TAS5504APAGG4 [TI]

4-Channel Digital Audio PWM Processor; 4通道数字音频PWM处理器
TAS5504APAGG4
型号: TAS5504APAGG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

4-Channel Digital Audio PWM Processor
4通道数字音频PWM处理器

消费电路 商用集成电路
文件: 总97页 (文件大小:1793K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TAS5504A  
4-Channel Digital Audio PWM Processor  
Data Manual  
TM  
February 2006  
DAV - Digital Audio/Speaker  
SLES169  
TAS5504A  
4-Channel Digital Audio PWM Processor  
Data Manual  
TM  
Literature Number: SLES169  
February 2006  
PRODUCT PREVIEW information concerns products in the  
formative or design phase of development. Characteristic data and  
other specifications are design goals. Texas Instruments reserves  
the right to change or discontinue these products without notice.  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
Contents  
1
Introduction....................................................................................................................... 11  
1.1  
1.2  
1.3  
1.4  
TAS5504A Features ....................................................................................................... 11  
Overview..................................................................................................................... 12  
Changes From the TAS5504 to the TAS5504A........................................................................ 13  
Physical Characteristics ................................................................................................... 15  
1.4.1  
1.4.2  
1.4.3  
Terminal Assigments............................................................................................ 15  
Ordering Information ............................................................................................ 15  
TERMINAL FUNCTIONS....................................................................................... 15  
1.4.4 TAS5504A Functional Description ....................................................................................... 17  
1.4.4.1 Power Supply.................................................................................................... 17  
1.4.4.2 Clock, PLL, and Serial Data Interface........................................................................ 18  
1.4.4.3 I2C Serial Control Interface .................................................................................... 18  
1.4.4.4 Device Control................................................................................................... 19  
1.4.4.5 Digital Audio Processor (DAP) ................................................................................ 19  
1.4.5 TAS5504A DAP Architecture ............................................................................................. 20  
1.4.5.1 TAS5504A DAP Architecture Diagrams...................................................................... 20  
1.4.5.2 I2C Coefficient Number Formats.............................................................................. 23  
1.4.6 Input Crossbar Mixer....................................................................................................... 26  
1.4.7 Biquad Filters ............................................................................................................... 27  
1.4.8 Bass and Treble Controls ................................................................................................. 27  
1.4.9 Volume, Automute, and Mute............................................................................................. 28  
1.4.9.1 Automute and Mute Channel Controls ....................................................................... 29  
1.4.10 Loudness Compensation ................................................................................................ 30  
1.4.10.1 Loudness Example ............................................................................................ 31  
1.4.11 Dynamic Range Control (DRC) ........................................................................................ 31  
1.4.11.1 DRC Implementation.......................................................................................... 34  
1.4.11.2 Compression/Expansion Coefficient Computation Engine Parameters ................................ 35  
1.4.12 Output Mixer............................................................................................................... 37  
1.4.13 PWM........................................................................................................................ 38  
1.4.13.1 DC Blocking (High-Pass Enable/Disable) .................................................................. 39  
1.4.13.2 De-Emphasis Filter ............................................................................................ 39  
1.4.13.3 Power-Supply Volume Control (PSVC)..................................................................... 39  
1.4.13.4 AM Interference Avoidance .................................................................................. 40  
TA5504A Controls and Status .............................................................................................. 41  
2
2.1  
I2C Status Registers ....................................................................................................... 41  
2.1.1  
General Status Register (0x01)................................................................................ 41  
Error Status Register (0x02) ................................................................................... 41  
2.1.2  
2.2  
TAS5504A Pin Controls ................................................................................................... 42  
2.2.1  
2.2.2  
2.2.3  
2.2.4  
2.2.5  
Reset (RESET) .................................................................................................. 42  
Power Down (PDN) ............................................................................................. 43  
Back-End Error (BKND_ERR) ................................................................................. 44  
Speaker/Headphone Selector (HP_SEL)..................................................................... 44  
Mute (MUTE)..................................................................................................... 45  
2.3  
Device Configuration Controls............................................................................................ 45  
2.3.1  
2.3.2  
2.3.3  
2.3.4  
2.3.5  
2.3.6  
2.3.7  
Channel Configuration Registers.............................................................................. 45  
Headphone Configuration Registers .......................................................................... 46  
Audio System Configurations .................................................................................. 46  
Recovery from Clock Error ..................................................................................... 47  
Power-Supply Volume-Control Enable ....................................................................... 47  
Volume and Mute Update Rate................................................................................ 47  
Modulation Index Limit.......................................................................................... 47  
Contents  
3
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
2.4  
2.5  
Master Clock and Serial Data Rate Controls ........................................................................... 47  
PLL Operation.................................................................................................... 48  
Bank Controls............................................................................................................... 48  
2.4.1  
2.5.1  
2.5.2  
2.5.3  
2.5.4  
2.5.5  
2.5.6  
Manual Bank Selection ......................................................................................... 48  
Automatic Bank Selection ...................................................................................... 49  
Bank Set .......................................................................................................... 49  
Bank-Switch Timeline ........................................................................................... 49  
Bank Switching Example 1..................................................................................... 49  
Bank Switching Example 2..................................................................................... 50  
3
Electrical Specifications...................................................................................................... 51  
3.1  
Absolute Maximum Ratings............................................................................................... 51  
3.2  
Dissipation Rating Table (High-k Board, 105°C Junction) ................................................. 51  
Dynamic Performance at Recommended Operating Conditions at 25°C................................ 51  
Recommended Operating Conditions ........................................................................ 51  
Electrical Characteristics ....................................................................................... 52  
PWM Operation.................................................................................................. 52  
Switching Characteristics....................................................................................... 52  
Clock Signals..................................................................................................... 52  
Serial Audio Port................................................................................................. 53  
3.3  
3.4  
3.5  
3.6  
3.7  
3.7.1  
3.7.2  
3.7.3  
TAS5504A Pin-Related Characteristics of the SDA and SCL I/O Stages for F/S-Mode I2C-Bus  
Devices ........................................................................................................... 53  
3.7.4  
TAS5504A Bus-Related Characteristics of the SDA and SCL I/O Stages for F/S-Mode I2C-Bus  
Devices ........................................................................................................... 54  
3.7.5  
3.7.6  
3.7.7  
3.7.8  
3.7.9  
Reset Timing (RESET) ......................................................................................... 56  
Power-Down (PDN) Timing .................................................................................... 56  
Back-End Error (BKND_ERR) ................................................................................. 57  
Mute Timing (MUTE)............................................................................................ 57  
Headphone Select (HP_SEL).................................................................................. 58  
3.7.10 Volume Control .................................................................................................. 58  
3.8  
Serial Audio Interface Control and Timing ................................................................... 59  
I 2S Timing ........................................................................................................ 59  
Left-Justified Timing............................................................................................. 60  
Right-Justified Timing ........................................................................................... 61  
3.8.1  
3.8.2  
3.8.3  
4
I2C Serial Control Interface (Slave Addresses 0x36 and 0x37).................................................. 61  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
General I2C Operation ..................................................................................................... 61  
Single- and Multiple-Byte Transfers ..................................................................................... 62  
Single-Byte Write........................................................................................................... 63  
Multiple-Byte Write ......................................................................................................... 63  
Incremental Multiple-Byte Write .......................................................................................... 63  
Single-Byte Read........................................................................................................... 64  
Multiple-Byte Read......................................................................................................... 64  
5
6
Serial Control I2C Register Summary .................................................................................... 65  
Serial Control Interface Register Definitions .......................................................................... 69  
6.1  
6.2  
6.3  
6.4  
6.5  
6.6  
6.7  
6.8  
6.9  
Clock Control Register (0x00) ............................................................................................ 69  
General Status Register 0 (0x01) ........................................................................................ 69  
System Control Register 1 (0x03)........................................................................................ 70  
System Control Register 2 (0x04)........................................................................................ 70  
Channel Configuration Control Registers (0x05, 0x06, 0x0B, and 0x0C) .......................................... 71  
Headphone Configuration Control Register (0x0D) ................................................................... 71  
Serial Data Interface Control Register (0x0E).......................................................................... 72  
Soft-Mute Register (0x0F)................................................................................................. 72  
Automute Control Register (0x14) ....................................................................................... 73  
6.10 Automute PWM Threshold and Back-End Reset Period (0x15) ..................................................... 74  
4
Contents  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
6.11 Modulation Index Limit Register (0x16) ................................................................................. 75  
6.12 Bank Switching Command Register (0x40) ............................................................................ 76  
6.13 Input Mixer Registers (0x41, 0x42, 0x47, 0x48, Channels 1–4) ..................................................... 77  
6.14 Bass Management Registers (0x49–0x50) ............................................................................. 78  
6.15 Biquad Filter Registers (0x51–0x88)..................................................................................... 79  
6.16 Bass and Treble Bypass Register (0x89–0x90, Channels 1–4) ..................................................... 79  
6.17 Loudness Registers (0x91–0x95) ........................................................................................ 80  
6.18 DRC1 Control (0x96, Channels 1–3) .................................................................................... 80  
6.19 DRC2 Control (0x97, Channel 4)......................................................................................... 81  
6.20 DRC1 Data Registers (0x98–0x9C) ..................................................................................... 81  
6.21 DRC2 Data Registers (0x9D–0xA1) ..................................................................................... 82  
6.22 DRC Bypass Registers (0xA2, 0xA3, 0xA8, 0xA9) .................................................................... 82  
6.23 4 × 2 Output Mixer Registers (0xAA and 0xAB)........................................................................ 83  
6.24 4 × 3 Output Mixer Registers (0xB0–0xB1)............................................................................. 84  
6.25 PSVC Volume Biquad Register (0xCF) ................................................................................. 85  
6.26 Volume, Treble, and Bass Slew Rates Register (0xD0) .............................................................. 86  
6.27 Volume Registers (0xD1, 0xD2, 0xD7, and 0xD8)..................................................................... 86  
6.28 Bass Filter Set Register (0xDA) ......................................................................................... 88  
6.29 Bass Filter Index Register (0xDB) ....................................................................................... 89  
6.30 Treble Filter Set Register (0xDC) ........................................................................................ 90  
6.31 Treble Filter Index (0xDD)................................................................................................. 91  
6.32 AM Mode Register (0xDE) ................................................................................................ 92  
6.33 PSVC Range Register (0xDF)............................................................................................ 93  
6.34 General Control Register (0xE0) ......................................................................................... 93  
6.35 Incremental Multiple-Write Append Register (0xFE)................................................................... 93  
TAS5504A Example Application Schematic ........................................................................... 93  
7
Contents  
5
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
List of Figures  
1-1  
TAS5504A Functional Structure................................................................................................. 13  
1-2  
TAS5504A DAP Architecture With I2C Registers (fS 96 kHz) ............................................................. 21  
TAS5504A Architecture With I2C Registers (fS = 176.4 kHz or fS = 192 kHz) ............................................ 22  
TAS5504A Detailed Channel Processing...................................................................................... 22  
5.23 Format ........................................................................................................................ 23  
Conversion Weighting Factors—5.23 Format to Floating Point............................................................. 23  
Alignment of 5.23 Coefficient in 32-Bit I2C Word ............................................................................. 24  
25.23 Format ...................................................................................................................... 24  
Alignment of 25.23 Coefficient in Two 32-Bit I2C Words..................................................................... 25  
Alignment of 25.23 Coefficient in Two 32-Bit I2C Words..................................................................... 25  
TAS5504A Digital Audio Processing ........................................................................................... 26  
Input Crossbar Mixer ............................................................................................................. 26  
Biquad Filter Structure............................................................................................................ 27  
Automute Threshold .............................................................................................................. 29  
Loudness Compensation Functional Block Diagram ......................................................................... 30  
Loudness Example Plots......................................................................................................... 31  
DRC Positioning in TAS5504A Processing Flow ............................................................................. 33  
DRC Transfer Function Structure ............................................................................................... 33  
TAS5504A Attack and Decay Definition ....................................................................................... 35  
Output Mixers...................................................................................................................... 38  
De-Emphasis Filter Characteristics ............................................................................................. 39  
Power Supply and Digital Gains (Log Space)................................................................................. 40  
Power Supply and Digital Gains (Linear Space).............................................................................. 40  
1-3  
1-4  
1-5  
1-6  
1-7  
1-8  
1-9  
1-10  
1-11  
1-12  
1-13  
1-14  
1-15  
1-16  
1-17  
1-18  
1-19  
1-20  
1-21  
1-22  
1-23  
1-24  
Block Diagrams of Typical Systems Requiring TAS5504A  
Automatic AM Interference Avoidance Circuit................................................................................. 41  
3-1  
3-2  
3-3  
3-4  
3-5  
3-6  
3-7  
3-8  
3-9  
3-10  
3-11  
3-12  
4-1  
4-2  
4-3  
Slave Mode Serial Data Interface Timing...................................................................................... 53  
Start and Stop Conditions Timing Waveforms ................................................................................ 54  
I2C Pullup Circuit (With No Series Resistor)................................................................................... 55  
I2C Pullup Circuit (With Series Resistor) ....................................................................................... 55  
Reset Timing....................................................................................................................... 56  
Power-Down Timing .............................................................................................................. 56  
Error Recovery Timing ........................................................................................................... 57  
Mute Timing........................................................................................................................ 57  
HP_SEL Timing ................................................................................................................... 58  
I2S 64-fS Format ................................................................................................................... 59  
Left-Justified 64-fS Format ....................................................................................................... 60  
Right-Justified 64-fS Format ..................................................................................................... 61  
Typical I2C Sequence............................................................................................................. 62  
Single-Byte Write Transfer....................................................................................................... 63  
Multiple-Byte Write Transfer ..................................................................................................... 63  
6
List of Figures  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
4-4  
4-5  
Single-Byte Read Transfer....................................................................................................... 64  
Multiple-Byte Read Transfer .................................................................................................... 65  
List of Figures  
7
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
List of Tables  
1-1  
I2C Register 0xD0 Bit 30 Usage................................................................................................. 14  
1-2  
Serial Data Formats .............................................................................................................. 18  
TAS5504A Audio-Processing Feature Sets ................................................................................... 20  
Contents of One 20-Byte Biquad Filter Register (Default = All-Pass)...................................................... 27  
Bass and Treble Filter Selections............................................................................................... 28  
Linear Gain Step Size ............................................................................................................ 28  
Default Loudness Compensation Parameters................................................................................. 30  
Example Loudness Function Parameters...................................................................................... 31  
DRC Recommended Changes From TAS5504A Defaultss ................................................................. 32  
Device Outputs During Reset ................................................................................................... 42  
Values Set During Reset......................................................................................................... 42  
Device Outputs During Power Down ........................................................................................... 43  
Device Outputs During Back-End Error ........................................................................................ 44  
Description of the Channel Configuration Registers (0x05, 0x06, 0x0B, 0x0C) .......................................... 45  
Recommended TAS5504A Configurations for Texas Instruments Power Stages ....................................... 46  
Audio System Configuration (General Control Register 0xE0).............................................................. 46  
Volume Ramp Rates in ms ...................................................................................................... 47  
Clock Control Register ........................................................................................................... 69  
General Status Register (0x01) ................................................................................................. 69  
System Control Register 1 ....................................................................................................... 70  
System Control Register 2 ....................................................................................................... 70  
Channel Configuration Control Registers ...................................................................................... 71  
Headphone Configuration Control Register ................................................................................... 71  
Serial Data Interface Control Register Format ................................................................................ 72  
Soft-Mute Register (0x0F) ....................................................................................................... 72  
Automute Control Register (0x14) .............................................................................................. 73  
Automute PWM Threshold and Back-End Reset Period..................................................................... 74  
Modulation Index Limit Register................................................................................................. 75  
Bank Switching Command....................................................................................................... 76  
Input Mixer Registers Format (Channels 1–4) ................................................................................ 77  
Bass Management Registers Format (0x49–0x50)........................................................................... 78  
Biquad Filters Register Format (0x51–0x88) .................................................................................. 79  
Contents of One 20-Byte Biquad Filter Register Format (Default = All-Pass) ............................................ 79  
Bass and Treble Bypass Register Format (0x89–0x90) ..................................................................... 79  
Loudness Registers Format (0x91–0x95)...................................................................................... 80  
DCR1 Control (0x96, Channels 1–3) ........................................................................................... 80  
DRC2 Control (0x97, Channel 4) ............................................................................................... 81  
DRC1 Data Registers ............................................................................................................ 81  
DRC2 Data Registers ............................................................................................................ 82  
1-3  
1-4  
1-5  
1-6  
1-7  
1-8  
1-9  
2-1  
2-2  
2-3  
2-4  
2-5  
2-6  
2-7  
2-8  
6-1  
6-2  
6-3  
6-4  
6-5  
6-6  
6-7  
6-8  
6-9  
6-10  
6-11  
6-12  
6-13  
6-14  
6-15  
6-16  
6-17  
6-18  
6-19  
6-20  
6-21  
6-22  
8
List of Tables  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
6-23  
6-24  
6-25  
6-26  
6-27  
6-28  
6-29  
6-30  
6-31  
6-32  
6-33  
6-34  
6-35  
6-36  
6-37  
6-38  
6-39  
6-40  
6-41  
6-42  
6-43  
6-44  
6-45  
6-46  
DRC Bypass Registers Format (0xA2–0xA9) ................................................................................. 82  
Output Mixer Control Register Format (Upper 4 Bytes)...................................................................... 83  
Output Mixer Control (Lower 4 Bytes).......................................................................................... 83  
Output Mixer Control (Lower 4 Bytes).......................................................................................... 84  
Output Mixer Control (Middle 4 Bytes) ......................................................................................... 84  
Output Mixer Control (Lower 4 Bytes).......................................................................................... 85  
Volume Biquad Register Format (Default = All-pass) ........................................................................ 85  
Volume Gain Update Rate (Slew Rate) ........................................................................................ 86  
Treble and Bass Gain Step Size (Slew Rate) ................................................................................. 86  
Volume Registers ................................................................................................................. 86  
Master and Individual Volume Controls ........................................................................................ 87  
Channel 4 Subwoofer............................................................................................................. 88  
Channel 3, 2, 1 (Center, Right Front, and Left Front) ........................................................................ 88  
Bass Filter Index Register........................................................................................................ 89  
Bass Filter Index Table .......................................................................................................... 89  
Channel 4 Subwoofer............................................................................................................. 90  
Channel 3, 2, 1 (Center, Right Front, and Left Front) ........................................................................ 90  
Treble Filter Index Register...................................................................................................... 91  
Treble Filter Index ................................................................................................................ 91  
AM Mode Register ................................................................................................................ 92  
AM Tuned Frequency Register in BCD Mode (Lower 2 Bytes of 0xDE) .................................................. 92  
AM Tuned Frequency Register in Binary Mode (Lower 2 Bytes of 0xDE) ................................................ 92  
Volume Gain Update Rate (Slew Rate) ........................................................................................ 93  
General Control Register......................................................................................................... 93  
MATLAB is a trademark of The MathWorks, Inc.  
All trademarks are the property of their respective owners.  
List of Tables  
9
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
10  
List of Tables  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
1
Introduction  
1.1 TAS5504A Features  
Audio Input/Output  
4 × 2 Output Mixer – Channels 1 and 2.  
Each Output Can Be Any Ratio of Any Two  
Signal-Processed Channels. It Is  
Recommended to Use the Pass-Through  
Output Mixer Configuration.  
Automatic Master Clock Rate and Data  
Sample Rate Detection  
Four Serial Audio Input Channels  
Four PWM Audio Output Channels  
Headphone PWM Output to Drive an  
External Differential Amplifier Like the  
TPA112  
4 × 3 Output Mixer – Channels 3 and 4.  
Each Output Can Be Any Ratio of Any  
Three Signal-Processed Channels. It Is  
Recommended to Use the Pass-Through  
Output Mixer Configuration.  
PWM Outputs Support Single-Ended and  
Bridge-Tied Loads  
32-, 38-, 44.1-, 48-, 88.2-, 96-, 176.4-, and  
192-kHz Sampling Rates  
Data Formats: 16-, 20-, or 24-Bit  
Left-Justified, I2S, or Right-Justified Input  
Data  
Three Coefficient Sets Stored on the Device  
Can Be Selected Manually or Automatically  
(Based on Specific Data Rates)  
DC Blocking Filters  
Able to Support a Variety of  
Bass-Management Algorithms  
64 × fS Bit-Clock Rate  
128, 192, 256, 384, 512, and 768 × fS Master  
Clock Rates (up to a Maximum of 50 MHz)  
PWM Processing  
32-Bit Processing PWM Architecture With  
40 Bits of Precision  
Audio Processing  
48-Bit Processing Architecture With 76 Bits  
of Precision for Most Audio-Processing  
Features  
8× Oversampling With 5th-Order Noise  
Shaping at 32 kHz–48 kHz, 4×  
Oversampling at 88.2 kHz and 96 kHz, and  
2× Oversampling at 176.4 kHz and 192 kHz  
Volume Control Range: 36 dB to –109 dB  
Master Volume Control Range of 18 dB  
to –100 dB  
>102-dB Dynamic Range  
THD+N < 0.1%  
20-Hz–20-kHz Flat Noise Floor for 44.1-, 48-,  
88.2-, 96-, 176.4-, and 192-kHz Data Rates  
Four Individual Channel Volume Control  
Ranges of 18-dB to –109-dB  
Digital De-Emphasis for 32-, 44.1-, and  
48-kHz Data Rates  
Flexible Automute Logic With  
Programmable Threshold and Duration for  
Noise-Free Operation  
Intelligent AM Interference Avoidance  
System Provides Clear AM Reception  
Power-Supply Volume-Control (PSVC)  
Support for Enhanced Dynamic Range in  
High-Performance Applications  
Programmable Soft Volume and Mute  
Update Rates  
Two Bass and Treble Tone Controls With  
±18-dB Range, Selectable Corner  
Frequencies, and 2nd-Order Slopes  
L, R, and C  
Sub  
Configurable Loudness Compensation  
Two Dynamic Range Compressors With  
Two Thresholds, Two Offsets, and Three  
Slopes  
Adjustable Modulation Limit  
General Features  
Automated Operation With an Easy-to-Use  
Control Interface  
Seven Biquads per Channel  
8 × 4 Input Crossbar Mixer. Each Signal  
Processing Channel Input Can Be Any  
Ratio of the Eight Input Channels  
I2C Serial Control Slave Interface  
Integrated AM Interference Avoidance  
Circuitry  
Single 3.3-V Power Supply  
64-Pin TQFP Package  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this document.  
MATLAB is a trademark of The MathWorks, Inc.  
All trademarks are the property of their respective owners.  
PRODUCT PREVIEW information concerns products in the  
formative or design phase of development. Characteristic data and  
other specifications are design goals. Texas Instruments reserves  
the right to change or discontinue these products without notice.  
Copyright © 2006, Texas Instruments Incorporated  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
5-V Tolerant Inputs  
1.2 Overview  
The TAS5504A is a four-channel digital pulse-width modulator (PWM) that provides both advanced  
performance and a high level of system integration. The TAS5504A is designed to interface seamlessly  
with most audio digital signal processors. The TAS5504A automatically adjusts control configurations in  
response to clock and data-rate changes and idle conditions. This enables the TAS5504A to provide an  
easy-to-use control interface with relaxed timing requirements.  
The TAS5504A can drive four channels of H-bridge power stages. Texas Instruments power stages are  
designed to work seamlessly with the TAS5504A. The TAS5504A supports either the single-ended or  
bridge-tied-load configuration. The TAS5504A also provides a high-performance differential output to drive  
an external differential-input analog headphone amplifier, such as the TPA112.  
The TAS5504A uses AD modulation operating at a 384-kHz switching rate for 48-, 96-, and 192-kHz data.  
The 8× oversampling combined with the 5th-order noise shaper provides a broad, flat noise floor and  
excellent dynamic range from 20 Hz to 20 kHz.  
The TAS5504A is a clocked, slave-only device. The TAS5504A receives MCLK, SCLK, and LRCLK from  
other system components. The TAS5504A accepts master clock rates of 128, 192, 256, 384, 512, and  
768 fS. The TAS5504A accepts a 64-fS bit clock.  
The TAS5504A allows for extending the dynamic range by providing a power-supply volume-control  
(PSVC) output signal.  
12  
Introduction  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
Output Control  
4 ´ 2 Crossbar Mixer  
8 ´ 4 Crossbar Mixer  
AVSS  
AVDD  
DVSS  
DVDD  
DAP Control  
PWM Control  
VRD_PLL  
VRA_PLL  
VBGAP  
AVDD_REF  
AVSS_PLL  
AVDD_PLL  
VR_PLL  
System Control  
Clock, PLL, and Serial Data I/F  
Figure 1-1. TAS5504A Functional Structure  
1.3 Changes From the TAS5504 to the TAS5504A  
High-pass filter is enabled by default (0x03 bit 7)  
I2C register 0xD0 bit 30 is added in TAS5504A to support remapped output mixer configuration. It has  
a default value of 0.  
Introduction  
13  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
Table 1-1. I2C Register 0xD0 Bit 30 Usage  
0xD0 Bit 30  
Output Mixer Configuration  
Mode  
PWM (Speaker) Operation  
Headphone operation  
1
Pass-through  
4-channel mode  
Normal operation  
Normal operation  
Constraints are placed in  
setting the combined volume  
below –109 dB and in using  
individual channel mute.  
0 (default)  
Remapped  
4-channel mode  
Normal Operation  
The pass-through output mixer configuration means that each DAP channel is mapped to the same output  
PWM channel. For example, DAP channel 1 is routed to PWM channel 1, etc.  
The remapped output mixer configuration means that the PWM channel could be a mix or rerouting of the  
DAP channels. For example, DAP channel 2 is routed to PWM channel 1. This remapping causes some  
complications in operation (see Table 1-1).  
The recommended initialization sequence to use the pass-through ouput mixer configuration follows.  
1. After TAS5504A reset, the default master volume is muted. It must be updated with a nonmute value  
for the system to start.  
2. I2C register 0xD0 bit 30 must be set to a value of 1.  
Note that for best results, the pass-through ouput mixer configuration is recommended (0xD0 bit  
30 = 1).  
When remapping or mixing DAP channels to different PWM output channels (remapped output mixer  
configuration), consider the following limitations:  
Individual channel mute should not be used.  
The sum of the minimum channel volume and master volume should not be below –109 dB.  
0xD0 bit 30 = 0  
14  
Introduction  
 
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
1.4 Physical Characteristics  
1.4.1 Terminal Assigments  
PAG PACKAGE  
(TOP VIEW)  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
VRA_PLL  
VR_PWM  
NC  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
PLL_FLT_RET  
2
PLL_FLTM  
NC  
3
PLL_FLTP  
NC  
4
NC  
5
AVSS  
AVSS  
PWM_P_2  
PWM_M_2  
PWM_P_1  
PWM_M_1  
6
VRD_PLL  
AVSS_PLL  
AVDD_PLL  
7
8
9
10  
11  
12  
13  
14  
15  
16  
VBGAP  
RESET  
VALID  
DVSS  
HP_SEL  
BKND_ERR  
PDN  
MUTE  
DVDD  
DVSS  
DVDD  
DVSS  
DVSS  
VR_DIG  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
P0010-02  
1.4.2 Ordering Information  
TA  
PLASTIC 64-PIN PQFP (PN)  
TAS5504APAG  
0°C to 70°C  
1.4.3 TERMINAL FUNCTIONS  
TERMINAL  
5-V  
TOLERANT  
TERMIN-  
ATION(2)  
I/O(1)  
DESCRIPTION  
NAME  
NO.  
AVDD_PLL  
9
P
3.3-V analog power supply for PLL This terminal can be connected to the same  
power source used to drive power terminal DVSS, but to achieve low PLL jitter, this  
terminal should be bypassed to AVSS_PLL with a 0.1-µF low-ESR capacitor(3)  
.
(1) Type: A = analog; D = 3.3-V digital; P = power/ground/decoupling; I = input; O = output  
(2) All pullups are 20-µA weak pullups and all pulldowns are 20-µA weak pulldowns. The pullups and pulldowns are included to ensure  
proper input logic levels if the terminals are left unconnected (pullups logic-1 input; pulldowns logic-0 input). Devices that drive  
inputs with pullups must be able to sink 20 µA while maintaining a logic 0 drive level. Devices that drive inputs with pulldowns must be  
able to source 20 µA while maintaining a logic-1 drive level.  
(3) If desired, low-ESR capacitance values can be implemented by paralleling two or more ceramic capacitors of equal value. Paralleling  
capacitors of equal value provides an extended high-frequency supply decoupling. This approach avoids the potential of producing  
parallel resonance circuits that have been observed when paralleling capacitors of different values.  
Introduction  
15  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
TERMINAL  
5-V  
TOLERANT  
TERMIN-  
ATION(2)  
I/O(1)  
DESCRIPTION  
NAME  
AVSS  
NO.  
5, 6  
8
P
P
Analog ground  
AVSS_PLL  
Analog ground for PLL. This terminal should reference the same ground as power  
terminal DVSS, but to achieve low PLL jitter, ground noise at this terminal must be  
minimized. The availability of the AVSS terminal allows a designer to use optimizing  
techniques such as star ground connections, separate ground planes, or other quiet  
ground distribution techniques to achieve a quiet ground reference at this terminal.  
BKND_ERR  
DVDD  
37  
DI  
P
Pullup  
Active-low. A back-end error sequence is generated by applying a logic low to this  
terminal. BKND_ERR results in no change to any system parameters, with all  
H-bridge drive signals going to a hard-mute state (M-state).  
15, 36  
3.3-V digital power supply. It is recommended that decoupling capacitors of 0.1 µF  
and 10 µF be mounted as close to this pin(s) as possible.  
DVDD_PWM  
DVSS  
54  
16  
P
P
3.3-V digital power supply for PWM  
Digital ground for digital core and most of I/O buffers  
Digital ground  
DVSS  
34, 35, 38  
53  
P
DVSS_PWM  
HP_SEL  
P
Digital ground for PWM  
12  
DI  
5 V  
Pullup  
Headphone in/out selector. When a logic low is applied, the headphone is selected  
(speakers are off). When a logic high is applied, speakers are selected (headphone  
is off).  
LRCLK  
MCLK  
26  
63  
DI  
DI  
5 V  
5 V  
Serial audio data left/right clock (sampling rate clock)  
Pulldown  
Pullup  
MCLK is a 3.3-V clock master clock input. The input frequency of this clock can  
range from 4 MHz to 50 MHz.  
MUTE  
NC  
14  
DI  
5 V  
Soft mute of outputs, active-low (Muted signal = a logic low, normal operation = a  
logic high). The mute control provides a noiseless volume ramp to silence.  
Releasing mute provides a noiseless ramp to previous volume.  
44, 45, 46,  
47, 55, 56,  
57, 58  
No connection  
OSC_CAP  
PDN  
18  
13  
AO  
DI  
Oscillator capacitor  
5 V  
Pullup  
Power down, active-low. PDN powers down all logic and stops all clocks whenever  
a logic low is applied. The internal parameters are preserved through a power-down  
cycle, as long as RESET is not active. The duration for system recovery from  
power down is 100 ms.  
PLL_FLTM  
PLL_FLTP  
PLL_FLT_RET  
PSVC  
3
AO  
AI  
PLL negative input. Connected to PLL_FLT_RTN via an RC network  
PLL positive input. Connected to PLL_FLT_RTN via an RC network  
PLL external filter return  
4
2
AO  
O
32  
59  
61  
60  
62  
40  
42  
49  
51  
41  
43  
50  
52  
Power-supply volume-control PWM output  
PWM left-channel headphone (differential –)  
PWM right-channel headphone (differential –)  
PWM left-channel headphone (differential +)  
PWM right-channel headphone (differential +)  
PWM 1 output (differential –)  
PWM_HPML  
PWM_HPMR  
PWM_HPPL  
PWM_HPPR  
PWM_M_1  
PWM_M_2  
PWM_M_3  
PWM_M_4  
PWM_P_1  
PWM_P_2  
PWM_P_3  
PWM_P_4  
RESERVED  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
PWM 2 output (differential –)  
PWM 3 output (differential –)  
PWM 4 output (differential –)  
PWM 1 output (differential +)  
PWM 2 output (differential +)  
PWM 3 output (differential +)  
PWM 4 output (differential +)  
21, 22, 23,  
64  
Connect to digital ground  
RESET  
11  
DI  
5 V  
Pullup  
System reset input, active-low. A system reset is generated by applying a logic low  
to this terminal. RESET is an asynchronous control signal that restores the  
TAS5504A to its default conditions, sets the VALID output low, and places the  
PWM in the M-state. Master volume is immediately set to full attenuation. On the  
release of RESET, if PDN is high, the system performs a 4 ms–5 ms device  
initialization and sets the volume at mute.  
I2C serial control clock input  
SCL  
25  
27  
24  
DI  
DI  
5 V  
5 V  
5 V  
SCLK  
SDA  
Serial audio data clock (shift clock) input  
I2C serial control data interface input/output  
DIO  
16  
Introduction  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
TERMINAL  
NAME  
SDIN1  
5-V  
TOLERANT  
TERMIN-  
ATION(2)  
I/O(1)  
DESCRIPTION  
NO.  
31  
DI  
5 V  
5 V  
5 V  
5 V  
Pulldown  
Pulldown  
Pulldown  
Pulldown  
Serial audio data-1 input is one of the serial-data input ports. SDIN1 supports four  
discrete (stereo) data formats and is capable of inputting data at 64 fS.  
SDIN2  
SDIN3  
SDIN4  
30  
29  
28  
DI  
DI  
DI  
Serial audio data-2 input is one of the serial-data input ports. SDIN2 supports four  
discrete (stereo) data formats and is capable of inputting data at 64 fS.  
Serial audio data-3 input is one of the serial-data input ports. SDIN3 supports four  
discrete (stereo) data formats and is capable of inputting data at 64 fS.  
Serial audio data-4 input is one of the serial-data input ports. SDIN4 supports four  
discrete (stereo) data formats and is capable of inputting data at 64 fS.  
VALID  
39  
10  
DO  
P
Output indicating validity of PWM outputs, active-high  
VBGAP  
Band-gap voltage reference. A pinout of the internally regulated 1.2-V reference.  
Typically has a 1-nF low-ESR capacitor(3). between VBGAP and AVSS_PLL. This  
terminal must not be used to power external devices.  
VRA_PLL  
VR_DIG  
1
P
P
Voltage reference for PLL analog supply, 1.8 V. A pinout of the internally regulated  
1.8-V power used by PLL logic. A 0.1-µF low-ESR capacitor(3) should be connected  
between this terminal and AVSS_PLL. This terminal must not be used to power  
external devices.  
33  
7
Voltage reference for digital core supply, 1.8 V. A pinout of the internally regulated  
1.8-V power used by digital core logic. A 0.47-µF low-ESR capacitor(3). should be  
connected between this terminal and DVSS. This terminal must not be used to  
power external devices.  
VRD_PLL  
VR_DPLL  
VR_PWM  
XTL_OUT  
XTL_IN  
P
Voltage reference for PLL digital supply, 1.8 V. A pinout of the internally regulated  
1.8-V power used by PLL logic. A 0.1-µF low-ESR capacitor(3). should be  
connected between this terminal and AVSS_PLL. This terminal must not be used to  
power external devices.  
17  
48  
19  
20  
P
Voltage reference for digital PLL supply, 1.8 V. A pinout of the internally regulated  
1.8-V power used by digital PLL logic. A 0.1-µF low-ESR capacitor(3). should be  
connected between this terminal and DVSS_CORE. This terminal must not be used  
to power external devices.  
P
Voltage reference for digital PWM core supply, 1.8 V. A pinout of the internally  
regulated 1.8-V power used by digital PWM core logic. A 0.1-µF low-ESR  
capacitor(3). should be connected between this terminal and DVSS_PWM. This  
terminal must not be used to power external devices.  
AO  
AI  
XTL_OUT and XTL_IN are the only LVCMOS terminals on the device. They provide  
a reference clock for the TAS5504A via use of an external fundamental mode  
crystal. XTL_OUT is the 1.8-V output drive to the crystal. A 13.5-MHz crystal  
(HCM49) is recommended.  
XTL_OUT and XTL_IN are the only LVCMOS terminals on the device. They provide  
a reference clock for the TAS5504A via use of an external fundamental mode  
crystal. XTL_IN is the 1.8-V input port for the oscillator circuit. A 13.5-MHz crystal  
(HCM49) is recommended.  
1.4.4 TAS5504A Functional Description  
Figure 1-2 shows the TAS5504A functional structure. The next sections describe the TAS5504A functional  
blocks:  
Power supply  
Clock, PLL, and serial data interface  
I2C serial control interface  
Device control  
Digital audio processor (DAP)  
Pulse-width-modulation (PWM) processor  
1.4.4.1 Power Supply  
The power-supply section contains supply regulators that provide analog and digital regulated power for  
various sections of the TAS5504A. The analog supply supports the analog PLL, whereas digital supplies  
support the digital PLL, the digital audio processor (DAP), the pulse-width modulator (PWM), and the  
output control.  
Introduction  
17  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
1.4.4.2 Clock, PLL, and Serial Data Interface  
The TAS5504A is a clocked, slave-only device, and it requires the use of an external 13.5-MHz crystal. It  
accepts MCLK, SCLK, and LRCLK as inputs only.  
The TAS5504A uses the external crystal to provide a time base for:  
Continuous data and clock-error detection and management  
Automatic data-rate detection and configuration  
Automatic MCLK rate detection and configuration (automatic bank switching)  
Supporting I2C operation/communication while MCLK is absent  
The TAS5504A automatically handles clock errors, data-rate changes, and master-clock frequency  
changes without requiring intervention from an external system controller. This feature significantly  
reduces system complexity and design.  
1.4.4.2.1 Serial Audio Interface  
The TAS5504A operates as a slave-only/receive-only serial data interface in all modes. The TAS5504A  
has four PCM serial data interfaces to permit eight channels of digital data to be received though the  
SDIN1, SDIN2, SDIN3, and SDIN4 inputs. The serial audio data is in MSB-first, 2s-complement format.  
The serial data input interface of the TAS5504A can be configured in right-justified, I2S, or left-justified  
modes. The serial data interface format is specified using the I2C data interface control register. The  
supported formats and word lengths are shown in Table 1-2.  
Table 1-2. Serial Data Formats  
RECEIVE SERIAL DATA  
INTERFACE FORMAT  
WORD LENGTHS  
Right-justified  
Right-justified  
Right-justified  
I2S  
16  
20  
24  
16  
20  
24  
16  
20  
24  
I2S  
I2S  
Left-justified  
Left-justified  
Left-justified  
Serial data is input on SDIN1, SDIN2, SDIN3, and SDIN4. The TAS5504A accepts 16-, 20-, or 24-bit data  
at 32-, 38-, 44.1-, 48-, 88.2-, 96-, 176.4-, or 192-kHz serial data in in left-justified, I2S, right-justified, and  
serial data formats using a 64-fS SCLK clock and a 128, 192, 256, 384, 512, or 768 × fS MCLK rates (up to  
a maximum of 50 MHz). The parameters of this clock and serial data interface are I2C configurable.  
1.4.4.3 I2C Serial Control Interface  
The TAS5504A has an I2C serial control slave interface (write address = 0x36 and read address = 0x37)  
to receive commands from a system controller. The serial control interface supports both normal-speed  
(100 kHz) and high-speed (400 kHz) operations without wait states. Because the TAS5504A has a crystal  
time base, this interface operates even when MCLK is absent.  
The serial control interface supports both single-byte and multiple-byte read/write operations for status  
registers and the general control registers associated with the PWM. However, for the DAP data  
processing registers, the serial control interface also supports multiple-byte (4-byte) write operations.  
18  
Introduction  
 
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
The I2C supports a special mode which permits I2C write operations to be broken up into multiple data  
write operations that are multiples of 4 data bytes. These are 6-byte, 10-byte, 14-byte, 18-byte, ..., etc.,  
write operations that are composed of a device address, read/write bit, and subaddress and any multiple  
of 4 bytes of data. This permits the system to write large register values incrementally without blocking  
other I2C transactions. To use this feature, the first block of data is written to the target I2C address and  
each subsequent block of data is written to a special append register (0xFE) until all the data is written  
and a stop bit is sent. An incremental read operation is not supported.  
1.4.4.4 Device Control  
The TAS5504A control section provides the control and sequencing for the TAS5504A. The device control  
provides both high- and low-level control for the serial control interface, clock and serial-data interfaces,  
digital audio processor, and pulse-width-modulator sections.  
1.4.4.5 Digital Audio Processor (DAP)  
The DAP arithmetic unit is used to implement all audio-processing functions—soft volume, loudness  
compensation, bass and treble processing, dynamic range control, channel filtering, and input and output  
mixing. Figure 1-4 shows the TAS5504A DAP architecture.  
The DAP accepts the 24-bit data signal from the serial data interface and outputs 32-bit data to the PWM  
section. The DAP supports two configurations, one for 32-kHz–96-kHz data and one for  
176.4-kHz–192-kHz data.  
1.4.4.5.1 TAS5504A Audio-Processing Configurations  
The 32-kHz–96-kHz configuration supports four channels of data processing.  
The 176.4-kHz–192-kHz configuration supports three channels of signal processing with one channel  
passed though (or derived from the three processed channels).  
To support efficiently the processing requirements of both multichannel 32-kHz–96-kHz data and the two  
channel 176.4- and 192-kHz data, the TAS5504A supports separate audio-processing features for  
32-kHz–96-kHz data rates and for 176.4 kHz and 192 kHz. See Table 1-3 for a summary of the  
TAS5504A processing feature sets.  
1.4.4.5.2 TAS5504A Audio Signal-Processing Functions  
The DAP provides 10 primary signal-processing functions.  
1. The data-processing input has an 8 × 4 input crossbar mixer. This enables each input to be any ratio of  
the eight input channels.  
2. Two I2C-programmable threshold detectors in each channel support automute.  
3. Seven biquads per channel  
4. Two soft bass and treble tone controls with ±18-dB range, programmable corner frequencies, and  
2nd-order slopes. In 4-channel mode, bass and treble controls are normally configured as follows:  
Bass and treble 1: channel 1 (left), channel 2 (right), and channel 3 (center)  
Bass and treble 2: channel 4 (subwoofer)  
5. Individual channel and master-volume controls. Each control provides an adjustment range of 18 dB to  
–109 dB. This permits a total volume device control range of 36 dB to –109 dB plus mute. The DAP  
soft-volume and mute update interval is I2C-programmable. The update is performed at a fixed rate  
regardless of the sample rate.  
6. Programmable loudness compensation that is controlled via the combination of the master and  
individual volume settings  
7. Two dual-threshold, dual-rate dynamic range compressors (DRCs). The volume gain values provided  
are used as input parameters using the maximum RMS (master volume × individual channel volume).  
8. 4 × 2 output mixer (channels 1 and 2). Each output can be any ratio of any two signal-processed  
channels.  
Introduction  
19  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
9. 4 × 3 output mixer (channels 3 and 4). Each output can be any ratio of any three signal-processed  
channels.  
10. The DAP maintains three sets of coefficient banks that are used to maintain separate sets of  
sample-rate-dependent parameters for the biquad, tone controls, loudness, and DRC in RAM. These  
can be set to be automatically selected for one or more data sample rates or can be manually selected  
under I2C program control. This feature enables coefficients for different sample rates to be stored in  
the TAS5504A and then selected when needed.  
Table 1-3. TAS5504A Audio-Processing Feature Sets  
FEATURE  
32 kHz–96 kHz  
176.4 AND 192 kHz  
FOUR-CHANNEL FEATURE SET  
THREE-CHANNEL FEATURE SET  
Signal-processing channels  
Pass-through channels  
4
3
N/A  
1
Master volume  
One for four channels  
4
One for four channels  
3
Individual channel volume controls  
Bass and treble tone controls  
Two bass and treble tone controls with ±18-dB  
range, programmable corner frequencies, and  
2nd-order slopes  
Two bass and treble tone controls with ±18-dB  
range, programmable corner frequencies, and  
2nd-order slopes  
L, R, and C (Ch1, Ch2, and Ch3)  
Sub (Ch4)  
L and R (Ch1 and Ch2)  
Sub (Ch4)  
Biquads  
28  
21  
Dynamic range compressors  
Input/output mapping/mixing  
DRC1 for three satellites and DRC2 for sub  
One for two satellites and one for sub  
Each of the four signal-processing channels  
input can be any ratio of the eight input  
channels.  
Each of the three signal-processing channels  
and the one pass-though channel input can be  
any ratio of the eight input channels.  
Each of the four outputs can be any ratio of any Each of the four outputs can be any ratio of any  
two processed channels.  
of the three processed and one bypass  
channels.  
DC blocking filters (implemented in  
the PWM Section)  
Four channels  
Digital de-emphasis (implemented in  
the PWM Section)  
Four channels for 32 kHz, 44.1 kHz, and 48 kHz  
Four channels  
N/A  
Loudness  
Three channels  
Number of coefficient sets stored  
Three additional coefficient sets can be stored in memory  
1.4.5 TAS5504A DAP Architecture  
1.4.5.1 TAS5504A DAP Architecture Diagrams  
Figure 1-2 shows the TAS5504A DAP architecture for fS = 96 kHz. Note the TAS5504A bass-management  
architecture shown in channels 1, 2, 3, and 4. Note that the I2C registers are shown to help the designer  
configure the TAS5504A.  
Figure 1-3 shows the TAS5504A architecture for fS = 176.4 kHz or fS = 192 kHz. Note that only channels  
1, 2, and 4 contain all the features. Channel 3 is pass-through except for master volume control.  
Figure 1-4 shows TAS5504A detailed channel processing. The output mixer is 4 × 2 for channels 1–2 and  
4 × 3 for channels 3–4.  
20  
Introduction  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
Master Vol  
(0xD9)  
Max Vol  
(1)  
SDIN1-L (L)  
A
B
C
D
E
F
SDIN1-R (R)  
SDIN2-L (LS)  
SDIN2-R (RS)  
SDIN3-L (LBS)  
SDIN3-R (RBS)  
SDIN4-L (C)  
IP Mixer 1  
(I2C 0x41)  
7 DAP 1  
BQ  
Bass &  
Treble 1  
(0xDA-  
0xDD)  
Loud-  
ness  
OP Mixer 1  
(I2C 0xAA)  
4 ´ 2 Output  
Mixer  
DAP 1  
Volume  
(0xD1)  
DRC1  
(0x96-  
0x9C)  
L to  
PWM1  
(0x51-  
0x57)  
(0x91-  
0x95)  
G
H
SDIN4-R (LFE)  
Master Vol  
(0xD9)  
Max Vol  
SDIN1-L (L)  
(1)  
A
B
C
D
E
F
SDIN1-R (R)  
IP Mixer 2  
(I2C 0x42)  
7 DAP 2  
BQ  
Bass &  
Treble 1  
(0xDA-  
0xDD)  
Loud-  
ness  
OP Mixer 2  
(I2C 0xAB)  
4 ´ 2 Output  
Mixer  
SDIN2-L (LS)  
SDIN2-R (RS)  
SDIN3-L (LBS)  
SDIN3-R (RBS)  
SDIN4-L (C)  
DAP 2  
Volume  
(0xD2)  
DRC1  
(0x96-  
0x9C)  
R to  
PWM2  
(0x58-  
0x5E)  
(0x91-  
0x95)  
G
H
SDIN4-R (LFE)  
Coeff = 0 (lin), (I2C 0x4E)  
Master Vol  
(0xD9)  
Coeff = 0 (lin), (I2C 0x4B)  
Max Vol  
Coeff = 1 (lin)  
(I2C 0x4D)  
SDIN1-L (L)  
SDIN1-R (R)  
A
B
C
D
E
F
IP Mixer 3  
(I2C 0x47)  
2 DAP 3  
BQ  
5 DAP 3  
BQ  
Bass &  
Treble 1  
(0xDA-  
0xDD)  
Loud-  
ness  
SDIN2-L (LS)  
SDIN2-R (RS)  
SDIN3-L (LBS)  
OP Mixer 3  
(I2C 0xB0)  
4 ´ 2 Output  
Mixer  
DAP 3  
Volume  
(0xD7)  
DRC1  
(0x96-  
0x9C)  
C to  
PWM3  
(0x7B-  
0x7C)  
(0x7D-  
0x81)  
(0x91-  
0x95)  
SDIN3-R (RBS)  
(1)  
SDIN4-L (C)  
G
H
SDIN4-R (LFE)  
Coeff = 0 (lin), (I2C 0x4C)  
Master Vol  
(0xD9)  
Coeff = 0 (lin), (I2C 0x49)  
Coeff = 0 (lin)  
Max Vol  
(I2C 0x4A)  
Coeff = 1 (lin)  
SDIN1-L (L)  
SDIN1-R (R)  
A
B
C
D
E
F
IP Mixer 4  
(I2C 0x48)  
(I2C 0x50)  
2 DAP 4  
5 DAP 4  
BQ  
Bass &  
Treble 4  
(0xDA-  
0xDD)  
Loud-  
ness  
SDIN2-L (LS)  
SDIN2-R (RS)  
SDIN3-L (LBS)  
SDIN3-R (RBS)  
OP Mixer 4  
(I2C 0xB1)  
4 ´ 2 Output  
Mixer  
DAP 4  
Volume  
(0xD8)  
DRC2  
(0x9D-  
0xA1)  
Sub to  
PWM4  
BQ  
(0x82-  
0x83)  
(0x84-  
0x88)  
(0x91-  
0x95)  
SDIN4-L (C)  
(1)  
G
H
SDIN4-R (LFE)  
Coeff = 0 (lin), (I2C 0x4F)  
B0014-02  
(1) Default input  
Figure 1-2. TAS5504A DAP Architecture With I2C Registers (fS 96 kHz)  
Introduction  
21  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
Master Vol  
(0xD9)  
Max Vol  
(1)  
SDIN1-L (L)  
SDIN1-R (R)  
SDIN2-L (LS)  
SDIN2-R (RS)  
SDIN3-L (LBS)  
SDIN3-R (RBS)  
SDIN4-L (C)  
A
B
C
D
E
F
IP Mixer 1  
(I2C 0x41)  
7 DAP 1  
BQ  
Bass &  
Treble 1  
(0xDA-  
0xDD)  
Loud-  
ness  
OP Mixer 1  
DAP 1  
Volume  
(0xD1)  
DRC1  
(0x96-  
0x9C)  
L to  
(I2C 0xAA)  
4 ´ 2 Output  
Mixer  
PWM1  
(0x51-  
0x57)  
(0x91-  
0x95)  
G
H
SDIN4-R (LFE)  
Master Vol  
(0xD9)  
Max Vol  
SDIN1-L (L)  
(1)  
A
B
C
D
E
F
SDIN1-R (R)  
IP Mixer 2  
(I2C 0x42)  
7 DAP 2  
BQ  
Bass &  
Treble 1  
(0xDA-  
0xDD)  
Loud-  
ness  
OP Mixer 2  
(I2C 0xAB)  
4 ´ 2 Output  
Mixer  
SDIN2-L (LS)  
SDIN2-R (RS)  
SDIN3-L (LBS)  
SDIN3-R (RBS)  
SDIN4-L (C)  
DAP 2  
Volume  
(0xD2)  
DRC1  
(0x96-  
0x9C)  
R to  
PWM2  
(0x58-  
0x5E)  
(0x91-  
0x95)  
G
H
SDIN4-R (LFE)  
Master Vol  
(0xD9)  
SDIN1-L (L)  
SDIN1-R (R)  
A
B
C
D
E
F
IP Mixer 3  
(I2C 0x47)  
SDIN2-L (LS)  
SDIN2-R (RS)  
SDIN3-L (LBS)  
OP Mixer 3  
(I2C 0xB0)  
4 ´ 3 Output  
Mixer  
DAP 3  
Volume  
(0xD7)  
C to  
PWM3  
SDIN3-R (RBS)  
(1)  
SDIN4-L (C)  
G
H
SDIN4-R (LFE)  
Master Vol  
(0xD9)  
Max Vol  
SDIN1-L (L)  
SDIN1-R (R)  
A
B
C
D
E
F
IP Mixer 4  
(I2C 0x48)  
7 DAP 4  
BQ  
Bass &  
Treble 4  
(0xDA-  
0xDD)  
Loud-  
ness  
SDIN2-L (LS)  
SDIN2-R (RS)  
SDIN3-L (LBS)  
SDIN3-R (RBS)  
OP Mixer 4  
(I2C 0xB1)  
4 ´ 3 Output  
Mixer  
DAP 4  
Volume  
(0xD8)  
DRC2  
(0x9D-  
0xA1)  
Sub to  
PWM4  
(0x82-  
0x88)  
(0x91-  
0x95)  
SDIN4-L (C)  
(1)  
G
H
SDIN4-R (LFE)  
B0015-02  
(1) Default input  
Figure 1-3. TAS5504A Architecture With I2C Registers (fS = 176.4 kHz or fS = 192 kHz)  
A_to_ipmix  
Left  
Master  
Volume  
A
B
SDIN1  
Right  
B_to_ipmix  
Channel Volume  
Max  
Volume  
C_to_ipmix  
Bass and Treble  
Bypass  
DRC  
Bypass  
Left  
C
D
SDIN2  
Loudness  
Output  
Gain  
Right  
D_to_ipmix  
E_to_ipmix  
Output Mixer Sums  
Any Two Channels  
7
Bass  
and  
Treble  
Biquads  
in  
32-Bit  
Trunc  
PWM  
Proc  
PWM  
Output  
Series  
Pre-  
Post-  
DRC  
Inline  
Volume Volume  
Left  
Input  
Mixer  
Bass  
and  
Treble  
Inline  
E
F
SDIN3  
1 Other  
Channel Output  
From 7 Available  
Right  
F_to_ipmix  
G_to_ipmix  
DRC  
Left  
G
H
SDIN4  
Right  
H_to_ipmix  
B0016-01  
Figure 1-4. TAS5504A Detailed Channel Processing  
22  
Introduction  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
1.4.5.2 I2C Coefficient Number Formats  
The architecture of the TAS5504A is contained in ROM resources within the TAS5504A and cannot be  
altered. However, mixer gain, level offset, and filter tap coefficients, which can be entered via the I2C bus  
interface, provide a user with the flexibility to set the TAS5504A to a configuration that achieves the  
system-level goals.  
The firmware is executed in a 48-bit signed, fixed-point arithmetic machine. The most significant bit of the  
48-bit data path is a sign bit, and the 47 lower bits are data bits. Mixer gain operations are implemented  
by multiplying a 48-bit signed data value by a 28-bit signed gain coefficient. The 76-bit signed output  
product is then truncated to a signed 48-bit number. Level offset operations are implemented by adding a  
48-bit signed offset coefficient to a 48-bit signed data value. In most cases, if the addition results in  
overflowing the 48-bit signed number format, saturation logic is used. This means that if the summation  
results in a positive number that is greater than 0x7FFF FFFF FFFF (the spaces are used to ease the  
reading of the hexadecimal number), the number is set to 0x7FFF FFFF FFFF. If the summation results in  
a negative number that is less than 0x8000 0000 0000, the number is set to 0x8000 0000 0000.  
1.4.5.2.1 28-Bit 5.23 Number Format  
All mixer gain coefficients are 28-bit coefficients using a 5.23 number format. Numbers formatted as 5.23  
numbers means that there are 5 bits to the left of the decimal point and 23 bits to the right of the decimal  
point. This is shown in the Figure 1-5.  
−23  
2
Bit  
−4  
2
Bit  
Bit  
−1  
0
2
2 Bit  
3
2 Bit  
Sign Bit  
S_xxxx.xxxx_xxxx_xxxx_xxxx_xxxx_xxx  
M0007-01  
Figure 1-5. 5.23 Format  
The decimal value of a 5.23 format number can be found by following the weighting shown in Figure 1-6. If  
the most-significant bit is logic-0, the number is a positive number, and the weighting shown yields the  
correct number. If the most-significant bit is a logic-1, then the number is a negative number. In this case,  
every bit must be inverted, a 1 added to the result, and then the weighting shown in Figure 1-6 applied to  
obtain the magnitude of the negative number.  
3
2
0
−1  
−4  
−23  
2 Bit  
2 Bit  
2 Bit  
2
Bit  
2
Bit  
2
Bit  
3
2
0
−1  
−4  
−23  
(1 or 0) y 2 + (1 or 0) y 2 + + (1 or 0) y 2 + (1 or 0) y 2 + + (1 or 0) y 2 + + (1 or 0) y 2  
M0008-01  
Figure 1-6. Conversion Weighting Factors—5.23 Format to Floating Point  
Gain coefficients, entered via the I2C bus, must be entered as 32-bit binary numbers. The format of the  
32-bit number (4-byte or 8-digit hexadecimal number) is shown in Figure 1-7.  
Introduction  
23  
 
 
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
Fraction  
Digit 6  
Sign  
Bit  
Integer  
Digit 1  
Fraction  
Digit 1  
Fraction  
Digit 2  
Fraction  
Digit 3  
Fraction  
Digit 4  
Fraction  
Digit 5  
0
u
u
u
u
S
x
x
x
x.  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Coefficient  
Digit 8  
Coefficient  
Digit 7  
Coefficient  
Digit 6  
Coefficient  
Digit 5  
Coefficient  
Digit 4  
Coefficient  
Digit 3  
Coefficient  
Digit 2  
Coefficient  
Digit 1  
u = unused or don’t care bits  
Digit = hexadecimal digit  
M0009-01  
Figure 1-7. Alignment of 5.23 Coefficient in 32-Bit I2C Word  
As Figure 1-7 shows, the hexadecimal value of the integer part of the gain coefficient cannot be  
concatenated with the hexadecimal value of the fractional part of the gain coefficient to form the 32-bit I2C  
coefficient. The reason is that the 28-bit coefficient contains 5 bits of integer, and thus the integer part of  
the coefficient occupies all of one hexadecimal digit and the most significant bit of the second hexadecimal  
digit. In the same way, the fractional part occupies the lower 3 bits of the second hexadecimal digit, and  
then occupies the other five hexadecimal digits (with the eighth digit being the zero-valued most significant  
hexadecimal digit).  
1.4.5.2.2 48-Bit 25.23 Number Format  
All level-adjustment and threshold coefficients are 48-bit coefficients using a 25.23 number format.  
Numbers formatted as 25.23 numbers means that there are 25 bits to the left of the decimal point and 23  
bits to the right of the decimal point. This is shown in Figure 1-8.  
−23  
2
Bit  
Bit  
Bit  
−10  
−1  
2
2
0
2 Bit  
16  
2
Bit  
22  
23  
2
Bit  
Bit  
2
Sign Bit  
S_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx.xxxx_xxxx_xxxx_xxxx_xxxx_xxx  
M0007-02  
Figure 1-8. 25.23 Format  
Figure 1-9 shows the derivation of the decimal value of a 48-bit, 25.23 format number.  
24  
Introduction  
 
 
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
23  
22  
0
−1  
−23  
2
Bit  
2
Bit  
2 Bit  
2
Bit  
2
Bit  
23  
22  
0
−1  
−23  
(1 or 0) y 2 + (1 or 0) y 2 + + (1 or 0) y 2 + (1 or 0) y 2 + + (1 or 0) y 2  
M0008-02  
Figure 1-9. Alignment of 25.23 Coefficient in Two 32-Bit I2C Words  
Two 32-bit words must be sent over the I2C bus to download a level or threshold coefficient into the  
TAS5504A. The alignment of the 48-bit, 25.23-formatted coefficient in the 8-byte (two 32-bit words) I2C  
word is shown in Figure 1-10.  
Integer  
Sign  
Bit  
Digit 4  
11  
9
(Bits 2 − 2 )  
Integer  
Digit 1  
Integer  
Digit 2  
Integer  
Digit 3  
Word 1  
(Most  
Significant  
Word)  
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
S
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Coefficient  
Digit 16  
Coefficient  
Digit 15  
Coefficient  
Digit 14  
Coefficient  
Digit 13  
Coefficient  
Digit 12  
Coefficient  
Digit 11  
Coefficient  
Digit 10  
Coefficient  
Digit 9  
Integer  
Digit 4  
(Bit 2 )  
Fraction  
Digit 6  
8
Integer  
Digit 5  
Integer  
Digit 6  
Fraction  
Digit 1  
Fraction  
Digit 2  
Fraction  
Digit 3  
Fraction  
Digit 4  
Fraction  
Digit 5  
0
Word 2  
(Least  
Significant  
Word)  
x
x
x
x
x
x
x
x
x.  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Coefficient  
Digit 8  
Coefficient  
Digit 7  
Coefficient  
Digit 6  
Coefficient  
Digit 5  
Coefficient  
Digit 4  
Coefficient  
Digit 3  
Coefficient  
Digit 2  
Coefficient  
Digit 1  
u = unused or don’t care bits  
Digit = hexadecimal digit  
M0009-02  
Figure 1-10. Alignment of 25.23 Coefficient in Two 32-Bit I2C Words  
1.4.5.2.3 TAS5504A Audio Processing  
The TAS5504A digital audio processing is designed such that noise produced by filter operations is  
maintained below the smallest signal amplitude of interest, as shown in Figure 1-11. The TAS5504A  
achieves this by increasing the precision of the signal representation substantially above the number of  
bits that are absolutely necessary to represent the input signal.  
Introduction  
25  
 
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
Ideal Input  
Possible Outputs  
Desired Output  
Values Retained by  
Overflow Bits  
Overflow  
Maximum Signal Amplitude  
Filter  
Operation  
Reduced  
SNR  
Signal  
Output  
Signal  
Bits  
Output  
Signal  
Bits  
Input  
Noise Floor With No  
Additional Precision  
Noise Floor as a Result  
of Additional Precision  
M0010-01  
Figure 1-11. TAS5504A Digital Audio Processing  
Similarly, the TAS5504A carries additional precision in the form of overflow bits to permit the value of  
intermediate calculations to exceed the input precision without clipping. The TAS5504A advanced digital  
audio processor achieves both of these important performance capabilities by using a high-performance  
digital audio processing architecture with a 48-bit data path, 28-bit filter coefficients, and a 76-bit  
accumulator.  
1.4.6 Input Crossbar Mixer  
The TAS5504A has a full 8 × 4 input crossbar mixer. This mixer permits each signal-processing channel  
input to be any ratio of any of the eight input channels. The control parameters for the input crossbar  
mixer are programmable via the I2C interface. See the Input Mixer Registers (0x41, 0x42, 0x47, 0x48,  
Channels 1–4), Section Section 6.13.  
Gain Coefficient  
28  
48  
Input 1  
48  
Gain Coefficient  
28  
48  
48  
Input 2  
SUM  
48  
Gain Coefficient  
28  
48  
Input 8  
M0011-03  
Figure 1-12. Input Crossbar Mixer  
26  
Introduction  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
1.4.7 Biquad Filters  
For 32-kHz to 96-kHz data, the TAS5504A provides 28 biquads across the four channels (seven per  
channel).  
For 176.4-kHz and 192-kHz data, the TAS5504A has 21 biquads across the three channels (seven per  
channel). All of the biquad filters are 2nd-order direct form-I structure.  
The direct form-I structure provides a separate delay element and mixer (gain coefficient) for each node in  
the biquad filter. Each mixer output is a signed 76-bit product of a signed 48-bit data sample (25.23-format  
number) and a signed 28-bit coefficient (5.23-format number). The 76-bit ALU in the TAS5504A allows the  
76-bit resolution to be retained when summing the mixer outputs (filter products).  
The five 28-bit coefficients for each of the 28 biquads are programmable via the I2C interface. See  
Table 1-4.  
b
0
b
1
b
2
28  
28  
28  
48  
76  
76  
76  
76  
48  
48  
48  
Magnitude  
Truncation  
Σ
a
1
-1  
-1  
z
z
z
z
28  
28  
48  
48  
76  
76  
a
2
-1  
-1  
M0012-01  
Figure 1-13. Biquad Filter Structure  
All five coefficients for one biquad filter structure are written to one I2C register containing 20 bytes (or five  
32-bit words). The structure is the same for all biquads in the TAS5504A. Registers 0x51–0x88 show all  
the biquads in the TAS5504A. Note that u(31:28) bits are unused and default to 0x0.  
Table 1-4. Contents of One 20-Byte Biquad Filter Register (Default = All-Pass)  
INITIALIZATION GAIN COEFFICIENT VALUE  
DESCRIPTION  
REGISTER FIELD CONTENTS  
DECIMAL  
1.0  
HEX  
bo Coefficient  
b1 Coefficient  
b2 Coefficient  
a1 Coefficient  
a2 Coefficient  
u(31:28), b0(27:24), b0(23:16), b0(15:8), b0(7:0)  
u(31:28), b1(27:24), b1(23:16), b1(15:8), b1(7:0)  
u(31:28), b2(27:24), b2(23:16), b2(15:8), b2(7:0)  
u(31:28), a1(27:24), a1(23:16), a1(15:8), a1(7:0)  
u(31:28), a2(27:24), a2(23:16), a2(15:8), a2(7:0)  
0x00, 0x80, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0.0  
0.0  
0.0  
0.0  
1.4.8 Bass and Treble Controls  
From 32-kHz to 96-kHz data, the TAS5504A has two bass and treble tone controls. Each control has a  
±18-dB control range with selectable corner frequencies and 2nd-order slopes. These controls operate four  
channel groups:  
L, R, and C (channels 1, 2, and 3)  
Sub (channel 4)  
Introduction  
27  
 
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
For 176.4-kHz and 192-kHz data, the TAS5504A has two bass and treble tone controls. Each control has  
a ±18-dB I2C control range with selectable corner frequencies and 2nd-order slopes. These controls  
operate two channel groups:  
L and R  
Sub  
The bass and treble filters use a soft update rate that does not produce artifacts during adjustment.  
Table 1-5. Bass and Treble Filter Selections  
3-dB CORNER FREQUENCIES  
fS  
(kHz)  
FILTER SET 1  
FILTER SET 2  
FILTER SET 3  
FILTER SET 4  
FILTER SET 5  
BASS  
TREBLE  
917  
BASS  
TREBLE  
1833  
BASS  
TREBLE  
3000  
BASS  
TREBLE  
3667  
BASS  
TREBLE  
4333  
32  
38  
42  
49  
83  
125  
148  
172  
188  
345  
375  
689  
750  
146  
173  
201  
219  
402  
438  
804  
875  
167  
198  
230  
250  
459  
500  
919  
1000  
1088  
1263  
1375  
2527  
2750  
5053  
5500  
99  
2177  
3562  
4354  
5146  
44.1  
48  
57  
115  
125  
230  
250  
459  
500  
2527  
4134  
5053  
5972  
63  
2750  
4500  
5500  
6500  
88.2  
96  
115  
125  
230  
250  
5053  
8269  
10106  
11000  
20213  
22000  
11944  
13000  
23888  
26000  
5500  
9000  
176.4  
192  
10106  
11000  
16538  
18000  
The I2C registers that control bass and treble are:  
Bass and treble bypass register (0x89–0x90, channels 1–4)  
Bass and treble slew rates (0xD0)  
Bass filter sets 1–5 (0xDA)  
Bass filter index (0xDB)  
Treble filter sets 1–5 (0xDC)  
Treble filter index (0xDD)  
Note that the bass and treble bypass registers (0x89–0x90) are defaulted to the bypass mode. In  
order to use the bass and treble, these registers must be in the inline (or enabled) mode for each  
channel using bass and treble.  
1.4.9 Volume, Automute, and Mute  
The TAS5504A provides individual channel and master volume controls. Each control provides an  
adjustment range of 18 dB to –109 dB in 0.25-dB increments. This permits a total volume device control  
range of 36 dB to –109 dB plus mute.  
The TAS5504A has a master soft-mute control that can be enabled by a terminal or I2C command. The  
device also has individual channel soft-mute controls that can are enabled via I2C.  
The soft volume and mute update rates are programmable. The soft adjustments are performed using a  
soft-gain linear update with an I2C programmable linear step size at a fixed temporal rate. The linear  
soft-gain step size can be varied from 0.5 to 0.003906.  
Table 1-6. Linear Gain Step Size  
STEP SIZE (GAIN)  
0.5  
0.25  
0.125  
42.67  
5.33  
0.0625  
85.34  
10.67  
1.33  
0.03125  
170.67  
21.33  
0.015625  
341.35  
42.67  
0.007813  
682.7  
0.003906  
1365.4  
170.67  
21.33  
Time to go from 36 db to –127 dB in ms  
Time to go from 18 db to –127 dB in ms  
Time to go from 0 db to –127 dB in ms  
10.67 21.33  
1.33  
0.17  
2.67  
0.33  
85.33  
0.67  
2.67  
5.33  
10.67  
28  
Introduction  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
1.4.9.1 Automute and Mute Channel Controls  
The TAS5504A has individual channel automute controls that are enabled via I2C register 0x04 bits D5  
and D6 (the default setting is enabled). Two separate detectors can trigger the automute:  
Input automute (I2C register 0x14): All channels are muted when all eight inputs to the TAS5504B are  
less in magnitude than the input threshold value for a programmable amount of time.  
Output automute (I2C register 0x15): A single channel is muted when the output of the DAP section is  
less in magnitude than the input threshold value for a programmable amount of time.  
The detection period and thresholds for these two detectors are the same.  
This time interval is selectable via I2C from 1 ms to 110 ms The increments of time are 1, 2, 3, 4, 5, 10,  
20, 30, 40, 50, 60, 70, 80, 90, 100, and 110 ms. This interval is independent of the sample rate. The  
default value is mask programmable.  
The input threshold value is an unsigned magnitude that is expressed as a bit position. This value is  
adjustable via I2C. The range of the input threshold adjustment is from below the LSB (bit position 0) to  
below bit position 12 in a 24-bit input data word (bit positions 8 to 20 in the DSPE). This provides an input  
threshold that can be adjusted for 12 to 24 bits of data. The default value is mask programmable.  
DVD Data Range  
CD Data Range  
24-Bit Input  
23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
9
0
8
32 Bits in DSPE  
Representation  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
7
6
5
4
3
2
1
0
Threshold Range  
M0013-01  
Figure 1-14. Automute Threshold  
The automute state is exited when the TAS5504A receives one sample that is greater than that of the  
output threshold.  
The output threshold can be one of two values:  
Equal to the input threshold  
6 dB (one bit position) greater than the input threshold  
The value for the output threshold is selectable via I2C. The default value is mask programmable.  
The system latency enables the data value that is above the threshold to be preserved and output.  
A mute command initiated by automute, master mute, individual I2C mute, the AM interference mute  
sequence, or the bank switch mute sequence overrides an unmute command or a volume command.  
While a mute command is activated, the commanded channels transition to the mute state. When a  
channel is unmuted, it goes to the last commanded volume setting that has been received for that  
channel.  
Introduction  
29  
 
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
1.4.10 Loudness Compensation  
The loudness compensation function compensates for the Fletcher-Munson loudness curves. The  
TAS5504A loudness implementation tracks the volume control setting to provide spectral compensation  
for weak low- or high-frequency response at low volume levels. For the volume tracking function, both  
linear and log control laws can be implemented. Any biquad filter response can be used to provide the  
desired loudness curve. The control parameters for the loudness control are programmable via the I2C  
interface.  
The TAS5504A has a single set of loudness controls for the four channels. The loudness control input  
uses the maximum individual master volume (V) to control the loudness that is applied to all channels. In  
192-kHz and 176.4-kHz modes, the loudness function is active only for channels 1, 2, and 4.  
V
Audio In  
Audio Out  
Loudness  
Biquad  
H(z)  
Loudness Function = f(V)  
V
B0017-01  
Figure 1-15. Loudness Compensation Functional Block Diagram  
Loudness function = f (V) = G × [2 [(Log V) × LG + LO]] + O or alternatively,  
Loudness function = f (V) = G × [VLG × 2LO] + O  
For example, for the default values LG = –0.5, LO = 0, G = 1, and O = 0 then:  
Loudness function = 1/SQRT (V) which is the recommended transfer function for loudness. So,  
Audio out = (Audio in) × V + H(Z) × SQRT(V). Other transfer functions are possible.  
Table 1-7. Default Loudness Compensation Parameters  
LOUDNESS  
TERM  
DEFAULT  
DATA  
FORMAT  
I2C SUB-  
ADDRESS  
DESCRIPTION  
USAGE  
HEX  
NA  
FLOAT  
NA  
V
Maximum volume  
Gains audio  
5.23  
5.23  
NA  
NA  
Log V  
Log2 (maximum  
volume)  
Loudness function  
0000 0000  
0.0  
H(Z)  
Loudness biquad  
Controls shape of  
loudness curves  
5.23  
0x95  
b0 = 0000 D513  
b1 = 0000 0000  
b2 = 0FFF 2AED  
a1 = 00FE 5045  
a2 = 0F81 AA27  
b0 = 0.006503  
b1 = 0  
b2 = –0.006503  
a1 = 1.986825  
a2 = –0.986995  
LG  
LO  
G
Gain (log space)  
Offset (log space)  
Gain  
Loudness function  
Loudness function  
5.23  
25.23  
5.23  
0x91  
0x92  
0x93  
FFC0 0000  
0000 0000  
0000 0000  
–0.5  
0
Switch to enable  
Loudness (ON = 1,  
OFF = 0)  
0
O
Offset  
Offset  
25.23  
0x94  
0000 0000 0000 0000  
0
30  
Introduction  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
1.4.10.1 Loudness Example  
Problem: Due to the Fletcher-Munson phenomena, compensation for low-frequency attenuation near 60  
Hz is desirable. The TAS5504A provides a loudness transfer function with EQ gain = 6, EQ center  
frequency = 60 Hz, and EQ bandwidth = 60 Hz.  
Solution: Using Texas Instruments' ALE TAS5504A DSP tool, MATLAB™, or other signal-processing tool,  
develop a loudness function with the following parameters:  
Table 1-8. Example Loudness Function Parameters  
LOUDNESS  
TERM  
EXAMPLES  
DATA  
FORMAT  
I2C SUB-  
ADDRESS  
DESCRIPTION  
USAGE  
HEX  
FLOAT  
H(Z)  
Loudness biquad  
Controls shape of  
loudness curves  
5.23  
0x95  
b0 = 0000 8ACE  
b1 = 0000 0000  
b2 = FFFF 7532  
a1 = FF01 1951  
a2 = 007E E914  
b0 = 0.004236  
b1 = 0  
b2 = –0.004236  
a1 = –1.991415  
a2 = 0.991488  
LG  
LO  
G
Gain (log space)  
Offset (log space)  
Gain  
Loudness function  
Loudness function  
5.23  
25.23  
5.23  
0x91  
0x92  
0x93  
FFC0 0000  
0000 0000  
0080 0000  
–0.5  
0
Switch to enable  
loudness (ON = 1,  
OFF = 0)  
1
O
Offset  
Offset  
25.23  
0x94  
0000 0000  
0
See Figure 1-16 for the resulting loudness function at different gains.  
20  
10  
0
−10  
−20  
−30  
−40  
10  
100  
1k  
f − Frequency − Hz  
10k  
20k  
G001  
Figure 1-16. Loudness Example Plots  
1.4.11 Dynamic Range Control (DRC)  
The DRC provides both compression and expansion capabilities over three separate and definable  
regions of audio signal levels. Programmable threshold levels set the boundaries of the three regions.  
Within each of the three regions, a distinct compression or expansion transfer function can be established,  
and the slope of each transfer function is determined by programmable parameters. The offset (boost or  
cut) at the two boundaries defining the three regions can also be set by programmable offset coefficients.  
The DRC implements the composite transfer function by computing a 5.23-format gain coefficient from  
each sample output from the rms estimator. This gain coefficient is then applied to a mixer element,  
whose other input is the audio data stream. The mixer output is the DRC-adjusted audio data.  
The TAS5504A has two distinct DRC blocks. DRC1 services channels 1–3. This DRC computes rms  
Introduction  
31  
 
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
estimates of the audio data streams on all channels that it controls. The estimates are then compared on  
a sample-by-sample basis and the larger of the estimates is used to compute the compression/expansion  
gain coefficient. The gain coefficient is then applied to the appropriate channel audio stream. DRC2  
services only channel 4. This DRC also computes an rms estimate of the signal level on channel 4 and  
this estimate is used to compute the compression/expansion gain coefficient applied to the channel-4  
audio stream.  
All the TAS5504A default values for DRC can be used except for the DRC1 decay and DRC2 decay.  
Table 1-9 shows the recommended time constants and their hexadecimal values. If the user wants to  
implement other DRC functions, Texas Instruments recommends using the automatic loudspeaker  
equalization (ALE) tool available from Texas Instruments. The ALE tool allows the user to select the DRC  
transfer function graphically. It then outputs the TAS5504A hexadecimal coefficients for download to the  
TAS5504A.  
Table 1-9. DRC Recommended Changes From TAS5504A Defaultss  
I2C  
REGISTER FIELDS  
RECOMMENDED TIME  
CONSTANT (ms)  
RECOMMENDED  
HEX VALUE  
DEFAULT HEX  
SUBADDRESS  
0x98  
0x9C  
DRC1 energy  
DRC1 (1 – energy)  
DRC1 attack  
5
5
2
5
5
2
0000 883F  
007F 77C0  
0000 883F  
007F 77C0  
0001 538F  
007E AC70  
0000 883F  
007F 77C0  
0000 883F  
007F 77C0  
0001 538F  
007E AC70  
0000 883F  
007F 77C0  
0000 883F  
007F 77C0  
0000 00AE  
007F FF51  
0000 883F  
007F 77C0  
0000 883F  
007F 77C0  
0000 0056  
003F FFA8  
DRC1 (1 – attack)  
DRC1 decay  
DRC1 (1 – decay)  
DRC2 energy  
0x9D  
0xA1  
DRC2 (1 – energy)  
DRC2 attack  
DRC2 (1 – attack)  
DRC2 decay  
DRC2 (1 – decay)  
Recommended DRC setup flow if the defaults are used:  
1. After power up, load the recommended hexadecimal value for DRC1 and DRC2 decay and (1 –  
decay). See Table 1-9.  
2. Enable either the pre-volume or post-volume DRC using I2C registers 0x96 and 0x97. Note that to  
avoid a potential timing problem, a 10-ms delay is required between a write to 0x96 and a write to  
0x97.  
Recommended DRC set-up flow if the DRC design uses values different from the defaults:  
1. After power up, load all DRC coefficients per the DRC design.  
2. Enable either the pre-volume or post-volume DRC.  
Figure 1-17 shows the positioning of the DRC block in the TAS5504A processing flow. As seen, the DRC  
input can come from either before or after soft-volume control and loudness processing.  
32  
Introduction  
 
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
Master  
Volume  
Channel Volume  
Max  
Volume  
Bass and Treble  
Bypass  
DRC  
Bypass  
Loudness  
7
Bass  
and  
Treble  
Biquads  
in  
From Input Mixer  
To Output Mixer  
Series  
Pre-  
Post-  
DRC  
Inline  
Volume Volume  
Bass  
and  
Treble  
Inline  
DRC  
B0016-02  
Figure 1-17. DRC Positioning in TAS5504A Processing Flow  
Figure 1-18 illustrates a typical DRC transfer function.  
Region  
0
Region  
1
Region  
2
k2  
k1  
1:1 Transfer Function  
Implemented Transfer Function  
k0  
O2  
O1  
T1  
T2  
DRC Input Level  
M0014-01  
Figure 1-18. DRC Transfer Function Structure  
The three regions shown in Figure 1-18 are defined by three sets of programmable coefficients:  
Thresholds T1 and T2—define region boundaries.  
Offsets O1 and O2—define the DRC gain coefficient settings at thresholds T1 and T2, respectively.  
Slopes k0, k1, and k2—define whether compression or expansion is to be performed within a given  
region. The magnitudes of the slopes define the degree of compression or expansion to be performed.  
The three sets of parameters are all defined in logarithmic space and adhere to the following rules:  
The maximum input sample into the DRC is referenced at 0 dB. All values below this maximum value  
then have negative values in logarithmic (dB) space.  
The samples input into the DRC are 32-bit words and consist of the upper 32 bits of the 48-bit word  
format used by the digital audio processor (DAP). The 48-bit DAP word is derived from the 32-bit serial  
data received at the serial audio receive port by adding 8 bits of headroom above the 32-bit word and  
8 bits of computational precision below the 32-bit word. If the audio processing steps between the SAP  
input and the DRC input result in no accumulative boost or cut, the DRC operates on the 8 bits of  
headroom and the 24 MSBs of the audio sample. Under these conditions, a 0-dB (maximum value)  
audio sample (0x7FFF FFFF) is seen at the DRC input as a –48-dB sample (8 bits × –6 dB/bit = –48  
dB).  
Introduction  
33  
 
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
Thresholds T1 and T2 define, in dB, the boundaries of the three regions of the DRC, as referenced to  
the rms value of the data in the DRC. Zero-valued threshold settings reference the maximum-valued  
rms input into the DRC, and negative-valued thresholds reference all other rms input levels.  
Positive-valued thresholds have no physical meaning and are not allowed. In addition, zero-valued  
threshold settings are not allowed.  
Although the DRC input is limited to 32-bit words, the DRC itself operates using the 48-bit word format of  
the DAP. The 32-bit samples input into the DRC are placed in the upper 32 bits of this 48-bit word space.  
This means that the threshold settings must be programmed as 48-bit (25.23 format) numbers.  
CAUTION  
Zero-valued and positive-valued threshold settings are not allowed and cause  
unpredictable behavior if used.  
Offsets O1 and O2 define, in dB, the attenuation (cut) or gain (boost) applied by the DRC-derived gain  
coefficient at the threshold points T1 and T2, respectively. Positive offsets are defined as cuts, and  
thus boost or gain selections are negative numbers. Offsets must be programmed as 48-bit  
(25.23-format) numbers.  
Slopes k0, k1, and k2 define whether compression or expansion is to be performed within a given  
region, and the degree of compression or expansion to be applied. Slopes are programmed as 28-bit  
(5.23-format) numbers.  
1.4.11.1 DRC Implementation  
The three elements comprising the DRC: (1) an rms estimator, (2) a compression/expansion coefficient  
computation engine, and (3) an attack/decay controller. DRC1 applies to channels 1–3, and DRC2 applies  
only to channel 4. DRC1 uses I2C registers 0x98–0x9C and DRC2 uses I2C registers 0x9D–0xA1.  
RMS estimator—This DRC element derives an estimate of the rms value of the audio data stream into  
the DRC. For DRC1 (Ch1–Ch3), the individual channel estimates are computed. The outputs of the  
estimators are then compared, sample-by-sample, and the larger-valued sample is forwarded to the  
compression/expansion coefficient computation engine.  
Two programmable parameters (I2C 0x98), E and (1 – E), set the effective time window over which the  
rms estimate is made. For the DRC1 block, the programmable parameters apply to all rms estimators.  
The time window over which the rms estimation is computed can be determined by:  
*1  
t
+
window  
f
ȏn(1 * E)  
S
Compression/expansion coefficient computation—This DRC element converts the output of the rms  
estimator to a logarithmic number, determines the region where the input resides, and then computes  
and outputs the appropriate coefficient to the attack/decay element. Seven programmable  
parameters—T1, T2, O1, O2, k0, k1, and k2—define the three compression/expansion regions  
implemented by this element.  
Attack/decay control—This DRC element controls the transition time of changes in the coefficient  
computed in the compression/expansion coefficient computation element. Four programmable  
parameters define the operation of this element. Parameters D and (1 – D) set the decay or release  
time constant to be used for volume boost (expansion). Parameters A and (1 – A) set the attack time  
constant to be used for volume cuts. The transition time constants can be determined by:  
*1  
ȏn(1 * A)  
*1  
ȏn(1 * D)  
t +  
t +  
d
a
f
f
S
S
Figure 1-19 shows how the TAS5504A attack and decay are defined. Note that this is opposite of some  
definitions of attack and decay.  
34  
Introduction  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
t = 1/[f ´ n(1 D)]  
d
t = 1/[f ´ n(1 A)]  
a
S
S
Decay  
Attack  
Time  
T0115-01  
Figure 1-19. TAS5504A Attack and Decay Definition  
1.4.11.2 Compression/Expansion Coefficient Computation Engine Parameters  
Seven programmable parameters are assigned to each DRC block: two threshold parameters—T1 and  
T2, two offset parameters—O1 and O2, and three slope parameters—k0, k1, and k2. The threshold  
parameters establish the three regions of the DRC transfer curve; the offsets anchor the transfer curve by  
establishing known gain settings at the threshold levels; and the slope parameters define whether a given  
region is a compression or an expansion region.  
The audio input stream into the DRC must pass through DRC-dedicated programmable input mixers.  
These mixers are provided to scale the 32-bit input into the DRC to account for the positioning of the  
audio data in the 48-bit DAP word and the net gain or attenuation in signal level between the SAP input  
and the DRC. The selection of threshold values must take the gain (attenuation) of these mixers into  
account. The DRC implementation examples that follow illustrate the effect these mixers have on  
establishing the threshold settings.  
T2 establishes the boundary between the high-volume region and the mid-volume region. T1 establishes  
the boundary between the mid-volume region and the low-volume region. Both thresholds are set in  
logarithmic space, and which region is active for any given rms estimator output sample is determined by  
the logarithmic value of the sample.  
Threshold T2 serves as the fulcrum or pivot point in the DRC transfer function. O2 defines the boost  
(> 0 dB) or cut (< 0 dB) implemented by the DRC-derived gain coefficient for an rms input level of T2. If  
O2 = 0 dB, the value of the derived gain coefficient is 1 (0x0080 0000 in 5.23 format). k2 is the slope of  
the DRC transfer function for rms input levels above T2, and k1 is the slope of the DRC transfer function  
for rms input levels below T2 (and above T1). The labeling of T2 as the fulcrum stems from the fact that  
there cannot be a discontinuity in the transfer function at T2. The user can, however, set the DRC  
parameters to realize a discontinuity in the transfer function at the boundary defined by T1. If no  
discontinuity is desired at T1, the value for the offset term O1 must obey the following equation.  
Introduction  
35  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
O1No Discontinuity = |T1 – T2| × k1 + O2 For ( |T1| |T2| )  
T1 and T2 are the threshold settings in dB, k1 is the slope for region 1, and O2 is the offset in dB at T2. If  
the user chooses to select a value of O1 that does not obey the preceding equation, a discontinuity at T1  
is realized.  
Going down in volume from T2, the slope k1 remains in effect until the input level T1 is reached. If, at this  
input level, the offset of the transfer function curve from the 1:1 transfer curve does not equal O1, a  
discontinuity occurs at this input level as the transfer function is snapped to the offset called for by O1. If  
no discontinuity is wanted, O1 and/or k1 must be adjusted so that the value of the transfer curve at the  
input level T1 is offset from the 1:1 transfer curve by the value O1. The examples that follow illustrate both  
continuous and discontinuous transfer curves at T1.  
Going down in volume from T1, starting at the offset level O1, the slope k0 defines the  
compression/expansion activity in the lower region of the DRC transfer curve.  
1.4.11.2.1 Threshold Parameter Computation  
For thresholds,  
TdB = –6.0206TINPUT = –6.0206TSUB_ADDRESS_ENTRY  
If, for example, it is desired to set T1 = –64 dB, then the subaddress entry required to set T1 to –64 dB is:  
64  
*6.0206  
T1  
+
+ 10.63  
SUB_ADDRESS_ENTRY  
T1 is entered as a 48-bit number in 25.23 format. Therefore:  
T1 = 10.63 = 0 1010.1010 0001 0100 0111 1010 111  
= 0x0000 0550 A3D7 in 25.23 format  
1.4.11.2.2 Offset Parameter Computation  
The offsets set the boost or cut applied by the DRC-derived gain coefficient at the threshold point. An  
equivalent statement is that offsets represent the departure of the actual transfer function from a 1:1  
transfer at the threshold point. Offsets are 25.23-formatted, 48-bit logarithmic numbers. They are  
computed by the following equation.  
O
) 24.0824 dB  
DESIRED  
6.0206  
O
+
INPUT  
Gains or boosts are represented as negative numbers; cuts or attenuation are represented as positive  
numbers. For example, to achieve a boost of 21 dB at threshold T1, the I2C coefficient value entered for  
O1 must be:  
*21 dB ) 24.0824 dB  
O1  
+
+ 0.51197555  
INPUT  
6.0206  
+ 0.1000 0011 0001 1101 0100  
+ 0x0000 0041 886A in 25.23 format  
More examples of offset computations are included in the following examples.  
1.4.11.2.3 Slope Parameter Computations  
In developing the equations used to determine the subaddress of the input value required to realize a  
given compression or expansion within a given region of the DRC, the following convention is adopted.  
DRC transfer = Input increase : Output increase  
If the DRC realizes an output increase of n dB for every dB increase in the rms value of the audio into the  
DRC, a 1 : n expansion is being performed. If the DRC realizes a 1-dB increase in output level for every  
n-dB increase in the rms value of the audio into the DRC, an n : 1 compression is being performed.  
For 1 : n expansion, the slope k can be found by:  
36  
Introduction  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
k = n – 1  
For n : 1 compression, the slope k can be found by:  
1
k + * 1  
n
In both expansion (1 : n) and compression (n : 1), n is implied to be greater than 1. Thus, for expansion:  
1
k + * 1  
n
k = n – 1 means k > 0 for n > 1. Likewise, for compression,  
it appears that k must always lie in the range k > –1.  
means –1 < k < 0 for n > 1. Thus,  
The DRC imposes no such restriction, and k can be programmed to values as negative as –15.999. To  
determine what results when such values of k are entered, it is first helpful to note that the compression  
and expansion equations for k are actually the same equation. For example, a 1 : 2 expansion is also a  
0.5 : 1 compression.  
1
0.5  
0.5 : 1 compression å k +  
*
1 + 1  
1 : 2 expansion å k + 2 * 1 + 1  
As can be seen, the same value for k is obtained either way. The ability to choose values of k less than –1  
allows the DRC to implement negative-slope transfer curves within a given region. Negative-slope transfer  
curves are usually not associated with compression and expansion operations, but the definition of these  
operations can be expanded to include negative-slope transfer functions. For example, if k = –4  
1
n
1
3
Compression equation: k + * 4 +  
* 1 å n + *  
å * 0.3333 : 1 compression  
Expansion equation: k + * 4 + n * 1 å n + * 3 å 1 : * 3 expansion  
With k = –4, the output decreases 3 dB for every 1-dB increase in the rms value of the audio into the  
DRC. As the input increases in volume, the output decreases in volume.  
1.4.12 Output Mixer  
The TAS5504A provides a 4 × 2 output mixer for channels 1 and 2. For channels 3 and 4, the TAS5504A  
provides a 4 × 3 output mixer. These mixers allow each output to be any ratio of any two (three)  
signal-processed channels. The control parameters for the output crossbar mixer are programmable via  
the I2C interface. All of the TAS5504A features are available when the 8 × 2 and 8 × 3 output mixers are  
configured in the pass-through output mixer configuration, where the audio data from each DAP channel  
maps directly to the corresponding PWM channel (i.e., DAP channel 1 to PWM channel 1, etc).  
It is recommended to use the default settings for the output mixers. However, If the DAP channels are  
remapped from the default certain limitations must be considered:  
Individual channel mute should not be used.  
The sum of the minimum channel volume and master colume should not be below –109 dB.  
Introduction  
37  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
Gain Coefficient  
28  
48  
Select  
Output  
N
48  
Gain Coefficient  
28  
48  
48  
Select  
Output  
1 or 2  
Output  
N
Gain Coefficient  
28  
48  
Select  
Output  
N
48  
Gain Coefficient  
28  
48  
48  
Select  
Output  
3 or 4  
Output  
N
48  
Gain Coefficient  
28  
48  
Select  
Output  
N
M0011-04  
Figure 1-20. Output Mixers  
1.4.13 PWM  
The TAS5504A has four channels of high-performance digital PWM modulators that are designed to drive  
switching output stages (back ends) in both single-ended (SE) and H-bridge (bridge-tied load)  
configurations. The TAS5504A device uses noise-shaping and sophisticated error correction algorithms to  
achieve high power efficiency and high-performance digital audio reproduction. The TAS5504A uses an  
AD1 PWM modulation combined with a 5th-order noise shaper to provide a 102-dB SNR from 20 Hz to  
20 kHz.  
The PWM section accepts 32-bit PCM data from the DAP and outputs four PWM audio output channels.  
The TAS5504A PWM section output supports both single-ended and bridge-tied loads.  
The PWM section provides a headphone PWM output to drive an external differential amplifier like the  
TPA112. The headphone circuit uses the PWM modulator for channels 1 and 2. The headphone does not  
operate while the back-end drive channels are operating. The headphone is enabled via a headphone  
select terminal or I2C command.  
The PWM section has individual channel dc-blocking filters that can be enabled and disabled. The filter  
cutoff frequency is less than 1 Hz.  
The PWM section has individual channel de-emphasis filters for 32, 44.1, and 48 kHz that can be enabled  
and disabled.  
The PWM section also contains the power-supply volume control (PSVC) PWM.  
The interpolator, noise shaper, and PWM sections provide a PWM output with the following features:  
38  
Introduction  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
Up to 8× oversampling.  
8× at fS = 44.1 kHz, 48 kHz, 32 kHz, 38 kHz  
4× at fS = 88.2 kHz, 96 kHz  
2× at fS = 176.4 kHz, 192 kHz  
5th-order noise shaping  
102-dB dynamic range 0–20 kHz (TAS5504A + TAS5111 system measured at speaker terminals)  
THD < 0.01%  
Adjustable maximum modulation limit of 93.8% to 99.2%  
3.3-V digital signal  
1.4.13.1 DC Blocking (High-Pass Enable/Disable)  
Each input channel incorporates a 1st-order digital high-pass filter to block potential dc components. The  
filter –3-dB point is approximately 0.89 Hz at the 44.1-kHz sampling rate. The high-pass filter can be  
enabled and disabled via I2C system control register 1 (0x03 bit D7). The default setting is 1 (high-pass  
filter enabled).  
1.4.13.2 De-Emphasis Filter  
For audio sources that have been preemphasized, a precision 50-µs/15-µs de-emphasis filter is provided  
to support the sampling rates of 32 kHz, 44.1 kHz, and 48 kHz. Figure 1-21 shows a graph of the  
de-emphasis filtering characteristics. De-emphasis is set using 2 bits in the system control register.  
0
De-emphasis  
−10  
3.18 (50 µs)  
10.6 (15 µs)  
f – Frequency – kHz  
M0015-01  
Figure 1-21. De-Emphasis Filter Characteristics  
1.4.13.3 Power-Supply Volume Control (PSVC)  
The TAS5504A supports volume control by both conventional digital gain/attenuation and by a  
combination of digital and analog gain/attenuation. Varying the H-bridge power-supply voltage performs  
the analog volume control function. The benefits of using PSVC are reduced idle channel noise, improved  
signal resolution at low volumes, increased dynamic range, and reduced radio frequency emissions at  
reduced power levels. The PSVC is enabled via I2C. When enabled, the PSCV provides a PWM output  
that is filtered to provide a reference voltage for the power supply. The power-supply adjustment range  
can be set for –12, –18, or –24 dB, to accommodate a range of variable power-supply designs.  
Figure 1-22 and Figure 1-23 show how power supply and digital gains can be used together.  
The volume biquad (0xCF) can be used to implement a low-pass filter in the digital volume control to  
match the PSVC volume transfer function.  
Introduction  
39  
 
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
100  
10  
Digital Gain  
1
0.1  
Power-Supply Gain  
0.01  
0.001  
0.0001  
0.00001  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
Desired Gain − Linear  
G003  
Figure 1-22. Power Supply and Digital Gains (Log Space)  
30  
20  
10  
Digital Gain  
0
−10  
−20  
−30  
−40  
−50  
−60  
Power-Supply Gain  
−80  
−70  
−60  
−50  
−40  
−30  
−20  
−10  
0
10  
20  
30  
Desired Gain − dB  
G002  
Figure 1-23. Power Supply and Digital Gains (Linear Space)  
1.4.13.4 AM Interference Avoidance  
Digital amplifiers can degrade AM reception as a result of their RF emissions. Texas Instruments patented  
AM interference avoidance circuit provides a flexible system solution for a wide variety of digital audio  
architectures. During AM reception, the TAS5504A adjusts the radiated emissions to provide an  
emission-clear zone for the tuned AM frequency. The inputs to the TAS5504A for this operation are the  
tuned AM frequency, the IF frequency, and the sample rate. The sample rate is automatically detected.  
40  
Introduction  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
Analog  
Receiver  
ADC  
Audio  
TAS5504A  
TAS5111  
TAS5111  
TAS5111  
TAS5111  
PCM1802  
DSP  
Audio DSP Provides the  
Master and Bit Clocks  
Digital  
Audio  
TAS5504A  
TAS5111  
TAS5111  
TAS5111  
TAS5111  
Receiver  
DSP  
The Digital Receiver or the Audio DSP  
Provides the Master and Bit Clocks  
B0018-04  
Figure 1-24. Block Diagrams of Typical Systems Requiring TAS5504A  
Automatic AM Interference Avoidance Circuit  
2
TA5504A Controls and Status  
The TAS5504A provides control and status information from both the I2C registers and device pins.  
This section describes some of these controls and status functions. The I2C summary and detailed  
register descriptions are contained in Section 5 and Section 6 of this document, respectively.  
2.1 I2C Status Registers  
The TAS5504A has two status registers that provide general device information. These are the general  
status register 0 (0x01) and the error status register (0x02).  
2.1.1 General Status Register (0x01)  
Device identification code  
Clip indicator – The TAS5504A has a clipping indicator. Writing to the register clears the indicator.  
2.1.2 Error Status Register (0x02)  
No internal errors (the valid signal is high)  
A clock error has occurred – These are sticky bits that are cleared by writing to the register.  
LRCLK error – When the number of MCLKs per LRCLK is incorrect  
SCLK error – When the number of SCLKS per LRCLK is incorrect  
Frame slip – When the number of MCLKs per LRCLK changes by more than 10 MCLK cycles  
PLL phase-lock error  
This error status register is normally used for system development only.  
TA5504A Controls and Status  
41  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
2.2 TAS5504A Pin Controls  
The TAS5504A provides a number of terminal controls to manage the device operation. These controls  
are:  
RESET  
PDN  
BKND_ERR  
HP_SEL  
MUTE  
2.2.1 Reset (RESET)  
The TAS5504A is placed in the reset mode by setting the RESET terminal low or by the power-up-reset  
circuitry when power is applied.  
RESET is an asynchronous control signal that restores the TAS5504A to the hard-mute state (M-state).  
Master volume is immediately set to full attenuation (there is no ramp down). Reset initiates the device  
reset without an MCLK input. As long as the RESET terminal is held low, the device is in the reset state.  
During reset, all I2C and serial data bus operations are ignored.  
Table 2-1 shows the device output signals while RESET is active.  
Table 2-1. Device Outputs During Reset  
SIGNAL  
Valid  
SIGNAL STATE  
Low  
PWM P-outputs  
PWM M-outputs  
SDA  
Low (M-State)  
Low (M-State)  
Signal input (not driven)  
Because RESET is an asynchronous signal, clicks and pops produced during the application (the leading  
edge) of RESET cannot be avoided. However, the transition from the M-state to the operational state is  
performed using a quiet start-up sequence to minimize noise. This control uses the PWM reset and  
unmute sequence to shut down and start up the PWM. A detailed description of these sequences is  
contained in the PWM section. If a completely quiet reset or power-down sequence is desired, MUTE  
should be applied before applying RESET.  
The rising edge of the reset pulse begins device initialization before the transition to the operational mode.  
During device initialization, all controls are reset to their initial states. Table 2-2 shows the default control  
settings following a reset.  
Table 2-2. Values Set During Reset  
CONTROL  
Output mixer configuration  
High pass  
SETTING  
0xD0 bit 30 = 0 (remapped output mixer configuration)  
Enabled  
Unmute from clock error  
Input automute  
Hard unmute  
Enabled  
Output automute  
Enabled  
De-emphasis  
De-emphasis disabled  
I2S, 24-bit  
Serial data interface format  
Individual channel mute  
Automute delay  
No channels are muted  
5 ms  
Automute threshold 1  
< 8 bits  
42  
TA5504A Controls and Status  
 
 
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
Table 2-2. Values Set During Reset (continued)  
CONTROL  
Automute threshold 2  
SETTING  
Same as automute threshold 1  
Modulation limit  
Maximum modulation limit of 97.7% (NOTE: some power  
stages)  
Volume and mute update rate  
Treble and bass slew rate  
Bank switching  
Volume ramp 88.2 ms  
Update every 1.31 ms  
Manual bank selection is enabled  
Biquad coefficients  
Set to all pass  
Input mixer coefficients  
Output mixer coefficients  
Subwoofer sum into Ch1 and Ch2  
Ch1 and Ch2 sum in subwoofer  
Bass and treble bypass/inline  
DRC bypass/inline  
Input N –> Channel N, no attenuation  
Channel N –> Output N, no attenuation  
Gain of 0  
Gain of 0  
Bypass  
Bypass  
DRC  
DRC disabled, default values  
Master volume  
Mute  
Individual channel volumes  
All bass and treble indexes  
Treble filter sets  
0 dB  
0x12 neutral  
Filter set 3  
Bass filter sets  
Filter set 3  
Loudness  
Loudness disabled, default values  
AM interference enable  
AM interference IF  
Disabled  
455 kHz  
1
AM interference select sequence  
Tuned frequency and mode  
0000, BCD  
After the initialization time, the TAS5504A starts the transition to the operational state with the master  
volume set at mute.  
Because the TAS5504A has an external crystal time base, following the release of reset, the TAS5504A  
sets the MCLK and data rates and performs the initialization sequences. The PWM outputs are held at a  
mute state until the master volume is set to a value other than mute via I2C.  
2.2.2 Power Down (PDN)  
The TAS5504A can be placed into the power-down mode by holding the PDN terminal low. When  
power-down mode is entered, both the PLL and the oscillator are shut down. Volume is immediately set to  
full attenuation (there is no ramp down). This control uses the PWM mute sequence that provides a  
low-click-and-pop transition to the M-state. A detailed description of the PWM mute sequence is contained  
in the PWM section.  
Power down is an asynchronous operation that does not require MCLK to go into the power-down state.  
To initiate the power-up sequence requires MCLK to be operational and the TAS5504A to receive five  
MCLKs prior to the release of PDN.  
As long as the PDN terminal is held low, the device is in the power-down state with the PWM outputs in  
the M-state. During power down, all I2C and serial data bus operations are ignored. Table 2-3 shows the  
device output signals while PDN is active.  
Table 2-3. Device Outputs During Power Down  
SIGNAL  
SIGNAL STATE  
Valid  
Low  
TA5504A Controls and Status  
43  
 
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
Table 2-3. Device Outputs During Power Down (continued)  
SIGNAL  
PWM P-outputs  
PWM M-outputs  
SDA  
SIGNAL STATE  
M-state = low  
M-state = low  
Signal input  
PSVC  
M-state = low  
Following the application of PDN, the TAS5504A does not perform a quiet shutdown to prevent clicks and  
pops produced during the application (the leading edge) of this command. The application of PDN  
immediately performs a PWM stop. A quiet stop sequence can be performed by first applying MUTE  
before PDN.  
When PDN is released, the system goes to the end state specified by MUTE and BKND_ERR pins and  
the I2C register settings.  
The crystal time base allows the TAS5504A to determine the CLK rates. Once these rates are determined,  
the TAS5504A unmutes the audio.  
2.2.3 Back-End Error (BKND_ERR)  
Back-end error is used to provide error management for back-end error conditions. Back-end error is a  
level-sensitive signal. Back-end error can be initiated by bringing the BKND_ERR terminal low for a  
minimum of five MCLK cycles. When BKND_ERR is brought low, the PWM sets all channels into the  
PWM back-end error state. This state is described in the PWM section. Once the back-end error  
sequence is initiated, a delay of 5 ms is performed before the system starts the output re-initialization  
sequence. After the initialization time, the TAS5504A begins normal operation. Back-end error does not  
affect other PWM modulator operations  
When BKND_ERR is low, the TAS5504A brings the PWM outputs 1–4 to a back-end error state, while not  
affecting any other internal settings or operations. Table 2-4 shows the device output signal states during  
back-end error.  
Table 2-4. Device Outputs During Back-End Error  
SIGNAL  
Valid  
SIGNAL STATE  
Low  
PWM P-outputs  
PWM M-outputs  
HPPWM P-outputs  
HPPWM M-outputs  
SDA  
M-state = low  
M-state = low  
M-state - low  
M-state - low  
Signal input (not driven)  
2.2.4 Speaker/Headphone Selector (HP_SEL)  
The HP_SEL terminal enables the headphone output or the speaker outputs. The headphone output  
receives the processed data output from DAP and PWM channels 1 and 2.  
When low, the headphone output is enabled. In this mode, the speaker outputs are disabled. When high,  
the speaker outputs are enabled and the headphone is disabled.  
Changes in the pin logic level results in a state change sequence using soft mute to the M-state for both  
speaker and headphone followed by a soft unmute.  
When HP_SEL is low, the configuration of channels 1 and 2 is defined by the headphone configuration  
register. When HP_SEL is high, the channel 1 and 2 configuration registers define the configuration of  
channels 1 and 2.  
44  
TA5504A Controls and Status  
 
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
2.2.5 Mute (MUTE)  
The mute control provides a noiseless volume ramp to silence. Releasing mute provides a noiseless ramp  
to previous volume. The TAS5504A has both a master and individual channel mute commands. A terminal  
also is provided for the master MUTE. The active-low master mute I2C register and the MUTE terminal are  
logically ORed together. If either is set to low, a mute on all channels is performed. The master mute  
command operates on all channels.  
When MUTE is invoked, the PWM output stops switching and then goes to an idle state.  
The master mute terminal is used to support a variety of other operations in the TAS5504A, such as  
setting the interchannel delay, the biquad coefficients, the serial interface format, and the clock rates. A  
mute command by the master mute terminal, individual I2C mute, the AM interference mute sequence, the  
bank-switch mute sequence, or automute overrides an unmute command or a volume command. While a  
mute is active, the commanded channels are placed in a mute state. When a channel is unmuted, it goes  
to the last commanded volume setting that has been received for that channel.  
2.3 Device Configuration Controls  
The TAS5504A provides a number of system configuration controls that are set at initialization and  
following a reset.  
Channel configuration  
Headphone configuration  
Audio system configurations  
Recovery from clock error  
Power-supply volume-control enable  
Volume and mute update rate  
Modulation index limit  
Master clock and data-rate controls  
Bank controls  
2.3.1 Channel Configuration Registers  
In order for the TAS5504A to have full control of the power stages, registers 0x05, 0x06, 0x0B, and 0x0C  
must be programmed to reflect the proper power stage and how each one should be controlled. Channel  
configuration registers consist of four registers, one for each channel.  
The primary reason for using these registers is that different power stages require different handling  
during start up, mute/unmute, shutdown, and error recovery. The TAS5504A must select the sequence  
that gives the best click and pop performance and insure that the bootstrap capacitor is charged correctly  
during start-up. This sequence depends on which power stage is present at the TAS5504A output.  
Table 2-5. Description of the Channel Configuration Registers (0x05, 0x06, 0x0B, 0x0C)  
BIT  
DESCRIPTION  
D7 Enable/disable error recovery sequence. In case the BKND_ERR pin is pulled low, this register determines if this channel is to follow  
the error recovery sequence or to continue with no interruption.  
D6 Determines if the power stage needs the TAS5504A VALID pin to go low to reset the power stage. Some power stages can be reset  
by a combination of PWM signals. For these devices, it is recommended to set this bit low, because the VALID pin is shared for  
power stages. This provides better control of each power stage.  
D5 Determines if the power stage needs the TAS5504A VALID pin to go low to mute the power stage. Some power stages can be  
muted by a combination of PWM signals. For these devices, it is recommended to set this bit low, because the VALID pin is shared  
for power stages. This provides better control of each power stage.  
D4 Inverts the PWM output. Inverting the PWM output can be an advantage if the power-stage input pins are opposite the TAS5504A  
PWM pinout. This makes routing on the PCB easier. To keep the phase of the output, the speaker terminals also must be inverted.  
D3 When using the TAS5182 power stage, this bit must be set.  
D2 Can be used to handle click and pop for some applications.  
TA5504A Controls and Status  
45  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
Table 2-5. Description of the Channel Configuration Registers (0x05, 0x06, 0x0B, 0x0C) (continued)  
BIT  
DESCRIPTION  
D1 This bit is normally used together with D2. For some power stages, both PWM signals must be high to get the desired operation of  
both speaker outputs to be low. This bit sets the PWM outputs high-high during mute.  
D0 Not used  
Table 2-6 lists the optimal setting for each output stage configuration. Note that the default value is  
applicable in all configurations except the TAS5182 SE/BTL configuration.  
Table 2-6. Recommended TAS5504A Configurations for Texas Instruments Power Stages  
DEVICE  
ERROR RECOVERY  
RES  
CONFIGURATION  
D7  
1
D6  
1
D5  
1
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
BTL  
SE  
1
1
1
0
0
0
0
0
TAS5111  
(default)  
BTL  
SE  
0
1
1
0
0
0
0
0
AUT  
RES  
AUT  
RES  
0
1
1
0
0
0
0
0
BTL  
SE  
1
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0
TAS5112  
TAS5182  
BTL  
SE  
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
BTL  
SE  
1
1
1
0
1
0
0
0
1
1
1
0
1
0
0
0
RES: The output stage requires VALID to go low to recover from a shutdown.  
AUT: The power stage can autorecover from a shutdown.  
BTL: Bridge-tied load configuration  
SE: Single-ended configuration  
2.3.2 Headphone Configuration Registers  
The headphone configuration controls are identical to the speaker configuration controls. The headphone  
configuration control settings are used in place of the speaker configuration control settings for channels 1  
and 2 when the headphones are selected. In reality, however, only one configuration setting is used for  
headphones, and that is the default setting.  
2.3.3 Audio System Configurations  
The TAS5504A can be configured to comply with various audio systems.  
The audio system configuration is set in the general control register (0xE0). Bits D31–D4 must be zero  
and D0 is don't care.  
D3—Must always be 0 (default). Note that the subwoofer cannot be used as lineout when the PSVC is  
enabled (D3 is a write-only bit).  
D2—Enable/disable power-supply volume control  
D3–D1 must be configured for the audio system in the application, as shown in Table 2-7.  
Table 2-7. Audio System Configuration (General Control Register 0xE0)  
AUDIO SYSTEM  
DEFAULT  
D31–D4  
D3  
0
D2  
0
D1  
0
D0  
X
0
0
0
0
3.1 channels NOT using PSVC  
4 channels using PSVC  
3.1 channels using PSVC  
0
0
1
X
0
1
1
X
0
1
1
X
46  
TA5504A Controls and Status  
 
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
2.3.4 Recovery from Clock Error  
The TAS5504A can be set either to perform a volume ramp-up during the recovery sequence of a clock  
error or simply to come up in the last state (or desired state if a volume or tone update was in progress).  
This feature is enabled via I2C system control register 0x03.  
2.3.5 Power-Supply Volume-Control Enable  
The power-supply volume control (PSVC) can be enabled and disabled via I2C register 0xE0. The  
subwoofer PWM output is always controlled by the PSVC. When using PSVC, the subwoofer cannot be  
used as lineout.  
2.3.6 Volume and Mute Update Rate  
The TAS5504A has fixed soft-volume and mute-ramp durations. The ramps are linear. The soft-volume  
and mute-ramp rates are adjustable by programming the I2C register 0xD0 for the appropriate number of  
steps to be 512, 1024, or 2048. The update is performed at a fixed rate regardless of the sample rate.  
In normal speed, the update rate is 1 step every 4/fS seconds.  
In double speed, the update is 1 step every 8/fS seconds.  
In quad speed, the update is 1 step every 16/fS seconds.  
Because of processor loading, the update rate can increase for some increments by 1/fS to 3/fS. However,  
the variance of the total time to go from 18 dB to mute is less than 25%.  
Table 2-8. Volume Ramp Rates in ms  
NUMBER OF STEPS  
SAMPLE RATE (kHz)  
44.1, 88.2, 176.4  
32, 48, 96, 192  
42.67 ms  
512  
1024  
2048  
46.44 ms  
92.88 ms  
185.76 ms  
85.33 ms  
170.67 ms  
2.3.7 Modulation Index Limit  
Pulse-width modulation (PWM) is a linear function of the audio signal. When the audio signal is 0, the  
PWM is 50%. When the audio signal increases toward full scale, the PWM increases toward 100%. For  
negative signals, the PWM falls below 50% towards 0%.  
However, there is a limit to the maximum modulation possible. During the off-time period, the power stage  
connected to the TAS5504A output must get ready for the next on-time period. The maximum possible  
modulation is then set by the power-stage requirements. The modulation index limit setting is 97.7%;  
however, some power stages require a lower modulation index limit. See the applicable power-stage data  
sheet for details on setting the modulation index limit.  
2.4 Master Clock and Serial Data Rate Controls  
The TAS5504A functions only as a receiver of the MCLK (master clock), SCLK (shift clock), and LRCLK  
(left/right clock) signals that controls the flow of data on the four serial data interfaces. The 13.5-MHz  
external crystal allows the TAS5504A to detect MCLK and the data rate automatically.  
The MCLK frequency can be 64 × fS, 128 × fS, 196 × fS, 256 × fS, 384 × fS, 512 × fS, or 768 × fS.  
The TAS5504A operates with the serial data interface signals LRCLK and SCLK synchronized to MCLK.  
However, there is no constraint as to the phase relationship of these signals. The TAS5504A accepts a  
64 × fS SCLK rate and a 1 × fS LRCLK.  
If the phase of SCLK or LRCLK drifts more than ±10 MCLK cycles since the last reset, the TAS5504A  
senses a clock error and resynchronizes the clock timing.  
TA5504A Controls and Status  
47  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
The clock and serial data interface have several control parameters:  
MCLK ratio (64 fS, 128 fS, 196 fS, 256 fS, 384 fS, 512 fS, or 768 fS) – I2C parameter  
Data rate (32, 38, 44.1,48, 88.2, 96, 176.4, 192 kHz) – I2C parameter  
AM mode enable/disable – I2C parameter  
During AM interference avoidance, the clock control circuitry uses three other configuration inputs:  
Tuned AM frequency (for AM interference avoidance) (550 kHz–1750 kHz) – I2C parameter  
Frequency set select (1–4) – I2C parameter  
Sample rate – I2C parameter or autodetected  
2.4.1 PLL Operation  
The TAS5504A uses two internal clocks generated by two internal phase-locked loops (PLLs), the digital  
PLL (DPLL) and the analog PLL (APLL). The APLL provides the reference clock for the PWM. The DPLL  
provides the reference clock for the digital audio processor and the control logic.  
The master clock MCLK input provides the input reference clock for the APLL. The external 13.5-MHz  
crystal provides the input reference clock for the DPLL. The crystal provides a time base to support a  
number of operations, including the detection of the MCLK ratio, the data rate, and clock error conditions.  
The crystal time base provides a constant rate for all controls and signal timing.  
Even if MCLK is not present, the TAS5504A can receive and store I2C commands and provide status.  
2.5 Bank Controls  
The TAS5504A permits the user to specify and assign sample-rate-dependent parameters for biquad,  
loudness, DRC, and tone in one of three banks that can be manually selected or selected automatically  
based on the data sample rate. Each bank can be enabled for one or more specific sample rates via I2C  
bank control register 0x40. Each bank set holds the following values:  
Coefficients for seven biquads (7 × 5 = 35 coefficients) for each of the four channels (registers  
0x51–0x88)  
Coefficients for one loudness biquad (register 0x95)  
DRC1 energy and (1 – energy) values (register 0x98)  
DRC1 attack, (1 – attack), decay, (1 – decay) values (register 0x9C)  
DRC2 energy and (1 – energy) values (register 0x9D)  
DRC2 attack, (1 – attack), decay, (1 – decay) values (register 0xA1)  
Five bass filter-set selections (register 0xDA)  
Five treble filter-set selections (register 0xDC)  
The default selection for bank control is manual bank with bank 1 selected. Note that if bank switching is  
used, bank 2 and bank 3 must be programmed on power up because the default values are all zeroes. If  
bank switching is used and bank 2 and bank 3 are not programmed correctly, then the output of the  
TAS5504A could be muted when switching to those banks.  
2.5.1 Manual Bank Selection  
The three bank selection bits of the bank control register allow the appropriate bank to be manually  
selected (000 = bank 1, 001 = bank 2, 010 = bank 3). In the manual mode, when a write occurs to the  
biquad, DRC, or loudness coefficients, the currently selected bank is updated. If audio data is streaming to  
the TAS5504A during a manual bank selection, the TAS5504A first performs a mute sequence, then  
performs the bank switch, and finally restores the volume using an unmute sequence.  
A mute command initiated by the bank-switch mute sequence overrides an unmute command or a volume  
command. While a mute is active, the commanded channels are muted. When a channel is unmuted, the  
volume level goes to the last commanded volume setting that has been received for that channel.  
48  
TA5504A Controls and Status  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
If MCLK or SCLK is stopped, the TAS5504A performs a bank-switch operation. If the clocks should start  
up once the manual bank-switch command has been received, the bank switch operation is performed  
during the 5-ms silent start sequence.  
2.5.2 Automatic Bank Selection  
To enable automatic bank selection, a value of 3 is written into the bank selection bits of the bank control  
register. Banks are associated with one or more sample rates by writing values into the bank 1 or bank 2  
data-rate selection registers. The automatic base selection is performed when a frequency change is  
detected according to the following scheme:  
1. The system scans bank-1 data rate associations to see if the bank 1 is assigned for that data rate.  
2. If bank 1 is assigned, then the bank-1 coefficients are loaded.  
3. If bank 1 is not assigned, the system scans the bank 2 to see if bank 2 is assigned for that data rate.  
4. If bank 2 is assigned, then the bank-2 coefficients are loaded.  
5. If bank 2 is not assigned, the system loads the bank-3 coefficients.  
The default is that all frequencies are enabled for bank 1. This default is expressed as a value of all 1s in  
the bank-1 autoselection byte and all 0s in the bank-2 autosection byte.  
2.5.2.1 Coefficient Write Operations While Automatic Bank Switch Is Enabled  
In automatic mode, if a write occurs to the tone, EQ, DRC, or loudness coefficients, the bank that is  
written to is the current bank.  
2.5.3 Bank Set  
Bank set is used to provide a secure way to update the bank coefficients in both the manual and  
automatic switching modes without causing a bank switch to occur. Bank-set mode does not alter the  
current bank register mapping. It simply enables any bank’s coefficients to be updated while inhibiting any  
bank switches from taking place. In manual mode, this enables the coefficients to be set without switching  
banks. In automatic mode, this prevents a clock error or data-rate change from corrupting a bank  
coefficient write.  
To update the coefficients of a bank, a value of 4, 5, or 6 is written into in the bank selection bits of the  
bank control register. This enables the tone, EQ, DRC, and loudness coefficient values of bank 1, 2, or 3,  
respectively, to be updated.  
Once the coefficients of the bank have been updated, the bank selection bits are then returned to the  
desired manual or automatic bank selection mode.  
2.5.4 Bank-Switch Timeline  
After a bank switch is initiated (manual or automatic), no I2C writes to the TAS5504A should occur before  
a minimum of 186 ms. This value is determined by the volume ramp rates for a particular sample rate.  
2.5.5 Bank Switching Example 1  
Problem: The audio unit containing a TAS5504A needs to handle different audio formats with different  
sample rates. Format #1 requires fS = 32 kHz, format #2 requires fS = 44.1 kHz, and format #3 requires fS  
= 48 kHz. The sample-rate dependent parameters in the TAS5504A require different coefficients and data,  
depending on the sample rate.  
Strategy: Use the TAS5504A bank switching feature to allow for managing and switching three banks  
associated with the three sample rates, 32 kHz (bank 1), 44.1 kHz (bank 2), and 48 kHz (bank 3).  
One possible algorithm is to generate, load, and automatically manage bank switching for this problem:  
1. Generate bank-related coefficients for sample rates of 32 kHz, 44.1 kHz, and 48 kHz and include the  
same in the microprocessor-based TAS5504A I2C firmware.  
2. On TAS5504A power up or reset, the microprocessor runs the following TAS5504A initialization code:  
TA5504A Controls and Status  
49  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
a. Update bank 1 (write 0x0004 8040 to register 0x40).  
b. Write bank-related I2C registers with appropriate values for bank 1.  
c. Write bank 2 (write 0x0005 8040 to register 0x40).  
d. Load bank-related I2C registers with appropriate values for bank 2.  
e. Write bank 3 (write 0x0006 8040 to register 0x40).  
f. Load bank-related I2C registers with appropriate values for bank 3.  
g. Select automatic bank switching (write 0x0003 8040 to register 0x40).  
3. Now when the audio media changes, the TAS5504A automatically detects the incoming sample rate  
and automatically switches to the appropriate bank.  
In this example, any sample rates other then 32 kHz and 44.1 kHz use bank 3. If other sample rates are  
used, then the banks must be set up differently.  
2.5.6 Bank Switching Example 2  
Problem: The audio system uses all of the sample rates supported by the TAS5504A. How can the  
automatic bank switching be set up to handle this situation?  
Strategy: Use the TAS5504A bank switching feature to allow for managing and switching three banks  
associated with sample rates as follows:  
Bank 1: Coefficients for 32 kHz, 38 kHz, 44.1 kHz, and 48 kHz  
Bank 2: Coefficients for 88.2kHz and 96 kHz  
Bank 3: Coefficients for 176.4 kHz and 192 kHz  
One possible algorithm is to generate, load, and automatically manage bank switching for this problem:  
1. Generate bank-related coefficients for sample rates 48 kHz (bank 1), 96 kHz (bank 2), and 192 kHz  
(bank 3) and include the same in the microprocessor-based TAS5504A I2C firmware.,  
2. On TAS5504A power up or reset, the microprocessor runs the following TAS5504A initialization code:  
a. Update bank 1 (write 0x0004 F00C to register 0x40).  
b. Write bank-related I2C registers with appropriate values for bank 1.  
c. Write bank 2 (write 0x0005 F00C to register 0x40).  
d. Load bank-related I2C registers with appropriate values for bank 2.  
e. Write bank 3 (write 0x0006 F00C to register 0x40).  
f. Load bank-related I2C registers with appropriate values for bank 3.  
g. Select automatic bank switching (write 0x0003 F00C to register 0x40).  
3. Now when the audio media changes, the TAS5504A automatically detects the incoming sample rate  
and automatically switches to the appropriate bank.  
50  
TA5504A Controls and Status  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
3
Electrical Specifications  
3.1 Absolute Maximum Ratings(1)  
Supply voltage, DVDD and DVD_PWM  
Supply voltage, AVDD_PLL  
–0.3 V to 3.6 V  
–0.3 V to 3.6 V  
–0.5 V to DVDD + 0.5 V  
–0.5 V to 6 V  
3.3-V digital input  
Input voltage  
5-V tolerant(2) digital input  
1.8-V LVCMOS(3)  
–0.5 V to VREF(4) + 0.5 V  
IIK  
Input clamp current (VI < 0 or VI > 1.8 V  
Output clamp current (VO < 0 or VO > 1.8 V)  
Operating free-air temperature  
±20 µA  
IOK  
TA  
±20 µA  
0°C to 70°C  
Tstg  
Storage temperature range  
–65°C to 150°C  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) 5-V tolerant inputs are RESET, PDN, MUTE, HP_SEL, SCLK, LRCLK, MCLK, SDIN1, SDIN2, SDIN3, SDIN4, SDA, and SCL.  
(3) VRA_PLL, VRD_PLL, VR_DPLL, VR_DIG, VR_PWM  
(4) VREF is a 1.8-V supply derived from regulators internal to the TAS5504A chip. VREF is on terminals VRA_PLL, VRD_PLL, VR_DPLL,  
VR_DIG, and VR_PWM. These terminals are provided to permit use of external filter capacitors, but should not be used to source power  
to external devices.  
3.2  
Dissipation Rating Table (High-k Board, 105°C Junction)  
T
A 25°C  
DERATING FACTOR  
ABOVE TA = 25°C  
TA = 70°C  
POWER RATING  
PACKAGE  
POWER RATING  
PAG  
1869 mW  
23.36 mW/°C  
818 mW  
3.3  
Dynamic Performance at Recommended Operating Conditions at 25°C  
PARAMETER  
TEST CONDITIONS  
TAS5504A + TAS5111 A-weighted (fS = 48 kHz)  
TAS5111 at 1 W  
MIN  
NOM  
102  
MAX UNIT  
Dynamic range  
dB  
0.1%  
0.01%  
±0.1  
Total harmonic distortion  
Frequency response  
TAS5504A output  
32-kHz to 96-kHz sample rates  
176.4-, 192-kHz sample rates  
dB  
±0.2  
3.4  
Recommended Operating Conditions  
MIN  
3
NOM  
3.3  
MAX UNIT  
Digital supply voltage, DVDD and DVDD_PWM  
Analog supply voltage, AVDD_PLL  
3.3 V  
3.6  
3.6  
V
V
3
3.3  
2
VIH  
High-level input voltage  
5-V tolerant(1)  
1.8-V LVCMOS (XTL_IN)  
3.3 V  
2
V
V
1.26  
0.8  
0.8  
VIL  
Low-level input voltage  
5-V tolerant(1)  
1.8-V (XTL_IN)  
0.54  
70  
TA  
TJ  
Operating ambient-air temperature range  
Operating junction temperature range  
0
0
25  
°C  
°C  
105  
(1) 5-V tolerant inputs are RESET, PDN, MUTE, HP_SEL, SCLK, LRCLK, MCLK, SDIN1, SDIN2, SDIN3, SDIN4, SDA, and SCL.  
Electrical Specifications  
51  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
3.5  
Electrical Characteristics  
Over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
IOH = –4 mA  
MIN  
2.4  
TYP  
MAX UNIT  
3.3-V TTL and 5-V(1) tolerant  
VOH High-level output voltage  
V
1.8-V LVCMOS (XTL_OUT)  
IOH = –0.55 mA  
IOL = 4 mA  
1.44  
3.3-V TTL and 5-V(1) tolerant  
VOL Low-level output voltage  
0.5  
V
1.8-V LVCMOS (XTL_OUT)  
IOL = 0.75 mA  
0.5  
IOZ  
High-impedance output current  
Low-level input current  
3.3-V TTL  
±20  
±1  
µA  
µA  
3.3-V TTL  
VI = VIL  
IIL  
1.8-V LVCMOS (XTL_IN)  
5-V tolerant(2)  
VI = VIL  
±1  
VI = 0 V, DVDD = 3 V  
VI = VIH  
±1  
3.3-V TTL  
±1  
IIH  
High-level input current  
Input supply current  
1.8-V LVCMOS (XTL_IN)  
5-V tolerant(2)  
VI = VIH  
±1  
µA  
VI = 5.5 V, DVDD = 3 V  
fS = 48 kHz  
fS = 96 kHz  
fS = 192 kHz  
Power down  
Normal  
±20  
140  
150  
155  
8
Digital supply voltage, DVDD  
IDD  
mA  
20  
2
Analog supply voltage, AVDD  
Power down  
(1) 5-V tolerant outputs are SCL and SDA.  
(2) 5-V tolerant inputs are RESET, PDN, MUTE, HP_SEL, SCLK, LRCLK, MCLK, SDIN1, SDIN2, SDIN3, SDIN4, SDA, and SCL.  
3.6  
PWM Operation  
Over recommended operating conditions  
PARAMETER  
TEST CONDITIONS  
32-kHz data rate ±2%  
MODE  
VALUE  
384  
UNIT  
kHz  
kHz  
kHz  
12× sample rate  
Output sample rate 1×–8× oversampled  
44.1-, 88.2-, 176.4-kHz data rate ±2%  
48-, 96-, 192-kHz data rate ±1%  
8×, 4×, or 2× sample rate  
8×, 4×, or 2× sample rate  
352.8  
384  
3.7  
Switching Characteristics  
3.7.1 Clock Signals  
PLL input parameters and external filter components over recommended operating conditions (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
MHz  
MHz  
fXTALI  
fMCLKI  
Frequency, XTAL IN  
Only use 13.5-MHz crystal 1000 ppm  
13.5  
Frequency, MCLK (1/tcyc2  
)
2
50  
MCLK duty cycle  
40%  
50%  
60%  
2-V MCLK = 49.152 MHz, within the min  
and max duty cycle constraints  
MCLK minimum high time  
MCLK minimum low time  
5
ns  
ns  
0.8-V MCLK = 49.152 MHz, within the min  
and max duty cycle constraints  
5
LRCLK allowable drift before LRCLK reset  
External PLL filter capacitors C11 and C12  
External PLL filter capacitors C10 and C13  
External PLL filter resistors R10 and R11  
External VRA_PLL decoupling C14  
–10  
10 MCLKs  
SMD 0603 Y5V  
SMD 0603 Y5V  
SMD 0603, metal film  
SMD, Y5V  
100  
10  
nF  
nF  
200  
100  
nF  
(1) See the TAS5504A Example Application Schematic, Section 7.  
52 Electrical Specifications  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
3.7.2 Serial Audio Port  
Serial audio port slave mode over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
MHz  
ns  
fSCLKIN SCLK input frequency  
CL = 30 pF, SCLK = 64 fS  
2.048  
12.288  
tsu1  
th1  
tsu2  
th2  
Setup time, LRCLK to SCLK rising edge  
Hold time, LRCLK from SCLK rising edge  
Setup time, SDIN to SCLK rising edge  
Hold time, SDIN from SCLK rising edge  
LRCLK frequency  
10  
10  
10  
10  
32  
ns  
ns  
ns  
48  
192  
60%  
60%  
kHz  
SCLK duty cycle  
40% 50%  
40% 50%  
LRCLK duty cycle  
SCLK  
edges  
SCLK rising edges between LRCLK rising edges  
64  
64  
LRCLK clock edge with respect to the falling edge of  
SCLK  
SCLK  
period  
–1/4  
1/4  
SCLK  
(Input)  
t
h1  
t
su1  
LRCLK  
(Input)  
t
h2  
t
su2  
SDIN1  
SDIN2  
SDIN3  
T0026-01  
Figure 3-1. Slave Mode Serial Data Interface Timing  
3.7.3 TAS5504A Pin-Related Characteristics of the SDA and SCL I/O Stages for F/S-Mode  
I2C-Bus Devices  
STANDARD MODE  
FAST MODE  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
–0.5  
MAX  
MIN MAX  
VIL  
LOW-level input voltage  
0.3 VDD  
–0.5  
0.7 VDD  
0.05 VDD  
0
0.3 VDD  
V
V
V
V
VIH  
HIGH-level input voltage  
0.7 VDD  
N/A  
Vhys  
VOL1  
Hysteresis of Schmitt-trigger inputs  
N/A  
LOW-level output voltage (open drain or 3-mA sink current  
open collector)  
0.4  
(1)  
tof  
Output fall time from VIHmin to VILmax  
Bus capacitance from 10 pF  
to 400 pF  
250 7 + 0.1 Cb  
250  
ns  
tSP  
Ii  
Pulse duration of spikes suppressed(2)  
Input current, each I/O pin  
N/A  
–30  
N/A  
30  
0
30  
30(3)  
10  
ns  
µA  
pF  
–30(3)  
Ci  
Capacitance, each I/O pin  
10  
(1) Cb = capacitance of one bus line in pF. The output fall time is faster than the standard I2C specification.  
(2) SCL and SDA have a 30-ns glitch filter.  
(3) The I/O pins of fast-mode devices must not obstruct the SDA and SDL lines if VDD is switched off.  
Electrical Specifications  
53  
 
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
3.7.4 TAS5504A Bus-Related Characteristics of the SDA and SCL I/O Stages for F/S-Mode  
I2C-Bus Devices  
All values are referred to VIHmin and VILmax (see Section 3.7.3).  
A
STANDARD MODE  
MIN MAX  
100  
FAST MODE  
MIN MAX  
PARAMETER  
TEST CONDITIONS  
UNIT  
fSCL  
SCL clock frequency  
0
4
0
400  
kHz  
Hold time (repeated) START condition.  
tHD-STA After this period, the first clock pulse is  
generated.  
0.6  
µs  
tLOW  
tHIGH  
LOW period of the SCL clock  
HIGH period of the SCL clock  
4.7  
4
1.3  
0.6  
0.6  
100  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
µs  
µs  
tSU-STA Setup time for repeated START  
tSU-DAT Data setup time  
4.7  
250  
0
(1)(2)  
tHD-DAT Data hold time  
3.45  
0
0.9  
500(4)  
300  
(3)  
tr  
tf  
Rise time of both SDA and SCL  
Fall time of both SDA and SCL  
1000 20 + 0.1 Cb  
300 20 + 0.1 Cb  
(3)  
tSU-STO Setup time for STOP condition  
4
0.6  
1.3  
tBUF  
Bus free time between a STOP and  
START condition  
4.7  
Cb  
Capacitive loads for each bus line  
400  
400  
pF  
V
VnL  
Noise margin at the LOW level for each  
connected device (including hysteresis)  
0.1 VDD  
0.2 VDD  
0.1 VDD  
0.2 VDD  
VnH  
Noise margin at the HIGH level for each  
connected device (including hysteresis)  
V
(1) Note that SDA does not have the standard I2C specification 300-ns hold time and that SDA must be valid by the rising and falling edges  
of SCL. TI recommends that a 3.3-kpullup resistor be used to avoid potential timing issues.  
(2) A fast-mode I2C-bus device can be used in a standard-mode I2C-bus system, but the requirement tSU-DAT 250 ns must then be met.  
This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW  
period of the SCL signal, it must output the next data bit to the SDA line tr-max + tSU-DAT = 1000 + 250 = 1250 ns (according to the  
standard-mode I2C bus specification) before the SCL line is released.  
(3) Cb = total capacitance of one bus line in pF.  
(4) Rise time varies with pullup resistor.  
SDA  
t
f
t
t
t
r
SU-DAT  
HD-STA  
t
t
SP  
t
BUF  
LOW  
t
r
t
f
SCL  
t
t
t
SU-STO  
HD-DAT  
SU-STA  
t
t
HIGH  
HD-STA  
S
Sr  
P
S
T0114-01  
Figure 3-2. Start and Stop Conditions Timing Waveforms  
54  
Electrical Specifications  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
3.7.4.1 Recommemded I2C Pullup Resistors  
It is recommended that the I2C pullup resistors RP be 3.3 k(see Figure 3-3). If the circuit has a series resistor  
(see Figure 3-4), then the series resistor RS should be less than or equal to 300 .  
5 V  
TAS5504A  
External  
Microcontroller  
I
I
P
P
R
R
P
P
V
I(SDA)  
SDA  
V
I(SCL)  
SCL  
B0099-02  
Figure 3-3. I2C Pullup Circuit (With No Series Resistor)  
5 V  
TAS5504A  
External  
Microcontroller  
I
P
R
P
(2)  
(2)  
R
R
S
S
SDA  
or  
SCL  
V
I
(1)  
V
S
B0100-02  
(1) VS = 5 × RS/(RS = RP). When driven low, VS << VIL requirements.  
(2) S 300 Ω  
R
Figure 3-4. I2C Pullup Circuit (With Series Resistor)  
Electrical Specifications  
55  
 
 
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
3.7.5 Reset Timing (RESET)  
Control signal parameters over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
400  
10  
TYP  
MAX  
370  
UNIT  
ns  
td(PWM_off)  
tw(RESET)  
td(I2C_ready)  
td(run)  
Time from reset to PWM_EN low (PWM outputs disabled)  
Pulse duration, RESET active  
Time to enable I2C  
ns  
3
ms  
ms  
Device start-up time  
Earliest time  
RESET  
that PWM outputs  
could be enabled  
t
w(RESET)  
VALID  
t
d(I2C_ready)  
t
t
3 370 ns  
d(run)  
d(PWM_off)  
Start system  
Determine SCLK rate  
and MCLK ratio. Enable via I C.  
2
T0029-04  
NOTE: Because a crystal time base is used, the system determines the CLK rates. Once the data rate and master clock ratio  
is determined, the system outputs audio if a master volume command is issued at the beginning of td(run)  
.
Figure 3-5. Reset Timing  
3.7.6 Power-Down (PDN) Timing  
Control signal parameters over recommended operating conditions (unless otherwise noted)  
PARAMETER  
Time from reset to PWM_EN low (PWM outputs disabled)  
Number of MCLKs preceding the release of PDN  
Device start-up time  
MIN  
TYP  
MAX  
UNIT  
td(PWM_off)  
300  
µs  
5
tsu  
120  
ms  
PDN  
VALID  
t
< 300 µs  
t
su  
d(PWM_off)  
T0030-03  
Figure 3-6. Power-Down Timing  
56  
Electrical Specifications  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
3.7.7 Back-End Error (BKND_ERR)  
Control signal parameters over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN TYP  
MAX  
None  
100  
UNIT  
tw(ER)  
Pulse duration, BKND_ERR active  
350  
–25  
ns  
µs  
td(valid_low)  
td(valid_high)  
Time from back-end error to PWM_EN low (PWM outputs disabled)  
I2C programmable to be between 1 to 10 ms  
25  
% of interval  
t
w(ER)  
BKND_ERR  
VALID  
Normal  
Normal  
Operation  
Operation  
t
d(valid_high)  
t
d(valid_low)  
T0031-03  
Figure 3-7. Error Recovery Timing  
3.7.8 Mute Timing (MUTE)  
Control signal parameters over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
td(VOL) Volume ramp time  
Defined by rate setting(1)  
ms  
(1) See the Volume, Treble, and Base Slew Rates Register (0xD0), Section 6.26.  
MUTE  
Normal  
Operation  
Normal  
Operation  
VOLUME  
t
t
d(VOL)  
d(VOL)  
T0032-02  
Figure 3-8. Mute Timing  
Electrical Specifications  
57  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
3.7.9 Headphone Select (HP_SEL)  
Control signal parameters over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
MAX  
UNIT  
tw(HP_SEL) Pulse duration, HP_SEL active  
350  
ns  
ms  
ms  
td(VOL)  
t(SW)  
Soft-volume update time  
Switchover time  
Defined by rate setting(1)  
0.2  
1
(1) See the Volume, Treble, and Base Slew Rates Register (0xD0), Section 6.26.  
HP_SEL  
t
w(HP_SEL)  
Spkr Volume  
HP Volume  
t
t
d(VOL)  
d(VOL)  
t
d(VOL)  
t
t
(SW)  
(SW)  
t
d(VOL)  
T0033-02  
Figure 3-9. HP_SEL Timing  
3.7.10 Volume Control  
Control signal parameters over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
Individual volume, master volume, or a  
combination of both  
Maximum attenuation before mute  
–109  
dB  
Maximum gain  
Individual volume, master volume  
0-dB input, any modulation limit  
PSVC enabled  
18  
0
dB  
dB  
dB  
Maximum volume before the onset of clipping  
PSVC range  
12, 18, or 24  
fS  
PSVC rate  
PSVC modulation  
Single sided  
2048  
PSVC quantization  
Steps  
dB  
6%  
(120 : 2048)  
95%  
(1944 : 2048)  
PSVC PWM modulation limits  
PSVC range = 24 dB  
58  
Electrical Specifications  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
3.8  
Serial Audio Interface Control and Timing  
3.8.1 I2S Timing  
I2S timing uses LRCLK to define when the data being transmitted is for the left channel and when it is for the  
right channel. LRCLK is low for the left channel and high for the right channel. A bit clock running at 64 fS is used  
to clock in the data. From the time the LRCLK signal changes state to the first bit of data on the data lines is a  
delay of one bit clock. The data is written MSB-first and is valid on the rising edge of the bit clock. The  
TAS5504A masks unused trailing data bit positions.  
2
2-Channel I S (Philips Format) Stereo Input  
32 Clks  
32 Clks  
LRCLK (Note Reversed Phase)  
Left Channel  
Right Channel  
SCLK  
SCLK  
MSB  
LSB MSB  
LSB  
24-Bit Mode  
23 22  
9
5
1
8
4
0
5
1
4
1
0
23 22  
9
5
1
8
4
0
5
1
4
0
1
0
20-Bit Mode  
19 18  
0
19 18  
16-Bit Mode  
15 14  
15 14  
T0034-01  
Figure 3-10. I2S 64-fS Format  
Electrical Specifications  
59  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
3.8.2 Left-Justified Timing  
Left-justified (LJ) timing uses LRCLK to define when the data being transmitted is for the left channel and when it  
is for the right channel. LRCLK is high for the left channel and low for the right channel. A bit clock running at  
64 fS is used to clock in the data. The first bit of data appears on the data lines at the same time LRCLK toggles.  
The data is written MSB-first and is valid on the rising edge of the bit clock. The TAS5504A masks unused  
trailing data bit positions.  
2-Channel Left-Justified Stereo Input  
32 Clks  
32 Clks  
LRCLK  
SCLK  
LRCLK  
Right Channel  
Left Channel  
MSB  
LSB MSB  
LSB  
24-Bit Mode  
23 22  
9
5
1
8
4
0
5
1
4
0
1
0
23 22  
19 18  
15 14  
9
5
1
8
4
0
5
1
4
0
1
0
20-Bit Mode  
19 18  
16-Bit Mode  
15 14  
T0034-02  
Figure 3-11. Left-Justified 64-fS Format  
60  
Electrical Specifications  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
3.8.3 Right-Justified Timing  
Right-justified (RJ) timing uses LRCLK to define when the data being transmitted is for the left channel and when  
it is for the right channel. LRCLK is high for the left channel and low for the right channel. A bit clock running at  
64 fS is used to clock in the data. The first bit of data appears on the data lines eight bit-clock periods (for 24-bit  
data) after LRCLK toggles. In RJ mode, the LSB of data is always clocked by the last bit clock before LRCLK  
transitions. The data is written MSB-first and is valid on the rising edge of the bit clock. The TAS5504A masks  
unused leading data bit positions.  
2-Channel Right-Justified (Sony Format) Stereo Input  
32 Clks  
32 Clks  
LRCLK  
SCLK  
Right Channel  
Left Channel  
MSB  
LSB MSB  
LSB  
0
24-Bit Mode  
23 22  
19 18  
19 18  
15 14  
15 14  
15 14  
1
1
1
0
23 22  
19 18  
19 18  
15 14  
15 14  
15 14  
1
1
1
20-Bit Mode  
16-Bit Mode  
0
0
0
0
T0034-03  
Figure 3-12. Right-Justified 64-fS Format  
4
I2C Serial Control Interface (Slave Addresses 0x36 and 0x37)  
The TAS5504A has a bidirectional I2C interface that is compatible with the I2C (Inter IC) bus protocol and  
supports both 100-kbps and 400-kbps data transfer rates for single- and multiple-byte write and read  
operations. This is a slave-only device that does not support a multimaster bus environment or wait-state  
insertion. The control interface is used to program the registers of the device and to read device status.  
The TAS5504A supports standard-mode I2C bus operation (100 kHz maximum) and fast I2C bus operation  
(400 kHz maximum). The TAS5504A performs all I2C operations without I2C wait cycles.  
The I2C write address is 0x36, and the I2C read address is 0x37.  
4.1 General I2C Operation  
The I2C bus employs two signals, SDA (data) and SCL (clock), to communicate between integrated  
circuits in a system. Data is transferred on the bus serially, one bit at a time. The address and data can be  
transferred in byte (8-bit) format, with the most-significant bit (MSB) transferred first. In addition, each byte  
transferred on the bus is acknowledged by the receiving device with an acknowledge bit. Each transfer  
operation begins with the master device driving a start condition on the bus and ends with the master  
device driving a stop condition on the bus. The bus uses transitions on the data terminal (SDA) while the  
clock is high to indicate a start and stop conditions. A high-to-low transition on SDA indicates a start and a  
low-to-high transition indicates a stop. Normal data bit transitions must occur within the low time of the  
I2C Serial Control Interface (Slave Addresses 0x36 and 0x37)  
61  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
clock period. These conditions are shown in Figure 4-1. The master generates the 7-bit slave address and  
the read/write (R/W) bit to open communication with another device and then waits for an acknowledge  
condition. The TAS5504A holds SDA low during the acknowledge clock period to indicate an  
acknowledgement. When this occurs, the master transmits the next byte of the sequence. Each device is  
addressed by a unique 7-bit slave address plus an R/W bit (1 byte). All compatible devices share the  
same signals via a bidirectional bus using a wired-AND connection. An external pullup resistor must be  
used for the SDA and SCL signals to set the high level for the bus.  
R/  
W
8-Bit Register Data For  
Address (N)  
8-Bit Register Data For  
Address (N)  
SDA  
SCL  
7-Bit Slave Address  
A
8-Bit Register Address (N)  
A
A
A
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
Start  
Stop  
T0035-01  
Figure 4-1. Typical I2C Sequence  
There is no limit on the number of bytes that can be transmitted between start and stop conditions. When  
the last word transfers, the master generates a stop condition to release the bus. A generic data transfer  
sequence is shown in Figure 4-1.  
The 7-bit address for the TAS5504A is 0011011.  
4.2 Single- and Multiple-Byte Transfers  
The serial control interface supports both single-byte and multiple-byte read/write operations for status  
registers and the general control registers associated with the PWM. However, for the DAP data  
processing registers, the serial control interface supports only multiple-byte (4-byte) read/write operations.  
During multiple-byte read operations, the TAS5504A responds with data, a byte at a time, starting at the  
subaddress assigned, as long as the master device continues to respond with acknowledges. If a  
particular subaddress does not contain 32 bits, the unused bits are read as logic 0.  
During multiple-byte write operations, the TAS5504A compares the number of bytes transmitted to the  
number of bytes that are required for each specific subaddress. If a write command is received for a  
biquad subaddress, the TAS5504A expects to receive five 32-bit words. If fewer than five 32-bit data  
words have been received when a stop command (or another start command) is received, the data  
received is discarded. Similarly, if a write command is received for a mixer coefficient, the TAS5504A  
expects to receive one 32-bit word.  
Supplying a subaddress for each subaddress transaction is referred to as random I2C addressing. The  
TAS5504A also supports sequential I2C addressing. For write transactions, if a subaddress is issued  
followed by data for that subaddress and the 15 subaddresses that follow, a sequential I2C write  
transaction has taken place, and the data for all 16 subaddresses is successfully received by the  
TAS5504A. For I2C sequential write transactions, the subaddress then serves as the start address and the  
amount of data subsequently transmitted, before a stop or start is transmitted, determines how many  
subaddresses are written. As was true for random addressing, sequential addressing requires that a  
complete set of data be transmitted. If only a partial set of data is written to the last subaddress, the data  
for the last subaddress is discarded. However, all other data written is accepted; just the incomplete data  
is discarded.  
I2C Serial Control Interface (Slave Addresses 0x36 and 0x37)  
62  
 
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
4.3 Single-Byte Write  
As shown in Figure 4-2, a single-byte data-write transfer begins with the master device transmitting a start  
condition followed by the I2C device address and the read/write bit. The read/write bit determines the  
direction of the data transfer. For a write data transfer, the read/write bit is a 0. After receiving the correct  
I2C device address and the read/write bit, the TAS5504A device responds with an acknowledge bit. Next,  
the master transmits the address byte or bytes corresponding to the TAS5504A internal memory address  
being accessed. After receiving the address byte, the TAS5504A again responds with an acknowledge bit.  
Next, the master device transmits the data byte to be written to the memory address being accessed. After  
receiving the data byte, the TAS5504A again responds with an acknowledge bit. Finally, the master device  
transmits a stop condition to complete the single-byte data-write transfer.  
Start  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
R/W  
A6 A5 A4 A3 A2 A1 A0  
ACK A7 A6 A5 A4 A3 A2 A1 A0 ACK D7 D6 D5 D4 D3 D2 D1 D0 ACK  
Stop  
Condition  
2
I C Device Address and  
Subaddress  
Data Byte  
Read/Write Bit  
T0036-01  
Figure 4-2. Single-Byte Write Transfer  
4.4 Multiple-Byte Write  
A multiple-byte data-write transfer is identical to a single-byte data-write transfer except that multiple data  
bytes are transmitted by the master device to TAS5504A as shown in Figure 4-3. After receiving each  
data byte, the TAS5504A responds with an acknowledge bit.  
Start  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
D0 ACK D7  
Acknowledge  
D0 ACK D7  
Acknowledge  
D0 ACK  
A6 A5  
A1 A0 R/W ACK A7 A6 A5 A4 A3  
A1 A0 ACK D7  
Stop  
Condition  
2
Other Data Bytes  
I C Device Address and  
Read/Write Bit  
Subaddress  
First Data Byte  
Last Data Byte  
T0036-02  
Figure 4-3. Multiple-Byte Write Transfer  
4.5 Incremental Multiple-Byte Write  
The I2C supports a special mode which permits I2C write operations to be broken up into multiple data  
write operations that are multiples of 4 data bytes. These are 6-byte, 10-byte, 14-byte, 18-byte, ... etc.,  
write operations that are composed of a device address, read/write bit, and subaddress and any multiple  
of 4 bytes of data. This permits the system to write large register values incrementally without blocking  
other I2C transactions.  
This feature is enabled by the append subaddress function in the TAS5504A. This function enables the  
TAS5504A to append 4 bytes of data to a register that was opened by a previous I2C register write  
operation but has not received its complete number of data bytes. Because the length of the long registers  
is a multiple of 4 bytes, using 4-byte transfers has only an integral number of append operations.  
When the correct number of bytes has been received, the TAS5504A starts processing the data.  
The procedure to perform an incremental multibyte write operation is as follows:  
I2C Serial Control Interface (Slave Addresses 0x36 and 0x37)  
63  
 
 
 
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
1. Start a normal I2C write operation by sending the device address, write bit, register subaddress, and  
the first four bytes of the data to be written. At the end of that sequence, send a stop condition. At this  
point, the register has been opened and accepts the remaining data that is sent by writing 4-byte  
blocks of data to the append subaddress (0xFE).  
2. At a later time, one or more append data transfers are performed to transfer the remaining number of  
bytes incrementally in sequential order to complete the register write operation. Each of these append  
operations is composed of the device address, write bit, append subaddress (0xFE), and four bytes of  
data followed by a stop condition.  
3. The operation is terminated due to one of the following error conditions and the data is flushed:  
a. If a new subaddress is written to the TAS5504A before the correct number of bytes have been  
written.  
b. If more or less than 4 bytes are data written at the beginning or during any of the append  
operations.  
c. If a read bit is sent.  
4.6 Single-Byte Read  
As shown in Figure 4-4, a single-byte data-read transfer begins with the master device transmitting a start  
condition followed by the I2C device address and the read/write bit. For the data-read transfer, both a write  
and then a read are actually performed. Initially, a write is performed to transfer the address byte or bytes  
of the internal memory address to be read. As a result, the read/write bit is a 0. After receiving the  
TAS5504A address and the read/write bit, the TAS5504A responds with an acknowledge bit. In addition,  
after sending the internal memory address byte or bytes, the master device transmits another start  
condition followed by the TAS5504A address and the read/write bit again. This time the read/write bit is a  
1, indicating a read transfer. After receiving the TAS5504A and the read/write bit, the TAS5504A again  
responds with an acknowledge bit. Next, the TAS5504A transmits the data byte from the memory address  
being read. After receiving the data byte, the master device transmits a not-acknowledge followed by a  
stop condition to complete the single-byte data-read transfer.  
Repeat Start  
Condition  
Not  
Start  
Acknowledge  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
A6 A5  
A1 A0 R/W ACK A7 A6 A5 A4  
A0 ACK  
A6 A5  
A1 A0 R/W ACK D7 D6  
D1 D0 ACK  
2
2
Stop  
Condition  
T0036-03  
I C Device Address and  
Read/Write Bit  
Subaddress  
I C Device Address and  
Read/Write Bit  
Data Byte  
Figure 4-4. Single-Byte Read Transfer  
4.7 Multiple-Byte Read  
A multiple-byte data-read transfer is identical to a single-byte data-read transfer except that multiple data  
bytes are transmitted by the TAS5504A to the master device as shown in Figure 4-5. Except for the last  
data byte, the master device responds with an acknowledge bit after receiving each data byte.  
I2C Serial Control Interface (Slave Addresses 0x36 and 0x37)  
64  
 
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
Repeat Start  
Condition  
Not  
Acknowledge  
Start  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
D0 ACK D7  
A6  
A0 R/W ACK A7 A6 A5  
A0 ACK  
A6  
A0 R/W ACK D7  
D0 ACK D7  
D0 ACK  
2
2
Stop  
Condition  
T0036-04  
I C Device Address and  
Read/Write Bit  
Subaddress  
I C Device Address and First Data Byte  
Read/Write Bit  
Other Data Bytes  
Last Data Byte  
Figure 4-5. Multiple-Byte Read Transfer  
5
Serial Control I2C Register Summary  
The TAS5504A slave address is 0x36. See Serial Control Interface Register Definitions, Section 6, for  
complete bit definitions.  
Note that u indicates unused bits.  
I2C SUB-  
ADDRESS  
TOTAL  
BYTES  
REGISTER  
FIELDS  
DESCRIPTION OF  
CONTENTS  
DEFAULT STATE  
0x00  
1
Clock control register  
Set data rate and MCLK frequency  
1. fS = 48 kHz  
2. MCLK = 256 fS = 12.288 MHz  
0x03  
0x01  
1
General status register  
Clip indicator and ID code for the  
TAS5504A  
0x02  
0x03  
1
1
Reserved  
System control register 1  
System control register 2  
PWM high pass, clock set, un-mute  
select, PSVC select  
1. PWM high-pass disabled  
2. Auto clock set  
3. Hard unmute on clock error recovery  
4. PSVC HIZ disable  
0x04  
1
1
Automute and de-emphasis control  
1. Automute timeout disable  
2. Post-DAP detection automute enabled  
3. 4-Ch device input detection automute enabled  
4. Unmute threshold 6 dB over input  
5. No de-emphasis  
0x05–0x06  
Channel configuration  
registers  
Configure channels 1 and 2  
1. Enable back-end reset  
2. Valid low for reset  
3. Valid low for mute  
4. Normal BEPolarity  
5. Do not remap the output for the TAS5182  
6. Do not go low-low in mute  
7. Do not remap Hi-Z state to low-low state  
0x07–0x0A  
0x0B–0x0C  
Reserved  
1
Channel configuration  
registers  
Configure channels 3 and 4  
1. Enable back-end reset  
2. Valid low for reset  
3. Valid low for mute  
4. Normal BEPolarity  
5. Do not remap the output for the TAS5182  
6. Do not go low-low in mute  
7. Do not remap Hi-Z state to low-low state  
0x0D  
1
Headphone configuration  
register  
Configure headphone output  
1. Disable back-end reset sequence  
2. Valid does not have to be low for reset  
3. Valid does not have to be low for mute  
4. Normal BEPolarity  
5. Do not remap output to comply with 5182  
6. Do not go low-low in mute  
7. Do not remap Hi-Z state to low-low state  
Serial Control I2C Register Summary  
65  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
I2C SUB-  
ADDRESS  
TOTAL  
BYTES  
REGISTER  
FIELDS  
DESCRIPTION OF  
CONTENTS  
DEFAULT STATE  
24-bit I2S  
0x0E  
1
Serial data interface register Set serial data interface to  
right-justified, I2S, or left-justified  
0x0F  
0x10–0x13  
0x14  
1
Soft-mute register  
Soft mute for channels 1, 2, 3, and 4 Unmute all channels  
Reserved  
1
1
Automute control  
Set automute delay and threshold  
1. Set automute delay = 5 ms  
2. Set automute threshold less than bit 8.  
0x15  
Automute PWM threshold  
and back-end reset period  
Set PWM automute threshold, set  
back-end reset period 1.  
1. Set the PWM threshold the same as the  
TAS5504A input threshold.  
2. Set the back-end reset period = 5 ms.  
97.7%  
0x16  
0x17–0x3F  
0x40  
1
Modulation limit register  
Set modulation index  
Reserved  
4
Bank-switching command  
register  
Set up DAP coefficients bank  
switching for banks 1, 2, and 3  
Manual selection – bank 1  
0x41–0x42  
32/Reg  
See Input Mixer Registers  
(0x41 and 0x42, Channels 1  
and 2), Section 6.13  
8 × 4 input crossbar mixer setup  
SDIN1-left to input mixer 1  
SDIN1-right to input mixer 2  
0x43–0x46  
0x47–0x48  
Reserved  
32/Reg  
See Input Mixer Registers  
(0x47 and 0x48, Channels 3  
and 4), Section 6.13  
8 × 4 input crossbar mixer setup  
SDIN4-left to input mixer 3  
SDIN4-right to input mixer 4  
0x49  
0x4A  
0x4B  
4
4
4
ipmix_1_to_ch4  
ipmix_2_to_ch4  
ipmix_3_to_ch2  
Input mixer 1 to Ch4 mixer  
coefficient  
0.0  
0.0  
0.0  
Input mixer 2 to Ch4 mixer  
coefficient  
Input mixer 3 to Ch2 mixer  
coefficient  
0x4C  
0x4D  
0x4E  
4
4
4
Ch3_bp_bq2 Bypass  
Ch3_bq2  
Ch3 biquad 2 coefficient  
Ch3 biquad 2 coefficient  
0.0  
1.0  
0.0  
ipmix_4_to_ch12  
Ch4 biquad 2 output to Ch1 mixer  
and Ch2 mixer coefficient  
0x4F  
0x50  
4
4
Ch4_bp_bq2  
Ch4_bq2  
Bypass Ch4 biquad 2 coefficient 0  
Ch4 biquad 2 coefficient  
0.0  
1.0  
0x51–0x5E  
20/Reg.  
See Biquad Filter Registers Channels 1, 2, 3, and 4 biquad filter All biquads = all pass  
(0x51–0x88), Section 6.15 coefficients  
0x89–0x8A  
8
8
Bass and treble bypass Ch1 Bypass bass and treble for Ch1 and Bass and treble bypassed for Ch1 and Ch2  
and Ch2  
Ch21 and 2  
0x8B–0x8E  
0x8F–0x90  
Reserved  
Bass and treble bypass Ch3 Bypass bass and treble for Ch3 and Bass and treble bypassed for Ch3 and Ch4  
and Ch4  
Ch4  
0x91  
0x92  
0x93  
0x94  
4
8
4
8
Loudness Log2 LG  
Loudness Log2 LO  
Loudness G  
Loudness Log2 LG  
0.5  
Loudness Log2 LO  
0.0  
Loudness G  
0.0  
Loudness O  
Loudness O  
0.0  
Loudness biquad coefficient b0  
Loudness biquad coefficient b1  
Loudness biquad coefficient b2  
Loudness biquad coefficient a0  
Loudness biquad coefficient a1  
DRC1 control Ch1, Ch2, and Ch3  
DRC1 control Ch4  
0x00, 0x00, 0xD5, 0x13  
0x00, 0x00, 0x00, 0x00  
0x0F, 0xFF, 0x2A, 0xED  
0x00, 0xFE, 0x50, 0x45  
0x0F, 0x81, 0xAA, 0x27  
DRC1 disabled in Ch1, Ch2, and Ch3  
DRC2 disabled (Ch4)  
0.0041579  
0x95  
20  
Loudness biquad  
0x96  
0x97  
4
4
DRC1 Ch1, Ch2, and Ch3  
DRC2 Ch4 control  
Ch1, Ch2, and Ch3 DRC1  
energy  
DRC1 energy  
0x98  
8
Ch1, Ch2, Ch3, and Ch4  
DRC1 (1 – energy)  
DRC1 (1 – energy)  
0.9958421  
Serial Control I2C Register Summary  
66  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
I2C SUB-  
ADDRESS  
TOTAL  
BYTES  
REGISTER  
FIELDS  
DESCRIPTION OF  
CONTENTS  
DEFAULT STATE  
DRC1 threshold (T1) – upper 4  
bytes  
0x00, 0x00, 0x00, 0x00  
Channels 1, 2, and 3 DRC1  
threshold T1  
DRC1 threshold (T1) – lower 4 bytes 0x0B, 0x20, 0xE2, 0xB2  
0x99  
16  
DRC1 threshold (T2) – upper 4  
bytes  
0x00, 0x00, 0x00, 0x00  
Channels 1, 2, and 3 DRC1  
threshold T2  
DRC1 threshold (T2) – lower 4 bytes 0x06, 0xF9, 0xDE, 0x58  
Channels 1, 2, and 3, DRC1 DRC1 slope (k0)  
slope k0  
0x0F, 0xC0, 0x00, 0x00  
0x0F, 0xC0, 0x00, 0x00  
0x0F, 0x90, 0x00, 0x00  
Channels 1, 2, and 3, DRC1 DRC1 slope (k1)  
slope k1  
0x9A  
0x9B  
12  
16  
Channels 1, 2, and 3, DRC1 DRC1 slope (k2)  
slope k2  
Channels 1, 2, and 3 DRC1 DRC1 offset 1 (O1) – upper 4 bytes 0x00, 0x00, 0xFF, 0xFF  
offset 1  
DRC1 offset 1 (O1) – lower 4 bytes  
0xFF, 0x82, 0x30, 0x98  
Channels 1, 2, and 3 DRC1 DRC1 offset 2 (O2) – upper 4 bytes 0x00, 0x00, 0x00, 0x00  
offset 2  
DRC1 offset 2 (O2) – lower 4 bytes  
0x01, 0x95, 0xB2, 0xC0  
0x00, 0x00, 0x88, 0x3F  
Channels 1, 2, and 3, DRC1 DRC1 attack  
attack  
Channels 1, 2, and 3, DRC1 DRC1 (1 – attack)  
(1– attack)  
0x00, 0x7F, 0x77, 0xC0  
0x9C  
16  
Channels 1, 2, and 4, DRC1 Delay DRC1 decay  
0x00, 0x00, 0x00, 0xAE  
0x00, 0x7F, 0xFF, 0x51  
Channels 1, 2, 3, and 3,  
DRC1 (1 – decay)  
DRC1 (1 – decay)  
Ch4 DRC2 energy  
DRC2 energy  
0x00, 0x00, 0x88, 0x3F  
0x00, 0x7F, 0x77, 0xC0  
0x00, 0x00, 0x00, 0x00  
0x9D  
0x9E  
8
Ch4 DRC2 (1 – energy)  
Ch4 DRC2 threshold T1  
DRC2 (1 – energy)  
DRC2 threshold (T1) – upper 4  
bytes  
DRC2 threshold (T1) – lower 4 bytes 0x0B, 0x20, 0xE2, 0xB2  
16  
Ch4 DRC2 threshold T2  
DRC2 threshold (T2) – upper 4  
bytes  
0x00, 0x00, 0x00, 0x00  
DRC2 threshold (T2) – lower 4 bytes 0x06, 0xF9, 0xDE, 0x58  
Ch4 DRC2 slope k0  
Ch4 DRC2 slope k1  
Ch4 DRC2 slope k2  
Ch4 DRC2 offset 1  
DRC2 slope (k0)  
0x00, 0x40, 0x00, 0x00  
0x0F, 0xC0, 0x00, 0x00  
0x0F, 0x90, 0x00, 0x00  
0x00, 0x00, 0xFF, 0xFF  
0xFF, 0x82, 0x30, 0x98  
0x00, 0x00, 0x00, 0x00  
0x01, 0x95, 0xB2, 0xC0  
0x00, 0x00, 0x88, 0x3F  
0x00, 0x7F, 0x77, 0xC0  
0x00, 0x00, 0x00, 0xAE  
0x00, 0x7F, 0xFF, 0x51  
0x9F  
0xA0  
12  
16  
DRC2 slope (k1)  
DRC2 slope (k2)  
DRC2 offset (O1) – upper 4 bytes  
DRC2 offset (O1) – lower 4 bytes  
DRC2 offset (O2) – upper 4 bytes  
DRC2 offset (O2) – lower 4 bytes  
DRC 2 attack  
Ch4 DRC2 offset 2  
Ch4 DRC2 attack  
Ch4 DRC2 (1 – attack)  
Ch4 DRC2  
DRC2 (1 – attack)  
0xA1  
16  
Delay DRC2 decay  
Ch4 DRC2 (1 – decay)  
DRC bypass 1  
DRC2 (1 – decay)  
Channel 1 DRC1 bypass coefficient 1.0  
Channel 1 DRC1 inline coefficient 0.0  
Channel 2 DRC1 bypass coefficient 1.0  
0xA2  
0xA3  
8
8
DRC inline 1  
DRC bypass 2  
DRC inline 2  
Channel 2 DRC1 inline coefficient  
Reserved  
0.0  
0xA4–0xA7  
0xA8  
8
8
Reserved  
DRC bypass 3  
DRC inline 3  
Channel 3 DRC1 bypass coefficient 1.0  
Channel 3 DRC1 inline coefficient 0.0  
Channel 4 DRC2 bypass coefficient 1.0  
0xA9  
8
DRC bypass 4  
DRC inline 4  
Channel 4 DRC2 inline coefficient  
0.0  
0xAA  
0xAB  
8
8
sel op1–4 and mix to S  
Select 0 to 2 of four DAP channels  
to output mixer S  
Select channel 1 to PWM 1  
sel op1–4 and mix to T  
Select 0 to 2 of four DAP channels  
to output mixer T  
Select channel 2 to PWM 2  
0xAC–0xAF  
Reserved  
Serial Control I2C Register Summary  
67  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
I2C SUB-  
ADDRESS  
TOTAL  
BYTES  
REGISTER  
FIELDS  
DESCRIPTION OF  
CONTENTS  
DEFAULT STATE  
Select channel 3 to PWM 3  
0xB0  
0xB1  
12  
sel op1–4 and mix to Y  
Select 0 to 3 of four DAP channels  
to output mixer Y  
12  
sel op1-4 and mix to Z  
Select 0 to 3 of four DAP channels  
to output mixer Z  
Select channel 4 to PWM 4  
0xB2–0xCE  
0xCF  
Reserved  
20  
4
Volume biquad  
Volume biquad  
All pass  
0xD0  
Vol, T, and B slew rates  
u(31:24), u(23:16), u(15:12)  
VSR(11:8), TBSR(7:0)  
0x00, 0x00, 0x02, 0x3F  
0xD1  
0xD2  
4
4
Ch1 volume  
Ch2 volume  
Ch1 volume  
0 dB  
0 dB  
Ch2 volume  
0xD3–0xD6  
0xD7  
Reserved  
4
4
4
4
4
4
4
4
Ch3 volume  
Ch3 volume  
0 dB  
0xD8  
Ch4 volume  
Channel 4 volume  
Master volume  
0 dB  
0xD9  
Master volume  
Bass filter set  
Bass filter index  
Treble filter set  
Treble filter index  
Mute  
0xDA  
Bass filter set (all channels)  
Bass filter level (all channels)  
Treble filter set (all channels)  
Treble filter level (all channels)  
Filter set 3  
0 dB  
0xDB  
0xDC  
Filter set 3  
0 dB  
0xDD  
0xDE  
AM mode and tuned  
frequency register  
Set up AM mode for AM-interference AM mode disabled  
reduction  
Select sequence 1  
IF frequency = 455 kHz  
Use BCD-tuned frequency  
0xDF  
0xE0  
4
4
PSVC control range  
Set PSVC control range  
12-dB control range  
General control register  
Four-channel configuration, PSVC  
enabled  
Four-channel configuration, power-supply volume  
control disabled  
0xE1–0xFD  
0xFE  
Reserved  
4 (min)  
Multiple-byte-write append  
register  
Special register  
N/A  
0xFF  
Reserved  
Serial Control I2C Register Summary  
68  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
6
Serial Control Interface Register Definitions  
Unless otherwise noted, the I2C register default values are in bold font.  
Note that u indicates unused bits.  
6.1 Clock Control Register (0x00)  
Bit D1 is don't care.  
Table 6-1. Clock Control Register  
D7  
0
0
0
0
1
1
1
1
D6  
0
0
1
1
0
0
1
1
D5  
0
1
0
1
0
1
0
1
D4  
0
0
0
0
1
1
1
1
D3  
0
0
1
1
0
0
1
1
D2  
0
1
0
1
0
1
0
1
D1  
D0  
FUNCTION  
32-kHz data rate  
38-kHz data rate  
44.1-kHz data rate  
48-kHz data rate  
88.2-kHz data rate  
96-kHz data rate  
176.4-kHz data rate  
192-kHz data rate  
MCLK frequency = 64  
MCLK frequency = 128  
MCLK frequency = 192  
MCLK frequency = 256  
MCLK frequency = 384  
MCLK frequency = 512  
MCLK frequency = 768  
Reserved  
1
Clock register is valid (read only)  
0
Clock register is not valid (read only)  
6.2 General Status Register 0 (0x01)  
Table 6-2. General Status Register (0x01)  
D7  
1
D6  
D5  
D4  
D3  
D2  
D1  
D0  
FUNCTION  
Clip indicator  
1
Bank switching busy  
0
0
0
0
1
1
Identification code for TAS5504A  
Serial Control Interface Register Definitions  
69  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
6.3 System Control Register 1 (0x03)  
Bits D6, D5, D2, D1, and D0 are don't care.  
Table 6-3. System Control Register 1  
D7  
0
D6  
D5  
D4  
D3  
D2  
D1  
D0  
FUNCTION  
PWM high pass disabled  
1
PWM high pass enabled  
0
Soft unmute on recovery from clock error  
Hard unmute on recovery from clock error  
PSVC Hi-Z enable  
1
1
0
PSVC Hi-Z disabled  
6.4 System Control Register 2 (0x04)  
Bit D3 and D2 are don't care.  
Table 6-4. System Control Register 2  
D7  
0
D6  
D5  
D4  
D3  
D2  
D1  
D0  
FUNCTION  
Reserved  
0
PWM automute detection enabled  
PWM automute detection disabled  
4-Ch device input detection automute enabled  
4-Ch device input detection automute disabled  
Unmute threshold 6 dB over input threshold  
Unmute threshold equal to input threshold  
No de-emphasis  
1
0
1
0
1
0
0
0
1
De-emphasis for fS = 32 kHz  
1
0
De-emphasis for fS = 44.1 kHz  
1
1
De-emphasis for fS = 48 kHz  
70  
Serial Control Interface Register Definitions  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
6.5 Channel Configuration Control Registers (0x05, 0x06, 0x0B, and 0x0C)  
Channels 1, 2, 3, and 4 are mapped into 0x05, 0x06, 0x0B, and 0x0C.  
Bit D0 is don't care.  
Table 6-5. Channel Configuration Control Registers  
D7  
0
D6  
D5  
D4  
D3  
D2  
D1  
D0  
FUNCTION  
Disable back-end reset sequence for a channel – BEErrorRecEn  
Enable back-end reset sequence for a channel  
1
0
VALID does not have to be low for this channel to be reset – BEValidRst  
VALID must be low for this channel to be reset  
1
0
VALID does not have to be low for this channel to be muted –  
BEValidMute  
1
0
1
0
1
0
1
0
1
VALID must be low for this channel to be muted  
Normal BEPolarity  
Switches PWM+ and PWM– and inverts audio signal  
Do not remap output to comply with 5182 interface  
Remap output to comply with 5182 interface  
Do not go to low-low in mute – BELowMute  
Go to low-low in mute  
Do not remap Hi-Z state to low-low state – BE5111BsMute  
Remap Hi-Z state to low-low state  
6.6 Headphone Configuration Control Register (0x0D)  
Bit D0 is don't care.  
Table 6-6. Headphone Configuration Control Register  
D7  
0
1
D6  
0
1
D5  
0
1
D4  
0
1
D3  
0
1
D2  
0
1
D1  
0
1
D0  
FUNCTION  
Disable back-end reset sequence for a channel – BEErrorRecEn  
Enable back-end reset sequence for a channel  
VALID does not have to be low for this channel to be reset – BEValidRst  
VALID must be low for this channel to be reset  
VALID does not have to be low for this channel to be muted – BEValidMute  
VALID must be low for this channel to be muted  
Normal BEPolarity  
Switches PWM+ and PWM– and inverts audio signal  
Do not remap output to comply with 5182 interface  
Remap output to comply with 5182 interface  
Do not go to low-low in mute – BELowMute  
Go to low-low in mute  
Do not remap Hi-Z state to low-low state – BE5111BsMute  
Remap Hi-Z state to low-low state  
Serial Control Interface Register Definitions  
71  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
6.7 Serial Data Interface Control Register (0x0E)  
Nine serial modes can be programmed I2C.  
Table 6-7. Serial Data Interface Control Register Format  
RECEIVE SERIAL DATA  
INTERFACE FORMAT  
WORD  
LENGTHS  
D7–D4  
D3  
D2  
D1  
D0  
Right-justified  
Right-justified  
Right-justified  
I2S  
16  
20  
24  
16  
20  
24  
16  
20  
24  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
I2S  
I2S  
Left-justified  
Left-justified  
Left-Justified  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
6.8 Soft-Mute Register (0x0F)  
Do not use this register if using the remapped output mixer configuration.  
Table 6-8. Soft-Mute Register (0x0F)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1
FUNCTION  
Soft-mute Ch1  
1
Soft-mute Ch2  
1
Soft-mute Ch3  
1
Soft-mute Ch4  
0
0
0
0
0
0
0
0
Unmute all channels  
72  
Serial Control Interface Register Definitions  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
6.9 Automute Control Register (0x14)  
For more information on how to use this register, see Automute and Mute Channel Controls,  
Section 1.4.9.1.  
Table 6-9. Automute Control Register (0x14)  
D7  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
D6  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
D5  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
D4  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
D3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
D2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
D1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
D0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
FUNCTION  
Set input automute and PWM automute delay to 1 ms  
Set input automute and PWM automute delay to 2 ms  
Set input automute and PWM automute delay to 3 ms  
Set input automute and PWM automute delay to 4 ms  
Set input automute and PWM automute delay to 5 ms  
Set input automute and PWM automute delay to 10 ms  
Set input automute and PWM automute delay to 20 ms  
Set input automute and PWM automute delay to 30 ms  
Set input automute and PWM automute delay to 40 ms  
Set input automute and PWM automute delay to 50 ms  
Set input automute and PWM automute delay to 60 ms  
Set input automute and PWM automute delay to 70ms  
Set input automute and PWM automute delay to 80 ms  
Set input automute and PWM automute delay to 90 ms  
Set input automute and PWM automute delay to 100 ms  
Set input automute and PWM automute delay to 110 ms  
Set input automute threshold less than bit 1 (zero input signal), lowest  
automute threshold.  
Set input automute threshold less than bit 2  
Set input automute threshold less than bit 3  
Set input automute threshold less than bit 4  
Set input automute threshold less than bit 5  
Set input automute threshold less than bit 6  
Set input automute threshold less than bit 7  
Set input automute threshold less than bit 8  
Set input automute threshold less than bit 9  
Set input automute threshold less than bit 10  
Set input automute threshold less than bit 11  
Set input automute threshold less than bit 12  
Set input automute threshold less than bit 13  
Set input automute threshold less than bit 14  
Set input automute threshold less than bit 15  
Serial Control Interface Register Definitions  
73  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
6.10 Automute PWM Threshold and Back-End Reset Period (0x15)  
For more information on how to use this regiater, see Automute and Mute Channel Controls,  
Section 1.4.9.1.  
Table 6-10. Automute PWM Threshold and Back-End Reset Period  
D7  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
D6  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
D5  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
D4  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
D3  
D2  
D1  
D0  
FUNCTION  
Set PWM automute threshold equals input automute threshold  
Set PWM automute threshold 1 bit more than input automute threshold  
Set PWM automute threshold 2 bits more than input automute threshold  
Set PWM automute threshold 3 bits more than input automute threshold  
Set PWM automute threshold 4 bits more than input automute threshold  
Set PWM automute threshold 5 bits more than input automute threshold  
Set PWM automute threshold 6 bits more than input automute threshold  
Set PWM automute threshold 7 bits more than input automute threshold  
Set PWM automute threshold equals input automute threshold  
Set PWM automute threshold 1 bit less than input automute threshold  
Set PWM automute threshold 2 bits less than input automute threshold  
Set PWM automute threshold 3 bits less than input automute threshold  
Set PWM automute threshold 4 bits less than input automute threshold  
Set PWM automute threshold 5 bits less than input automute threshold  
Set PWM automute threshold 6 bits less than input automute threshold  
Set PWM automute threshold 7 bits less than input automute threshold  
Set back-end reset period < 1 ms  
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
X
0
1
0
1
0
1
0
1
0
1
0
1
X
Set back-end reset period 1 ms  
Set back-end reset period 2 ms  
Set back-end reset period 3 ms  
Set back-end reset period 4 ms  
Set back-end reset period 5 ms  
Set back-end reset period 6 ms  
Set back-end reset period 7 ms  
Set back-end reset period 8 ms  
Set back-end reset period 9 ms  
Set back-end reset period 10 ms  
Set back-end reset period 10 ms  
Set back-end reset period 10 ms  
74  
Serial Control Interface Register Definitions  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
6.11 Modulation Index Limit Register (0x16)  
Bits D7–D3 are don't care. Note that some power stages require a lower modulation limit than the default  
of 97.7%. Contact Texas Instruments for more details about the requirements for a particular power stage.  
Table 6-11. Modulation Index Limit Register  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
LIMIT  
DCLKS]  
MIN WIDTH  
[DCLKS]  
MODULATION  
INDEX  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
2
3
4
5
6
7
8
2
4
99.2%  
98.4%  
97.7%  
96.9%  
96.1%  
95.3%  
95.5%  
93.8%  
6
8
10  
12  
14  
16  
Serial Control Interface Register Definitions  
75  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
6.12 Bank Switching Command Register (0x40)  
Bits D31-D24, D22-D19 are don't care.  
Table 6-12. Bank Switching Command  
D31  
D30  
D22  
D29  
D21  
D28  
D20  
D27  
D19  
D26  
D25  
D24  
FUNCTION  
FUNCTION  
Unused bits  
D23  
D18  
0
D17  
0
D16  
0
Manual selection bank 1  
Manual selection bank 2  
Manual selection bank 3  
Automatic bank selection  
Update the values in bank 1  
Update the values in bank 2  
Update the values in bank 3  
Update only the bank map  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
0
1
1
1
0
x
x
x
Update the bank map using values in D15–D0  
1
x
x
x
Do not update the bank map using values in D15–D0  
D15  
1
D14  
D13  
D12  
D11  
D10  
D9  
D8  
FUNCTION  
32-kHz data rate – use bank 1  
38-kHz data rate – use bank 1  
44.1-kHz data rate – use bank 1  
48-kHz data rate – use bank 1  
88.2-kHz data rate – use bank 1  
96-kHz data rate – use bank 1  
176.4-kHz data rate – use bank 1  
192-kHz data rate – use bank 1  
Default  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
D7  
1
D6  
D5  
D4  
D3  
D2  
D1  
D0  
FUNCTION  
32-kHz data rate – use bank 2  
38-kHz data rate – use bank 2  
44.1-kHz data rate – use bank 2  
48-kHz data rate – use bank 2  
88.2-kHz data rate – use bank 2  
96-kHz data rate – use bank 2  
176.4-kHz data rate – use bank 2  
192-kHz data rate – use bank 2  
Default  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
76  
Serial Control Interface Register Definitions  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
6.13 Input Mixer Registers (0x41, 0x42, 0x47, 0x48, Channels 1–4)  
Input mixers 1, 2, 3, and 4 are mapped into registers 0x41, 0x42, 0x47, and 0x48.  
Each gain coefficient is in 28-bit (5.23) format, so 0x8000 0000 is a gain of 1. Each gain coefficient is  
written as a 32-bit word with the upper 4 bits not used. For 8-gain coefficients, the total is 32 bytes.  
Bold indicates the one channel that is passed through the mixer.  
Table 6-13. Input Mixer Registers Format (Channels 1–4)  
I2C SUB-  
ADDRESS  
TOTAL  
BYTES  
REGISTER  
FIELDS  
DESCRIPTION OF CONTENTS  
DEFAULT STATE  
0x00, 0x80, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x80, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x80, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
SDIN1-left A to input mixer 1 coefficient (default = 1)  
u(31:28), A_1(27:24), A_1(23:16), A_1(15:8), A_1(7:0)  
A_to_ipmix[1]  
B_to_ipmix[1]  
C_to_ipmix[1]  
D_to_ipmix[1]  
E_to_ipmix[1]  
F_to_ipmix[1]  
G_to_ipmix[1]  
H_to_ipmix[1]  
A_to_ipmix[2]  
B_to_ipmix[2]  
C_to_ipmix[2]  
D_to_ipmix[2]  
E_to_ipmix[2]  
F_to_ipmix[2]  
G_to_ipmix[2]  
H_to_ipmix[2]  
A_to_ipmix[3]  
B_to_ipmix[3]  
C_to_ipmix[3]  
D_to_ipmix[3]  
E_to_ipmix[3]  
F_to_ipmix[3]  
G_to_ipmix[3]  
H_to_ipmix[3]  
SDIN1-right B to input mixer 1 coefficient (default = 0)  
u(31:28), B_1(27:24), B_1(23:16), B_1(15:8), B_1(7:0)  
SDIN2-left C to input mixer 1 coefficient (default = 0)  
u(31:28), C_1(27:24), C_1(23:16), C_1(15:8), C_1(7:0)  
SDIN2-right D to input mixer 1 coefficient (default = 0)  
u(31:28), D_1(27:24), D_1(23:16), D_1(15:8), D_1(7:0)  
0x41  
0x42  
0x47  
32  
32  
32  
SDIN3-left E to input mixer 1 coefficient (default = 0)  
u(31:28), E_1(27:24), E_1(23:16), E_1(15:8), E_1(7:0)  
SDIN3-right F to input mixer 1 coefficient (default = 0)  
u(31:28), F_1(27:24), F_1(23:16), F_1(15:8), F_1(7:0)  
SDIN4-left G to input mixer 1 coefficient (default = 0)  
u(31:28), G_1(27:24), G_1(23:16), G_1(15:8), G_1(7:0)  
SDIN4-right H to input mixer 1 coefficient (default = 0)  
u(31:28), H_1(27:24), H_1(23:16), H_1(15:8), H_1(7:0)  
SDIN1-left A to input mixer 2 coefficient (default = 0)  
u(31:28), A_2(27:24), A_2(23:16), A_2(15:8), A_2(7:0)  
SDIN1-right B to input mixer 2 coefficient (default = 1)  
u(31:28), B_2(27:24), B_2(23:16), B_2(15:8), B_2(7:0)  
SDIN2-left C to input mixer 2 coefficient (default = 0)  
u(31:28), C_2(27:24), C_2(23:16), C_2(15:8), C_2(7:0)  
SDIN2-right D to input mixer 2 coefficient (default = 0)  
u(31:28), D_2(27:24), D_2(23:16), D_2(15:8), D_2(7:0)  
SDIN3-left E to input mixer 2 coefficient (default = 0)  
u(31:28), E_2(27:24), E_2(23:16), E_2(15:8), E_2(7:0)  
SDIN3-right F to input mixer 2 coefficient (default = 0)  
u(31:28), F_2(27:24), F_2(23:16), F_2(15:8), F_2(7:0)  
SDIN4-left G to input mixer 2 coefficient (default = 0)  
u(31:28), G_2(27:24), G_2(23:16), G_2(15:8), G_2(7:0)  
SDIN4-right H to input mixer 2 coefficient (default = 0)  
u(31:28), H_2(27:24), H_2(23:16), H_2(15:8), H_2(7:0)  
SDIN1-left A to input mixer 3 coefficient (default = 0)  
u(31:28), A_3(27:24), A_3(23:16), A_3(15:8), A_3(7:0)  
SDIN1-right B to input mixer 3 coefficient (default = 0)  
u(31:28), B_3(27:24), B_3(23:16), B_3(15:8), B_3(7:0)  
SDIN2-left C to input mixer 3 coefficient (default = 0)  
u(31:28), C_3(27:24), C_3(23:16), C_3(15:8), C_3(7:0)  
SDIN2-right D to input mixer 3 coefficient (default = 0)  
u(31:28), D_3(27:24), D_3(23:16), D_3(15:8), D_3(7:0)  
SDIN3-left E to input mixer 3 coefficient (default = 0)  
u(31:28), E_3(27:24), E_3(23:16), E_3(15:8), E_3(7:0)  
SDIN3-right F to input mixer 3 coefficient (default = 0)  
u(31:28), F_3(27:24), F_3(23:16), F_3(15:8), F_3(7:0)  
SDIN4-left G to input mixer 3 coefficient (default = 1)  
u(31:28), G_3(27:24), G_3(23:16), G_3(15:8), G_3(7:0)  
SDIN4-right H to input mixer 3 coefficient (default = 0)  
u(31:28), H_3(27:24), H_3(23:16), H_3(15:8), H_3(7:0)  
Serial Control Interface Register Definitions  
77  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
Table 6-13. Input Mixer Registers Format (Channels 1–4) (continued)  
I2C SUB-  
ADDRESS  
TOTAL  
BYTES  
REGISTER  
FIELDS  
DESCRIPTION OF CONTENTS  
DEFAULT STATE  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x80, 0x00, 0x00  
SDIN1-left A to input mixer 4 coefficient (default = 0)  
u(31:28), A_4(27:24), A_4(23:16), A_4(15:8), A_4(7:0)  
A_to_ipmix[4]  
B_to_ipmix[4]  
C_to_ipmix[4]  
D_to_ipmix[4]  
E_to_ipmix[4]  
F_to_ipmix[4]  
G_to_ipmix[4]  
H_to_ipmix[4]  
SDIN1-right B to input mixer 4 coefficient (default = 0)  
u(31:28), B_4(27:24), B_4(23:16), B_4(15:8), B_4(7:0)  
SDIN2-left C to input mixer 4 coefficient (default = 0)  
u(31:28), C_4(27:24), C_4(23:16), C_4(15:8), C_4(7:0)  
SDIN2-right D to input mixer 4 coefficient (default = 0)  
u(31:28), D_4(27:24), D_4(23:16), D_4(15:8), D_4(7:0)  
0x48  
32  
SDIN3-left E to input mixer 4 coefficient (default = 0)  
u(31:28), E_4(27:24), E_4(23:16), E_4(15:8), E_4(7:0)  
SDIN3-right F to input mixer 4 coefficient (default = 0)  
u(31:28), F_4(27:24), F_4(23:16), F_4(15:8), F_4(7:0)  
SDIN4-left G to input mixer 4 coefficient (default = 0)  
u(31:28), G_4(27:24), G_4(23:16), G_4(15:8), G_4(7:0)  
SDIN4-right H to input mixer 4 coefficient (default = 1)  
u(31:28), H_4(27:24), H_4(23:16), H_4(15:8), H_4(7:0)  
6.14 Bass Management Registers (0x49–0x50)  
Registers 0x49–0x50 provide configuration control for bass management.  
Each gain coefficient is in 28-bit (5.23) format so 0x8000 0000 is a gain of 1. Each gain coefficient is  
written as a 32-bit word with the upper four bits not used.  
Table 6-14. Bass Management Registers Format (0x49–0x50)  
SUB-  
ADDRESS  
TOTAL  
BYTES  
REGISTER  
NAME  
DESCRIPTION OF CONTENTS  
DEFAULT STATE  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x49  
0x4A  
0x4B  
0x4C  
4
4
4
4
ipmix_1_to_ch4  
ipmix_2_to_ch4  
ipmix_3_to_ch12  
Ch3_bp_bq2  
Input mixer 1 to Ch4 mixer coefficient (default = 0)  
u(31:28), ipmix14(27:24), ipmix14(23:16), ipmix14(15:8), ipmix14(7:0)  
Input mixer 2 to Ch4 mixer coefficient (default = 0)  
u(31:28), ipmix24(27:24), ipmix24(23:16), ipmix24(15:8), ipmix24(7:0)  
Input mixer 3 to Ch1 and Ch2 mixer coefficient (default = 0)  
u(31:28), ipmix32(27:24), ipmix32(23:16), ipmix32(15:8), ipmix32(7:0):  
Ch3 Biquad-2 bypass coefficient (default = 0)  
u(31:28), ch3_bp_bq2(27:24), ch3_bp_bq2(23:16), ch3_bp_bq2(15:8),  
ch3_bp_bq2(7:0)  
0x4D  
0x4E  
4
4
Ch3_bq2  
Ch3 Biquad-2 Inline coefficient (default = 1)  
u(31:28), ch3_bq2(27:24), ch3_bq2(23:16), ch3_bq2(15:8), ch3_bq2(7:0)  
0x00, 0x80, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
ipmix_4_to_ch12  
Ch4 Biquad-2 output to Ch1 mixer and Ch2 mixer coefficient (default = 0)  
u(31:28), ipmix4_12(27:24), ipmix4_12(23:16), ipmix4_12 (15:8),  
ipmix4_12(7:0)  
0x4F  
0x50  
4
4
Ch4_bp_bq2  
Ch4_bq2  
Ch4 Biquad-2 bypass coefficient (default = 0)  
u(31:28), ch4_bp_bq2(27:24), ch4_bp_bq2(23:16), ch4_bp_bq2(15:8),  
ch4_bp_bq2(7:0)  
0x00, 0x00, 0x00, 0x00  
0x00, 0x80, 0x00, 0x00  
Ch4 biquad-2 inline coefficient (default = 1)  
u(31:28), ch4_bq2(27:24), ch4_bq2(23:16), ch4_bq2(15:8), ch4_bq2(7:0)  
78  
Serial Control Interface Register Definitions  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
6.15 Biquad Filter Registers (0x51–0x88)  
Table 6-15. Biquad Filters Register Format (0x51–0x88)  
I2C SUB-  
ADDRESS  
TOTAL  
BYTES  
REGISTER  
NAME  
DESCRIPTION OF  
CONTENTS  
DEFAULT STATE  
See Table 6-16  
0x51–0x57  
0x58–0x5E  
0x7B–0x81  
0x82–0x88  
20/reg.  
20/reg.  
20/reg.  
20/reg.  
Ch1_bq[1] – [7]  
Ch2_bq[1] – [7]  
Ch3_bq[1] – [7]  
Ch4_bq[1] – [7]  
Ch1 biquads 1–7. See Table 6-16 for bit definition.  
Ch2 biquads 1–7. See Table 6-16for bit definition.  
Ch3 biquads 1–7. See Table 6-16 for bit definition.  
Ch4 biquads 1–7. See Table 6-16 for bit definition.  
See Table 6-16  
See Table 6-16  
See Table 6-16  
Each gain coefficient is in 28-bit (5.23) format so 0x8000 0000 is a gain of 1. Each gain coefficient is  
written as a 32-bit word with the upper four bits not used.  
Table 6-16. Contents of One 20-Byte Biquad Filter Register Format (Default = All-Pass)  
DESCRIPTION  
REGISTER FIELD CONTENTS  
DEFAULT GAIN COEFFICIENT VALUES  
DECIMAL  
1.0  
HEX  
b0 coefficient  
u(31:28), b0(27:24), b0(23:16), b0(15:8), b0(7:0)  
u(31:28), b1(27:24), b1(23:16), b1(15:8), b1(7:0)  
u(31:28), b2(27:24), b2(23:16), b2(15:8), b2(7:0)  
u(31:28), a1(27:24), a1(23:16), a1(15:8), a1(7:0)  
u(31:28), a2(27:24), a2(23:16), a2(15:8), a2(7:0)  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x80, 0x00, 0x00  
b1 coefficient  
b2 coefficient  
a1 coefficient  
a2 coefficient  
0.0  
0.0  
0.0  
0.0  
6.16 Bass and Treble Bypass Register (0x89–0x90, Channels 1–4)  
Channels 1, 2, 3, and 4 are mapped into registers 0x89, 0x8A, 0x8F, and 0x90. Eight bytes are written for  
each channel. Each gain coefficient is in 28-bit (5.23) format, so 0x8000 0000 is a gain of 1. Each gain  
coefficient is written as a 32-bit word with the upper four bits not used.  
Table 6-17. Bass and Treble Bypass Register Format (0x89–0x90)  
REGISTER  
NAME  
TOTAL  
BYTES  
CONTENTS  
INITIALIZATION  
VALUE  
Channel bass and treble bypass  
u(31:28), bypass(27:24), bypass(23:16), bypass(15:8),  
bypass(7:0)  
0x00, 0x00, 0x00, 0x00  
8
Channel bass and treble inline  
u(31:28), inline(27:24), inline(23:16), inline(15:8), inline(7:0)  
0x00, 0x80, 0x00, 0x00  
Serial Control Interface Register Definitions  
79  
 
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
6.17 Loudness Registers (0x91–0x95)  
Table 6-18. Loudness Registers Format (0x91–0x95)  
I2C SUB-  
ADDRESS  
TOTAL  
BYTES  
REGISTER  
NAME  
DESCRIPTION OF  
CONTENTS  
DEFAULT STATE  
0x91  
0x92  
0x93  
0x94  
4
8
4
8
Loudness Log2 gain (LG)  
Loudness Log2 offset (LO)  
Loudness Log2 LO  
u(31:28), LG(27:24), LG(23:16), LG(15:8), LG(7:0)  
u(31:24), u(23:16), LO(15:8), LO(7:0)  
0xFF, 0xC0, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0xD5, 0x13  
0x00, 0x00, 0x00, 0x00  
0x0F, 0xFF, 0x2A, 0xED  
0x00, 0xFE, 0x50, 0x45  
0x0F, 0x81, 0xAA, 0x27  
LO(31:24), LO(23:16), LO(15:8), LO(7:0)  
u(31:28), G(27:24), G(23:16), G(15:8), G(7:0)  
u(31:24), u(23:16), O(15:8), O(7:0)  
Loudness gain (G)  
Loudness offset upper 16 bits (O)  
Loudness offset lower 32 bits (O)  
Loudness biquad (b0)  
O(31:24), O(23:16), O(15:8), O(7:0)  
u(31:28), b0(27:24), b0(23:16), b0(15:8), b0(7:0)  
u(31:28), b1(27:24), b1(23:16), b1(15:8), b1(7:0)  
u(31:28), b2(27:24), b2(23:16), b2(15:8), b2(7:0)  
u(31:28), a1(27:24), a1(23:16), a1(15:8), a1(7:0)  
u(31:28), a2(27:24), a2(23:16), a2(15:8), a2(7:0)  
Loudness biquad (b1)  
0x95  
20  
Loudness biquad (b2)  
Loudness biquad (a1)  
Loudness biquad (a2)  
6.18 DRC1 Control (0x96, Channels 1–3)  
Bits D31–D14 and D7–D6 are don't care. Note that there must be a 10-ms delay between a write to  
register 0x96 and a write to register 0x97.  
Table 6-19. DCR1 Control (0x96, Channels 1–3)  
D31  
D23  
D15  
D30  
D22  
D14  
D29  
D21  
D28  
D20  
D27  
D26  
D25  
D24  
FUNCTION  
FUNCTION  
FUNCTION  
Unused bits  
Unused bits  
D19  
D18  
D17  
D16  
D13  
0
D12  
0
D11  
D10  
D9  
D8  
Channel 1: No DRC  
0
1
Channel 1: Pre-volume DRC  
Channel 1: Post-volume DRC  
Channel 1: No DRC  
1
0
1
1
0
0
Channel 2: No DRC  
0
1
Channel 2: Pre-volume DRC  
Channel 2: Post-volume DRC  
Channel 2: No DRC  
1
0
1
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
0
D0  
0
FUNCTION  
Channel 3: No DRC  
0
1
Channel 3: Pre-volume DRC  
Channel 3: Post-volume DRC  
Channel 3: No DRC  
1
0
1
1
80  
Serial Control Interface Register Definitions  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
6.19 DRC2 Control (0x97, Channel 4)  
Note that there must be a 10-ms delay between a write to register 0x96 and a write to register 0x97.  
Table 6-20. DRC2 Control (0x97, Channel 4)  
D31–D2  
D1  
0
D0  
0
FUNCTION  
0
0
0
0
0
Channel 4: No DRC  
0
0
0
0
1
Channel 4: Pre-volume DRC  
Channel 4: Post-volume DRC  
Channel 4: No DRC  
1
0
1
1
6.20 DRC1 Data Registers (0x98–0x9C)  
DRC1 applies to channels 1, 2, and 3.  
Table 6-21. DRC1 Data Registers  
I2C SUB-  
ADDRESS  
TOTAL  
BYTES  
REGISTER NAME  
DESCRIPTION OF CONTENTS  
DEFAULT STATE  
Channel 1, 2, and 3 DRC1 energy  
u(31:28), E(27:24), E(23:16), E(15:8), E(7:0)  
0x00, 0x00, 0x88, 0x3F  
0x00, 0x7F, 0x77, 0xC0  
0x00, 0x00, 0x00, 0x00  
0x98  
8
Channel 1, 2, and 3 DRC1 (1 – energy) u(31:28), 1-E(27:24), 1-E(23:16), 1-E(15:8), 1-E(7:0)  
Channel 1, 2, and 3 DRC1 threshold  
upper 16 bits (T1)  
u(31:24), u(23:16), T1(15:8), T1(7:0)  
T1(31:24), T1(23:16), T1(15:8), T1(7:0)  
u(31:24), u(23:16), T2(15:8), T2(7:0)  
T2(31:24), T2(23:16), T2(15:8), T2(7:0)  
Channel 1, 2, and 3 DRC1 threshold  
lower 32 bits (T1)  
0x0B, 0x20, 0xE2, 0xB2  
0x00, 0x00, 0x00, 0x00  
0x06, 0xF9, 0xDE, 0x58  
0x00, 0x40, 0x00, 0x00  
0x0F, 0xC0, 0x00, 0x00  
0x99  
16  
Channel 1, 2, and 3 DRC1 threshold  
upper 16 bits (T2)  
Channel 1, 2, and 3 DRC1 threshold  
lower 32 bits (T2)  
Channel 1, 2, and 3 DRC1 slope (k0)  
Channel 1, 2, and 3 DRC1 slope (k1)  
Channel 1, 2, and 3 DRC1 slope (k2)  
u(31:24), u(23:16), T2(15:8), T2(7:0) T2(31:24), T2(23:16),  
T2(15:8), T2(7:0)  
0x9A  
12  
u(31:24), u(23:16), T1(15:8), T1(7:0) T1(31:24), T1(23:16),  
T1(15:8), T1(7:0)  
u(31:28), k0(27:24), k0(23:16), k0(15:8), k0(7:0)  
u(31:28), k1(27:24), k1(23:16), k1(15:8), k1(7:0)  
0x0F, 0x90, 0x00, 0x00  
0x00, 0x00, 0xFF, 0xFF  
Channel 1, 2, and 3 DRC1 offset 1  
upper 16 bits (O1)  
Channel 1, 2, and 3 DRC1 offset 1  
lower 32 bits (O1)  
u(31:28), k2(27:24), k2(23:16), k2(15:8), k2(7:0)  
0xFF, 0x82, 0x30, 0x98  
0x00, 0x00, 0x00, 0x00  
0x01, 0x95, 0xB2, 0xC0  
0x9B  
0x9C  
16  
16  
Channel 1, 2, and 3 DRC1 offset 2  
upper 16 bits (O2)  
u(31:24), u(23:16), O1(15:8), O1(7:0) O1(31:24), O1(23:16),  
O1(15:8), O1(7:0)  
Channel 1, 2, and 3 DRC1 offset 2  
lower 32 bits (O2)  
u(31:24), u(23:16), O2(15:8), O2(7:0) O2(31:24), O2(23:16),  
O2(15:8), O2(7:0)  
Channel 1, 2, and 3 DRC1 attack  
Channel 1, 2, and 3 DRC1 (1 – attack)  
Channel 1, 2, and 3 DRC1 decay  
Channel 1, 2, and 3 DRC1 (1 – decay)  
u(31:28), A(27:24), A(23:16), A(15:8), A(7:0)  
u(31:28), 1-A(27:24), 1-A(23:16), 1-A(15:8), 1-A(7:0)  
u(31:28), D(27:24), D(23:16), D(15:8), D(7:0)  
u(31:28), 1-D(27:24), 1-D(23:16), 1-D(15:8), 1-D(7:0)  
0x00, 0x00, 0x88, 0x3F  
0x00, 0x7F, 0x77, 0xC0  
0x00, 0x00, 0x00, 0x56  
0x00, 0x3F, 0xFF, 0xA8  
Serial Control Interface Register Definitions  
81  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
6.21 DRC2 Data Registers (0x9D–0xA1)  
DRC1 applies to channel 4.  
Table 6-22. DRC2 Data Registers  
I2C SUB-  
ADDRESS  
TOTAL  
BYTES  
REGISTER  
NAME  
DESCRIPTION OF  
DEFAULT STATE  
CONTENTS  
Channel 4 DRC2 energy  
u(31:28), E(27:24), E(23:16), E(15:8), E(7:0)  
u(31:28), 1-E(27:24), 1-E(23:16), 1-E(15:8), 1-E(7:0)  
0x00, 0x00, 0x88, 0x3F  
0x00, 0x7F, 0x77, 0xC0  
0x00, 0x00, 0x00, 0x00  
0x9D  
8
Channel 4 DRC2 (1 – Energy)  
Channel 4 DRC2 threshold upper 16 bits u(31:24), u(23:16), T1(15:8), T1(7:0)  
(T1)  
Channel 4 DRC2 threshold lower 32 bits T1(31:24), T1(23:16), T1(15:8), T1(7:0)  
(T1)  
0x0B, 0x20, 0xE2, 0xB2  
0x00, 0x00, 0x00, 0x00  
0x06, 0xF9, 0xDE, 0x58  
0x9E  
16  
Channel 4 DRC2 threshold upper 16 bits u(31:24), u(23:16), T2(15:8), T2(7:0)  
(T2)  
Channel 4 DRC2 threshold lower 32 bits T2(31:24), T2(23:16), T2(15:8), T2(7:0)  
(T2)  
Channel 4 DRC2 slope (k0)  
Channel 4 DRC2 slope (k1)  
Channel 4 DRC2 slope (k2)  
u(31:28), k0(27:24), k0(23:16), k0(15:8), k0(7:0)  
u(31:28), k1(27:24), k1(23:16), k1(15:8), k1(7:0)  
u(31:28), k2(27:24), k2(23:16), k2(15:8), k2(7:0)  
u(31:24), u(23:16), O1(15:8), O1(7:0)  
0x00, 0x40, 0x00, 0x00  
0x0F, 0xC0, 0x00, 0x00  
0x0F, 0x90, 0x00, 0x00  
0x00, 0x00, 0xFF, 0xFF  
0x9F  
0xA0  
12  
16  
Channel 4 DRC2 offset 1 upper 16 bits  
(O1)  
Channel 4 DRC2 offset 1 lower 32 bits  
(O1)  
O1(31:24), O1(23:16), O1(15:8), O1(7:0)  
u(31:24), u(23:16), O2(15:8), O2(7:0)  
O2(31:24), O2(23:16), O2(15:8), O2(7:0)  
0xFF, 0x82, 0x30, 0x98  
0x00, 0x00, 0x00, 0x00  
0x01, 0x95, 0xB2, 0xC0  
Channel 4 DRC2 offset 2 upper 16 bits  
(O2)  
Channel 4 DRC2 offset 2 lower 32 bits  
(O2)  
Channel 4 DRC2 attack  
u(31:28), A(27:24), A(23:16), A(15:8), A(7:0)  
u(31:28), 1-A(27:24), 1-A(23:16), 1-A(15:8), 1-A(7:0)  
u(31:28), D(27:24), D(23:16), D(15:8), D(7:0)  
u(31:28), 1-D(27:24), 1-D(23:16), 1-D(15:8), 1-D(7:0)  
0x00, 0x00, 0x88, 0x3F  
0x00, 0x7F, 0x77, 0xC0  
0x00, 0x00, 0x00, 0x56  
0x00, 0x3F, 0xFF, 0xA8  
Channel 4 DRC2 (1 – attack)  
Channel 4 DRC2 decay  
0xA1  
16  
Channel 4 DRC2 (1 – decay)  
6.22 DRC Bypass Registers (0xA2, 0xA3, 0xA8, 0xA9)  
DRC bypass/inline for channels 1, 2, 3, and 4 are mapped into registers 0xA2, 0xA3, 0xA8, and 0xA9.  
8-bytes are written for each channel. Each gain coefficient is in 28-bit (5.23) format so 0x0080 0000 is a  
gain of 1. Each gain coefficient is written as a 32-bit word with the upper 4 bits not used.  
To enable DRC for a given channel (with unity gain), bypass = 0x0000 0000 and inline = 0x0080 0000.  
To disable DRC for a given channel, bypass = 0x0080 0000 and inline = 0x0000 0000.  
Table 6-23. DRC Bypass Registers Format (0xA2–0xA9)  
REGISTER  
NAME  
TOTAL  
BYTES  
CONTENTS  
INITIALIZATION  
VALUE  
Channel bass DRC bypass  
Channel DRC inline  
u(31:28), bypass(27:24), bypass(23:16), bypass(15:8), bypass(7:0)  
u(31:28), inline(27:24), inline(23:16), inline(15:8), inline(7:0)  
0x00, 0x80, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
8
82  
Serial Control Interface Register Definitions  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
6.23 4 × 2 Output Mixer Registers (0xAA and 0xAB)  
The pass-through output mixer setting is:  
DAP channel 1 is mapped though the 8 × 2 crossbar mixer (0xAA) to PWM channel 1  
DAP channel 2 is mapped though the 8 × 2 crossbar mixer (0xAB) to PWM channel 2  
Total data per register is 8 bytes.  
Note that the pass-through output mixer configuration (0xD0 bit 30 = 1) is recommended. Using the  
remapped output mixer configuration (0xD0 bit 30 = 0) increases the complexity of using some features  
such as volume and mute. See TAS5504A Errata (SLEZ006).  
Table 6-24. Output Mixer Control Register Format (Upper 4 Bytes)  
D31  
0
D30  
0
D29  
0
D28  
0
D27  
D26  
D25  
D24  
FUNCTION  
Select channel 1 to output mixer  
0
0
0
1
Select channel 2 to output mixer  
Select channel 3 to output mixer  
Select channel 4 to output mixer  
0
1
1
0
0
1
1
1
G27  
G26  
G25  
G24 Selected channel gain (upper 4 bits)  
D23  
D22  
D21  
D20  
D19  
D18  
D17  
D16  
FUNCTION  
G23  
G22  
G21  
G20  
G19  
G18  
G17  
G16 Selected channel gain (continued)  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
FUNCTION  
Selected channel gain (continued)  
G15  
G14  
G13  
G12  
G11  
G10  
G9  
G8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
FUNCTION  
Selected channel gain (lower 8 bits)  
G7  
G6  
G5  
G4  
G3  
G2  
G1  
G0  
Table 6-25. Output Mixer Control (Lower 4 Bytes)  
D31  
0
D30  
0
D29  
0
D28  
0
D27  
D26  
D25  
D24  
FUNCTION  
Select channel 1 to output mixer  
0
0
0
1
Select channel 2 to output mixer  
Select channel 3 to output mixer  
Select channel 4 to output mixer  
0
1
1
0
0
1
1
1
G27  
G26  
G25  
G24 Selected channel gain (upper 4 bits)  
D23  
D22  
D21  
D20  
D19  
D18  
D17  
D16  
FUNCTION  
G23  
G22  
G21  
G20  
G19  
G18  
G17  
G16 Selected channel gain (continued)  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
FUNCTION  
Selected channel gain (continued)  
G15  
G14  
G13  
G12  
G11  
G10  
G9  
G8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
FUNCTION  
Selected channel gain (lower 8 bits)  
G7  
G6  
G5  
G4  
G3  
G2  
G1  
G0  
Serial Control Interface Register Definitions  
83  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
6.24 4 × 3 Output Mixer Registers (0xB0–0xB1)  
The pass-through output mixer setting is:  
DAP channel 3 is mapped though the 8 × 3 crossbar mixer (0xB0) to PWM channel 3.  
DAP channel 4 is mapped though the 8 × 3 crossbar mixer (0xB1) to PWM channel 4.  
Note that the default setting is recommended for most systems. Any variation from this setting increases  
the complexity of using some features such as volume and mute. See TAS5504A Errata (SLEZ009).  
Total data per register is 12 bytes.  
Table 6-26. Output Mixer Control (Lower 4 Bytes)  
D31  
0
D30  
0
D29  
0
D28  
0
D27  
D26  
D25  
D24  
FUNCTION  
Select channel 1 to output mixer  
0
0
0
1
Select channel 2 to output mixer  
Select channel 3 to output mixer  
Select channel 4 to output mixer  
0
1
1
0
0
1
1
1
G27  
G26  
G25  
G24 Selected channel gain (upper 4 bits)  
D23  
D22  
D21  
D20  
D19  
D18  
D17  
D16  
FUNCTION  
G23  
G22  
G21  
G20  
G19  
G18  
G17  
G16 Selected channel gain (continued)  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
FUNCTION  
Selected channel gain (continued)  
G15  
G14  
G13  
G12  
G11  
G10  
G9  
G8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
FUNCTION  
Selected channel gain (lower 8 bits)  
G7  
G6  
G5  
G4  
G3  
G2  
G1  
G0  
Table 6-27. Output Mixer Control (Middle 4 Bytes)  
D31  
0
D30  
0
D29  
0
D28  
0
D27  
D26  
D25  
D24  
FUNCTION  
Select channel 1 to output mixer  
0
0
0
1
Select channel 2 to output mixer  
Select channel 3 to output mixer  
Select channel 4 to output mixer  
0
1
1
0
0
1
1
1
G27  
G26  
G25  
G24 Selected channel gain (upper 4 bits)  
D23  
D22  
D21  
D20  
D19  
D18  
D17  
D16  
FUNCTION  
G23  
G22  
G21  
G20  
G19  
G18  
G17  
G16 Selected channel gain (continued)  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
FUNCTION  
Selected channel gain (continued)  
G15  
G14  
G13  
G12  
G11  
G10  
G9  
G8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
FUNCTION  
Selected channel gain (lower 8 bits)  
G7  
G6  
G5  
G4  
G3  
G2  
G1  
G0  
84  
Serial Control Interface Register Definitions  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
Table 6-28. Output Mixer Control (Lower 4 Bytes)  
D31  
D30  
0
D29  
0
D28  
0
D27  
D26  
D25  
D24  
FUNCTION  
Select channel 1 to output mixer  
0
0
0
0
0
0
1
Select channel 2 to output mixer  
Select channel 3 to output mixer  
Select channel 4 to output mixer  
1
1
0
1
1
1
G27  
G26  
G25  
G24 Selected channel gain (upper 4 bits)  
D23  
D22  
D21  
D20  
D19  
D18  
D17  
D16  
FUNCTION  
G23  
G22  
G21  
G20  
G19  
G18  
G17  
G16 Selected channel gain (continued)  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
FUNCTION  
Selected channel gain (continued)  
G15  
G14  
G13  
G12  
G11  
G10  
G9  
G8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
FUNCTION  
Selected channel gain (lower 8 bits)  
G7  
G6  
G5  
G4  
G3  
G2  
G1  
G0  
6.25 PSVC Volume Biquad Register (0xCF)  
Each gain coefficient is in 28-bit (5.23) format, so 0x8000 0000 is a gain of 1. Each gain coefficient is  
written as a 32-bit word with the upper four bits not used. Note that this register should be used only with  
the PSVC feature. For systems not using this feature, it is recommended that this biquad be set to all-pass  
(default).  
Table 6-29. Volume Biquad Register Format (Default = All-pass)  
DESCRIPTION  
REGISTER FIELD CONTENTS  
DEFAULT GAIN COEFFICIENT VALUES  
DECIMAL  
1.0  
HEX  
b0 coefficient  
u(31:28), b0(27:24), b0(23:16), b0(15:8), b0(7:0)  
u(31:28), b1(27:24), b1(23:16), b1(15:8), b1(7:0)  
u(31:28), b2(27:24), b2(23:16), b2(15:8), b2(7:0)  
u(31:28), a1(27:24), a1(23:16), a1(15:8), a1(7:0)  
u(31:28), a2(27:24), a2(23:16), a2(15:8), a2(7:0)  
0x00, 0x80, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
b1 coefficient  
b2 coefficient  
a1 coefficient  
a2 coefficient  
0.0  
0.0  
0.0  
0.0  
Serial Control Interface Register Definitions  
85  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
6.26 Volume, Treble, and Bass Slew Rates Register (0xD0)  
Table 6-30. Volume Gain Update Rate (Slew Rate)  
D31  
0
D30  
0
D29-D10  
D9  
x
D8  
x
FUNCTION  
Remapped output mixer configuration (not recommended)  
Pass-through output mixer configuration (recommended)  
512-step update at 4 fS, 42.6 ms at 48 kHz  
0
0
0
0
0
0
0
1
x
x
0
0
0
0
0
1
1024-step update at 4 fS, 85.3 ms at 48 kHz  
2048-step update at 4 fS, 170 ms at 48 kHz  
0
1
0
0
1
1
2048-step update at 4 fS, 170 ms at 48 kHz  
Table 6-31. Treble and Bass Gain Step Size (Slew Rate)  
D7  
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
FUNCTION  
0
0
0
0
No operation  
0
0
0
0
1
0
0
Minimum rate – Updates every 0.083 ms (every LRCLK at 48 kHz)  
Update ever 0.67 ms (32 LRCLKs at 48 kHz)  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
Default rate – Updates every 1.31 ms (63 LRCLKs at 48 kHz). This is the  
maximum constant time that can be set for all sample rates.  
1
1
1
1
1
1
1
1
Minimum rate – Updates every 5.08 ms (every 255 LRCLKs at 48 kHz)  
6.27 Volume Registers (0xD1, 0xD2, 0xD7, and 0xD8)  
Channels 1, 2, 3, and 4 are mapped into registers 0xD1, 0xD2, 0xD7, and 0xD8. The default for all  
channels is 0 dB.  
Master volume is mapped into register 0xD9. The default for the master volume is mute.  
Bits D31–D12 are don't care.  
Table 6-32. Volume Registers  
D31  
D23  
D15  
D30  
D22  
D14  
D29  
D21  
D13  
D28  
D20  
D12  
D27  
D19  
D26  
D18  
D25  
D24  
FUNCTION  
FUNCTION  
FUNCTION  
FUNCTION  
Unused bits  
Unused bits  
Volume  
D17  
D16  
D11  
V11  
D10  
D9  
D8  
V8  
V10  
V9  
D7  
V7  
D6  
V6  
D5  
V5  
D4  
V4  
D3  
V3  
D2  
V2  
D1  
V1  
D0  
V0  
Volume  
86  
Serial Control Interface Register Definitions  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
Table 6-33. Master and Individual Volume Controls  
VOLUME INDEX (H)  
GAIN (dB)  
17.75  
17.5  
001  
002  
003  
004  
005  
006  
007  
008  
009  
00A  
00B  
00C  
00D  
00E  
00F  
010  
17.25  
17  
16.75  
16.5  
16.25  
16  
15.75  
15.5  
15.25  
15  
14.75  
14.5  
14.25  
14  
TO  
044  
045  
046  
047  
048  
049  
04A  
04B  
04C  
1
0.75  
0.5  
0.25  
0
–0.25  
–0.5  
–0.75  
–1  
TO  
1F8  
1F9  
1FA  
1FB  
1FC  
1FD  
–108  
–108.25  
–108.5  
–108.75  
-109  
Mute  
TO  
245  
Mute  
Serial Control Interface Register Definitions  
87  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
6.28 Bass Filter Set Register (0xDA)  
The bass and treble bypass registers (0x89–0x90) must be configured as inline (default is bypass).  
Table 6-34. Channel 4 Subwoofer  
D31  
0
D30  
0
D29  
0
D28  
0
D27  
0
D26  
0
D25  
0
D24  
0
FUNCTION  
No change  
0
0
0
0
0
0
0
1
Bass filter set 1  
Bass filter set 2  
Bass filter set 3  
Bass filter set 4  
Bass filter set 5  
Reserved  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1
1
Reserved  
Table 6-35. Channel 3, 2, 1 (Center, Right Front, and Left Front)  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
FUNCTION  
No change  
0
0
0
0
0
0
0
1
Bass filter set 1  
Bass filter set 2  
Bass filter set 3  
Bass filter set 4  
Bass filter set 5  
Reserved  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1
1
Reserved  
88  
Serial Control Interface Register Definitions  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
6.29 Bass Filter Index Register (0xDB)  
Index values above 0x24 are invalid. The bass and treble bypass registers (0x89–0x90) must be  
configured as inline (default is bypass).  
Table 6-36. Bass Filter Index Register  
I2C SUB-  
ADDRESS  
TOTAL  
BYTES  
REGISTER  
NAME  
DESCRIPTION OF  
CONTENTS  
DEFAULT STATE  
Bass filter index (BFI) Ch4_BFI(31:24), NONE(23:16), NONE(15:8),  
Ch321_BFI(7:0)  
0x12, 0xxx, 0xxx, 0x12  
0xDB  
4
Table 6-37. Bass Filter Index Table  
TREBLE INDEX  
VALUE  
ADJUSTMENT  
(DB)  
TREBLE INDEX  
VALUE  
ADJUSTMENT  
(DB)  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
–10  
–11  
–12  
–13  
–14  
–15  
–16  
–17  
–18  
8
7
6
5
4
3
2
1
0
Serial Control Interface Register Definitions  
89  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
6.30 Treble Filter Set Register (0xDC)  
Bits D31–D27 are don't care. The bass and treble bypass registers (0x89–0x90) must be configured as  
inline (default is bypass).  
Table 6-38. Channel 4 Subwoofer  
D31  
0
D30  
0
D29  
0
D28  
0
D27  
0
D26  
0
D25  
0
D24  
0
FUNCTION  
No change  
0
0
0
0
0
0
0
1
Treble filter set 1  
Treble filter set 2  
Treble filter set 3  
Treble filter set 4  
Treble filter set 5  
Reserved  
0
0
0
0
0
0
1
0
0
0
0
0
0
1
1
1
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1
1
Reserved  
Table 6-39. Channel 3, 2, 1 (Center, Right Front, and Left Front)  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
FUNCTION  
No change  
0
0
0
0
0
0
0
1
Treble filter set 1  
Treble filter set 2  
Treble filter set 3  
Treble filter set 4  
Treble filter set 5  
Reserved  
0
0
0
0
0
0
1
0
0
0
0
0
0
1
1
1
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1
1
Reserved  
90  
Serial Control Interface Register Definitions  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
6.31 Treble Filter Index (0xDD)  
Index values above 0x24 are invalid. The bass and treble bypass registers (0x89–0x90) must be  
configured as inline (default is bypass).  
Table 6-40. Treble Filter Index Register  
I2C SUB-  
ADDRESS  
TOTAL  
BYTES  
REGISTER  
NAME  
DESCRIPTION OF  
CONTENTS  
DEFAULT STATE  
Treble filter index  
(BFI)  
Ch4_TFI(31:24), NONE(23:16), NONE(15:8),  
Ch321_TFI(7:0)  
0x12, 0x12, 0x12, 0x128  
0xDD  
4
Table 6-41. Treble Filter Index  
TREBLE INDEX  
VALUE  
ADJUSTMENT  
(DB)  
TREBLE INDEX  
VALUE  
ADJUSTMENT  
(DB)  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
–10  
–11  
–12  
–13  
–14  
–15  
–16  
–17  
–18  
8
7
6
5
4
3
2
1
0
Serial Control Interface Register Definitions  
91  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
6.32 AM Mode Register (0xDE)  
Bits D31–D21 are don't care.  
Table 6-42. AM Mode Register  
D31  
D23  
D30  
D22  
D29  
D21  
D28  
D27  
D26  
D25  
D24  
FUNCTION  
FUNCTION  
Unused bits  
D20  
0
D19  
D18  
D17  
D16  
AM mode disabled  
AM mode enabled  
1
0
0
Select sequence 1  
Select sequence 2  
0
1
1
0
Select sequence 3  
1
1
Select sequence 4  
0
IF frequency 455  
1
IF frequency 262.5  
Use BCD tuned frequency  
Use binary tuned frequency  
0
1
Table 6-43. AM Tuned Frequency Register in BCD Mode (Lower 2 Bytes of 0xDE)  
D15  
0
D14  
0
D13  
0
D12  
B0  
D11  
D10  
D9  
D8  
FUNCTION  
BCD frequency (1000s kHz)  
BCD frequency (100s kHz)  
Default value  
B3  
0
B2  
0
B1  
0
B0  
0
0
0
0
0
D7  
0
D6  
0
D5  
0
D4  
B0  
D3  
D2  
D1  
D0  
FUNCTION  
BCD frequency (100s kHz)  
BCD frequency (1s kHz)  
Default value  
B3  
0
B2  
0
B1  
0
B0  
0
0
0
0
0
Table 6-44. AM Tuned Frequency Register in Binary Mode (Lower 2 Bytes of 0xDE)  
D15  
0
D14  
0
D13  
0
D12  
0
D11  
0
D10  
B10  
0
D9  
B9  
0
D8  
B8  
0
FUNCTION  
Binary frequency (upper 3 bits)  
0
0
0
0
0
Default value  
D7  
B7  
0
D6  
B6  
0
D5  
B5  
0
D4  
B4  
0
D3  
B3  
0
D2  
B2  
0
D1  
B1  
0
D0  
B0  
0
FUNCTION  
Binary frequency (lower 8 bits)  
Default value  
92  
Serial Control Interface Register Definitions  
TAS5504A  
4-Channel Digital Audio PWM Processor  
www.ti.com  
SLES169FEBRUARY 2006  
6.33 PSVC Range Register (0xDF)  
Bits D31–D2 are zero.  
Table 6-45. Volume Gain Update Rate (Slew Rate)  
D31–D2  
D1  
0
D0  
0
FUNCTION  
0
0
0
0
12-dB control range for PSVC  
18-dB control range for PSVC  
24-dB control range for PSVC  
Ignore – retain last value  
0
1
1
0
1
1
6.34 General Control Register (0xE0)  
Bits D31–D4 are zero. Bits D1 and D0 are don't care.  
Table 6-46. General Control Register  
D31–D4  
D3  
0
D2  
0
D1  
D0  
FUNCTION  
Power supply volume control disable  
0
0
0
1
Power-supply volume-control enable  
Subwoofer part of PSVC. This bit must always be 0 (D3 is a write-only bit).  
6.35 Incremental Multiple-Write Append Register (0xFE)  
This is a special register used to append data to a previously opened register. See Multiple-Byte Write,  
Section 4.4, for programming details.  
7
TAS5504A Example Application Schematic  
The following page contains an example application schematic for the TAS5504A.  
TAS5504A Example Application Schematic  
93  
5
4
3
2
1
D
C
B
A
D
C
B
A
Left + Right Headphone  
+5.0V  
+5.0V  
+3.3V  
2
R20  
22.0R  
1
PWM_HPM_L  
PWM_HPP_L  
PWM_HPM_R  
PWM_HPP_R  
J900  
C25  
220nF  
C26  
10uF  
V-HBRIDGE  
4
3
2
1
OUT_R  
GVDD  
HEADPHONE OUTPUT  
/SD2_TAS5121  
/OTW_TAS5121  
OUT_GND  
OUT_L  
/SHUTDOWN_TAS5121  
/TEMP_WARNING  
V-HBRIDGE  
GVDD  
Mini-Jack (3.5mm)  
GND  
2 Channel Headphone Design (TPA112)  
PWM_P  
PWM_M  
/VALID  
1
2
SUBWOOFER  
SPEAKER  
OUTPUT  
OUT_1  
OUT_2  
/VALID  
J800  
CH4 TAS5121 H-Bridge Output Stage  
V-HBRIDGE  
GVDD  
/SD1_TAS5121  
/OTW_TAS5121  
/SHUTDOWN_TAS5121  
/TEMP_WARNING  
V-HBRIDGE  
GVDD  
MCLK  
PWM_P  
PWM_M  
/VALID  
1
2
CENTER  
SPEAKER  
OUTPUT  
OUT_1  
OUT_2  
/VALID  
J700  
CH3 TAS5121 H-Bridge Output Stage  
C29  
100nF  
C10  
10nF  
R10  
200R  
R11  
200R  
C13  
10nF  
C14  
100nF  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
VRA_PLL  
VR_PWM  
NC  
C11  
100nF  
C12  
100nF  
2
PLL_FLT_RET  
3
4
PLL_FLTM  
PLL_FLTP  
AVSS  
NC  
NC  
5
NC  
6
AVSS  
PWM_P_2  
PWM_M_2  
PWM_P_1  
PWM_M_1  
VAILD  
7
VRD_PLL  
AVSS_PLL  
AVDD_PLL  
VBGAP  
RESET  
HP_SEL  
PDN  
U10  
+3.3V R12  
8
2R  
TAS5504  
1
2
9
10  
11  
12  
13  
14  
15  
16  
/VALID  
/RESET_TAS5504  
/HP_SEL  
DVSS  
C15  
C16  
C17  
100nF  
C18  
100nF  
10uF  
1nF  
/BKND_ERR_TAS5504  
BKND_ERR  
DVDD  
+3.3V  
/PDN_TAS5504  
/MUTE_TAS5504  
MUTE  
DVSS  
R13  
R18  
1R  
3.30R  
DVDD  
DVSS  
V-HBRIDGE  
DVSS  
VR_DIG  
GVDD  
/SD1_TAS5121  
/OTW_TAS5121  
/SHUTDOWN_TAS5121  
/TEMP_WARNING  
V-HBRIDGE  
GVDD  
GND  
+3.3V  
C22  
100nF  
C23  
10uF  
C24  
100nF  
PWM_P  
PWM_M  
/VALID  
R14  
1
2
RIGHT  
SPEAKER  
OUTPUT  
1R  
OUT_1  
OUT_2  
/VALID  
GND  
J200  
C19  
C20  
C21  
CH2 TAS5121 H-Bridge Output Stage  
10uF  
100nF  
100nF  
V-HBRIDGE  
GVDD  
+5.0V +3.3V  
V-HBRIDGE  
GND  
GVDD  
/SD1_TAS5121  
/OTW_TAS5121  
/SHUTDOWN_TAS5121  
/TEMP_WARNING  
V-HBRIDGE  
GND  
PSVC_TAS5504  
SDIN1  
SDIN2  
SDIN3  
SDIN4  
SCLK  
GVDD  
/RESET  
/RESET  
PWM_P  
PWM_M  
/VALID  
X10  
1
2
LEFT  
SPEAKER  
OUTPUT  
/RESET_TAS5504  
/RESET_TAS5504  
OUT_1  
OUT_2  
/VALID  
J100  
13.5MHz  
/BKND_ERR  
/BKND_ERR  
CH1 TAS5121 H-Bridge Output Stage  
2
1
/BKND_ERR_TAS5504  
/BKND_ERR_TAS5504  
LRCLK  
SCL  
R21  
1M  
C27  
15pF  
C28  
15pF  
/SD1_TAS5121  
/SD1  
/SD1_TAS5121  
/SD1  
PSVC_TAS5504  
SDA  
PSVC_TAS5504  
/SD2_TAS5121  
/SD2  
/SD2_TAS5121  
/SD2  
TAS5504 Example Application Schematic  
/VALID  
/VALID  
/OTW_TAS5121  
/OTW  
/OTW_TAS5121  
/OTW  
(Circuit is Subject To Change Without Notice)  
PSU and Interface Logic  
5
4
3
2
1
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Apr-2006  
PACKAGING INFORMATION  
Orderable Device  
TAS5504APAG  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
TQFP  
PAG  
64  
64  
64  
64  
160 Green (RoHS & CU NIPDAU Level-4-260C-72 HR  
no Sb/Br)  
TAS5504APAGG4  
TAS5504APAGR  
TAS5504APAGRG4  
TQFP  
TQFP  
TQFP  
PAG  
PAG  
PAG  
160 Green (RoHS & CU NIPDAU Level-4-260C-72 HR  
no Sb/Br)  
1500 Green (RoHS & CU NIPDAU Level-4-260C-72 HR  
no Sb/Br)  
1500 Green (RoHS & CU NIPDAU Level-4-260C-72 HR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
MECHANICAL DATA  
MTQF006A – JANUARY 1995 – REVISED DECEMBER 1996  
PAG (S-PQFP-G64)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
48  
M
0,08  
33  
49  
32  
64  
17  
0,13 NOM  
1
16  
7,50 TYP  
Gage Plane  
10,20  
SQ  
9,80  
0,25  
12,20  
SQ  
0,05 MIN  
11,80  
0°7°  
1,05  
0,95  
0,75  
0,45  
Seating Plane  
0,08  
1,20 MAX  
4040282/C 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2006, Texas Instruments Incorporated  

相关型号:

TAS5504APAGR

4-Channel Digital Audio PWM Processor
TI

TAS5504APAGRG4

4-Channel Digital Audio PWM Processor
TI

TAS5504PAG

4 Channel Digital Audio PWM Processor
TI

TAS5504PAGG4

4 Channel Digital Audio PWM Processor
TI

TAS5504PAGR

4 Channel Digital Audio PWM Processor
TI

TAS5504PAGRG4

4 Channel Digital Audio PWM Processor
TI

TAS5504_06

4 Channel Digital Audio PWM Processor
TI

TAS5508

8 Channel Digital Audio PWM Processor
TI

TAS5508A

8 Channel Digital Audio PWM Processor
TI

TAS5508APAG

8 Channel Digital Audio PWM Processor
TI

TAS5508APAGG4

8 Channel Digital Audio PWM Processor
TI

TAS5508APAGR

8 Channel Digital Audio PWM Processor
TI