TAS5755M [TI]

具有 2.1 声道模式的 50W 立体声、100W 单声道、8V 至 26.4V、数字输入开环 D 类音频放大器;
TAS5755M
型号: TAS5755M
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 2.1 声道模式的 50W 立体声、100W 单声道、8V 至 26.4V、数字输入开环 D 类音频放大器

放大器 音频放大器
文件: 总79页 (文件大小:2532K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TAS5755M  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
具有集成音频处理器且支持 2.1 模式的 TAS5755M 2 × 50W (2 × 19W + 1  
× 50W) 数字输入音频放大器  
1 特性  
2 应用  
1
解决方案尺寸更小  
DTVUHD 和多功能监控器  
条形音箱、电脑音频  
通用音频设备  
支持单芯片 2.12.0 和单声道模式  
单声道 (PBTL) 模式采用单滤波器。  
焊盘朝上封装和 80mΩ RDSON 增强热性能  
3 说明  
支持高输出功率:  
TAS5755M 是具有集成式处理功能的单芯片灵活数字  
音频解决方案,支持 2.12 个扬声器 + 1 个低音  
炮)、2.0 或立体声(2 个扬声器)和单声道(高功率  
扬声器)模式。  
2.1 模式  
可提供 2 × 19W +1 × 50W 的输出功率(2 ×  
4Ω + 1 × 6Ω24V)  
2.0 模式可提供 2 × 50W 的输出功率(2 ×  
6Ω24V)  
该器件具有高效率,RDSON 低至 80mΩ,并且采用焊  
盘朝上封装,输出功率高达 2 × 50W 1 × 100W。  
单声道模式可提供 1 × 100W 的输出功率(1 ×  
2Ω24V)  
宽电源电压范围:8V 26.4V  
TAS5755M 的立体声模式中的每个通道都使用 2 个全  
H 桥。在 2.1 模式中,TAS5755M 使用 2 个半桥驱动  
2 个独立的扬声器通道,同时使用 1 个全桥驱动低音  
炮。此外,在单声道模式中,TAS5755M 使用单级滤  
波器支持预滤波并联桥接式负载 (PBTL),减少了系统  
总尺寸并降低了成本。  
音频性能:  
频率为 1kHz 时,THD+N 0.05%RSPK =  
8POUT = 1WPVDD = 18V)  
ICN 50µVRMS  
串扰 - 67dB  
SNR 104dB  
TAS5755M 具有集成式音频处理功能。它包括:信号  
混合、直流阻断滤波器、2 × 8 + 1 × 2 双二阶滤波  
器,从而实现均衡。通过双频带对数式 DRC 和用于低  
音炮通道的单独单频带 DRC 实现功率限制。  
提供 BD 调制功能,提高音频性能和效率。  
集成式音频处理:  
2 × 8 + 1 × 2 双二阶滤波器  
双频带 + 单频带可配置动态范围控制 (DRC)  
免许可证的 3D 音效  
器件信息(1)  
器件型号  
TAS5755M  
封装  
封装尺寸(标称值)  
信号混合和直流阻断滤波器  
自动速率检测  
DFD  
14mm × 6.1mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
集成式自保护  
热保护  
过流限制保护  
欠压保护  
效率与总输出功率间的关系  
输出功率与电源电压间的关系  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
THD+N=1%, R L=4W  
THD+N=10%, R L=4W  
THD+N=1%, R L=6W  
THD+N=10%, R L=6W  
BTL Mode  
TA=25èC  
RL=6W  
PVDD = 12V  
PVDD = 18 V  
PVDD = 24 V  
BTL Mode  
TA=25èC  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
Output Power (W)  
Supply Voltage (V)  
D014  
D03072  
D00234  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLOS982  
 
 
 
 
TAS5755M  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
www.ti.com.cn  
目录  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 4  
Pin Configuration and Functions......................... 5  
Specifications......................................................... 7  
7.1 Absolute Maximum Ratings ...................................... 7  
7.2 ESD Ratings.............................................................. 7  
7.3 Recommended Operating Conditions....................... 7  
7.4 Thermal Information.................................................. 8  
8
9
Parameter Measurement Information ................ 21  
Detailed Description ............................................ 21  
9.1 Overview ................................................................. 21  
9.2 Functional Block Diagrams ..................................... 21  
9.3 Feature Description................................................. 24  
9.4 Device Functional Modes........................................ 34  
9.5 Programming........................................................... 36  
9.6 Register Maps......................................................... 41  
10 Application and Implementation........................ 59  
10.1 Application Information.......................................... 59  
10.2 Typical Applications .............................................. 59  
11 Power Supply Recommendations ..................... 68  
11.1 DVDD and AVDD Supplies................................... 68  
11.2 PVDD Power Supply............................................. 68  
12 Layout................................................................... 68  
12.1 Layout Guidelines ................................................. 68  
12.2 Layout Examples................................................... 69  
13 器件和文档支持 ..................................................... 71  
13.1 器件支持 ............................................................... 71  
13.2 文档支持 ............................................................... 71  
13.3 社区资源................................................................ 71  
13.4 ....................................................................... 71  
13.5 静电放电警告......................................................... 71  
13.6 术语表 ................................................................... 71  
7.5 PWM Operation at Recommended Operating  
Conditions .................................................................. 8  
7.6 DC Electrical Characteristics .................................... 8  
7.7 AC Electrical Characteristics (BTL, PBTL)................ 9  
7.8 Electrical Characteristics - PLL External Filter  
Components............................................................... 9  
7.9 Electrical Characteristic - I2C Serial Control Port  
Operation ................................................................... 9  
7.10 Timing Requirements - PLL Input Parameters ..... 10  
7.11 Timing Requirements - Serial Audio Ports Slave  
Mode ........................................................................ 10  
7.12 Timing Requirements - I2C Serial Control Port  
Operation ................................................................ 10  
7.13 Timing Requirements - Reset (RESET)................ 10  
7.14 Typical Characteristics.......................................... 13  
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (January 2018) to Revision C  
Page  
Changed "DVSSO" in OSC_RES Pin Description to "DVSS_OSC ground." ........................................................................ 6  
Added RθJA in Thermal Information Table............................................................................................................................... 8  
Changed RθJC(top) in Thermal Information Table ..................................................................................................................... 8  
Added RθJB in Thermal Information Table............................................................................................................................... 8  
Added ΨJT in Thermal Information Table................................................................................................................................ 8  
Added RθJC(bot) in Thermal Information Table ......................................................................................................................... 8  
Changes from Revision A (November 2017) to Revision B  
Page  
Changed SE Mode, PVDD = 24 V, RL = 4, 7% THD from 17.1 W to 17.6 W in AC Electrical Characteristics (BTL,  
PBTL) ..................................................................................................................................................................................... 9  
Changed SE Mode, PVDD = 24 V, RL = 4, 10% THD from 18.1 W to 19 W in AC Electrical Characteristics (BTL,  
PBTL) ..................................................................................................................................................................................... 9  
Changed 6 and 7 ........................................................................................................................................................ 13  
Changed 19, 20, and 21......................................................................................................................................... 16  
Changed 33, 34, and 35 ........................................................................................................................................ 19  
2
版权 © 2017–2018, Texas Instruments Incorporated  
 
TAS5755M  
www.ti.com.cn  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
Changes from Original (August 2017) to Revision A  
Page  
将器件发布为生产数据............................................................................................................................................................ 1  
Copyright © 2017–2018, Texas Instruments Incorporated  
3
TAS5755M  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
www.ti.com.cn  
5 Device Comparison Table  
TAS5755M  
TAS5731M  
TAS5729MD  
TAS5721  
TAS5717  
TAS5711  
Max Power to Single-  
Ended Load  
19  
50  
100  
2
18  
10  
16  
Max Power to Bridge  
Tied Load  
37  
70  
2
20  
40  
15  
30  
4
10  
20  
40  
4
Max Power to Parallel  
Bridge Tied Load  
Min Supported Single-  
Ended Load  
Min Supported Bridge  
Tied Load  
4
4
4
4
8
4
6
Min Supported Parallel  
Bridge Tied Load  
2
2
4
4
Closed/Open Loop  
Max Speaker Outputs  
Headphone Channels  
Architecture  
Open  
3
Open  
3
Open  
2
Open  
3
Open  
2
Open  
3
Yes  
Yes  
Yes  
Class D  
2-Band  
Class D  
2-Band  
Class D  
2-Band AGL  
Class D  
2-Band  
Class D  
2-Band AGL  
Class D  
Dynamic Range Control  
(DRC)  
Single-Band  
Biquads (EQ)  
21  
21  
28  
21  
28  
21  
4
Copyright © 2017–2018, Texas Instruments Incorporated  
TAS5755M  
www.ti.com.cn  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
6 Pin Configuration and Functions  
HTSSOP Package  
56-Pin DFD  
Top View  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
ADR/FAULT  
NO.  
8
DIO  
Dual function terminal which sets the LSB of the 7-bit I2C address to "0" if pulled to GND and to "1" if  
pulled to DVDD. If configured to be a fault output by the methods described in I²C Address Selection  
and Fault Output, this terminal is pulled low when an internal fault occurs. A pull-up or pull-down  
resistor is required, as is shown in the Typical Application Circuit Diagrams. If pulled high (to DVDD), a  
15-kΩ resistor must be used to minimize in-rush current at power up and to isolate the net if the pin is  
used as a fault output, as described above.  
AVDD  
AVSS  
9
13,14  
17  
P
P
P
P
3.3-V analog power supply  
Analog 3.3-V supply ground  
BST_A  
BST_B  
High-side bootstrap supply for half-bridge A  
High-side bootstrap supply for half-bridge B  
28  
(1) TYPE: A = analog; D = 3.3-V digital; P = power/ground/decoupling; I = input; O = output  
Copyright © 2017–2018, Texas Instruments Incorporated  
5
TAS5755M  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
29  
BST_C  
BST_D  
DVDD  
DVSS  
P
P
P
P
P
P
P
DI  
High-side bootstrap supply for half-bridge C  
High-side bootstrap supply for half-bridge D  
3.3-V digital power supply  
40  
47  
44,46  
3
Digital ground  
DVSS_OSC  
GVDD  
LRCLK  
MCLK  
Oscillator ground  
41  
Gate drive internal regulator output  
56  
Input serial audio data left/right clock (sample-rate clock)  
5
Master clock input  
No connect  
NC  
6,7,22,35,  
43,45,50,5  
1
OSC_RES  
OUT_A  
OUT_B  
OUT_C  
OUT_D  
PBTL  
4
AO  
O
Oscillator trim resistor. Connect an 18.2-k, 1% resistor to DVSS_OSC ground.  
20,21  
26,27  
30,31  
36,37  
15  
Output, half-bridge A  
Output, half-bridge B  
Output, half-bridge C  
Output, half-bridge D  
O
O
O
DI  
DI  
Low means BTL mode; high means PBTL mode. Information goes directly to power stage.  
PDN  
1
Power down, active-low. PDN prepares the device for loss of power supplies by shutting down the  
noise shaper and initiating the PWM stop sequence.  
PGND  
23,24,25,  
32,33,34  
P
Power ground for half-bridges A and B  
FLTM  
12  
11  
AO  
AO  
P
PLL negative loop-filter terminal  
FLTP  
PLL positive loop-filter terminal  
PVDD_AB  
PVDD_CD  
RESET  
18,19  
38,39  
49  
Power-supply input for half-bridge output A and B  
Power-supply input for half-bridge output C and D  
P
DI  
Reset, active-low. A system reset is generated by applying a logic low to this pin. RESET is an  
asynchronous control signal that restores the DAP to its default conditions and places the PWM in the  
hard-mute (high-impedance) state.  
I2C serial control clock input  
SCL  
52  
55  
53  
54  
16  
DI  
DI  
SCLK  
SDA  
Serial audio-data clock (shift clock). SCLK is the serial-audio-port input-data bit clock.  
I2C serial control data interface input/output  
DIO  
DI  
SDIN  
Serial audio data input. SDIN supports three discrete (stereo) data formats.  
SSTIMER  
AI  
Controls ramp time of OUT_x to minimize pop. Leave this pin floating for BD mode. Requires capacitor  
of 2.2 nF to GND in AD mode. The capacitor determines the ramp time.  
STEST  
48  
10  
2
DI  
P
P
P
P
Factory test pin. Connect directly to DVSS.  
VR_ANA  
VR_DIG  
VREG  
Internally regulated 1.8-V analog supply voltage. This pin must not be used to power external devices.  
Internally regulated 1.8-V digital supply voltage. This pin must not be used to power external devices.  
Digital regulator output. Not to be used for powering external circuitry.  
42  
PowerPAD™  
Connect to GND for best system performance. If not connected to GND, leave floating.  
6
Copyright © 2017–2018, Texas Instruments Incorporated  
TAS5755M  
www.ti.com.cn  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.5  
–0.5  
–0.5  
MAX  
UNIT  
V
DVDD, AVDD  
4.2  
Supply voltage  
PVDD_x  
30  
V
3.3-V digital input  
5-V tolerant(2) digital input (except MCLK)  
DVDD + 0.5  
DVDD + 2.5(3)  
AVDD + 2.5(3)  
Input voltage  
V
5-V tolerant MCLK input  
OUT_x to PGND_x  
32(4)  
39(4)  
20  
V
V
BST_x to PGND_x  
Input clamp current, IIK  
Output clamp current, IOK  
Operating free-air temperature  
Operating junction temperature  
Storage temperature, Tstg  
–20  
–20  
0
mA  
mA  
°C  
°C  
°C  
20  
85  
0
150  
125  
–40  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) 5-V tolerant inputs are PDN, RESET, SCLK, LRCLK, MCLK, SDIN, SDA, and SCL.  
(3) Maximum pin voltage must not exceed 6 V.  
(4) DC voltage + peak ac waveform measured at the pin must be below the allowed limit for all conditions.  
7.2 ESD Ratings  
VALUE  
±1000  
±250  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN NOM  
MAX  
3.6  
26.4(1)  
UNIT  
V
Digital/analog supply voltage  
Half-bridge supply voltage  
High-level input voltage  
Low-level input voltage  
Operating ambient temperature range  
Operating junction temperature range  
Load impedance  
DVDD, AVDD  
PVDD_x  
3
8
2
3.3  
V
VIH  
VIL  
TA  
5-V tolerant  
5-V tolerant  
V
0.8  
85  
V
0
0
2
4
2
°C  
°C  
(2)  
TJ  
125  
RL (PBTL)  
RL (BTL)  
RL (SE)  
Output filter: L = 15 μH, C = 680 nF  
Output filter: L = 15 μH, C = 680 nF  
Output filter: L = 15 μH, C = 680 nF  
Load impedance  
Load impedance  
Minimum output inductance under short-  
circuit condition  
LO  
Output-filter inductance  
10  
μH  
(1) For operation at PVDD_x levels greater than 18 V, the modulation limit must be set to 93.8% through the control port register 0x10.  
(2) Continuous operation above the recommended junction temperature may result in reduced reliability and/or lifetime of the device.  
Copyright © 2017–2018, Texas Instruments Incorporated  
7
 
TAS5755M  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
www.ti.com.cn  
7.4 Thermal Information  
TAS5755M  
THERMAL METRIC(1)  
DFD HTSSOP  
UNIT  
56-PIN  
50.9  
1.3  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
26.9  
3.1  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
26.7  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 PWM Operation at Recommended Operating Conditions  
PARAMETER  
TEST CONDITIONS  
11.025/22.05/44.1-kHz data rate ±2%  
48/24/12/8/16/32-kHz data rate ±2%  
VALUE  
352.8  
384  
UNIT  
Output PWM switch frequency  
kHz  
7.6 DC Electrical Characteristics  
TA = 25°, PVDD_x = 18 V, DVDD = AVDD = 3.3 V, RL= 8 , BTL AD mode, fS = 48 kHz (unless otherwise noted)  
PARAMETER  
High-level output voltage  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
IOH = –4 mA  
DVDD = 3 V  
VOH  
VOL  
IIL  
ADR/FAULT and SDA  
ADR/FAULT and SDA  
2.4  
V
V
IOL = 4 mA  
DVDD = 3 V  
Low-level output voltage  
Low-level input current  
High-level input current  
0.5  
75  
VI < VIL;  
DVDD = AVDD = 3.6 V  
μA  
μA  
VI > VIH  
;
IIH  
75(1)  
68  
38  
50  
8
DVDD = AVDD = 3.6 V  
Normal mode  
49  
23  
32  
4
3.3-V supply voltage (DVDD,  
AVDD)  
IDD  
3.3-V supply current  
Supply current  
mA  
Reset (RESET = low,  
PDN = high)  
Normal mode  
IPVDD  
No load (PVDD_x)  
mA  
Reset (RESET = low,  
PDN = high)  
Drain-to-source resistance, LS TJ = 25°C, includes metallization resistance  
Drain-to-source resistance, HS TJ = 25°C, includes metallization resistance  
80  
80  
(2)  
rDS(on)  
m  
I/O  
PROTECTION  
Vuvp  
Undervoltage protection limit  
Undervoltage protection limit  
Overtemperature error  
PVDD falling  
PVDD rising  
6.4  
7.1  
V
V
Vuvp,hyst  
OTE(3)  
150  
°C  
Extra temperature drop  
required to recover from error  
(3)  
OTEHYST  
30  
°C  
IOC  
Overcurrent limit protection  
Overcurrent response time  
Output to output short in BTL mode  
6
A
IOCT  
150  
ns  
(1) IIH for the PBTL pin has a maximum limit of 200 µA due to an internal pulldown on the pin.  
(2) This does not include bond-wire or pin resistance.  
(3) Specified by design.  
8
Copyright © 2017–2018, Texas Instruments Incorporated  
TAS5755M  
www.ti.com.cn  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
7.7 AC Electrical Characteristics (BTL, PBTL)  
PVDD_x = 18 V, BTL AD mode, fS = 48 kHz, RL = 8 , CBST = 10 nF, audio frequency = 1 kHz, AES17 filter,  
fPWM = 384 kHz, TA = 25°C (unless otherwise noted). All performance is in accordance with recommended operating  
conditions (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
3.9  
UNIT  
BTL mode, PVDD = 8 V, RL = 8 Ω, 7% THD  
BTL mode, PVDD = 8 V, RL = 8 Ω,10% THD  
BTL mode, PVDD = 12 V, RL = 8 Ω, 7% THD  
BTL mode, PVDD = 12 V, RL = 8 Ω,10% THD  
BTL mode, PVDD = 18 V, RL = 8 Ω, 7% THD  
BTL mode, PVDD = 18 V, RL = 8 Ω, 10% THD  
BTL mode, PVDD = 24 V, RL = 8 Ω, 7% THD  
BTL mode, PVDD = 24 V, RL = 8 Ω, 10% THD  
BTL mode, PVDD = 24 V, RL = 6 Ω, 10% THD  
PBTL mode, PVDD = 12 V, RL = 4 Ω, 7% THD  
PBTL mode, PVDD = 12 V, RL = 4 Ω, 10% THD  
PBTL mode, PVDD = 18 V, RL = 4 Ω, 7% THD  
PBTL mode, PVDD = 18 V, RL = 4 Ω, 10% THD  
PBTL mode, PVDD = 24 V, RL = 4 Ω, 10% THD  
PBTL mode, PVDD = 24 V, RL = 4 Ω, 10% THD  
SE Mode, PVDD = 12 V, RL = 4 Ω, 7% THD  
SE Mode, PVDD = 12 V, RL = 4 Ω, 10% THD  
SE Mode, PVDD = 18 V, RL = 4 Ω, 7% THD  
SE Mode, PVDD = 18 V, RL = 4 Ω, 10% THD  
SE Mode, PVDD = 24 V, RL = 4 Ω, 7% THD  
SE Mode, PVDD = 24 V, RL = 4 Ω, 10% THD  
PVDD = 8 V, PO = 1 W  
4.2  
8
9.6  
18.7  
21.2  
32.6  
37.2  
50  
16.5  
17.9  
37  
PO  
Power output per channel  
W
39.6  
66  
69.6  
4.2  
4.6  
9.6  
10.2  
17.6  
19  
0.15%  
0.03%  
0.04%  
0.1%  
46  
PVDD = 12 V, PO = 1 W  
THD+N  
Total harmonic distortion + noise  
PVDD = 18 V, PO = 1 W  
PVDD = 24 V, PO = 1 W  
Vn  
Output integrated noise (rms)  
Cross-talk  
A-weighted  
μV  
PO = 0.25 W, f = 1 kHz (AD Mode)  
–67  
dB  
A-weighted, f = 1 kHz, maximum power at THD  
< 1%  
SNR  
Signal-to-noise ratio(1)  
104  
dB  
(1) SNR is calculated relative to 0-dBFS input level.  
7.8 Electrical Characteristics - PLL External Filter Components  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
47  
MAX  
UNIT  
nF  
External PLL filter capacitor C1  
External PLL filter capacitor C2  
External PLL filter resistor R  
SMD 0603 X7R  
SMD 0603 X7R  
4.7  
nF  
SMD 0603, metal film  
470  
7.9 Electrical Characteristic - I2C Serial Control Port Operation  
for I2C Interface signals over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CL  
Load capacitance for each bus line  
400  
pF  
Copyright © 2017–2018, Texas Instruments Incorporated  
9
TAS5755M  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
www.ti.com.cn  
7.10 Timing Requirements - PLL Input Parameters  
MIN  
2.8224  
40%  
NOM  
MAX  
24.576  
60%  
5
UNIT  
fMCLKI  
MCLK frequency  
MHz  
MCLK duty cycle  
50%  
tr/tf(MCLK)  
Rise/fall time for MCLK  
LRCLK allowable drift before LRCLK reset  
ns  
4
MCLKs  
7.11 Timing Requirements - Serial Audio Ports Slave Mode  
over recommended operating conditions (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
MHz  
ns  
fSCLKIN  
tsu1  
Frequency, SCLK 32 × fS, 48 × fS, 64 × fS  
Setup time, LRCLK to SCLK rising edge  
Hold time, LRCLK from SCLK rising edge  
Setup time, SDIN to SCLK rising edge  
Hold time, SDIN from SCLK rising edge  
LRCLK frequency  
CL = 30 pF  
1.024  
10  
12.288  
th1  
10  
ns  
tsu2  
10  
ns  
th2  
10  
ns  
8
48  
50%  
50%  
48  
60%  
60%  
kHz  
SCLK duty cycle  
40%  
40%  
LRCLK duty cycle  
SCLK  
edges  
SCLK rising edges between LRCLK rising edges  
32  
64  
SCLK  
period  
t(edge)  
tr/tf  
LRCLK clock edge with respect to the falling edge of SCLK  
Rise/fall time for SCLK/LRCLK  
–1/4  
1/4  
8
ns  
7.12 Timing Requirements - I2C Serial Control Port Operation  
for I2C Interface signals over recommended operating conditions (unless otherwise noted)  
MIN  
NOM  
MAX  
400  
UNIT  
kHz  
μs  
fSCL  
tw(H)  
tw(L)  
tr  
Frequency, SCL  
No wait states  
Pulse duration, SCL high  
0.6  
1.3  
Pulse duration, SCL low  
μs  
Rise time, SCL and SDA  
300  
300  
ns  
tf  
Fall time, SCL and SDA  
ns  
tsu1  
th1  
Setup time, SDA to SCL  
100  
0
ns  
Hold time, SCL to SDA  
ns  
t(buf)  
tsu2  
th2  
Bus free time between stop and start conditions  
Setup time, SCL to start condition  
Hold time, start condition to SCL  
Setup time, SCL to stop condition  
1.3  
0.6  
0.6  
0.6  
μs  
μs  
μs  
tsu3  
μs  
7.13 Timing Requirements - Reset (RESET)  
Control signal parameters over recommended operating conditions (unless otherwise noted).  
MIN  
NOM  
MAX  
UNIT  
tw(RESET)  
Pulse duration, RESET active  
Time to enable I2C  
100  
μs  
td(I2C_ready)  
12  
ms  
10  
版权 © 2017–2018, Texas Instruments Incorporated  
TAS5755M  
www.ti.com.cn  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
tr  
tf  
SCLK  
(Input)  
t(edge)  
th1  
tsu1  
LRCLK  
(Input)  
th2  
tsu2  
SDIN  
T0026-04  
1. Slave-Mode Serial Data-Interface Timing  
tw(H)  
tw(L)  
tr  
tf  
SCL  
tsu1  
th1  
SDA  
T0027-01  
2. SCL and SDA Timing  
SCL  
t(buf)  
th2  
tsu2  
tsu3  
SDA  
Start  
Condition  
Stop  
Condition  
T0028-01  
3. Start and Stop Conditions Timing  
版权 © 2017–2018, Texas Instruments Incorporated  
11  
TAS5755M  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
www.ti.com.cn  
RESET  
tw(RESET)  
I2C Active  
I2C Active  
td(I2C_ready)  
System Initialization.  
Enable via I2C.  
T0421-01  
NOTES: On power up, it is recommended that the TAS5755M RESET be held LOW for at least 100 μs after DVDD has  
reached 3 V.  
If RESET is asserted LOW while PDN is LOW, then RESET must continue to be held LOW for at least 100 μs after  
PDN is deasserted (HIGH).  
4. Reset Timing  
12  
版权 © 2017–2018, Texas Instruments Incorporated  
TAS5755M  
www.ti.com.cn  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
7.14 Typical Characteristics  
7.14.1 Typical Characteristics, 2.1 SE Configuration  
30  
10  
5
2.1 SE Mode  
TA=25èC  
RL=2ì4W + 6W  
2.1 SE Mode  
PVDD=12V  
f = 1kHz  
25  
2
1
TA=25èC  
0.5  
20  
15  
10  
0.2  
0.1  
0.05  
0.02  
0.01  
RL = 2ì4W+4W  
RL = 2ì4W+8W  
RL = 2ì8W+8W  
0.005  
5
THD+N=1%  
THD+N=10%  
0.002  
0.001  
0
0.01  
0.1  
1
10  
8
10  
12  
14  
16  
18  
20  
22 24 26  
Output Power (W)  
Supply Voltage (V)  
D00278  
D014  
D03071  
6. Total Harmonic Distortion + Noise vs Output Power  
5. Output Power vs Supply Voltage  
10  
10  
5
2.1 SE Mode  
PVDD=18V  
f = 1kHz  
2.1 SE Mode  
PVDD=24V  
f = 1kHz  
TA=25èC  
5
2
1
2
1
TA=25èC  
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
RL = 2ì4W+4W  
RL = 2ì4W+8W  
RL = 2ì8W+8W  
0.005  
RL = 2ì4W+4W  
RL = 2ì4W+8W  
RL = 2ì8W+8W  
0.005  
0.002  
0.001  
0.002  
0.001  
0.01  
0.1  
1
10  
0.1  
1
10  
20  
100  
Output Power (W)  
D02097  
Output Power (W)  
D00370  
7. Total Harmonic Distortion + Noise vs Output Power  
8. Total Harmonic Distortion + Noise vs Output Power  
10  
10  
RL = 2þ8Ω+8Ω  
RL = 2þ8Ω+8Ω  
2.1 SE Mode  
2.1 SE Mode  
PO = 1W  
PVDD = 12V  
PO = 1W  
PVDD = 18V  
RL = 2þ4Ω+8Ω  
RL = 2þ4Ω+8Ω  
TA = 25°C  
TA = 25°C  
RL = 2þ4Ω+4Ω  
RL = 2þ4Ω+4Ω  
1
1
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
20  
200  
2k  
20k  
20  
200  
2k  
20k  
Frequency (Hz)  
Frequency (Hz)  
C020  
C021  
9. Total Harmonic Distortion + Noise vs Frequency  
10. Total Harmonic Distortion + Noise vs Frequency  
版权 © 2017–2018, Texas Instruments Incorporated  
13  
 
 
 
TAS5755M  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
www.ti.com.cn  
Typical Characteristics, 2.1 SE Configuration (接下页)  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
RL = 2þ8Ω+8Ω  
2.1 SE Mode  
PO = 1W  
PVDD = 24V  
TA = 25°C  
RL = 2þ4Ω+8Ω  
RL = 2þ4Ω+4Ω  
1
2.1 SE Mode  
RL = 2þ8+8Ω  
TA = 25°C  
0.1  
0.01  
0.001  
PVDD = 12V  
PVDD = 18V  
PVDD = 24V  
20  
200  
2k  
20k  
0
20  
40  
60  
80  
Frequency (Hz)  
Total Output Power (W)  
C022  
C023  
11. Total Harmonic Distortion + Noise vs Frequency  
12. Efficiency vs Total Output Power  
0
100  
90  
Right-to-Left  
2.1 SE Mode  
PO = 1W  
œ10  
œ20  
œ30  
œ40  
œ50  
œ60  
œ70  
œ80  
œ90  
œ100  
Left-to-Right  
PVDD = 12V  
RL = 2þ8+8Ω  
TA = 25°C  
80  
2.1 SE Mode  
RL = 2þ4+8Ω  
TA = 25°C  
70  
60  
50  
40  
30  
20  
10  
0
PVDD = 12V  
PVDD = 18V  
PVDD = 24V  
20  
200  
2k  
20k  
0
20  
40  
60  
80  
Frequency (Hz)  
Total Output Power (W)  
C025  
C024  
14. Crosstalk vs Frequency  
13. Efficiency vs Total Output Power  
0
0
œ10  
œ20  
œ30  
œ40  
œ50  
œ60  
œ70  
œ80  
œ90  
œ100  
Right-to-Left  
2.1 SE Mode  
Right-to-Left  
Left-to-Right  
2.1 SE Mode  
PO = 1W  
PVDD = 24V  
RL = 2þ8+8Ω  
TA = 25°C  
PO = 1W  
œ10  
œ20  
œ30  
œ40  
œ50  
œ60  
œ70  
œ80  
œ90  
œ100  
Left-to-Right  
PVDD = 12V  
RL = 2þ4+4Ω  
TA = 25°C  
20  
200  
2k  
20k  
20  
200  
2k  
20k  
Frequency (Hz)  
Frequency (Hz)  
C026  
C027  
15. Crosstalk vs Frequency  
16. Crosstalk vs Frequency  
14  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
 
TAS5755M  
www.ti.com.cn  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
Typical Characteristics, 2.1 SE Configuration (接下页)  
0
Right-to-Left  
Left-to-Right  
2.1 SE Mode  
PO = 1W  
PVDD = 24V  
RL = 2þ4+4Ω  
TA = 25°C  
œ10  
œ20  
œ30  
œ40  
œ50  
œ60  
œ70  
œ80  
œ90  
œ100  
20  
200  
2k  
20k  
Frequency (Hz)  
C028  
17. Crosstalk vs Frequency  
版权 © 2017–2018, Texas Instruments Incorporated  
15  
 
TAS5755M  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
www.ti.com.cn  
7.14.2 Typical Characteristics, 2.0 BTL Configuration  
75  
10  
5
2.0 BTL Mode  
PVDD=12V  
f = 1kHz  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
THD+N=1%, R L=4W  
THD+N=10%, R L=4W  
THD+N=1%, R L=6W  
THD+N=10%, R L=6W  
2
1
TA=25èC  
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
RL = 4W  
RL = 6W  
RL = 8W  
0.005  
BTL Mode  
TA=25èC  
0.002  
0.001  
0
0.1  
1
10  
20  
100  
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
Output Power (W)  
Supply Voltage (V)  
D00371  
D014  
D03072  
19. Total Harmonic Distortion + Noise vs Output Power  
18. Output Power vs Supply Voltage  
10  
5
10  
2.0 BTL Mode  
PVDD=18V  
f = 1kHz  
2.0 BTL Mode  
PVDD=24V  
f = 1kHz  
TA=25èC  
5
2
1
2
1
TA=25èC  
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
RL = 4W  
RL = 6W  
RL = 8W  
RL = 4W  
RL = 6W  
RL = 8W  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.1  
1
10  
20  
100  
0.1  
1
10  
20  
100  
Output Power (W)  
Output Power (W)  
D03027  
D00373  
20. Total Harmonic Distortion + Noise vs Output Power  
21. Total Harmonic Distortion + Noise vs Output Power  
10  
10  
RL = 4  
RL = 4  
2.0 BTL Mode  
2.0 BTL Mode  
PVDD = 12V  
PO = 1W  
PVDD = 18V  
PO = 1W  
RL = 6Ω  
RL = 6Ω  
T
A = 25°C  
TA = 25°C  
RL = 8Ω  
RL = 8Ω  
1
1
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
20  
200  
2k  
20k  
20  
200  
2k  
20k  
Frequency (Hz)  
Frequency (Hz)  
C006  
C007  
22. Total Harmonic Distortion vs Frequency  
23. Total Harmonic Distortion vs Frequency  
16  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
 
TAS5755M  
www.ti.com.cn  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
Typical Characteristics, 2.0 BTL Configuration (接下页)  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
RL = 4  
2.0 BTL Mode  
PVDD = 24V  
PO = 1W  
TA = 25°C  
RL = 6Ω  
RL = 8Ω  
1
2.0 BTL Mode  
RL = 8  
TA = 25°C  
0.1  
0.01  
0.001  
PVDD = 12V  
PVDD = 18V  
PVDD = 24V  
20  
200  
2k  
20k  
0
20  
20  
20  
40  
60  
80  
Frequency (Hz)  
Total Output Power (W)  
C008  
C005  
24. Total Harmonic Distortion vs Frequency  
25. Efficiency vs Output Power  
0
0
œ10  
œ20  
œ30  
œ40  
œ50  
œ60  
œ70  
œ80  
œ90  
œ100  
Right-to-Left  
Right-to-Left  
2.0 BTL Mode  
2.0 BTL Mode  
PO = 1W  
PVDD = 12V  
RL = 8  
PO = 1W  
œ10  
œ20  
œ30  
œ40  
œ50  
œ60  
œ70  
œ80  
œ90  
œ100  
Left-to-Right  
Left-to-Right  
PVDD = 24V  
RL = 8  
T
A = 25°C  
TA = 25°C  
20  
200  
2k  
20k  
200  
2k  
20k  
Frequency (Hz)  
Frequency (Hz)  
C010  
C011  
26. Crosstalk vs Frequency  
27. Crosstalk vs Frequency  
0
œ10  
œ20  
œ30  
œ40  
œ50  
œ60  
œ70  
œ80  
œ90  
œ100  
0
œ10  
œ20  
œ30  
œ40  
œ50  
œ60  
œ70  
œ80  
œ90  
œ100  
Right-to-Left  
Right-to-Left  
2.0 BTL Mode  
2.0 BTL Mode  
PO = 1W  
PVDD = 12V  
RL = 4  
PO = 1W  
Left-to-Right  
Left-to-Right  
PVDD = 24V  
RL = 4Ω  
TA = 25°C  
TA = 25°C  
200  
2k  
20k  
20  
200  
2k  
20k  
Frequency (Hz)  
Frequency (Hz)  
C015  
C012  
28. Crosstalk vs Frequency  
29. Crosstalk vs Frequency  
版权 © 2017–2018, Texas Instruments Incorporated  
17  
 
 
 
TAS5755M  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
www.ti.com.cn  
Typical Characteristics, 2.0 BTL Configuration (接下页)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
70  
60  
50  
40  
30  
20  
10  
0
2.0 BTL Mode  
TA = 25°C  
BTL Mode  
A=25èC  
RL=6W  
PVDD = 12V  
PVDD = 18 V  
PVDD = 24 V  
T
10  
0
RL = 4  
0
10  
20  
30  
40  
50  
60  
70  
80  
RL = 6Ω  
RL = 8Ω  
Output Power (W)  
D00234  
30. Power vs Supply Voltage  
8
10  
12  
14  
16  
18  
20  
22  
24  
Supply Voltage (V)  
C009  
31. Idle Channel Noise vs Supply Voltage  
18  
版权 © 2017–2018, Texas Instruments Incorporated  
 
TAS5755M  
www.ti.com.cn  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
7.14.3 Typical Characteristics, PBTL Configuration  
120  
10  
5
PBTL Mode  
PVDD=12V  
f = 1kHz  
THD+N=1%, R L=4W  
THD+N=10%, R L=4W  
THD+N=1%, R L=6W  
THD+N=10%, R L=6W  
THD+N=1%, R L=2W  
THD+N=10%, R L=2W  
110  
100  
2
1
TA=25èC  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
0.005  
RL = 2W  
RL = 4W  
PBTL Mode  
TA=25èC  
0.002  
0.001  
0.1  
1
10  
20  
100  
8
10  
12  
14  
16  
18  
20  
22  
24 25  
Output Power (W)  
Supply Voltage (V)  
D00374  
D014  
D03074  
33. Total Harmonic Distortion + Noise vs Output Power  
32. Output Power vs Supply Voltage  
(PBTL Mode)  
10  
5
10  
PBTL Mode  
PVDD=18V  
f = 1kHz  
PBTL Mode  
PVDD=24V  
f = 1kHz  
TA=25èC  
5
2
1
2
1
TA=25èC  
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
RL = 2W  
RL = 4W  
RL = 2W  
RL = 4W  
0.002  
0.001  
0.002  
0.001  
0.1  
1
10  
20  
100  
0.1  
1
10  
20  
100  
Output Power (W)  
Output Power (W)  
D03057  
D00376  
34. Total Harmonic Distortion + Noise vs Output Power  
35. Total Harmonic Distortion + Noise vs Output Power  
(PBTL Mode)  
(PBTL Mode)  
10  
10  
RL = 2  
RL = 2  
PBTL Mode  
PBTL Mode  
PO = 1W  
PVDD = 12V  
TA = 25°C  
RL = 4Ω  
RL = 6Ω  
PO = 1W  
PVDD = 18V  
TA = 25°C  
RL = 4Ω  
RL = 6Ω  
1
1
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
20  
200  
2k  
20k  
20  
200  
2k  
20k  
Frequency (Hz)  
Frequency (Hz)  
C037  
C038  
36. Total Harmonic Distortion vs Frequency (PBTL  
37. Total Harmonic Distortion vs Frequency (PBTL  
Mode)  
Mode)  
版权 © 2017–2018, Texas Instruments Incorporated  
19  
 
 
 
TAS5755M  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
www.ti.com.cn  
Typical Characteristics, PBTL Configuration (接下页)  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
RL = 2  
PBTL Mode  
PO = 1W  
PVDD = 24V  
TA = 25°C  
RL = 4Ω  
RL = 6Ω  
1
PBTL Mode  
RL = 4  
TA = 25°C  
0.1  
0.01  
0.001  
PVDD = 12V  
PVDD = 18V  
PVDD = 24V  
20  
200  
2k  
20k  
0
20  
40  
60  
80  
Frequency (Hz)  
Total Output Power (W)  
C041  
C035  
38. Total Harmonic Distortion vs Frequency (PBTL  
39. Efficiency vs Output Power (PBTL Mode)  
Mode)  
90  
100  
90  
PBTL Mode  
RL = 4W  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
A=25èC  
80  
PBTL Mode  
RL = 6  
TA = 25°C  
70  
60  
50  
40  
30  
20  
10  
0
THD+N=1%  
THD+N=10%  
PVDD = 12V  
PVDD = 18V  
PVDD = 24V  
8
10  
12  
14  
16  
18  
20  
22  
24  
Supply Voltage (V)  
D014  
D03075  
41. Power vs Supply Voltage (PBTL Mode)  
0
10  
20  
30  
40  
50  
Total Output Power (W)  
C034  
40. Efficiency vs Output Power (PBTL Mode)  
80  
PBTL Mode  
TA = 25°C  
60  
40  
20  
0
RL = 4Ω  
RL = 6Ω  
RL = 8Ω  
8
10  
12  
14  
16  
18  
20  
22  
24  
Supply Voltage (V)  
C036  
42. Idle Channel Noise vs Supply Voltage (PBTL Mode)  
20  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
 
TAS5755M  
www.ti.com.cn  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
8 Parameter Measurement Information  
All parameters are measured according to the conditions described in the Specifications section.  
9 Detailed Description  
9.1 Overview  
The TAS5755M is an efficient 50-W stereo I2S input Class-D audio power amplifier. The digital auto processor of  
the device uses noise shaping and customized correction algorithms to achieve a great power efficiency and high  
audio performance. Also, the device has up to eight Equalizers per channel and two -band configurable Dynamic  
Range Control (DRC).  
The device needs only a single DVDD supply in addition to the higher-voltage PVDD power supply. An internal  
voltage regulator provides suitable voltage levels for the gate drive circuit. The wide PVDD power supply range of  
the device enables its use in a multitude of applications.  
The TAS5755M is a slave-only device that is controlled by a bidirectional I2C interface that supports both 100-  
kHz and 400-kHz data transfer rates for single- and multiple-byte write and read operations. This control interface  
is used to program the registers of the device and read the device status.  
The PWM of this device operates with a carrier frequency between 384 kHz and 354 kHz, depending the  
sampling rate. This device allows the use of the same clock signal for both MCLK and BCLK (64xFs) when using  
a sampling frequency of 44.1 kHz or 48 kHz.  
This device can be used in three different modes of operation, Stereo BTL mode, Single filter PBTL mono mode,  
and 2.1 mode.  
9.2 Functional Block Diagrams  
OUT_A  
2´ HB  
FET Out  
OUT_B  
4th-Order  
Noise Shaper  
and PWM  
Serial  
Audio  
Port  
S
R
C
Digital Audio Processor  
(DAP)  
SDIN  
OUT_C  
OUT_D  
2´ HB  
FET Out  
Protection  
Logic  
MCLK  
SCLK  
Sample Rate  
Autodetect  
and PLL  
Click and Pop  
Control  
LRCLK  
Microcontroller  
SDA  
SCL  
Based  
System  
Control  
Serial  
Control  
Terminal Control  
B0262-14  
43. Functional Block Diagram  
版权 © 2017–2018, Texas Instruments Incorporated  
21  
TAS5755M  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
www.ti.com.cn  
Functional Block Diagrams (接下页)  
4
Under-  
voltage  
Protection  
FAULT  
4
Power  
On  
Reset  
AGND  
GND  
Protection  
and  
I/O Logic  
Temp.  
Sense  
VALID  
Overcurrent  
Protection  
Isense  
BST_D  
PVDD_CD  
OUT_D  
PWM_D  
PWM  
Ctrl  
Gate  
Drive  
Timing  
Timing  
Timing  
Timing  
Rcv  
Pulldown Resistor  
Pulldown Resistor  
Pulldown Resistor  
Pulldown Resistor  
GVDD  
Regulator  
PGND_CD  
GVDD_OUT  
BST_C  
PVDD_CD  
OUT_C  
PWM_C  
PWM  
Ctrl  
Gate  
Drive  
Rcv  
PGND_CD  
BST_B  
PVDD_AB  
OUT_B  
PWM_B  
PWM  
Ctrl  
Gate  
Drive  
Rcv  
GVDD  
Regulator  
PGND_AB  
BST_A  
PVDD_AB  
OUT_A  
PWM_A  
PWM  
Ctrl  
Gate  
Drive  
Rcv  
PGND_AB  
B0034-08  
44. Power-Stage Functional Block Diagram  
22  
版权 © 2017–2018, Texas Instruments Incorporated  
TAS5755M  
www.ti.com.cn  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
I2C Subaddress in Red  
I2C:53 – V1IM  
L
51 V1OM  
1
59  
Vol1  
1
1BQ  
+
1BQ  
29  
6BQ  
+
+
+
1BQ  
2A  
1
ealpha  
2B–2F, 58  
1
3A  
Attack  
Decay  
Log  
Math  
–1  
0
3A  
Master ON/OFF  
(0x46[0])  
ealpha  
Auto-lp  
(0x46 Bit 5)  
5D  
1
R
1
1BQ  
+
1BQ  
6BQ  
+
Vol2  
+
+
1BQ  
31  
30  
32–36, 5C  
1
Vol2  
+
1BQ  
5E  
52 V2OM  
55  
I2C:54 – V2IM  
3D  
ealpha  
L
1
1
0
3
½
R
+
1BQ  
5A  
1BQ  
5B  
Attack  
Decay  
Log  
Math  
½
61  
Master ON/OFF  
(0x46[1])  
21 (D8, D9)  
3D  
ealpha  
+
Vol1  
60 V6OM  
B0321-14  
45. DAP Process Structure  
版权 © 2017–2018, Texas Instruments Incorporated  
23  
TAS5755M  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
www.ti.com.cn  
9.3 Feature Description  
9.3.1 Power Supply  
To facilitate system design, the TAS5755M needs only a 3.3-V supply in addition to the PVDD power-stage  
supply. An internal voltage regulator provides suitable voltage levels for the gate drive circuitry. Additionally, all  
circuitry requiring a floating voltage supply, for example, the high-side gate drive, is accommodated by built-in  
bootstrap circuitry requiring only a few external capacitors.  
In order to provide good electrical and acoustical characteristics, the PWM signal path for the output stage is  
designed as identical half-bridges with separate bootstrap pins (BST_x). The gate-drive voltage (GVDD_OUT) is  
derived from the PVDD voltage. Special attention must be paid to placing all decoupling capacitors as close to  
their associated pins as possible. Inductance between the power-supply pins and decoupling capacitors must be  
avoided.  
For a properly functioning bootstrap circuit, a small ceramic capacitor must be connected from each bootstrap pin  
(BST_x) to the power-stage output pin (OUT_x). When the power-stage output is low, the bootstrap capacitor is  
charged through an internal diode connected between the gate-drive regulator output pin (GVDD_OUT) and the  
bootstrap pin. When the power-stage output is high, the bootstrap capacitor potential is shifted above the output  
potential and thus provides a suitable voltage supply for the high-side gate driver. In an application with PWM  
switching frequencies in the range from 288 kHz to 384 kHz, it is recommended to use 10-nF, X7R ceramic  
capacitors, size 0603 or 0805, for the bootstrap supply. These 10-nF capacitors ensure sufficient energy storage,  
even during minimal PWM duty cycles, to keep the high-side power-stage FET (LDMOS) fully turned on during  
the remaining part of the PWM cycle.  
Special attention must be paid to the power-stage power supply; this includes component selection, PCB  
placement, and routing. As indicated, each half-bridge has independent power-stage supply pins (PVDD_x). For  
optimal electrical performance, EMI compliance, and system reliability, it is important that each PVDD_x pin is  
decoupled with a 100-nF, X7R ceramic capacitor placed as close as possible to each supply pin.  
The TAS5755M is fully protected against erroneous power-stage turnon due to parasitic gate charging.  
9.3.2 I2C Address Selection and Fault Output  
ADR/FAULT is an input pin during power up. It can be pulled HIGH or LOW through a resistor as shown in the  
Typical Applications sections in order to set the I2C address. Pulling this pin HIGH through the resistor results in  
setting the I2C 7-bit address to 0011011 (0x36), and pulling it LOW through the resistor results in setting the  
address to 0011010 (0x34).  
During power up, the address of the device is latched in, freeing up the ADR/FAULT pin to be used as a fault  
notification output. When configured as a fault output, the pin will go low when a fault occurs and will return to its  
default state when register 0x02 is cleared. The behavior of the pin in response to a fault condition is to be pulled  
low immediately upon an error. The device then waits for a period of time determined by BKND_ERR Register  
(0x1C) before attempting to resume playback. If the error has been cleared when the device attempts to resume  
playback, playback will resume, the ADR/FAULT pin will remain high, and normal operation will resume. If the  
error has not been removed, then the device will immediately re-enter the protected state and wait again for the  
predetermined period of time to pass. The device will pull the fault pin low for over-current, over-temperature, and  
under-voltage lock-out.  
9.3.3 Single-Filter PBTL Mode  
The TAS5755M supports parallel BTL (PBTL) mode with OUT_A/OUT_B (and OUT_C/OUT_D) connected  
before the LC filter. In addition to connecting OUT_A/OUT_B and OUT_C/OUT_D, BST_A/BST_B and  
BST_C/BST_D must also be connected before the LC filter, as shown in the 71. In order to put the part in  
PBTL configuration, drive PBTL (pin 8) HIGH. This synchronizes the turnoff of half-bridges A and B (and similarly  
C/D) if an overcurrent condition is detected in either half-bridge. There is a pulldown resistor on the PBTL pin that  
configures the part in BTL mode if the pin is left floating.  
PWM output multiplexers register (0x25) and PWM Shutdown Group Register (0x19) must be updated to set the  
device in PBTL mode. Must follow one of below listed configurations for PBTL mode.  
.
Register (0x25) be written with a value of 0x0110 3245, Register (0x19) be written with a value of 0x35  
Register (0x25) be written with a value of 0x0101 2345, Register (0x19) be written with a value of 0x3A  
24  
版权 © 2017–2018, Texas Instruments Incorporated  
 
TAS5755M  
www.ti.com.cn  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
Feature Description (接下页)  
9.3.4 Device Protection System  
9.3.4.1 Overcurrent (OC) Protection With Current Limiting  
The device has independent, fast-reacting current detectors on all high-side and low-side power-stage FETs. The  
detector outputs are closely monitored by a protection system. If the high-current condition situation persists, that  
is, the power stage is being overloaded, a protection system triggers a latching shutdown, resulting in the power  
stage being set in the high-impedance (Hi-Z) state. The device returns to normal operation once the fault  
condition (that is, a short circuit on the output) is removed. Current-limiting and overcurrent protection are not  
independent for half-bridges. That is, if the bridge-tied load between half-bridges A and B causes an overcurrent  
fault, half-bridges A, B, C, and D are shut down.  
9.3.4.2 Overtemperature Protection  
The TAS5755M has an overtemperature-protection system. If the device junction temperature exceeds 150°C  
(nominal), the device is put into thermal shutdown, resulting in all half-bridge outputs being set in the high-  
impedance (Hi-Z) state. The TAS5755M recovers automatically once the temperature drops approximately 30°C.  
9.3.4.3 Undervoltage Protection (UVP) and Power-On Reset (POR)  
The UVP and POR circuits of the TAS5755M fully protect the device in any power-up/down and brownout  
situation. While powering up, the POR circuit resets the overload circuit (OLP) and ensures that all circuits are  
fully operational when the PVDD and AVDD supply voltages reach 7.6 V and 2.7 V, respectively. Although PVDD  
and AVDD are independently monitored, a supply-voltage drop below the UVP threshold on AVDD or either  
PVDD pin results in all half-bridge outputs immediately being set in the high-impedance (Hi-Z) state.  
9.3.5 SSTIMER Functionality  
The SSTIMER pin uses a capacitor connected between this pin and ground to control the output duty cycle when  
exiting all-channel shutdown. The capacitor on the SSTIMER pin is slowly charged through an internal current  
source, and the charge time determines the rate at which the output transitions from a near-zero duty cycle to the  
desired duty cycle. This allows for a smooth transition that minimizes audible pops and clicks. When the part is  
shut down, the drivers are placed in the high-impedance state and transition slowly down through a 3-kresistor,  
similarly minimizing pops and clicks. The shutdown transition time is independent of the SSTIMER pin  
capacitance. Larger capacitors increase the start-up time, while capacitors smaller than 2.2 nF decrease the  
start-up time. The SSTIMER pin can be left floating for BD modulation.  
9.3.6 Clock, Autodetection, and PLL  
The TAS5755M is an I2S slave device. It accepts MCLK, SCLK, and LRCLK. The digital audio processor (DAP)  
supports all the sample rates and MCLK rates that are defined in the Clock Control Register (0x00).  
The TAS5755M checks to verify that SCLK is a specific value of 32 fS, 48 fS, or 64 fS. The DAP only supports a 1  
× fS LRCLK. The timing relationship of these clocks to SDIN is shown in subsequent sections. The clock section  
uses MCLK or the internal oscillator clock (when MCLK is unstable, out of range, or absent) to produce the  
internal clock (DCLK) running at 512 times the PWM switching frequency.  
The DAP can autodetect and set the internal clock control logic to the appropriate settings for all supported clock  
rates as defined in the clock-control register.  
The TAS5755M has robust clock error handling that uses the built-in trimmed oscillator clock to quickly detect  
changes/errors. Once the system detects a clock change/error, it mutes the audio (through a single-step mute)  
and then forces PLL to limp using the internal oscillator as a reference clock. Once the clocks are stable, the  
system autodetects the new rate and reverts to normal operation. During this process, the default volume is  
restored in a single step (also called hard unmute). The ramp process can be programmed to ramp back slowly  
(also called soft unmute) as defined in volume register (0x0E).  
版权 © 2017–2018, Texas Instruments Incorporated  
25  
TAS5755M  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
www.ti.com.cn  
Feature Description (接下页)  
9.3.7 PWM Section  
The TAS5755M DAP device uses noise-shaping and customized nonlinear correction algorithms to achieve high  
power efficiency and high-performance digital audio reproduction. The DAP uses a fourth-order noise shaper to  
increase dynamic range and SNR in the audio band. The PWM section accepts 24-bit PCM data from the DAP  
and outputs two BTL PWM audio output channels.  
The PWM section has individual-channel dc-blocking filters that can be enabled and disabled. The filter cutoff  
frequency is less than 1 Hz. Individual-channel de-emphasis filters for 44.1 kHz and 48 kHz are included and can  
be enabled and disabled.  
Finally, the PWM section has an adjustable maximum modulation limit of 93.8% to 99.2%.  
For a detailed description of using audio processing features like DRC and EQ, see the TAS5755EVM User's  
Guide (SLOU481) and TAS570X GDE Software Setup development tool documentation (SLOC124).  
9.3.8 2.1-Mode Support  
The TAS5755M uses a special mid-Z ramp sequence to reduce click and pop in SE-mode and 2.1-mode  
operation. To enable the mid-Z ramp, register 0x05 bit D7 must be set to 1. To enable 2.1 mode, register 0x05  
bit D2 must be set to 1. The SSTIMER pin must be left floating in this mode.  
9.3.9 I2C Compatible Serial Control Interface  
The TAS5755M DAP has an I2C serial control slave interface to receive commands from a system controller. The  
serial control interface supports both normal-speed (100 kHz) and high-speed (400 kHz) operations without wait  
states. As an added feature, this interface operates even if MCLK is absent. The serial control interface supports  
both single-byte and multiple-byte read and write operations for status registers and the general control registers  
associated with the PWM.  
9.3.10 Audio Serial Interface  
Serial data is input on SDIN. The PWM outputs are derived from SDIN. The TAS5755M DAP accepts serial data  
in 16-, 20-, or 24-bit left-justified, right-justified, and I2S serial data formats.  
9.3.10.1 I2S Timing  
I2S timing uses LRCLK to define when the data being transmitted is for the left channel and when it is for the  
right channel. LRCLK is low for the left channel and high for the right channel. A bit clock running at 32, 48, or  
64 × fS is used to clock in the data. There is a delay of one bit clock from the time the LRCLK signal changes  
state to the first bit of data on the data lines. The data is written MSB-first and is valid on the rising edge of bit  
clock. The DAP masks unused trailing data bit positions.  
26  
版权 © 2017–2018, Texas Instruments Incorporated  
 
TAS5755M  
www.ti.com.cn  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
Feature Description (接下页)  
2-Channel I2S (Philips Format) Stereo Input  
32 Clks  
32 Clks  
LRCLK (Note Reversed Phase)  
Right Channel  
Left Channel  
SCLK  
SCLK  
MSB  
LSB  
MSB  
LSB  
24-Bit Mode  
23 22  
9
5
1
8
4
0
5
1
4
0
1
0
23 22  
19 18  
15 14  
9
5
1
8
4
0
5
1
4
0
1
0
20-Bit Mode  
19 18  
16-Bit Mode  
15 14  
T0034-01  
NOTE: All data presented in 2s-complement form with MSB first.  
46. I2S 64-FS Format  
版权 © 2017–2018, Texas Instruments Incorporated  
27  
TAS5755M  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
www.ti.com.cn  
Feature Description (接下页)  
2-Channel I2S (Philips Format) Stereo Input/Output (24-Bit Transfer Word Size)  
24 Clks  
24 Clks  
LRCLK  
Right Channel  
Left Channel  
SCLK  
SCLK  
MSB  
LSB  
1
MSB  
LSB  
24-Bit Mode  
23 22  
17 16  
13 12  
9
5
1
8
4
0
5
1
4
0
3
2
0
23 22  
19 18  
15 14  
17 16  
13 12  
9
5
1
8
4
0
5
1
4
0
3
2
1
20-Bit Mode  
19 18  
16-Bit Mode  
15 14  
9
8
9
8
T0092-01  
NOTE: All data presented in 2s-complement form with MSB first.  
47. I2S 48-FS Format  
2-Channel I2S (Philips Format) Stereo Input  
16 Clks  
16 Clks  
LRCLK  
Right Channel  
Left Channel  
SCLK  
SCLK  
MSB  
LSB  
1
MSB  
LSB  
16-Bit Mode  
15 14 13 12 11 10  
9
8
5
4
3
2
0
15 14 13 12 11 10  
9
8
5
4
3
2
1
T0266-01  
NOTE: All data presented in 2s-complement form with MSB first.  
48. I2S 32-FS Format  
28  
版权 © 2017–2018, Texas Instruments Incorporated  
TAS5755M  
www.ti.com.cn  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
Feature Description (接下页)  
9.3.10.2 Left-Justified  
Left-justified (LJ) timing uses LRCLK to define when the data being transmitted is for the left channel and when it  
is for the right channel. LRCLK is high for the left channel and low for the right channel. A bit clock running at 32,  
48, or 64 × fS is used to clock in the data. The first bit of data appears on the data lines at the same time LRCLK  
toggles. The data is written MSB-first and is valid on the rising edge of the bit clock. The DAP masks unused  
trailing data bit positions.  
2-Channel Left-Justified Stereo Input  
32 Clks  
32 Clks  
LRCLK  
SCLK  
Right Channel  
Left Channel  
SCLK  
MSB  
LSB MSB  
23 22  
LSB  
24-Bit Mode  
23 22  
9
5
1
8
4
0
5
1
4
0
1
9
5
1
8
4
0
5
1
4
0
1
0
0
20-Bit Mode  
19 18  
19 18  
15 14  
16-Bit Mode  
15 14  
T0034-02  
NOTE: All data presented in 2s-complement form with MSB first.  
49. Left-Justified 64-FS Format  
版权 © 2017–2018, Texas Instruments Incorporated  
29  
TAS5755M  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
www.ti.com.cn  
Feature Description (接下页)  
2-Channel Left-Justified Stereo Input (24-Bit Transfer Word Size)  
24 Clks  
24 Clks  
LRCLK  
Right Channel  
Left Channel  
SCLK  
SCLK  
MSB  
LSB MSB  
LSB  
24-Bit Mode  
23 22 21  
17 16  
13 12  
9
5
1
8
4
0
5
1
4
0
1
23 22 21  
17 16  
13 12  
9
5
1
8
4
0
5
1
4
0
1
0
0
20-Bit Mode  
19 18 17  
19 18 17  
16-Bit Mode  
15 14 13  
9
8
15 14 13  
9
8
T0092-02  
NOTE: All data presented in 2s-complement form with MSB first.  
50. Left-Justified 48-FS Format  
2-Channel Left-Justified Stereo Input  
16 Clks  
16 Clks  
LRCLK  
SCLK  
Right Channel  
Left Channel  
SCLK  
MSB  
LSB MSB  
LSB  
16-Bit Mode  
15 14 13 12 11 10  
9
8
5
4
3
2
1
0
15 14 13 12 11 10  
9
8
5
4
3
2
1
0
T0266-02  
NOTE: All data presented in 2s-complement form with MSB first.  
51. Left-Justified 32-FS Format  
30  
版权 © 2017–2018, Texas Instruments Incorporated  
TAS5755M  
www.ti.com.cn  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
Feature Description (接下页)  
9.3.10.3 Right-Justified  
Right-justified (RJ) timing uses LRCLK to define when the data being transmitted is for the left channel and when  
it is for the right channel. LRCLK is high for the left channel and low for the right channel. A bit clock running at  
32, 48, or 64 × fS is used to clock in the data. The first bit of data appears on the data 8 bit-clock periods (for 24-  
bit data) after LRCLK toggles. In RJ mode, the LSB of data is always clocked by the last bit clock before LRCLK  
transitions. The data is written MSB-first and is valid on the rising edge of bit clock. The DAP masks unused  
leading data bit positions.  
2-Channel Right-Justified (Sony Format) Stereo Input  
32 Clks  
32 Clks  
LRCLK  
SCLK  
Right Channel  
Left Channel  
SCLK  
MSB  
LSB MSB  
LSB  
0
24-Bit Mode  
23 22  
19 18  
19 18  
15 14  
15 14  
15 14  
1
1
1
0
23 22  
19 18  
19 18  
15 14  
15 14  
15 14  
1
1
1
20-Bit Mode  
16-Bit Mode  
0
0
0
0
T0034-03  
52. Right-Justified 64-FS Format  
版权 © 2017–2018, Texas Instruments Incorporated  
31  
TAS5755M  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
www.ti.com.cn  
Feature Description (接下页)  
2-Channel Right-Justified Stereo Input (24-Bit Transfer Word Size)  
24 Clks  
24 Clks  
LRCLK  
Right Channel  
Left Channel  
SCLK  
SCLK  
MSB  
LSB MSB  
LSB  
24-Bit Mode  
23 22  
19 18  
19 18  
15 14  
15 14  
15 14  
6
6
6
5
5
5
2
2
2
1
1
1
0
0
0
23 22  
19 18  
19 18  
15 14  
15 14  
15 14  
6
6
6
5
5
5
2
2
2
1
1
1
0
0
20-Bit Mode  
16-Bit Mode  
0
T0092-03  
53. Right-Justified 48-FS Format  
54. Right-Justified 32-FS Format  
32  
版权 © 2017–2018, Texas Instruments Incorporated  
TAS5755M  
www.ti.com.cn  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
Feature Description (接下页)  
9.3.11 Dynamic Range Control (DRC)  
The DRC scheme has two DRC blocks. There is one ganged DRC for the high-band left/right channels and one  
DRC for the low-band left/right channels.  
The DRC input/output diagram is shown in 55.  
1:1 Transfer Function  
Implemented Transfer Function  
T
Input Level (dB)  
M0091-04  
Professional-quality dynamic range compression automatically adjusts volume to flatten volume level.  
• Each DRC has adjustable threshold levels.  
• Programmable attack and decay time constants  
Transparent compression: compressors can attack fast enough to avoid apparent clipping before engaging,  
and decay times can be set slow enough to avoid pumping.  
55. Dynamic Range Control  
a, w  
T
aa, wa / ad, wd  
0x40  
DRC1  
DRC2  
0x3C  
0x3F  
0x3B  
0x3E  
0x43  
Alpha Filter Structure  
S
a
–1  
Z
w
B0265-04  
T = 9.23 format, all other DRC coefficients are 3.23 format  
56. DRC Structure  
版权 © 2017–2018, Texas Instruments Incorporated  
33  
 
TAS5755M  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
www.ti.com.cn  
9.4 Device Functional Modes  
9.4.1 Stereo BTL Mode  
The classic stereo mode of operation uses the TAS5755M device to amplify two independent signals, which  
represent the left and right portions of a stereo signal. These amplified left and right audio signals are presented  
on differential output pairs shown as OUT_A and OUT_B for a channel and OUT_C and OUT_D for the other  
one. The routing of the audio data which is presented on the OUT_x outputs can be changed according to the  
PWM Output Mux Register (0x25). By default, the TAS5755M device is configured to output channel 1 to the  
OUT_A and OUT_B outputs, and channel 2 to the OUT_C and OUT_D outputs. Stereo Mode operation outputs  
are shown in 57.  
57. Stereo BTL Mode  
9.4.2 Mono PBTL Mode  
When this mode of operation is used, the two stereo outputs of the device are placed in parallel one with another  
to increase the power sourcing capabilities of the device. The TAS5755M supports parallel BTL (PBTL) mode  
with OUT_A/OUT_B (and OUT_C/OUT_D) connected before the LC filter.  
The merging of the two output channels in this device can be done before the inductor portion of the output filter.  
This is called Single-Filter PBTL, and this mono operation is shown in 58. More information about this can be  
found in Single-Filter PBTL Mode section.  
34  
版权 © 2017–2018, Texas Instruments Incorporated  
 
TAS5755M  
www.ti.com.cn  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
Device Functional Modes (接下页)  
58. Pre-Filter PBTL  
On the input side of the TAS5755M device, the input signal to the mono amplifier can be selected from a mix, left  
or right frame from an I2S, LJ, or RJ signal. The routing of the audio data which is presented on the SPK_OUTx  
outputs must be configured with the PWM Output Mux Register (0x25) and PWM Shutdown Group Register  
(0x19).  
Refer to the Mono Parallel Bridge Tied Load Application section for more details of the correct PBTL output  
connection of the TAS5755M.  
9.4.3 2.1 Mode  
2.1 Mode is defined as the application of two Single ended channels and one BTL channel used in systems  
where a third sub channel is required. Generally, both single-ended inputs drive the Left and Right channels,  
while the BTL channel drives a low-frequency content channel called often Subwoofer. More information about  
this can be found in the 2.1-Mode Support section.  
版权 © 2017–2018, Texas Instruments Incorporated  
35  
TAS5755M  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
www.ti.com.cn  
Device Functional Modes (接下页)  
59. 2.1 Mode  
Refer to 2.1 Application section for more details of the correct 2.1 output connection of the TAS5755M.  
9.5 Programming  
9.5.1 I2C Serial Control Interface  
The TAS5755M DAP has a bidirectional I2C interface that is compatible with the Inter IC (I2C) bus protocol and  
supports both 100-kHz and 400-kHz data transfer rates for single- and multiple-byte write and read operations.  
This is a slave-only device that does not support a multimaster bus environment or wait-state insertion. The  
control interface is used to program the registers of the device and to read device status.  
The DAP supports the standard-mode I2C bus operation (100 kHz maximum) and the fast I2C bus operation  
(400 kHz maximum). The DAP performs all I2C operations without I2C wait cycles.  
9.5.1.1 General I2C Operation  
The I2C bus employs two signals, SDA (data) and SCL (clock), to communicate between integrated circuits in a  
system. Data is transferred on the bus serially, one bit at a time. The address and data can be transferred in byte  
(8-bit) format, with the most-significant bit (MSB) transferred first. In addition, each byte transferred on the bus is  
acknowledged by the receiving device with an acknowledge bit. Each transfer operation begins with the master  
device driving a start condition on the bus and ends with the master device driving a stop condition on the bus.  
The bus uses transitions on the data pin (SDA) while the clock is high to indicate start and stop conditions. A  
high-to-low transition on SDA indicates a start and a low-to-high transition indicates a stop. Normal data-bit  
transitions must occur within the low time of the clock period. These conditions are shown in 60. The master  
generates the 7-bit slave address and the read/write (R/W) bit to open communication with another device and  
then waits for an acknowledge condition. The TAS5755M holds SDA low during the acknowledge clock period to  
indicate an acknowledgment. When this occurs, the master transmits the next byte of the sequence. Each device  
is addressed by a unique 7-bit slave address plus R/W bit (1 byte). All compatible devices share the same  
signals via a bidirectional bus using a wired-AND connection. An external pullup resistor must be used for the  
SDA and SCL signals to set the high level for the bus.  
36  
版权 © 2017–2018, Texas Instruments Incorporated  
TAS5755M  
www.ti.com.cn  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
Programming (接下页)  
8-Bit Register Data For  
Address (N)  
8-Bit Register Data For  
Address (N)  
R/  
W
8-Bit Register Address (N)  
7-Bit Slave Address  
A
A
A
A
SDA  
SCL  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
Start  
Stop  
T0035-01  
60. Typical I2C Sequence  
There is no limit on the number of bytes that can be transmitted between start and stop conditions. When the last  
word transfers, the master generates a stop condition to release the bus. A generic data transfer sequence is  
shown in 60.  
The 7-bit address for TAS5755M is 0011 011 (0x36).  
9.5.1.2 Single- and Multiple-Byte Transfers  
The serial control interface supports both single-byte and multiple-byte read/write operations for subaddresses  
0x00 to 0x1F. However, for the subaddresses 0x20 to 0xFF, the serial control interface supports only multiple-  
byte read/write operations (in multiples of 4 bytes).  
During multiple-byte read operations, the DAP responds with data, a byte at a time, starting at the subaddress  
assigned, as long as the master device continues to respond with acknowledges. If a particular subaddress does  
not contain 32 bits, the unused bits are read as logic 0.  
During multiple-byte write operations, the DAP compares the number of bytes transmitted to the number of bytes  
that are required for each specific subaddress. For example, if a write command is received for a biquad  
subaddress, the DAP must receive five 32-bit words. If fewer than five 32-bit data words have been received  
when a stop command (or another start command) is received, the received data is discarded.  
Supplying a subaddress for each subaddress transaction is referred to as random I2C addressing. The  
TAS5755M also supports sequential I2C addressing. For write transactions, if a subaddress is issued followed by  
data for that subaddress and the 15 subaddresses that follow, a sequential I2C write transaction has taken place,  
and the data for all 16 subaddresses is successfully received by the TAS5755M. For I2C sequential-write  
transactions, the subaddress then serves as the start address, and the amount of data subsequently transmitted,  
before a stop or start is transmitted, determines how many subaddresses are written. As was true for random  
addressing, sequential addressing requires that a complete set of data be transmitted. If only a partial set of data  
is written to the last subaddress, the data for the last subaddress is discarded. However, all other data written is  
accepted; only the incomplete data is discarded.  
9.5.1.3 Single-Byte Write  
As shown in 61, a single-byte data-write transfer begins with the master device transmitting a start condition  
followed by the I2C device address and the read/write bit. The read/write bit determines the direction of the data  
transfer. For a data-write transfer, the read/write bit is a 0. After receiving the correct I2C device address and the  
read/write bit, the DAP responds with an acknowledge bit. Next, the master transmits the address byte or bytes  
corresponding to the TAS5755M internal memory address being accessed. After receiving the address byte, the  
TAS5755M again responds with an acknowledge bit. Next, the master device transmits the data byte to be  
written to the memory address being accessed. After receiving the data byte, the TAS5755M again responds  
with an acknowledge bit. Finally, the master device transmits a stop condition to complete the single-byte data-  
write transfer.  
版权 © 2017–2018, Texas Instruments Incorporated  
37  
 
TAS5755M  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
www.ti.com.cn  
Programming (接下页)  
Start  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
R/W  
A6 A5 A4 A3 A2 A1 A0  
ACK A7 A6 A5 A4 A3 A2 A1 A0 ACK D7 D6 D5 D4 D3 D2 D1 D0 ACK  
I2C Device Address and  
Read/Write Bit  
Subaddress  
Data Byte  
Stop  
Condition  
T0036-01  
61. Single-Byte Write Transfer  
9.5.1.4 Multiple-Byte Write  
A multiple-byte data-write transfer is identical to a single-byte data-write transfer except that multiple data bytes  
are transmitted by the master device to the DAP as shown in 62. After receiving each data byte, the  
TAS5755M responds with an acknowledge bit.  
Start  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
D0 ACK D7  
Acknowledge  
D0 ACK D7  
Acknowledge  
D0 ACK  
A6 A5  
A1 A0 R/W ACK A7 A6 A5 A4 A3  
A1 A0 ACK D7  
I2C Device Address and  
Read/Write Bit  
Subaddress  
First Data Byte  
Last Data Byte  
Stop  
Condition  
Other Data Bytes  
T0036-02  
62. Multiple-Byte Write Transfer  
9.5.1.5 Single-Byte Read  
As shown in 63, a single-byte data-read transfer begins with the master device transmitting a start condition,  
followed by the I2C device address and the read/write bit. For the data read transfer, both a write followed by a  
read are actually done. Initially, a write is done to transfer the address byte or bytes of the internal memory  
address to be read. As a result, the read/write bit becomes a 0. After receiving the TAS5755M address and the  
read/write bit, TAS5755M responds with an acknowledge bit. In addition, after sending the internal memory  
address byte or bytes, the master device transmits another start condition followed by the TAS5755M address  
and the read/write bit again. This time, the read/write bit becomes a 1, indicating a read transfer. After receiving  
the address and the read/write bit, the TAS5755M again responds with an acknowledge bit. Next, the TAS5755M  
transmits the data byte from the memory address being read. After receiving the data byte, the master device  
transmits a not-acknowledge followed by a stop condition to complete the single-byte data-read transfer.  
Repeat Start  
Condition  
Not  
Acknowledge  
Start  
Condition  
Acknowledge  
Acknowledge  
A0 ACK  
Acknowledge  
A6 A5  
A1 A0 R/W ACK A7 A6 A5 A4  
A6 A5  
A1 A0 R/W ACK D7 D6  
D1 D0 ACK  
I2C Device Address and  
Read/Write Bit  
Subaddress  
I2C Device Address and  
Read/Write Bit  
Data Byte  
Stop  
Condition  
T0036-03  
63. Single-Byte Read Transfer  
9.5.1.6 Multiple-Byte Read  
A multiple-byte data-read transfer is identical to a single-byte data-read transfer except that multiple data bytes  
are transmitted by the TAS5755M to the master device as shown in 64. Except for the last data byte, the  
master device responds with an acknowledge bit after receiving each data byte.  
38  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
TAS5755M  
www.ti.com.cn  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
Programming (接下页)  
Repeat Start  
Condition  
Not  
Acknowledge  
Start  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
D0 ACK D7  
A6  
A0 R/W ACK A7 A6 A5  
A0 ACK  
A6  
A0 R/W ACK D7  
D0 ACK D7  
D0 ACK  
I2C Device Address and  
Read/Write Bit  
Subaddress  
I2C Device Address and First Data Byte  
Read/Write Bit  
Other Data Bytes  
Last Data Byte  
Stop  
Condition  
T0036-04  
64. Multiple-Byte Read Transfer  
9.5.2 26-Bit 3.23 Number Format  
All mixer gain coefficients are 26-bit coefficients using a 3.23 number format. Numbers formatted as 3.23  
numbers means that there are 3 bits to the left of the binary point and 23 bits to the right of the binary point. This  
is shown in 65.  
2–23 Bit  
2–5 Bit  
2–1 Bit  
20 Bit  
21 Bit  
Sign Bit  
S_xx.xxxx_xxxx_xxxx_xxxx_xxxx_xxx  
M0125-01  
65. 3.23 Format  
The decimal value of a 3.23 format number can be found by following the weighting shown in 65. If the most  
significant bit is logic 0, the number is a positive number, and the weighting shown yields the correct number. If  
the most significant bit is a logic 1, then the number is a negative number. In this case every bit must be inverted,  
a 1 added to the result, and then the weighting shown in 66 applied to obtain the magnitude of the negative  
number.  
21 Bit  
20 Bit  
2–1 Bit  
2–4 Bit  
2–23 Bit  
(1 or 0) ´ 21 + (1 or 0) ´ 20 + (1 or 0) ´ 2–1 + ....... (1 or 0) ´ 2–4 + ....... (1 or 0) ´ 2–23  
M0126-01  
66. Conversion Weighting Factors — 3.23 Format To Floating Point  
Gain coefficients, entered via the I2C bus, must be entered as 32-bit binary numbers. The format of the 32-bit  
number (4-byte or 8-digit hexadecimal number) is shown in 67.  
版权 © 2017–2018, Texas Instruments Incorporated  
39  
 
 
TAS5755M  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
www.ti.com.cn  
Programming (接下页)  
Fraction  
Digit 6  
Sign  
Bit  
Fraction  
Digit 1  
Fraction  
Digit 2  
Fraction  
Digit 3  
Fraction  
Digit 4  
Fraction  
Digit 5  
Integer  
Digit 1  
u
u
u
u
u
u
x
x.  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x x x x  
0
S
Coefficient  
Digit 8  
Coefficient  
Digit 7  
Coefficient  
Digit 6  
Coefficient  
Digit 5  
Coefficient  
Digit 4  
Coefficient  
Digit 3  
Coefficient  
Digit 2  
Coefficient  
Digit 1  
u = unused or don’t care bits  
Digit = hexadecimal digit  
M0127-01  
67. Alignment of 3.23 Coefficient in 32-Bit I2C Word  
1. Sample Calculation for 3.23 Format  
db  
0
LINEAR  
1
DECIMAL  
8,388,608  
14,917,288  
4,717,260  
HEX (3.23 Format)  
80 0000  
5
1.77  
00E3 9EA8  
–5  
X
0.56  
L = 10(X/20)  
0047 FACC  
D = 8,388,608 × L H = dec2hex (D, 8)  
2. Sample Calculation for 9.17 Format  
db  
0
LINEAR  
1
DECIMAL  
131,072  
HEX (9.17 Format)  
2 0000  
5
1.77  
231,997  
3 8A3D  
–5  
X
0.56  
L = 10(X/20)  
73,400  
1 1EB8  
D = 131,072 × L  
H = dec2hex (D, 8)  
40  
版权 © 2017–2018, Texas Instruments Incorporated  
TAS5755M  
www.ti.com.cn  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
9.6 Register Maps  
9.6.1 Register Map Summary  
3. Serial Control Interface Register Summary  
NO. OF  
BYTES  
SUBADDRESS  
REGISTER NAME  
CONTENTS(1)  
INITIALIZATION VALUE  
0x00  
0x01  
0x02  
0x03  
0x04  
Clock control register  
Device ID register  
1
1
1
1
1
Description shown in subsequent section  
Description shown in subsequent section  
Description shown in subsequent section  
Description shown in subsequent section  
Description shown in subsequent section  
0x6C  
0x00  
0x00  
0xA0  
0x05  
Error status register  
System control register 1  
Serial data interface  
register  
0x05  
0x06  
System control register 2  
Soft mute register  
Master volume  
1
1
1
1
1
1
1
1
Description shown in subsequent section  
Description shown in subsequent section  
Description shown in subsequent section  
Description shown in subsequent section  
Description shown in subsequent section  
Description shown in subsequent section  
Reserved(2)  
0x40  
0x00  
0x07  
0xFF (mute)  
0x30 (0 dB)  
0x30 (0 dB)  
0x30 (0 dB)  
0x08  
Channel 1 vol  
0x09  
Channel 2 vol  
0x0A  
Channel 3 vol  
0x0B–0x0D  
0x0E  
Volume configuration  
register  
Description shown in subsequent section  
0x91  
0x0F  
0x10  
1
1
1
1
1
1
1
1
Reserved(2)  
Modulation limit register  
IC delay channel 1  
IC delay channel 2  
IC delay channel 3  
IC delay channel 4  
Description shown in subsequent section  
Description shown in subsequent section  
Description shown in subsequent section  
Description shown in subsequent section  
Description shown in subsequent section  
Reserved(2)  
0x02  
0xAC  
0x54  
0xAC  
0x54  
0x11  
0x12  
0x13  
0x14  
0x15-0x18  
0x19  
PWM channel shutdown  
group register  
Description shown in subsequent section  
0x30  
0x1A  
0x1B  
Start/stop period register  
Oscillator trim register  
BKND_ERR register  
1
1
0x0F  
0x82  
0x02  
0x1C  
1
0x1D–0x1F  
0x20  
1
Reserved(2)  
Input MUX register  
4
Description shown in subsequent section  
Description shown in subsequent section  
Reserved(2)  
0x0001 7772  
0x0000 4303  
0x21  
Ch 4 source select register  
4
0x22 -0x24  
0x25  
4
PWM MUX register  
ch1_bq[0]  
4
Description shown in subsequent section  
Reserved(2)  
0x0102 1345  
0x26-0x28  
0x29  
4
20  
u[31:26], b0[25:0]  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
0x2A  
ch1_bq[1]  
20  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
(1) A u indicates unused bits.  
(2) Reserved registers must not be accessed.  
版权 © 2017–2018, Texas Instruments Incorporated  
41  
TAS5755M  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
www.ti.com.cn  
Register Maps (接下页)  
3. Serial Control Interface Register Summary (接下页)  
NO. OF  
BYTES  
SUBADDRESS  
REGISTER NAME  
ch1_bq[2]  
CONTENTS(1)  
INITIALIZATION VALUE  
0x2B  
20  
20  
20  
20  
20  
20  
20  
20  
20  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
ch1_bq[3]  
ch1_bq[4]  
ch1_bq[5]  
ch1_bq[6]  
ch2_bq[0]  
ch2_bq[1]  
ch2_bq[2]  
ch2_bq[3]  
42  
版权 © 2017–2018, Texas Instruments Incorporated  
TAS5755M  
www.ti.com.cn  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
Register Maps (接下页)  
3. Serial Control Interface Register Summary (接下页)  
NO. OF  
BYTES  
SUBADDRESS  
REGISTER NAME  
CONTENTS(1)  
INITIALIZATION VALUE  
0x34  
ch2_bq[4]  
ch2_bq[5]  
ch2_bq[6]  
20  
20  
20  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
Reserved(2)  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x35  
0x36  
0x37 - 0x39  
0x3A  
4
8
DRC1 ae(3)  
DRC1 (1 – ae)  
DRC1 aa  
u[31:26], ae[25:0]  
0x0080 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0xFDA2 1490  
0x0384 2109  
0x0008 4210  
0xFDA2 1490  
0x0384 2109  
0x0008 4210  
0x0000 0000  
u[31:26], (1 – ae)[25:0]  
u[31:26], aa[25:0]  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
8
8
8
8
8
DRC1 (1 – aa)  
DRC1 ad  
u[31:26], (1 – aa)[25:0]  
u[31:26], ad[25:0]  
DRC1 (1 – ad)  
DRC2 ae  
u[31:26], (1 – ad)[25:0]  
u[31:26], ae[25:0]  
DRC 2 (1 – ae)  
DRC2 aa  
u[31:26], (1 – ae)[25:0]  
u[31:26], aa[25:0]  
DRC2 (1 – aa)  
DRC2 ad  
u[31:26], (1 – aa)[25:0]  
u[31:26], ad[25:0]  
DRC2 (1 – ad)  
DRC1-T  
u[31:26], (1 – ad)[25:0]  
T1[31:0] (9.23 format)  
u[31:26], K1[25:0]  
0x40  
0x41  
4
4
DRC1-K  
0x42  
DRC1-O  
4
u[31:26], O1[25:0]  
0x43  
DRC2-T  
4
T2[31:0] (9.23 format)  
u[31:26], K2[25:0]  
0x44  
DRC2-K  
4
0x45  
DRC2-O  
4
u[31:26], O2[25:0]  
0x46  
DRC control  
4
Description shown in subsequent section  
Reserved(2)  
0x47–0x4F  
0x50  
4
Bank switch control  
Ch 1 output mixer  
4
Description shown in subsequent section  
Ch 1 output mix1[2]  
Ch 1 output mix1[1]  
Ch 1 output mix1[0]  
Ch 2 output mix2[2]  
Ch 2 output mix2[1]  
Ch 2 output mix2[0]  
0x0F70 8000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x51  
12  
0x52  
Ch 2 output mixer  
12  
(3) "ae" stands for of energy filter, "aa" stands for of attack filter and "ad" stands for of decay filter and 1- = ω.  
版权 © 2017–2018, Texas Instruments Incorporated  
43  
TAS5755M  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
www.ti.com.cn  
Register Maps (接下页)  
3. Serial Control Interface Register Summary (接下页)  
NO. OF  
BYTES  
SUBADDRESS  
REGISTER NAME  
Ch 1 input mixer  
CONTENTS(1)  
INITIALIZATION VALUE  
0x53  
16  
16  
12  
Ch 1 input mixer[3]  
Ch 1 input mixer[2]  
Ch 1 input mixer[1]  
Ch 1 input mixer[0]  
Ch 2 input mixer[3]  
Ch 2 input mixer[2]  
Ch 2 input mixer[1]  
Ch 2 input mixer[0]  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0002 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x54  
0x55  
Ch 2 input mixer  
Channel 3 input mixer  
Channel 3 input mixer [2]  
Channel 3 input mixer [1]  
Channel 3 input mixer [0]  
u[31:26], post[25:0]  
u[31:26], pre[25:0] (9.17 format)  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
0x56  
0x57  
0x58  
Output post-scale  
Output pre-scale  
ch1 BQ[7]  
4
4
20  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
ch1 BQ[8]  
20  
20  
20  
20  
20  
Subchannel BQ[0]  
Subchannel BQ[1]  
ch2 BQ[7]  
ch2 BQ[8]  
44  
版权 © 2017–2018, Texas Instruments Incorporated  
TAS5755M  
www.ti.com.cn  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
Register Maps (接下页)  
3. Serial Control Interface Register Summary (接下页)  
NO. OF  
BYTES  
SUBADDRESS  
REGISTER NAME  
CONTENTS(1)  
INITIALIZATION VALUE  
0x5E  
pseudo_ch2 BQ[0]  
20  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
Reserved(2)  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x5F  
0x60  
4
8
Channel 4 (subchannel)  
output mixer  
Ch 4 output mixer[1]  
Ch 4 output mixer[0]  
Ch 4 input mixer[1]  
Ch 4 input mixer[0]  
Post-IDF attenuation register  
Reserved(2)  
0x0000 0000  
0x0080 0000  
0x0040 0000  
0x0040 0000  
0x0000 0080  
0x0000 0000  
0x0000 0000  
0x61  
Channel 4 (subchannel)  
input mixer  
8
4
0x62  
0x63–0xF7  
0xF8  
IDF post scale  
Device address enable  
register  
4
4
4
Write F9 A5 A5 A5 in this register to enable write to  
device address update (0xF9)  
0xF9  
Device address Update  
Register  
u[31:8], New Dev Id[7:1] , ZERO[0] (New Dev Id  
(7:1) defines the new device address  
Reserved(2)  
0X0000 0036  
0x0000 0000  
0xFA–0xFF  
All DAP coefficients are 3.23 format unless specified otherwise.  
版权 © 2017–2018, Texas Instruments Incorporated  
45  
TAS5755M  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
www.ti.com.cn  
9.6.2 Register Maps  
9.6.2.1 Clock Control Register (0x00)  
The clocks and data rates are automatically determined by the TAS5755M. The clock control register contains  
the auto-detected clock status. Bits D7–D5 reflect the sample rate. Bits D4–D2 reflect the MCLK frequency. The  
device accepts a 64 fS or 32 fS SCLK rate for all MCLK ratios, but accepts a 48 fS SCLK rate for MCLK ratios of  
192 fS and 384 fS only.  
4. Clock Control Register (0x00)  
D7  
0
0
0
0
1
1
1
1
D6  
0
0
1
1
0
0
1
1
D5  
0
1
0
1
0
1
0
1
D4  
0
0
0
0
1
1
1
1
D3  
0
0
1
1
0
0
1
1
D2  
0
1
0
1
0
1
0
1
D1  
0
D0  
0
FUNCTION  
fS = 32-kHz sample rate  
Reserved(1)  
Reserved(1)  
fS = 44.1/48-kHz sample rate(2)  
fS = 16-kHz sample rate  
fS = 22.05/24-kHz sample rate  
fS = 8-kHz sample rate  
fS = 11.025/12-kHz sample rate  
(3)  
MCLK frequency = 64 × fS  
(3)  
MCLK frequency = 128 × fS  
(4)  
MCLK frequency = 192 × fS  
(2)(5)  
MCLK frequency = 256 × fS  
MCLK frequency = 384 × fS  
MCLK frequency = 512 × fS  
Reserved(1)  
Reserved(1)  
Reserved(1) (2)  
Reserved(1) (2)  
(1) Reserved registers must not be accessed.  
(2) Default values are in bold.  
(3) Only available for 44.1-kHz and 48-kHz rates  
(4) Rate only available for 32/44.1/48-kHz sample rates  
(5) Not available at 8 kHz  
9.6.2.2 Device ID Register (0x01)  
The device ID register contains the ID code for the firmware revision.  
5. General Status Register (0x01)  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
FUNCTION  
Identification code  
46  
版权 © 2017–2018, Texas Instruments Incorporated  
TAS5755M  
www.ti.com.cn  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
9.6.2.3 Error Status Register (0x02)  
The error bits are sticky and are not cleared by the hardware. This means that the software must clear the  
register (write zeroes) and then read them to determine if they are persistent errors.  
Error Definitions:  
MCLK Error : MCLK frequency is changing. The number of MCLKs per LRCLK is changing.  
SCLK Error: The number of SCLKs per LRCLK is changing.  
LRCLK Error: LRCLK frequency is changing.  
Frame Slip: LRCLK phase is drifting with respect to internal Frame Sync.  
6. Error Status Register (0x02)  
D7  
1
D6  
-
D5  
D4  
D3  
D2  
D1  
D0  
FUNCTION  
MCLK error  
1
0
PLL autolock error  
SCLK error  
1
1
LRCLK error  
Frame slip  
1
1
Clip indicator  
1
Overcurrent, overtemperature, or undervoltage errors  
0
Reserved  
No errors(1)  
0
0
0
0
0
0
(1) Default values are in bold.  
9.6.2.4 System Control Register 1 (0x03)  
The system control register 1 has several functions:  
Bit D7:  
Bit D5:  
If 0, the dc-blocking filter for each channel is disabled.  
If 1, the dc-blocking filter (–3 dB cutoff <1 Hz) for each channel is enabled (default).  
If 0, use soft unmute on recovery from clock error. This is a slow recovery. Unmute takes the  
same time as the volume ramp defined in register 0x0E.  
If 1, use hard unmute on recovery from clock error (default). This is a fast recovery, a single step  
volume ramp  
Bits D1–D0: Select de-emphasis  
7. System Control Register 1 (0x03)  
D7  
0
1
D6  
0
D5  
0
1
D4  
0
D3  
0
D2  
0
D1  
0
0
1
1
D0  
0
1
0
1
FUNCTION  
PWM high-pass (dc blocking) disabled  
PWM high-pass (dc blocking) enabled(1)  
Reserved(1)  
Soft unmute on recovery from clock error  
Hard unmute on recovery from clock error(1)  
Reserved(1)  
Reserved(1)  
Reserved(1)  
No de-emphasis(1)  
De-emphasis for fS = 32 kHz  
De-emphasis for fS = 44.1 kHz  
De-emphasis for fS = 48 kHz  
(1) Default values are in bold.  
版权 © 2017–2018, Texas Instruments Incorporated  
47  
TAS5755M  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
www.ti.com.cn  
9.6.2.5 Serial Data Interface Register (0x04)  
As shown in 8, the TAS5755M supports 9 serial data modes. The default is 24-bit, I2S mode,  
8. Serial Data Interface Control Register (0x04)  
RECEIVE SERIAL DATA  
INTERFACE FORMAT  
WORD  
LENGTH  
D7–D4  
D3  
D2  
D1  
D0  
Right-justified  
16  
20  
24  
16  
20  
24  
16  
20  
24  
0000  
0000  
0000  
000  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Right-justified  
Right-justified  
I2S  
I2S  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
(1)  
I2S  
Left-justified  
Left-justified  
Left-justified  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
(1) Default values are in bold.  
9.6.2.6 System Control Register 2 (0x05)  
When bit D6 is set low, the system exits all channel shutdown and starts playing audio; otherwise, the outputs  
are shut down (hard mute).  
9. System Control Register 2 (0x05)  
D7 D6 D5  
D4  
D3  
0
1
-
D2  
D1  
D0  
FUNCTION  
0
1
0
1
Mid-Z ramp disabled(1)  
Mid-Z ramp enabled  
Exit all-channel shutdown (normal operation)  
Enter all-channel shutdown (hard mute)(1)  
Sub-channel in AD Mode  
Sub-channel in BD Mode  
2.0 mode [2.0 BTL](1)  
0
0
0
1
0
1
0
2.1 mode [2 SE + 1 BTL]  
ADR/FAULT pin is configured as to serve as an address input only(1)  
ADR/FAULT pin is configured as fault output  
Reserved(1)  
(1) Default values are in bold.  
48  
版权 © 2017–2018, Texas Instruments Incorporated  
 
TAS5755M  
www.ti.com.cn  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
9.6.2.7 Soft Mute Register (0x06)  
Writing a 1 to any of the following bits sets the output of the respective channel to 50% duty cycle (soft mute).  
10. Soft Mute Register (0x06)  
D7 D6 D5 D4 D3  
D2  
D1  
D0  
FUNCTION  
0
0
0
0
0
Reserved(1)  
0
Soft unmute channel 3(1)  
Soft mute channel 3  
Soft unmute channel 2(1)  
Soft mute channel 2  
Soft unmute channel 1(1)  
Soft mute channel 1  
1
0
1
0
1
(1) Default values are in bold.  
9.6.2.8 Volume Registers (0x07, 0x08, 0x09, 0x0A)  
Step size is 0.5 dB.  
Master volume  
– 0x07 (default is mute)  
– 0x08 (default is 0 dB)  
– 0x09 (default is 0 dB)  
– 0x0A (default is 0 dB)  
Channel-1 volume  
Channel-2 volume  
Channel-3 volume  
11. Volume Registers (0x07, 0x08, 0x09, 0x0A)  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
FUNCTION  
24 dB  
0
0
1
1
0
0
0
0
0 dB (default for individual channel volume)(1)  
1
1
1
1
1
1
1
0
–103 dB  
(1)  
1
1
1
1
1
1
1
1
Soft mute (default for master volume)  
(1) Default values are in bold.  
版权 © 2017–2018, Texas Instruments Incorporated  
49  
TAS5755M  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
www.ti.com.cn  
9.6.2.9 Volume Configuration Register (0x0E)  
Bits  
Volume slew rate (Used to control volume change and MUTE ramp rates). These bits control the  
D2–D0: number of steps in a volume ramp. Volume steps occur at a rate that depends on the sample rate of  
the I2S data as follows  
Sample Rate (KHz)  
8/16/32  
Approximate Ramp Rate  
125 µs/step  
11.025/22.05/44.1  
12/24/48  
90.7 µs/step  
83.3 µs/step  
12. Volume Control Register (0x0E)  
D7 D6 D5 D4 D3  
D2  
D1  
D0  
FUNCTION  
1
0
1
0
1
1
0
0
1
0
1
X
Reserved(1)  
(2) (1)  
Subchannel (ch4) volume = ch1 volume  
Subchannel volume = register 0x0A(2)  
Ch3 volume = ch2 volume(1)  
Ch3 volume = register 0x0A  
0
0
Volume slew 512 steps (43-ms volume ramp time at 48 kHz)  
Volume slew 1024 steps (85-ms volume ramp time at 48 kHz)(1)  
Volume slew 2048 steps (171- ms volume ramp time at 48 kHz)  
Volume slew 256 steps (21-ms volume ramp time at 48 kHz)  
Reserved  
0
0
0
1
0
1
1
X
(1) Default values are in bold.  
(2) Bits 6:5 can be changed only when volume is in MUTE [master volume = MUTE (register 0x07 = 0xFF)].  
9.6.2.10 Modulation Limit Register (0x10)  
The modulation limit is the maximum duty cycle of the PWM output waveform.  
13. Modulation Limit Register (0x10)  
D7  
D6  
D5  
D4  
D3  
D2  
0
D1  
0
D0  
0
MODULATION LIMIT  
99.2%  
0
0
1
98.4%  
0
1
0
97.7%(1)  
0
1
1
96.9%  
1
0
0
96.1%  
1
0
1
95.3%  
1
1
0
94.5%  
1
1
1
93.8%  
0
0
0
0
0
Reserved  
(1) Default values are in bold.  
50  
版权 © 2017–2018, Texas Instruments Incorporated  
TAS5755M  
www.ti.com.cn  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
9.6.2.11 Interchannel Delay Registers (0x11, 0x12, 0x13, and 0x14)  
Internal PWM Channels 1, 2, 1, and 2 are mapped into registers 0x11, 0x12, 0x13, and 0x14.  
14. Channel Interchannel Delay Registers (0x11, 0x12, 0x13, and 0x14)  
BITS DEFINITION  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
D0  
FUNCTION  
Minimum absolute delay, 0 DCLK cycles  
Maximum positive delay, 31 × 4 DCLK cycles  
Maximum negative delay, –32 × 4 DCLK cycles  
Reserved  
0
1
1
1
1
1
1
0
0
0
0
0
0
0
SUBADDRESS  
0x11  
D7  
1
D6  
0
D5  
1
D4  
0
D3  
1
D2  
1
D1  
D0  
DELAY = (VALUE) × 4 DCLKs  
Default value for channel 1(1)  
Default value for channel 2(1)  
0x12  
0
1
0
1
0
1
(1)  
0x13  
1
0
1
0
1
1
Default value for channel 1  
(1)  
0x14  
0
1
0
1
0
1
Default value for channel 2  
(1) Default values are in bold.  
ICD settings have high impact on audio performance (e.g., dynamic range, THD, crosstalk etc.). Therefore,  
appropriate ICD settings must be used. By default, the device has ICD settings for AD mode. If used in BD  
mode, then update these registers before coming out of all-channel shutdown.  
REGISTER  
0x11  
AD MODE  
BD MODE  
AC  
54  
B8  
60  
A0  
48  
0x12  
0x13  
AC  
54  
0x14  
9.6.2.12 PWM Shutdown Group Register (0x19)  
Settings of this register determine which PWM channels are active. The value must be 0x30 for BTL mode and  
0x3A for PBTL mode. The default value of this register is 0x30. The functionality of this register is tied to the  
state of bit D5 in the system control register.  
This register defines which channels belong to the shutdown group (SDG). If a 1 is set in the shutdown group  
register, that particular channel is not started following an exit out of all-channel shutdown command (if bit D5 is  
set to 0 in system control register 2, 0x05).  
15. Shutdown Group Register (0x19)  
D7  
0
D6  
0
D5  
1
D4  
1
D3  
0
1
D2  
0
1
D1  
0
1
D0  
0
1
FUNCTION  
Reserved(1)  
Reserved(1)  
Reserved(1)  
Reserved(1)  
PWM channel 4 does not belong to shutdown group.(1)  
PWM channel 4 belongs to shutdown group.  
PWM channel 3 does not belong to shutdown group.(1)  
PWM channel 3 belongs to shutdown group.  
PWM channel 2 does not belong to shutdown group.(1)  
PWM channel 2 belongs to shutdown group.  
PWM channel 1 does not belong to shutdown group.(1)  
PWM channel 1 belongs to shutdown group.  
(1) Default values are in bold.  
版权 © 2017–2018, Texas Instruments Incorporated  
51  
TAS5755M  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
www.ti.com.cn  
9.6.2.13 Start/Stop Period Register (0x1A)  
This register is used to control the soft-start and soft-stop period following an enter/exit all channel shut down  
command or change in the PDN state. This helps reduce pops and clicks at start-up and shutdown. The times  
are only approximate and vary depending on device activity level and I2S clock stability.  
16. Start/Stop Period Register (0x1A)  
D7 D6 D5 D4 D3  
D2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
D1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
D0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
FUNCTION  
0
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
SSTIMER enabled(1)  
SSTIMER disabled  
Reserved(1)  
No 50% duty cycle start/stop period  
16.5-ms 50% duty cycle start/stop period  
23.9-ms 50% duty cycle start/stop period  
31.4-ms 50% duty cycle start/stop period  
40.4-ms 50% duty cycle start/stop period  
53.9-ms 50% duty cycle start/stop period  
70.3-ms 50% duty cycle start/stop period  
94.2-ms 50% duty cycle start/stop period  
125.7-ms 50% duty cycle start/stop period(1)  
164.6-ms 50% duty cycle start/stop period  
239.4-ms 50% duty cycle start/stop period  
314.2-ms 50% duty cycle start/stop period  
403.9-ms 50% duty cycle start/stop period  
538.6-ms 50% duty cycle start/stop period  
703.1-ms 50% duty cycle start/stop period  
942.5-ms 50% duty cycle start/stop period  
1256.6-ms 50% duty cycle start/stop period  
1728.1-ms 50% duty cycle start/stop period  
2513.6-ms 50% duty cycle start/stop period  
3299.1-ms 50% duty cycle start/stop period  
4241.7-ms 50% duty cycle start/stop period  
5655.6-ms 50% duty cycle start/stop period  
7383.7-ms 50% duty cycle start/stop period  
9897.3-ms 50% duty cycle start/stop period  
13,196.4-ms 50% duty cycle start/stop period  
(1) Default values are in bold.  
52  
版权 © 2017–2018, Texas Instruments Incorporated  
TAS5755M  
www.ti.com.cn  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
9.6.2.14 Oscillator Trim Register (0x1B)  
The TAS5755M PWM processor contains an internal oscillator to support autodetect of I2S clock rates. This  
reduces system cost because an external reference is not required. Currently, TI recommends a reference  
resistor value of 18.2 k(1%). This must be connected between OSC_RES and DVSSO.  
Writing 0x00 to register 0x1B enables the trim that was programmed at the factory.  
Trim must always be run following reset of the device.  
17. Oscillator Trim Register (0x1B)  
D7  
0
D6  
D5 D4 D3  
D2  
D1  
D0  
FUNCTION  
0
0
0
Reserved(1)  
0
Oscillator trim not done (read-only)(1)  
Oscillator trim done (read only)  
Reserved(1)  
1
0
0
Select factory trim (Write a 0 to select factory trim; default is 1.)  
Factory trim disabled(1)  
1
0
Reserved(1)  
(1) Default values are in bold.  
9.6.2.15 BKND_ERR Register (0x1C)  
When a back-end error signal is received from the internal power stage, the power stage is reset stopping all  
PWM activity. Subsequently, the modulator waits approximately for the time listed in 18 before attempting to  
re-start the power stage.  
18. BKND_ERR Register (0x1C)(1)  
D7 D6 D5 D4 D3  
D2  
0
D1  
0
D0  
X
0
FUNCTION  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
Reserved  
0
1
Set back-end reset period to 299 ms(2)  
Set back-end reset period to 449 ms  
Set back-end reset period to 598 ms  
Set back-end reset period to 748 ms  
Set back-end reset period to 898 ms  
Set back-end reset period to 1047 ms  
Set back-end reset period to 1197 ms  
Set back-end reset period to 1346 ms  
Set back-end reset period to 1496 ms  
Set back-end reset period to 1496 ms  
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
0
0
0
0
0
1
0
1
X
X
1
X
(1) This register can be written only with a "non-Reserved" value. Also this register can be written once after the reset.  
(2) Default values are in bold.  
版权 © 2017–2018, Texas Instruments Incorporated  
53  
 
TAS5755M  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
www.ti.com.cn  
9.6.2.16 Input Multiplexer Register (0x20)  
This register controls the modulation scheme (AD or BD mode) as well as the routing of I2S audio to the internal  
channels.  
19. Input Multiplexer Register (0x20)  
D31  
0
D30  
0
D29  
0
D28  
0
D27  
0
D26  
0
D25  
0
D24  
0
FUNCTION  
FUNCTION  
Channel-1 AD mode(1)  
Channel-1 BD mode  
SDIN-L to channel 1(1)  
SDIN-R to channel 1  
Reserved  
Reserved(1)  
D23  
0
D22  
D21  
D20  
D19  
D18  
D17  
D16  
1
0
0
0
0
0
1
0
1
0
0
1
1
Reserved  
1
0
0
Reserved  
1
0
1
Reserved  
1
1
0
Ground (0) to channel 1  
Reserved  
1
1
1
0
Channel 2 AD mode(1)  
Channel 2 BD mode  
SDIN-L to channel 2  
SDIN-R to channel 2(1)  
Reserved  
1
0
0
0
0
0
1
0
1
0
0
1
1
Reserved  
1
0
0
Reserved  
1
0
1
Reserved  
1
1
0
Ground (0) to channel 2  
Reserved  
1
1
1
D15  
0
D14  
1
D13  
1
D12  
1
D11  
0
D10  
1
D9  
1
D8  
1
FUNCTION  
Reserved(1)  
Reserved(1)  
D7  
0
D6  
1
D5  
1
D4  
1
D3  
0
D2  
0
D1  
1
D0  
0
FUNCTION  
(1) Default values are in bold.  
54  
版权 © 2017–2018, Texas Instruments Incorporated  
TAS5755M  
www.ti.com.cn  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
9.6.2.17 Channel 4 Source Select Register (0x21)  
This register selects the channel 4 source.  
20. Subchannel Control Register (0x21)  
D31  
0
D30  
0
D29  
0
D28  
0
D27  
0
D26  
0
D25  
0
D24  
0
FUNCTION  
FUNCTION  
FUNCTION  
Reserved(1)  
Reserved(1)  
D23  
0
D22  
0
D21  
0
D20  
0
D19  
0
D18  
0
D17  
0
D16  
0
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
Select SDIN path (third path), not available in  
TAS5755M(1)  
0
1
0
0
0
0
1
1
0
0
1
(L + R)/2  
Left-channel post-BQ(1)  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
1
D0  
1
FUNCTION  
Reserved(1)  
(1) Default values are in bold.  
9.6.2.18 PWM Output Mux Register (0x25)  
This DAP output mux selects which internal PWM channel is output to the external pins. Any channel can be  
output to any external output pin.  
Bits D21–D20:  
Bits D17–D16:  
Bits D13–D12:  
Bits D09–D08:  
Selects which PWM channel is output to OUT_A  
Selects which PWM channel is output to OUT_B  
Selects which PWM channel is output to OUT_C  
Selects which PWM channel is output to OUT_D  
Channels are encoded so that channel 1 = 0x00, channel 2 = 0x01, …, channel 4 = 0x03.  
21. PWM Output Mux Register (0x25)  
D31  
0
D30  
0
D29  
0
D28  
0
D27  
0
D26  
0
D25  
0
D24  
1
FUNCTION  
Reserved(1)  
D23  
0
D22  
0
D21  
D20  
D19  
D18  
D17  
D16  
FUNCTION  
Reserved(1)  
0
0
Multiplex PWM 1 to OUT_A(1)  
Multiplex PWM 2 to OUT_A  
Multiplex PWM 3 to OUT_A  
Multiplex PWM 4 to OUT_A  
Reserved(1)  
0
1
1
0
1
1
0
0
0
0
Multiplex PWM 1 to OUT_B  
Multiplex PWM 2 to OUT_B  
Multiplex PWM 3 to OUT_B(1)  
Multiplex PWM 4 to OUT_B  
0
1
1
0
1
1
(1) Default values are in bold.  
版权 © 2017–2018, Texas Instruments Incorporated  
55  
TAS5755M  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
www.ti.com.cn  
21. PWM Output Mux Register (0x25) (接下页)  
D15  
0
D14  
0
D13  
D12  
D11  
D10  
D9  
D8  
FUNCTION  
Reserved(1)  
0
0
Multiplex PWM 1 to OUT_C  
Multiplex PWM 2 to OUT_C(1)  
Multiplex PWM 3 to OUT_C  
Multiplex PWM 4 to OUT_C  
Reserved(1)  
0
1
1
0
1
1
0
0
0
0
Multiplex PWM 1 to OUT_D  
Multiplex PWM 2 to OUT_D  
Multiplex PWM 3 to OUT_D  
Multiplex PWM 4 to OUT_D(1)  
0
1
1
0
1
1
D7  
0
D6  
1
D5  
0
D4  
0
D3  
0
D2  
1
D1  
0
D0  
1
FUNCTION  
Reserved(1)  
9.6.2.19 DRC Control Register (0x46)  
Each DRC can be enabled independently using the DRC control register. The DRCs are disabled by default.  
22. DRC Control Register (0x46)  
D31  
0
D30  
0
D29  
0
D28  
0
D27  
0
D26  
0
D25  
0
D24  
0
FUNCTION  
FUNCTION  
FUNCTION  
FUNCTION  
Reserved(1)  
D23  
0
D22  
0
D21  
0
D20  
0
D19  
0
D18  
0
D17  
0
D16  
0
(1)  
Reserved  
D15  
0
D14  
0
D13  
0
D12  
0
D11  
0
D10  
0
D9  
0
D8  
0
Reserved(1)  
Reserved(1)  
D7  
0
D6  
0
D5  
D4  
D3  
D2  
D1  
D0  
0
Disable complementary (1 - H) low-pass filter generation  
Enable complementary (1 - H) low-pass filter generation  
1
0
1
0
0
Reserved(1)  
0
1
0
1
DRC2 turned OFF(1)  
DRC2 turned ON  
DRC1 turned OFF(1)  
DRC1 turned ON  
(1) Default values are in bold.  
56  
版权 © 2017–2018, Texas Instruments Incorporated  
TAS5755M  
www.ti.com.cn  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
9.6.2.20 Bank Switch and EQ Control Register (0x50)  
23. Bank Switching Command Register (0x50)  
D31  
0
D30  
D29  
D28  
D27  
D26  
D25  
D24  
FUNCTION  
32 kHz, does not use bank 3(1)  
1
32 kHz, uses bank 3  
0
Reserved(1)  
0
Reserved(1)  
0
44.1/48 kHz, does not use bank 3(1)  
44.1/48 kHz, uses bank 3  
16 kHz, does not use bank 3  
16 kHz, uses bank 3(1)  
1
0
1
0
22.025/24 kHz, does not use bank 3  
22.025/24 kHz, uses bank 3(1)  
8 kHz, does not use bank 3  
8 kHz, uses bank 3(1)  
1
0
1
0
11.025 kHz/12, does not use bank 3  
11.025/12 kHz, uses bank 3(1)  
1
D23  
0
D22  
D21  
D20  
D19  
D18  
D17  
D16  
FUNCTION  
32 kHz, does not use bank 2(1)  
1
32 kHz, uses bank 2  
1
Reserved(1)  
1
Reserved(1)  
0
44.1/48 kHz, does not use bank 2  
44.1/48 kHz, uses bank 2(1)  
16 kHz, does not use bank 2(1)  
16 kHz, uses bank 2  
1
0
1
0
22.025/24 kHz, does not use bank 2(1)  
22.025/24 kHz, uses bank 2  
8 kHz, does not use bank 2(1)  
8 kHz, uses bank 2  
1
0
1
0
11.025/12 kHz, does not use bank 2(1)  
11.025/12 kHz, uses bank 2  
FUNCTION  
1
D15  
0
D14  
D13  
D12  
D11  
D10  
D9  
D8  
32 kHz, does not use bank 1  
32 kHz, uses bank 1(1)  
1
0
Reserved(1)  
0
Reserved(1)  
0
44.1/48 kHz, does not use bank 1(1)  
44.1/48 kHz, uses bank 1  
16 kHz, does not use bank 1(1)  
16 kHz, uses bank 1  
1
0
1
0
22.025/24 kHz, does not use bank 1(1)  
22.025/24 kHz, uses bank 1  
8 kHz, does not use bank 1(1)  
8 kHz, uses bank 1  
1
0
1
0
11.025/12 kHz, does not use bank 1(1)  
1
11.025/12 kHz, uses bank 1  
(1) Default values are in bold.  
版权 © 2017–2018, Texas Instruments Incorporated  
57  
TAS5755M  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
www.ti.com.cn  
23. Bank Switching Command Register (0x50) (接下页)  
D7  
0
D6  
D5  
D4  
D3  
D2  
D1  
D0  
FUNCTION  
EQ ON  
1
0
0
1
EQ OFF (bypass BQ 0-7 of channels 1 and 2)  
Reserved(1)  
Ignore bank-mapping in bits D31–D8.Use default mapping.(1)  
Use bank-mapping in bits D31–D8.  
L and R can be written independently.(1)  
0
L and R are ganged for EQ biquads; a write to left-channel BQ is also  
written to right-channel BQ. (0x29–0x2F is ganged to 0x30–0x36.Also  
0x58–0x59 is ganged to 0x5C–0x5D)  
1
0
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
X
Reserved(1)  
No bank switching. All updates to DAP(1)  
Configure bank 1 (32 kHz by default)  
Configure bank 2 (44.1/48 kHz by default)  
Configure bank 3 (other sample rates by default)  
Automatic bank selection  
Reserved  
Reserved  
58  
版权 © 2017–2018, Texas Instruments Incorporated  
TAS5755M  
www.ti.com.cn  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
10 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
68, 71, and 72 highlight the required external components and system level connections for proper  
operation of the device in several popular use cases.  
Each of these configurations can be realized using the Evaluation Modules (EVMs) for the device. These flexible  
modules allow full evaluation of the device in the most common modes of operation. Any design variation can be  
supported by TI through schematic and layout reviews. Visit http://e2e.ti.com for design assistance and join the  
audio amplifier discussion forum for additional information.  
10.2 Typical Applications  
10.2.1 Stereo Bridge Tied Load Application  
A stereo system generally refers to a system in which there are two full range speakers without a separate  
amplifier path for the speakers that reproduce the low-frequency content. In this system, two channels are  
presented to the amplifier via the digital input signal. These two channels are amplified and then sent to two  
separate speakers.  
Most commonly, the two channels are a pair of signals called a stereo pair, with one channel containing the  
audio for the left channel and the other channel containing the audio for the right channel.  
The Stereo BTL Configuration with Headphone and Line Driver Amplifier application is shown in 68.  
3.3V  
8V-24V  
PVDD  
AVDD/DVDD  
OUT_A  
LRCLK  
SCLK  
MCLK  
SDIN  
Digital  
Audio  
Source  
BST_A  
LCBTL  
BST_B  
OUT_B  
I2C  
Control  
SDA  
SCL  
RESET  
PDN  
Control  
Inputs  
OUT_A  
BST_A  
LCBTL  
PLL_FLTP  
PLL_FLTM  
Loop  
Filter  
BST_B  
OUT_B  
Copyright © 2018, Texas Instruments Incorporated  
68. Stereo Bridge Tied Load Application  
版权 © 2017–2018, Texas Instruments Incorporated  
59  
 
TAS5755M  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
www.ti.com.cn  
Typical Applications (接下页)  
10.2.1.1 Design Requirements  
24. Design Requirements  
PARAMETER  
Low Power Supply  
High Power Supply  
EXAMPLE  
3.3 V  
8 V to 24 V  
I2S Compliant Master  
I2C Compliant Master  
GPIO Control  
Host Processor  
Output Filters  
Speaker  
Inductor-Capacitor Low Pass Filter  
4 Ω minimum  
10.2.1.2 Detailed Design Procedure  
10.2.1.2.1 Component Selection and Hardware Connections  
The typical connections required for proper operation of the device can be found in the TAS5755EVM User’s  
Guide (SLOU481A). The device was tested with this list of components; deviation from this list of typical  
application components, unless recommended by this document, may produce unwanted results, which could  
range from degradation of audio performance to destructive failure of the device.  
10.2.1.2.2 I2C Pullup Resistors  
Customary pullup resistors are required on the SCL and SDA signal lines. They are not shown in the Typical  
Application Circuits, because they are shared by all of the devices on the I2C bus and are considered to be part  
of the associated passive components for the System Processor. These resistor values must be chosen per the  
guidance provided in the I2C Specification.  
10.2.1.2.3 Digital I/O Connectivity  
The digital I/O lines of the TAS5755M are described in previous sections. As discussed, whenever a static digital  
pin (that is a pin that is hardwired to be HIGH or LOW) is required to be pulled HIGH, it must be connected to  
DVDD through a pullup resistor to control the slew rate of the voltage presented to the digital I/O pins. It is not,  
however, necessary to have a separate pullup resistor for each static digital I/O line. Instead, a single resistor  
can be used to tie all static I/O lines HIGH to reduce BOM count.  
60  
版权 © 2017–2018, Texas Instruments Incorporated  
 
TAS5755M  
www.ti.com.cn  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
10.2.1.2.4 Recommended Start-Up and Shutdown Procedures  
Normal Operation  
Initialization  
Shutdown  
Powerdown  
3 V  
3 V  
AVDD/DVDD  
0 ns  
PDN  
2 ms  
0 ns  
DAP  
Config  
Other  
Config  
SCL  
SDA  
Exit  
SD  
Enter  
SD  
I2C  
Trim  
Volume and Mute Commands  
(2)  
(2)  
50 ms  
1 ms + 1.3 tstop  
1 ms + 1.3 tstart  
2 ms  
0 ns  
100 ms  
RESET  
13.5 ms  
(1)  
tPLL  
2 ms  
100 μs  
10 ms  
8 V  
6 V  
8 V  
6 V  
PVDD  
(1) tPLL has to be greater than 240 ms + 1.3 tstart  
.
This constraint only applies to the first trim command following AVDD/DVDD power-up.  
It does not apply to trim commands following subsequent resets.  
(2) tstart/tstop = PWM start/stop time as defined in register 0X1A  
T0419-06  
69. Recommended Command Sequence  
版权 © 2017–2018, Texas Instruments Incorporated  
61  
TAS5755M  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
www.ti.com.cn  
3 V  
AVDD/DVDD  
0 ns  
2 ms  
PDN  
0 ns  
2
I C  
2 ms  
RESET  
2 ms  
0 ns  
8 V  
PVDD  
6 V  
T0420-05  
70. Power-Loss Sequence  
10.2.1.2.4.1 Initialization Sequence  
Use the following sequence to power up and initialize the device:  
1. Hold all digital inputs low and ramp up AVDD/DVDD to at least 3 V.  
2. Initialize digital inputs and PVDD supply as follows:  
Drive RESET = 0, PDN = 1, and other digital inputs to their desired state while ensuring that  
all are never more than 2.5 V above AVDD/DVDD. Wait at least 100 µs, drive RESET = 1,  
and wait at least another 13.5 ms.  
Ramp up PVDD to at least 8 V while ensuring that it remains below 6 V for at least 100 µs  
after AVDD/DVDD reaches 3 V. Then wait at least another 10 µs.  
3. Trim oscillator (write 0x00 to register 0x1B) and wait at least 50 ms.  
4. Configure the DAP via I2C, see TAS5755EVM Evaluation Module User's Guide (SLOU481A) for  
typical values.  
5. Configure remaining registers.  
6. Exit shutdown (sequence defined in Shutdown Sequence).  
10.2.1.2.4.2 Normal Operation  
The following are the only events supported during normal operation:  
1. Writes to master/channel volume registers  
2. Writes to soft-mute register  
3. Enter and exit shutdown (sequence defined in Shutdown Sequence)  
Event 3 is not supported for 240 ms + 1.3 × tstart after trim following AVDD/DVDD power-  
up ramp (where tstart is specified by register 0x1A).  
62  
版权 © 2017–2018, Texas Instruments Incorporated  
TAS5755M  
www.ti.com.cn  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
10.2.1.2.4.3 Shutdown Sequence  
Enter:  
1. Write 0x40 to register 0x05.  
2. Wait at least 1 ms + 1.3 × tstop (where tstop is specified by register 0x1A).  
3. If desired, reconfigure by returning to step 4 of initialization sequence.  
Exit:  
1. Write 0x00 to register 0x05 (exit shutdown command may not be serviced for as much as 240 ms  
after trim following AVDD/DVDD power-up ramp).  
2. Wait at least 1 ms + 1.3 × tstart (where tstart is specified by register 0x1A).  
3. Proceed with normal operation.  
10.2.1.2.4.4 Power-Down Sequence  
Use the following sequence to power down the device and its supplies:  
1. If time permits, enter shutdown (sequence defined in Shutdown Sequence); else, in case of  
sudden power loss, assert PDN = 0 and wait at least 2 ms.  
2. Assert RESET = 0.  
3. Drive digital inputs low and ramp down PVDD supply as follows:  
Drive all digital inputs low after RESET has been low for at least 2 µs.  
Ramp down PVDD while ensuring that it remains above 8 V until RESET has been low for at  
least 2 µs.  
4. Ramp down AVDD/DVDD while ensuring that it remains above 3 V until PVDD is below 6 V and  
that it is never more than 2.5 V below the digital inputs.  
10.2.1.3 Application Curves  
space  
25. Relevant Performance Curves  
CURVE TITLE  
FIGURE  
Output Power vs Supply Voltage (2.0 BTL Mode)  
18  
With 4Ω Load on Typical 2 Layer PCB Device May Be Thermally Limited Above 20 V  
Total Harmonic Distortion + Noise vs Output Power (2.0 BTL Mode)  
Total Harmonic Distortion + Noise vs Output Power (2.0 BTL Mode)  
Total Harmonic Distortion + Noise vs Output Power (2.0 BTL Mode)  
Total Harmonic Distortion vs Frequency (2.0 BTL Mode)  
Total Harmonic Distortion vs Frequency (2.0 BTL Mode)  
Total Harmonic Distortion vs Frequency (2.0 BTL Mode)  
Efficiency vs Output Power (2.0 BTL Mode)  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Crosstalk vs Frequency (2.0 BTL Mode)  
Crosstalk vs Frequency (2.0 BTL Mode)  
Crosstalk vs Frequency (2.0 BTL Mode)  
Crosstalk vs Frequency (2.0 BTL Mode)  
Power vs Supply Voltage (2.0 BTL Mode)  
Idle Channel Noise vs Supply Voltage (2.0 BTL Mode)  
版权 © 2017–2018, Texas Instruments Incorporated  
63  
 
TAS5755M  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
www.ti.com.cn  
10.2.2 Mono Parallel Bridge Tied Load Application  
A mono system refers to a system in which the amplifier is used to drive a single loudspeaker. Parallel Bridge  
Tied Load (PBTL) indicates that the two full-bridge channels of the device are placed in parallel and drive the  
loudspeaker simultaneously using an identical audio signal. The primary benefit of operating the TAS5755M  
device in PBTL operation is to reduce the power dissipation and increase the current sourcing capabilities of the  
amplifier output. In this mode of operation, the current limit of the audio amplifier is approximately doubled while  
the on-resistance is approximately halved.  
The loudspeaker can be a full-range transducer or one that only reproduces the low-frequency content of an  
audio signal, as in the case of a powered subwoofer. Often in this use case, two stereo signals are mixed  
together and sent through a low-pass filter in order to create a single audio signal which contains the low  
frequency information of the two channels.  
The Mono Parallel Bridge Tied Load application is shown in 71.  
3.3 V  
8 V–24 V  
PVDD  
AVDD/DVDD  
OUT_A  
LRCLK  
SCLK  
MCLK  
SDIN  
Digital  
Audio  
Source  
BST_A  
BST_B  
OUT_B  
I2C  
Control  
SDA  
SCL  
LCPBTL  
OUT_C  
RESET  
PDN  
Control  
Inputs  
BST_C  
BST_D  
PLL_FLTP  
PLL_FLTM  
Loop  
Filter  
OUT_D  
Copyright © 2018, Texas Instruments Incorporated  
71. Mono Parallel Bridge Tied Load Application  
64  
版权 © 2017–2018, Texas Instruments Incorporated  
 
TAS5755M  
www.ti.com.cn  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
10.2.2.1 Design Requirements  
26. Design Requirements  
PARAMETER  
EXAMPLE  
Low Power Supply  
High Power Supply  
3.3 V  
8 V to 24 V  
I2S Compliant Master  
I2C Compliant Master  
GPIO Control  
Host Processor  
Output Filters  
Speaker  
Inductor-Capacitor Low Pass Filter  
4 Ω minimum  
10.2.2.2 Detailed Design Procedure  
Refer to Detailed Design Procedure for information.  
10.2.2.3 Application Curves  
SPACE  
27. Relevant Performance Curves  
CURVE TITLE  
FIGURE  
Output Power vs Supply Voltage (PBTL Mode)  
32  
With 2Ω Load on Typical 2 Layer PCB, Device May Be Thermally Limited Above 20 V  
Total Harmonic Distortion + Noise vs Output Power (PBTL Mode)  
Total Harmonic Distortion + Noise vs Output Power (PBTL Mode)  
Total Harmonic Distortion + Noise vs Output Power (PBTL Mode)  
Total Harmonic Distortion vs Frequency (PBTL Mode)  
Total Harmonic Distortion vs Frequency (PBTL Mode)  
Total Harmonic Distortion vs Frequency (PBTL Mode)  
Efficiency vs Output Power (PBTL Mode)  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
Efficiency vs Output Power (PBTL Mode)  
Power vs Supply Voltage (PBTL Mode)  
Idle Channel Noise vs Supply Voltage (PBTL Mode)  
版权 © 2017–2018, Texas Instruments Incorporated  
65  
TAS5755M  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
www.ti.com.cn  
10.2.3 2.1 Application  
A 2.1 system generally refers to a system in which there are two full range speakers with a separate amplifier  
path for the speakers which reproduce the low-frequency content. In this system, two channels are presented to  
the amplifier via the digital input signal, these are driven into two single-ended speakers and are mixed into a  
third channel, conditioned to stream low-frequency content into a differentially connected speaker.  
The 2.1 application is shown in 72.  
3.3 V  
8 V–24 V  
PVDD  
AVDD/DVDD  
LCSE  
OUT_A  
LRCLK  
SCLK  
MCLK  
SDIN  
PVDD  
Digital  
Audio  
Source  
BST_A  
BST_B  
OUT_B  
LCSE  
I2C  
Control  
SDA  
SCL  
PVDD  
RESET  
PDN  
Control  
Inputs  
OUT_C  
PLL_FLTP  
PLL_FLTM  
Loop  
Filter  
BST_C  
BST_D  
LCBTL  
OUT_D  
Copyright © 2018, Texas Instruments Incorporated  
72. Simplified 2.1 Application Diagram  
10.2.3.1 Design Requirements  
28. Design Requirements  
PARAMETER  
Low Power Supply  
EXAMPLE  
3.3 V  
High Power Supply  
8 V to 24 V  
I2S Compliant Master  
I2C Compliant Master  
GPIO Control  
Host Processor  
Output Filters  
Speaker  
Inductor-Capacitor Low Pass Filter  
4 Ω (BTL), 2 Ω (SE) minimum  
66  
版权 © 2017–2018, Texas Instruments Incorporated  
 
TAS5755M  
www.ti.com.cn  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
10.2.3.2 Detailed Design Procedure  
Refer to Detailed Design Procedure for information.  
10.2.3.3 Application Curves  
29. Relevant Performance Curves  
CURVE TITLE  
FIGURE  
Output Power vs Supply Voltage (2.1 SE Mode)  
5  
With 2 × 4Ω + 4Ω Load on Typical 2 Layer PCB Device May Be Thermally Limited Above 20 V  
Total Harmonic Distortion + Noise vs Output Power (2.1 SE Mode)  
Total Harmonic Distortion + Noise vs Output Power (2.1 SE Mode)  
Total Harmonic Distortion + Noise vs Output Power (2.1 SE Mode)  
Total Harmonic Distortion + Noise vs Frequency (2.1 SE Mode)  
Total Harmonic Distortion + Noise vs Frequency (2.1 SE Mode)  
Total Harmonic Distortion + Noise vs Frequency (2.1 SE Mode)  
Efficiency vs Total Output Power (2.1 SE Mode)  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
Efficiency vs Total Output Power (2.1 SE Mode)  
Crosstalk vs Frequency (2.1 SE Mode)  
Crosstalk vs Frequency (2.1 SE Mode)  
Crosstalk vs Frequency (2.1 SE Mode)  
Crosstalk vs Frequency (2.1 SE Mode)  
版权 © 2017–2018, Texas Instruments Incorporated  
67  
TAS5755M  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
www.ti.com.cn  
11 Power Supply Recommendations  
The TAS5755M requires two power supplies; a low voltage 3.3 V nominal for the pins DVDD and AVDD and a  
high power supply, 8 V to 24 V for the pin PVDD. There is no requirement for power up sequencing of low and  
high power supplies, however is recommended to put the PDN pin to low before removing the low voltage power  
supplies in order to protect the outputs.  
11.1 DVDD and AVDD Supplies  
The AVDD Supply is used to power the analog internal circuit of the device, and needs a well regulated and  
filtered 3.3-V supply voltage. The DVDD Supply is used to power the digital circuitry. DVDD needs a well  
regulated and filtered 3.3-V supply voltage.  
11.2 PVDD Power Supply  
The TAS5755M class-D audio amplifier requires adequate power supply decoupling to ensure the output total  
harmonic distortion (THD) and noise is as low as possible. A good low equivalent-series-resistance (ESR)  
ceramic capacitor, typically 1 µF, placed as close as possible to the device PVDD leads works best. For filtering  
lower frequency noise signals, a 10 µF or greater capacitor placed near the audio power amplifier is  
recommended.  
12 Layout  
12.1 Layout Guidelines  
Class-D switching edges are fast and switched currents are high so it is necessary to take care when planning  
the layout of the printed circuit board. The following suggestions will help to meet audio, thermal and EMC  
requirements.  
Decoupling capacitors: the high-frequency decoupling capacitors must be placed as close to the supply pins  
as possible; on the TAS5755M a 1-µF high-quality ceramic capacitor is used. Large (10 μF or greater) bulk  
power supply decoupling capacitors must be placed near the TAS5755M on the PVDD supplies.  
Keep the current loop from each of the outputs through the output inductor and the small filter cap and back  
to GND as small and tight as possible. The size of this current loop determines its effectiveness as an  
antenna.  
Grounding: A big common GND plane is recommended. The PVDD decoupling capacitors must connect to  
GND. The TAS5755M PowerPAD must be connected to GND.  
Output filter: remember to select inductors that can handle the high short circuit current of the device. The LC  
filter must be placed close to the outputs.  
The EVM product folder (TAS5755EVM) and User’s Guide (SLOU481A) available on www.ti.com show  
schematic, bill of material, gerber files, and more detailed layout plots.  
68  
版权 © 2017–2018, Texas Instruments Incorporated  
TAS5755M  
www.ti.com.cn  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
12.2 Layout Examples  
73. Top Layer Layout with Stereo BTL Mode  
版权 © 2017–2018, Texas Instruments Incorporated  
69  
TAS5755M  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
www.ti.com.cn  
Layout Examples (接下页)  
74. Bottom Layer Layout with Stereo BTL Mode  
70  
版权 © 2017–2018, Texas Instruments Incorporated  
TAS5755M  
www.ti.com.cn  
ZHCSH30C AUGUST 2017REVISED APRIL 2018  
13 器件和文档支持  
13.1 器件支持  
13.1.1 开发支持  
TAS570X GDE 软件设置开发工具文档 (SLOC124)  
13.2 文档支持  
EVM 产品文件夹 (TAS5755MEVM)  
13.2.1 相关文档  
TAS5755MEVM 用户指南》(SLOU481A)  
13.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
13.4 商标  
PowerPAD, E2E are trademarks of Texas Instruments.  
13.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
13.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
版权 © 2017–2018, Texas Instruments Incorporated  
71  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TAS5755MDFD  
ACTIVE  
ACTIVE  
HTSSOP  
HTSSOP  
DFD  
DFD  
56  
56  
35  
RoHS & Green  
NIPDAU  
Level-4-260C-72 HR  
Level-4-260C-72 HR  
0 to 125  
0 to 125  
5755M  
5755M  
TAS5755MDFDR  
2000 RoHS & Green  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TAS5755MDFDR  
HTSSOP  
DFD  
56  
2000  
330.0  
24.4  
8.6  
15.6  
1.8  
12.0  
24.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HTSSOP DFD 56  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
TAS5755MDFDR  
2000  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
DFD HTSSOP  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
TAS5755MDFD  
56  
35  
530  
11.89  
3600  
4.9  
Pack Materials-Page 3  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TAS5755MDFD

具有 2.1 声道模式的 50W 立体声、100W 单声道、8V 至 26.4V、数字输入开环 D 类音频放大器 | DFD | 56 | 0 to 125
TI

TAS5755MDFDR

具有 2.1 声道模式的 50W 立体声、100W 单声道、8V 至 26.4V、数字输入开环 D 类音频放大器 | DFD | 56 | 0 to 125
TI

TAS5756M

30W 立体声、40W 单声道、4.5V 至 26.4V 电源电压、数字输入 D 类音频放大器
TI

TAS5756MDCA

30W 立体声、40W 单声道、4.5V 至 26.4V 电源电压、数字输入 D 类音频放大器 | DCA | 48 | -25 to 85
TI

TAS5756MDCAR

30W 立体声、40W 单声道、4.5V 至 26.4V 电源电压、数字输入 D 类音频放大器 | DCA | 48 | -25 to 85
TI

TAS5760L

Check for Samples: TAS5760L
TI

TAS5760LD

General Purpose I2S Input Class D Amplifier with DirectPath™ Headphone / Line Driver
TI

TAS5760LDAP

21W 立体声、42W 单声道、4.5V 至 16.4V 电源电压、数字输入 D 类音频放大器 | DAP | 32 | -25 to 85
TI

TAS5760LDAPR

21W 立体声、42W 单声道、4.5V 至 16.4V 电源电压、数字输入 D 类音频放大器 | DAP | 32 | -25 to 85
TI

TAS5760LDCA

21W 立体声、42W 单声道、4.5V 至 16.4V 电源电压、数字输入 D 类音频放大器 | DCA | 48 | -25 to 85
TI

TAS5760LDCAR

21W 立体声、42W 单声道、4.5V 至 16.4V 电源电压、数字输入 D 类音频放大器 | DCA | 48 | -25 to 85
TI

TAS5760LDDCA

带集成耳机的 21W 立体声、42W 单声道、4.5V 至 16.4V、数字输入 D 类音频放大器 | DCA | 48 | -25 to 85
TI