TAS5504PAGR [TI]

4 Channel Digital Audio PWM Processor; 4通道数字音频PWM处理器
TAS5504PAGR
型号: TAS5504PAGR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

4 Channel Digital Audio PWM Processor
4通道数字音频PWM处理器

文件: 总96页 (文件大小:1209K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TM  
TAS5504  
4 Channel Digital Audio PWM Processor  
Data Manual  
2004  
DAVDigital Audio/Speaker  
SLES123  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2004, Texas Instruments Incorporated  
Contents  
Page  
Contents  
Section  
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
1.1  
TAS5504 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
1.1.1  
1.1.2  
1.1.3  
1.1.4  
Audio Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Audio Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
PWM Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
General Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
1.2  
1.3  
Physical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
1.2.1  
1.2.2  
1.2.3  
Terminal Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Terminal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
TAS5504 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
1.3.1  
1.3.2  
1.3.3  
1.3.4  
1.3.5  
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Clock, PLL, and Serial Data Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
I C Serial Control Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Device Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Digital Audio Processor (DAP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2
1.4  
TAS5504 DAP Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
1.4.1  
1.4.2  
TAS5504 DAP Architecture Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
I C Coefficient Number Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2
1.5  
1.6  
1.7  
1.8  
Input Crossbar Mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Biquad Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Bass and Treble Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Volume, Auto Mute, and Mute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
1.8.1  
Auto Mute and Mute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
1.9  
Loudness Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
1.9.1  
1.10.2  
Loudness Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Compression/Expansion Coefficient Computation Engine Parameters . . . . . . . . . . . . . . 25  
1.11  
1.12  
Output Mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
1.12.1  
1.12.2  
1.12.3  
1.12.4  
DC Blocking (High Pass Enable/ Disable) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
De-Emphasis Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Power Supply Volume Control (PSVC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
AM Interference Avoidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
2
TAS5504 Controls and Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
2
2.1  
I C Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
2.1.1  
2.1.2  
General Status Register (0x01) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Error Status Register (0x02) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
2.2  
TAS5504 Pin Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
2.2.1  
2.2.2  
2.2.3  
2.2.4  
2.2.5  
Reset (RESET) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Power Down (PDN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Backend Error (BKND_ERR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Speaker/Headphone Selector (HP_SEL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Mute (MUTE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
2.3  
Device Configuration Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
2.3.1  
2.3.2  
Channel Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Headphone Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
iii  
October 2004  
SLES123  
Contents  
2.3.3  
2.3.4  
2.3.5  
2.3.6  
2.3.7  
2.3.8  
Audio System Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Recovery from Clock Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Power Supply Volume Control Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Volume and Mute Update Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Modulation Index Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Inter-channel Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
2.4  
2.5  
Master Clock and Serial Data Rate Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
2.4.1 PLL Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Bank Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
2.5.1  
2.5.2  
2.5.3  
2.5.4  
2.5.5  
2.5.6  
Manual Bank Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Automatic Bank Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Bank Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Bank Switch Timeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Bank Switching Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Bank Switching Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
3
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Dynamic Performance (At Recommended Operating Conditions at 25°C) . . . . . . . . . . . . . . . . . . . . 43  
Recommended Operating Conditions (over 0°C to 70°C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Electrical Characteristics Over Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . 44  
PWM Operation at Recommended Operating Conditions Over 0°C to 70°C . . . . . . . . . . . . . . . . . . . 44  
Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
3.6.1  
3.6.2  
3.6.3  
3.6.4  
3.6.5  
3.6.6  
3.6.7  
3.6.8  
3.6.9  
Clock Signals Over Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Serial Audio Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
I C Serial Control Port Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Reset Timing (RESET) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Power-Down (PDN) Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Backend Error (BKND_ERR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
MUTE Timing—MUTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Headphone Select (HP_SEL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Volume Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
2
3.7  
Serial Audio Interface Control and Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
2
3.7.1  
3.7.2  
3.7.3  
I S Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Left Justified . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Right Justified . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
2
4
I C Serial Control Interface (Slave Address 0x36) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
2
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
General I C Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Single and Multiple Byte Transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Single Byte Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Multiple Byte Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Incremental Multiple Byte Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Single Byte Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Multiple Byte Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
2
5
6
Serial Control I C Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Serial Control Interface Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
6.1  
6.2  
6.3  
6.4  
Clock Control Register (0x00) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
General Status Register 0 (0x01) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Error Status Register (0x02) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
System Control Register 1 (0x03) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
iv  
SLES123  
October 2004  
Contents  
6.5  
6.6  
6.7  
6.8  
System Control Register 2 (0x04) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Channel Configuration Control Register (0x05X0C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Headphone Configuration Control Register (0x0D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Serial Data Interface Control Register (0x0E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Soft Mute Register (0x0F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Automute Control Register(0x14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Automute PWM Threshold and Backend Reset Period (0x15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Modulation Index Limit Register (0x16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Interchannel Channel Delay Registers (0x1B 0x22) and Offset Register (0x23) . . . . . . . . . . . . . . 68  
Bank Switching Command (0x40) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Input Mixer Registers (0x41, 0x42, 0x47, 0x48, Channels 14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Bass Management Registers (0x49–0x50) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Biquad Filters Register (0x51 – 0x88) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Bass and Treble Bypass Register (0x89 – 0x90, Channels 1 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Loudness Registers (0x91 – 0x95) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
DRC1 Control (0x96, Channels 13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
DRC2 Control (0x97, Channel 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
DRC1 Data Registers (0x98 – 0x9C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
DRC2 Data Registers (0x9D – 0xA1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
DRC Bypass Registers (0xA2, 0xA3, 0xA8, 0xA9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
4x2 Output Mixer Registers (0xAA and 0xAB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
4x3 Output Mixer Registers (0xB0 – 0xB1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Volume Biquad Register (0xCF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Volume Treble and Bass Slew Rates (0xD0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Volume Registers (0xD1, 0xD2, 0xD7, and 0xD8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Bass Filter Set Register (0xDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Bass Filter Index Register (0xDB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Treble Filter Set Register (0xDC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Treble Filter Index (0xDD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
AM Mode Register (0xDE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
PSVC Range Register (0xDF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
General Control Register (0xE0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Incremental Multiple Write Append Register (0xFE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
6.9  
6.10  
6.11  
6.12  
6.13  
6.14  
6.15  
6.16  
6.17  
6.18  
6.19  
6.20  
6.21  
6.22  
6.23  
6.24  
6.25  
6.26  
6.27  
6.28  
6.29  
6.30  
6.31  
6.32  
6.33  
6.34  
6.35  
6.36  
6.37  
7
TAS5504 Example Application Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
v
October 2004  
SLES123  
List of Illustrations  
List of Illustrations  
Figure  
Title  
Page  
11 TAS5504 Functional Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
2
12 TAS5504 DAP Architecture With I C Registers (Fs 96 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2
13 TAS5504 Architecture With I C Registers (Fs = 176.4 kHz or Fs = 192 kHz) . . . . . . . . . . . . . . . . . . . . 11  
14 TAS5504 Detailed Channel Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
15 5.23 Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
16 Conversion Weighting Factors—5.23 Format to Floating Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
2
17 Alignment of 5.23 Coefficient in 32-Bit I C Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
18 25.23 Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2
19 Alignment of 5.23 Coefficient in 32-Bit I C Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2
110 Alignment of 25.23 Coefficient in Two 32-Bit I C Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
111 TAS5504 Digital Audio Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
112 Input Crossbar Mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
113 Biquad Filter Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
114 Auto Mute Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
115 Loudness Compensation Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
116 Loudness Example Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
117 DRC Positioning in TAS5504 Processing Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
118 Dynamic Range Compression (DRC) Transfer Function Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
119 TAS5504 Attack and Decay Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
120 Output Mixers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
121 De-emphasis Filter Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
122 Power Supply and Digital Gains (Log Space) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
123 Power Supply and Digital Gains (Linear Space) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
124 Block Diagrams of Typical Systems Requiring TAS5504 Automatic AM Interference  
Avoidance Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
31 Slave Mode Serial Data Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
32 SCL and SDA Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
33 Start and Stop Conditions Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
34 Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
35 Power-Down Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
36 Error Recovery Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
37 Mute Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
38 HP_SEL Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
2
39 I S Format 64 Fs Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
310 Left Justified 64 Fs Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
311 Right Justified 64 Fs Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
2
41 Typical I C Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
42 Single Byte Write Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
43 Multiple Byte Write Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
44 Single Byte Read Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
45 Multiple Byte Read Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
vi  
SLES123  
October 2004  
List of Tables  
List of Tables  
Table  
Title  
Page  
11 Serial Data Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
12 TAS5504 Audio Processing Feature Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
13 Contents of One 20-Byte Biquad Filter Register (Default = All-Pass) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
14 Bass and Treble Filter Selections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
15 Linear Gain Step Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
16 Default Loudness Compensation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
17 Loudness Function Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
18 DRC Recommended Changes From TAS5504 Defaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
21 Device Outputs During Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
22 Values Set During Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
23 Device Outputs During Power Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
24 Device Outputs During Backend Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
25 Description of the Channel Configuration Registers (0x05, 0x06, 0x0B, 0x0C) . . . . . . . . . . . . . . . . . . . . . . . 37  
26 Recommended TAS5504 Configurations for Texas Instruments Power Stages . . . . . . . . . . . . . . . . . . . . . . . 37  
27 Audio System Configuration (General Control Register 0xE0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
28 Volume Ramp Rates in ms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
29 Inter-Channel Delay Default Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
61 Clock Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
62 General Status Register (0x01) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
63 Error Status Register (0X02) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
64 System Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
65 System Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
66 Channel Configuration Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
67 Headphone Configuration Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
68 Serial Data Interface Control Register Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
69 Soft Mute Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
610 Automute Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
611 Automute PWM Threshold and Backend Reset Period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
612 Modulation Index Limit Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
613 Interchannel Channel Delay Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
614 Channel Offset Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
615 Bank Switching Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
616 Input Mixer Registers Format (Channels 14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
617 Bass Management Registers Format (0x49 – 0x50) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
618 Biquad Filters Registers Format (0x51 – 0x88) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
619 Contents of One 20-Byte Biquad Filter Register Format (Default = All-pass) . . . . . . . . . . . . . . . . . . . . . . . . 73  
620 Bass and Treble Bypass Register Format (0x890x90) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
621 Loudness Registers Format (0x91 – 0x95) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
622 DCR1 Control (0x96, Channels 13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
623 DRC2 Control (0x97, Channel 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
624 DRC1 Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
625 DRC2 Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
626 DRC Bypass Registers Format (0xA20xA9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
627 Output Mixer Control Register Format (Upper 4 Bytes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
628 Output Mixer Control (Lower 4 Bytes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
629 Output Mixer Control (Upper 4 Bytes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
630 Output Mixer Control (Middle 4 Bytes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
vii  
October 2004  
SLES123  
List of Tables  
631 Output Mixer Control (Lower 4 Bytes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
632 Volume Biquad Register Format (Default = All-pass) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
633 Volume Gain Update Rate (Slew Rate) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
634 Treble and Bass Gain Step Size (Slew Rate) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
635 Volume Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
636 Master and Individual Volume Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
637 Channel 4 Sub Woofer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
638 Channel 3, 2, 1 (Center, Right Front, and Left Front) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
639 Bass Filter Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
640 Bass Filter Index Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
641 Channel 4 Sub Woofer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
642 Channel 3, 2, 1 (Center, Right Front, and Left Front) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
643 Treble Filter Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
644 Treble Filter Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
645 AM Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
646 AM Tuned Frequency Register in BCD Mode (Lower 2 Bytes of 0xDE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
647 AM Tuned Frequency Register in Binary Mode (Lower 2 Bytes of 0xDE) . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
648 PSVC Range Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
649 General Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
viii  
SLES123  
October 2004  
Introduction  
1
Introduction  
The TAS5504 is a four channel digital pulse width modulator (PWM) that provides both advanced performance  
and a high level of system integration. The TAS5504 is designed to interface seamlessly with most audio digital  
signal processors. The TAS5504 automatically adjusts control configurations in response to clock and data  
rate changes and idle conditions. This enables the TAS5504 to provide an easy to use control interface with  
relaxed timing requirements.  
The TAS5504 can drive four channels of H-bridge power stages. Texas Instruments H-bridge parts TAS5111,  
TAS5112, or TAS5182 + FETs are designed to work seamlessly with the TAS5504. The TAS5504 supports  
both single-ended or bridge tied load configurations. The TAS5504 also provides a high performance  
differential output to drive an external differential input analog headphone amplifier (such as the TPA112).  
The TAS5504’s uses an AD modulation operating at a 384-kHz switching rate for 48-, 96-, and 192-kHz data.  
th  
The 8x over sampling combined with the 5 order noise shaper provides a broad flat noise floor and excellent  
dynamic range from 20 Hz to 20 kHz.  
The TAS5504 is clock slave only device. The TAS5504 receives MCLK, SCLK and LRCLK from other system  
components. The TAS5504 accepts master clock rates of 128, 192, 256, 384, 512, and 768 Fs. The TAS5504  
accepts a 64-Fs bit clock.  
The TAS5504 allows for extending the dynamic range by providing a power supply volume control (PSVC)  
output signal.  
Power Supply  
MCLK  
XTL_OUT  
XTL_IN  
PLL_FLTM  
PLL_FLTP  
OSC_CAP  
SCLK  
PWM_HPPR  
PWM_HPMR  
Digital Audio Processor  
PWM Section  
PWM_HPPL  
PWM_HPML  
0
7
Soft Loud  
Vol Comp  
DC  
DeInterpo−  
Block Emph late  
Soft  
Tone  
DRC  
DRC  
DRC  
DRC  
SRC NS PWM  
SRC NS PWM  
SRC NS PWM  
PWM_P_1  
PWM_M_1  
Det Biquads  
LRCLK  
SDIN1  
Control  
SDIN2  
0
7
Soft Loud  
Vol Comp  
DC  
DeInterpo−  
Block Emph late  
Soft  
Tone  
PWM_P_2  
PWM_M_2  
Det Biquads  
SDIN3  
SDIN4  
Serial  
Control  
I/F  
SDA  
SCL  
0
7
Soft  
Tone  
Soft Loud  
Vol Comp  
DC  
DeInterpo−  
Block Emph late  
PWM_P_3  
PWM_M_3  
Det Biquads  
/RESET  
/PDN  
0
7
Soft Loud  
Vol Comp  
DC  
DeInterpo−  
Block Emph late  
Soft  
Tone  
PWM_P_4  
PWM_M_4  
SRC NS PWM  
4
/MUTE  
/HP_SEL  
Det Biquads  
4
2
4
4
2
2
8
/BKND_ERR  
VALID  
PSVC  
5
Volume  
Control  
PSVC  
Figure 11. TAS5504 Functional Structure  
1
SLES123 October 2004  
TAS5504  
Introduction  
1.1 TAS5504 Features  
1.1.1 Audio Input / Output  
Automatic Master Clock Rate and Data Sample Rate Detection  
Four Serial Audio Input Channels  
Four PWM Audio Output Channels  
Headphone PWM Output to Drive an External Differential Amplifier Like the TPA112  
PWM Outputs Support Single Ended and Bridge Tied Loads  
32-, 38-, 44.1-, 48-, 88.2-, 96-, 176.4-, and 192-kHz Sampling Rates  
2
Data Formats: 16-, 20-, or 24-bit input Data Left, Right and I S,  
64 x Fs Bit Clock Rate  
128, 192, 256, 384, 512, and 768 x Fs Master Clock Rates (Up to a Maximum of 50 MHz)  
1.1.2 Audio Processing  
48-Bit Processing Architecture With 76 bits of Precision for Most Audio Processing Features  
Volume Control Range +36 dB to – 127 dB  
Master Volume Control Range of +18 dB to –100 dB  
Four Individual Channel Volume Control Range of +18-dB to 127-dB  
Programmable Soft Volume and Mute Update Rates  
nd  
Four Bass and Treble Tone Controls with 18-dB Range, Selectable Corner Frequencies, and 2 Order  
Slopes  
L, R, and C  
LS, RS  
Configurable Loudness Compensation  
Two Dynamic Range Compressors With Two Thresholds, Two Offsets, and Three Slopes  
Seven Bi-quads Per Channel  
8x4 Input Crossbar Mixer. Each Signal Processing Channel Input Can Be Any Ratio of the Eight Input  
Channels  
4x2 Output Mixer – Channels 1 and 2. Each Output Can Be Any Ratio of Any Two Signal Processed  
Channels  
4x3 Output Mixer – Channels 3 and 4. Each Output can be Any Ratio of Any Three Signal Processed  
Channels  
Three Coefficient Sets Stored on the Device Can be Selected Manually or Automatically (Based on  
Specific Data Rates)  
DC Blocking Filters  
Able to Support a Variety of Bass Management Algorithms  
2
TAS5504  
SLES123 October 2004  
Introduction  
1.1.3 PWM Processing  
32-Bit Processing PWM Architecture With 40 Bits of Precision  
th  
8x Oversampling With 5 Order Noise Shaping at 32 – 48 kHz, 4x Oversampling at 88.2 kHz, and 96 kHz  
and 2x Oversampling at 176.4 kHz and 192 kHz  
>102-dB Dynamic Range  
THD+N < 0.1%  
20 – 20-kHz Flat Noise Floor for 44.1-, 48-, 88.2-, 96-, 176.4-, and 192-kHz Data Rates  
Digital De-emphasis for 32-, 44.1-, and 48-kHz Data Rates  
Flexible Automute Logic With Programmable Threshold and Duration for Noise Free Operation  
Intelligent AM Interference Avoidance System Provides Clear AM Reception  
Power Supply Volume Control (PSVC) Support for Enhanced Dynamic Range in High Performance  
Applications  
Adjustable Modulation Limit  
1.1.4 General Features  
Automated Operation With an Easy to Use Control Interface  
2
I C Serial Control Slave Interface  
Integrated AM Interference Avoidance Circuitry  
Single 3.3-V Power Supply  
64-Pin TQFP Package  
5-V Tolerant Inputs  
3
SLES123 October 2004  
TAS5504  
Introduction  
1.2 Physical Characteristics  
1.2.1 Terminal Assignments  
TQFP PACKAGE  
(TOP VIEW)  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
48  
1
VRA_PLL  
PLL_FLT_RET  
PLL_FLTM  
PLL_FLTP  
AVSS  
VR_PWM  
NC  
NC  
NC  
NC  
PWM_P_2  
PWM_M_2  
PWM_P_1  
PWM_M_1  
VALID  
DVSS  
BKND_ERR  
DVDD  
2
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
3
4
5
6
AVSS  
7
VRD_PLL  
AVSS_PLL  
AVDD_PLL  
VBGAP  
8
9
10  
11  
12  
13  
14  
15  
16  
RESET  
HP_SEL  
PDN  
MUTE  
DVDD  
DVSS  
DVSS  
VR_DIG  
DVSS  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
1.2.2 Ordering Information  
T
A
PLASTIC 64-PIN PQFP (PN)  
0°C to 70°C  
TAS5504PAG  
1.2.3 Terminal Descriptions  
TERMINAL  
5-V  
TOLERANT  
TERMIN-  
ATION  
I/O  
DESCRIPTION  
NO.  
NAME  
1
VRA_PLL  
Voltage reference for PLL analog supply 1.8 V. A pin-out of the internally regulated  
1.8-V power used by PLL logic. A 0.1-µF low ESR capacitor should be connected  
between this terminal and AVSS_PLL. This terminal must not be used to power  
external devices.  
2
3
4
5
6
PLL_FLT_RET  
PLL_FLTM  
PLL_FLTP  
AVSS  
AO  
AO  
AI  
P
PLL external filter return  
PLL negative input. Connected to PLL_FLT_RTN via an RC network  
PLL positive input. Connected to PLL_FLT_RTN via an RC network  
Analog ground  
AVSS  
P
Analog ground  
4
TAS5504  
SLES123 October 2004  
Introduction  
TERMINAL  
NAME  
5-V  
TOLERANT  
TERMIN-  
ATION  
I/O  
DESCRIPTION  
NO.  
7
VRD_PLL  
P
Voltage reference for PLL digital supply 1.8 V. A pin-out of the internally regulated  
1.8-V power used by PLL logic. A 0.1-µF low ESR capacitor should be connected  
between this terminal and AVSS_PLL. This terminal must not be used to power  
external devices.  
8
AVSS_PLL  
P
Analog ground for PLL. This terminal should reference the same ground as power  
terminal DVSS, but to achieve low PLL jitter; ground noise at this terminal must be  
minimized. The availability of the AVSS terminal allows a designer to use  
optimizing techniques such as star ground connections, separate ground planes,  
or other quiet ground distribution techniques to achieve a quiet ground reference  
at this terminal.  
9
AVDD_PLL  
P
P
3.3-V analog power supply for PLL This terminal can be connected to the same  
power source used to drive power terminal DVSS, but to achieve low PLL jitter, this  
terminal should be bypassed to AVSS_PLL with a 0.1-µF low-ESR capacitor.  
10 VBGAP  
Band gap voltage reference. A pin-out of the internally regulated 1.2-V reference.  
Typically has a 1-nF low ESR capacitor between VBGAP and AVSS_PLL. This  
terminal must not be used to power external devices.  
11  
RESET  
DI  
5 V  
Pull up  
System reset input, active low. A system reset is generated by applying a logic low  
to this terminal. RESET is an asynchronous control signal that restores the  
TAS5504 to its default conditions, sets the valid output low, and places the PWM  
in the hard mute (M) state. Master volume is immediately set to full attenuation.  
Upon the release of RESET, if PDN is high, the system performs a 45 ms. device  
initialization and set the volume at mute.  
12 HP_SEL  
13 PDN  
DI  
DI  
5 V  
5 V  
Pull up  
Pull up  
Headphone in/out selector. When a logic low is applied, the headphone is selected  
(speakers are off). When a logic high is applied, speakers are selected –  
headphone is off.  
Power down, active low. PDN powers down all logic and stops all clocks whenever  
a logic low is applied. The internal parameters are preserved through a power down  
cycle, as long as a RESET is not active. The duration for system recovery from  
power down is 100 ms.  
14 MUTE  
DI  
5 V  
Pull up  
Soft mute of outputs, active low (Muted signal = a logic low, normal operation = a  
logic high) The mute control provides a noiseless volume ramp to silence.  
Releasing mute provides a noiseless ramp to previous volume.  
15 DVDD  
16 DVSS  
P
P
P
Digital power 3.3-V supply for digital core and most of I/O buffers  
Digital ground for digital core and most of I/O buffers  
17 VR_DPLL  
Voltage reference for digital PLL supply 1.8 V. A pin-out of the internally regulated  
1.8-V power used by digital PLL logic. A 0.1µF low ESR capacitor should be  
connected between this terminal and DVSS_CORE. This terminal must not be  
used to power external devices.  
18 OSC_CAP  
19 XTL_OUT  
AO  
AO  
Oscillator capacitor  
XTL_OUT and XTL_IN are the only LVCMOS terminals on the device. They  
provide a reference clock for the TAS5504 via use of an external fundamental mode  
crystal. XTL_OUT is the 1.8-V output drive to the crystal. See Note 4 for the  
recommended crystal type.  
20 XTL_IN  
AI  
XTL_OUT and XTL_IN are the only LVCMOS terminals on the device. They  
provide a reference clock for the TAS5504 via use of an external fundamental mode  
crystal. XTL_IN is the 1.8-V input port for the oscillator circuit. See Note 4 for the  
recommended crystal type.  
21 RESERVED  
22 RESERVED  
23 RESERVED  
24 SDA  
Connect to digital ground  
Connect to digital ground  
Connect to digital ground  
2
DIO  
DI  
5 V  
5 V  
5 V  
5 V  
I C serial control data interface input / output  
2
25 SCL  
I C serial control clock input output  
26 LRCLK  
27 SCLK  
DI  
Serial audio data left / right clock (sampling rate clock)  
DI  
Serial audio data clock (shift clock) SCLKIN is the serial audio port (SAP) input data  
bit clock that is supplied to the serial bit clock to other I S bus.  
2
5
SLES123 October 2004  
TAS5504  
Introduction  
TERMINAL  
NAME  
5-V  
TOLERANT  
TERMIN-  
ATION  
I/O  
DESCRIPTION  
NO.  
28 SDIN4  
29 SDIN3  
30 SDIN2  
31 SDIN1  
DI  
5 V  
5 V  
5 V  
5 V  
Pulldown Serial audio data 4 input is one of the serial data input ports. SDIN4 supports four  
discrete (stereo) data formats and is capable of inputting data at 64 Fs.  
DI  
DI  
DI  
Pulldown Serial audio data 3 input is one of the serial data input ports. SDIN3 supports four  
discrete (stereo) data formats and is capable of inputting data at 64 Fs.  
Pulldown Serial audio data 2 input is one of the serial data input ports. SDIN2 supports four  
discrete (stereo) data formats and is capable of inputting data at 64 Fs.  
Pulldown Serial audio data 1 input is one of the serial data input ports. SDIN1 supports four  
discrete (stereo) data formats and is capable of inputting data at 64 Fs.  
32 PSVC  
O
P
Power supply volume control PWM output  
33 VR_DIG  
Voltage reference for digital core supply 1.8 V. A pin-out of the internally regulated  
1.8-V power used by digital core logic. A 0.47-µF low ESR capacitor should be  
connected between this terminal and DVSS. This terminal must not be used to  
power external devices  
34 DVSS  
P
P
Digital ground  
35 DVSS  
Digital ground  
36 DVDD  
P
3.3-V digital power supply  
37 BKND_ERR  
DI  
Pull up  
Active low. A backend error sequence is generated by applying logic low to this  
terminal. The BKND_ERR results in all system parameters unaffected, while all  
H-bridge drive signals going to a hard mute (M) state.  
38 DVSS  
39 VALID  
40 PWM_M_1  
41 PWM_P_1  
42 PWM_M_2  
43 PWM_P_2  
44 NC  
P
Digital ground  
DO  
DO  
DO  
DO  
DO  
Output indicating validity of PWM outputs active high  
PWM 1 output (differential )  
PWM 1 output (differential +)  
PWM 2 output (differential )  
PWM 2 output (differential +)  
No connection  
45 NC  
No connection  
46 NC  
No connection  
47 NC  
No connection  
48 VR_PWM  
P
Voltage reference for digital PWM core supply 1.8 V. A pin-out of the internally  
regulated 1.8-V power used by digital PWM core logic. A 0.1-µF low ESR capacitor  
should be connected between this terminal and DVSS_PWM. This terminal must  
not be used to power external devices.  
49 PWM_M_3  
50 PWM_P_3  
51 PWM_M_4  
52 PWM_P_4  
53 DVSS_PWM  
54 DVDD_PWM  
55 NC  
DO  
DO  
DO  
DO  
P
PWM 3 Output (differential )  
PWM 3 Output (differential +)  
PWM 4 Output (differential )  
PWM 4 Output (differential +)  
Digital ground for PWM  
P
3.3-V digital power supply for PWM  
No connection  
56 NC  
No connection  
57 NC  
No connection  
58 NC  
No connection  
59 PWM_HPML  
60 PWM_HPPL  
61 PWM_HPMR  
62 PWM_HPPR  
DO  
DO  
DO  
DO  
PWM left channel headphone (differential )  
PWM left channel headphone (differential +)  
PWM right channel headphone (differential )  
PWM right channel headphone (differential +)  
6
TAS5504  
SLES123 October 2004  
Introduction  
TERMINAL  
NAME  
5-V  
TOLERANT  
TERMIN-  
ATION  
I/O  
DESCRIPTION  
NO.  
63 MCLK  
DI  
5 V  
Pulldown MCLK is a 3.3-V clock master clock input. The input frequency of this clock can  
range from 4 MHz to 50 MHz.  
64 RESERVED  
Connect to digital ground  
NOTES: 1. Type: A = analog; D = 3.3-V digital; P = power / ground / decoupling; I = input; O = output  
2. All pullups are 200-µA weak pullups and all pulldowns are 200-µA weak pull downs. The pullups and pulldowns are included to assure  
proper input logic levels if the terminals are left unconnected (pullups => logic 1 input; pulldowns => logic 0 input). Devices that drive  
inputs with pull ups must be able to sink 200 µA, while maintaining a logic 0 drive level. Devices that drive inputs with pulldowns must  
be able to source 200 µA, while maintaining a logic ‘1’ drive level.  
3. If desired, low ESR capacitance values can be implemented by paralleling two or more ceramic capacitors of equal value. Paralleling  
capacitors of equal value provide an extended high frequency supply decoupling. This approach avoids the potential of producing  
parallel resonance circuits that have been observed when paralleling capacitors of different values.  
4. 13.5-MHz crystal (HCM49)  
1.3 TAS5504 Functional Description  
Figure 12 shows the TAS5504 functional structure. The next sections describe the TAS5504 functional  
blocks:  
Power Supply  
Clock, PLL, and Serial Data Interface  
Serial Control Interface  
Device Control  
Digital Audio Processor (DAP)  
Pulse Width Modulation (PWM) Processor  
1.3.1 Power Supply  
The power supply section contains supply regulators that provide analog and digital regulated power for  
various sections of the TAS5504. The analog supply supports the analog PLL, while digital supplies support  
the digital PLL, the digital audio processor (DAP), the pulse width modulator (PWM), and the output control  
(reclocker). The regulators can also be turned off when terminals RESET and PDN are both low.  
1.3.2 Clock, PLL, and Serial Data Interface  
The TAS5504 is a clock slave only device and it requires the use of an external 13.5 MHz crystal. It accepts  
MCLK, SCLK, and LRCLK as inputs only.  
The TAS5504 uses the external crystal to provide a time base for:  
Continuous data and clock error detection and management  
Automatic data rate detection and configuration  
Automatic MCLK rate detection and configuration (automatic bank switching)  
2
Supporting I C operation/ communication while MCLK is absent  
The TAS5504 automatically handles clock errors, data rate changes, and master clock frequency changes  
without requiring intervention from an external system controller. This feature significantly reduces system  
complexity and design.  
7
SLES123 October 2004  
TAS5504  
Introduction  
1.3.2.1 Serial Audio Interface  
The TAS5504 operates as a slave only / receive only serial data interface in all modes. The TAS5504 has four  
PCM serial data interfaces to permit eight channels of digital data to be received though the SDIN1, SDIN2,  
SDIN3, and SDIN4 inputs. The serial audio data is in MSB first, two’s complement format.  
2
The serial data input interface of the TAS5504 can be configured in right justified, I S, or left-justified modes.  
2
The serial data interface format is specified using the I C data interface control register. The supported formats  
and word lengths are shown in Table 11.  
Table 11. Serial Data Formats  
RECEIVE SERIAL DATA  
INTERFACE FORMAT  
WORD LENGTHS  
Right justified  
Right justified  
Right justified  
I2S  
16  
20  
24  
16  
20  
24  
16  
20  
24  
I2S  
I2S  
Left Justified  
Left Justified  
Left Justified  
Serial data is input on SDIN1, SDIN2, SDIN3, and SDIN4. The TAS5504 accepts 32-, 38-, 44.1-, 48-, 88.2-,  
2
96-, 176.4-, and 192-kHz serial data in 16-, 20-, or 24-bit data in left, right, and I S serial data formats using  
a 64-Fs SCLK clock and a 128, 192, 256, 384, 512, or 768 x Fs MCLK rates (up to a maximum of 50 MHz).  
2
The parameters of this clock and serial data interface are I C configurable.  
1.3.3 I2C Serial Control Interface  
2
The TAS5504 has an I C serial control slave interface (address 0x36) to receive commands from a system  
controller. The serial control interface supports both normal-speed (100 kHz) and high-speed (400 kHz)  
operations without wait states. Since the TAS5504 has a crystal time base, this interface operates even when  
MCLK is absent.  
The serial control interface supports both single byte and multi-byte read / write operations for status registers  
and the general control registers associated with the PWM. However, for the DAP data processing registers,  
the serial control interface also supports multiple byte (4 byte) write operations.  
2
2
The I C supports a special mode which permits I C write operations to be broken up into multiple data write  
operations that are multiples of 4 data bytes. These are 6 byte, 10 byte, 14 byte, 18 byte ... etc write operations  
that are composed of a device address, read/write bit, and subaddress and any multiple of 4 bytes of data.  
2
This permits the system to incrementally write large register values without blocking other I C transactions.  
In order to use this feature, the first chunk of data is written to the target I C address and each subsequent  
2
chunk of data is written to a special append register (0xFE) until all the data is written and a stop bit is sent.  
An incremental read operation is not supported.  
1.3.4 Device Control  
The TAS5504 control section provides the control and sequencing for the TAS5504. The device control  
provides both high and low level control for the serial control interface, clock and serial data interfaces, digital  
audio processor, and pulse width modulator sections.  
8
TAS5504  
SLES123 October 2004  
Introduction  
1.3.5 Digital Audio Processor (DAP)  
The DAP arithmetic unit is used to implement all audio processing functions – soft volume, loudness  
compensation, bass and treble processing, dynamic range control, channel filtering, input and output mixing.  
Figure 14 shows the TAS5504 DAP architecture.  
The DAP accepts 24-bit data signal from the serial data interface and outputs 32-bit data to the PWM section.  
The DAP supports two configurations, one for 32-kHz – 96-kHz data and one for 176.4-kHz to 192-kHz data.  
1.3.5.1 TAS5504 Audio Processing Configurations  
The 32 96 kHz configuration supports four channels of data processing.  
The 176.4 192 kHz configuration supports three channels of signal processing with one channel passed  
though (or derived from the three processed channels).  
To efficiently support the processing requirements of both multi-channel 32 – 96-kHz data and the two channel  
176.4 and 192-kHz data, the TAS5504 supports separate audio processing features for 32 –96-kHz data rates  
and for 176.4 and 192 kHz. See Table 2 for a summary of TAS5504 processing feature sets.  
1.3.5.2 TAS5504 Audio Signal Processing Functions  
The DAP provides 10 primary signal processing functions.  
1. The data processing input has an 8x4 input crossbar mixer. This enables each input to be any ratio of the  
eight input channels.  
2
2. Two I C programmable threshold detectors in each channel support auto mute.  
3. Seven biquads per channel  
4. Four soft bass and treble tone controls with 18 dB range, programmable corner frequencies, and 2nd  
order slopes. In 4-channel mode, bass and treble controls are normally configured as follows:  
Bass and Treble 1: Channel 1 (Left), Channel 2 (Right), and Channel 3 (Center)  
Bass and Treble 2: Channel 4 (Subwoofer)  
5. Individual channel and master volume controls. Each control provides an adjustment range of +18 dB to  
–127 dB. This permits a total volume device control range of +36 dB to –127 dB plus mute. The DAP soft  
2
volume and mute update interval is I C programmable. The update is performed at a fixed rate regardless  
of the sample rate.  
6. Programmable loudness compensation that is controlled via the combination of the master and individual  
volume settings.  
7. Two dual-threshold dual-rate dynamic range compressors (DRCs). The volume gain values are provided  
used as input parameters using the maximum RMS (master volume x individual channel volume).  
8. 4x2 output mixer (channels 1 and 2). Each output can be any ratio of any two signal processed channels.  
9. 4x3 output mixer (channels 3 and 4). Each output can be any ratio of any three signal processed channels.  
10. The DAP maintains three sets of coefficient banks that are used to maintain separate sets of sample rate  
dependent parameters for the biquad, tone controls, loudness, and DRC in RAM. These can be set to be  
2
automatically selected for one or more data sample rates or can be manually selected under I C program  
control. This feature enables coefficients for different sample rates to be stored in the TAS5504 and then  
select when needed.  
9
SLES123 October 2004  
TAS5504  
Introduction  
Table 12. TAS5504 Audio Processing Feature Sets  
176.4 AND 192 kHz THREE CHANNEL  
FEATURE  
32 96 kHz FOUR CHANNEL FEATURE SET  
FEATURE SET  
Signal processing channels  
Pass through channels  
Master volume  
4
N/A  
3
1
One for four channels  
One for three channels  
Individual channel volume  
controls  
4
3
Bass and treble tone controls  
Two bass and treble tone controls with 18-dB range,  
programmable corner frequencies, and 2nd order slopes  
Two bass and treble tone controls with  
18-dB range, programmable corner  
frequencies, and 2nd order slopes  
L, R, and C (Ch 1, Ch 2, and Ch 3)  
Sub (Ch 4)  
L and R (Ch 1 and Ch 2)  
Sub (Ch 4)  
Biquads  
28  
21  
Dynamic range compressors  
Input output mapping/mixing  
One for three satellites and one for sub  
One for two satellites and one for sub  
Each of the four signal processing channels input can be  
any ratio of the eight input channels.  
Each of the three signal processing channels  
or the one pass though channels inputs can  
be any ratio of the eight input channels.  
Each of the four outputs can be any ratio of any two  
processed channels.  
Each of the four outputs can be any ratio of  
any of the three processed or one bypass  
channels.  
DC blocking filters  
(implemented in the PWM  
Section)  
Four channels  
Digital de-emphasis  
(implemented in the PWM  
Section)  
Four channels for 32 kHz, 44.1 kHz, and 48 kHz  
Four channels  
N/A  
Loudness  
Three channels  
Number of coefficient sets  
stored  
Three additional coefficient sets can be stored in memory  
1.4 TAS5504 DAP Architecture  
1.4.1 TAS5504 DAP Architecture Diagrams  
Figure 12 shows the TAS5504 DAP architecture for Fs = 96 kHz. Note the TAS5504 bass management  
2
architecture shown in channels 1, 2, 3, and 4. Note that the I C registers are shown to help the designer  
configure the TAS5504.  
Figure 13 shows the TAS5504 architecture for Fs = 176.4 kHz or Fs = 192 kHz. Note that only channels 1,  
2, and 4 contain all the features. Channel 3 is pass-through except for master volume control.  
Figure 14 shows TAS5504 detailed channel processing. The output mixer is 4X2 for channels 12 and 4X3  
for channels 3 and 4.  
10  
TAS5504  
SLES123 October 2004  
Introduction  
Default Input is BOLD  
Master Vol  
(0xD9)  
Max Vol  
A
SDIN1L(L)  
B
SDIN1R (R)  
Loud  
ness  
(0x91−  
0x95)  
7 DAP1 Bass &  
BQ Treble 1  
(0x51(0xDA−  
0x57) 0xDD)  
OP Mixer 1  
(I2C 0xAA)  
4X2 Output  
Mixer  
C
IP Mixer 1  
(I2C 0x41)  
SDIN2L (LS)  
SDIN2R (RS)  
SDIN3L (LBS)  
SDIN3R (RBS)  
SDIN4L (C)  
SDIN4R (LFE)  
DAP1  
Volume  
(0xD1)  
DRC1  
(0x96−  
0x9C)  
D
L to  
PWM1  
E
F
G
H
Master Vol  
(0xD9)  
Max Vol  
SDIN1L(L)  
A
B
SDIN1R(R)  
Loud−  
ness  
(0x91−  
0x95)  
7 DAP2 Bass &  
BQ Treble 1  
(0x58(0xDA−  
0x5E) 0xDD)  
OP Mixer 2  
(I2C 0xAB)  
4X2 Output  
Mixer  
C
IP Mixer 2  
(I2C 0x42)  
SDIN2L (LS)  
DAP2  
Volume  
(0xD2)  
DRC1  
(0x96−  
0x9C)  
D
SDIN2R (RS)  
SDIN3L (LBS)  
SDIN3R (RBS)  
SDIN4L (C)  
R to  
PWM2  
E
F
G
H
SDIN4R (LFE)  
Coeff = 0 (lin)  
(I2C 0x4E)  
Coeff = 0 (lin)  
(I2C 0x4B)  
Master Vol  
(0xD9)  
Max Vol  
Coeff = 1 (lin)  
(I2C 0x4D)  
SDIN1L(L)  
SDIN1R(R)  
SDIN2L(LS)  
SDIN2R (RS)  
SDIN3L (LBS)  
SDIN3R(RBS)  
A
B
Loud−  
ness  
(0x91−  
0x95)  
2 DAP3  
BQ  
(0x7B  
0x7C)  
5 DAP3 Bass &  
BQ Treble 1  
(0x7D(0xDA−  
OP Mixer 3  
(I2C 0xB0)  
4X2 Output  
Mixer  
C
DAP3  
Volume  
(0xD7)  
DRC1  
(0x96−  
0x9C)  
IP Mixer 3  
(I2C 0x47)  
C to  
PWM3  
D
E
F
0x81)  
0xDD)  
G
H
SDIN4L(C)  
SDIN4R (LFE)  
Coeff = 0 (lin)  
(I2C 0x4C)  
Coeff = 0 (lin)  
(I2C 0x49)  
Coeff = 0 (lin)  
(I2C 0x4A)  
Master Vol  
(0xD9)  
Max Vol  
(I2C 0x50)  
Coeff = 1 (lin)  
SDIN1L(L)  
A
SDIN1R(R)  
SDIN2L(LS)  
SDIN2R (RS)  
SDIN3L (LBS)  
SDIN3R(RBS)  
SDIN4L (C)  
B
2 DAP4  
BQ  
(0x82−  
0x83)  
Loud−  
ness  
(0x91−  
0x95)  
5 DAP4 Bass &  
BQ Treble 4  
(0x84(0xDA−  
OP Mixer 4  
(I2C 0xB1)  
4X2 Output  
Mixer  
C
IP Mixer 4  
(I2C 0x48)  
DAP4  
Volume  
(0xD8)  
DRC2  
(0x9D−  
0xA1)  
D
Sub to  
PWM4  
E
F
0x88)  
0xDD)  
G
H
SDIN4R(LFE)  
Coeff = 0 (lin)  
(I2C 0x4F)  
2
Figure 12. TAS5504 DAP Architecture With I C Registers (Fs 96 kHz)  
Master Vol  
Max Vol  
(0xD9)  
A
SDIN1Lt (L)  
B
SDIN1Rt (R)  
SDIN2Lt (LS)  
SDIN2Rt (RS)  
SDIN3Lt (LBS)  
SDIN3Rt (RBS)  
SDIN4Lt (C)  
Loud  
ness  
(0x91−  
0x95)  
7 DAP1  
BQ  
(0x51−  
0x57)  
Bass &  
Treble 1  
(0xDA−  
0xDD)  
OP Mixer 1  
(I2C 0xAA)  
4X2 Output  
Mixer  
C
IP Mixer 1  
(I2C 0x41)  
DAP1  
Volume  
(0xD1)  
DRC1  
(0x96−  
0x9C)  
D
L to  
PWM1  
E
F
G
H
SDIN4Rt (LFE)  
Master Vol  
(0xD9)  
Max Vol  
SDIN1Lt (L)  
A
SDIN1Rt (R)  
SDIN2Lt (LS)  
SDIN2Rt (RS)  
SDIN3Lt (LBS)  
SDIN3Rt (RBS)  
SDIN4Lt (C)  
B
Loud−  
ness  
(0x91−  
7 DAP2  
BQ  
(0x58−  
0x5E)  
Bass &  
Treble 1  
(0xDA−  
0xDD)  
OP Mixer 2  
(I2C 0xAB)  
4X2 Output  
Mixer  
C
IP Mixer 2  
(I2C 0x42)  
DAP2  
Volume  
(0xD2)  
DRC1  
(0x96−  
0x9C)  
D
R to  
PWM2  
E
F
0x95)  
G
H
SDIN4Rt (LFE)  
Master Vol  
(0xD9)  
SDIN1Lt (L)  
A
SDIN1Rt (R)  
SDIN2Lt (LS)  
SDIN2Rt (RS)  
SDIN3Lt (LBS)  
SDIN3Rt (RBS)  
SDIN4Lt (C)  
SDIN4Rt (LFE)  
B
OP Mixer 3  
(I2C 0xB0)  
4X3 Output  
Mixer  
IP Mixer 3  
(I2C 0x47)  
C
C to  
PWM3  
D
E
F
G
H
Master Vol  
(0xD9)  
Max Vol  
A
SDIN1Lt (L)  
B
SDIN1Rt (R)  
SDIN2Lt (LS)  
SDIN2Rt (RS)  
SDIN3Lt (LBS)  
SDIN3Rt (RBS)  
SDIN4Lt (C)  
Loud−  
ness  
(0x91−  
0x95)  
7 DAP4 Bass &  
BQ Treble 4  
(0x82(0xDA−  
0x88) 0xDD)  
OP Mixer 4  
(I2C 0xB1)  
4X3 Output  
Mixer  
C
IP Mixer 4  
(I2C 0x48)  
DAP4  
Volume  
(0xD8)  
DRC2  
(0x9D−  
0xA1)  
D
Sub to  
PWM4  
E
F
G
H
SDIN4Rt (LFE)  
2
Figure 13. TAS5504 Architecture With I C Registers (Fs = 176.4 kHz or Fs = 192 kHz)  
11  
SLES123 October 2004  
TAS5504  
Introduction  
Master  
Volume  
A_to_ipmix  
Left  
Channel  
Volume  
A
B
SDIN1  
Max  
Volume  
Right  
DRC  
Bypass  
Bass and Treble  
Bypass  
B_to_ipmix  
C_to_ipmix  
Left  
Loudness  
C
D
Output  
Gain  
SDIN2  
Input Mixer  
Right  
Output Mixer Sums  
Any Two Channels  
D_to_ipmix  
E_to_ipmix  
Bass and  
Treble  
7 Biquads  
in Series  
32-Bit  
Trunc  
PWM  
Proc Output  
PWM  
Left  
E
F
DRC  
In-Line  
Bass and Treble  
In-Line  
SDIN3  
Post-  
Volume  
Pre-  
Volume  
Right  
Volume  
F_to_ipmix  
G_to_ipmix  
1 Other  
Channel Output  
From 7 Available  
DRC  
Left  
G
H
SDIN4  
Right  
H_to_ipmix  
Figure 14. TAS5504 Detailed Channel Processing  
1.4.2 I2C Coefficient Number Formats  
The architecture of the TAS5504 is contained in ROM resources within the TAS5504 and cannot be altered.  
2
However, mixer gain, level offset, and filter tap coefficients, which can be entered via the I C bus interface,  
provide a user with the flexibility to set the TAS5504 to a configuration that achieves the system level goals.  
The firmware is executed in a 48-bit signed fixed-point arithmetic machine. The most significant bit of the 48-bit  
data path is a sign bit, and the 47 lower bits are data bits. Mixer gain operations are implemented by multiplying  
a 48-bit signed data value by a 28-bit signed gain coefficient. The 76-bit signed output product is then truncated  
to a signed 48-bit number. Level offset operations are implemented by adding a 48-bit signed offset coefficient  
to a 48-bit signed data value. In most cases, if the addition results in overflowing the 48-bit signed number  
format, saturation logic is used. This means that if the summation results in a positive number that is greater  
than 0x7FFF_FFFF_FFFF (the spaces are used to ease the reading of the hexadecimal number), the number  
is set to 0x7FFF_FFFF_FFFF. If the summation results in a negative number that is less than  
0x8000_0000_0000 0000, the number is set to 0x8000_0000_0000 0000.  
1.4.2.1 28-Bit 5.23 Number Format  
All mixer gain coefficients are 28-bit coefficients using a 5.23 number format. Numbers formatted as 5.23  
numbers means that there are 5 bits to the left of the decimal point and 23 bits to the right of the decimal point.  
This is shown in the Figure 15.  
23  
2
Bit  
4  
2
Bit  
Bit  
1  
2
0
2 Bit  
3
2 Bit  
Sign Bit  
S_xxxx.xxxx_xxxx_xxxx_xxxx_xxx  
Figure 15. 5.23 Format  
12  
TAS5504  
SLES123 October 2004  
Introduction  
The decimal value of a 5.23 format number can be found by following the weighting shown in Figure 16. If  
the most significant bit is logic 0, the number is a positive number, and the weighting shown yields the correct  
number. If the most significant bit is a logic 1, then the number is a negative number. In this case every bit must  
be inverted, a 1 added to the result, and then the weighting shown in Figure 16 applied to obtain the  
magnitude of the negative number.  
3
2
0
1  
4  
23  
2 Bit  
2 Bit  
2 Bit  
2
Bit  
2
Bit  
2
Bit  
3
2
0
1  
4  
23  
(1 or 0) x 2 + (1 or 0) x 2 + + (1 or 0) x 2 + (1 or 0) x 2 + + (1 or 0) x 2 + + (1 or 0) x 2  
Figure 16. Conversion Weighting Factors—5.23 Format to Floating Point  
2
Gain coefficients, entered via the I C bus, must be entered as 32-bit binary numbers. The format of the 32-bit  
number (4-byte or 8-digit hexadecimal number) is shown in Figure 17.  
Fraction  
Digit 6  
Sign  
Bit  
Integer  
Digit 1  
Fraction  
Digit 1  
Fraction  
Digit 2  
Fraction  
Digit 3  
Fraction  
Digit 4  
Fraction  
Digit 5  
0
u
u
u
u
S
x
x
x
x.  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Coefficient  
Digit 8  
Coefficient  
Digit 7  
Coefficient  
Digit 6  
Coefficient  
Digit 5  
Coefficient  
Digit 4  
Coefficient  
Digit 3  
Coefficient  
Digit 2  
Coefficient  
Digit 1  
u = unused or don’t care bits  
Digit = hexadecimal digit  
2
Figure 17. Alignment of 5.23 Coefficient in 32-Bit I C Word  
As Figure 17 shows, the hex value of the integer part of the gain coefficient cannot be concatenated with the  
2
hex value of the fractional part of the gain coefficient to form the 32-bit I C coefficient. The reason is that the  
28-bit coefficient contains 5 bits of integer, and thus the integer part of the coefficient occupies all of one hex  
digit and the most significant bit of the second hex digit. In the same way, the fractional part occupies the lower  
3 bits of the second hex digit, and then occupies the other five hex digits (with the eighth digit being the  
zero-valued most significant hex digit).  
1.4.2.2 48-Bit 25.23 Number Format  
All level adjustment and threshold coefficients are 48-bit coefficients using a 25.23 number format. Numbers  
formatted as 25.23 numbers means that there are 25 bits to the left of the decimal point and 23 bits to the right  
of the decimal point. This is shown in Figure 18.  
13  
SLES123 October 2004  
TAS5504  
Introduction  
23  
2
Bit  
Bit  
Bit  
10  
2
1  
2
0
2 Bit  
16  
2
Bit  
22  
23  
2
2
Bit  
Bit  
Sign Bit  
S_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx.xxxx_xxxx_xxxx_xxxx_xxxx_xxx  
Figure 18. 25.23 Format  
Figure 19 shows the derivation of the decimal value of a 48-bit 25.23 format number.  
23  
22  
0
1  
23  
2
Bit  
2
Bit  
2 Bit  
2
Bit  
2
Bit  
23  
22  
0
1  
23  
(1 or 0) x 2 + (1 or 0) x 2 + + (1 or 0) x 2 + (1 or 0) x 2 + + (1 or 0) x 2  
2
Figure 19. Alignment of 5.23 Coefficient in 32-Bit I C Word  
2
Two 32-bit words must be sent over the I C bus to download a level or threshold coefficient into the TAS5504.  
2
The alignment of the 48-bit, 25.23 formatted coefficient in the 8-byte (two 32-bit words) I C word is shown in  
Figure 110.  
14  
TAS5504  
SLES123 October 2004  
Introduction  
Integer  
Sign  
Bit  
Digit 4  
(Bits 2 2 )  
3
1
Integer  
Digit 1  
Integer  
Digit 2  
Integer  
Digit 3  
Word 1  
(Most  
Significant  
Word)  
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
S
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Coefficient  
Digit 16  
Coefficient  
Digit 15  
Coefficient  
Digit 14  
Coefficient  
Digit 13  
Coefficient  
Digit 12  
Coefficient  
Digit 11  
Coefficient  
Digit 10  
Coefficient  
Digit 9  
Integer  
Fraction  
Digit 6  
Digit 4  
0
(Bit 2 )  
Integer  
Digit 5  
Integer  
Digit 6  
Fraction  
Digit 1  
Fraction  
Digit 2  
Fraction  
Digit 3  
Fraction  
Digit 4  
Fraction  
Digit 5  
0
Word 2  
(Least  
Significant  
Word)  
x
x
x
x
x
x
x
x
x.  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Coefficient  
Digit 8  
Coefficient  
Digit 7  
Coefficient  
Digit 6  
Coefficient  
Digit 5  
Coefficient  
Digit 4  
Coefficient  
Digit 3  
Coefficient  
Digit 2  
Coefficient  
Digit 1  
u = unused or don’t care bits  
Digit = hexadecimal digit  
2
Figure 110. Alignment of 25.23 Coefficient in Two 32-Bit I C Words  
1.4.2.3 TAS5504 Audio Processing  
The TAS5504 digital audio processing is designed such that noise produced by filter operations is maintained  
below the smallest signal amplitude of interest, as shown in Figure 111. The TAS5504 achieves this by  
increasing the precision of the signal representation substantially above the number of bits that are absolutely  
necessary to represent the input signal.  
Ideal Input  
Possible Outputs  
Desired Output  
Values retained by  
overflow bits  
Maximum Signal  
Amplitude  
Overflow  
Filter  
Operation  
Reduced  
SNR signal  
output  
Signal bits  
output  
Signal bits  
input  
Noise Floor with no  
additional precision  
Noise Floor as a  
result of additional  
precision  
Figure 111. TAS5504 Digital Audio Processing  
15  
SLES123 October 2004  
TAS5504  
Introduction  
Similarly, the TAS5504 carries additional precision in the form of overflow bits to permit the value of  
intermediate calculations to exceed the input precision without clipping. The TAS5504 advanced digital audio  
processor achieves both of these important performance capabilities by using a high performance digital audio  
processing architecture with a 48-bit data path, 28-bit filter coefficients, and a 76-bit accumulator.  
1.5 Input Crossbar Mixer  
The TAS5504 has a full 8x4 input crossbar mixer. This mixer permits each signal processing channel input  
to be any ratio of any of the eight input channels. The control parameters for the input crossbar mixer are  
2
programmable via the I C interface. See the Input Mixer Register (0x410x48, channels 18) section.  
Gain Coefficient  
28  
Input 1  
48  
Gain Coefficient  
48  
48  
28  
Input 2  
SUM  
48  
Gain Coefficient  
28  
48  
Input 8  
48  
Figure 112. Input Crossbar Mixer  
1.6 Biquad Filters  
For 32-kHz to 96-kHz data, the TAS5504 provides 28 biquads across the four channels (seven per channel)  
For 176.4-kHz and 192-kHz data, the TAS5504 has 21 biquads across the three channels (seven per  
channel). All of the biquad filters are second order direct form I structure.  
The direct form I structure provides a separate delay element and mixer (gain coefficient) for each node in the  
biquad filter. Each mixer output is a signed 76-bit product of a signed 48-bit data sample (25.23 format number)  
and a signed 28-bit coefficient (5.23 format number). The 76-bit ALU in the TAS5504 allows the 76-bit  
resolution to be retained when summing the mixer outputs (filter products).  
2
The five 28-bit coefficients for the each of the 28 biquads are programmable via the I C interface. See  
Table 13.  
16  
TAS5504  
SLES123 October 2004  
Introduction  
b
0
28  
28  
28  
48  
48  
48  
76  
48  
76  
76  
76  
Magnitude  
Truncation  
X
a
b
Z1  
Z1  
1
1
28  
28  
76  
48  
48  
X
X
b
a
Z1  
Z1  
2
2
76  
X
X
Figure 113. Biquad Filter Structure  
2
All five coefficients for one biquad filter structure are written to one I C register containing 20 bytes (or five  
32-bit words). The structure is the same for all biquads in the TAS5504. Registers 0x51 – 0x88 show all the  
biquads in the TAS5504. Note that u(31:28) bits are unused and default to 0x0.  
Table 13. Contents of One 20-Byte Biquad Filter Register (Default = All-Pass)  
INITIALIZATION GAIN COEFFICIENT VALUE  
DESCRIPTION  
b Coefficient  
REGISTER FIELD CONTENTS  
DECIMAL  
1.0  
HEX  
u(31:28), b0(27:24), b0(23:16), b0(15:8), b0(7:0)  
u(31:28), b1(27:24), b1(23:16), b1(15:8), b1(7:0)  
u(31:28), b2(27:24), b2(23:16), b2(15:8), b2(7:0)  
u(31:28), a1(27:24), a1(23:16), a1(15:8), a1(7:0)  
u(31:28), a2(27:24), a2(23:16), a2(15:8), a2(7:0)  
0x00, 0x80, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
o
b Coefficient  
1
0.0  
b Coefficient  
2
0.0  
a Coefficient  
1
0.0  
a Coefficient  
2
0.0  
1.7 Bass and Treble Controls  
From 32-kHz to 96-kHz data, the TAS5504 has four Bass and Treble tone controls. Each control has a 18-dB  
control range with selectable corner frequencies and 2nd order slopes. These controls operate four channel  
groups:  
L, R & C (Channels 1, 2, and 3)  
Sub (Channel 4)  
For 176.4 kHz and 192 kHz data, the TAS5504 has two Bass and Treble tone controls. Each control has a  
2
18-dB I C control range with selectable corner frequencies and 2nd order slopes. These controls operate  
two channel groups:  
L & R  
Sub  
The bass and treble filters utilize a soft update rate that does not produce artifacts during adjustment.  
17  
SLES123 October 2004  
TAS5504  
Introduction  
Table 14. Bass and Treble Filter Selections  
3-dB CORNER FREQUENCIES  
FILTER  
SET 1  
FILTER  
SET 1  
FILTER  
SET 2  
FILTER  
SET 2  
FILTER  
SET 3  
FILTER  
SET 3  
FILTER  
SET 4  
FILTER  
SET 4  
FILTER  
SET 5  
FILTER  
SET 5  
FS  
(kHz)  
BASS  
42  
TREBLE  
917  
BASS  
83  
TREBLE  
1833  
BASS  
125  
148  
172  
188  
345  
375  
689  
750  
TREBLE  
3000  
BASS  
146  
173  
201  
219  
402  
438  
804  
875  
TREBLE  
3667  
BASS  
167  
TREBLE  
4333  
32  
38  
49  
1088  
1263  
1375  
2527  
2750  
5053  
5500  
99  
2177  
3562  
4354  
198  
5146  
44.1  
48  
57  
115  
125  
230  
250  
459  
500  
2527  
4134  
5053  
230  
5972  
63  
2750  
4500  
5500  
250  
6500  
88.2  
96  
115  
125  
230  
250  
5053  
8269  
10106  
11000  
20213  
22000  
459  
11944  
13000  
23888  
26000  
5500  
9000  
500  
176.4  
192  
10106  
11000  
16538  
18000  
919  
1000  
2
The I C registers that control Bass and Treble are:  
Bass and Treble By-Pass Register (0x89 – 0x90, channels 18)  
Bass and Treble Slew Rates (0xD0)  
Bass Filter Sets 15 (0xDA)  
Bass Filter Index (0xDB)  
Treble Filter Sets 15 (0xDC)  
Treble Filter Index (0xDD)  
1.8 Volume, Auto Mute, and Mute  
The TAS5504 provides individual channel and master volume controls. Each control provides an adjustment  
range of +18.0618 dB to –100 dB in 0.25 dB increments. This permits a total volume device control range of  
+36 dB to –100 dB plus mute.  
2
The TAS5504 has a master soft mute control that can be enabled by a terminal or I C command. The device  
2
also has individual channel soft mute controls that can are enabled via I C.  
The soft volume and mute update rates are programmable. The soft adjustments are performed using a soft  
2
gain linear update with an I C programmable linear step size at a fixed temporal rate. The linear soft gain step  
size can be varied from 0.5 to 0.003906.  
Table 15. Linear Gain Step Size  
STEP SIZE (GAIN)  
0.5  
10.67  
1.33  
0.17  
0.25  
21.33  
2.67  
0.125  
42.67  
5.33  
0.0625  
85.34  
10.67  
1.33  
0.03125  
170.67  
21.33  
0.015625 0.007813 0.003906  
Time to go from 36.124 db to 127 dB in ms  
Time to go from 18.062 db to 127 dB in ms  
Time to go from 0 db to 127 dB in ms  
341.35  
42.67  
5.33  
682.70  
85.33  
10.67  
1365.4  
170.67  
21.33  
0.33  
0.67  
2.67  
18  
TAS5504  
SLES123 October 2004  
Introduction  
1.8.1 Auto Mute and Mute  
2
The TAS5504 has individual channel automute controls that are enabled via the I C interface. There are two  
separate detectors used to trigger the automute:  
Input Auto Mute: All channels are muted when all 8 inputs to the TAS5504 are less in magnitude than the  
input threshold value for a programmable amount of time.  
Output Auto Mute: A single channel is muted when the output of the DAP section is less in magnitude than  
the input threshold value for a programmable amount of time.  
The detection period and thresholds for these two detectors are the same.  
2
This time interval is selectable via I C to be from 1 ms. to 110 ms. The increments of time are 1, 2, 3, 4, 5, 10,  
20, 30, 40, 50, 60, 70, 80, 90, 100, and 110 ms. This interval is independent of the sample rate. The default  
value is mask programmable.  
The input threshold value is an unsigned magnitude that is expressed as a bit position. This value is adjustable  
2
via I C. The range of the input threshold adjustment is from below the LSB (bit position 0) to below bit position  
12 in a 24 bit input data word (bit positions 8 to 20 in the DSPE). This provides an input threshold that can be  
adjusted for 12 to 24 bits of data. The default value is mask programmable.  
DVD Data Range  
CD Data Range  
24-Bit Input  
23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
9
0
8
32-Bit in DSPE  
Representation  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
7
6
5
4
3
2
1
0
Threshold Range  
Figure 114. Auto Mute Threshold  
The auto mute state is exited when the TAS5504 receives one sample that is greater that the output threshold.  
The output threshold can be one of two values:  
Equal to the input threshold  
6 dB (one bit position) greater than the input threshold  
2
The value for the output threshold is selectable via I C. The default value is mask programmable.  
The system latency enables the data value that is above the threshold to be preserved and output.  
2
A mute command initiated by automute, master mute, individual I C mute, the AM interference mute  
sequence, or the bank switch mute sequence overrides an unmute command or a volume command. While  
a mute command is activated, the commanded channels transition to the mute state. When a channel is  
unmuted, it goes to the last commanded volume setting that has been received for that channel.  
1.9 Loudness Compensation  
The loudness compensation function compensates for the Fletcher-Munson loudness curves. The TAS5504  
loudness implementation tracks the volume control setting to provide spectral compensation for weak low or  
high frequency response at low volume levels. For the volume tracking function both linear and log control laws  
can be implemented. Any biquad filter response can be used to provide the desired loudness curve. The  
2
control parameters for the loudness control are programmable via the I C interface.  
19  
SLES123 October 2004  
TAS5504  
Introduction  
The TAS5504 has a single set of loudness controls for the four channels. The loudness control input uses the  
Maximum individual master volume (V) to control the loudness that is applied to all channels. In 192-kHz and  
176.4-kHz modes, the loudness function is active only for channels 1, 2, and 4.  
V
Audio In  
Audio Out  
x
+
Loudness  
Biquad  
H(Z)  
x
x
Loudness Function = f (V)  
V
Figure 115. Loudness Compensation Functional Block Diagram  
[(Log V) x LG + LO]  
Loudness Function = f (V) = G x [2  
Loudness Function = f (V) = G x [V  
] + O  
or alternatively,  
LG  
LO  
x 2 ] + O  
For example, for the default values LG = 0.5, LO = 0.0, G = 1.0, and O = 0.0 then:  
Loudness Function = 1 / SQRT (V) which is the recommended transfer function for loudness. So,  
Audio Out = (Audio In) x V + H (Z) x SQRT (V). Other transfer functions are possible.  
Table 16. Default Loudness Compensation Parameters  
2
I C  
DEFAULT  
LOUDNESS  
TERM  
DATA  
FORMAT  
SUB-ADD  
RESS  
DESCRIPTION  
USAGE  
HEX  
FLOAT  
V
Max volume  
Gains audio  
5.23  
5.23  
5.23  
NA  
NA  
NA  
NA  
0.0  
Log V  
H (Z)  
Log (max volume)  
Loudness function  
00000000  
2
Loudness biquad  
Controls shape of  
Loudness curves  
0x95  
b0 = 0000D513  
b1 = 00000000  
b2 = 0FFF2AED  
a1 = 00FE5045  
a2 = 0F81AA27  
b0 = 0.006503  
b1 = 0  
b2 = 0.006503  
a1 = 1.986825  
a2 = 0.986995  
LG  
LO  
G
Gain (log space)  
Offset (log space)  
Gain  
Loudness function  
Loudness function  
5.23  
25.23  
5.23  
0x91  
0x92  
0x93  
FFC00000  
00000000  
00000000  
0.5  
0
Switch to enable  
Loudness (ON = 1,  
OFF = 0)  
0
O
Offset  
Provides offset  
25.23  
0x94  
00000000  
0
20  
TAS5504  
SLES123 October 2004  
Introduction  
1.9.1 Loudness Example  
Problem: Due to the Fletcher-Munson phenomena, we want to compensate for low frequency attenuation near  
60 Hz. The TAS5504 provides a loudness transfer function with EQ gain = 6, EQ center frequency = 60 Hz,  
and EQ bandwidth = 60 Hz.  
Solution: Using Texas Instruments ALE TAS5504 DSP tool, Matlab, or other signal-processing tool, develop  
a loudness function with following parameters:  
Table 17. Loudness Function Parameters  
2
EXAMPLE VALUES  
LOUDNESS  
TERM  
DATA  
FORMAT  
I C  
DESCRIPTION  
USAGE  
SUBADDRESS  
HEX  
FLOAT  
H (Z)  
Loudness Biquad  
Controls shape of  
loudness curves  
5.23  
0x95  
b0 = 00008ACE  
b1 = 00000000  
b2 = FFFF7532  
a1 = FF011951  
a2 = 007EE914  
b0 = 0.004236  
b1 = 0  
b2 = 0.004236  
a1 = 1.991415  
a2 = 0.991488  
LG  
LO  
G
Loudness Gain  
Loudness Offset  
Gain  
Loudness function  
Loudness function  
5.23  
25.23  
5.23  
0x91  
0x92  
0x93  
FFC00000  
00000000  
00800000  
0.5  
0
Switch to Enable  
Loudness (ON = 1,  
OFF = 0)  
1
O
Offset  
Offset  
25.23  
0x94  
00000000  
0
See Figure 116 for the resulting loudness function at different gains.  
Figure 116. Loudness Example Plots  
21  
SLES123 October 2004  
TAS5504  
Introduction  
1.10 Dynamic Range Control (DRC)  
The DRC provides both compression and expansion capabilities over three separate and definable regions  
of audio signal levels. Programmable threshold levels set the boundaries of the three regions. Within each  
of the three regions a distinct compression or expansion transfer function can be established and the slope  
of each transfer function is determined by programmable parameters. The offset (boost or cut) at the two  
boundaries defining the three regions can also be set by programmable offset coefficients. The DRC  
implements the composite transfer function by computing a 5.23 format gain coefficient from each sample  
output from the rms estimator. This gain coefficient is then applied to a mixer element, whose other input is  
the audio data stream. The mixer output is the DRC-adjusted audio data.  
There are two distinct DRC blocks in the TAS5504. DRC1 services channels 13. This DRC computes rms  
estimates of the audio data streams on all channels that it controls. The estimates are then compared on a  
sample-by-sample basis and the larger of the estimates is used to compute the compression/expansion gain  
coefficient. The gain coefficient is then applied to appropriate channels audio stream. DRC2 services only  
channel 4. This DRC also computes an rms estimate of the signal level on channel 4 and this estimate is used  
to compute the compression/expansion gain coefficient applied to the channel 4 audio stream.  
All of the TAS5504 default values for DRC can be used except for the DRC1 decay and DRC2 decay. Table 18  
shows the recommended time constants and their HEX values. If the user wants to implement other DRC  
functions, Texas Instruments recommends using the automatic loudspeaker equalization (ALE) tool available  
from Texas Instruments. The ALE tool allows the user to select the DRC transfer function graphically. It will  
then output the TAS5504 hex coefficients for download to the TAS5504.  
Table 18. DRC Recommended Changes From TAS5504 Defaults  
2
I C  
RECOMMENDED TIME  
CONSTANT (MS)  
RECOMMENDED  
HEX VALUE  
REGISTER FIELDS  
DEFAULT HEX  
SUBADDRESS  
0x98  
0x9C  
DRC1 energy  
DRC1 (1 – energy)  
DRC1 attack  
5
5
2
5
5
2
0000883F  
007F77C0  
0000883F  
007F77C0  
0001538F  
007EAC70  
0000883F  
007F77C0  
0000883F  
007F77C0  
0001538F  
007EAC70  
0000883F  
007F77C0  
0000883F  
007F77C0  
000000AE  
007FFF51  
0000883F  
007F77C0  
0000883F  
007F77C0  
000000AE  
007FFF51  
DRC1 (1 – attack)  
DRC1 decay  
DRC1 (1 – decay)  
DRC2 energy  
0x9D  
0xA1  
DRC2 (1 – energy)  
DRC2 attack  
DRC2 (1 – attack)  
DRC2 decay  
DRC2 (1 – decay)  
Recommended DRC set-up flow if the defaults are used:  
After power up, load the recommended hex value for DRC1 and DRC2 decay and (1 – decay). See  
Table 18.  
Enable either the pre-volume or post-volume DRC  
Recommended DRC set-up flow if the DRC design uses values different from the defaults:  
After power up, load all DRC coefficients per the DRC design.  
Enable either the pre-volume or post-volume DRC  
Figure 117 shows the positioning of the DRC block in the TAS5504 processing flow. As seen, the DRC input  
can come from either before or after soft volume control and loudness processing.  
22  
TAS5504  
SLES123 October 2004  
Introduction  
Master  
Volume  
Channel  
Volume  
Max  
Volume  
DRC  
By-Pass  
Bass & Treble  
By-Pass  
Loudness  
To Output  
Mixer  
From Input Mixer  
7 Biquads  
in Series  
Bass and  
Treble  
DRC  
In-Line  
Bass & Treble  
In-Line  
Pre-  
Volume  
Post-  
Volume  
DRC  
Figure 117. DRC Positioning in TAS5504 Processing Flow  
Figure 118 illustrates a typical DRC transfer function.  
Region  
0
Region  
1
Region  
2
k2  
k1  
1:1 Transfer Function  
Implemented Transfer Fucntion  
k0  
O2  
O1  
T1  
T2  
DRC Input Level  
Figure 118. Dynamic Range Compression (DRC) Transfer Function Structure  
The three regions shown in Figure 118 are defined by three sets of programmable coefficients:  
Thresholds T1 and T2—define region boundaries.  
Offsets O1 and O2—define the DRC gain coefficient settings at thresholds T1 and T2 respectively.  
Slopes k0, k1, and k2—define whether compression or expansion is to be performed within a given region.  
The magnitudes of the slopes define the degree of compression or expansion to be performed.  
The three sets of parameters are all defined in logarithmic space and adhere to the following rules:  
The maximum input sample into the DRC is referenced at 0 dB. All values below this maximum value then  
have negative values in logarithmic (dB) space.  
The samples input into the DRC are 32-bit words and consist of the upper 32 bits of the 48-bit word format  
used by the digital audio processor (DAP). The 48-bit DAP word is derived from the 32-bit serial data  
received at the serial audio receive port by adding 8 bits of headroom above the 32-bit word and 8 bits  
of computational precision below the 32-bit word. If the audio processing steps between the SAP input  
and the DRC input result in no accumulative boost or cut, the DRC would operate on the 8 bits of headroom  
and the 24 MSBs of the audio sample. Under these conditions, a 0-dB (maximum value) audio sample  
(0x7FFFFFFF) is seen at the DRC input as a –48-dB sample (8 bits x 6.02 dB/bit = 48 dB).  
23  
SLES123 October 2004  
TAS5504  
Introduction  
Thresholds T1 and T2 define, in dB, the boundaries of the three regions of the DRC, as referenced to the  
rms value of the data into the DRC. Zero valued threshold settings reference the maximum valued rms  
input into the DRC and negative valued thresholds reference all other rms input levels. Positive valued  
thresholds have no physical meaning and are not allowed. In addition, zero valued threshold settings are  
not allowed.  
Although the DRC input is limited to 32-bit words, the DRC itself operates using the 48-bit word format of the  
DAP. The 32-bit samples input into the DRC are placed in the upper 32 bits of this 48-bit word space. This  
means that the threshold settings must be programmed as 48-bit (25.23 format) numbers.  
CAUTION: Zero valued and positive valued threshold settings are not allowed and  
cause unpredictable behavior if used.  
Offsets O1 and O2 define, in dB, the attenuation (cut) or gain (boost) applied by the DRC-derived gain  
coefficient at the threshold points T1 and T2 respectively. Positive offsets are defined as cuts, and thus  
boost or gain selections are negative numbers. Offsets must be programmed as 48-bit (25.23 format)  
numbers.  
Slopes k0, k1, and k2 define whether compression or expansion is to be performed within a given region,  
and the degree of compression or expansion to be applied. Slopes are programmed as 28-bit (5.23 format)  
numbers.  
1.10.1 DRC Implementation  
The three elements comprising the DRC: (1) an rms estimator, (2) a compression/expansion coefficient  
computation engine, and (3) an attack/decay controller. DRC1 applies to channels 1 3 and DRC2 applies  
2
2
only to channel 4. DRC1 uses I C register 0x98 0x9C and DRC2 uses I C registers 0x9D 0xA1.  
RMS estimator—This DRC element derives an estimate of the rms value of the audio data stream into  
the DRC. For DRC1 (Ch 13), the individual channel estimates are computed. The outputs of the  
estimators are then compared, sample-by-sample, and the larger valued sample is forwarded to the  
compression/expansion coefficient computation engine.  
2
Two programmable parameters (I C 0x98), E and (1 – E), set the effective time window over which the rms  
estimate is made. For the DRC1 block, the programmable parameters apply to all rms estimators. The  
time window over which the rms estimation is computed can be determined by:  
* 1  
ȏn(1 * E)  
t
+
window  
F
S
Compression/expansion coefficient computation—This DRC element converts the output of the rms  
estimator to a logarithmic number, determines the region that the input resides, and then computes and  
outputs the appropriate coefficient to the attack/decay element. Seven programmable parameters—T1,  
T2, O1, O2, k0, k1, and k2—define the three compression/expansion regions implemented by this  
element.  
Attack/decay control—This DRC element controls the transition time of changes in the coefficient  
computed in the compression/expansion coefficient computation element. Four programmable  
parameters define the operation of this element. Parameters D and 1 D set the decay or release time  
constant to be used for volume boost (expansion). Parameters A and 1 A set the attack time constant  
to be used for volume cuts. The transition time constants can be determined by:  
* 1  
ȏn(1 * A)  
* 1  
ȏn(1 * D)  
t +  
t +  
a
d
F
F
S
S
Figure 119 shows how the TAS5504 attack and decay are defined. Note that this is opposite of some  
definitions of attack and decay.  
24  
TAS5504  
SLES123 October 2004  
Introduction  
t
+ * 1ńFs   ȏ (1 * D)  
t
+ * 1ńFs   ȏ (1 * A)  
d
N
a
N
Decay  
Attack  
Time  
Figure 119. TAS5504 Attack and Decay Definition  
1.10.2 Compression/Expansion Coefficient Computation Engine Parameters  
There are seven programmable parameters assigned to each DRC block: two threshold parameters - T1 and  
T2, two offset parameters - O1 and O2, and three slope parameters - k0, k1, and k2. The threshold parameters  
establish the three regions of the DRC transfer curve, the offsets anchor the transfer curve by establishing  
known gain settings at the threshold levels, and the slope parameters define whether a given region is a  
compression or an expansion region.  
The audio input stream into the DRC must pass through DRC-dedicated programmable input mixers. These  
mixers are provided to scale the 32-bit input into the DRC to account for the positioning of the audio data in  
the 48-bit DAP word and the net gain or attenuation in signal level between the SAP input and the DRC. The  
selection of threshold values must take the gain (attenuation) of these mixers into account. The DRC  
implementation examples that follow illustrate the effect these mixers have on establishing the threshold  
settings.  
T2 establishes the boundary between the high-volume region and the mid-volume region. T1 establishes the  
boundary between the mid-volume region and the low-volume region. Both thresholds are set in logarithmic  
space, and which region is active for any given rms estimator output sample is determined by the logarithmic  
value of the sample.  
Threshold T2 serves as the fulcrum or pivot point in the DRC transfer function. O2 defines the boost (> 0 dB)  
or cut (< 0 dB) implemented by the DRC-derived gain coefficient for an rms input level of T2. If O2 = 0 dB, the  
value of the derived gain coefficient is 1.0 (0x00, 80, 00, 00 in 5.23 format). k2 is the slope of the DRC transfer  
function for rms input levels above T2 and k1 is the slope of the DRC transfer function for rms input levels below  
T2 (and above T1). The labeling of T2 as the fulcrum stems from the fact that there cannot be a discontinuity  
in the transfer function at T2. The user can, however, set the DRC parameters to realize a discontinuity in the  
transfer function at the boundary defined by T1. If no discontinuity is desired at T1, the value for the offset term  
O1 must obey the following equation.  
25  
SLES123 October 2004  
TAS5504  
Introduction  
| | | | | |  
+ T1 * T2   k1 ) O2 For ( T1 w T2 )  
O1  
No Discontinuity  
T1 and T2 are the threshold settings in dB, k1 is the slope for region 1, and O2 is the offset in dB at T2. If the  
user chooses to select a value of O1 that does not obey the above equation, a discontinuity at T1 is realized.  
Going down in volume from T2, the slope k1 remains in effect until the input level T1 is reached. If, at this input  
level, the offset of the transfer function curve from the 1:1 transfer curve does not equal O1, there is a  
discontinuity at this input level as the transfer function is snapped to the offset called for by O1. If no  
discontinuity is wanted, O1 and/or k1 must be adjusted so that the value of the transfer curve at the input level  
T1 is offset from the 1:1 transfer curve by the value O1. The examples that follow illustrate both continuous  
and discontinuous transfer curves at T1.  
Going down in volume from T1, starting at the offset level O1, the slope k0 defines the compression/expansion  
activity in the lower region of the DRC transfer curve.  
1.10.2.1 Threshold Parameter Computation  
For thresholds,  
T
= 6.0206T = 6.0206T  
INPUT SUB_ADDRESS_ENTRY  
dB  
If, for example, it is desired to set T1 = -64 dB, then the subaddressaddress entry required to set T1 to -64 dB  
is:  
*64  
*6.0206  
T1  
+
+ 10.63  
SUB_ADDRESS_ENTRY  
T1 is entered as a 48-bit number in 25.23 format. Therefore:  
T1 = 10.63 = 0_1010.1010_0001_0100_0111_1010_111  
= 0x00000550A3D7 in 25.23 format  
1.10.2.2 Offset Parameter Computation  
The offsets set the boost or cut applied by the DRC-derived gain coefficient at the threshold point. An  
equivalent statement is that offsets represent the departure of the actual transfer function from a 1:1 transfer  
at the threshold point. Offsets are 25.23 formatted 48-bit logarithmic numbers. They are computed by the  
following equation.  
O
) 24.0824 dB  
DESIRED  
6.0206  
O
+
INPUT  
Gains or boosts are represented as negative numbers; cuts or attenuation are represented as positive  
2
numbers. For example, to achieve a boost of 21 dB at threshold T1, the I C coefficient value entered for O1  
must be:  
–21 dB ) 24.0824 dB  
O1  
+
+ 0.51197555  
INPUT  
6.0206  
+ 0.1000_0011_0001_1101_0100  
+ 0x00000041886A in 25.23 format  
More examples of offset computations are included in the following examples.  
26  
TAS5504  
SLES123 October 2004  
Introduction  
1.10.2.3 Slope Parameter Computation  
In developing the equations used to determine the subaddress of the input value required to realize a given  
compression or expansion within a given region of the DRC, the following convention is adopted.  
DRC Transfer = Input Increase : Output Increase  
If the DRC realizes an output increase of n dB for every dB increase in the rms value of the audio into the DRC,  
a 1:n expansion is being performed. If the DRC realizes a 1 dB increase in output level for every n dB increase  
in the rms value of the audio into the DRC, a n:1 compression is being performed.  
For 1:n expansion, the slope k can be found by:  
k = n 1  
1
For n:1 compression, the slope k can be found by: k + –1  
n
In both expansion (1:n) and compression (n:1), n is implied to be greater than 1. Thus, for expansion:  
1
k = n 1 means k > 0 for n > 1. Likewise, for compression, k + –1 means 1 < k < 0 for n > 1. Thus, it appears  
n
that k must always lie in the range k > 1.  
The DRC imposes no such restriction and k can be programmed to values as negative as 15.999. To  
determine what results when such values of k are entered, it is first helpful to note that the compression and  
expansion equations for k are actually the same equation. For example, a 1:2 expansion is also a 0.5:1  
compression.  
1
0.5  
0.5 Compression å k +  
–1 + 1  
1 : 2 Expansion å k + 2–1 + 1  
As can be seen, the same value for k is obtained either way. The ability to choose values of k less than 1 allows  
the DRC to implement negative slope transfer curves within a given region. Negative slope transfer curves  
are usually not associated with compression and expansion operations, but the definition of these operations  
can be expanded to include negative slope transfer functions. For example, if k = 4  
1
1
3
Compression Equation : k + *4 + *1 å n + å *0.3333 : 1 compression  
n
Expansion Equation : k + *4 + n–1 å n + –3 å 1 : *3 expansion  
With k = 4, the output decreases 3 dB for every 1 dB increase in the rms value of the audio into the DRC.  
As the input increases in volume, the output decreases in volume.  
1.11 Output Mixer  
The TAS5504 provides an 4x2 output mixer for channels 1 and 2. For channels 3 and 4, the TAS5504 provides  
an 4x3 output mixer. These mixers allow each output to be any ratio of any two (three) signal processed  
2
channels. The control parameters for the output crossbar mixer are programmable via the I C interface.  
27  
SLES123 October 2004  
TAS5504  
Introduction  
Gain Coefficient  
28  
Select  
Output  
N
48  
Gain Coefficient  
48  
48  
28  
Select  
Output  
N
1 or 2  
Output  
48  
Gain Coefficient  
28  
Select  
Output  
N
48  
Gain Coefficient  
48  
48  
48  
28  
Select  
Output  
N
Output 3 or 4  
48  
Gain Coefficient  
28  
Select  
Output  
N
48  
Figure 120. Output Mixers  
1.12 PWM  
The TAS5504 has four channels of high performance digital PWM modulators that are designed to drive  
switching output stages (backends) in both single-ended (SE) and H-bridge (bridge tied load) configuration.  
The TAS5504 device uses noise-shaping and sophisticated error correction algorithms to achieve high power  
efficiency and high-performance digital audio reproduction. The TAS5504 uses an AD1 PWM modulation  
th  
combined with a 5 order noise shaper to provide a 102-dB SNR from 20 to 20 kHz.  
The PWM section accepts 32-bit PCM data from the DAP and outputs four PWM audio output channels.  
The TAS5504 PWM section output supports both single-ended and bridge-tied loads.  
The PWM section provides a headphone PWM output to drive an external differential amplifier like the  
TPA112. The headphone circuit uses the PWM modulator for channels 1 and 2. The headphone will not  
operate while the backend drive channels are operating. The headphone will be enabled via a headphone  
2
select terminal or I C command.  
The PWM section has individual channel dc blocking filters that can be enabled and disabled. The filter cutoff  
frequency is less than 1 Hz.  
The PWM section has individual channel de-emphasis filters for 32, 44.1, and 48 kHz that can be enabled and  
disabled.  
The PWM section also contains the power supply volume control (PSVC) PWM.  
The interpolator, noise shaper, and PWM sections provide a PWM output with the following features:  
Up to 8x over sampling.  
8x at F = 44.1 kHz, 48 kHz, 32 kHz, 38 kHz  
S
4x at F = 88.2 kHz, 96 kHz  
S
2x at F = 176.4 kHz, 192 kHz  
S
5th order noise shaping  
102-dB dynamic range 0 – 20 kHz (TAS5504 + TAS5111 system measured at speaker terminals)  
28  
TAS5504  
SLES123 October 2004  
Introduction  
THD < 0.01%  
Adjustable maximum modulation limit of 93.8% to 99.2%  
3.3-V digital signal  
1.12.1 DC Blocking (High Pass Enable/ Disable)  
Each input channel incorporates a first order digital high-pass filter to block potential dc components. The filter  
–3 dB point is approximately 0.89-Hz at 44.1-kHz sampling rate. The high-pass filter can be enabled and  
2
disabled via the I C interface.  
1.12.2 De-Emphasis Filter  
For audio sources that have been pre-emphasized, a precision 50 µs/15 µs de-emphasis filter is provided to  
support the sampling rates of 32 kHz, 44.1 kHz, and 48 kHz. Figure 121 shows a graph of the de-emphasis  
filtering characteristics. De-emphasis is set using two bits in the system control register.  
0
10  
10.6 (15 µs)  
3.18 (50 µs)  
Frequency kHz  
Figure 121. De-emphasis Filter Characteristics  
1.12.3 Power Supply Volume Control (PSVC)  
The TAS5504 supports volume control by both conventional digital gain / attenuation and by a combination  
of digital and analog gain / attenuation. Varying the H-bridge power supply voltage performs the analog volume  
control function. The benefits of using powers supply volume control (PSVC) are reduced idle channel noise,  
improved signal resolution at low volumes, increased dynamic range, and reduced radio frequency emissions  
2
at reduced power levels. The power supply volume control (PSVC) is enabled via I C. When enabled the  
PSCV provides a PWM output that is filtered to provide a reference voltage for the power supply. The power  
supply adjustment range can be set for 12.04, 18.06, or 24.08 dB, to accommodate a range of variable  
power supply designs.  
Figure 122 and Figure 123 show how power supply and digital gains can be used together.  
The volume biquad (0xCF) can be used to implement a low-pass filter in the digital volume control to match  
the PSVC volume transfer function.  
29  
SLES123 October 2004  
TAS5504  
Introduction  
Power Supply Volume Control  
30  
20  
10  
0
10  
20  
30  
Digital Gain  
Power Supply Gain  
40  
50  
60  
Desired Gain dB  
Figure 122. Power Supply and Digital Gains (Log Space)  
Power Supply Volume Control  
100  
10  
1
0.1  
Digital Gain  
Power Supply Gain  
0.01  
0.001  
0.0001  
0.00001 0.0001  
0.001  
0.01  
0.1  
1
10  
100  
Desired Gain (Linear)  
Figure 123. Power Supply and Digital Gains (Linear Space)  
1.12.4 AM Interference Avoidance  
Digital amplifiers can degrade AM reception as a result of their RF emissions. Texas Instruments patented AM  
interference avoidance circuit provides a flexible system solution for a wide variety of digital audio  
architectures. During AM reception, the TAS5504 adjusts the radiated emissions to provide an emission clear  
zone for the tuned AM frequency. The inputs to the TAS5504 for this operation are the tuned AM frequency,  
the IF frequency, and the sample rate. The sample rate is automatically detected.  
30  
TAS5504  
SLES123 October 2004  
Introduction  
ADC  
PCM1802  
Analog  
Receiver  
Audio  
DSP  
TAS5111  
TAS5111  
TAS5111  
TAS5111  
TAS5504  
Audio DSP provides the master  
and bit clocks  
Digital  
Receiver  
Audio  
DSP  
TAS5111  
TAS5111  
TAS5111  
TAS5111  
TAS5504  
The Digital Receiver or the Audio  
DSP provides the Master and Bit  
clocks  
Figure 124. Block Diagrams of Typical Systems Requiring TAS5504 Automatic AM Interference  
Avoidance Circuit  
31  
SLES123 October 2004  
TAS5504  
TAS5504 Controls and Status  
2
TAS5504 Controls and Status  
2
The TAS5504 provides control and status information from both the I C registers and device pins.  
2
This section describes some of these controls and status functions. The I C summary and detailed register  
descriptions are contained in sections at the end of this document.  
2.1 I2C Status Registers  
The TAS5504 has two status registers that provide general device information. These are the General Status  
Register 0 (0x01) and the Error Status Register (0x02).  
2.1.1 General Status Register (0x01)  
Device identification code  
Clip indicator – The TAS5504 has a clipping indicator. Writing to the register clears the indicator.  
Bank switching is busy  
2.1.2 Error Status Register (0x02)  
No internal errors (the valid signal is high)  
A clock error has occurred – These are sticky bits that are cleared by writing to the register.  
LRCLK error – When the number of MCLKs per LRCLK is incorrect  
SCLK error – When the number of SCLKS per LRCLK is incorrect  
Frame slip – When the number of MCLKs per LRCLK changes by more than 10 MCLK cycles  
PLL phase-lock error  
This error status register is normally used for system development only.  
2.2 TAS5504 Pin Controls  
The TAS5504 provide a number of terminal controls to manage the device operation. These controls are:  
RESET  
PDN  
BKND_ERR  
HP_SEL  
MUTE  
2.2.1 Reset (RESET)  
The TAS5504 is placed in the reset mode by setting the RESET terminal low or by the power up reset circuitry  
when power is applied.  
RESET is an asynchronous control signal that restores the TAS5504 to the hard mute state (M). Master  
volume is immediately set to full attenuation (there is no ramp down). Reset initiates the device reset without  
an MCLK input. As long as the RESET terminal is held low, the device is in the reset state. During reset, all  
2
I C and serial data bus operations are ignored.  
Table 21 shows the device output signals while RESET is active.  
Table 21. Device Outputs During Reset  
SIGNAL  
Valid  
SIGNAL STATE  
Low  
PWM P-outputs  
PWM M-outputs  
SDA  
Low (M-State)  
Low (M-State)  
Signal Input (not driven)  
33  
SLES123 October 2004  
TAS5504  
TAS5504 Controls and Status  
Because RESET is an asynchronous signal, clicks and pops produced during the application (the leading  
edge) of RESET cannot be avoided. However, the transition from the hard mute state (M) to the operational  
state is performed using a quiet start up sequence to minimize noise. This control uses the PWM reset and  
unmute sequence to shut down and start up the PWM. A detailed description of these sequences is contained  
in the PWM section. If a completely quiet reset or power down sequence is desired, MUTE should be applied  
before applying RESET.  
The rising edge of the reset pulse begins device initialization before the transition to the operational mode.  
During device initialization, all controls are reset to their initial states. Table 22 shows the default control  
settings following a reset.  
Table 22. Values Set During Reset  
CONTROL  
SETTING  
Clock register  
High pass  
Not valid  
Disabled  
Unmute from clock error  
PSVC high Z  
Hard unmute  
Disabled  
Post DAP detection automute  
Four Ch PreDAP detection automute  
De-emphasis  
Enabled  
Enabled  
De-emphasis disabled  
Channel configuration control  
Headphone configuration control  
Serial data interface format  
Individual channel mute  
Automute delay  
Configured for the default setting  
Configured for the default setting  
2
I S 24 bit  
No channels are muted  
5 ms  
Automute threshold 1  
Automute threshold 2  
Modulation limit  
< 8 bits  
Same as automute threshold 1  
Maximum modulation limit of 97.7%  
Disengaged for all channels  
32, 0, –16, 16, –24, 8, –8, 24  
Enabled  
Slew rate limit  
Interchannel delay  
Shutdown PWM on error  
Volume and mute update rate  
Treble and bass slew rate  
Bank switching  
Volume ramp 85 ms  
Update every 1.31 ms  
Manual bank selection is enabled  
All channels use Bank 1  
Set to All pass  
Auto bank switching map  
Biquad coefficients (TAS5504)  
Input mixer coefficients  
Output mixer coefficients  
Input N > Channel N, no attenuation  
Channel N > Output N, no attenuation  
Gain of 0  
Subwoofer sum into Ch1 and Ch2  
(TAS5504)  
Ch1 and Ch2 sum in subwoofer (TAS5504)  
Bass and treble bypass  
Bass and treble Inline  
DRC bypass (TAS5504)  
DRC inline (TAS5504)  
DRC (TAS5504)  
Gain of 0  
Gain of 1  
Gain of 0  
Gain of 1  
Gain of 0  
DRC disabled, default values  
Mute  
Master volume  
Individual channel volumes  
All bass and treble Indexes  
Treble filter sets  
0 dB  
0x12 neutral  
Filter Set 3  
Filter Set 3  
Bass filter sets  
34  
TAS5504  
SLES123 October 2004  
TAS5504 Controls and Status  
CONTROL  
Loudness (TAS5504)  
SETTING  
Loudness disabled, default values  
AM interference enable  
AM interference IF  
Disabled  
455  
AM interference select sequence  
Tuned freq and mode  
1
0000 , BCD  
Enabled  
Disabled / 0 dB  
Subwoofer PSVC control  
PSVC and PSVC range  
After the initialization time, the TAS5504 starts the transition to the operational state with the Master volume  
set at mute.  
Since the TAS5504 has an external crystal time base, following the release of RESET, the TAS5504 sets the  
MCLK and data rates and perform the initialization sequences. The PWM outputs are held at a mute state until  
2
the master volume is set to a value other than mute via I C.  
2.2.2 Power Down (PDN)  
The TAS5504 can be placed into the power down mode by holding the PDN terminal low. When power down  
mode is entered, both the PLL and the oscillator are shut down. Volume is immediately set to full attenuation  
(there is no ramp down). This control uses the PWM mute sequence that provides a low click and pop transition  
to the hard mute state (M). A detailed description of the PWM mute sequence is contained in the PWM section.  
Power down is an asynchronous operation that does not require MCLK to go into the power down state. To  
initiate the power-up sequence requires MCLK to be operational and the TAS5504 to receive 5 MCLKs prior  
to the release of PDN.  
As long as the PDN terminal is held low the device is in the power down state with the PWM outputs in a hard  
2
mute (M) state. During power down, all I C and serial data bus operations are ignored. Table 23 shows the  
device output signals while PDN is active.  
Table 23. Device Outputs During Power Down  
SIGNAL  
Valid  
SIGNAL STATE  
Low  
PWM P-outputs  
PWM M-outputs  
SDA  
M-state = low  
M-state = low  
Signal input  
M-state = low  
PSVC  
Following the application of PDN, the TAS5504 does not perform a quiet shutdown to prevent clicks and pops  
produced during the application (the leading edge) of this command. The application of PDN immediately  
performs a PWM stop. A quiet stop sequence can be performed by first applying MUTE before PDN.  
When PDN is released, the system goes to the end state specified by MUTE and BKND_ERR pins and the  
2
I C register settings.  
The crystal time base allows the TAS5504 to determine the CLK rates. Once these rates are determined, the  
TAS5504 unmutes the audio.  
2.2.3 Backend Error (BKND_ERR)  
Backend error is used to provide error management for backend error conditions. Backend error is a level  
sensitive signal. Backend error can be initiated by bringing the BKND_ERR terminal low for a minimum 5  
MCLK cycles. When BKND_ERR is brought low, the PWM sets all channels into the PWM backend error state.  
This state is described in the PWM section. Once the backend error sequence is initiated, a delay of 5 ms is  
performed before the system starts the output reinitialization sequence. After the initialization time, the  
TAS5504 begins normal operation. Backend error does not affect other PWM modulator operations  
35  
SLES123 October 2004  
TAS5504  
TAS5504 Controls and Status  
When BKND_ERR is low, the TAS5504 brings the PWM outputs 16 to a backend error state, while not  
affecting any other internal settings or operations. Table 24 shows the device output signal states during  
backend error.  
Table 24. Device Outputs During Backend Error  
SIGNAL  
Valid  
SIGNAL STATE  
Low  
PWM P-outputs  
PWM M-outputs  
HPPWM P-outputs  
HPPWM M-outputs  
SDA  
M-State low  
M-State low  
M-State low  
M-State low  
Signal Input (not driven)  
2.2.4 Speaker / Headphone Selector (HP_SEL)  
The HP_SEL terminal enables the headphone output or the speaker outputs. The headphone output receives  
the processed data output from DAP and PWM channels 1 and 2.  
When low, the headphone output is enabled. In this mode the speaker outputs are disabled. When high, the  
speaker outputs are enabled and the headphone is disabled.  
Changes in the pin logic level results in a state change sequence using soft mute to the hard mute (M) state  
for both speaker and headphone followed by a soft unmute.  
When HP_SEL is low, the configuration of channels 1 and 2 are defined by the headphone configuration  
register. When HP_SEL is high, the channel 1 and 2 configuration registers define the configuration of  
channels 1 and 2.  
2.2.5 Mute (MUTE)  
The mute control provides a noiseless volume ramp to silence. Releasing mute provides a noiseless ramp  
to previous volume. The TAS5504 has both a master and individual channel mute commands. A terminal is  
2
also provided for the master MUTE. The low active master Mute I C register and the MUTE terminal are  
logically Or’ed together. If either is set to low, a mute on all channels is performed. The master mute command  
operates on all channels.  
When MUTE is invoked, the PWM output stops switching and then goes to an idle state.  
The master Mute terminal is used to support a variety of other operations in the TAS5504, such as setting the  
inter-channel delay, the biquad coefficients, the serial interface format, and the clock rates. A mute command  
2
by the master mute terminal, individual I C mute, the AM interference mute sequence, the bank switch mute  
sequence, or automute overrides an unmute command or a volume command. While a mute is active, the  
commanded channels will be placed in a mute state. When a channel is unmuted, it goes to the last  
commanded volume setting that has been received for that channel.  
2.3 Device Configuration Controls  
The TAS5504 provides a number of system configuration controls that are set at initialization and following  
a reset.  
Channel Configuration  
Headphone Configuration  
Audio System Configurations  
Recovery from Clock Error  
Power Supply Volume Control Enable  
Volume and Mute Update Rate  
36  
TAS5504  
SLES123 October 2004  
TAS5504 Controls and Status  
Modulation Index Limit  
Inter-channel Delay  
Master Clock and Data Rate Controls  
Bank Controls  
2.3.1 Channel Configuration Registers  
In order for the TAS5504 to have full control of the power stages, registers 0x05, 0x06, 0x0B, and 0x0C must  
be programmed to reflect the proper power stage and how each one should be controlled. Channel  
configuration registers consist of four registers, one for each channel.  
The primary reason for using these registers is that different power stages require different handling during  
start up, mute/unmute, shutdown, and error recovery. The TAS5504 must select the sequence that gives the  
best click and pop performance and insure that the bootstrap capacitor is charged correctly during start up.  
This sequence depends on which power stage is present at the TAS5504 output.  
Table 25. Description of the Channel Configuration Registers (0x05, 0x06, 0x0B, 0x0C)  
BIT  
DESCRIPTION  
D7  
Enable/disable error recovery sequence. In case the BKND_RECOVERY pin is pulled low, this register determines if this channel is  
to follow the error recovery sequence or to continue with no interruption.  
D6  
D5  
Determines if the power stage needs the TAS5504 VALID pin to go low to reset the power stage. Some power stages can be reset  
by a combination of PWM signals. For these devices, it is recommended to set this bit low, since the VALID pin is shared for power  
stages. This provides better control of each power stage.  
Determines if the power stage needs the TAS5504 VALID pin to go low to mute the power stage. Some power stages can be muted  
by a combination of PWM signals. For these devices, it is recommended to set this bit low, since the VALID pin is shared for power  
stages. This provides better control of each power stage.  
D4  
D3  
Inverts the PWM output. Inverting the PWM output can be an advantage if the power stage input pin are opposite the TAS5504 PWM  
pinout. This makes routing on the PCB easier. To keep the phase of the output the speaker terminals must also be inverted.  
The power stage TAS5182 has a special PWM input. To ensure that the TAS5504 has full control in all occasions, the PWM output  
must be remapped.  
D2  
D1  
Can be used to handle click and pop for some applications.  
This bit is normally used together with D2. For some power stages, both PWM signals must be high to get the desired operation of  
both speaker outputs to be low. This bit sets the PWM outputs high-high during mute.  
D0  
Not used  
Table 26 lists the optimal setting for each output stage configuration. Note that the default value is applicable  
in all configurations except the TAS5182 SE/BTL configuration.  
Table 26. Recommended TAS5504 Configurations for Texas Instruments Power Stages  
DEVICE  
Default  
ERROR RECOVERY  
RES  
CONFIGURATION  
D7  
1
D6  
1
D5  
1
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
BTL  
BTL  
SE  
1
1
1
0
0
0
0
0
RES  
AUT  
RES  
AUT  
RES  
1
1
1
0
0
0
0
0
TAS5111  
BTL  
SE  
0
1
1
0
0
0
0
0
0
1
1
0
0
0
0
0
BTL  
SE  
1
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0
TAS5112  
TAS5182  
BTL  
SE  
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
BTL  
SE  
1
1
1
0
1
0
0
0
1
1
1
0
1
0
0
0
RES: The output stage requires VALID to go low to recover from a shutdown.  
AUT: The power stage can auto recover from a shutdown.  
BTL: Bridge tied load configuration  
37  
SLES123 October 2004  
TAS5504  
TAS5504 Controls and Status  
SE: Single-ended configuration  
2.3.2 Headphone Configuration Registers  
The headphone configuration controls are identical to the speaker configuration controls. The headphone  
configuration control settings are used in place of the speaker configuration control settings for channels 1  
and 2 when the headphones are selected. In reality however, there is only one used configuration setting for  
headphones and that is the default setting.  
2.3.3 Audio System Configurations  
The TAS5504 can be configured to comply with various audio systems.  
The audio system configuration is set in the General Control Register (0xE0). Bits D31 – D4 must be zero and  
D0 is don’t care.  
D3  
D2  
Determines if SUB is to be controlled by PSVC  
Enable/Disable power supply volume control  
D3D1 must be configured as the following according to the audio system in the application:  
Table 27. Audio System Configuration (General Control Register 0xE0)  
AUDIO SYSTEM  
DEFAULT  
D31D4  
D3  
0
D2  
0
D1  
0
D0  
X
0
0
0
0
3.1 channels NOT using PSVC  
4 channels using PSVC  
3.1 channels using PSVC  
0
0
1
X
0
1
1
X
1
1
1
X
2.3.4 Recovery from Clock Error  
The TAS5504 can be set to either perform a volume ramp up during the recovery sequence of a clock error  
or to simply come up in the last state (or desired state if a volume or tone update was in progress). This feature  
2
is enabled via I C system control register 0x03.  
2.3.5 Power Supply Volume Control Enable  
2
The power supply volume control (PSVC) can be enabled and disabled via I C register 0xE0. The subwoofer  
PWM output can configured to be controlled by the PSVC or digitally attenuated when PSVC is enabled (for  
powered subwoofer configurations). Note that PSVC cannot be simultaneously enabled along with unmute  
outputs after clock error feature.  
2.3.6 Volume and Mute Update Rate  
The TAS5504 has fixed soft volume and mute ramp durations. The ramps are linear. The soft volume and mute  
2
ramp rates are adjustable by programming the I C register 0xD0 for the appropriate number of steps to be  
512, 1024, or 2048. The update is performed at a fixed rate regardless of the sample rate.  
In normal speed, the update rate is 1 step every 4 / Fs seconds.  
In double speed, the update is 1 step every 8 / Fs seconds.  
In quad speed, the update is 1 step every 16 / Fs seconds.  
Because of processor loading, the update rate can increase for some increments by +1/Fs to +3/Fs. However,  
the variance of the total time to go from +18 dB to mute is less than 25%.  
38  
TAS5504  
SLES123 October 2004  
TAS5504 Controls and Status  
Table 28. Volume Ramp Rates in ms  
SAMPLE RATE (kHz)  
NUMBER OF STEPS  
44.1, 88.2, 176.4  
46.44 ms  
32, 48, 96, 192  
42.67 ms  
512  
1024  
2048  
92.88 ms  
85.33 ms  
185.76 ms  
170.67 ms  
2.3.7 Modulation Index Limit  
PWM modulation is a linear function of the audio signal. When the audio signal is 0, the PWM modulation is  
50%. When the audio signal increases towards full scale, the PWM modulation increases towards 100%. For  
negative signals, the PWM modulations fall below 50% towards 0%.  
However, there is a limit to the maximum modulation possible. During the off-time period, the power stage  
connected to the TAS5504 output needs to get ready for he next on-time period. The maximum possible  
modulation is then set by the power stage requirements. A modulation index of 97.7% is the default setting  
of the TAS5504. Default settings can be changed in the Modulation Index Register (0x16).  
Note that no change should be made to this register when using Texas Instruments power stages.  
2.3.8 Inter-channel Delay  
An 8-bit value can be programmed to each of the four PWM inter-channel delay registers to add a delay per  
channel from 0 to 255 clock cycles. The delays correspond to cycles of the high-speed internal clock, DCLK.  
The default values are shown in Table 29.  
Table 29. Inter-Channel Delay Default Values  
2
I C SUB-ADDRESS  
CHANNEL  
INTER-CHANNEL DELAY DEFAULT (DCLK PERIODS)  
0x1B  
0x1C  
0x21  
0x22  
1
2
3
4
24  
0
8  
+24  
2
This delay is generated in the PWM and can be changed at any time through the serial control interface I C  
2
registers 0x1B – 0x22. The absolute offset for channel 1 is set in I C sub-address 0x23.  
NOTE:If used correctly, setting the PWM channel delay can optimize the performance of a  
pure path digital amplifier system. The setting is based upon the type of backend power device  
that is used and the layout. These values are set during initialization using the I2C serial  
interface. Unless otherwise noted, use the default values given in Table 29.  
2.4 Master Clock and Serial Data Rate Controls  
The TAS5504 function only as a receiver of the MCLK (master clock), SCLK (shift clock), and LRCLK (left/right  
clock) signals that controls the flow of data on the four serial data interfaces. The 13.5-MHz external crystal  
allows the TAS5504 to automatically detect MCLK and the data rate.  
The MCLK frequency can be 64 x Fs, 128 x Fs, 196 x Fs, 256 x Fs, 384 x Fs, 512 x Fs, or 768 x Fs.  
The TAS5504 operates with the serial data interface signals LRCLK and SCLK synchronized to MCLK.  
However, there is no constraint as to the phase relationship of these signals. The TAS5504 accepts a 64 x  
Fs SCLK rate and a 1 x Fs LRCLK.  
If the phase of SCLK or LRCLK drifts more than 10 MCLK cycles since the last RESET, the TAS5504 performs  
a clock error and resynchronize the clock timing.  
The clock and serial data interface have several control parameters:  
39  
SLES123 October 2004  
TAS5504  
TAS5504 Controls and Status  
2
MCLK Ratio 64 Fs, 128 Fs, 196 Fs, 256 Fs, 384 Fs, 512 Fs, or 768 Fs) I C parameter  
2
Data Rate 32, 38, 44.1,48, 88.2, 96, 176.4, 192 kHz I C parameter  
2
AM Mode Enable / Disable I C parameter  
During AM interference avoidance, the clock control circuitry utilizes three other configuration inputs:  
2
Tuned AM Frequency (for AM interference avoidance) (550 1750 kHz) I C parameter  
2
Frequency Set Select (14) I C parameter  
2
Sample Rate I C parameter or auto detected  
2.4.1 PLL Operation  
The TAS5504 uses two internal clocks generated by two internal phase-locked loops (PLLs), the digital PLL  
(DPLL) and the analog PLL (APLL). The analog PLL provides the reference clock for the PWM. The digital  
PLL provides the reference clock for the digital audio processor and the control logic.  
The master clock MCLK input provides the input reference clock for the APLL. The external 13.5-MHz crystal  
provides the input reference clock for the digital PLL. The crystal provides a time base to support a number  
of operations, including the detection of the MCLK ratio, the data rate, and clock error conditions. The crystal  
time base provides a constant rate for all controls and signal timing.  
2
Even if MCLK is not present, the TAS5504 can receive and store I C commands and provide status.  
2.5 Bank Controls  
The TAS5504 permits the user to specify and assign sample rate dependent parameters for Biquad,  
Loudness, DRC, and Tone in one of three banks that can be manually selected or selected automatically  
2
based upon the data sample rate. Each bank can be enabled for one or more specific sample rates via I C  
bank control register 0x40. Each bank set holds the following values:  
Coefficients for Seven Biquads (7X5 = 35 coefficients) for Each of the four Channels (Registers 0X51 –  
0x88)  
Coefficients for One Loudness Biquad (Register 0x95)  
DRC1 Energy and (1 – Energy) Values (Register 0x98)  
DRC1 Attack, (1 Attack), Decay, (1 – Decay) Values (Register 0x9C)  
DRC2 Energy and (1 – Energy) Values (Register 0x9D)  
DRC2 Attack, (1 Attack), Decay, (1 – Decay) Values (Register 0xA1)  
Five Bass Filter-Set Selections (Register 0xDA)  
Five Treble Filter-Set Selections (Register 0xDC)  
The default selection for bank control is manual bank with bank 1 selected. Note that if bank switching is used,  
Bank 2 and Bank 3 must be programmed on power up since the default values are all zeroes. If bank switching  
is used and Bank 2 and Bank 3 are not programmed correctly, then the output of the TAS5504 could be muted  
when switching to those banks.  
2.5.1 Manual Bank Selection  
The three bank selection bits of the bank control register allow the appropriate bank to be manually selected  
(000 = Bank 1, 001 = Bank 2, 010 = Bank 3). In the manual mode, when a write occurs to the Biquad, DRC,  
or Loudness coefficients, the current selected bank is updated. If audio data is streaming to the TAS5504,  
during a manual bank selection, the TAS5504 first performs a mute sequence, then performs the bank switch,  
and finally restores the volume using an un-mute sequence.  
A mute command initiated by the bank switch mute sequence overrides an unmute command or a volume  
command. While a mute is active, the commanded channels are muted. When a channel is unmated, the  
volume level goes to the last commanded volume setting that has been received for that channel.  
40  
TAS5504  
SLES123 October 2004  
TAS5504 Controls and Status  
If MCLK or SCLK is stopped, the TAS5504 performs a bank switch operation. If the clocks should start up once  
the manual bank switch command has been received, the bank switch operation is performed during the 5-ms  
silent start sequence.  
2.5.2 Automatic Bank Selection  
To enable automatic bank selection, a value of 3 is written into in the bank selection bits of the bank control  
register. Banks are associated with one or more sample rates by writing values into the Bank 1 or Bank 2 data  
rate selection registers. The automatic base selection is performed when a frequency change is detected  
according to the following scheme:  
1. The system scans Bank 1 data rate associations to see if the Bank 1 is assigned for that data rate.  
2. If Bank 1 is assigned, then the Bank 1 coefficients will be loaded.  
3. If it is not then, the system scans the bank 2 to see if Bank 1 is assigned for that data rate.  
4. If Bank 2 is assigned, then the Bank 2 coefficients will be loaded.  
5. If it is not then, the system loads the Bank 3 coefficients.  
The default is that all frequencies are enabled for Bank 1. This default is expressed as a value of all 1s in the  
Bank 1 auto-selection byte and all 0s in the bank 2 auto-section byte.  
2.5.2.1 Coefficients Write Operations While Automatic Bank Switch Is Enabled  
In automatic mode if a write occurs to the Tone, EQ, DRC, or Loudness coefficients, the bank that is written  
to is the current bank.  
2.5.3 Bank Set  
Bank set is used to provide a secure way to update the bank coefficients in both the manual and automatic  
switching modes without causing a bank switch to occur. Bank set mode does not alter the current bank  
register mapping. It simply enables any bank’s coefficients to be updated while inhibiting any bank switches  
from taking place. In manual mode, this enables the coefficients to be set without switching banks. In automatic  
mode this prevents a clock error or data rate change from corrupting a bank coefficient write.  
To update the coefficients of a bank, a value of 4, 5, or 6 is written into in the bank selection bits of the bank  
control register. This enables the Tone, EQ, DRC, and Loudness coefficient values of bank 1, 2, or 3 to be  
respectively updated.  
Once the coefficients of the bank have been updated, the bank selection bits are then returned to the desired  
manual or automatic bank selection mode.  
2.5.4 Bank Switch Timeline  
2
After a bank switch is initiated (manual or automatic), no I C writes to the TAS5504 should occur before a  
minimum of 186 ms. This value is determined by the volume ramp rates for a particular sample rate.  
2.5.5 Bank Switching Example 1  
Problem: The audio unit containing a TAS5504 needs to handle different audio formats with different sample  
rates. Format #1 requires Fs = 32 kHz, Format #2 requires Fs = 44.1 kHz, and Format #3 requires Fs = 48  
kHz. The sample-rate dependent parameters in the TAS5504 require different coefficients and data  
depending on the sample rate.  
Strategy: Use the TAS5504 bank switching feature to allow for managing and switching three banks  
associated with the three sample rates, 32 kHz (Bank 1), 44.1 kHz (Bank 2), and 48 kHz (Bank 3).  
One possible algorithm is to generate, load, and automatically manage bank switching for this problem:  
Generate bank-related coefficients (see above) for sample rates 32 kHz, 44.1 kHz, and 48 kHz and include  
the same in the micro-based TAS5504 I C firmware.  
2
41  
SLES123 October 2004  
TAS5504  
TAS5504 Controls and Status  
On TAS5504 power up or reset, the micro runs the following TAS5504 Initialization code:  
Update Bank 1 (Write 0x00048040 to register 0x40).  
2
Write bank-related I C registers with appropriate values for Bank 1.  
Write Bank 2 (Write 0x00058040 to register 0x40).  
2
Load bank-related I C registers with appropriate values for Bank 2.  
Write Bank 3 (Write 0x00068040 to register 0x40).  
2
Load bank-related I C registers with appropriate values for Bank 3.  
Select automatic bank switching (write 0x00038040 to register 0x40)  
Now when the audio media changes, the TAS5504 automatically detects the incoming sample rate and  
automatically switches to the appropriate bank.  
In this example any sample rates other then 32 kHz and 44.1 kHz will use Bank 3. If other sample rates are  
used, then the banks need to be setup differently.  
2.5.6 Bank Switching Example 2  
Problem: The audio system uses all of the sample rates supported by the TAS5504. How can the automatic  
bank switching be set up to handle this situation?  
Strategy: Use the TAS5504 bank switching feature to allow for managing and switching three banks  
associated with sample rates as follows:  
Bank 1: Coefficients for 32 kHz, 38 kHz, 44.1 kHz, and 48 kHz  
Bank 2: Coefficients for 88.2kHz and 96 kHz  
Bank 3: Coefficients for 176.4 kHz and 192 kHz  
One possible algorithm is to generate, load, and automatically manage bank switching for this problem:  
Generate bank-related coefficients for sample rates 48 kHz (Bank 1), 96 kHz (Bank 2), and 192 kHz (Bank  
3) and include the same in the micro-based TAS5504 I C firmware.  
2
On TAS5504 powerup or reset, the micro runs the following TAS5504 Initialization code:  
Update Bank 1 (Write 0x0004F00C to register 0x40).  
2
Write bank-related I C registers with appropriate values for Bank 1.  
Write Bank 2 (Write 0x0005F00C to register 0x40).  
2
Load bank-related I C registers with appropriate values for Bank 2.  
Write Bank 3 (Write 0x0006F00C to register 0x40).  
2
Load bank-related I C registers with appropriate values for Bank 3.  
Select automatic bank switching (Write 0x0003F00C to register 0x40)  
Now when the audio media changes, the TAS5504 automatically detects the incoming sample rate and  
automatically switches to the appropriate bank.  
42  
TAS5504  
SLES123 October 2004  
Electrical Specifications  
3
Electrical Specifications  
3.1 Absolute Maximum Ratings{  
UNITS  
Supply voltage, DVDD and DVD_PWM  
Supply voltage, AVDD_PLL  
0.3 V to 3.6 V  
0.3 V to 3.6 V  
3.3-V digital input  
0.5 V to DVDD + 0.5 V  
0.5 V to 6 V  
(2)  
5 V tolerant digital input  
Input voltage  
(3)  
(1)  
1.8 V LVCMOS  
0.5 V to VREF + 0.5 V  
Input clamp current, I (V < 0 or V > 1.8 V  
20 mA  
20 mA  
IK  
I
I
Output clamp current, I (V < 0 or V > 1.8 V)  
OK  
O
O
Operating free air temperature  
Storage temperature range, T  
0°C to 70°C  
65°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. VREF is a 1.8-V supply derived from regulators internal to the TAS5504 chip. VREF is on terminals VRA_PLL, VRD_PLL, VR_DPLL,  
VR_DIG, and VR_PWM. These terminals are provided to permit use of external filter capacitors, but should not be used to source  
power to external devices.  
2. 5-V tolerant inputs are RESET, PDN, MUTE, HP_SEL, SCLK, LRCLK, MCLK, SDIN1, SDIN2, SDIN3, SDIN4, SDA, and SCL.  
3. VRA_PLL, VRD_PLL, VR_DPLL, VR_DIG, VR_PWM  
DISSIPATION RATING TABLE (High-k Board, 1055C Junction)  
T
A
255C  
DERATING FACTOR  
T
= 705C  
A
PACKAGE  
POWER RATING  
ABOVE T = 255C  
POWER RATING  
A
PAG  
1869 mW  
23.36 mW/°C  
818 mW  
3.2 Dynamic Performance (At Recommended Operating Conditions at 255C)  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
102  
MAX UNITS  
Dynamic range 32 kHz to 192 kHz  
TAS5504 + TAS5111 A-weighted  
dB  
TAS5111 A at 1 W  
0.1%  
0.01%  
0.1  
Total harmonic distortion  
Frequency response  
TAS5504 ouput  
32-kHz to 96-kHz sample rates  
176.4, 192-kHz sample rates  
dB  
0.2  
3.3 Recommended Operating Conditions (over 05C to 705C)  
MIN  
3
NOM MAX UNITS  
Digital supply voltage, DVDD and DVDD_PWM  
Analog supply voltage, AVDD_PLL  
3.3  
3.3  
3.6  
3.6  
V
V
3
3.3 V  
2
(4)  
5-V tolerant  
2
High-level input voltage, V  
V
V
IH  
1.8-V LVCMOS (XTL_IN)  
1.26  
3.3 V  
0.8  
0.8  
(4)  
5-V tolerant  
Low-level input voltage, V  
IL  
1.8-V (XTL_IN)  
0.54  
70  
Operating ambient air temperature range, T  
20  
20  
25  
°C  
°C  
A
Operating junction temperature range, T  
105  
J
NOTE 4: 5-V tolerant inputs are SDA, SCL, RESET, PDN, MUTE, HP_SEL, SCLK, LRCLK, MCLK, SDIN1, SDIN2, SDIN3, and SDIN4.  
43  
SLES123 October 2004  
TAS5504  
Electrical Specifications  
3.4 Electrical Characteristics Over Recommended Operating Conditions (Unless  
Otherwise Noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNITS  
(6)  
3.3 V TTL and 5 V tolerant  
1.8-V LVCMOS (XTL_OUT)  
I
I
I
I
= 4 mA  
= 0.55 mA  
= 4 mA  
2.4  
OH  
OH  
OL  
OL  
V
V
High-level output voltage  
V
OH  
1.44  
(6)  
3.3-V TTL and 5 V tolerant  
0.5  
Low-level output voltage  
V
OL  
1.8-V LVCMOS (XTL_OUT)  
3.3-V TTL  
= 0.75 mA  
0.5  
I
High-impedance output current  
20  
1
µA  
µA  
OZ  
3.3-V TTL  
V = V  
I
IL  
1.8-V LVCMOS (XTL_IN)  
V = V  
1
I
IL  
Low-level input current  
High-level input current  
I
IL  
(5)  
5 V tolerant  
V = 0 V DVDD = 3 V  
I
1
3.3-V TTL  
V = V  
1
I
IH  
IH  
1.8-V LVCMOS (XTL_IN)  
V = V  
I
1
I
IH  
µA  
(5)  
5 V tolerant  
V = 5.5 V DVDD = 3 V  
I
20  
Fs = 48 kHz  
Fs = 96 kHz  
Fs = 192kHz  
Power down  
Normal  
140  
150  
155  
8
Digital supply voltage, DVDD  
mA  
mA  
I
Input supply current  
DD  
20  
2
Analog supply voltage, AVDD  
Power down  
NOTES: 5. 5-V tolerant inputs are SDA, SCL, RESET, PDN, MUTE, HP_SEL, SCLK, LRCLK, MCLK, SDIN1, SDIN2, SDIN3, and SDIN4.  
6. 5-V tolerant outputs are SCL and SDA  
3.5 PWM Operation at Recommended Operating Conditions Over 05C to 705C  
PARAMETER  
TEST CONDITIONS  
MODE  
VALUE  
384  
UNITS  
kHz  
32-kHz data rate 4%  
12 x sample rate  
44.1-, 88.2-, 176.4-kHz data rate 4%  
48, 96, 192 kHz data rate 4%  
8, 4, and 2 x sample rate  
8, 4, and 2 x sample rate  
352.8  
384  
kHz  
Output sample rate 1X – 8 x over sampled  
kHz  
3.6 Switching Characteristics  
3.6.1 Clock Signals Over Recommended Operating Conditions (Unless Otherwise  
Noted)  
3.6.1.1 PLL Input Parameters and External Filter Components{  
PARAMETER  
Frequency, XTAL IN  
Frequency, MCLK (1 / t  
TEST CONDITIONS  
MIN  
TYP  
MAX UNITS  
f
f
Only use 13.5-MHz crystal 1000 ppm  
13.5  
MHz  
XTALI  
)
cyc2  
2
50  
MHz  
MCLKI  
MCLK duty cycle duty cycle  
40%  
50%  
60%  
2-V MCLK = 49.152 MHz, Within the min  
and max duty cycle constraints  
MCLK minimum high time  
5
5
ns  
ns  
0.8-V MCLK = 49.152 MHz,  
Within the min and max duty cycle constraints  
MCLK minimum low time  
LRCLK allowable drift before LRCLK reset  
External PLL filter cap C1  
10 MCLKs  
SMD 0603 Y5V  
SMD 0603 Y5V  
SMD 0603, metal film  
SMD, Y5V  
100  
10  
nF  
nF  
External PLL filter cap C2  
External PLL filter resistor R  
External VRA_PLL decoupling  
200  
100  
nF  
See the TAS5504 Example Application Schematic section.  
44  
TAS5504  
SLES123 October 2004  
Electrical Specifications  
3.6.2 Serial Audio Port  
3.6.2.1 Serial Audio Ports Slave Mode Over Recommended Operating Conditions (Unless  
Otherwise Noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
2.048  
10  
TYP  
MAX UNITS  
f
t
t
t
t
Frequency, SCLK 64 x fs  
C = 30 pF  
L
12.288  
MHz  
ns  
SCLKIN  
Setup time, LRCLK to SCLK rising edge  
Hold time, LRCLK from SCLK rising edge  
Setup time, SDIN to SCLK rising edge  
Hold time, SDIN from SCLK rising edge  
LRCLK frequency  
su1  
10  
ns  
h1  
10  
ns  
su2  
10  
ns  
h2  
32  
48  
50%  
50%  
192  
60%  
60%  
kHz  
SCLK duty cycle  
40%  
40%  
LRCLK duty cycle  
SCLK  
edges  
SCLK rising edges between LRCLK rising edges  
64  
64  
SCLK  
period  
LRCLK clock edge with respect to the falling edge of SCLK  
1/4  
1/4  
SCLK  
(Input)  
t
h1  
t
su1  
LRCLK  
(Input)  
t
h2  
t
su2  
SDIN1  
SDIN2  
SDIN3  
Figure 31. Slave Mode Serial Data Interface Timing  
45  
SLES123 October 2004  
TAS5504  
Electrical Specifications  
3.6.3 I2C Serial Control Port Operation  
3.6.3.1 Timing Characteristics for I2C Interface Signals Over Recommended Operating  
Conditions (Unless Otherwise Noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNITS  
f
t
t
t
t
t
t
t
t
t
t
Frequency, SCL  
No wait states  
400  
kHz  
µs  
µs  
ns  
ns  
ns  
ns  
µs  
µs  
µs  
µs  
pF  
SCL  
w(H)  
w(L)  
r
Pulse duration, SCL high  
0.6  
1.3  
Pulse duration, SCL low  
Rise time, SCL and SDA  
300  
300  
Fall time, SCL and SDA  
f
Setup time, SDA to SCL  
100  
0
su1  
h1  
Hold time, SCL to SDA  
Bus free time between stop and start condition  
Setup time, SCL to start condition  
Hold time, start condition to SCL  
Setup time, SCL to stop condition  
Load capacitance for each bus line  
1.3  
0.6  
0.6  
0.6  
(buf)  
su2  
h2  
su3  
C
400  
L
t
t
t
t
f
w(L)  
w(H)  
r
SCL  
t
t
h1  
su1  
SDA  
Figure 32. SCL and SDA Timing  
SCL  
t
t
(buf)  
h2  
t
t
su3  
su2  
SDA  
Start Condition  
Stop Condition  
Figure 33. Start and Stop Conditions Timing  
46  
TAS5504  
SLES123 October 2004  
Electrical Specifications  
3.6.4 Reset Timing (RESET)  
3.6.4.1 Control Signal Parameters Over Recommended Operating Conditions (Unless  
Otherwise Noted)  
PARAMETER  
MIN  
400  
10  
TYP  
MAX UNITS  
t
t
t
t
Time to M-STATE low  
370  
ns  
ns  
r(DMSTATE)  
w(RESET)  
r(I2C_ready)  
r(run)  
Pulse duration, RESET active  
None  
2
Time to enable I C  
3
ms  
ms  
Device startup time  
RESET  
Earliest time  
that M-State  
could be exited  
t
w(RESET)  
M-State  
t
r(I2C_ready)  
t
t
= ~ < 300 ns  
r(run)  
r(DMSTATE)  
Start system  
Determine SCLK rate  
and MCLK ratio Enable I C  
2
Figure 34. Reset Timing  
Since a crystal time base is used, the system determines the CLK rates. Once the data rate and master clock  
ratio is determined, the system outputs audio if a master volume command is issued.  
3.6.5 Power-Down (PDN) Timing  
3.6.5.1  
Control Signal Parameters Over Recommended Operating Conditions (Unless Otherwise  
Noted)  
PARAMETER  
MIN  
TYP  
MAX UNITS  
t
t
Time to M-STATE low  
300  
µs  
p(DMSTATE)  
Number of MCLKs preceding the release of PDN  
Device startup time  
5
120  
ms  
su  
PDN  
M-State  
t
su  
t
= ~ < 300 µs  
p(DMSTATE)  
Figure 35. Power-Down Timing  
47  
SLES123 October 2004  
TAS5504  
Electrical Specifications  
3.6.6 Backend Error (BKND_ERR)  
3.6.6.1 Control Signal Parameters Over Recommended Operating Conditions (Unless  
Otherwise Noted)  
PARAMETER  
MIN  
TYP  
MAX  
None  
<100  
UNITS  
ns  
t
t
t
Pulse duration, BKND_ERR active  
350  
w(ER)  
µs  
p(valid_low)  
p(valid_high)  
2
I C programmable to be between 1 to 10 ms  
25  
25 % of interval  
t
w(ER)  
ERR_RCVRY  
M-State  
Normal  
Normal  
Operation  
Operation  
t
p(valid_high)  
t
p(valid_low)  
Figure 36. Error Recovery Timing  
3.6.7 MUTE Timing—MUTE  
3.6.7.1 Control Signal Parameters Over Recommended Operating Conditions (Unless  
Otherwise Noted)  
PARAMETER  
MIN  
TYP  
MAX UNITS  
(1)  
t
Volume ramp time  
Defined by rate setting  
ms  
d(VOL  
NOTE 1: See the Volume Treble and Base Slew Rate Register (0xD0) section.  
MUTE  
VOLUME  
Normal  
Operation  
Normal  
Operation  
M-State  
t
t
d(VOL)  
d(VOL)  
Figure 37. Mute Timing  
48  
TAS5504  
SLES123 October 2004  
Electrical Specifications  
3.6.8 Headphone Select (HP_SEL)  
3.6.8.1 Control Signal Parameters Over Recommended Operating Conditions (Unless  
Otherwise Noted)  
PARAMETER  
MIN  
MAX UNITS  
t
t
t
Pulse duration, HP_SEL active  
350  
None  
ns  
ms  
ms  
w(MUTE)  
d(VOL)  
(SW)  
(2)  
Soft volume update time  
Switch-over time  
Defined by rate setting  
0.2  
1 ms  
NOTE 2: See the Volume Treble and Base Slew Rate Register (0xD0) section.  
HP_SEL  
Spkr Volume  
t
d(VOL)  
HP Volume  
t
d(VOL)  
t
(SW)  
M-State  
(Internal Device State)  
HP_SEL  
HP Volume  
t
d(VOL)  
Spkr Volume  
t
d(VOL)  
t
(SW)  
M-State  
Figure 38. HP_SEL Timing  
49  
SLES123 October 2004  
TAS5504  
Serial Audio Interface Control and Timing  
3.6.9 Volume Control  
3.6.9.1 Control Signal Parameters Over Recommended Operating Conditions (Unless  
Otherwise Noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
127  
UNITS  
Individual volume, master volume or a  
combination of both  
Maximum attenuation before mute  
dB  
Maximum gain  
Individual volume, master volume  
0-dB input, any modulation limit  
PSVC enabled  
18  
0
dB  
dB  
dB  
Maximum volume before the onset of clipping  
PSVC range  
12, 18, or 24  
Fs  
PSVC rate  
PSVC modulation  
Single Sided  
2048  
PSVC quantization  
Steps  
dB  
6% (120 : 95% 1944 :  
2048) 2048  
PSVC PWM modulation limits  
PSVC Rangel = 24 dB  
3.7 Serial Audio Interface Control and Timing  
3.7.1 I2S Timing  
2
I S timing uses an LRCLK to define when the data being transmitted is for the left channel and when it is for  
the right channel. The LRCLK is low for the left channel and high for the right channel. A bit clock running at  
64 × Fs is used to clock in the data. There is a delay of one bit clock from the time the LRCLK signal changes  
state to the first bit of data on the data lines. The data is written MSB first and is valid on the rising edge of  
bit clock. The TAS5504 masks unused trailing data bit positions.  
2
2-Channel I S (Philips Format) Stereo Input  
32 Clks  
32 Clks  
LRCLK (Note Reversed Phase)  
Left Channel  
Right Channel  
SCLK  
SCLK  
MSB  
LSB MSB  
LSB  
24-Bit Mode  
23 22  
9
5
1
8
4
0
5
1
4
1
0
23 22  
9
5
1
8
4
0
5
1
4
0
1
0
20-Bit Mode  
19 18  
0
19 18  
15 14  
16-Bit Mode  
15 14  
NOTE: All data presented in 2s complement form with MSB first.  
2
Figure 39. I S Format 64 Fs Format  
50  
TAS5504  
SLES123 October 2004  
Serial Audio Interface Control and Timing  
3.7.2 Left Justified  
Left justified (LJ) timing uses an LRCLK to define when the data being transmitted is for the left channel and  
when it is for the right channel. The LRCLK is high for the left channel and low for the right channel. A bit clock  
running at 64 × Fs is used to clock in the data. The first bit of data appears on the data lines at the same time  
the LRCLK toggles. The data is written MSB first and is valid on the rising edge of bit clock. The TAS5504  
masks unused trailing data bit positions.  
2-Channel Left-Justified Stereo Input  
32 Clks  
32 Clks  
LRCLK  
SCLK  
LRCLK  
Right Channel  
Left Channel  
MSB  
LSB MSB  
LSB  
24-Bit Mode  
23 22  
9
5
1
8
4
0
5
1
4
0
1
0
23 22  
19 18  
15 14  
9
5
1
8
4
0
5
1
4
0
1
0
20-Bit Mode  
19 18  
16-Bit Mode  
15 14  
NOTE: All data presented in 2s complement form with MSB first.  
Figure 310. Left Justified 64 Fs Format  
51  
SLES123 October 2004  
TAS5504  
Serial Audio Interface Control and Timing  
3.7.3 Right Justified  
Right justified (RJ) timing uses an LRCLK to define when the data being transmitted is for the left channel and  
when it is for the right channel. The LRCLK is high for the left channel and low for the right channel. A bit clock  
running at 64 × Fs is used to clock in the data. The first bit of data appears on the data 8-bit clock periods (for  
24-bit data) after LRCLK toggles. In RJ mode the LSB of data is always clocked by the last bit clock before  
L/RCLK transitions. The data is written MSB first and is valid on the rising edge of bit clock. The TAS5504  
masks unused leading data bit positions.  
2-Channel Right-Justified (Sony Format) Stereo Input  
32 Clks  
32 Clks  
LRCLK  
SCLK  
Right Channel  
Left Channel  
MSB  
LSB MSB  
0
LSB  
0
24-Bit Mode  
23 22  
19 18  
19 18  
15 14  
15 14  
15 14  
1
1
1
23 22  
19 18  
19 18  
15 14  
15 14  
15 14  
1
1
1
20-Bit Mode  
16-Bit Mode  
0
0
0
0
NOTE: All data presented in 2s complement form with MSB first.  
Figure 311. Right Justified 64 Fs Format  
52  
TAS5504  
SLES123 October 2004  
I2C Serial Control Interface (Slave Address 0x36)  
4
I2C Serial Control Interface (Slave Address 0x36)  
The TAS5504 has a bidirectional I C interface that compatible with the I C (Inter IC) bus protocol and supports  
both 100 Kbps and 400 Kbps data transfer rates for single and multiple byte write and read operations. This  
is a slave only device that does not support a multi-master bus environment or wait state insertion. The control  
interface is used to program the registers of the device and to read device status.  
2
2
2
2
The TAS5504 supports the standard-mode I C bus operation (100 kHz maximum) and the fast I C bus  
2
2
operation (400 kHz maximum). The TAS5504 performs all I C operations without I C wait cycles.  
4.1 General I2C Operation  
2
The I C bus employs two signals; SDA (data) and SCL (clock), to communicate between integrated circuits  
in a system. Data is transferred on the bus serially one bit at a time. The address and data can be transferred  
in byte (8-bit) format, with the most significant bit (MSB) transferred first. In addition, each byte transferred on  
the bus is acknowledged by the receiving device with an acknowledge bit. Each transfer operation begins with  
the master device driving a start condition on the bus and ends with the master device driving a stop condition  
on the bus. The bus uses transitions on the data terminal (SDA) while the clock is high to indicate a start and  
stop conditions. A high-to-low transition on SDA indicates a start and a low-to-high transition indicates a stop.  
Normal data bit transitions must occur within the low time of the clock period. These conditions are shown in  
Figure 41. The master generates the 7-bit slave address and the read/write (R/W) bit to open communication  
with another device and then wait for an acknowledge condition. The TAS5504 holds SDA low during  
acknowledge clock period to indicate an acknowledgement. When this occurs, the master transmits the next  
byte of the sequence. Each device is addressed by a unique 7-bit slave address plus R/W bit (1 byte). All  
compatible devices share the same signals via a bidirectional bus using a wired-AND connection. An external  
pullup resistor must be used for the SDA and SCL signals to set the high level for the bus.  
R/  
W
8 Bit Register Data For  
Address (N)  
8 Bit Register Data For  
Address (N)  
SDA  
SCL  
7 Bit Slave Address  
A
8 Bit Register Address (N)  
A
A
A
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
Start  
Stop  
2
Figure 41. Typical I C Sequence  
There is no limit on the number of bytes that can be transmitted between start and stop conditions. When the  
last word transfers, the master generates a stop condition to release the bus. A generic data transfer sequence  
is shown in Figure 41.  
The 7-bit address for the TAS5504 is 0011011.  
4.2 Single and Multiple Byte Transfers  
The serial control interface supports both single-byte and multiple-byte read / write operations for status  
registers and the general control registers associated with the PWM. However, for the DAP data processing  
registers, the serial control interface supports only multiple byte (4 byte) read / write operations.  
During multiple byte read operations, the TAS5504 responds with data, a byte at a time, starting at the  
subaddress assigned, as long as the master device continues to respond with acknowledges. If a particular  
subaddress does not contain 32 bits, the unused bits are read as logic 0.  
During multiple byte write operations, the TAS5504 compares the number of bytes transmitted to the number  
of bytes that are required for each specific sub address. If a write command is received for a biquad  
subaddress, the TAS5504 expects to receive five 32-bit words. If fewer than five 32-bit data words have been  
received when a stop command (or another start command) is received, the data received is discarded.  
Similarly, if a write command is received for a mixer coefficient, the TAS5504 expects to receive one 32-bit  
word.  
53  
SLES123 October 2004  
TAS5504  
I2C Serial Control Interface (Slave Address 0x36)  
2
Supplying a subaddress for each subaddress transaction is referred to as random I C addressing. The  
2
TAS5504 also supports sequential I C addressing. For write transactions, if a subaddress is issued followed  
2
by data for that subaddress and the fifteen subaddresses that follow, a sequential I C write transaction has  
2
taken place, and the data for all 16 subaddresses is successfully received by the TAS5504. For I C sequential  
write transactions, the subaddress then serves as the start address and the amount of data subsequently  
transmitted, before a stop or start is transmitted, determines how many subaddresses are written. As was true  
for random addressing, sequential addressing requires that a complete set of data be transmitted. If only a  
partial set of data is written to the last subaddress, the data for the last subaddress is discarded. However,  
all other data written is accepted; just the incomplete data is discarded.  
4.3 Single Byte Write  
As shown in Figure 42, a single byte data write transfer begins with the master device transmitting a start  
2
condition followed by the I C device address and the read/write bit. The read/write bit determines the direction  
2
of the data transfer. For a write data transfer, the read/write bit will be a 0. After receiving the correct I C device  
address and the read/write bit, the TAS5504 device responds with an acknowledge bit. Next, the master  
transmits the address byte or bytes corresponding to the TAS5504 internal memory address being accessed.  
After receiving the address byte, the TAS5504 again responds with an acknowledge bit. Next, the master  
device transmits the data byte to be written to the memory address being accessed. After receiving the data  
byte, the TAS5504 again responds with an acknowledge bit. Finally, the master device transmits a stop  
condition to complete the single byte data write transfer.  
Start  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
R/W  
A6 A5 A4 A3 A2 A1 A0  
ACK A7 A6 A5 A4 A3 A2 A1 A0 ACK D7 D6 D5 D4 D3 D2 D1 D0 ACK  
Stop  
Condition  
2
I C Device Address and  
Sub-Address  
Data Byte  
Read/Write Bit  
Figure 42. Single Byte Write Transfer  
4.4 Multiple Byte Write  
A multiple byte data write transfer is identical to a single byte data write transfer except that multiple data bytes  
are transmitted by the master device to TAS5504 as shown in Figure 43. After receiving each data byte, the  
TAS5504 responds with an acknowledge bit.  
Start  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
D0 ACK D7  
Acknowledge  
D0 ACK D7  
Acknowledge  
D0 ACK  
R/W  
A6 A5  
A1 A0  
ACK A7 A6 A5 A4 A3  
A1 A0 ACK D7  
Stop  
Condition  
2
Other Data Bytes  
I C Device Address and  
Read/Write Bit  
Sub-Address  
First Data Byte  
Last Data Byte  
Figure 43. Multiple Byte Write Transfer  
4.5 Incremental Multiple Byte Write  
2
2
The I C supports a special mode which permits I C write operations to be broken up into multiple data write  
operations that are multiples of 4 data bytes. These are 6 byte, 10 byte, 14 byte, 18 byte, ... etc., write  
operations that are composed of a device address, read/write bit, and subaddress and any multiple of 4 bytes  
2
of data. This permits the system to incrementally write large register values without blocking other I C  
transactions.  
This feature is enabled by the append subaddress function in the TAS5504. This function enables the  
2
TAS5504 to append 4 bytes of data to a register that was opened by a previous I C register write operation  
but has not received its complete number of data bytes. Since the length of the long registers is a multiple of  
4 bytes, using 4-byte transfers will have only an integer number of append operations.  
54  
TAS5504  
SLES123 October 2004  
I2C Serial Control Interface (Slave Address 0x36)  
When the correct number of bytes has been received, the TAS5504 starts processing the data.  
The procedure to perform an incremental multi-byte write operation is as follows:  
2
1. Start a normal I C write operation by sending the device address, write bit, register subaddress, and the  
first four bytes of the data to be written. At the end of that sequence, send a stop condition. At this point,  
the register has been opened and accepts the remaining data that is sent by writing 4-byte blocks of data  
to the append subaddress (0xFE).  
2. At a later time, one or more append data transfers are performed to incrementally transfer the remaining  
number of bytes in sequential order to complete the register write operation. Each of these append  
operations will be composed of the device address, write bit, append subaddress (0xFE), and four bytes  
of data followed by a stop condition.  
3. The operation will be terminated due to an error condition and the data will be flushed:  
a. If a new subaddress is written to the TAS5504 before the correct number of bytes have been written.  
b. If more or less than 4 bytes are data written at the beginning or during any of the append operations.  
c. If a read bit is sent.  
4.6 Single Byte Read  
As shown in Figure 44, a single byte data read transfer begins with the master device transmitting a start  
2
condition followed by the I C device address and the read/write bit. For the data read transfer, both a write  
followed by a read are actually done. Initially, a write is done to transfer the address byte or bytes of the internal  
memory address to be read. As a result, the read/write bit will be a 0. After receiving the TAS5504 address  
and the read/write bit, the TAS5504 responds with an acknowledge bit. In addition, after sending the internal  
memory address byte or bytes, the master device transmits another start condition followed by the TAS5504  
address and the read/write bit again. This time the read/write bit will be a 1, indicating a read transfer. After  
receiving the TAS5504 and the read/write bit the TAS5504 again responds with an acknowledge bit. Next, the  
TAS5504 transmits the data byte from the memory address being read. After receiving the data byte, the  
master device transmits a not acknowledge followed by a stop condition to complete the single byte data read  
transfer.  
Repeat Start  
Condition  
Not  
Start  
Acknowledge  
Condition  
Acknowledge  
Acknowledge  
A0 ACK  
Acknowledge  
A6 A5  
A1 A0 R/W ACK A7 A6 A5 A4  
A6 A5  
A1 A0 R/W ACK D7 D6  
D1 D0 ACK  
2
2
Stop  
Condition  
I C Device Address and  
Read/Write Bit  
Sub-Address  
I C Device Address and  
Read/Write Bit  
Data Byte  
Figure 44. Single Byte Read Transfer  
4.7 Multiple Byte Read  
A multiple byte data read transfer is identical to a single byte data read transfer except that multiple data bytes  
are transmitted by the TAS5504 to the master device as shown in Figure 45. Except for the last data byte,  
the master device responds with an acknowledge bit after receiving each data byte.  
Repeat Start  
Condition  
Not  
Start  
Acknowledge  
Condition  
Acknowledge  
Acknowledge  
A0 ACK  
Acknowledge  
Acknowledge  
D0 ACK D7  
Acknowledge  
D0 ACK D7  
A6  
A0 R/W ACK  
A6  
A0 R/W ACK D7  
D0 ACK  
A7 A6 A5  
2
2
I C Device Address and  
Read/Write Bit  
Sub-Address  
I C Device Address and  
Read/Write Bit  
First Data Byte  
Other Data Bytes  
Last Data Byte  
Stop  
Condition  
Figure 45. Multiple Byte Read Transfer  
55  
SLES123 October 2004  
TAS5504  
I2C Serial Control Interface (Slave Address 0x36)  
56  
TAS5504  
SLES123 October 2004  
Serial Control I2C Register Summary  
5
Serial Control I2C Register Summary  
2
The TAS5504 slave address is 0x36. See the Serial Control I C Register Bit Definitions chapter for complete  
bit definitions.  
Note that u indicates unused bits.  
2
I C  
TOTAL  
REGISTER FIELDS  
DESCRIPTION OF CONTENTS  
DEFAULT STATE  
1. Fs = 48 kHz  
SUBADDRESS BYTES  
0x00  
0x01  
0x02  
1
1
1
Clock control register  
Set data rate and MCLK frequency  
2. MCLK = 256 Fs = 12.288 MHz  
General status register  
Error status register  
Clip indicator and ID code for the  
TAS5504  
0x01  
PLL, SCLK, LRCLK, and frame slip  
errors  
No errors  
1. PWM high pass disabled  
2. Auto clock set  
3. Hard un-mute on clock error  
recovery  
PWM high pass, clock set, un-mute  
select, PSVC select  
0x03  
0x04  
1
1
System control register 1  
System control register 2  
4. PSVC HIZ disable  
1. Automute timeout disable  
2. Post-DAP detection automute  
enabled  
3. 4-Ch device input detection  
automute enabled  
Automute and de-emphasis control  
4. Un-mute threshold 6 dB over input  
5. No de-emphasis  
1. Enable backend reset  
2. Valid low for reset  
3. Valid low for mute  
4. Normal BEPolarity  
5. Don’t remap the output for the  
TAS5182  
0x05 – 0x06  
1
Channel configuration registers Configure channels 1 and 2  
6. Don’t go low-low in mute  
7. Don’t remap Hi-Z state to  
low-low state  
0x07 – 0x0A  
0x0B – 0x0C  
Reserved  
1. Enable backend reset2. Valid  
low for reset3. Valid low for mute4.  
Normal BEPolarity5. Don’t remap  
the output for the TAS51826. Don’t  
go low-low in mute7. Don’t remap  
Hi-Z state to low-low state  
Channel configuration registers Configure channels 3 and 4  
1. Disable backend reset sequence  
2 Valid does not have to be low for  
reset  
3. Valid does not have to be low for  
mute  
4. Normal BEPolarity  
5. Don’t remap output to comply  
with 5182  
Headphone configuration  
Configure headphone output  
register  
0x0D  
0x0E  
1
6. Don’t go low-low in mute  
7. Don’t remap HiZ state to  
low-low state  
1
1
Serial data interface register  
Soft mute register  
Set serial data interface to right  
justified, I2S, or left justified  
24-bit I2S  
0x0F  
Soft mute for channels 1, 2, 3, and 4  
RESERVED  
Un-mute all channels  
0x10 – 0x13  
57  
SLES123 October 2004  
TAS5504  
Serial Control I2C Register Summary  
2
I C  
TOTAL  
REGISTER FIELDS  
Automute control  
DESCRIPTION OF CONTENTS  
DEFAULT STATE  
SUBADDRESS BYTES  
0x14  
0x15  
1
Set auto-mute delay and threshold  
1. Set auto-mute delay = 5 ms  
2. Set auto-mute threshold less  
than bit 8.  
1
Automute PWM threshold and  
backend reset period  
Set PWM auto-mute threshold, set  
backend reset period  
1. Set the PWM threshold the same  
as the TAS5504 input threshold.  
2. Set the backend reset  
period = 5 ms.  
0x16  
1
Modulation limit register  
Set modulation index  
RESERVED  
97.7%  
0x170x1A  
Channel 1 delay = 23 DCLK  
periods  
Channel 2 delay = 0 DCLK periods  
Sets inter-channel delay for channels  
1 and 2  
0x1B–0x1C  
1/Reg. Inter-channel delay registers  
0x1D0x20  
RESERVED  
Channel 3 delay = 8 DCLK  
periods  
Channel 4 delay = 24 DCLK  
periods  
Sets inter-channel delay for channels  
3 and 4  
0x21–0x22  
0x23  
1/Reg. Inter-channel delay registers  
1
4
Inter-channel offset  
Absolute delay offset for channel 1  
(0 – 255)  
Minimum absolute default = 0  
DCLK periods  
0x240x3F  
RESERVED  
0x40  
Bank switching command  
register  
Set up DAP coefficients bank  
switching for banks 1, 2, and 3  
Manual selection – Bank 1  
See the Input Mixer Registers  
32/Reg (0x41 and 0x42, Channels 1  
and 2) section  
SDIN1Left to input mixer 1  
SDIN1Right to input mixer 2  
0x41–0x42  
0x43–0x46  
0x47–0x48  
8X4 input crossbar mixer setup  
RESERVED  
See the Input Mixer Registers  
32/Reg (0x47 and 0x48, Channels 3  
and 4) section  
SDIN4Left to input mixer 3  
SDIN4Right to input mixer 4  
8X4 input crossbar mixer setup  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
4
4
4
4
4
4
ipmix_1_to_ch4  
ipmix_2_to_ch4  
ipmix_3_to_ch2  
Ch3_bp_bq2  
Input mixer 1 to Ch 4 mixer coefficient 0.0  
Input mixer 2 to Ch 4 mixer coefficient 0.0  
Input mixer 3 to Ch 2 mixer coefficient 0.0  
Bypass Ch 3 biquad 2 coefficient  
Ch 3 biquad 2 coefficient  
0.0  
1.0  
0.0  
Ch3_bq2  
ipmix_4_to_ch12  
Ch 4 biquad 2 output to Ch1 mixer  
and Ch2 mixer coefficient  
0x4F  
0x50  
4
4
Ch4_bp_bq2  
Ch4_bq2  
Bypass Ch 4 biquad 2 coefficient 0  
Ch 4 biquad 2 coefficient  
0.0  
1.0  
0x51–0x5E  
20/Reg. See the next section  
Channels 1, 2, 3, and 4 biquad filter  
coefficients  
All biquads = All pass  
0x89–0x8A  
8
8
Bass and Treble Bypass  
Ch 1 and 2  
Bypass bass and treble for  
channels 1 and 2  
Bass and treble bypassed for  
channels 1 and 2  
0x8B0x8E  
0x8F0x90  
RESERVED  
Bass and treble bypass Ch 3  
and 4  
Bypass bass and treble for channels 3 Bass and treble bypassed for  
and 4  
channels 3 and 4  
0x91  
0x92  
0x93  
0x94  
4
8
4
8
Loudness Log2 LG  
Loudness Log2 LO  
Loudness G  
Loudness Log2 LG  
Loudness Log2 LO  
Loudness G  
0.5  
0.0  
0.0  
0.0  
Loudness O  
Loudness O  
58  
TAS5504  
SLES123 October 2004  
Serial Control I2C Register Summary  
DEFAULT STATE  
2
I C  
TOTAL  
REGISTER FIELDS  
DESCRIPTION OF CONTENTS  
SUBADDRESS BYTES  
0x5F0x7A  
RESERVED  
0x7B0x88  
20/Reg See the next section  
Channels 3 and 4 biquad filter  
coefficient  
All biquads = All pass  
Loudness biquad coefficient b0  
Loudness biquad coefficient b1  
Loudness biquad coefficient b2  
Loudness biquad coefficient a0  
Loudness biquad coefficient a1  
DRC1 control channels 1, 2, and 3  
0x00, 0x00, 0xD5, 0x13  
0x00, 0x00, 0x00, 0x00  
0x0F, 0xFF, 0x2A, 0xED  
0x00, 0xFE, 0x50, 0x45  
0x0F, 0x81, 0xAA, 0x27  
0x95  
20  
Loudness biquad  
0x96  
0x97  
4
4
DRC1 control channels 1, 2,  
and 3  
DRC1 disabled in channels 1, 2,  
and 3  
DRC2 Ch 4 Control  
DRC1 control channel 4  
DRC1 energy  
DRC2 disabled (channel 4)  
0.0041579  
Channels 1, 2, and 3,  
DRC1 energy  
0x98  
0x99  
8
Channels 1, 2, 3, and 4,  
DRC1 (1energy)  
DRC1 (1 energy)  
0.9958421  
Channels 1, 2, and 3,  
DRC1 threshold T1  
DRC1 threshold (T1) – upper 4 bytes  
DRC1 threshold (T1) – lower 4 bytes  
DRC1 threshold (T2) – upper 4 bytes  
DRC1 threshold (T2) – lower 4 bytes  
DRC1 slope (k0)  
0x00, 0x00, 0x00, 0x00  
0x0B, 0x20, 0xE2, 0xB2  
0x00, 0x00, 0x00, 0x00  
0x06, 0xF9, 0xDE, 0x58  
0x0F, 0xC0, 0x00, 0x00  
16  
Channels 1, 2, and 3,  
DRC1 thresholdT2  
Channels 1, 2, and 3,  
DRC1 slope k0  
Channels 1, 2, and 3,  
DRC1 slope k1  
DRC1 slope (k1)  
DRC1 slope (k2)  
0x0F, 0xC0, 0x00, 0x00  
0x0F, 0x90, 0x00, 0x00  
0x9A  
0x9B  
12  
16  
Channels 1, 2, and 3,  
DRC1 slope k2  
Channels 1, 2, and 3,  
DRC1 offset 1  
DRC1 offset 1 (O1) – upper 4 bytes  
DRC1 offset 1 (O1) – lower 4 bytes  
DRC1 offset 2 (O2) – upper 4 bytes  
DRC1 offset 2 (O2) – lower 4 bytes  
DRC1 attack  
0x00, 0x00, 0xFF, 0xFF  
0xFF, 0x82, 0x30, 0x98  
0x00, 0x00, 0x00, 0x00  
0x01, 0x95, 0xB2, 0xC0  
0x00, 0x00, 0x88, 0x3F  
Channels 1, 2, and 3,  
DRC1 offset 2  
Channels 1, 2, and 3,  
DRC1 attack  
Channels 1, 2, and 3,  
DRC1 (1Attack)  
DRC1 (1 – Attack)  
DRC1 delay  
0x00, 0x7F, 0x77, 0xC0  
0x00, 0x00, 0x00, 0xAE  
0x00, 0x7F, 0xFF, 0x51  
0x9C  
16  
Channels 1, 2, and 3,  
DRC1 Delay  
Channels 1, 2, 3, and 3,  
DRC1 (1 – Delay)  
DRC1 (1Delay)  
Ch 4 DRC2 energy  
DRC2 energy  
0x00, 0x00, 0x88, 0x3F  
0x00, 0x7F, 0x77, 0xC0  
0x00, 0x00, 0x00, 0x00  
0x0B, 0x20, 0xE2, 0xB2  
0x00, 0x00, 0x00, 0x00  
0x06, 0xF9, 0xDE, 0x58  
0x00, 0x40, 0x00, 0x00  
0x0F, 0xC0, 0x00, 0x00  
0x0F, 0x90, 0x00, 0x00  
0x9D  
0x9E  
8
Ch 4 DRC2 (1Energy)  
DRC2 (1 – Energy)  
DRC2 threshold (T1) – upper 4 bytes  
DRC2 threshold (T1) – lower 4 bytes  
DRC2 threshold (T2) – upper 4 bytes  
DRC2 threshold (T2) – lower 4 bytes  
DRC2 slope (k0)  
CH 4 DRC2 threshold T1  
CH 4 DRC2 threshold T2  
16  
Ch 4 DRC2 slope k0  
Ch 4 DRC2 slope k1  
Ch 4 DRC2 slope k2  
DRC2 slope (k1)  
0x9F  
12  
DRC2 slope (k2)  
59  
SLES123 October 2004  
TAS5504  
Serial Control I2C Register Summary  
2
I C  
TOTAL  
REGISTER FIELDS  
DESCRIPTION OF CONTENTS  
DEFAULT STATE  
SUBADDRESS BYTES  
DRC2 offset (O1) – upper 4 bytes  
DRC2 offset (O1) – lower 4 bytes  
DRC2 offset (O2) – upper 4 bytes  
DRC2 offset (O2) – lower 4 bytes  
DRC 2 attack  
0x00, 0x00, 0xFF, 0xFF  
Ch 4 DRC2 offset 1  
0xFF, 0x82, 0x30, 0x98  
0xA0  
16  
0x00, 0x00, 0x00, 0x00  
Ch 4 DRC2 offset 2  
0x01, 0x95, 0xB2, 0xC0  
Ch 4 DRC2 attack  
Ch 4 DRC2 (1Attack)  
Ch 4 DRC2 Delay  
Ch 4 DRC2 (1Delay)  
DRC bypass 1  
0x00, 0x00, 0x88, 0x3F  
DRC2 (1 – Attack)  
0x00, 0x7F, 0x77, 0xC0  
0xA1  
0xA2  
16  
8
DRC2 delay  
0x00, 0x00, 0x00, 0xAE  
DRC2 (1 – Delay)  
0x00, 0x7F, 0xFF, 0x51  
Channel 1 DRC1 bypass coefficient  
Channel 1 DRC1 inline coefficient  
Channel 2 DRC1 bypass coefficient  
Channel 2 DRC1 inline coefficient  
Reserved  
1.0  
DRC inline 1  
0.0  
DRC bypass 2  
1.0  
0xA3  
8
8
DRC inline 2  
0.0  
0xA40xA7  
Reserved  
DRC bypass 3  
DRC inline 3  
Channel 3 DRC1 bypass coefficient  
Channel 3 DRC1 inline coefficient  
Channel 4 DRC2 bypass coefficient  
Channel 4 DRC2 inline coefficient  
1.0  
0xA8  
8
0.0  
DRC bypass 4  
DRC inline 4  
1.0  
0xA9  
0xAA  
8
8
0.0  
sel op14 and mix to S  
Select 0 to 2 of four DAP channels to  
output mixer S  
Select channel 1 to PWM 1  
0xAB  
8
sel op14 and mix to T  
Select 0 to 2 of four DAP channels to  
output mixer T  
Select channel 2 to PWM 2  
0xAC–0xAF  
0xB0  
RESERVED  
12  
12  
sel op14 and mix to Y  
sel op14 and mix to Z  
Select 0 to 3 of four DAPchannels to  
output mixer Y  
Select channel 3 to PWM 3  
Select channel 4 to PWM 4  
0xB1  
Select 0 to 3 of four DAP channels to  
output mixer Z  
0xB2–0xCE  
0xCF  
RESERVED  
20  
4
Volume biquad  
Volume biquad  
All pass  
0xD0  
Vol, T, and B slew rates  
U (31:24), U (23:16), U (15:12)  
VSR(11:8), TBSR(7:0)  
0x00, 0x00, 0x02, 0x3F  
0xD1  
0xD2  
4
4
Ch1 volume  
Ch2 volume  
Channel 1 volume  
0 dB  
0 dB  
Channel 2 volume  
0xD3–0xD6  
0xD7  
RESERVED  
4
4
4
4
4
4
4
4
Ch3 volume  
Channel 3 volume  
0 dB  
0xD8  
Ch4 volume  
Channel 4 volume  
0 dB  
0xD9  
Master volume  
Bass filter set  
Bass filter index  
Treble filter set  
Treble filter index  
Master volume  
Mute  
OXDA  
0xDB  
Bass filter set (all channels)  
Bass filter level (all channels)  
Treble filter set (all channels)  
Treble filter level (all channels)  
Filter set 3  
0 dB  
0xDC  
Filter set 3  
0 dB  
0xDD  
0xDE  
AM mode and tuned frequency Set-up AM mode for AM-interference  
AM mode disabled  
register  
reduction  
Select sequence 1  
IF frequency = 455 kHz  
Use BCD-tuned frequency  
0xDF  
0xE0  
4
4
PSVC control range  
Set PSVC control range  
12-dB control range  
General control register  
Four channel configuration, PSVC  
enable  
Four channel configuration, power  
supply volume control disabled  
0xE1–0xFD  
RESERVED  
60  
TAS5504  
SLES123 October 2004  
Serial Control I2C Register Summary  
2
I C  
TOTAL  
REGISTER FIELDS  
DESCRIPTION OF CONTENTS  
DEFAULT STATE  
SUBADDRESS BYTES  
0xFE  
0xFF  
4 (min) Multiple byte write append  
register  
Special register  
N/A  
RESERVED  
61  
SLES123 October 2004  
TAS5504  
Serial Control Interface Register Definitions  
6
Serial Control Interface Register Definitions  
2
Unless otherwise noted, the I C register default values are in bold font.  
Note that u indicates unused bits.  
6.1 Clock Control Register (0x00)  
Bit D1 is Don’t Care.  
Table 61. Clock Control Register  
D7  
0
0
0
0
1
1
1
1
D6  
0
0
1
1
0
0
1
1
D5  
0
1
0
1
0
1
0
1
D4  
0
0
0
0
1
1
1
1
D3  
0
0
1
1
0
0
1
1
D2  
0
1
0
1
0
1
0
1
D1  
D0  
FUNCTION  
32-kHz data rate  
38-kHz data rate  
44.1-kHz data rate  
48-kHz data rate  
88.2-kHz data rate  
96-kHz data rate  
176.4-kHz data rate  
192-kHz data rate  
MCLK frequency = 64  
MCLK frequency = 128  
MCLK frequency = 192  
MCLK frequency = 256  
MCLK frequency = 384  
MCLK frequency = 512  
MCLK frequency = 768  
Reserved  
1
Clock register is valid (read only)  
0
Clock register is not valid (read only)  
6.2 General Status Register 0 (0x01)  
Table 62. General Status Register (0x01)  
D7  
1
D6  
D5  
D4  
D3  
D2  
D1  
D0  
FUNCTION  
Clip indicator  
1
Bank switching busy  
Identification code for TAS5504  
0
0
0
0
0
1
6.3 Error Status Register (0x02)  
Note that the error bits are sticky bits that are not cleared by the hardware. This means that the software must  
clear the register (write zeroes) and than read them to determine if there are any persistent errors.  
Table 63. Error Status Register (0X02)  
D7  
1
D6  
D5  
D4  
D3  
D2  
D1  
D0  
FUNCTION  
PLL phase lock error  
PLL auto lock error  
SCLK error  
1
1
1
LRCLK error  
1
Frame slip  
0
0
0
0
0
0
0
0
No errors  
63  
SLES123 October 2004  
TAS5504  
Serial Control Interface Register Definitions  
6.4 System Control Register 1 (0x03)  
Bit D5, D2, D1, and D0 are Don’t Care.  
Table 64. System Control Register 1  
D7  
0
D6  
D5  
D4  
D3  
D2  
D1  
D0  
FUNCTION  
PWM high pass disabled  
1
PWM high pass enabled  
0
Soft unmute on recovery from clock error  
Hard unmute on recovery from clock error  
PSVC Hi-Z enable  
1
1
0
PSVC Hi-Z disable  
6.5 System Control Register 2 (0x04)  
Bit D3 and D2 are Don’t Care.  
Table 65. System Control Register 2  
D7  
0
D6  
D5  
0
D4  
0
D3  
D2  
D1  
0
D0  
0
FUNCTION  
Reserved  
0
PWM automute detection enabled  
PWM automute detection disabled  
4 Ch device input detection automute enabled  
4 Ch device input detection automute disabled  
Unmute threshold 6 dB over input threshold  
Unmute threshold equal to input threshold  
No de-emphasis  
1
1
1
0
1
De-emphasis for Fs = 32 kHz  
1
0
De-emphasis for Fs = 44.1 kHz  
1
1
De-emphasis for Fs = 48 kHz  
6.6 Channel Configuration Control Register (0x05X0C)  
Channels 1, 2, 3, and 4 are mapped into x05, x06, x0B, and x0C.  
Bit D0 is Don’t Care.  
Table 66. Channel Configuration Control Registers  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
FUNCTION  
Disable backend reset sequence for a channel BEErrorRecEn  
Enable backend reset sequence for a channel  
Valid does not have to be low for this channel to be reset BEValidRst  
Valid must be low for this channel to be reset  
Valid does not have to be low for this channel to be muted BEValidMute  
Valid must be low for this channel to be muted  
Normal BEPolarity  
1
1
1
1
Switches PWM+ and PWMand invert audio signal  
Do not remap output to comply with 5182 interface  
Remap output to comply with 5182 interface  
1
Do not go to low low in mute BELowMute  
Go to low-low in Mute  
1
Do not remap Hi-Z state to low-low state BE5111BsMute  
Remap Hi-Z state to low-low state  
1
64  
TAS5504  
SLES123 October 2004  
Serial Control Interface Register Definitions  
6.7 Headphone Configuration Control Register (0x0D)  
Bit D0 is Don’t Care.  
Table 67. Headphone Configuration Control Register  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
FUNCTION  
Disable backend reset sequence for a channel BEErrorRecEn  
Enable backend reset sequence for a channel  
Valid does not have to be low for this channel to be reset BEValidRst  
Valid must be low for this channel to be reset  
Valid does not have to be low for this channel to be muted BEValidMute  
Valid must be low for this channel to be muted  
Normal BEPolarity  
1
1
1
1
Switches PWM+ and PWMand invert audio signal  
Do not remap output to comply with 5182 interface  
Remap output to comply with 5182 interface  
1
Do not go to low low in mute BELowMute  
Go to low-low in Mute  
1
Do not remap Hi-Z state to low-low state BE5111BsMute  
Remap Hi-Z state to low-low state  
1
6.8 Serial Data Interface Control Register (0x0E)  
2
Nine serial modes can be programmed I C.  
Table 68. Serial Data Interface Control Register Format  
RECEIVE SERIAL DATA  
INTERFACE FORMAT  
WORD LENGTHS  
D7D4  
D3 D2  
D1  
D0  
Right justified  
Right justified  
Right justified  
16  
20  
24  
16  
20  
24  
16  
20  
24  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
2
I S  
2
I S  
2
I S  
Left justified  
Left justified  
Left justified  
Illegal  
Illegal  
Illegal  
Illegal  
Illegal  
Illegal  
Illegal  
65  
SLES123 October 2004  
TAS5504  
Serial Control Interface Register Definitions  
6.9 Soft Mute Register (0x0F)  
Table 69. Soft Mute Register  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Function  
1
Soft Mute Channel 1  
Soft Mute Channel 2  
Soft Mute Channel 3  
Soft Mute Channel 4  
Unmute All Channels  
1
1
1
0
0
0
0
0
0
0
0
6.10 Automute Control Register(0x14)  
Table 610. Automute Control Register  
D7  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
D6  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
D5  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
D4  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
D3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
D2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
D1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
D0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
FUNCTION  
Set input automute and PWM automute delay to 1 ms  
Set input automute and PWM automute delay to 2 ms  
Set input automute and PWM automute delay to 3 ms  
Set input automute and PWM automute delay to 4 ms  
Set input automute and PWM automute delay to 5 ms  
Set input automute and PWM automute delay to 10 ms  
Set input automute and PWM automute delay to 20 ms  
Set input automute and PWM automute delay to 30 ms  
Set input automute and PWM automute delay to 40 ms  
Set input automute and PWM automute delay to 50 ms  
Set input automute and PWM automute delay to 60 ms  
Set input automute and PWM automute delay to 70ms  
Set input automute and PWM automute delay to 80 ms  
Set input automute and PWM automute delay to 90 ms  
Set input automute and PWM automute delay to 100 ms  
Set input automute and PWM automute delay to 110 ms  
Set input automute threshold less than Bit 1 (zero input signal), lowest automute  
threshold.  
Set input automute threshold less than Bit 2  
Set input automute threshold less than Bit 3  
Set input automute threshold less than Bit 4  
Set input automute threshold less than Bit 5  
Set input automute threshold less than Bit 6  
Set input automute threshold less than Bit 7  
Set input automute threshold less than Bit 8  
Set input automute threshold less than Bit 9  
Set input automute threshold less than Bit 10  
Set input automute threshold less than Bit 11  
Set input automute threshold less than Bit 12  
Set input automute threshold less than Bit 13  
Set input automute threshold less than Bit 14  
Set input automute threshold less than Bit 15  
66  
TAS5504  
SLES123 October 2004  
Serial Control Interface Register Definitions  
6.11 Automute PWM Threshold and Backend Reset Period (0x15)  
Table 611. Automute PWM Threshold and Backend Reset Period  
D7  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
D6  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
D5  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
D4  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
D3  
D2  
D1  
D0  
FUNCTION  
Set PWM automute threshold equals input automute threshold  
Set PWM automute threshold 1 bit more than input automute threshold  
Set PWM automute threshold 2 bits more than input automute threshold  
Set PWM automute threshold 3 bits more than input automute threshold  
Set PWM automute threshold 4 bits more than input automute threshold  
Set PWM automute threshold 5 bits more than input automute threshold  
Set PWM automute threshold 6 bits more than input automute threshold  
Set PWM automute threshold 7 bits more than input automute threshold  
Set PWM automute threshold equals input automute threshold  
Set PWM automute threshold 1 bit less than input automute threshold  
Set PWM automute threshold 2 bits less than input automute threshold  
Set PWM automute threshold 3 bits less than input automute threshold  
Set PWM automute threshold 4 bits less than input automute threshold  
Set PWM automute threshold 5 bits less than input automute threshold  
Set PWM automute threshold 6 bits less than input automute threshold  
Set PWM automute threshold 7 bits less than input automute threshold  
Set backend reset period < 1 ms  
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
X
0
1
0
1
0
1
0
1
0
1
0
1
X
Set backend reset period 1 ms  
Set backend reset period 2 ms  
Set backend reset period 3 ms  
Set backend reset period 4 ms  
Set backend reset period 5 ms  
Set backend reset period 6 ms  
Set backend reset period 7 ms  
Set backend reset period 8 ms  
Set backend reset period 9 ms  
Set backend reset period 10 ms  
Set backend reset period 10 ms  
Set backend reset period 10 ms  
67  
SLES123 October 2004  
TAS5504  
Serial Control Interface Register Definitions  
6.12 Modulation Index Limit Register (0x16)  
Table 612. Modulation Index Limit Register  
LIMIT  
[DCLKS]  
MIN WIDTH  
[DCLKS]  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
MODULATION INDEX  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
2
3
4
5
6
7
8
2
4
99.2%  
98.4%  
97.7%  
96.9%  
96.1%  
95.3%  
94.5%  
93.8%  
6
8
10  
12  
14  
16  
6.13 Interchannel Channel Delay Registers (0x1B 0x22) and Offset Register (0x23)  
Channels 1, 2, 3, and 4 are mapped into (0x1B, 0x1C, 0x21, and 0x22).  
Bits D1 and D0 are Don’t Care.  
Table 613. Interchannel Channel Delay Registers  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
D0  
FUNCTION  
Minimum absolute delay, 0 DCLK cycles, default for channel 1  
Maximum positive delay, 31 x 4 DCLK cycles  
Maximum negative delay, 32 x 4 DCLK cycles  
Default value for Channel 1 32  
0
1
1
1
1
1
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
Default value for Channel 2 0  
1
1
1
0
0
0
Default value for Channel 3 8  
0
1
1
0
0
0
Default value for Channel 4 24  
The offset register is mapped into 0x23.  
Table 614. Channel Offset Register  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
FUNCTION  
Minimum absolute offset, 0 DCLK cycles default for channel 1  
Maximum absolute delay, 255 DCLK cycles  
1
1
1
1
1
1
1
1
68  
TAS5504  
SLES123 October 2004  
Serial Control Interface Register Definitions  
6.14 Bank Switching Command (0x40)  
Bits D31D24, D22D19 are Don’t Care.  
Table 615. Bank Switching Command  
D31  
D30  
D22  
D29  
D21  
D28  
D27  
D26  
D25  
D24  
FUNCTION  
Unused bits  
D23  
D20  
D19  
D18  
0
D17  
0
D16  
0
FUNCTION  
Manual selection Bank 1  
Manual selection Bank 2  
Manual selection Bank 3  
Automatic bank selection  
Update the values in Bank 1  
Update the values in Bank 2  
Update the values in Bank 3  
Update only the bank map  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
0
1
1
1
0
x
x
x
Update the bank map using values in  
D15D0  
1
x
x
x
Do not update the bank map using  
values in D15D0  
D15  
1
D14  
D13  
D12  
D11  
D10  
D9  
D8  
FUNCTION  
32-kHz data rate – Use Bank 1  
38-kHz data rate – Use Bank 1  
44.1-kHz data rate – Use Bank 1  
48-kHz data rate – Use Bank 1  
88.2-kHz data rate – Use Bank 1  
96-kHz data rate – Use Bank 1  
176.4-kHz data rate – Use Bank 1  
192-kHz data rate – Use Bank 1  
Default  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
D7  
1
D6  
D5  
D4  
D3  
D2  
D1  
D0  
FUNCTION  
32-kHz data rate – Use Bank 2  
38-kHz data rate – Use Bank 2  
44.1-kHz data rate – Use Bank 2  
48-kHz data rate – Use Bank 2  
88.2-kHz data rate – Use Bank 2  
96-kHz data rate – Use Bank 2  
176.4-kHz data rate – Use Bank 2  
192-kHz data rate – Use Bank 2  
Default  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
69  
SLES123 October 2004  
TAS5504  
Serial Control Interface Register Definitions  
6.15 Input Mixer Registers (0x41, 0x42, 0x47, 0x48, Channels 14)  
Input mixers 1, 2, 3, and 4 are mapped into registers 0x41, 0x42, 0x47, and 0x48.  
Each gain coefficient is in 28-bit (5.23) format so 0x800000 is a gain of 1. Each gain coefficient is written as  
a 32-bit word with the upper 4 bits not used. For 8-gain coefficients, the total is 32 bytes.  
Bold indicates the one channel that is passed through the mixer.  
Table 616. Input Mixer Registers Format (Channels 14)  
2
I C  
TOTAL  
REGISTER  
FIELDS  
DESCRIPTION OF CONTENTS  
DEFAULT STATE  
SUBADDRESS BYTES  
SDIN1Left A to Input Mixer 1 coefficient (default = 1)  
U (31:28), A_1 (27:24), A_1 (23:16), A_1 (15:8), A_1 (7:0)  
0x00, 0x80, 0x00, 0x00  
A_to_ipmix[1]  
B_to_ipmix[1]  
C_to_ipmix[1]  
D_to_ipmix[1]  
E_to_ipmix[1]  
F_to_ipmix[1]  
G_to_ipmix[1]  
H_to_ipmix[1]  
A_to_ipmix[2]  
B_to_ipmix[2]  
C_to_ipmix[2]  
D_to_ipmix[2]  
E_to_ipmix[2]  
F_to_ipmix[2]  
G_to_ipmix[2]  
H_to_ipmix[2]  
SDIN1Right B to Input Mixer 1 coefficient (default = 0)  
U (31:28), B_1 (27:24), B_1 (23:16), B_1 (15:8), B_1 (7:0)  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x80, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
SDIN2Left C to Input Mixer 1 coefficient (default = 0)  
U (31:28), C_1 (27:24), C_1 (23:16), C_1 (15:8), C_1 (7:0)  
SDIN2Right D to Input Mixer 1 coefficient (default = 0)  
U (31:28), D_1 (27:24), D_1 (23:16), D_1 (15:8), D_1 (7:0)  
0x41  
32  
SDIN3Left E to Input Mixer 1 coefficient (default = 0)  
U (31:28), E_1 (27:24), E_1 (23:16), E_1 (15:8), E_1 (7:0)  
SDIN3Right F to Input Mixer 1 coefficient (default = 0)  
U (31:28), F_1 (27:24), F_1 (23:16), F_1 (15:8), F_1 (7:0)  
SDIN4Left G to Input Mixer 1 coefficient (default = 0)  
U (31:28), G_1 (27:24), G_1 (23:16), G_1 (15:8), G_1 (7:0)  
SDIN4Right H to Input Mixer 1 coefficient (default = 0)  
U (31:28), H_1 (27:24), H_1 (23:16), H_1 (15:8), H_1 (7:0)  
SDIN1Left A to Input Mixer 2 coefficient (default = 0)  
U (31:28), A_2 (27:24), A_2 (23:16), A_2 (15:8), A_2 (7:0)  
SDIN1Right B to Input Mixer 2 coefficient (default = 1)  
U (31:28), B_2 (27:24), B_2 (23:16), B_2 (15:8), B_2 (7:0)  
SDIN2Left C to Input Mixer 2 coefficient (default = 0)  
U (31:28), C_2(27:24), C_2(23:16), C_2(15:8), C_2(7:0)  
SDIN2Right D to Input Mixer 2 coefficient (default = 0)  
U (31:28), D_2 (27:24), D_2 (23:16), D_2 (15:8), D_2 (7:0)  
0x42  
32  
SDIN3Left E to Input Mixer 2 coefficient (default = 0)  
U (31:28), E_2 (27:24), E_2 (23:16), E_2 (15:8), E_2 (7:0)  
SDIN3Right F to Input Mixer 2 coefficient (default = 0)  
U (31:28), F_2 (27:24), F_2 (23:16), F_2 (15:8), F_2 (7:0)  
SDIN4Left G to Input Mixer 2 coefficient (default = 0)  
U (31:28), G_2 (27:24), G_2 (23:16), G_2 (15:8), G_2 (7:0)  
SDIN4Right H to Input Mixer 2 coefficient (default = 0)  
U (31:28), H_2 (27:24), H_2 (23:16), H_2 (15:8), H_2 (7:0)  
70  
TAS5504  
SLES123 October 2004  
Serial Control Interface Register Definitions  
2
I C  
TOTAL  
REGISTER  
FIELDS  
DESCRIPTION OF CONTENTS  
DEFAULT STATE  
SUBADDRESS BYTES  
SDIN1Left A to Input Mixer 3 coefficient (default = 0)  
U (31:28), A_3 (27:24), A_3 (23:16), A_3 (15:8), A_3 (7:0)  
0x00, 0x00, 0x00, 0x00  
A_to_ipmix[3]  
B_to_ipmix[3]  
C_to_ipmix[3]  
D_to_ipmix[3]  
E_to_ipmix[3]  
F_to_ipmix[3]  
G_to_ipmix[3]  
H_to_ipmix[3]  
A_to_ipmix[4]  
B_to_ipmix[4]  
C_to_ipmix[4]  
D_to_ipmix[4]  
E_to_ipmix[4]  
F_to_ipmix[4]  
G_to_ipmix[4]  
H_to_ipmix[4]  
SDIN1Right B to Input Mixer 3 coefficient (default = 0)  
U (31:28), B_3 (27:24), B_3 (23:16), B_3 (15:8), B_3 (7:0)  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x80, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x80, 0x00, 0x00  
SDIN2Left C to Input Mixer 3 coefficient (default = 0)  
U (31:28), C_3 (27:24), C_3 (23:16), C_3 (15:8), C_3 (7:0)  
SDIN2Right D to Input Mixer 3 coefficient (default = 0)  
U (31:28), D_3 (27:24), D_3 (23:16), D_3 (15:8), D_3 (7:0)  
0x47  
32  
SDIN3Left E to Input Mixer 3 coefficient (default = 0)  
U (31:28), E_3 (27:24), E_3 (23:16), E_3 (15:8), E_3 (7:0)  
SDIN3Right F to Input Mixer 3 coefficient (default = 0)  
U (31:28), F_3 (27:24), F_3 (23:16), F_3 (15:8), F_3 (7:0)  
SDIN4Left G to Input Mixer 3 coefficient (default = 1)  
U (31:28), G_3 (27:24), G_3 (23:16), G_3 (15:8), G_3 (7:0)  
SDIN4Right H to Input Mixer 3 coefficient (default = 0)  
U (31:28), H_3 (27:24), H_3 (23:16), H_3 (15:8), H_3 (7:0)  
SDIN1Left A to Input Mixer 4 coefficient (default = 0)  
U (31:28), A_4 (27:24), A_4 (23:16), A_4 (15:8), A_4 (7:0)  
SDIN1Right B to Input Mixer 4 coefficient (default = 0)  
U (31:28), B_4 (27:24), B_4 (23:16), B_4 (15:8), B_4 (7:0)  
SDIN2Left C to Input Mixer 4 coefficient (default = 0)  
U (31:28), C_4 (27:24), C_4 (23:16), C_4 (15:8), C_4 (7:0)  
SDIN2Right D to Input Mixer 4 coefficient (default = 0)  
U (31:28), D_4 (27:24), D_4 (23:16), D_4 (15:8), D_4 (7:0)  
0x48  
32  
SDIN3Left E to Input Mixer 4 coefficient (default = 0)  
U (31:28), E_4 (27:24), E_4 (23:16), E_4 (15:8), E_4 (7:0)  
SDIN3Right F to Input Mixer 4 coefficient (default = 0)  
U (31:28), F_4 (27:24), F_4 (23:16), F_4 (15:8), F_4 (7:0)  
SDIN4Left G to Input Mixer 4 coefficient (default = 0)  
U (31:28), G_4 (27:24), G_4 (23:16), G_4 (15:8), G_4 (7:0)  
SDIN4Right H to Input Mixer 4 coefficient (default = 1)  
U (31:28), H_4 (27:24), H_4 (23:16), H_4 (15:8), H_4 (7:0)  
71  
SLES123 October 2004  
TAS5504  
Serial Control Interface Register Definitions  
6.16 Bass Management Registers (0x49–0x50)  
Registers 0x49–0x50 provide configuration control for bass mangement.  
Each gain coefficient is in 28-bit (5.23) format so 0x800000 is a gain of 1. Each gain coefficient is written as  
a 32-bit word with the upper four bits not used.  
Table 617. Bass Management Registers Format (0x49 – 0x50)  
TOTAL  
BYTES  
REGISTER  
NAME  
SUBADDRESS  
DESCRIPTION OF CONTENTS  
DEFAULT STATE  
0x49  
4
4
4
4
4
4
ipmix_1_to_ch4  
ipmix_2_to_ch4  
Input Mixer 1 to Ch 4 Mixer coefficient (default = 0)  
U (31:28), ipmix14 (27:24), ipmix14 (23:16), ipmix14 (15:8),  
ipmix14 (7:0)  
0x00, 0x00, 0x00, 0x00  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
Input Mixer 2 to Ch 4 Mixer coefficient (default = 0)  
U (31:28), ipmix24 (27:24), ipmix24 (23:16), ipmix24 (15:8),  
ipmix24 (7:0)  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x80, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
ipmix_3_to_ch12 Input Mixer 3 to Ch 1 and Ch 2 Mixer coefficient (default = 0)  
U (31:28), ipmix32 (27:24), ipmix32 (23:16), ipmix32 (15:8),  
ipmix32 (7:0)  
Ch3_bp_bq2  
Ch 3 Biquad-2 By-pass coefficient (default = 0)  
U (31:28), ch3_bp_bq2 (27:24), ch3_bp_bq2 (23:16),  
ch3_bp_bq2 (15:8), ch3_bp_bq2 (7:0)  
Ch3_bq2  
Ch 3 Biquad-2 Inline coefficient (default = 1)  
U (31:28), ch3_bq2 (27:24), ch3_bq2 (23:16), ch3_bq2 (15:8),  
ch3_bq2 (7:0)  
ipmix_4_to_ch12 Ch 4 Biquad-2 Output to Ch1 Mixer and Ch2 Mixer coefficient  
(default = 0)  
U (31:28), ipmix4_12 (27:24), ipmix4_12 (23:16), ipmix4_12  
(15:8), ipmix4_12 (7:0)  
0x4F  
0x50  
4
4
Ch4_bp_bq2  
Ch4_bq2  
Ch 4 Biquad-2 By-pass coefficient (default = 0)  
0U (31:28), ch4_bp_bq2 (27:24), ch4_bp_bq2 (23:16),  
ch4_bp_bq2 (15:8), ch4_bp_bq2 (7:0)  
0x00, 0x00, 0x00, 0x00  
0x00, 0x80, 0x00, 0x00  
Ch 4 Biquad-2 Inline coefficient (default = 1)  
U (31:28), ch4_bq2 (27:24), ch4_bq2 (23:16), ch4_bq2 (15:8),  
ch4_bq2 (7:0)  
6.17 Biquad Filters Register (0x51 – 0x88)  
Table 618. Biquad Filters Registers Format (0x51 – 0x88)  
2
I C  
TOTAL  
BYTES  
DEFAULT  
STATE  
REGISTER NAME  
DESCRIPTION OF CONTENTS  
SUBADDRESS  
0x51–0x57  
0x58–0x5E  
0x7B–0x81  
0x82–0x88  
20/Reg.  
20/Reg.  
20/Reg.  
20/Reg.  
Ch1_bq[1] – [7]  
Ch2_bq[1] – [7]  
Ch3_bq[1] [7]  
Ch4_bq[1] [7]  
Ch 1 Biquads 1 – 7. See Table 619 for bit definition.  
Ch 2 Biquads 1 – 7. See Table 619 for bit definition.  
Ch 3 Biquads 1 – 7. See Table 619 for bit definition.  
Ch 4 Biquads 1 – 7. See Table 619 for bit definition.  
See Table 619  
See Table 619  
See Table 619  
See Table 619  
72  
TAS5504  
SLES123 October 2004  
Serial Control Interface Register Definitions  
Each gain coefficient is in 28-bit (5.23) format so 0x800000 is a gain of 1. Each gain coefficient is written as  
a 32-bit word with the upper four bits not used.  
Table 619. Contents of One 20-Byte Biquad Filter Register Format (Default = All-pass)  
DEFAULT GAIN COEFFICIENT VALUES  
DESCRIPTION  
b Coefficient  
REGISTER FIELD CONTENTS  
DECIMAL  
1.0  
HEX  
U (31:28), b0 (27:24), b0 (23:16), b0 (15:8), b0 (7:0)  
U (31:28), b1 (27:24), b1 (23:16), b1 (15:8), b1 (7:0)  
U (31:28), b2 (27:24), b2 (23:16), b2 (15:8), b2 (7:0)  
U (31:28), a1 (27:24), a1 (23:16), a1 (15:8), a1 (7:0)  
U (31:28), a2 (27:24), a2 (23:16), a2 (15:8), a2 (7:0)  
0x00, 0x80, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0
b Coefficient  
1
0.0  
b Coefficient  
2
0.0  
a Coefficient  
1
0.0  
a Coefficient  
2
0.0  
6.18 Bass and Treble Bypass Register (0x89 – 0x90, Channels 1 4)  
Channels 1, 2, 3, and 4 are mapped into registers 0x89, 0x8A, 0x8F, and 0x90. Eight bytes are written for each  
channel. Each gain coefficient is in 28-bit (5.23) format so 0x800000 is a gain of 1. Each gain coefficient is  
written as a 32-bit word with the upper four bits not used.  
Table 620. Bass and Treble Bypass Register Format (0x890x90)  
REGISTER NAME TOTAL BYTES  
CONTENTS  
INITIALIZATION VALUE  
Channel bass and  
treble bypass  
U 31:28), Bypass (27:24), Bypass (23:16), Bypass (15:8), Bypass (7:0) 0x00, 0x80, 0x00, 0x00  
8
Channel bass and  
U (31:28), Inline (27:24), Inline (23:16), Inline (15:8), Inline (7:0)  
0x00, 0x00, 0x00, 0x00  
treble inline  
6.19 Loudness Registers (0x91 – 0x95)  
Table 621. Loudness Registers Format (0x91 – 0x95)  
2
I C  
TOTAL  
REGISTER NAME  
DESCRIPTION OF CONTENTS  
DEFAULT STATE  
SUBADDRESS BYTES  
0x91  
4
Loudness Log2 Gain (LG) U (31:28), LG (27:24), LG (23:16), LG (15:8), LG  
(7:0)  
0xFF, 0xC0, 0x00, 0x00  
Loudness Log2 Offset  
(LO)  
U (31:24), U (23:16), LO (15:8), LO (7:0)  
0x00, 0x00, 0x00, 0x00,  
0x92  
0x93  
8
4
Loudness Log2 LO  
Loudness Gain (G)  
LO (31:24), LO (23:16), LO (15:8), LO (7:0)  
0x00, 0x00, 0x00, 0x00,  
0x00, 0x00, 0x00, 0x00,  
0x00, 0x00, 0x00, 0x00,  
U (31:28), G (27:24), G (23:16), G (15:8), G (7:0)  
Loudness Offset Upper 16 U (31:24), U (23:16), O (15:8), O (7:0)  
bits (O)  
0x94  
8
Loudness O Offset Lower  
32 bits (O)  
O (31:24), O (23:16), O (15:8), O (7:0)  
0x00, 0x00, 0x00, 0x00,  
Loudness Biquad (b0)  
Loudness Biquad (b1)  
Loudness Biquad (b2)  
Loudness Biquad (a1)  
Loudness Biquad (a2)  
U (31:28), b0 (27:24), b0 (23:16), b0 (15:8), b0 (7:0)  
U (31:28), b1 (27:24), b1 (23:16), b1 (15:8), b1 (7:0)  
U (31:28), b2 (27:24), b2 (23:16), b2 (15:8), b2 (7:0)  
U (31:28), a1 (27:24), a1 (23:16), a1 (15:8), a1 (7:0)  
U (31:28), a2 (27:24), a2 (23:16), a2 (15:8), a2 (7:0)  
0x00, 0x00, 0xD5, 0x13,  
0x00, 0x00, 0x00, 0x00,  
0x0F, 0xFF, 0x2A, 0xED,  
0x00, 0xFE, 0x50, 0x45,  
0x0F, 0x81, 0xAA, 0x27  
0x95  
20  
73  
SLES123 October 2004  
TAS5504  
Serial Control Interface Register Definitions  
6.20 DRC1 Control (0x96, Channels 13)  
Bits D31 – D14 are Don’t Care.  
Table 622. DCR1 Control (0x96, Channels 13)  
D31  
D23  
D15  
D30  
D22  
D14  
D29  
D21  
D28  
D20  
D27  
D19  
D26  
D25  
D24  
FUNCTION  
Unused bits  
D18  
D17  
D16  
FUNCTION  
FUNCTION  
Unused bits  
D13  
0
D12  
0
D11  
D10  
D9  
D8  
Channel 1 (node j): No DRC  
0
1
Channel 1 (node j): Pre-volume DRC  
Channel 1 (node j): Post-volume DRC  
Channel 1 (node j): No DRC  
1
0
1
1
0
0
Channel 2 (node I): No DRC  
0
1
Channel 2 (node I): Pre-volume DRC  
Channel 2 (node I): Post-volume DRC  
Channel 2 (node i): No DRC  
1
0
1
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
0
D0  
0
FUNCTION  
Channel 3 (node q): No DRC  
0
1
Channel 3 (node q): Pre-volume DRC  
Channel 3 (node q): Post-volume DRC  
Channel 3 (node q): No DRC  
1
0
1
1
6.21 DRC2 Control (0x97, Channel 4)  
Table 623. DRC2 Control (0x97, Channel 4)  
FUNCTION  
D31 – D2  
D1  
0
D0  
0
0
0
0
0
0
Channel 4 (node r): No DRC  
0
0
0
0
1
Channel 4 (node r): Pre-volume DRC  
Channel 4 (node r): Post-volume DRC  
Channel 4 (node r): No DRC  
1
0
1
1
74  
TAS5504  
SLES123 October 2004  
Serial Control Interface Register Definitions  
6.22 DRC1 Data Registers (0x98 – 0x9C)  
DRC1 applies to channels 1, 2, and 3.  
Table 624. DRC1 Data Registers  
2
I C  
TOTAL  
REGISTER NAME  
Channel 1, 2, and 3  
DESCRIPTION OF CONTENTS  
DEFAULT STATE  
SUBADDRESS BYTES  
U (31:28), E (27:24), E (23:16), E (15:8), E (7:0) 0x00, 0x00, 0x88, 0x3F  
DRC1 Energy  
0x98  
8
Channel 1, 2, and 3  
U (31:28), 1E (27:24), 1E (23:16), 1E (15:8), 0x00, 0x7F, 0x77, 0xC0  
1E (7:0)  
DRC1 (1Energy)  
Channel 1, 2, and 3  
DRC1 Threshold Upper 16 bits  
(T1)  
U (31:24), U (23:16), T1 (15:8), T1 (7:0)  
T1 (31:24), T1 (23:16), T1 (15:8), T1 (7:0)  
U (31:24), U (23:16), T2 (15:8), T2 (7:0)  
T2 (31:24), T2 (23:16), T2 (15:8), T2 (7:0)  
0x00, 0x00, 0x00, 0x00  
0x0B, 0x20, 0xE2, 0xB2  
0x00, 0x00, 0x00, 0x00  
0x06, 0xF9, 0xDE, 0x58  
Channel 1, 2, and 3  
DRC1 Threshold Lower 32 bits  
(T1)  
0x99  
16  
Channel 1, 2, and 3  
DRC1 Threshold  
Upper 16 bits (T2)  
Channel 1, 2, and 3  
DRC1 Threshold  
Lower 32 bits (T2)  
Channel 1, 2, and 3  
DRC1 slope (k0)  
U (31:28), k0 (27:24), k0 (23:16), k0 (15:8),  
k0 (7:0)  
0x00, 0x40, 0x00, 0x00  
0x0F, 0xC0, 0x00, 0x00  
0x0F, 0x90, 0x00, 0x00  
0x00, 0x00, 0xFF, 0xFF  
Channel 1, 2, and 3  
DRC1 slope (k1)  
U (31:28), k1 (27:24), k1 (23:16), k1 (15:8),  
k1 (7:0)  
0x9A  
12  
Channel 1, 2, and 3  
DRC1 slope (k2)  
U (31:28), k2 (27:24), k2 (23:16), k2 (15:8),  
k2 (7:0)  
Channel 1, 2, and 3  
DRC1 Offset 1 Upper 16 bits  
(O1)  
U (31:24), U (23:16), O1 (15:8), O1 (7:0)  
O1 (31:24), O1 (23:16), O1 (15:8), O1 (7:0)  
U (31:24), U (23:16), O2 (15:8), O2 (7:0)  
O2 (31:24), O2 (23:16), O2 (15:8), O2 (7:0)  
Channel 1, 2, and 3  
DRC1 Offset 1 Lower 32 bits  
(O1)  
0xFF, 0x82, 0x30, 0x98  
0x00, 0x00, 0x00, 0x00  
0x01, 0x95, 0xB2, 0xC0  
0x9B  
16  
Channel 1, 2, and 3  
DRC1 Offset 2 Upper 16 bits  
(O2)  
Channel 1, 2, and 3  
DRC1 Offset 2 Lower 32 bits  
(O2)  
Channel 1, 2, and 3  
DRC1 Attack  
U (31:28), A (27:24), A (23:16), A (15:8), A (7:0) 0x00, 0x00, 0x88, 0x3F  
Channel 1, 2, and 3  
DRC1 (1Attack)  
U (31:28), 1A (27:24), 1A (23:16), 1A (15:8), 0x00, 0x7F, 0x77, 0xC0  
1A (7:0)  
0x9C  
16  
Channel 1, 2, and 3  
DRC1 Decay  
U (31:28), D (27:24), D (23:16), D (15:8), D (7:0) 0x00, 0x00, 0x00, 0x56  
Channel 1, 2, and 3  
DRC1 (1Decay)  
U (31:28), 1D (27:24), 1D (23:16), 1D (15:8), 0x00, 0x3F, 0xFF, 0xA8  
1D (7:0)  
75  
SLES123 October 2004  
TAS5504  
Serial Control Interface Register Definitions  
6.23 DRC2 Data Registers (0x9D – 0xA1)  
DRC2 applies to channel 4.  
Table 625. DRC2 Data Registers  
2
I C  
TOTAL  
REGISTER NAME  
DESCRIPTION OF CONTENTS  
DEFAULT STATE  
SUBADDRESS BYTES  
Channel 4 DRC2 Energy  
U (31:28), E (27:24), E (23:16), E (15:8), E (7:0)  
0x00, 0x00, 0x88, 0x3F  
0x00, 0x7F, 0x77, 0xC0  
0x9D  
0x9E  
8
Channel 4 DRC2 (1Energy)  
U (31:28), 1E (27:24), 1E (23:16), 1E (15:8),  
1E (7:0)  
Channel 4 DRC2 Threshold  
Upper 16 bits (T1)  
U (31:24), U (23:16), T1 (15:8), T1 (7:0)  
T1 (31:24), T1 (23:16), T1 (15:8), T1 (7:0)  
U (31:24), U (23:16), T2 (15:8), T2 (7:0)  
T2 (31:24), T2 (23:16), T2 (15:8), T2 (7:0)  
0x00, 0x00, 0x00, 0x00  
0x0B, 0x20, 0xE2, 0xB2  
0x00, 0x00, 0x00, 0x00  
0x06, 0xF9, 0xDE, 0x58  
0x00, 0x40, 0x00, 0x00  
0x0F, 0xC0, 0x00, 0x00  
0x0F, 0x90, 0x00, 0x00  
0x00, 0x00, 0xFF, 0xFF,  
0xFF, 0x82, 0x30, 0x98  
0x00, 0x00, 0x00, 0x00  
0x01, 0x95, 0xB2, 0xC0  
Channel 4 DRC2 Threshold  
Lower 32 bits (T1)  
16  
Channel 4 DRC2 Threshold  
Upper 16 bits (T2)  
Channel 4 DRC2 Threshold  
Lower 32 bits (T2)  
Channel 4 DRC2 slope (k0)  
Channel 4 DRC2 slope (k1)  
Channel 4 DRC2 slope (k2)  
U (31:28), k0 (27:24), k0 (23:16), k0 (15:8),  
k0 (7:0)  
U (31:28), k1 (27:24), k1 (23:16), k1 (15:8),  
k1 (7:0)  
0x9F  
0xA0  
0xA1  
12  
16  
16  
U (31:28), k2 (27:24), k2 (23:16), k2 (15:8),  
k2 (7:0)  
Channel 4 DRC2 Offset 1  
Upper 16 bits (O1)  
U (31:24), U (23:16), O1 (15:8), O1 (7:0)  
O1 (31:24), O1 (23:16), O1 (15:8), O1 (7:0)  
U (31:24), U (23:16), O2 (15:8), O2 (7:0)  
O2 (31:24), O2 (23:16), O2 (15:8), O2 (7:0)  
U (31:28), A (27:24), A (23:16), A (15:8), A (7:0)  
Channel 4 DRC2 Offset 1  
Lower 32 bits (O1)  
Channel 4 DRC2 Offset 2  
Upper 16 bits (O2)  
Channel 4 DRC2 Offset 2  
Lower 32 bits (O2)  
Channel 4 DRC2 Attack  
0x00, 0x00, 0x88, 0x3F  
0x00, 0x7F, 0x77, 0xC0  
Channel 4 DRC2 (1Attack)  
U (31:28), 1A (27:24), 1A (23:16), 1A (15:8),  
1A (7:0)  
Channel 4 DRC2 Decay  
U (31:28), D (27:24), D (23:16), D (15:8), D (7:0)  
0x00, 0x00, 0x00, 0x56  
0x00, 0x3F, 0xFF, 0xA8  
Channel 4 DRC2 (1Decay)  
U (31:28), 1D (27:24), 1D (23:16), 1D (15:8),  
1D (7:0)  
76  
TAS5504  
SLES123 October 2004  
Serial Control Interface Register Definitions  
6.24 DRC Bypass Registers (0xA2, 0xA3, 0xA8, 0xA9)  
DRC bypass/inline for channels 1, 2, 3, and 4 are mapped into registers 0xA2, 0xA3, 0xA8, and 0xA9. 8bytes  
are written for each channel. Each gain coefficient is in 28-bit (5.23) format so 0x00800000 is a gain of 1. Each  
gain coefficient is written as a 32-bit word with the upper 4 bits not used.  
To enable DRC for a given channel (with unity gain), bypass = 0x00000000 and inline = 0x00800000.  
To disable DRC for a given channel, bypass = 0x00800000 and inline = 0x00000000.  
Table 626. DRC Bypass Registers Format (0xA20xA9)  
REGISTER NAME  
TOTAL  
BYTES  
CONTENTS  
INITIALIZATION  
VALUE  
Channel bass DRC bypass  
Channel DRC inline  
U (31:28), bypass (27:24), bypass (23:16), bypass (15:8), bypass (7:0) 0x00, 0x80, 0x00, 0x00  
U (31:28), inline (27:24), inline (23:16), inline (15:8), inline (7:0) 0x00, 0x00, 0x00, 0x00  
8
6.25 4x2 Output Mixer Registers (0xAA and 0xAB)  
Output mixers for channels 1 and 2 map to registers 0xAA and 0xAB.  
Total data per register is 8 bytes.  
Table 627. Output Mixer Control Register Format (Upper 4 Bytes)  
D31  
0
D30  
0
D29  
0
D28  
0
D27  
D26  
D25  
D24  
FUNCTION  
Select channel 1 to output mixer  
Select channel 2 to output mixer  
Select channel 3 to output mixer  
Select channel 4 to output mixer  
0
0
0
1
0
1
1
0
0
1
1
1
G27  
G26  
G25  
G24 Selected channel gain (upper 4 bits)  
D23  
D22  
D21  
D20  
D19  
D18  
D17  
D16  
FUNCTION  
G23  
G22  
G21  
G20  
G19  
G18  
G17  
G16 Selected channel gain (continued)  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
FUNCTION  
Selected channel gain (continued)  
G15  
G14  
G13  
G12  
G11  
G10  
G9  
G8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
FUNCTION  
Selected channel gain (lower 8 bits)  
G7  
G6  
G5  
G4  
G3  
G2  
G1  
G0  
77  
SLES123 October 2004  
TAS5504  
Serial Control Interface Register Definitions  
Table 628. Output Mixer Control (Lower 4 Bytes)  
D31  
0
D30  
0
D29  
0
D28  
0
D27  
D26  
D25  
D24  
FUNCTION  
Select channel 1 to output mixer  
Select channel 2 to output mixer  
Select channel 3 to output mixer  
Select channel 4 to output mixer  
0
0
0
1
0
1
1
0
0
1
1
1
G27  
G26  
G25  
G24 Selected channel gain (upper 4 bits)  
D23  
D22  
D21  
D20  
D19  
D18  
D17  
D16  
FUNCTION  
G23  
G22  
G21  
G20  
G19  
G18  
G17  
G16 Selected channel gain (continued)  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
FUNCTION  
Selected channel gain (continued)  
G15  
G14  
G13  
G12  
G11  
G10  
G9  
G8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
FUNCTION  
Selected channel gain (lower 8 bits)  
G7  
G6  
G5  
G4  
G3  
G2  
G1  
G0  
6.26 4x3 Output Mixer Registers (0xB0 – 0xB1)  
Output mixers for channels 3 and 4 map to registers 0xB0 and 0xB1.  
Total data per register is 12 bytes.  
Table 629. Output Mixer Control (Upper 4 Bytes)  
D31  
0
D30  
0
D29  
0
D28  
0
D27  
D26  
D25  
D24  
FUNCTION  
Select channel 1 to output mixer  
Select channel 2 to output mixer  
Select channel 3 to output mixer  
Select channel 4 to output mixer  
0
0
0
1
0
1
1
0
0
1
1
1
G27  
G26  
G25  
G24 Selected channel gain (upper 4 bits)  
D23  
D22  
D21  
D20  
D19  
D18  
D17  
D16  
FUNCTION  
G23  
G22  
G21  
G20  
G19  
G18  
G17  
G16 Selected channel gain (continued)  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
FUNCTION  
Selected channel gain (continued)  
G15  
G14  
G13  
G12  
G11  
G10  
G9  
G8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
FUNCTION  
Selected channel gain (lower 8 bits)  
G7  
G6  
G5  
G4  
G3  
G2  
G1  
G0  
78  
TAS5504  
SLES123 October 2004  
Serial Control Interface Register Definitions  
Table 630. Output Mixer Control (Middle 4 Bytes)  
D31  
0
D30  
0
D29  
0
D28  
0
D27  
D26  
D25  
D24  
FUNCTION  
Select channel 1 to output mixer  
Select channel 2 to output mixer  
Select channel 3 to output mixer  
Select channel 4 to output mixer  
0
0
0
1
0
1
1
0
0
1
1
1
G27  
G26  
G25  
G24 Selected channel gain (upper 4 bits)  
D23  
D22  
D21  
D20  
D19  
D18  
D17  
D16  
FUNCTION  
G23  
G22  
G21  
G20  
G19  
G18  
G17  
G16 Selected channel gain (continued)  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
FUNCTION  
Selected channel gain (continued)  
G15  
G14  
G13  
G12  
G11  
G10  
G9  
G8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
FUNCTION  
Selected channel gain (lower 8 bits)  
G7  
G6  
G5  
G4  
G3  
G2  
G1  
G0  
Table 631. Output Mixer Control (Lower 4 Bytes)  
D31  
0
D30  
0
D29  
0
D28  
0
D27  
D26  
D25  
D24  
FUNCTION  
Select channel 1 to output mixer  
Select channel 2 to output mixer  
Select channel 3 to output mixer  
Select channel 4 to output mixer  
0
0
0
1
0
1
1
0
0
1
1
1
G27  
G26  
G25  
G24 Selected channel gain (upper 4 bits)  
D23  
D22  
D21  
D20  
D19  
D18  
D17  
D16  
FUNCTION  
G23  
G22  
G21  
G20  
G19  
G18  
G17  
G16 Selected channel gain (continued)  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
FUNCTION  
Selected channel gain (continued)  
G15  
G14  
G13  
G12  
G11  
G10  
G9  
G8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
FUNCTION  
Selected channel gain (lower 8 bits)  
G7  
G6  
G5  
G4  
G3  
G2  
G1  
G0  
79  
SLES123 October 2004  
TAS5504  
Serial Control Interface Register Definitions  
6.27 Volume Biquad Register (0xCF)  
Each gain coefficient is in 28-bit (5.23) format so 0x800000 is a gain of 1. Each gain coefficient is written as  
a 32-bit word with the upper four bits not used.  
Table 632. Volume Biquad Register Format (Default = All-pass)  
DEFAULT GAIN COEFFICIENT VALUES  
DESCRIPTION  
b Coefficient  
REGISTER FIELD CONTENTS  
DECIMAL  
1.0  
HEX  
0U (31:28), b0 (27:24), b0 (23:16), b0 (15:8), b0 (7:0)  
U (31:28), b1 (27:24), b1 (23:16), b1 (15:8), b1 (7:0)  
U (31:28), b2 (27:24), b2 (23:16), b2 (15:8), b2 (7:0)  
0U (31:28), a1 (27:24), a1 (23:16), a1 (15:8), a1 (7:0)  
U (31:28), a2 (27:24), a2 (23:16), a2 (15:8), a2 (7:0)  
0x00, 0x80, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
o
b Coefficient  
1
0.0  
b Coefficient  
2
0.0  
a Coefficient  
1
0.0  
a Coefficient  
2
0.0  
6.28 Volume Treble and Bass Slew Rates (0xD0)  
Table 633. Volume Gain Update Rate (Slew Rate)  
FUNCTION  
D31D10  
D9  
0
D8  
0
0
0
0
0
512 step update at 4 Fs, 42.6 ms at 48 kHz  
1024 step update at 4 Fs, 85.3 ms at 48 kHz  
2048 step update at 4 Fs, 170 ms at 48 kHz  
2048 step update at 4 Fs, 170 ms at 48 kHz  
0
1
1
0
1
1
Table 634. Treble and Bass Gain Step Size (Slew Rate)  
D7  
0
D6  
D5  
D4  
D3  
0
D2  
0
D1  
0
D0  
0
FUNCTION  
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
No operation  
0
0
0
1
1
0
0
1
0
0
Minimum rate – Updates every 0.083 ms (every LRCLK at 48 kHz)  
Update ever 0.67 ms (32 LRCLKs at 48 kHz)  
0
0
0
0
0
0
1
1
1
1
Default rate Updates every 1.31 ms (63 LRCLKs at 48 kHz). This is the  
maximum constant time that can be set for all sample rates.  
1
1
1
1
1
1
1
1
Minimum rate – Updates every 5.08 ms (every 255 LRCLKs at 48 kHz)  
6.29 Volume Registers (0xD1, 0xD2, 0xD7, and 0xD8)  
Channels 1, 2, 3, and 4 are mapped into registers 0xD1, 0xD2, 0xD7, and 0xD8.  
Master volume is mapped into register 0xD9.  
Bits D31 D12 are Don’t Care.  
Table 635. Volume Registers  
D31  
D30  
D29  
D28  
D27  
D26  
D25  
D24  
FUNCTION  
Unused bits  
D23  
D15  
D22  
D14  
D21  
D13  
D20  
D12  
D19  
D18  
D17  
D16  
FUNCTION  
FUNCTION  
FUNCTION  
Unused bits  
Volume  
D11  
V11  
D10  
V10  
D9  
V9  
D8  
V8  
D7  
V7  
D6  
V6  
D5  
V5  
D4  
V4  
D3  
V3  
D2  
V2  
D1  
V1  
D0  
V0  
Volume  
80  
TAS5504  
SLES123 October 2004  
Serial Control Interface Register Definitions  
Table 636. Master and Individual Volume Controls  
VOLUME INDEX (H)  
GAIN/INDEX  
17.75  
17.5  
EXPECTED  
17.81  
17.56  
17.31  
17.06  
16.81  
16.56  
16.31  
16.05  
15.8  
ACTUAL  
17.81  
17.56  
17.31  
17.06  
16.81  
16.56  
16.31  
16.05  
15.8  
001  
002  
003  
004  
005  
006  
007  
008  
009  
00A  
00B  
00C  
00D  
00E  
00F  
010  
044  
045  
046  
047  
048  
049  
04A  
04B  
04C  
240  
241  
242  
243  
244  
245  
17.25  
17  
16.75  
16.5  
16.25  
16  
15.75  
15.5  
15.55  
15.3  
15.55  
15.3  
15.25  
15  
15.05  
14.8  
15.05  
14.8  
14.75  
14.5  
14.55  
14.3  
14.55  
14.3  
14.25  
14  
14.05  
1
14.05  
1
1
0.75  
0.75  
0.75  
0.5  
0.5  
0.5  
0.25  
0.25  
0.25  
0
0
0
0.25  
0.5  
0.75  
1  
0.25  
0.5  
0.25  
0.5  
0.75  
1  
0.75  
1  
126  
126.25  
126.5  
126.75  
127  
Mute  
TO  
126.43  
126.68  
126.93  
127.19  
127.44  
Mute  
126.43  
126.99  
126.99  
127.59  
127.59  
Mute  
3FF  
Mute  
Mute  
Mute  
6.30 Bass Filter Set Register (0xDA)  
Bits D31D27, D23D19, D15D11, and D7D3 are Don’t Care.  
Table 637. Channel 4 Sub Woofer  
D31  
0
D30  
0
D29  
0
D28  
0
D27  
0
D26  
0
D25  
0
D24  
0
FUNCTION  
No change  
0
0
0
0
0
0
0
1
Bass filter set 1  
Bass filter set 2  
Bass filter set 3  
Bass filter set 4  
Bass filter set 5  
Illegal  
0
0
0
0
0
0
1
0
0
0
0
0
0
1
1
1
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1
1
Illegal  
81  
SLES123 October 2004  
TAS5504  
Serial Control Interface Register Definitions  
Table 638. Channel 3, 2, 1 (Center, Right Front, and Left Front)  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
FUNCTION  
No change  
0
0
0
0
0
0
0
1
Bass filter set 1  
Bass filter set 2  
Bass filter set 3  
Bass filter set 4  
Bass filter set 5  
Illegal  
0
0
0
0
0
0
1
0
0
0
0
0
0
1
1
1
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1
1
Illegal  
6.31 Bass Filter Index Register (0xDB)  
Index values above 0x24 are invalid.  
Table 639. Bass Filter Index Register  
2
I C SUBADDRESS TOTAL BYTES  
REGISTER NAME  
DESCRIPTION OF CONTENTS  
DEFAULT STATE  
0xDB  
Bass filter index  
(BFI)  
4
Ch4_BFI (31:24), NONE (23:16), NONE (15:8),  
Ch321_BFI (7:0)  
0x12, 0xxx, 0xxx, 0x12,  
Table 640. Bass Filter Index Table  
TREBLE INDEX  
VALUE  
ADJUSTMENT  
(DB)  
TREBLE INDEX  
VALUE  
ADJUSTMENT  
(DB)  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
+18  
+17  
+16  
+15  
+14  
+13  
+12  
+11  
+10  
+9  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
+8  
+7  
+6  
+5  
+4  
+3  
+2  
+1  
0
82  
TAS5504  
SLES123 October 2004  
Serial Control Interface Register Definitions  
6.32 Treble Filter Set Register (0xDC)  
Bits D31D27 are Don’t Care.  
Table 641. Channel 4 Sub Woofer  
D31  
0
D30  
0
D29  
0
D28  
0
D27  
0
D26  
0
D25  
D24  
FUNCTION  
0
0
No change  
0
0
0
0
0
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
Treble filter set 1  
Treble filter set 2  
Treble filter set 3  
Treble filter set 4  
Treble filter set 5  
Illegal  
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
1
Illegal  
Table 642. Channel 3, 2, 1 (Center, Right Front, and Left Front)  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
FUNCTION  
No change  
0
0
0
0
0
0
0
1
Treble filter set 1  
Treble filter set 2  
Treble filter set 3  
Treble filter set 4  
Treble filter set 5  
Illegal  
0
0
0
0
0
0
1
0
0
0
0
0
0
1
1
1
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1
1
Illegal  
83  
SLES123 October 2004  
TAS5504  
Serial Control Interface Register Definitions  
6.33 Treble Filter Index (0xDD)  
Index values above 0x24 are invalid.  
Table 643. Treble Filter Index Register  
2
I C  
REGISTER  
NAME  
TOTAL BYTES  
DESCRIPTION OF CONTENTS  
DEFAULT STATE  
SUBADDRESS  
0xDD  
Treble filter index (TFI)  
4
Ch4_TFI (31:24), NONE (23:16), NONE (15:8),  
Ch321_TFI (7:0)  
0x12,0x12,0x12,0x12  
Table 644. Treble Filter Index  
TREBLE INDEX VALUE  
ADJUSTMENT (DB)  
TREBLE INDEX VALUE  
ADJUSTMENT (DB)  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x\06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
+18  
+17  
+16  
+15  
+14  
+13  
+12  
+11  
+10  
+9  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
+8  
+7  
+6  
+5  
+4  
+3  
+2  
+1  
0
6.34 AM Mode Register (0xDE)  
Bits D31D21 are Don’t Care.  
Table 645. AM Mode Register  
D31  
D23  
D30  
D22  
D29  
D21  
D28  
D27  
D26  
D25  
D24  
FUNCTION  
FUNCTION  
Unused bits  
D20  
0
D19  
D18  
D17  
D16  
AM mode disabled  
AM mode enabled  
1
0
0
Select sequence 1  
Select sequence 2  
0
1
1
0
Select sequence 3  
1
1
Select sequence 4  
0
IF frequency 455  
1
IF frequency 262.5  
Use BCD tuned frequency  
Use binary tuned frequency  
0
1
84  
TAS5504  
SLES123 October 2004  
Serial Control Interface Register Definitions  
Table 646. AM Tuned Frequency Register in BCD Mode (Lower 2 Bytes of 0xDE)  
D15  
0
D14  
0
D13  
D12  
B0  
D11  
D10  
D9  
D8  
FUNCTION  
0
BCD frequency (1000s kHz)  
BCD frequency (100s kHz)  
Default value  
B3  
0
B2  
0
B1  
0
B0  
0
0
0
0
0
D7  
B3  
D6  
B2  
D5  
B1  
D4  
B0  
D3  
D2  
D1  
D0  
FUNCTION  
BCD frequency (10s kHz)  
BCD frequency (1s kHz)  
Default value  
B3  
0
B2  
0
B1  
0
B0  
0
0
0
0
0
Table 647. AM Tuned Frequency Register in Binary Mode (Lower 2 Bytes of 0xDE)  
D15  
0
D14  
0
D13  
D12  
D11  
D10  
B10  
0
D9  
B9  
0
D8  
B8  
0
FUNCTION  
0
0
0
Binary frequency (upper 3 bits)  
0
0
0
0
0
Default value  
D7  
B7  
0
D6  
B6  
0
D5  
B5  
0
D4  
B4  
0
D3  
B3  
0
D2  
B2  
0
D1  
B1  
0
D0  
B0  
0
FUNCTION  
Binary frequency (lower 8 bits)  
Default value  
6.35 PSVC Range Register (0xDF)  
Bits D31D2 are zero.  
Table 648. PSVC Range Register  
D31 – D2  
D1  
0
D0  
0
FUNCTION  
0
0
0
0
12.04-dB control range for PSVC  
0
1
18.06-dB control range for PSVC  
24.08-dB control range for PSVC  
Ignore retain last value  
1
0
1
1
6.36 General Control Register (0xE0)  
Bits D31D4 are zero. Bit D0 is Don’t Care.  
Table 649. General Control Register  
D31 – D4  
D3  
D2  
0
D1  
D0  
FUNCTION  
0
0
0
0
Power supply volume control disable  
Power supply volume control enable  
Subwoofer part of PSVC  
1
0
1
Subwoofer separate from PSVC  
6.37 Incremental Multiple Write Append Register (0xFE)  
This is a special register used to append data to a previously opened register.  
85  
SLES123 October 2004  
TAS5504  
Serial Control Interface Register Definitions  
86  
TAS5504  
SLES123 October 2004  
TAS5504 Example Application Schematic  
7
TAS5504 Example Application Schematic  
The following page contains an example application schematic for the TAS5504.  
87  
SLES123 October 2004  
TAS5504  
5
4
3
2
1
D
C
B
A
D
C
B
A
Left + Right Headphone  
+5.0V  
+5.0V  
+3.3V  
2
R20  
22.0R  
1
PWM_HPM_L  
PWM_HPP_L  
PWM_HPM_R  
PWM_HPP_R  
J900  
C25  
220nF  
C26  
10uF  
V-HBRIDGE  
4
3
2
1
OUT_R  
GVDD  
HEADPHONE OUTPUT  
/SD2_TAS5121  
/OTW_TAS5121  
OUT_GND  
OUT_L  
/SHUTDOWN_TAS5121  
/TEMP_WARNING  
V-HBRIDGE  
GVDD  
Mini-Jack (3.5mm)  
GND  
2 Channel Headphone Design (TPA112)  
PWM_P  
PWM_M  
/VALID  
1
2
SUBWOOFER  
SPEAKER  
OUTPUT  
OUT_1  
OUT_2  
/VALID  
J800  
CH4 TAS5121 H-Bridge Output Stage  
V-HBRIDGE  
GVDD  
/SD1_TAS5121  
/OTW_TAS5121  
/SHUTDOWN_TAS5121  
/TEMP_WARNING  
V-HBRIDGE  
GVDD  
MCLK  
PWM_P  
PWM_M  
/VALID  
1
2
CENTER  
SPEAKER  
OUTPUT  
OUT_1  
OUT_2  
/VALID  
J700  
CH3 TAS5121 H-Bridge Output Stage  
C29  
100nF  
C10  
10nF  
R10  
200R  
R11  
200R  
C13  
10nF  
C14  
100nF  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
VRA_PLL  
VR_PWM  
NC  
C11  
100nF  
C12  
100nF  
2
PLL_FLT_RET  
3
4
PLL_FLTM  
PLL_FLTP  
AVSS  
NC  
NC  
5
NC  
6
AVSS  
PWM_P_2  
PWM_M_2  
PWM_P_1  
PWM_M_1  
VAILD  
7
VRD_PLL  
AVSS_PLL  
AVDD_PLL  
VBGAP  
RESET  
HP_SEL  
PDN  
U10  
+3.3V R12  
8
2R  
TAS5504  
1
2
9
10  
11  
12  
13  
14  
15  
16  
/VALID  
/RESET_TAS5504  
/HP_SEL  
DVSS  
C15  
C16  
C17  
100nF  
C18  
100nF  
10uF  
1nF  
/BKND_ERR_TAS5504  
BKND_ERR  
DVDD  
+3.3V  
/PDN_TAS5504  
/MUTE_TAS5504  
MUTE  
DVSS  
R13  
R18  
1R  
3.30R  
DVDD  
DVSS  
V-HBRIDGE  
DVSS  
VR_DIG  
GVDD  
/SD1_TAS5121  
/OTW_TAS5121  
/SHUTDOWN_TAS5121  
/TEMP_WARNING  
V-HBRIDGE  
GVDD  
GND  
+3.3V  
C22  
100nF  
C23  
10uF  
C24  
100nF  
PWM_P  
PWM_M  
/VALID  
R14  
1
2
RIGHT  
SPEAKER  
OUTPUT  
1R  
OUT_1  
OUT_2  
/VALID  
GND  
J200  
C19  
C20  
C21  
CH2 TAS5121 H-Bridge Output Stage  
10uF  
100nF  
100nF  
V-HBRIDGE  
GVDD  
+5.0V +3.3V  
V-HBRIDGE  
GND  
GVDD  
/SD1_TAS5121  
/OTW_TAS5121  
/SHUTDOWN_TAS5121  
/TEMP_WARNING  
V-HBRIDGE  
GND  
PSVC_TAS5504  
SDIN1  
SDIN2  
SDIN3  
SDIN4  
SCLK  
GVDD  
/RESET  
/RESET  
PWM_P  
PWM_M  
/VALID  
X10  
1
2
LEFT  
SPEAKER  
OUTPUT  
/RESET_TAS5504  
/RESET_TAS5504  
OUT_1  
OUT_2  
/VALID  
J100  
13.5MHz  
/BKND_ERR  
/BKND_ERR  
CH1 TAS5121 H-Bridge Output Stage  
2
1
/BKND_ERR_TAS5504  
/BKND_ERR_TAS5504  
LRCLK  
SCL  
R21  
1M  
C27  
15pF  
C28  
15pF  
/SD1_TAS5121  
/SD1  
/SD1_TAS5121  
/SD1  
PSVC_TAS5504  
SDA  
PSVC_TAS5504  
/SD2_TAS5121  
/SD2  
/SD2_TAS5121  
/SD2  
TAS5504 Example Application Schematic  
/VALID  
/VALID  
/OTW_TAS5121  
/OTW  
/OTW_TAS5121  
/OTW  
(Circuit is Subject To Change Without Notice)  
PSU and Interface Logic  
5
4
3
2
1
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Feb-2005  
PACKAGING INFORMATION  
Orderable Device  
TAS5504PAG  
Status (1)  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
TQFP  
PAG  
64  
160 Green (RoHS & CU NIPDAU Level-4-260C-72 HR  
no Sb/Br)  
TAS5504PAGR  
TQFP  
PAG  
64  
1500 Green (RoHS & CU NIPDAU Level-4-260C-72 HR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional  
product content details.  
None: Not yet available Lead (Pb-Free).  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens,  
including bromine (Br) or antimony (Sb) above 0.1% of total product weight.  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
MECHANICAL DATA  
MTQF006A – JANUARY 1995 – REVISED DECEMBER 1996  
PAG (S-PQFP-G64)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
48  
M
0,08  
33  
49  
32  
64  
17  
0,13 NOM  
1
16  
7,50 TYP  
Gage Plane  
10,20  
SQ  
9,80  
0,25  
12,20  
SQ  
0,05 MIN  
11,80  
0°7°  
1,05  
0,95  
0,75  
0,45  
Seating Plane  
0,08  
1,20 MAX  
4040282/C 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  

相关型号:

TAS5504PAGRG4

4 Channel Digital Audio PWM Processor
TI

TAS5504_06

4 Channel Digital Audio PWM Processor
TI

TAS5508

8 Channel Digital Audio PWM Processor
TI

TAS5508A

8 Channel Digital Audio PWM Processor
TI

TAS5508APAG

8 Channel Digital Audio PWM Processor
TI

TAS5508APAGG4

8 Channel Digital Audio PWM Processor
TI

TAS5508APAGR

8 Channel Digital Audio PWM Processor
TI

TAS5508APAGRG4

8 Channel Digital Audio PWM Processor
TI

TAS5508B

8-Channel Digital Audio PWM Processor
TI

TAS5508BPAG

8-Channel Digital Audio PWM Processor
TI

TAS5508BPAGG4

8-Channel Digital Audio PWM Processor
TI

TAS5508BPAGR

8-Channel Digital Audio PWM Processor
TI