pins set the slave address of the device as listed in 8.  
8. I2C Addresses  
DESCRIPTION  
I2C ADDR1  
I2C ADDR0  
I2C Write  
0xD4  
I2C Read  
0xD5  
Device 0  
Device 1  
Device 2  
Device 3  
0
0
1
1
0
1
0
1
0xD6  
0xD7  
0xD8  
0xD9  
0xDA  
0xDB  
9.5.2 I2C Bus Protocol  
The device has a bidirectional serial-control interface that is compatible with the Inter IC (I2C) bus protocol and  
supports 100-kbps and 400-kbps data transfer rates for random and sequential write and read operations. The  
TAS6424-Q1 device is a slave-only device that does not support a multimaster bus environment or wait-state  
insertion. The control interface is used to program the registers of the device and to read device status.  
版权 © 2016–2017, Texas Instruments Incorporated  
29  
 
TAS6424-Q1  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
www.ti.com.cn  
The I2C bus uses two signals, SDA (data) and SCL (clock), to communicate between integrated circuits in a  
system. Data is transferred on the bus serially, one bit at a time. The address and data are transferred in byte (8-  
bit) format with the most-significant bit (MSB) transferred first. In addition, each byte transferred on the bus is  
acknowledged by the receiving device with an acknowledge bit. Each transfer operation begins with the master  
device driving a start condition on the bus and ends with the master device driving a stop condition on the bus.  
The bus uses transitions on the data terminal (SDA) while the clock is HIGH to indicate a start and stop  
conditions. A HIGH-to-LOW transition on SDA indicates a start, and a LOW-to-HIGH transition indicates a stop.  
Normal data bit transitions must occur within the low time of the clock period. The master generates the 7-bit  
slave address and the read/write (R/W) bit to open communication with another device and then wait for an  
acknowledge condition. The device holds SDA LOW during the acknowledge-clock period to indicate an  
acknowledgment. When this occurs, the master transmits the next byte of the sequence. Each device is  
addressed by a unique 7-bit slave address plus a R/W bit (1 byte). All compatible devices share the same signals  
via a bidirectional bus using a wired-AND connection. An external pullup resistor must be used for the SDA and  
SCL signals to set the HIGH level for the bus. The number of bytes that can be transmitted between start and  
stop conditions is unlimited. When the last word transfers, the master generates a stop condition to release the  
bus.  
R/  
W
8-Bit Register Data for  
Address (N)  
8-Bit Register Data for  
Address (N)  
7-Bit Slave Address  
A
8-Bit Register Address (N)  
A
A
A
SDA  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
SCL  
Start  
Stop  
41. Typical I2C Sequence  
t
t
t
r
t
f
w(H)  
w(L)  
SCL  
t
t
h1  
su1  
SDA  
42. SCL and SDA Timing  
Use the I2C ADDRx pins to program the device slave address. Read and write data can be transmitted using  
single-byte or multiple-byte data transfers.  
9.5.3 Random Write  
As shown in 43, a single-byte data-write transfer begins with the master device transmitting a start condition  
followed by the I2C device address and the R/W bit. The R/W bit determines the direction of the data transfer.  
For a write data transfer, the R/W bit is a 0. After receiving the correct I2C device address and the R/W bit, the  
device responds with an acknowledge bit. Next, the master transmits the address byte or bytes corresponding to  
the internal memory address being accessed. After receiving the address byte, the device again responds with  
an acknowledge bit. Next, the master device transmits the data byte to be written to the memory address being  
accessed. After receiving the data byte, the device again responds with an acknowledge bit. Finally, the master  
device transmits a stop condition to complete the single-byte data-write transfer.  
30  
版权 © 2016–2017, Texas Instruments Incorporated  
TAS6424-Q1  
www.ti.com.cn  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
Start  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
ACK  
ACK  
A4  
R/W  
A7  
ACK  
A6 A5 A4 A3 A2 A1 A0  
D7 D6 D5  
A6 A5  
A3 A2 A1 A0  
D4 D3 D2 D1 D0  
I2C Device Address  
and R/W Bit  
Stop  
Condition  
Subaddress  
Data Byte  
43. Random Write Transfer  
9.5.4 Sequential Write  
A sequential data-write transfer is identical to a single-byte data-write transfer except that multiple data bytes are  
transmitted by the master to the device as shown in 44. After receiving each data byte, the device responds  
with an acknowledge bit and the I2C subaddress is automatically incremented by one.  
Start  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
A5  
A0  
A4 A3  
A0  
A6  
A1  
R/W ACK  
A7  
A6  
A5  
A1  
ACK  
D7  
D0  
ACK  
D7  
D0  
ACK  
D7  
ACK  
D0  
I2C Device Address  
and R/W Bit  
Stop  
Condition  
Subaddress  
First Data Byte  
Other Data Byte  
Last Data Byte  
44. Sequential Write Transfer  
9.5.5 Random Read  
As shown in 45, a single-byte data-read transfer begins with the master device transmitting a start condition  
followed by the I2C device address and the R/W bit. For the data-read transfer, both a write followed by a read  
occur. Initially, a write occurs to transfer the address byte or bytes of the internal memory address to be read. As  
a result, the R/W bit is a 0. After receiving the address and the R/W bit, the device responds with an  
acknowledge bit. In addition, after sending the internal memory address byte or bytes, the master device  
transmits another start condition followed by the address and the R/W bit again. This time the R/W bit is a 1,  
indicating a read transfer. After receiving the address and the R/W bit, the device again responds with an  
acknowledge bit. Next, the device transmits the data byte from the memory address being read. After receiving  
the data byte, the master device transmits a not-acknowledge followed by a stop condition to complete the  
single-byte data-read transfer.  
Repeat Start  
Condition  
Acknowledge  
Start  
Condition  
Not  
Acknowledge  
Acknowledge  
Acknowledge  
R/W ACK  
ACK  
R/W ACK  
ACK  
D0 D6  
A6 A5  
A1 A0  
A7 A6 A5 A4  
A0  
A6 A5  
A1 A0  
D7 D6  
I2C Device Address  
and R/W Bit  
I2C Device Address  
and R/W Bit  
Stop  
Condition  
Subaddress  
Data Byte  
45. Random Read Transfer  
9.5.6 Sequential Read  
A sequential data-read transfer is identical to a single-byte data-read transfer except that multiple data bytes are  
transmitted by the device to the master device as shown in 46. Except for the last data byte, the master  
device responds with an acknowledge bit after receiving each data byte and automatically increments the I2C  
subaddress by one. After receiving the last data byte, the master device transmits a not-acknowledge bit followed  
by a stop condition to complete the transfer.  
版权 © 2016–2017, Texas Instruments Incorporated  
31  
 
 
TAS6424-Q1  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
www.ti.com.cn  
Repeat Start  
Condition  
Acknowledge  
Start  
Condition  
Not  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
R/W ACK  
ACK  
R/W ACK  
ACK  
ACK  
ACK  
D0  
A6  
A0  
A7 A6 A5  
A0  
A6  
A0  
D7  
D0  
D7  
D0  
D7  
I2C Device Address  
and R/W Bit  
I2C Device Address  
and R/W Bit  
Stop  
Condition  
Subaddress  
First Data Byte Other Data Byte Last Data Byte  
46. Sequential Read Transfer  
32  
版权 © 2016–2017, Texas Instruments Incorporated  
TAS6424-Q1  
www.ti.com.cn  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
9.6 Register Maps  
9. I2C Address Register Definitions  
Address  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Register Description  
Section  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Mode control  
Miscellaneous control 1  
Miscellaneous control 2  
SAP control (serial audio-port control)  
Channel state control  
Channel 1 volume control  
Channel 2 volume control  
Channel 3 volume control  
Channel 4 volume control  
DC diagnostic control 1  
DC diagnostic control 2  
DC diagnostic control 3l  
DC load diagnostic report 1 (channels 1 and 2)  
DC load diagnostic report 2 (channels 3 and 4)  
DC load diagnostic report 3—line output  
Channel state reporting  
Channel faults (overcurrent, DC detection)  
Global faults 1  
R
R
R
R
R
R
Global faults 2  
R
Warnings  
R/W  
R/W  
R/W  
R
Pin control  
AC load diagnostic control 1  
AC load diagnostic control 2  
AC load diagnostic report channel 1  
AC load diagnostic report channel 2  
AC load diagnostic report channels 3  
AC load diagnostic report channels 4  
AC load diagnostic phase report high  
AC load diagnostic phase report low  
AC load diagnostic STI report high  
AC load diagnostic STI report low  
RESERVED  
R
R
R
R
R
R
R
R
R
RESERVED  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Miscellaneous control 3  
Clip control  
Go  
Go  
Go  
Go  
Go  
Go  
Clip window  
Clip warning  
ILIMIT status  
Miscellaneous control 4  
RESERVED  
R/W  
RESERVED  
版权 © 2016–2017, Texas Instruments Incorporated  
33  
TAS6424-Q1  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
www.ti.com.cn  
9.6.1 Mode Control Register (address = 0x00) [default = 0x00]  
The Mode Control register is shown in 47 and described in 10.  
47. Mode Control Register  
7
6
5
4
3
2
1
0
RESET  
R/W-0  
RESERVED  
R/W-0  
PBTL CH34  
R/W-0  
PBTL CH12  
R/W-0  
CH1 LO MODE CH2 LO MODE CH3 LO MODE CH4 LO MODE  
R/W-0 R/W-0 R/W-0 R/W-0  
10. Mode Control Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RESET  
R/W  
0
0: Normal operation  
1: Resets the device  
6
5
RESERVED  
PBTL CH34  
R/W  
R/W  
0
0
RESERVED  
0: Channels 3 and 4 are in BTL mode  
1: Channels 3 and 4 are in parallel BTL mode  
4
3
2
1
0
PBTL CH12  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
0: Channels 1 and 2 are in BTL mode  
1: Channels 1 and 2 are in parallel BTL mode  
CH1 LO MODE  
CH2 LO MODE  
CH3 LO MODE  
CH4 LO MODE  
0: Channel 1 is in normal/speaker mode  
1: Channel 1 is in line output mode  
0: Channel 2 is in normal/speaker mode  
1: Channel 2 is in line output mode  
0: Channel 3 is in normal/speaker mode  
1: Channel 3 is in line output mode  
0: Channel 4 is in normal/speaker mode  
1: Channel 4 is in line output mode  
9.6.2 Miscellaneous Control 1 Register (address = 0x01) [default = 0x32]  
The Miscellaneous Control 1 register is shown in 48 and described in 11.  
48. Miscellaneous Control 1 Register  
7
6
5
4
3
2
1
0
HPF BYPASS  
R/W-0  
OTW CONTROL  
R/W-01  
OC CONTROL  
R/W-1  
VOLUME RATE  
R/W-00  
GAIN  
R/W-10  
11. Misc Control 1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
HPF BYPASS  
R/W  
0
0: High pass filter eneabled  
1: High pass filter disabled  
6–5  
OTW CONTROL  
R/W  
01  
00: Global overtemperature warning set to 140°C  
01: Global overtemperature warning set to 130C  
10: Global overtemperature warning set to 120°C  
11: Global overtemperature warning set to 110°C  
4
OC CONTROL  
VOLUME RATE  
R/W  
R/W  
1
0: Overcurrent is level 1  
1: Overcurrent is level 2  
3–2  
00  
00: Volume update rate is 1 step / FSYNC  
01: Volume update rate is 1 step / 2 FSYNCs  
10: Volume update rate is 1 step / 4 FSYNCs  
11: Volume update rate is 1 step / 8 FSYNCs  
34  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
 
 
TAS6424-Q1  
www.ti.com.cn  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
11. Misc Control 1 Field Descriptions (接下页)  
Bit  
Field  
GAIN  
Type  
Reset  
Description  
1–0  
R/W  
10  
00: Gain level 1 = 7.6-V peak output voltage  
01: Gain Level 2 = 15-V peak output voltage  
10: Gain Level 3 = 21-V peak output voltage  
11: Gain Level 4 = 29-V peak output voltage  
9.6.3 Miscellaneous Control 2 Register (address = 0x02) [default = 0x62]  
The Miscellaneous Control 2 register is shown in 49 and described in 12.  
49. Miscellaneous Control 2 Register  
7
6
5
4
3
2
1
0
RESERVED  
PWM FREQUENCY  
R/W-110  
RESERVED  
SDM_OSR  
R/W-0  
OUTPUT PHASE  
R/W-10  
12. Misc Control 2 Field Descriptions  
Bit  
Field  
RESERVED  
Type  
Reset  
Description  
0
7
6–4  
PWM FREQUENCY  
R/W  
110  
000: 8 × fS (352.8 kHz / 384 kHz)  
001: 10 × fS (441 kHz / 480 kHz)  
010: RESERVED  
011: RESERVED  
100: RESERVED  
101: 38 × fS (1.68 MHz / 1.82 MHz)  
110: 44 × fS (1.94 MHz / 2.11 MHz)  
111: 48 × fS (2.12 MHz / not supported)  
0
3
2
RESERVED  
SDM_OSR  
0
0
R/W  
R/W  
0: 64x OSR  
1: 128x OSR  
1–0  
OUTPUT PHASE  
10  
00: 0 degrees output-phase switching offset  
01: 30 degrees output-phase switching offset  
10: 45 degrees output-phase switching offset  
11: 60 degrees output-phase switching offset  
9.6.4 SAP Control (Serial Audio-Port Control) Register (address = 0x03) [default = 0x04]  
The SAP Control (serial audio-port control) register is shown in 50 and described in 13.  
50. SAP Control Register  
7
6
5
4
3
2
1
0
INPUT SAMPLING RATE  
8 Ch TDM  
SLOT SELECT  
TDM SLOT  
SIZE  
TDM SLOT  
SELECT 2  
INPUT FORMAT  
R/W-00  
R/W-0  
R/W-0  
R/W-0  
R/W-100  
13. SAP Control Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–6  
INPUT SAMPLING RATE  
R/W  
00  
00: 44.1 kHz  
01: 48 kHz  
10: 96 kHz  
11: RESERVED  
版权 © 2016–2017, Texas Instruments Incorporated  
35  
 
 
 
 
TAS6424-Q1  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
www.ti.com.cn  
13. SAP Control Field Descriptions (接下页)  
Bit  
Field  
Type  
Reset  
Description  
5
8 Ch TDM SLOT SELECT  
R/W  
0
0: First four TDM slots  
1: Last four TDM slots  
4
3
TDM SLOT SIZE  
R/W  
R/W  
R/W  
0
0: TDM slot size is 24-bit or 32-bit  
1: TDM slot size is 16-bit  
TDM SLOT SELECT 2  
INPUT FORMAT  
0
0: Normal  
1: swap channel 1/2 with channel 3/4  
2–0  
100  
000: 24-bit right justified  
001: 20-bit right justified  
010: 18-bit right justified  
011: 16-bit right justified  
100: I2S (16-bit or 24-bit)  
101: Left justified (16-bit or 24-bit)  
110: TDM mode (16-bit or 24-bit)  
111: RESERVED  
9.6.5 Channel State Control Register (address = 0x04) [default = 0x55]  
The Channel State Control register is shown in 51 and described in 14.  
51. Channel State Control Register  
7
6
5
4
3
2
1
0
CH1 STATE CONTROL  
R/W-01  
CH2 STATE CONTROL  
R/W-01  
CH3 STATE CONTROL  
R/W-01  
CH4 STATE CONTROL  
R/W-01  
14. Channel State Control Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–6  
5–4  
3–2  
1–0  
CH1 STATE CONTROL  
R/W  
01  
00: PLAY  
01: Hi-Z  
10: MUTE  
11: DC load diagnostics  
CH2 STATE CONTROL  
CH3 STATE CONTROL  
CH4 STATE CONTROL  
R/W  
R/W  
R/W  
01  
01  
01  
00: PLAY  
01: Hi-Z  
10: MUTE  
11: DC load diagnostics  
00: PLAY  
01: Hi-Z  
10: MUTE  
11: DC load diagnostics  
00: PLAY  
01: Hi-Z  
10: MUTE  
11: DC load diagnostics  
9.6.6 Channel 1 Through 4 Volume Control Registers (address = 0x05–0x088) [default = 0xCF]  
The Channel 1 Through 4 Volume Control registers are shown in 52 and described in 15.  
36  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
TAS6424-Q1  
www.ti.com.cn  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
52. Channel x Volume Control Register  
7
6
5
4
3
2
1
0
CH x VOLUME  
R/W-CF  
15. Ch x Volume Control Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–0  
CH x VOLUME  
R/W  
CF  
8-Bit Volume Control for each channel, register address for Ch1  
is 0x05, Ch2 is 0x06, Ch3 is 0x07 and Ch4 is 0x08, 0.5 dB/step:  
0xFF: 24 dB  
0xCF: 0 dB  
0x07: –100 dB  
< 0x07: MUTE  
9.6.7 DC Load Diagnostic Control 1 Register (address = 0x09) [default = 0x00]  
The DC Diagnostic Control 1 register is shown in 53 and described in 16.  
53. DC Load Diagnostic Control 1 Register  
7
6
5
4
3
2
1
0
DC LDG  
ABORT  
2x_RAMP  
2x_SETTLE  
RESERVED  
LDG LO  
ENABLE  
LDG BYPASS  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
16. DC Load Diagnostics Control 1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
DC LDG ABORT  
R/W  
0
0: Default state, clear after abort  
1: Aborts the load diagnostics in progress  
6
5
2x_RAMP  
R/W  
R/W  
0
0
0: Normal ramp time  
1: Double ramp time  
2x_SETTLE  
0: Normal Settle time  
1: Double setling time  
4–2  
1
RESERVED  
0
0
0
LDG LO ENABLE  
R/W  
R/W  
0: Line output diagnostics are disabled  
1: Line output diagnostics are enabled  
0
LDG BYPASS  
0
0: Automatic diagnostics when leaving Hi-Z and after  
channel fault  
1: Diagnostics are not run automatically  
9.6.8 DC Load Diagnostic Control 2 Register (address = 0x0A) [default = 0x11]  
The DC Diagnostic Control 2 register is shown in 54 and described in 17.  
54. DC Load Diagnostic Control 2 Register  
7
6
5
4
3
2
1
0
CH1 DC LDG SL  
R/W-0001  
CH2 DC LDG SL  
R/W-0001  
版权 © 2016–2017, Texas Instruments Incorporated  
37  
 
 
 
TAS6424-Q1  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
www.ti.com.cn  
17. DC Load Diagnostics Control 2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–4  
CH1 DC LDG SL  
R/W  
0001  
DC load diagnostics shorted-load threshold  
0000: 0.5 Ω  
0001: 1 Ω  
0010: 1.5 Ω  
...  
1001: 5 Ω  
3–0  
CH2 DC LDG SL  
R/W  
0001  
DC load diagnostics shorted-load threshold  
0000: 0.5 Ω  
0001: 1 Ω  
0010: 1.5 Ω  
...  
1001: 5 Ω  
9.6.9 DC Load Diagnostic Control 3 Register (address = 0x0B) [default = 0x11]  
The DC Diagnostic Control 3 register is shown in 55 and described in 18.  
55. DC Load Diagnostic Control 3 Register  
7
6
5
4
3
2
1
0
CH3 DC LDG SL  
R/W-0001  
CH4 DC LDG SL  
R/W-0001  
18. DC Load Diagnostics Control 3 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–4  
CH3 DC LDG SL  
R/W  
0001  
DC load diagnostics shorted-load threshold  
0000: 0.5 Ω  
0001: 1 Ω  
0010: 1.5 Ω  
...  
1001: 5 Ω  
3–0  
CH4 DC LDG SL  
R/W  
0001  
DC load diagnostics shorted-load threshold  
0000: 0.5 Ω  
0001: 1 Ω  
0010: 1.5 Ω  
...  
1001: 5 Ω  
9.6.10 DC Load Diagnostic Report 1 Register (address = 0x0C) [default = 0x00]  
DC Load Diagnostic Report 1 register is shown in 56 and described in 19.  
56. DC Load Diagnostic Report 1 Register  
7
6
5
4
3
2
1
0
CH1 S2G  
R-0  
CH1 S2P  
R-0  
CH1 OL  
R-0  
CH1 SL  
R-0  
CH2 S2G  
R-0  
CH2 S2P  
R-0  
CH2 OL  
R-0  
CH2 SL  
R-0  
38  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
 
TAS6424-Q1  
www.ti.com.cn  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
19. DC Load Diagnostics Report 1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CH1 S2G  
CH1 S2P  
CH1 OL  
CH1 SL  
R
0
0: No short-to-GND detected  
1: Short-To-GND Detected  
6
5
4
3
2
1
0
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0: No short-to-power detected  
1: Short-to-power detected  
0: No open load detected  
1: Open load detected  
0: No shorted load detected  
1: Shorted load detected  
CH2 S2G  
CH2 S2P  
CH2 OL  
CH2 SL  
0: No short-to-GND detected  
1: Short-to-GND detected  
0: No short-to-power detected  
1: Short-to-power detected  
0: No open load detected  
1: Open load detected  
0: No shorted load detected  
1: Shorted load detected  
9.6.11 DC Load Diagnostic Report 2 Register (address = 0x0D) [default = 0x00]  
The DC Load Diagnostic Report 2 register is shown in 57 and described in 20.  
57. DC Load Diagnostic Report 2 Register  
7
6
5
4
3
2
1
0
CH3 S2G  
R-0  
CH3 S2P  
R-0  
CH3 OL  
R-0  
CH3 SL  
R-0  
CH4 S2G  
R-0  
CH4 S2P  
R-0  
CH4 OL  
R-0  
CH4 SL  
R-0  
20. DC Load Diagnostics Report 2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CH3 S2G  
CH3 S2P  
CH3 OL  
CH3 SL  
R
0
0: No short-to-GND detected  
1: Short-to-GND detected  
6
5
4
3
2
1
0
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0: No short-to-power detected  
1: Short-to-power detected  
0: No open load detected  
1: Open load detected  
0: No shorted load detected  
1: Shorted load detected  
CH4 S2G  
CH4 S2P  
CH4 OL  
CH4 SL  
0: No short-to-GND detected  
1: Short-to-GND detected  
0: No short-to-power detected  
1: Short-to-power detected  
0: No open load detected  
1: Open load detected  
0: No shorted load detected  
1: Shorted load detected  
版权 © 2016–2017, Texas Instruments Incorporated  
39  
 
 
TAS6424-Q1  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
www.ti.com.cn  
9.6.12 DC Load Diagnostics Report 3—Line Output—Register (address = 0x0E) [default = 0x00]  
The DC Load Diagnostic Report, Line Output, register is shown in 58 and described in 21.  
58. DC Load Diagnostics Report 3—Line Output—Register  
7
6
5
4
3
2
1
0
RESERVED  
CH1 LO LDG  
R-0  
CH2 LO LDG  
R-0  
CH3 LO LDG  
R-0  
CH4 LO LDG  
R-0  
21. DC Load Diagnostics Report 3—Line Output—Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
0
7–4  
RESERVED  
3
2
1
0
CH1 LO LDG  
CH2 LO LDG  
CH3 LO LDG  
CH4 LO LDG  
R
0
0
0
0
0: No line output detected on channel 1  
1: Line output detected on channel 1  
R
0: No line output detected on channel 2  
1: Line output detected on channel 2  
R
0: No line output detected on channel 3  
1: Line output detected on channel 3  
R
0: No line output detected on channel 4  
1: Line output detected on channel 3  
9.6.13 Channel State Reporting Register (address = 0x0F) [default = 0x55]  
The Channel State Reporting register is shown in 59 and described in 22.  
59. Channel State-Reporting Register  
7
6
5
4
3
2
1
0
CH1 STATE REPORT  
R-01  
CH2 STATE REPORT  
R-01  
CH3 STATE REPORT  
R-01  
CH3 STATE REPORT  
R-01  
22. State-Reporting Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–6  
5–4  
3–2  
1–0  
CH1 STATE REPORT  
R
01  
00: PLAY  
01: Hi-Z  
10: MUTE  
11: DC load diagnostics  
CH2 STATE REPORT  
CH3 STATE REPORT  
CH4 STATE REPORT  
R
R
R
01  
01  
01  
00: PLAY  
01: Hi-Z  
10: MUTE  
11: DC load diagnostics  
00: PLAY  
01: Hi-Z  
10: MUTE  
11: DC load diagnostics  
00: PLAY  
01: Hi-Z  
10: MUTE  
11: DC load diagnostics  
40  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
 
 
TAS6424-Q1  
www.ti.com.cn  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
9.6.14 Channel Faults (Overcurrent, DC Detection) Register (address = 0x10) [default = 0x00]  
The Channel Faults (overcurrent, DC detection) register is shown in 60 and described in 23.  
60. Channel Faults Register  
7
6
5
4
3
2
1
0
CH1 OC  
R-0  
CH2 OC  
R-0  
CH3 OC  
R-0  
CH4 OC  
R-0  
CH1 DC  
R-0  
CH2 DC  
R-0  
CH3 DC  
R-0  
CH4 DC  
R-0  
23. Channel Faults Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CH1 OC  
R
0
0: No overcurrent fault detected  
1: Overcurrent fault detected  
6
5
4
3
2
1
0
CH2 OC  
CH3 OC  
CH4 OC  
CH1 DC  
CH2 DC  
CH3 DC  
CH4 DC  
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0: No overcurrent fault detected  
1: Overcurrent fault detected  
0: No overcurrent fault detected  
1: Overcurrent fault detected  
0: No overcurrent fault detected  
1: Overcurrent fault detected  
0: No DC fault detected  
1: DC fault detected  
0: No DC fault detected  
1: DC fault detected  
0: No DC fault detected  
1: Overcurrent fault detected  
0: No DC fault detected  
1: Overcurrent fault detected  
9.6.15 Global Faults 1 Register (address = 0x11) [default = 0x00]  
The Global Faults 1 register is shown in 61 and described in 24.  
61. Global Faults 1 Register  
7
6
5
4
3
2
1
0
RESERVED  
INVALID  
CLOCK  
PVDD OV  
VBAT OV  
PVDD UV  
VBAT UV  
R-0  
R-0  
R-0  
R-0  
R-0  
24. Global Faults 1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
0
7–5  
RESERVED  
0
4
3
2
1
INVALID CLOCK  
R
0
0
0
0
0: No clock fault detected  
1: Clock fault detected  
PVDD OV  
VBAT OV  
PVDD UV  
R
0: No PVDD overvoltage fault detected  
1: PVDD overvoltage fault detected  
R
0: No VBAT overvoltage fault detected  
1: VBAT overvoltage fault detected  
R
0: No PVDD undervoltage fault detected  
1: PVDD undervoltage fault detected  
版权 © 2016–2017, Texas Instruments Incorporated  
41  
 
 
 
 
TAS6424-Q1  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
www.ti.com.cn  
24. Global Faults 1 Field Descriptions (接下页)  
Bit  
Field  
Type  
Reset  
Description  
0
VBAT UV  
R
0
0: No VBAT undervoltage fault detected  
1: VBAT undervoltage fault detected  
9.6.16 Global Faults 2 Register (address = 0x12) [default = 0x00]  
The Global Faults 2 register is shown in 62 and described in 25.  
62. Global Faults 2 Register  
7
6
5
4
3
2
1
0
RESERVED  
OTSD  
R-0  
CH1 OTSD  
R-0  
CH2 OTSD  
R-0  
CH3 OTSD  
R-0  
CH4 OTSD  
R-0  
25. Global Faults 2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
0
7–5  
RESERVED  
OTSD  
4
3
2
1
0
R
0
0
0
0
0
0: No global overtemperature shutdown  
1: Global overtemperature shutdown  
CH1 OTSD  
CH2 OTSD  
CH3 OTSD  
CH4 OTSD  
R
0: No overtemperature shutdown on Ch1  
1: Overtemperature shutdown on Ch1  
R
0: No overtemperature shutdown on Ch2  
1: Overtemperature shutdown on Ch2  
R
0: No overtemperature shutdown on Ch4  
1: Overtemperature shutdown on Ch4  
R
0: No overtemperature shutdown on Ch4  
1: Overtemperature shutdown on Ch4  
9.6.17 Warnings Register (address = 0x13) [default = 0x20]  
The Warnings register is shown in 63 and described in 26.  
63. Warnings Register  
7
6
5
4
3
2
1
0
RESERVED  
VDD POR  
R-0  
OTW  
R-0  
OTW CH1  
R-0  
OTW CH2  
R-0  
OTW CH3  
R-0  
OTW CH4  
R-0  
26. Warnings Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
0
7 -6  
5
RESERVED  
00  
VDD POR  
R
0
0
0
0
0: No VDD POR has occurred  
1 VDD POR occurred  
4
3
2
OTW  
R
0: No global overtemperature warning  
1: Global overtemperature warning  
OTW CH1  
OTW CH2  
R
0: No overtemperature warning on channel 1  
1: Overtemperature warning on channel 1  
R
0: No overtemperature warning on channel 2  
1: Overtemperature warning on channel 2  
42  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
 
 
TAS6424-Q1  
www.ti.com.cn  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
26. Warnings Field Descriptions (接下页)  
Bit  
Field  
Type  
Reset  
Description  
1
OTW CH4  
R
0
0: No overtemperature warning on channel 4  
1: Overtemperature warning on channel 4  
0
OTW CH4  
R
0
0: No overtemperature warning on channel 4  
1: Overtemperature warning on channel 4  
9.6.18 Pin Control Register (address = 0x14) [default = 0xFF]  
The Pin Control register is shown in 64 and described in 27.  
64. Pin Control Register  
7
6
5
4
3
2
1
0
MASK OC  
R/W-1  
MASK OTSD  
R/W-1  
MASK UV  
R/W-1  
MASK OV  
R/W-1  
MASK DC  
R/W-1  
MASK ILIMIT  
R/W-1  
MASK CLIP  
R/W-1  
MASK OTW  
R/W-1  
27. Pin Control Field Descriptions  
Bit  
Field  
MASK OC  
Type  
Reset  
Description  
7
R/W  
1
0: Do not report overcurrent faults on the FAULT pin  
1: Report overcurrent faults on the FAULT Pin  
6
5
4
3
2
1
0
MASK OTSD  
MASK UV  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
1
1
1
1
1
1
1
0: Do not report overtemperature faults on the FAULT pin  
1: Report overtemperature faults on the FAULT pin  
0: Do not report overvoltage faults on the FAULT pin  
1: Report overvoltage faults on the FAULT pin  
MASK OV  
0: Do not report undervoltage faults on the FAULT pin  
1: Report undervoltage faults on the FAULT pin  
MASK DC  
0: Do not report DC faults on the FAULT pin  
1: Report DC faults on the FAULT pin  
MASK ILIMIT  
MASK CLIP  
MASK OTW  
0: Do not report Ilimit on the FAULT pin  
1: Report Ilimit on the FAULT pin  
0: Do not report clipping on the WARN pin  
1: Report clipping on the WARN pin  
0: Do not report overtemperature warnings on the WARN pin  
1: Report overtemperature warnings on the WARN pin  
9.6.19 AC Load Diagnostic Control 1 Register (address = 0x15) [default = 0x00]  
The AC Load Diagnostic Control 1 register is shown in 65 and described in 28.  
65. AC Load Diagnostic Control 1 Register  
7
6
5
4
3
2
1
0
CH1 GAIN  
R/W-0  
RESERVED  
R/W-0  
CH3 GAIN  
R/W-0  
RESERVED  
R/W-0  
CH1 ENABLE  
R/W-0  
CH2 ENABLE  
R/W-0  
CH3 ENABLE  
R/W-0  
CH4 ENABLE  
R/W-0  
28. AC Load Diagnostic Control 1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CH1, CH2, PBTL12: GAIN  
RESERVED  
R/W  
0
0: Gain 1  
1: Gain 4  
0
6
R/W  
0
版权 © 2016–2017, Texas Instruments Incorporated  
43  
 
 
 
 
TAS6424-Q1  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
www.ti.com.cn  
28. AC Load Diagnostic Control 1 Field Descriptions (接下页)  
Bit  
Field  
Type  
Reset  
Description  
5
CH3, CH4, PBTL34: GAIN  
R/W  
0
0: Gain 1  
1: Gain 4  
0
4
3
RESERVED  
R/W  
R/W  
0
0
CH1 ENABLE  
0: AC diagnostics disabled  
1: Enable AC diagnostics  
2
1
0
CH2 ENABLE  
CH3 ENABLE  
CH4 ENABLE  
R/W  
R/W  
R/W  
0
0
0
0: AC diagnostics disabled  
1: Enable AC diagnostics  
0: AC diagnostics disabled  
1: Enable AC diagnostics  
0: AC diagnostics disabled  
1: Enable AC diagnostics  
9.6.20 AC Load Diagnostic Control 2 Register (address = 0x16) [default = 0x00]  
The AC Load Diagnostic Control 1 register is shown in 65 and described in 28.  
66. AC Load Diagnostic Control 2 Register  
7
6
5
4
3
2
1
0
AC_DIAGS_LO  
OPBACK  
RESERVED  
AC TIMING  
AC CURRENT  
RESERVED  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
29. AC Load Diagnostic Control 2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
AC_DIAGS_LOOPBACK  
R/W  
0
0: disable AC Diag loopback  
1: Enable AC Diag loopback  
00  
6-5  
4
RESERVED  
AC TIMING  
R/W  
R/W  
00  
0
0: 32 Cycles  
1: 64 Cycles  
3-2  
AC CURRENT  
R/W  
00  
00: 10mA  
01: 19 mA  
10: RESERVED  
11: RESERVED  
00  
1-0  
RESERVED  
R/W  
00  
9.6.21 AC Load Diagnostic Impedance Report Ch1 through CH4 Registers (address = 0x17–0x1A)  
[default = 0x00]  
The AC Load Diagnostic Report Ch1 through CH4 registers are shown in 67 and described in 30.  
67. AC Load Diagnostic Impedance Report Chx Register  
7
6
5
4
3
2
1
0
CHx IMPEDANCE  
R-00  
44  
版权 © 2016–2017, Texas Instruments Incorporated  
 
TAS6424-Q1  
www.ti.com.cn  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
30. Chx AC LDG Impedance Report Field Descriptions  
Bit  
Field  
CH x IMPEDANCE  
Type  
Reset  
Description  
7–0  
R
00  
8-bit AC-load diagnostic report for each channel with a step size  
of 0.2496 Ω/bit (control by register 0x15 and register 0x16)  
0x00: 0 Ω  
0x01: 0.2496 Ω  
...  
0xFF: 63.65 Ω  
9.6.22 AC Load Diagnostic Phase Report High Register (address = 0x1B) [default = 0x00]  
The AC Load Diagnostic Phase High value registers are shown in 68 and described in 31.  
68. AC Load Diagnostic (LDG) Phase High Report Register  
7
6
5
4
3
2
1
0
0
0
AC Phase High  
R-00  
31. AC LDG Phase High Report Field Descriptions  
Bit  
Field  
AC Phase High  
Type  
Reset  
Description  
7–0  
R
00  
Bit 15:8  
9.6.23 AC Load Diagnostic Phase Report Low Register (address = 0x1C) [default = 0x00]  
The AC Load Diagnostic Phase Low value registers are shown in 69 and described in 32.  
69. AC Load Diagnostic (LDG) Phase Low Report Register  
7
6
5
4
3
2
1
AC Phase Low  
R-00  
32. AC LDG Phase Low Report Field Descriptions  
Bit  
Field  
AC Phase Low  
Type  
Reset  
Description  
7–0  
R
00  
Bit 7:0  
9.6.24 AC Load Diagnostic STI Report High Register (address = 0x1D) [default = 0x00]  
The AC Load Diagnostic STI High value registers are shown in 70 and described in 33.  
70. AC Load Diagnostic (LDG) STI High Report Register  
7
6
5
4
3
2
1
AC STI High  
R-00  
33. AC LDG STI High Report Field Descriptions  
Bit  
Field  
AC STI High  
Type  
Reset  
Description  
7–0  
R
00  
Bit 15:8  
9.6.25 AC Load Diagnostic STI Report Low Register (address = 0x1C) [default = 0x00]  
The AC Load Diagnostic STI Low value registers are shown in 67 and described in 34.  
版权 © 2016–2017, Texas Instruments Incorporated  
45  
 
 
 
 
 
 
TAS6424-Q1  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
www.ti.com.cn  
71. AC Load Diagnostic (LDG) STI Low Report Register  
7
6
5
4
3
2
1
0
AC STI Low  
R-00  
34. Chx AC LDG STI Low Report Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–0  
AC STI Low  
R
00  
Bit 7:0  
9.6.26 Miscellaneous Control 3 Register (address = 0x21) [default = 0x00]  
The Miscellaneous Control 3 register is shown in 73 and described in 35.  
72. Miscellaneous Control 3 Register  
7
6
5
4
3
2
1
0
CLEAR FAULT PBTL_CH_SEL MASK ILIMIT  
WARNING  
RESERVED  
OTSD AUTO  
RECOVERY  
RESERVED  
R/W-0  
R/W-0  
R/W-0  
R/W-1  
R/W-0  
35. Misc Control 3 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
CLEAR FAULT  
R/W  
0
0: Normal operation  
1: Clear fault  
PBTL_CH_SEL  
R/W  
R/W  
0
0
0: PBTL normal signal source  
1: PBTL flip signal source  
MASK ILIMIT WARNING  
0: Report ILIMIT on the WARN pin  
1: Do not report ILIMIT on the WARN pin  
4
3
RESERVED  
R/W  
R/W  
0
0
0
OTSD AUTO RECOVERY  
0: Report overtemperature faults on the FAULT pin  
0: Automatic temperature protection recovery. Do not report  
overtemperature faults on the FAULT pin  
2–0  
RESERVED  
0
0
9.6.27 Clip Control Register (address = 0x22) [default = 0x01]  
The Clip Detect register is shown in 73 and described in 36.  
73. Clip Control Register  
7
6
5
4
3
2
1
0
RESERVED  
CLIPDET_EN  
R/W-1  
36. Clip Control Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
0
7-1  
RESERVED  
0
CLIPDET_EN  
R/W  
1
0: Clip detect disable  
1: Clip Detect Enable  
9.6.28 Clip Window Register (address = 0x23) [default = 0x14]  
The Clip Window register is shown in 74 and described in 37.  
46  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
 
TAS6424-Q1  
www.ti.com.cn  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
74. Clip Window Register  
7
6
5
4
3
2
1
0
CLIP_WINDOW_SEL[7:1]  
R/W-00001110  
37. Clip Window Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
CLIP_WINDOW_SEL[7:1]  
R/W  
00010100  
00000000  
00000001  
00000010  
00000011  
00000100  
00000101  
00000110  
00000111  
00001000  
00001001  
00001010  
00001110  
00010100  
9.6.29 Clip Warning Register (address = 0x24) [default = 0x00]  
The Clip Window register is shown in 75 and described in 38.  
75. Clip Warning Register  
7
6
5
4
3
2
1
0
RESERVED  
CH4_CLIP  
R-0  
CH4_CLIP  
R-0  
CH2_CLIP  
R-0  
CH1_CLIP  
R-0  
38. Clip Warning Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
0
7-4  
RESERVED  
0
3
2
1
0
CH4_CLIP  
CH3_CLIP  
CH2_CLIP  
CH1_CLIP  
R
0
0
0
0
0: No Clip Detect  
1: Clip Detect  
R
0: No Clip Detect  
1: Clip Detect  
R
0: No Clip Detect  
1: Clip Detect  
R
0: No Clip Detect  
1: Clip Detect  
9.6.30 ILIMIT Status Register (address = 0x25) [default = 0x00]  
The ILIMIT Status register is shown in 76 and described in 39.  
76. ILIMIT Status Register  
7
6
5
4
3
2
1
0
RESERVED  
CH4_ILIMIT_W CH3_ILIMIT_W CH2_ILIMIT_W CH1_ILIMIT_W  
ARN  
ARN  
ARN  
ARN  
R-0  
R-0  
R-0  
R-0  
版权 © 2016–2017, Texas Instruments Incorporated  
47  
 
 
 
TAS6424-Q1  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
www.ti.com.cn  
39. ILIMIT Status Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
CH4_ILIMIT_WARN  
0
0
0
0
0
0
0
0
0
6
5
4
3
R
R
R
R
0: No ILIMIT  
1: ILIMIT Warning  
2
1
0
CH3_ILIMIT_WARN  
CH2_ILIMIT_WARN  
CH1_ILIMIT_WARN  
0
0
0
0: No ILIMIT  
1: ILIMIT Warning  
0: No ILIMIT  
1: ILIMIT Warning  
0: No ILIMIT  
1: ILIMIT Warning  
9.6.31 Miscellaneous Control 4 Register (address = 0x26) [default = 0x40]  
The Miscellaneous Control 4 register is shown in 77 and described in 40.  
77. Miscellaneous Control 4 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-00000  
HPF_CORNER[2:0]  
R/W-000  
40. Misc Control 4 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-3  
RESERVED  
R/W  
01000  
01000: DEFAULT  
2-0  
HPF_CORNER[2:0]  
R/W  
000  
000: 3.7 Hz  
001: 7.4 Hz  
010: 15 Hz  
011: 30 Hz  
100: 59 Hz  
101: 118 Hz  
110: 235 Hz  
111: 463 Hz  
48  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
TAS6424-Q1  
www.ti.com.cn  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
10 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
The TAS6424-Q1 is a four-channel class-D digital-input audio-amplifier design for use in automotive head units  
and external amplifier modules. The TAS6424-Q1 incorporates the necessary functionality to perform in  
demanding OEM applications.  
10.1.1 AM-Radio Band Avoidance  
AM-radio frequency interference can be avoided by setting the switching frequency of the device above the AM  
band. The switching frequency options available are 38 fs, 44 fs, and 48 fs. If the switch frequency cannot be set  
above the AM band, then use the two options of 8 fs and 10 fs. These options should be changed to avoid AM  
active channels.  
10.1.2 Parallel BTL Operation (PBTL)  
The device can drive more current-paralleling BTL channels on the load side of the LC output filter. For parallel  
operation, the parallel BTL mode, PBTL, must be used and the paralleled channels must have the same state in  
the state control register. If the two states are not aligned the device reports a fault condition.  
To set the requested channels to PBTL mode the device must be in standby mode for the commands to take  
effect.  
A load diagnostic is supported for PBTL channels. Paralleling on the device side of the LC output filter is not  
supported.  
10.1.3 Demodulation Filter Design  
The amplifier outputs are driven by high-current LDMOS transistors in an H-bridge configuration. These  
transistors are either fully off or fully on. The result is a square-wave output signal with a duty cycle that is  
proportional to the amplitude of the audio signal. An LC demodulation filter is used to recover the audio signal.  
The filter attenuates the high-frequency components of the output signals that are out of the audio band. The  
design of the demodulation filter significantly affects the audio performance of the power amplifier. Therefore, to  
meet the system THD+N requirements, the selection of the inductors used in the output filter should be carefully  
considered.  
10.1.4 Line Driver Applications  
In many automotive audio applications, the same head unit must drive either a speaker (with several ohms of  
impedance) or an external amplifier input (with several kiloohms of impedance). The design is capable of  
supporting both applications and has special line-drive gain and diagnostics. Coupled with the high switching  
frequency, the device is well suited for this type of application. Set the desired channel in line driver mode  
through I2C register 0x00, the externally connected amplifier must have a differential impedance from 600 Ω to  
4.7 kΩ for the DC line diagnostic to detect the connected external amplifier. 78 shows the recommended  
external amplifier input configuration.  
版权 © 2016–2017, Texas Instruments Incorporated  
49  
TAS6424-Q1  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
www.ti.com.cn  
Application Information (接下页)  
Output Filter  
External Amplifier  
3.3 µH  
3.3 µH  
1 F  
1 F  
1 F  
1 F  
1 nF  
1 nF  
600  
to  
4.7 kꢀ  
100 kꢀ  
100 kꢀ  
78. External Amplifier Input Configuration for Line Driver  
10.2 Typical Applications  
10.2.1 BTL Application  
79 shows the schematic of a typical 4-channel solution for a head-unit application.  
50  
版权 © 2016–2017, Texas Instruments Incorporated  
 
TAS6424-Q1  
www.ti.com.cn  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
Typical Applications (接下页)  
PVDD  
Input  
PVDD  
1 F  
1 nF  
470 F  
56  
55  
PVDD  
PVDD  
1
1 F  
GND  
0.1 F  
10 F  
10 F  
10 F  
2
PVDD  
PVDD  
VBAT  
AREF  
VREG  
PVDD  
3
4
5
54  
53  
52  
51  
BST_4P  
OUT_4P  
GND  
1 F  
3.3 H  
1 F  
1 F  
1 nF  
1 F  
1 F  
4  
1 nF  
3.3 H  
6
VCOM  
OUT_4M  
50  
49  
7
8
1 F  
1 F  
BST_4M  
GND  
AVSS  
AVDD  
1 F  
48  
47  
46  
45  
9
BST_3P  
OUT_3P  
GND  
GVDD  
2.2 F  
3.3 H  
10  
GVDD  
GND  
1 F  
1 F  
1 nF  
1 nF  
2.2 F  
4 •  
11  
3.3 H  
OUT_3M  
12  
13  
14  
15  
16  
MCLK  
SCLK  
44  
43  
1 F  
BST_3M  
PVDD  
PVDD  
FSYNC  
SDIN1  
SDIN2  
DSP  
0.1 F  
42  
PVDD  
41  
40  
39  
38  
BST_2P  
OUT_2P  
GND  
1 F  
17  
18  
GND  
GND  
3.3 H  
1 F  
1 F  
1 nF  
1 nF  
4 •  
19  
3.3 H  
VDD  
SCL  
VDD  
2 k•  
OUT_2M  
2 k•  
20  
21  
37  
36  
1 F  
1 F  
BST_2M  
GND  
SDA  
22  
23  
I2C_ADDR0  
35  
34  
33  
32  
BST_1P  
OUT_1P  
GND  
3.3 H  
I2C_ADDR1  
MUTE  
Micro  
24  
25  
1 F  
1 F  
1 nF  
1 nF  
4 •  
3.3 H  
STANDBY  
WARN  
FAULT  
GND  
OUT_1M  
26  
27  
28  
31  
30  
1 F  
BST_1M  
PVDD  
PVDD  
0.1 F  
29  
PVDD  
79. Typical 4-Channel BTL Application Schematic  
版权 © 2016–2017, Texas Instruments Incorporated  
51  
 
TAS6424-Q1  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
www.ti.com.cn  
Typical Applications (接下页)  
10.2.1.1 Design Requirements  
Use the following requirements for this design:  
This head-unit example is focused on the smallest solution size for 4 × 50-W output power into 2 Ω with a  
battery supply of 14.4 V.  
The switching frequency is set above the AM-band with 44 times the input sample rate of 48 kHz which  
results in a frequency of 2.11 MHz.  
.
The selection of a 2.11-MHz switch frequency enables the use of a small output inductor value of 3.3 µH  
which leads to a very small solution size.  
10.2.1.2 Power Supplies  
The TAS6424-Q1 requires three power supplies. The PVDD supply is the high-current supply in the  
recommended supply range. The VBAT supply is lower current supply that must be in the recommended supply  
range. The PVDD and VBAT pins can be connected to the same supply if the recommended supply range for  
VBAT is maintained. The VDD supply is the 3.3-Vdc logic supply and must be maintained in the tolerance as  
shown in the Recommended Operating Conditions table.  
10.2.1.3 Communication  
All communications to the TAS6424-Q1 are through the I2C protocol. A system controller can communicate with  
the device through the SDA pins and SCL pins. The TAS6424-Q1 is an I2C slave device and requires a master.  
The device cannot generate an I2C clock or initiate a transaction. The maximum clock speed accepted by the  
device is 400 kHz. If multiple TAS6424-Q1 devices are on the same I2C bus, the I2C address must be different  
for each device. Up to four TAS6424-Q1 devices can be on the same I2C bus.  
The I2C bus is shared internally.  
Complete any internal operations, such as load diagnostics, before reading the registers  
for the results.  
10.2.1.4 Detailed Design Procedure  
10.2.1.4.1 Hardware Design  
Use the following procedure for the hardware design:  
Determine the input format. The input format can be either I2S or TDM mode. The mode determines the  
correct pin connections and the I2C register settings.  
Determine the power output that is required into the load. The power requirement determines the required  
power-supply voltage and current. The output reconstruction-filter components that are required are also  
driven by the output power.  
With the requirements, adjust the typical application schematic in 79 for the input connections.  
10.2.1.4.2 Digital Input and the Serial Audio Port  
The TAS6424-Q1 device supports four different digital input formats which are: I2S, Right Justified, Left Justified,  
and TDM mode. Depending on the format, the device can support 16-, 18-, 20-, 24-, and 32-bit data. The  
supported frequencies are 96 kHz, 48 kHz, and 44.1 kHz. Please see 13 for the I2C register, SAP Control, for  
the complete matrix to set up the serial audio port.  
52  
版权 © 2016–2017, Texas Instruments Incorporated  
 
TAS6424-Q1  
www.ti.com.cn  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
Typical Applications (接下页)  
Bits 3, 4, and 5 in this register are ignored in all input formats except for TDM. Setting up  
all the control registers to the system requirements should be done before the device is  
placed in Mute mode or Play mode. After the registers are setup, use bit 7 in register 0x21  
to clear any faults. Then read the fault registers to make sure no faults are present. When  
no faults are present, use register 0x04 to place the device properly into play mode.  
10.2.1.4.3 Bootstrap Capacitors  
The bootstrap capacitors provide the gate-drive voltage of the upper N-channel FET. These capacitors must be  
sized appropriately for the system specification. A special condition can occur where the bootstrap may sag if the  
capacitor is not sized accordingly. The special condition is just below clipping where the PWM is slightly less  
than 100% duty cycle with sustained low-frequency signals. Changing the bootstrap capacitor value to 2.2 µF for  
driving subwoofers that require frequencies below 30 Hz may be necessary.  
10.2.1.4.4 Output Reconstruction Filter  
The output FETs drive the amplifier outputs in an H-Bridge configuration. These transistors are either fully off or  
fully on. The result is a square-wave output signal with a duty cycle that is proportional to the amplitude of the  
audio signal. The amplifier outputs require a reconstruction filter that comprises a series inductor and a capacitor  
to ground on each output, generally called an LC filter. The LC filter attenuates the PWM frequency and reduces  
electromagnetic emissions, allowing the reconstructed audio signal to pass to the speakers. refer to the Class-D  
LC Filter Design, (SLOA119) for a detailed description of proper component description and design of the LC  
filter based upon the specified load and frequency response. The recommended low-pass cutoff frequency of the  
LC filter is dependent on the selected switching frequency. The low-pass cutoff frequency can be as high as 100  
kHz for a PWM frequency of 2.1 MHz. At a PWM frequency of 384 kHz the low-pass cutoff frequency should be  
less than 40 kHz. Certain specifications must be understood for a proper inductor. The inductance value is given  
at zero current, but the TAS6424-Q1 device will have current. Use the inductance versus current curve for the  
inductor to make sure the inductance does not drop below 2 µH (for fSW = 2.1 MHz) at the maximum current  
provided by the system design. The DCR of the inductor directly affects the output power of the system design.  
The lower the DCR, the more power is provided to the speakers. The typical inductor DCR for a 4-Ω system is 40  
to 50 mΩ and for a 2-Ω system is 20 to 25 mΩ.  
10.2.1.5 Application Curves  
10  
1
10  
1
2 W Load  
4 W Load  
2 W Load  
4 W Load  
0.1  
0.1  
0.01  
0.01  
0.001  
10m  
100m  
1
10  
100  
20  
100  
1k  
10k 20k  
Output Power (W)  
Frequency (Hz)  
D010  
D006  
1 kHz  
PVDD = 14.4 V  
1 W  
PVDD = 14.4 V  
80. THD vs Output Power, 4R  
81. THD vs Frequency  
10.2.2 PBTL Application  
82 shows a schematic of a typical 2-channel solution for a head unit or external amplifier application where  
high power into 2 Ω is required.  
版权 © 2016–2017, Texas Instruments Incorporated  
53  
TAS6424-Q1  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
www.ti.com.cn  
Typical Applications (接下页)  
To operate in PBTL mode the output stage must be paralleled according to the schematic in 82. The device  
can operate in a mix of PBTL and BTL mode. This application can be set up for 3 channels, with one channel in  
PBTL mode and two channels in BTL mode. The device does not support a parallel configuration all four  
channels for a one-channel amplifier.  
54  
版权 © 2016–2017, Texas Instruments Incorporated  
TAS6424-Q1  
www.ti.com.cn  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
Typical Applications (接下页)  
PVDD  
Input  
PVDD  
1 F  
1 nF  
470 F  
Chassis  
GND  
56  
55  
PVDD  
PVDD  
1
1 F  
GND  
0.1 F  
10 F  
10 F  
10 F  
2
PVDD  
PVDD  
VBAT  
AREF  
VREG  
PVDD  
3
4
54  
53  
52  
51  
BST_4P  
OUT_4P  
GND  
1 F  
3.3 H  
5
1 F  
1 F  
1 F  
3.3 H  
6
VCOM  
OUT_4M  
1 F  
50  
49  
7
1 F  
1 F  
BST_4M  
GND  
AVSS  
AVDD  
1 nF  
1 nF  
8
2 ꢁ  
1 F  
48  
47  
46  
45  
9
BST_3P  
OUT_3P  
GND  
GVDD  
2.2 F  
3.3 H  
10  
GVDD  
GND  
1 F  
1 F  
2.2 F  
11  
3.3 H  
OUT_3M  
12  
13  
MCLK  
SCLK  
44  
43  
1 F  
BST_3M  
PVDD  
PVDD  
14  
FSYNC  
SDIN1  
SDIN2  
DSP  
0.1 F  
42  
15  
16  
PVDD  
41  
40  
39  
38  
BST_2P  
OUT_2P  
GND  
1 F  
17  
18  
GND  
GND  
3.3 H  
1 F  
1 F  
19  
3.3 H  
VDD  
SCL  
OUT_2M  
2 kꢁ  
2 kꢁ  
20  
21  
37  
36  
1 F  
1 F  
BST_2M  
GND  
1 nF  
1 nF  
2 ꢁ  
SDA  
22  
23  
I2C_ADDR0  
36  
34  
33  
32  
BST_1P  
OUT_1P  
GND  
3.3 H  
I2C_ADDR1  
MUTE  
Micro  
24  
25  
1 F  
1 F  
3.3 H  
STANDBY  
WARN  
FAULT  
GND  
OUT_1M  
26  
27  
28  
31  
30  
1 F  
BST_1M  
PVDD  
PVDD  
0.1 F  
29  
PVDD  
Copyright © 2016, Texas Instruments Incorporated  
82. 2-Channel PBTL Application Schematic  
版权 © 2016–2017, Texas Instruments Incorporated  
55  
 
TAS6424-Q1  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
www.ti.com.cn  
Typical Applications (接下页)  
10.2.2.1 Design Requirements  
Use the following requirements for this design:  
This head-unit example is focused on the smallest solution size for 2 times 50-W output power into 2 Ω with a  
battery supply of 14.4 V  
The switching frequency is set above the AM-band with 44 times the input sample rate of 48 kHz which  
results in a frequency of 2.11 MHz.  
.
The selection of a 2.11-MHz switch frequency enables the use of a small output inductor value of 3.3 µH  
which leads to a very small solution size.  
10.2.2.1.1 Detailed Design Procedure  
As a starting point, refer to the Detailed Design Procedure section for the BTL application. PBTL mode requires  
schematic changes in the output stage as shown in 82. The other required changes include setting up the I2C  
registers correctly (see 13) and selecting which frame or channel to use on each output. Bit 6 in register 0x21  
controls the frame selection.  
10.2.2.2 Application Curves  
10  
10  
1
2 W Load  
4 W Load  
2 W Load  
4 W Load  
1
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
10m  
100m  
1
10 20  
100  
20  
100  
1k  
10k 20k  
Output Power (W)  
Frequency (Hz)  
D033  
D031  
1 kHz  
PVDD = 14.4 V  
1 W  
PVDD = 14.4 V  
83. THD vs Output Power, 2R  
84. Frequency Response  
11 Power Supply Recommendations  
The TAS6424-Q1 requires three power supplies. The PVDD supply is the high-current supply in the  
recommended supply range. The VBAT supply is lower current supply that must be in the recommended supply  
range. The PVDD and VBAT pins can be connected to the same supply if the recommended supply range for  
VBAT is maintained. The VDD supply is the 3.3-Vdc logic supply and must be maintained in the tolerance as  
shown in the Recommended Operating Conditions table.  
12 Layout  
12.1 Layout Guidelines  
The pinout of the TAS6424-Q1 was selected to provide flowthrough layout with all high-power connections on the  
right side, and all low-power signals and supply decoupling on the left side.  
85 shows the area for the components in the application example (see the Typical Applications section).  
The TAS6424-Q1 EVM uses a four-layer PCB. The copper thickness was selected as 70 µm to optimize power  
loss.  
56  
版权 © 2016–2017, Texas Instruments Incorporated  
TAS6424-Q1  
www.ti.com.cn  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
Layout Guidelines (接下页)  
The small value of the output filter provides a small size and, in this case, the low height of the inductor enables  
double-sided mounting.  
The EVM PCB shown in 85 is the basis for the layout guidelines.  
12.1.1 Electrical Connection of Thermal pad and Heat Sink  
For the DKQ package, the heat sink connected to the thermal pad of the device should be connected to GND.  
The heat slug must not be connected to any other electrical node.  
12.1.2 EMI Considerations  
Automotive-level EMI performance depends on both careful integrated circuit design and good system-level  
design. Controlling sources of electromagnetic interference (EMI) was a major consideration in all aspects of the  
design. The design has minimal parasitic inductances because of the short leads on the package which reduces  
the EMI that results from current passing from the die to the system PCB. Each channel also operates at a  
different phase. The design also incorporates circuitry that optimizes output transitions that cause EMI.  
For optimizing the EMI a solid ground layer plane is recommended, for a PCB design the fulfills the CISPR25  
level 5 requirements, see the TAS6424-Q1 EVM layout.  
12.1.3 General Guidelines  
The EVM layout is optimized for low noise and EMC performance.  
The TAS6424-Q1 has an exposed thermal pad that is up, away from the PCB. The layout must consider an  
external heat sink.  
Refer to 85 for the following guidelines:  
A ground plane, A, on the same side as the device pins helps reduce EMI by providing a very-low loop  
impedance for the high-frequency switching current.  
The decoupling capacitors on PVDD, B, are very close to the device with the ground return close to the  
ground pins.  
The ground connections for the capacitors in the LC filter, C, have a direct path back to the device and also  
the ground return for each channel is the shared. This direct path allows for improved common mode EMI  
rejection.  
The traces from the output pins to the inductors, D, should have the shortest trace possible to allow for the  
smallest loop of large switching currents.  
Heat-sink mounting screws, E, should be close to the device to keep the loop short from the package to  
ground.  
Many vias, F, stitching together the ground planes can create a shield to isolate the amplifier and power  
supply.  
版权 © 2016–2017, Texas Instruments Incorporated  
57  
TAS6424-Q1  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
www.ti.com.cn  
12.2 Layout Example  
Power Supply  
and  
Amplifier  
Section  
B
C
F
A
D
E
85. EVM Layout  
12.3 Thermal Considerations  
The thermally enhanced PowerPAD package has an exposed pad up for connection to a heat sink. The output  
power of any amplifier is determined by the thermal performance of the amplifier as well as limitations placed on  
it by the system, such as the ambient operating temperature. The heat sink absorbs heat from the TAS6424-Q1  
and transfers it to the air. With proper thermal management this process can reach equilibrium and heat can be  
continually transferred from the device. Heat sinks can be smaller than that of classic linear amplifier design  
because of the excellent efficiency of class-D amplifiers. This device is intended for use with a heat sink,  
therefore, RθJC will be used as the thermal resistance from junction to the exposed metal package. This  
resistance will dominate the thermal management, so other thermal transfers will not be considered. The thermal  
resistance of RθJA (junction to ambient) is required to determine the full thermal solution. The thermal resistance  
is comprised of the following components:  
RθJC of the TAS6424-Q1  
Thermal resistance of the thermal interface material  
Thermal resistance of the heat sink  
The thermal resistance of the thermal interface material can be determined from the manufacturer’s value for the  
area thermal resistance (expressed in °C-mm2/W) and the area of the exposed metal package. For example, a  
typical, white, thermal grease with a 0.0254-mm (0.001-inch) thick layer is approximately 4.52°C-mm2/W. The  
TAS6424-Q1 in the DKQ package has an exposed area of 47.6 mm2. By dividing the area thermal resistance by  
the exposed metal area determines the thermal resistance for the thermal grease. The thermal resistance of the  
thermal grease is 0.094°C/W  
41 lists the modeling parameters for one device on a heat sink. The junction temperature is assumed to be  
115°C while delivering and average power of 10 watts per channel into a 4-Ω load. The thermal-grease example  
previously described is used for the thermal interface material. Use 公式 1 to design the thermal system.  
58  
版权 © 2016–2017, Texas Instruments Incorporated  
TAS6424-Q1  
www.ti.com.cn  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
Thermal Considerations (接下页)  
RθJA = RθJC + thermal interface resistance + heat sink resistance  
(1)  
41. Thermal Modeling  
Description  
Ambient Temperature  
Value  
25°C  
40W (4x 10w)  
Average Power to load  
Power dissipation  
8W (4x 2w)  
Junction Temperature  
115°C  
ΔT inside package  
5.6°C (0.7°C/W × 8W)  
0.75°C (0.094°C/W × 8W)  
10.45°C/W ([115°C – 25°C – 5.6°C – 0.75°C] / 8W)  
11.24°C/W  
ΔT through thermal interface material  
Required heat sink thermal resistance  
System thermal resistance to ambient RθJA  
13 器件和文档支持  
13.1 文档支持  
13.1.1 相关文档  
请参阅如下相关文档:  
PurePath™ Console 3 用户手册》(文献编号:SLOU408)  
TAS6424-Q1 EVM 用户指南》(文献编号:SLOU453)  
13.2 接收文档更新通知  
要接收文档更新通知,请转至 TI.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产品信  
息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
13.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
E2E 音频放大器论坛 TI 的音频放大器工程师对工程师 (E2E) 社区此社区的创建目的在于促进工程师之间的协作。  
用户可进行实时问答。  
13.4 商标  
PowerPAD, PurePath, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
13.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2016–2017, Texas Instruments Incorporated  
59  
TAS6424-Q1  
ZHCSFK8B SEPTEMBER 2016REVISED OCTOBER 2017  
www.ti.com.cn  
14 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更,恕不另行通知  
和修订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
60  
版权 © 2016–2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TAS6424QDKQRQ1  
ACTIVE  
HSSOP  
DKQ  
56  
1000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 125  
TAS6424  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
15-Dec-2017  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TAS6424QDKQRQ1  
HSSOP  
DKQ  
56  
1000  
330.0  
32.4  
11.35 18.67  
3.1  
16.0  
32.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
15-Dec-2017  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HSSOP DKQ 56  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 55.0  
TAS6424QDKQRQ1  
1000  
Pack Materials-Page 2  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TAS6424E-Q1

汽车类 75W、2MHz、四通道、4.5V 至 26.4V 数字输入 D 类音频放大器
TI

TAS6424EQDKQRQ1

汽车类 75W、2MHz、四通道、4.5V 至 26.4V 数字输入 D 类音频放大器 | DKQ | 56 | -40 to 125
TI

TAS6424L-Q1

具有负载突降保护功能的汽车类 27W、2MHz、4 通道、4.5V 至 18V 数字输入 D 类音频放大器
TI

TAS6424LQDKQRQ1

具有负载突降保护功能的汽车类 27W、2MHz、4 通道、4.5V 至 18V 数字输入 D 类音频放大器 | DKQ | 56 | -40 to 125
TI

TAS6424M-Q1

具有负载突降保护功能的汽车类 45W、2MHz、4 通道、4.5V 至 18V 数字输入 D 类音频放大器
TI

TAS6424MQDKQRQ1

具有负载突降保护功能的汽车类 45W、2MHz、4 通道、4.5V 至 18V 数字输入 D 类音频放大器 | DKQ | 56 | -40 to 125
TI

TAS6424MS-Q1

汽车类 45W、2MHz、4 通道、4.5V 至 18V 数字输入 D 类音频放大器
TI

TAS6424MSQDKQRQ1

汽车类 45W、2MHz、4 通道、4.5V 至 18V 数字输入 D 类音频放大器 | DKQ | 56 | -40 to 125
TI

TAS6424QDKQRQ1

汽车类 75W、2MHz、4 通道、4.5V 至 26.4V 数字输入 D 类音频放大器 | DKQ | 56 | -40 to 125
TI

TAS6584-Q1

具有电流检测功能的汽车类 45V、10A 数字输入、四通道 D 类音频放大器
TI

TAS6584QPHDRQ1

具有电流检测功能的汽车类 45V、10A 数字输入、四通道 D 类音频放大器 | PHD | 64 | -40 to 125
TI

TAS682K035P1A

Hermetically Sealed Axial Lead Solid Tantalum Capacitors
CDE