TAS3108IADCP [TI]

数字音频处理器 | DCP | 38 | -40 to 105;
TAS3108IADCP
型号: TAS3108IADCP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

数字音频处理器 | DCP | 38 | -40 to 105

时钟 控制器 微控制器 微控制器和处理器 光电二极管 外围集成电路 数字信号处理器
文件: 总63页 (文件大小:1321K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
1 Introduction  
1.1 Features  
16-, 20-, 24-, and 32-Bit Word Sizes  
8 channel Programmable Audio Digital Signal  
Processor (DSP)  
64-fS, 128-fS, 192-fS, and 256-fS SCLK to  
Support Discrete 4 channel TDM, 6 channel  
TDM, and 8 channel TDM Data-Transfer  
Formats  
135-MHz Maximum Speed, >2800 Processing  
Cycles Per Sample at 48 kHz  
Sample Rates of 32 kHz to 192 kHz  
Two I2C Ports for Slave or Master Download  
48-Bit Data Path and 28-Bit Coefficients  
Single-Cycle, 76-Bit Multiply Accumulate  
Five Simultaneous Operations Per Clock Cycle  
1022 Words of 48-Bit Data Memory  
Soft Volume Controller  
Dither Generator  
Efficient log2/2x Estimator  
Single 3.3-V Power Supply  
1022 Words of 28-Bit Coefficient Memory  
3K Words of 54-Bit Program RAM  
38-Pin Thin Shrink Small-Outline Package  
(TSSOP) (DCP)  
5.88K Words of 24-Bit Delay Memory  
(122.5 ms at 48 kHz)  
15 Stereo/TDM Data Formats  
AEC-Q100 (Grade 2: –40°C to 105°C)  
Compliant for Automotive Applications  
(TAS3108IA)  
Independent Input/Output Data Formats  
1.2 Applications  
Automotive Sound Systems  
Digital Televisions  
Home Theater Systems  
Mini-Component Audio  
TAS3108/TAS3108IA  
Audio DSP Core  
SDIN1  
SDIN2  
SDIN3  
SDIN4  
SDOUT1  
SDOUT2  
SDOUT3  
SDOUT4  
Serial  
Audio  
Input  
Port  
Serial  
Audio  
Output  
Port  
8
8
48-Bit Data Path  
28-Bit Coefficients  
76-Bit MAC  
3K Code RAM  
1K Data RAM  
1K Coeff. RAM  
5.8K Delay RAM  
Boot ROM  
MCLK  
LRCLK  
SCLKIN  
PLL  
and  
Clock  
Control  
SCLKOUT1  
SCLKOUT2  
Volume  
Update  
8051 MCU  
8-Bit Microprocessor  
256 IRAM  
2
2
I C Port #1  
I C  
2
Interface  
I C Port #2  
2K ERAM  
12K Code RAM  
B0074-01  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this document.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2005–2007, Texas Instruments Incorporated  
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
Contents  
1
2
Introduction ............................................... 1  
7
I2C Register Map........................................ 37  
7.1 Clock Control Register (0x00) ...................... 38  
7.2 Status Register (0x02) .............................. 41  
1.1 Features .............................................. 1  
1.2 Applications........................................... 1  
Functional Description ................................. 3  
2.1 Device Description.................................... 3  
2.2 Power Supply......................................... 4  
2.3 Clock Control ......................................... 4  
2.4 Serial Audio Ports (SAPs) ............................ 4  
2.5 M8051Warp Microprocessor.......................... 4  
2.6 I2C Control Interface.................................. 4  
2.7 Audio DSP Core ...................................... 5  
Physical Characteristics ............................... 6  
3.1 Terminal Assignments ................................ 6  
3.2 Terminal Descriptions ................................ 7  
3.3 Reset (RESET) ....................................... 7  
3.4 Power-On Reset (RESET)............................ 8  
3.5 Power Down (PDN)................................... 8  
3.6 I2C Bus Control (CS0) ................................ 8  
7.3  
I2C Memory Load Control and Data Registers (0x04  
and 0x05)............................................ 42  
7.4  
Memory Access Registers (0x06 and 0x07) ........ 43  
8
Electrical Specifications .............................. 44  
8.1  
8.2  
8.3  
8.4  
Absolute Maximum Ratings Over Operating  
Temperature Range (unless otherwise noted) ...... 44  
Package Dissipation Ratings  
(TAS3108/TAS3108IA).............................. 44  
Recommended Operating Conditions  
(TAS3108/TAS3108IA).............................. 44  
3
Electrical Characteristics (TAS3108/TAS3108IA)... 45  
8.5 Timing Characteristics............................... 46  
8.5.1 Master Clock Signals (TAS3108/TAS3108IA) ..... 46  
8.5.2 Serial Audio Port Slave Mode Signals  
(TAS3108/TAS3108IA).............................. 47  
8.5.3 Serial Audio Port Master Mode Signals  
(TAS3108/TAS3108IA).............................. 48  
3.7  
Programmable General Purpose I/O (GPIO)......... 8  
8.5.4 Pin-Related Characteristics of the SDA and SCL  
I/O Stages for F/S-Mode I2C-Bus Devices.......... 49  
3.8 Input and Output Serial Audio Ports.................. 9  
Algorithm and Software Development Tools for  
4
8.5.6 Reset Timing (TAS3108/TAS3108IA) .............. 51  
Application Information............................... 53  
9.1 Schematics .......................................... 53  
9.2 Recommended Oscillator Circuit.................... 55  
TAS3108/TAS3108IA ................................... 18  
9
5
6
Clock Controls .......................................... 19  
Microprocessor Controller .......................... 27  
6.1 General I2C Operations ............................. 28  
6.2 Detailed I2C Operation .............................. 29  
6.3 I2C Master-Mode Device Initialization .............. 31  
9.3  
Recommended PCB Design for TAS3108IA  
Applications ......................................... 55  
2
Contents  
Submit Documentation Feedback  
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
2 Functional Description  
2.1 Device Description  
The TAS3108 and TAS3108IA are fully programmable high-performance audio processors. The devices  
use an efficient, custom, multi-instruction programming environment optimized for digital audio processing  
algorithms. The TAS3108/TAS3108IA architecture provides high-quality audio processing by using a 48-bit  
data path, 28-bit filter coefficients, and a single-cycle 28 × 48-bit multiplier with a 76-bit accumulator. An  
embedded 8051 microprocessor provides algorithm and data control for the TAS3108/TAS3108IA. The  
TAS3108 is the commercial version intended for home audio and other commercial applications. The  
TAS3108IA is the automotive version that is qualified for use in automotive applications.  
Audio DSP Core  
28  
8 Channels  
Coef.  
RAM  
(1022 y 28)  
SDIN1  
SDIN2  
SDIN3  
SDIN4  
Serial  
Audio  
Port  
Data  
Path  
48  
SDOUT1  
SDOUT2  
SDOUT3  
SDOUT4  
Data  
RAM  
(1022 y 48)  
8 Channels  
48  
MCLK  
LRCLK  
Memory  
Interface  
Code  
RAM  
(3K y 54)  
Clock  
Control  
SCLKIN  
Controller  
54  
SCLKOUT1  
SCLKOUT2  
Microprocessor Core  
Delay  
Memory  
(5.8K y 24)  
Internal  
Data RAM  
8
(256 y 8)  
8-Bit  
MCU  
(8051)  
8
Volume  
Update  
External  
Data RAM  
(2048 y 8)  
Control  
Registers  
2ySDA  
2ySCL  
CSO  
2
I C  
8
Control  
Interface  
GPIO  
Code  
RAM  
(12K y 8)  
Code  
ROM  
AVDD  
DVDD  
Power Supply  
B0075-01  
Figure 2-1. Expanded TAS3108/TAS3108IA Functional Block Diagram  
Submit Documentation Feedback  
Functional Description  
3
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
2.2 Power Supply  
The power supply contains supply regulators that provide analog and digital regulated power for various  
sections of the TAS3108/TAS3108IA. Only one external 3.3-V supply is required. All other voltages are  
generated on-chip from the external 3.3-V supply.  
2.3 Clock Control  
The TAS3108/TAS3108IA can be an audio data clock-master or clock-slave device. In clock-master mode,  
it generates MCLK, SCLK, and LRCLK. In clock-slave mode, it accepts MCLK, SCLK, and LRCLK. It can  
generate or accept master clocks from 6 MHz to 24.576 MHz. Master or slave operation is set via I2C  
register 0x00. The TAS3108/TAS3108IA can use a 6-MHz to 20-MHz crystal or a 6-MHz to 24.576-MHz,  
3.3-V MCLKI digital input as the master clock in either clock-master or clock-slave mode. In clock-slave  
mode, the master clock frequency does not need to be an integer multiple of the sample rate.  
The TAS3108/TAS3108IA does not support clock error detection. If a clock error occurs, the  
TAS3108/TAS3108IA does not prevent invalid data or clocks from being output. This means that the  
application system must be designed to handle clock errors.  
2.4 Serial Audio Ports (SAPs)  
Serial audio data is input via pins SDIN1, SDIN2, SDIN3, and SDIN4. Serial audio data is output on pins  
SDOUT1, SDOUT2, SDOUT3, and SDOUT4. The TAS3108/TAS3108IA accepts 32-, 44.1-, 48-, 88.2-,  
96-, 176.4-, or 192-kHz serial data as 16-, 20-, 24-, or 32-bit data in left justified, right justified, or I2S serial  
data formats. All four ports accommodate these three 2 channel data formats.  
In addition to supporting the 2 channel formats, SDIN1 and SDOUT1 also provide support for time-division  
multiplex (TDM) data formats of 4, 6, or 8 channels. The data formats are selectable via I2C register 0x00.  
All input channels must use the same data format. All output channels must use the same data format.  
However, the input and output formats can be different.  
2.5 M8051Warp Microprocessor  
The M8051Warp (8051) microprocessor controls I2C reads and writes and participates in some audio  
processing tasks requiring multiframe (fS period) processing cycles. The 8051 processor performs some  
control calculations and exchanges data between the audio DSP core and the I2C interface. It also  
provides mode control for the SAP interface and clock control. The microcode can program the GPIO pin  
for post-boot-up operation to be an input or an output. For more information, see the TAS3108/TAS3108IA  
Firmware Programmer's Guide (SLEU067).  
2.6 I2C Control Interface  
The TAS3108/TAS3108IA has an I2C slave-only interface (SDA1 and SCL1) for receiving commands and  
providing status to the system controller, and a separate master I2C interface (SDA2 and SCL2) to  
download programs and data from external memory such as an EEPROM. See Section 6 for more  
information.  
4
Functional Description  
Submit Documentation Feedback  
 
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
2.7 Audio DSP Core  
The audio DSP core arithmetic unit is a fixed-point computational engine consisting of an arithmetic unit  
and data and coefficient memory blocks. The primary features of the audio DSP core are:  
48-bit data path with 76-bit accumulator  
Hardware multiplier (28 bit × 48bit)  
Read/write single-cycle memory access  
Input is 48-bit 2s-complement data multiplexed in from the SAP immediately following an LRCLK pulse.  
Output is 32-bit 2s-complement data on four buses.  
Separate control for writing to delay memory  
Separate coefficient memory (28 bit) and data memory (48 bit)  
Linear feedback shift register (LFSR) is a random-number generator that can be used to dither the  
audio.  
Coefficient RAM, data RAM, LFSR seed, program counter, and memory pointers are all mapped into  
the same 5.88K memory space for convenient addressing by the microprocessor.  
Memory interface block contains four pointers – two for data memory and two for coefficient memory.  
The audio DSP core is used to implement all audio processing functions.  
Submit Documentation Feedback  
Functional Description  
5
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
3 Physical Characteristics  
3.1 Terminal Assignments  
DCP PACKAGE  
(TOP VIEW)  
1
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
AVSS  
VR_PLL  
XTALI  
AVDD  
RESERVED  
PLL2  
PLL1  
PLL0  
RESERVED  
RESET  
PDN  
DVDD  
DVSS  
VR_DIG  
SDOUT1  
SDOUT2  
SDOUT3  
SDOUT4  
SCLKOUT2  
SCLKOUT1  
MCLKO  
SCLKIN  
2
3
4
XTALO  
MCLKI  
MICROCLK_DIV  
CS0  
5
6
7
GPIO  
DVDD  
DVSS  
SDIN1  
SDIN2  
SDIN3  
SDIN4  
SDA1  
SCL1  
SDA2  
SCL2  
LRCLK  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
P0033-01  
6
Physical Characteristics  
Submit Documentation Feedback  
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
3.2 Terminal Descriptions  
TERMINAL  
NAME  
PULLUP/  
INPUT/  
PULLDOWN(2)  
DESCRIPTION  
OUTPUT(1)  
NO.  
38  
1
AVDD  
AVSS  
I
Analog power supply (3.3 V)  
Analog ground  
CS0  
7
I
I
Pulldown  
Chip select  
DVDD  
9, 30  
10, 29  
8
Digital power supply input (3.3 V)  
Digital ground  
DVSS  
GPIO  
I/O  
I/O  
I
Pullup  
GPIO control (user programmable)  
Sample rate clock (fS)  
LRCLK  
19  
5
Pulldown  
MCLKIN  
MCLKO  
MICROCLK_DIV  
Master clock input (connect to ground when not in use)  
Master clock output  
21  
6
O
I
Pulldown  
Pullup  
Internal microprocessor clock divide control  
Power down. Powers down all logic and stops all clocks, active low.  
Coefficient memory remains stable through the power-down cycle.  
PDN  
31  
I
PLL0  
PLL1  
34  
35  
36  
33, 37  
32  
16  
18  
20  
22  
23  
15  
17  
11  
12  
13  
14  
27  
26  
25  
24  
2
I
I
I
Pullup  
Pulldown  
Pullup  
PLL control 0  
PLL control 1  
PLL2  
PLL control 2  
RESERVED  
RESET  
SCL1  
Reserved. Connect to ground  
Reset, active low  
I2C port 1 clock (always a slave)  
I2C port 2 clock (always a master)  
Bit clock input  
I
I/O  
I/O  
I
Pullup  
SCL2  
SCLKIN  
SCLKOUT1  
SCLKOUT2  
SDA1  
Pulldown  
O
O
I/O  
I/O  
I
Bit clock 1 out. Used to receive input serial data.  
Bit clock 2 out. Used to clock output serial data.  
I2C port 1 data (always a slave)  
I2C port 2 data (always a master)  
Serial data input 1  
SDA2  
SDIN1  
Pulldown  
Pulldown  
Pulldown  
Pulldown  
SDIN2  
I
Serial data input 2  
SDIN3  
I
Serial data input 3  
SDIN4  
I
Serial data input 4  
SDOUT1  
SDOUT2  
SDOUT3  
SDOUT4  
VR_PLL  
XTALI  
O
O
O
O
Serial data output 1  
Serial data output 2  
Serial data output 3  
Serial data output 4  
Internal regulator. This pin must not be used to power external devices.  
Oscillator input (connect to ground when not in use)  
Oscillator output  
3
O
O
XTALO  
VR_DIG  
4
28  
Internal regulator. This pin must not be used to power external devices.  
(1) I = input, O = output  
(2) All pullups are 20-µA weak pullups, and all pulldowns are 20-µA weak pulldowns. The pullups and pulldowns are included to ensure  
proper input logic levels if the terminals are left unconnected (pullups logic 1 input; pulldowns logic 0 input). Devices that drive  
inputs with pullups must be able to sink 20 µA while maintaining a logic-0 drive level. Devices that drive inputs with pulldowns must be  
able to source 20 µA while maintaining a logic-1 drive level.  
3.3 Reset (RESET)  
The RESET pin is an asynchronous control signal that restores all TAS3108/TAS3108IA components to  
the default configuration. When a reset occurs, the audio DSP core is put into an idle state and the 8051  
starts initialization. A valid MCLKI or XTLI must be present when clearing the RESET pin to initiate a  
device reset. A reset can be initiated by applying a logic 0 on RESET. A reset can also be issued at power  
turnon by the three internal power supplies.  
Submit Documentation Feedback  
Physical Characteristics  
7
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
As long as RESET is held LOW, the device is in the reset state. During reset, all I2C and serial data bus  
operations are ignored. The I2C interface SCL and SDA lines go into a high-impedance state and remain  
in that state until device initialization has completed.  
The rising edge of the reset pulse begins the initialization housekeeping functions of clearing memory and  
setting the default register values. Once these are complete, the TAS3108/TAS3108IA enables its master  
I2C interface and disables its slave I2C interface.  
Then the TAS3108/TAS3108IA looks for an EEPROM as described in Section 2.6, I2C Control Interface.  
3.4 Power-On Reset (RESET)  
On power up, it is recommended that the TAS3108/TAS3108IA RESET be held LOW until DVDD has  
reached 3.3 V. This can be done by programming the system controller or by using an external RC delay  
circuit. The 1-kand 1-µF values provide a delay of approximately 200 µs. The values of R and C can be  
adjusted to provide other delay values as necessary.  
3.5 Power Down (PDN)  
PDN is a user-firmware-definable pin that is programmed in the default TAS3108 and TAS3108IA  
configuration to stop all clocks in the TAS3108/TAS3108IA, while preserving the state of the device. For  
more information, see TAS3108/TAS3108IA Firmware Programmer's Guide (SLEU067).  
3.6 I2C Bus Control (CS0)  
The TAS3108/TAS3108IA has a control to specify the slave and master I2C address. This control permits  
up to two TAS3108/TAS3108IA devices to be placed in a system without external logic.  
See Section 6.2 for a complete description of this pin.  
3.7 Programmable General Purpose I/O (GPIO)  
The TAS3108/TAS3108IA has one GPIO pin that is 8051 firmware programmable.  
On power up or following a reset, the GPIO pin becomes an input. Afterwards, the microprocessor can  
program the GPIO as an input or an output.  
For more information, see TAS3108/TAS3108IA Firmware Programmer's Guide (SLEU067).  
3.7.1 No EEPROM is Present or a Memory Error Occurs  
Following reset or power-up initialization with the EEPROM not present or if a memory error occurs, the  
TAS3108/TAS3108IA is in one of two modes, depending on the setting of the GPIO pin.  
GPIO pin is logic HIGH (through a 20-kresistor)  
With the GPIO pin held HIGH during initialization, the TAS3108/TAS3108IA comes up in the default  
configuration with the serial data outputs not active. Once the TAS3108/TAS3108IA has completed  
the default initialization procedure and after the status register is updated and the I2C slave  
interface is enabled, the GPIO pin is an output and is driven LOW. Following the HIGH-to-LOW  
transition of the GPIO pin, the system controller can access the TAS3108/TAS3108IA through the  
I2C interface and read the status register to determine the load status.  
If a memory-read error occurs, the TAS3108/TAS3108IA reports the error in the status register (I2C  
subaddress 0x02).  
GPIO pin is logic LOW (through a 20-kresistor)  
With GPIO pin held LOW during initialization, the TAS3108/TAS3108IA comes up in an I/O test  
configuration. In this case, once the TAS3108/TAS3108IA completes its default test initialization  
procedure, the status register is updated, the I2C slave interface is enabled, and the  
TAS3108/TAS3108IA streams audio unaltered from input to output as SDIN1 to SDOUT1, SDIN2 to  
SDOUT2, etc.  
In this configuration, the GPIO pin is an output signal that is driven LOW. If the external logic is no  
8
Physical Characteristics  
Submit Documentation Feedback  
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
longer driving the GPIO pin low after the load has completed (~100 ms following a reset if no EEPROM  
is present), the state of the GPIO pin can be observed.  
Then the system controller can access the TAS3108/TAS3108IA through the I2C interface and read the  
status register to determine the load status.  
If the GPIO pin state is not observed, the only indication that the device has completed its initialization  
procedure is that the TAS3108/TAS3108IA streams audio and the I2C slave interface has been enabled.  
3.7.2 GPIO Pin Function After Device Is Programmed  
Once the TAS3108/TAS3108IA has been programmed, either through a successful boot load or via slave  
I2C download, the operation of GPIO can be programmed to be an input and/or output.  
3.8 Input and Output Serial Audio Ports  
The TAS3108/TAS3108IA supports system architectures that require data format conversions between  
TDM and non-TDM of the same format type without the need for additional glue logic. In addition, the  
TAS3108/TAS3108IA supports data format conversions between right justified and I2S and between left  
justified and I2S. All the supported conversions are listed in Table 3-1. If the input port is configured for a  
TDM format, only SDIN1 is active. If a TDM format is selected for the output port, only SDOUT1 is active.  
Table 3-1. Supported Conversions  
INPUT SAP  
OUTPUT SAP  
(SDIN1, SDIN2, SDIN3, SDIN4)  
(SDOUT1, SDOUT2, SDOUT3, SDOUT4)  
2 channel left justified  
2 channel left justified  
TDM left justified  
2 channel I2S  
TDM left justified  
2 channel I2S  
2 channel left justified  
TDM I2S  
TDM I2S  
2 channel I2S  
2 channel I2S  
2 channel I2S  
2 channel leftjustified  
2 channel right justified  
2 channel I2S  
2 channel right justified  
Submit Documentation Feedback  
Physical Characteristics  
9
 
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
Table 3-2. Serial Data Input and Output Formats  
INPUT  
CONTROL CONTROL  
OUTPUT  
WORD  
LENGTHS  
DATA RATES  
(kHz)  
MAX  
SCLK  
MODE  
SERIAL FORMAT  
IM[3:0]  
0000  
0001  
0010  
0011  
0110  
0100  
0111  
0101  
1000  
OM[3:0]  
0000  
0001  
0010  
0011  
0110  
0100  
0111  
0101  
1000  
Left justified  
Right justified  
16, 20, 24, 32  
16, 20, 24, 32  
16, 20, 24  
2 channel  
32–192  
12.288  
I2S  
8 channel left justified  
8 channel I2S  
16, 20, 24, 32  
16, 20, 24  
32–96 MCLK  
32–48 crystal  
24.576 MCLK  
12.288 crystal  
Time-division  
multiplexed (4,  
6, or 8  
6 channel left justified  
6 channel I2S  
16, 20, 24, 32  
16, 20, 24  
32–96  
18.432  
channel)  
4 channel left justified  
4 channel I2S  
16, 20, 24, 32  
16, 20, 24  
32–192 MCLK  
32–96 crystal  
24.576 MCLK  
12.288 crystal  
Input Port  
Word Size  
Output Port  
Word Size  
15  
16  
14 13  
11 10  
8
0x00  
XX IW[2:0] OW[2:0] DWFMT (Data Word Format)  
31  
24  
23  
15  
8
7
0
S
Slave Addr Ack  
Subaddr  
Ack  
xxxxxxxx  
Ack  
xxxxxxxx  
Ack  
DWFMT  
Ack  
IOM  
Ack  
7
4
3
0
IM[3:0]  
OM[3:0]  
Input Port  
Format  
Output Port  
Format  
R0003-01  
Figure 3-1. Serial Data Controls  
Table 3-3. Serial Data Input and Output Data Word  
Sizes  
IW1, OW1  
IW0, OW0  
FORMAT  
32-bit data  
16-bit data  
20-bit data  
24-bit data  
0
0
1
1
0
1
0
1
10  
Physical Characteristics  
Submit Documentation Feedback  
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
Following a reset, ensure that the clock register (0x00) is written before performing volume, treble, or bass  
updates.  
Commands to reconfigure the SAP can be accompanied by mute and unmute commands for quiet  
operation. However, care must be taken to ensure that the mute command has completed before the SAP  
is commanded to reconfigure. Similarly, the TAS3108/TAS3108IA should not be commanded to unmute  
until after the SAP has completed a reconfiguration. The reason for this is that an SAP configuration  
change while a volume or bass or treble update is taking place can cause the update not to be completed  
properly.  
When the TAS3108/TAS3108IA is transmitting serial data, it uses the negative edge of SCLK to output a  
new data bit. The TAS3108/TAS3108IA samples incoming serial data on the rising edge of SCLK. The  
TAS3108/TAS3108IA only supports TDM, left justified, right justified, and I2S formats.  
3.8.1 2 channel I2S Timing  
In 2 channel I2S timing, LRCLK is LOW when left channel data is transmitted and HIGH when right  
channel data is transmitted. SCLK is a bit clock running at 64 × fS, which clocks in each bit of the data.  
There is a delay of one bit clock from the time the LRCLK signal changes state to the first bit of data on  
the data lines. The data is written MSB first and is valid on the rising edge of the bit clock. The  
TAS3108/TAS3108IA masks unused trailing data-bit positions.  
2
2-Channel I S (Philips Format) Stereo Input/Output  
32 Clks  
32 Clks  
LRCLK (Note Reversed Phase)  
Left Channel  
Right Channel  
SCLK  
SCLK  
MSB  
LSB MSB  
LSB  
24-Bit Mode  
23 22  
9
5
1
8
4
0
5
1
4
1
0
23 22  
9
5
1
8
4
0
5
1
4
0
1
0
20-Bit Mode  
19 18  
0
19 18  
16-Bit Mode  
15 14  
15 14  
T0034-04  
Figure 3-2. I2S 64-fS Format  
Submit Documentation Feedback  
Physical Characteristics  
11  
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
3.8.2 2 Channel Left Justified Timing  
In 2 channel left justified timing, LRCLK is HIGH when left channel data is transmitted and LOW when  
right channel data is transmitted. SCLK is a bit clock running at 64 × fS which clocks in each bit of the  
data. The first bit of data appears on the data lines at the same time LRCLK toggles. The data is written  
MSB first and is valid on the rising edge of the bit clock. The TAS3108/TAS3108IA masks unused trailing  
data-bit positions.  
2-Channel Left-Justified Stereo Input  
32 Clks  
32 Clks  
LRCLK  
SCLK  
Right Channel  
Left Channel  
SCLK  
MSB  
LSB MSB  
23 22  
LSB  
24-Bit Mode  
23 22  
9
5
1
8
4
0
5
1
4
0
1
9
5
1
8
4
0
5
1
4
0
1
0
0
20-Bit Mode  
19 18  
19 18  
15 14  
16-Bit Mode  
15 14  
T0034-02  
Figure 3-3. Left justified 64-fS Format  
12  
Physical Characteristics  
Submit Documentation Feedback  
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
3.8.3 2 Channel Right Justified Timing  
In 2-channel right-justified timing, LRCLK is HIGH when left channel data is transmitted and LOW when  
right channel data is transmitted. SCLK is a bit clock running at 64 × fS, which clocks in each bit of the  
data. The first bit of data appears on the data lines 8 bit-clock periods (for 24-bit data) after LRCLK  
toggles. In the right-justified mode, the last bit clock before LRCLK transitions always clocks the LSB of  
data. The data is written MSB first and is valid on the rising edge of the bit clock. The  
TAS3108/TAS3108IA masks unused leading data-bit positions.  
2-Channel Right-Justified (Sony Format) Stereo Input  
32 Clks  
32 Clks  
LRCLK  
SCLK  
Right Channel  
Left Channel  
SCLK  
MSB  
LSB MSB  
LSB  
0
24-Bit Mode  
23 22  
19 18  
19 18  
15 14  
15 14  
15 14  
1
1
1
0
23 22  
19 18  
19 18  
15 14  
15 14  
15 14  
1
1
1
20-Bit Mode  
16-Bit Mode  
0
0
0
0
T0034-03  
Figure 3-4. Right justified 64-fS Format  
3.8.4 TDM Modes  
The TDM modes on the TAS3108/TAS3108IA provide left justified and I2S formats. Each word in the TDM  
data stream adheres to the bit placement shown in Figure 3-5 and Figure 3-6. Two cases are  
illustrated—an I2S data format and a left-justified data format.  
Submit Documentation Feedback  
Physical Characteristics  
13  
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
128 Clks  
128 Clks  
LRCLK  
Right Channels  
Left Channels  
32-Bit Word (DAC1)  
32-Bit Word (DAC3)  
32-Bit Word (DAC5)  
32-Bit Word (DAC7)  
32-Bit Word (DAC2)  
32-Bit Word (DAC4)  
32-Bit Word (DAC6)  
32-Bit Word (DAC8)  
96 Clks  
96 Clks  
LRCLK  
Right Channels  
Left Channels  
32-Bit Word (DAC1)  
32-Bit Word (DAC3)  
32-Bit Word (DAC5)  
32-Bit Word (DAC2)  
32-Bit Word (DAC4)  
32-Bit Word (DAC6)  
64 Clks  
64 Clks  
LRCLK  
LRCLK  
Right Channels  
Left Channels  
1-Chip, 8-, 6-, 4-Channel  
and Multiplexed 6-Channel Operation  
32-Bit Word (DAC1)  
32-Bit Word (DAC3)  
32-Bit Word (DAC2)  
32-Bit Word (DAC4)  
Left-Justified Format  
SCLK  
LRCLK  
MSB  
LSB  
32-Bit Mode  
SCLK  
31 30 29  
17 16  
13 12  
9
1
8
0
1
0
32 Bit  
24-Bit Mode  
23 22 21  
w
w
w
3
2
1
0
31 30 29 28 w w w  
23 22 21 20 w w w  
9
5
1
8
4
0
5
1
4
0
24 Bit  
(Example)  
w
w
w
20-Bit Mode  
19 18 17  
16-Bit Mode  
15 14 13  
T0085-01  
Figure 3-5. Left-Justified TDM Formats  
14  
Physical Characteristics  
Submit Documentation Feedback  
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
128 Clks  
128 Clks  
LRCLK  
Left Channels  
Right Channels  
32-Bit Word (DAC1)  
32-Bit Word (DAC3)  
32-Bit Word (DAC5)  
32-Bit Word (DAC7)  
32-Bit Word (DAC2)  
32-Bit Word (DAC4)  
32-Bit Word (DAC6)  
32-Bit Word (DAC8)  
96 Clks  
96 Clks  
LRCLK  
Left Channels  
Right Channels  
32-Bit Word (DAC1)  
32-Bit Word (DAC3)  
32-Bit Word (DAC5)  
32-Bit Word (DAC2)  
32-Bit Word (DAC4)  
32-Bit Word (DAC6)  
64 Clks  
64 Clks  
LRCLK  
LRCLK  
Left Channels  
Right Channels  
1-Chip, 8-, 6-, 4-Channel  
and Multiplexed 6-Channel Operation  
32-Bit Word (DAC1)  
32-Bit Word (DAC3)  
32-Bit Word (DAC2)  
32-Bit Word (DAC4)  
I2S Format  
SCLK  
LRCLK  
MSB  
LSB  
24-Bit Mode  
SCLK  
23 22  
9
5
1
8
4
0
5
1
4
0
1
0
24 Bit  
(Example)  
20-Bit Mode  
19 18  
w
w
w
23 22 21 w w w  
16-Bit Mode  
15 14  
T0085-02  
Figure 3-6. I2S TDM Formats  
Submit Documentation Feedback  
Physical Characteristics  
15  
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
3.8.5 SAP Input to SAP Output—Processing Flow  
All SAP data format options other than I2S result in a two-sample delay from input to output, as shown in  
Figure 3-7. If I2S formatting is used for both the input SAP and the output SAP, the polarity of LRCLK in  
Figure 3-7 must be inverted. However, if I2S format conversions are performed between input and output,  
the delay becomes either 1.5 samples or 2.5 samples, depending on the processing clock frequency  
selected for the audio DSP core relative to the sample rate of the incoming data.  
The I2S format uses the falling edge of LRCLK to begin a sample period, whereas all other formats use  
the rising edge of LRCLK to begin a sample period. This means that the input SAP and audio DSP core  
operate on sample windows that are 180° out of phase, with respect to the sample window used by the  
output SAP. This phase difference results in the output SAP outputting a new data sample at the midpoint  
of the sample period used by the audio DSP core to process the data. If the processing cycle completes  
all processing tasks before the midpoint of the processing sample period, the output SAP outputs this  
processed data. However, if the processing time extends past the midpoint of the processing sample  
period, the output SAP outputs the data processed during the previous processing sample period. In the  
former case, the delay from input to output is 1.5 samples. In the latter case, the delay from input to output  
is 2.5 samples.  
Therefore, delay from input to output can be either 1.5 or 2.5 sample times when data format conversions  
are performed that involve the I2S format. However, which delay time is obtained for a particular  
application is determinable and fixed for that application, providing care is taken in the selection of  
MCLKI/XTALI with respect to the incoming sample clock, LRCLK.  
16  
Physical Characteristics  
Submit Documentation Feedback  
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
Figure 3-7. SAP Input-to-Output Latency  
Submit Documentation Feedback  
Physical Characteristics  
17  
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
4 Algorithm and Software Development Tools for TAS3108/TAS3108IA  
The TAS3108/TAS3108IA algorithm and software development tool set is a combination of classical  
development tools and graphical development tools. The tool set is used to build, debug, and execute  
programs in both the audio DSP and 8051 sections of the TAS3108/TAS3108IA.  
Classical development tooling includes text editors, compilers, assemblers, simulators, and source-level  
debuggers. The 8051 can be programmed exclusively in ANSI C.  
The 8051 tool set is an off-the-shelf tool set, with modifications as specified in this document. The 8051  
tool set is a complete environment with an IDE, editor, compiler, debugger, and simulator.  
The audio DSP core is programmed exclusively in assembly. The audio DSP tool set is a complete  
environment with an IDE, context-sensitive editor, assembler, and simulator/debugger.  
Graphical development tooling provides a means of programming the audio DSP core and 8051 through a  
graphical drag-and-drop interface using modular audio software components from a component library.  
The graphical tooling produces audio DSP assembly and 8051 ANSI C code, as well as coefficients and  
data. The classical tools can also be used to produce the executable code.  
In addition to building applications, the tool set supports the debug and execution of audio DSP and 8051  
code on both simulators and EVM hardware.  
18  
Algorithm and Software Development Tools for TAS3108/TAS3108IA  
Submit Documentation Feedback  
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
5 Clock Controls  
Clock management for the TAS3108/TAS3108IA consists of two control structures:  
Master clock management  
Oversees the selection of the clock frequencies for the 8051 microprocessor, the I2C controller, and  
the audio DSP core  
The master clock (MCLKI or XTALI) is the source for these clocks.  
In most applications, the master clock drives an on-chip digital phase-locked loop (DPLL), and the  
DPLL output drives the microprocessor and audio DSP clocks.  
Also available is the DPLL bypass mode, in which the high-speed master clock directly drives the  
microprocessor and audio DSP clocks.  
Serial audio port (SAP) clock management  
Oversees SAP master/slave mode  
Controls output of SCLKOUT1, SCLKOUT2, and LRCLK in the SAP master mode  
Figure 5-2 shows the clock circuitry in the TAS3108/TAS3108IA. Input pin MCLKI or XTALI provides the  
master clock for the TAS3108/TAS3108IA. Within the TAS3108/TAS3108IA, these two inputs are  
combined by an OR gate and, thus, only one of these two sources can be active at any one time. The  
source that is not active must be logic 0.  
In normal operation, 1, 2, or 4 (as determined by the logic levels set at input pins PLL0 and PLL1) divides  
the master clock. The DPLL then multiplies this signal by 11 in frequency (PLL2 = LOW). The multiplier  
ratio is always 11 (pin PLL2 = LOW). The DPLL output is the processing clock used by the audio DSP  
core.  
Submit Documentation Feedback  
Clock Controls  
19  
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
Table 5-1. PLL2, PLL1, and PLL0 Pin Configuration Controls  
PLL2  
PLL1  
PLL0  
AUDIO DSP CLOCK  
11 × MCLK/1  
11 × MCLK/2  
11 × MCLK/4  
Reserved  
0
0
0
0
1
0
0
1
1
X
0
1
0
1
X
Reserved  
Audio DSP clock or audio DSP clock/4 is used to clock the on-chip microprocessor. The input pin  
MICROCLK_DIV makes this clock choice. A logic-1 input level on this pin selects the audio DSP clock for  
the microprocessor clock; a logic-0 input level on this pin selects the audio DSP clock/4 for the  
microprocessor clock. The microprocessor clock must be 34 MHz.  
Table 5-2. MICROCLK_DIV Pin Configuration Control  
MICROCLK_DIV  
MICROPROCESSOR CLOCK  
Audio DSP clock/4  
0
1
Audio DSP clock  
NOTE  
The state of PLL0, PLL1, PLL2, and MICROCLK_DIV can only be changed while the  
TAS3108 or TAS3108IA RESET pin is held low.  
The TAS3108/TAS3108IA only supports dynamic sample-rate changes between any of the supported  
sample frequencies when a fixed-frequency master clock is provided. During dynamic sample-rate  
changes, the TAS3108/TAS3108IA remains in normal operation and the register contents are preserved.  
To avoid producing audio artifacts during the sample-rate changes, a volume or mute control can be  
included in the application firmware that mutes the output signal during the sample-rate change. The  
fixed-frequency clock can be provided by a crystal, attached to XTLI and XTLO, or an external 3.3-V  
fixed-frequency TTL source attached to MCLKI.  
When the TAS3108/TAS3108IA is used in a system in which the master clock frequency (fMCLK) can  
change, the TAS3108/TAS3108IA must be reset during the frequency change. In these cases, the  
procedure shown in Figure 5-1 should be used.  
20  
Clock Controls  
Submit Documentation Feedback  
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
Enable Mute and  
Wait for Completion  
RESET Pin = Low  
Change f  
MCLK  
Are  
Clocks  
No  
Stable?  
Yes  
RESET Pin = High  
After  
TAS3108/TAS3108IA  
Initializes,  
Re-initialize  
2
I C Registers  
F0007-01  
Figure 5-1. Master Clock Frequency (fMCLK) Change Procedure  
Submit Documentation Feedback  
Clock Controls  
21  
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
SCLKIN  
MCLKI  
XTALI  
XTALO  
MCLKO  
PLL2  
PLL1 PLL0  
SCLKOUT1 LRCLK MICROCLK_DIV SCLKOUT2  
M
U
X
÷2  
MCLK  
÷2  
OSC  
M
U
X
PLL  
M
U
X
× 11  
÷2  
÷2  
÷ Z = 2  
DEFAULT  
M
÷4  
U
X
M
U
X
M
U
X
÷ X = 1  
DEFAULT  
M
U
X
÷Y = 64  
DEFAULT  
PLL and Clock Management  
Input  
SAP  
Audio DSP Core  
Output  
SAP  
Microprocessor  
and  
2
I C Bus Controller  
N = 0 (Default)  
Oversample Clock  
N
1/2  
2
I C  
Master/Slave  
Controller  
Master  
SCL  
8-Bit  
WARP  
÷10  
1/(M+1)  
8051 Microprocessor  
M = 8 (Default)  
2xSCL  
2xSDA  
B0078-01  
Figure 5-2. DPLL and Clock Management Block Diagram  
22  
Clock Controls  
Submit Documentation Feedback  
 
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
AL  
CRYST  
MC  
LKO  
PLL  
2
PL  
L1 PLL0  
e
g two TAS  
slots fo  
r those  
3108s. Fo  
s
TDM tim  
AB assign  
uts involvin  
TDM outp  
MCLKI  
r
AS3108  
ne of the T  
’. The  
as AB = ‘0  
t formats, o  
e defined  
these outpu  
chips must b  
XTALO  
OSC  
ed as  
st be defin  
108 chip mu  
XTA  
L
I
other TAS3  
AB = ‘1’.  
MUX  
0
1
2
3
SCL SDA  
PLL [1:0]  
Code  
Word Size  
Word Size  
32-bit  
÷2  
÷4  
IW0/OW0  
IW1/OW1  
IW2/OW2  
AUDIO  
DIGITAL  
PROCESSOR  
CLOCK  
0
1
2
3
0
1
0
1
0
0
1
1
X
X
X
X
1
6-bit  
x 1  
1
0
1
2
20-bit  
24-bit  
÷2  
÷4  
PLL  
MUX  
MUX  
MICROPROCESSOR  
CLOCK  
ord Format (DWMFT)  
Data W  
1
0
8
11 10  
15 14 13  
I2C SAMPLING  
CLOCK N = 0  
IW[2:0]  
÷4  
OW[2:0]  
AB  
÷2N  
MUX  
are  
ord sizes  
nd output w  
NOTE: Input a  
independent.  
I2C  
MODULE  
0x00  
8
7
0
15  
23  
22  
21 1918 16  
27 26 24  
31 29 28  
1/(M+1)  
÷10  
3
2
0
6
Ack  
Ack IOM  
x[2:0]  
z[2:0]  
y[2:0]  
Ack DWMFT  
w[1:0]  
IMS  
Ack ICS  
000  
Ack  
N[2:0]  
M[3:0]  
Ack Sub-Addr  
S
Slave  
Addr  
I2C MASTER  
SCL M = 8  
0x01  
Ack  
0xxxxxxx  
Ack  
Ack 00000000  
0 1000 010  
00000000  
Ack  
00000000  
Ack  
Ack Sub-Addr  
S
Slave  
Addr  
0
4
3
7
0
1
2
3
4
5
6
7
IM[3:0] OM[3:0]  
÷2  
÷32  
÷64  
0
1
2
3
4
5
6
7
0
1
2
3
4
÷3  
Audio Port (AP) Mode Code  
IM1/OM1 IM0/OM0  
Serial  
Mode  
IM3/OM3 IM2/OM2  
÷2  
÷4  
Discrete, left justified  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
÷128  
÷3  
Discrete, right justified  
Discrete, I2S  
TDM_LJ_8  
÷6  
÷192  
÷256  
÷384  
÷512  
÷32  
÷4  
÷8  
TDM_LJ_6  
÷6  
÷16  
÷32  
TDM_LJ_4  
1
0
TDM_I2S_8  
TDM_I2S_6  
TDM_I2S_4  
Discrete, I2S  
Discrete, I2S  
Discrete, I2S  
Discrete, I2S  
Discrete, I2S  
Discrete, I2S  
Discrete, I2S  
÷8  
5
6
7
MUX  
÷16  
÷32  
0
1
MUX  
MUX  
MUX  
MUX  
MUX  
SCLKIN  
SCLKOUT1  
SCLKOUT2  
Figure 5-3. Serial Data Format, Clock Management, and I2C M&N Assignments  
Submit Documentation Feedback  
Clock Controls  
23  
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
When the serial audio port (SAP) is in the master mode, the SAP uses the MCLKI or XTALI master clock  
to drive the serial port clocks SCLKOUT1, SLCKOUT2, and LRCLK. When the SAP is in the slave mode,  
LRCLK is an input and SCLKOUT2 and SCLKOUT1 are derived from SCLKIN. As shown in Figure 5-2,  
SCLKOUT1 clocks data into the input SAP and SCLKOUT2 clocks data from the output SAP. Two distinct  
clocks are required to support TDM-to-discrete and discrete-to-TDM data-format conversions. Such format  
conversions also require that SCLKIN be the higher-valued bit-clock frequency. For TDM-in/discrete-out  
format conversions, SCLKIN must be equal to the input bit clock. For discrete-in/TDM-out format  
conversions, SCLKIN must be equal to the output bit clock. The frequency settings for SCLKOUT1,  
SCLKOUT2, and LRCLK in the SAP master mode, as well as the SAP master/slave mode selection, are  
all controlled by I2C commands. Table 5-3 lists the default settings at power turnon or after a received  
reset.  
Table 5-3. TAS3108/TAS3108IA Clock Default Settings  
CLOCK  
SCLKOUT1  
DEFAULT SETTING  
SCLKIN  
SCLKOUT2  
SCLKIN  
MCLKO  
MCLKI or XTALI  
LRCLK  
Input  
Audio DSP clock  
Microprocessor clock  
PLL multiply ratio  
I2C sampling clock  
I2C master SCL  
Set by pins PLL0 and PLL1  
Set by pin MICROCLK_DIV  
11  
N = 0  
M = 8  
The selections provided by the dedicated TAS3108/TAS3108IA input pins and the programmable settings  
provided by I2C subaddress commands give the TAS3108/TAS3108IA a variety of clocking options.  
However, the following clocking restrictions must be adhered to:  
MCLKI or XTALI 128 fS  
NOTE  
For some TDM modes, MCLKI or XTALI must be 256 fS  
Audio DSP clock <136 MHz  
Microprocessor clock/20 I2C SCL clock  
Microprocessor clock 34 MHz  
I2C oversample clock/20 I2C SCL clock  
XTALI 20 MHz  
MCLKI 25 MHz  
As long as these restrictions are met, all other clocking options are allowed.  
See Section 7.1 for information on programming the clock register.  
24  
Clock Controls  
Submit Documentation Feedback  
 
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
Table 5-4. TAS3108/TAS3108IA MCLK and LRCLK Common Values (MCLK = 12.288 MHz or MCLK = 11.2896 MHz)  
Input  
LRCLK fS  
Rate 32,  
64, 128,  
192, 256,  
384, 512  
PLL  
Multi-  
plier  
11 (pin 135.2 MHz  
PLL2)  
fS  
MCLK/  
LRCLK MCLK Freq  
Ratio  
(× fS)  
MCLK/  
SCLK 1,  
2, 3, 4, 6,  
8, 16, 32  
SCLK  
OUT1  
Rate  
SCLK  
OUT2  
Rate  
Divider  
1, 2, 4  
(pins  
PLL0,  
PLL1)  
Ch  
per  
SDIN  
SCLKIN  
Rate  
(× fS)  
SCLKIN  
Freq  
(MHz)  
X Mux 1, 2,  
3, 4, 6, 8,  
16, 32  
fDSPCLK  
(MHz) Max  
Sample  
Rate  
(kHz)  
Ch per  
SDOUT  
fDSPCLK/fS  
(MHz)  
(× fS)  
(× fS)  
Slave Mode, 2 Channels In, 2 Channels Out  
32  
44.1  
48  
2
2
2
2
2
2
2
384  
256  
256  
128  
128  
64  
12.288  
11.2896  
12.288  
11.2896  
12.288  
11.2896  
12.288  
64  
64  
64  
64  
64  
64  
64  
2.048  
2.822  
3.072  
5.645  
6.144  
11.290  
12.288  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
1
1
1
1
1
1
1
64  
64  
64  
64  
64  
64  
64  
2
2
2
2
2
2
2
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
1
1
1
1
1
1
1
11  
11  
11  
11  
11  
11  
11  
135.2  
124.2  
135.2  
124.2  
135.2  
124.2  
135.2  
4224  
2816  
2816  
1408  
1408  
704  
88.2  
96  
176.4  
192  
64  
704  
Slave Mode, 2 Channels In, TDM Out  
44.1  
48  
2
2
2
2
256  
256  
128  
128  
11.2896  
12.288  
11.2896  
12.288  
256  
256  
128  
128  
11.290  
12.288  
11.290  
6.144  
N/A  
N/A  
N/A  
N/A  
4
4
2
2
64  
64  
64  
64  
8
8
4
4
256  
256  
128  
128  
64  
64  
64  
64  
1
1
1
1
11  
11  
11  
11  
124.2  
135.2  
124.2  
135.2  
2816  
2816  
1408  
1408  
88.2  
96  
Slave Mode, TDM In, 2 Channels Out  
44.1  
48  
8
8
4
4
256  
256  
128  
128  
11.2896  
12.288  
11.2896  
12.288  
256  
256  
128  
128  
11.290  
12.288  
11.290  
12.288  
N/A  
N/A  
N/A  
N/A  
4
4
2
2
256  
256  
128  
128  
2
2
2
2
64  
64  
64  
64  
64  
64  
64  
64  
1
1
1
1
11  
11  
11  
11  
124.2  
135.2  
124.2  
135.2  
2816  
2816  
1408  
1408  
88.2  
96  
Slave Mode, TDM In, TDM Out  
44.1  
48  
8
8
4
4
256  
256  
128  
128  
11.2896  
12.288  
11.2896  
12.288  
256  
256  
128  
128  
11.290  
12.288  
11.290  
12.288  
N/A  
N/A  
N/A  
N/A  
1
1
1
1
256  
256  
128  
128  
8
8
4
4
256  
256  
128  
128  
256  
256  
128  
128  
1
1
1
1
11  
11  
11  
11  
124.2  
135.2  
124.2  
135.2  
2816  
2816  
1408  
1408  
88.2  
96  
Master Mode, 2 Channels In, 2 Channels Out  
32  
44.1  
48  
2
2
2
2
2
2
384  
256  
256  
128  
128  
64  
12.288  
11.2896  
12.288  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
6
4
4
2
2
1
1
1
1
1
1
1
64  
64  
64  
64  
64  
64  
2
2
2
2
2
2
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
1
1
1
1
1
1
11  
11  
11  
11  
11  
11  
135.2  
124.2  
135.2  
124.2  
135.2  
124.2  
4224  
2816  
2816  
1408  
1408  
704  
88.2  
96  
11.2896  
12.288  
176.4  
11.2896  
Submit Documentation Feedback  
Clock Controls  
25  
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
Table 5-4. TAS3108/TAS3108IA MCLK and LRCLK Common Values (MCLK = 12.288 MHz or MCLK = 11.2896 MHz) (continued)  
Input  
LRCLK fS  
Rate 32,  
64, 128,  
192, 256,  
384, 512  
PLL  
Multi-  
plier  
11 (pin 135.2 MHz  
PLL2)  
fS  
MCLK/  
LRCLK MCLK Freq  
Ratio  
(× fS)  
MCLK/  
SCLK 1,  
2, 3, 4, 6,  
8, 16, 32  
SCLK  
OUT1  
Rate  
SCLK  
OUT2  
Rate  
Divider  
1, 2, 4  
(pins  
PLL0,  
PLL1)  
Ch  
per  
SDIN  
SCLKIN  
Rate  
(× fS)  
SCLKIN  
Freq  
(MHz)  
X Mux 1, 2,  
3, 4, 6, 8,  
16, 32  
fDSPCLK  
(MHz) Max  
Sample  
Rate  
(kHz)  
Ch per  
SDOUT  
fDSPCLK/fS  
(MHz)  
(× fS)  
(× fS)  
192  
2
64  
12.288  
N/A  
N/A  
1
1
64  
2
64  
64  
1
11  
135.2  
704  
Master Mode, 2 Channels In, TDM Out  
44.1  
48  
2
2
2
2
2
2
2
2
256  
256  
128  
128  
384  
256  
256  
384  
11.2896  
12.288  
11.2896  
12.288  
12.288  
11.2896  
12.288  
12.288  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
1
1
1
1
2
2
2
3
4
4
2
2
3
2
2
2
64  
64  
64  
64  
64  
64  
64  
64  
8
8
4
4
6
4
4
4
256  
256  
128  
128  
192  
128  
128  
384  
64  
64  
64  
64  
64  
64  
64  
64  
1
1
1
1
1
1
1
1
11  
11  
11  
11  
11  
11  
11  
11  
124.2  
135.2  
124.2  
135.2  
135.2  
124.2  
135.2  
135.2  
2816  
2816  
1408  
1408  
4224  
2816  
2816  
4224  
88.2  
96  
32  
44.1  
48  
32  
Master Mode, TDM In, 2 Channels Out  
44.1  
48  
8
8
4
4
6
4
4
4
256  
256  
128  
128  
384  
256  
256  
384  
11.2896  
12.288  
11.2896  
12.288  
12.288  
11.2896  
12.288  
12.288  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
1
1
1
1
2
2
2
3
4
4
2
2
3
2
2
6
256  
256  
128  
128  
192  
128  
128  
384  
2
2
2
2
2
2
2
2
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
1
1
1
1
1
1
1
1
11  
11  
11  
11  
11  
11  
11  
11  
124.2  
135.2  
124.2  
135.2  
135.2  
124.2  
135.2  
135.2  
2816  
2816  
1408  
1408  
4224  
2816  
2816  
4224  
88.2  
96  
32  
44.1  
48  
32  
Master Mode, TDM In, TDM Out  
44.1  
48  
8
8
4
4
6
4
4
4
256  
256  
128  
128  
384  
256  
256  
384  
11.2896  
12.288  
11.2896  
12.288  
12.288  
11.2896  
12.288  
12.288  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
1
1
1
1
2
2
2
3
1
1
1
1
1
1
1
1
256  
256  
128  
128  
192  
128  
128  
384  
8
8
4
4
6
4
4
4
256  
256  
128  
128  
192  
128  
128  
384  
256  
256  
128  
128  
192  
128  
128  
384  
1
1
1
1
1
1
1
1
11  
11  
11  
11  
11  
11  
11  
11  
124.2  
135.2  
124.2  
135.2  
135.2  
124.2  
135.2  
135.2  
2816  
2816  
1408  
1408  
4224  
2816  
2816  
4224  
88.2  
96  
32  
44.1  
48  
32  
26  
Clock Controls  
Submit Documentation Feedback  
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
6 Microprocessor Controller  
The 8051 microprocessor receives and distributes I2C write data, retrieves and outputs to the I2C bus  
controllers the required I2C read data, and participates in most processing tasks requiring multiframe  
processing cycles. The microprocessor has its own data RAM for storing intermediate values and queuing  
I2C commands, a fixed boot-program ROM, and a program RAM. The microprocessor boot program  
cannot be altered. The microprocessor controller has specialized hardware for master and slave interface  
operation, volume updates, and a programmable interval timer interrupt. For more information, see the  
TAS3108/TAS3108IA Firmware Programmer's Guide (SLEU067).  
The TAS3108/TAS3108IA has a slave-only I2C interface that is compatible with the inter-IC (I2C) bus  
protocol and supports both 100-kbps and 400-kbps data-transfer rates for multiple 4-byte write and read  
operations (maximum is 20 bytes). The slave I2C control interface is used to program the registers of the  
device and to read device status.  
The TAS3108/TAS3108IA also has a master-only I2C interface that is compatible with the I2C bus protocol  
and supports 375-kbps data transfer rates for multiple 4-byte write and read operations (maximum is 20  
bytes). The master I2C interface is used to load program and data from an external I2C EEPROM.  
On power up of the TAS3108/TAS3108IA, the slave interface is disabled and the master interface is  
enabled. Following a reset, the TAS3108/TAS3108IA disables the slave interface and enables the master  
interface. Using the master interface, the TAS3108/TAS3108IA automatically tests to see if an I2C  
EEPROM is at address 1010xxx. The value xxx can be chip select, other information, or don’t cares,  
depending on the EEPROM selected. If a memory is present and it contains the correct header  
information and one or more blocks of program/memory data, the TAS3108/TAS3108IA loads the  
program, coefficient, and/or data memories from the EEPROM. If a memory is present, the download is  
complete when  
a header is read that has a zero-length data segment. At this point, the  
TAS3108/TAS3108IA disables the master I2C interface, enables the slave I2C interface, and starts normal  
operation.  
If no memory is present or if an error occurred during the EEPROM read, TAS3108/TAS3108IA disables  
the master I2C interface, enables the slave I2C interface, and loads the unprogrammed default  
configuration. In this default configuration, the TAS3108/TAS3108IA streams eight channels of audio from  
input to output if the GPIO pin is LOW. The master and slave interfaces do not operate simultaneously.  
In the slave mode, the I2C bus is used to:  
Load the program and coefficient data  
Microprocessor program memory  
Microprocessor extended memory  
Audio DSP core program memory  
Audio DSP core coefficient memory  
Audio DSP core data memory  
Update coefficient and other control values  
Read status flags  
Once the microprocessor program memory has been loaded, it cannot be updated until the  
TAS3108/TAS3108IA has been reset.  
The master and slave modes do not operate simultaneously.  
When acting as an I2C master, the data transfer rate is fixed at 375 kHz, assuming MCLKI or  
XTALI = 12.288 MHz, PLL0 = PLL1 = 0, and MICROCLK_DIV = 0.  
When acting as an I2C slave, the data transfer rate is determined by the master device on the bus. The  
I2C communication protocol for the I2C slave mode is shown in Figure 6-1.  
Submit Documentation Feedback  
Microprocessor Controller  
27  
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
Start  
(By Master)  
Read or Write  
(By Master)  
Stop  
(By Master)  
Slave Address  
(By Master)  
Data Byte  
(By Transmitter)  
Data Byte  
(By Transmitter)  
C
S
1
C
S
0
R
/
W
A
C
K
M
S
B
L
S
B
A
C
K
M
S
B
L
S
B
A
C
K
S
0
1
1
0
1
S
(1)  
Acknowledge  
(By TAS3108/TAS3108IA)  
Acknowledge  
(By Receiver)  
Acknowledge  
(By Receiver)  
MSB MSB−1 MSB−2  
LSB  
SDA  
SCL  
Start Condition  
SDA While SCL = 1  
Stop Condition  
SDA While SCL = 1  
T0087−01  
Figure 6-1. I2C Slave-Mode Communication Protocol  
6.1 General I2C Operations  
As shown in Figure 6-2, an I2C read transaction requires that the master device first issue a write  
transaction to give the TAS3108/TAS3108IA the subaddress to be used in the read transaction that  
follows. This subaddress assignment write transaction is then followed by the read transaction. For write  
transactions, the subaddress is supplied in the first byte of data written, and this byte is followed by the  
data to be written. For I2C write transactions, the subaddress must always be included in the data written.  
There cannot be a separate write transaction to supply the subaddress, as was required for read  
transactions. If a subaddress assignment-only write transaction is followed by a second write transaction  
supplying the data, erroneous behavior results. The first byte in the second write transaction is interpreted  
by the TAS3108/TAS3108IA as another subaddress replacing the one previously written.  
28  
Microprocessor Controller  
Submit Documentation Feedback  
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
I2C Read Transaction  
TAS3108/  
TAS3108IA  
Subaddress  
(By Master)  
Data  
(By TAS3108/  
TAS3108IA)  
Data  
(By TAS3108/  
TAS3108IA)  
Start  
(By Master)  
Write  
(By Master)  
Stop  
Start  
Read  
(By Master)  
Stop  
(By Master)  
(By Master) (By Master)  
TAS3108/  
TAS3108/  
S
W
ACK Subaddress ACK  
S
S
R
ACK  
Data  
ACK  
Data  
ACK  
NAK  
S
TAS3108IA  
Address  
TAS3108IA  
Address  
7-Bit Slave  
Address  
(By Master)  
Acknowledge  
(By TAS3108/  
TAS3108IA)  
Acknowledge  
(By TAS3108/  
TAS3108IA)  
7-Bit Slave  
Address  
(By Master)  
Acknowledge  
(By TAS3108/  
TAS3108IA)  
Acknowledge  
(By Master)  
Acknowledge  
(By Master)  
No Acknowledge  
(By Master)  
I2C Write Transaction  
TAS3108/  
TAS3108IA  
Subaddress  
(By Master)  
Start  
(By Master)  
Write  
(By Master)  
Stop  
(By Master)  
Data  
(By Master)  
Data  
(By Master)  
TAS3108/  
S
W
ACK Subaddress ACK  
Data  
ACK  
Data  
ACK  
ACK  
S
TAS3108IA  
Address  
7-Bit Slave  
Address  
(By Master)  
Acknowledge  
(By TAS3108/  
TAS3108IA)  
Acknowledge  
(By TAS3108/  
TAS3108IA)  
Acknowledge  
(By TAS3108/  
TAS3108IA)  
Acknowledge  
(By TAS3108/  
TAS3108IA)  
Acknowledge  
(By TAS3108/  
TAS3108IA)  
R0006−01  
Figure 6-2. I2C Subaddress Access Protocol  
6.2 Detailed I2C Operation  
The I2C slave mode is the mode that is used to change configuration parameters during operation and to  
perform program and coefficient downloads from a master device. The latter can be used to replace the  
I2C master-mode EEPROM download. The TAS3108/TAS3108IA supports both random and sequential  
I2C transactions. The TAS3108/TAS3108IA I2C slave address is 011010xy, where the first six bits are the  
TAS3108/TAS3108IA device address and bit x is CS0, which is set by the TAS3108/TAS3108IA internal  
microprocessor at power up. Bit y is the R/W bit. The pulldown resistance of CS0 creates a default 00  
address when no connection is made to the pin. Table 6-1 and Table 6-2 show all the legal addresses for  
I2C slave and master modes.  
The TAS3108/TAS3108IA I2C block does respond to the broadcast address (00h).  
Table 6-1. Slave Addresses  
BASE ADDRESS  
0110 10  
CS0  
R/W  
SLAVE ADDRESS  
0
0
1
1
0
1
0
1
0x68  
0x69  
0x6A  
0x6B  
0110 10  
0110 10  
0110 10  
Submit Documentation Feedback  
Microprocessor Controller  
29  
 
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
Table 6-2. Master Addresses  
BASE ADDRESS  
1010 00  
CS0  
R/W  
MASTER ADDRESS  
0
0
1
1
0
1
0
1
0xA0  
0xA1  
0xA2  
0xA3  
1010 00  
1010 00  
1010 00  
The following is an example use of the I2C master address to access an external EEPROM. The  
TAS3108/TAS3108IA can address up to two EEPROMs depending on the state of CS0. Initially, the  
TAS3108/TAS3108IA comes up in I2C master mode. If it finds a memory such as the 24C512 EEPROM, it  
reads the headers and data as previously described. In this I2C master mode, the TAS3108/TAS3108IA  
addresses the EEPROMs as shown in Table 6-3 and Table 6-4.  
Table 6-3. EEPROM Address I2C TAS3108/TAS3108IA Master Mode = 0xA1/A0  
A0  
(EEPROM)  
MSB  
CS0  
R/W  
1
0
1
0
0
0
0
1/0  
Table 6-4. EEPROM Address I2C TAS3108/TAS3108IA Master Mode = 0xA3/A2  
A0  
(EEPROM)  
MSB  
CS0  
R/W  
1
0
1
0
0
0
1
1/0  
Random I2C Transactions  
Supplying a subaddress for each subaddress transaction is referred to as random I2C addressing. For  
random I2C read commands, the TAS3108/TAS3108IA responds with data, a byte at a time, starting at the  
subaddress assigned, as long as the master device continues to respond with acknowledges. If a given  
subaddress does not use all 32 bits, the unused bits are read as logic 0. I2C write commands, however,  
are treated in accordance with the data assignment for that address space. If a write command is received  
for a biquad subaddress, for example, the TAS3108/TAS3108IA expects to see five 32-bit words. If fewer  
than five data words have been received when a stop command (or another start command) is received,  
the data received is discarded.  
Sequential I2C Transactions  
The TAS3108/TAS3108IA also supports sequential I2C addressing. For write transactions, if a subaddress  
is issued followed by data for that subaddress and the 15 subaddresses that follow, a sequential I2C write  
transaction has taken place, and the data for all 16 subaddresses is successfully received by the  
TAS3108/TAS3108IA. For I2C sequential write transactions, the subaddress then serves as the start  
address, and the amount of data subsequently transmitted before a stop or start is transmitted determines  
how many subaddresses are written to. As was true for random addressing, sequential addressing  
requires that a complete set of data be transmitted. If only a partial set of data is written to the last  
subaddress, the data for the last subaddress is discarded. However, all other data written is accepted; just  
the incomplete data is discarded.  
Sequential read transactions do not have restrictions on outputting only complete subaddress data sets.  
If the master does not issue enough data-received acknowledges to receive all the data for a given  
subaddress, the master device does not receive all the data.  
If the master device issues more data-received acknowledges than required to receive the data for a given  
subaddress, the master device simply receives complete or partial sets of data, depending on how many  
data-received acknowledges are issued from the subaddress(es) that follow. I2C read transactions, both  
sequential and random, can impose wait states.  
30  
Microprocessor Controller  
Submit Documentation Feedback  
 
 
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
For the standard I2C mode (SCL = 100 kHz), worst-case wait state time for an 8-MHz microprocessor  
clock is on the order of 2 µs. Nominal wait-state time for the same 8-MHz microprocessor clock is on the  
order of 1 µs. For the fast I2C mode (SCL = 400 kHz) and the same 8-MHz microprocessor clock,  
worst-case wait-state time can extend up to 10.5 µs in duration. Nominal wait-state time for this same  
case lies in a range from 2 µs to 4.6 µs. Increasing the microprocessor clock frequency lowers the  
wait-state time and for the standard I2C mode, a faster microprocessor clock can totally eliminate the  
presence of wait states.  
For example, increasing the microprocessor clock to 16 MHz results in no wait states. For the fast I2C  
mode, faster microprocessor clocks shorten the wait-state time encountered, but do not totally eliminate  
wait states.  
6.2.1 Multiple-Byte Write  
Multiple data bytes are transmitted by the master device to slave as shown in Figure 6-3. After receiving  
each data byte, the TAS3108/TAS3108IA responds with an acknowledge bit.  
Start  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
D0 ACK D7  
Acknowledge  
D0 ACK D7  
Acknowledge  
D0 ACK  
A6 A5  
A1 A0 R/W ACK A7 A6 A5 A4 A3  
A1 A0 ACK D7  
I2C Device Address and  
Read/Write Bit  
Subaddress  
First Data Byte  
Last Data Byte  
Stop  
Condition  
Other Data Bytes  
T0036-02  
Figure 6-3. Multiple-Byte Write Transfer  
6.2.2 Multiple-Byte Read  
Multiple data bytes are transmitted by the TAS3108/TAS3108IA to the master device as shown in  
Figure 6-4. Except for the last data byte, the master device responds with an acknowledge bit after  
receiving each data byte.  
Repeat Start  
Condition  
Not  
Acknowledge  
Start  
Condition  
Acknowledge  
Acknowledge  
A0 ACK  
Acknowledge  
Acknowledge  
Acknowledge  
D0 ACK D7  
A6  
A0 R/W ACK A7 A6 A5  
A6  
A0 R/W ACK D7  
D0 ACK D7  
D0 ACK  
I2C Device Address and  
Read/Write Bit  
Subaddress  
I2C Device Address and First Data Byte  
Read/Write Bit  
Other Data Bytes  
Last Data Byte  
Stop  
Condition  
T0036-04  
Figure 6-4. Multiple-Byte Read Transfer  
6.3 I2C Master-Mode Device Initialization  
I2C master-mode operation is enabled following a reset or power-on reset. Master-mode I2C transactions  
do not start until the I2C bus is idle.  
The TAS3108/TAS3108IA uses the master mode to download from EEPROM the memory contents for the  
microprocessor program memory, microprocessor extended memory, audio DSP core program memory,  
audio DSP core coefficient memory, and audio DSP core data memory.  
The TAS3108/TAS3108IA, when operating as an I2C master, can execute a complete download of any  
internal memory or any section of any internal memory without requiring any wait states.  
Submit Documentation Feedback  
Microprocessor Controller  
31  
 
 
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
When the TAS3108/TAS3108IA operates as an I2C master, the TAS3108/TAS3108IA generates a  
repeated start without an intervening stop command while downloading program and memory data from  
EEPROM. When a repeated start is sent to the EEPROM in read mode, the EEPROM enters a sequential  
read mode to transfer large blocks of data quickly.  
The TAS3108/TAS3108IA queries the bus for an I2C EEPROM at address 1010xxx. The value xxx can be  
chip select, other information, or don’t cares, depending on the EEPROM selected.  
The first action of the TAS3108/TAS3108IA as master is to transmit a start condition along with the device  
address of the I2C EEPROM with the read/write bit cleared (0) to indicate a write. The EEPROM  
acknowledges the address byte, and the TAS3108/TAS3108IA sends a subaddress byte, which the  
EEPROM acknowledges. Most EEPROMs have at least 2-byte addresses and acknowledge as many as  
are appropriate. At this point, the EEPROM sends a last acknowledge and becomes a slave transmitter.  
The TAS3108/TAS3108IA acknowledges each byte repeatedly to continue reading each data byte that is  
stored in memory.  
The memory load information starts with reading the header and data information that starts at  
subaddress 0 of the EEPROM. This information must then be stored in sequential memory addresses with  
no intervening gaps. The data blocks are contiguous blocks of data that immediately follow the header  
locations.  
The TAS3108/TAS3108IA memory data can be stored and loaded in (almost) any order. Additionally, this  
addressing scheme permits portions of the TAS3108/TAS3108IA internal memories to be loaded.  
I2C EEPROM Memory Map  
Block Header 1  
Data Block 1  
Block Header 2  
Data Block 2  
w
w
w
Block Header N  
Data Block N  
M0040−01  
Figure 6-5. EEPROM Address Map  
The TAS3108/TAS3108IA sequentially reads EEPROM memory and loads its internal memory unless it  
does not find a valid memory header block, is not able to read the next memory location because the end  
of memory was reached, detects a checksum error, or reads an end-of-program header block. When it  
encounters an invalid header or read error, the TAS3108/TAS3108IA attempts to read the header or  
memory location three times before it determines that it has an error. If the TAS3108/TAS3108IA  
encounters a checksum error it attempts to reread the entire block of memory two more times before it  
determines that it has an error.  
32  
Microprocessor Controller  
Submit Documentation Feedback  
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
Once the microprocessor program memory has been loaded, it cannot be reloaded until the  
TAS3108/TAS3108IA has been reset.  
If an error is encountered, TAS3108/TAS3108IA terminates its memory-load operation, loads the default  
configuration, and disables further master I2C bus operations.  
If an end-of-program data block is read, the TAS3108/TAS3108IA has completed the initial program load.  
The I2C master mode uses the starting and ending I2C checksums to verify a proper EEPROM download.  
The first 16-bit data word received from the EEPROM, the I2C checksum at subaddress 0x00, is stored  
and compared against the 16-bit data word received for the last subaddress, the ending I2C checksum,  
and the checksum that is computed during the download. These three values must be equal. If the read  
and computed values do not match, the TAS3108/TAS3108IA sets the memory read error bits in the  
status register and repeats the download from the EEPROM two more times. If the comparison check fails  
the third time, the TAS3108/TAS3108IA sets the microprocessor program to the default value.  
Table 6-5 shows the format of the EEPROM or other external memory load file. Each line of the file is a  
byte (in ASCII format). The checksum is the summation of all the bytes (with beginning and ending  
checksum fields = 00). The final checksum inserted into the checksum field is the lowest significant four  
bytes of the checksum.  
Example:  
Given the following example 8051 data or program block (must be a multiple of 4 bytes for these blocks):  
10h  
20h  
30h  
40h  
50h  
60h  
70h  
80h  
The checksum = 10h + 20h + 30h + 30h + 40h + 50h + 60h + 70h + 80h = 240h, so  
the values put in the checksum fields are MS byte = 02h and LS byte = 40h.  
If the checksum is > FFFFh, the 2-byte checksum field is the least-significant two bytes.  
For example, if the checksum is 1D 45B6h, the checksum field is MS byte = 45h and LS byte = B6h.  
Submit Documentation Feedback  
Microprocessor Controller  
33  
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
Table 6-5. TAS3108/TAS3108IA Memory Block Structures  
STARTING  
BYTE  
DATA BLOCK FORMAT  
SIZE  
NOTES  
12-Byte Header Block  
0
2
4
Checksum code MS byte  
Checksum code LS byte  
Header ID byte 1 = 0x00  
Header ID byte 2 = 0x1F  
Memory to be loaded  
2 bytes  
Checksum of bytes 2 through N + 12  
2 bytes  
1 byte  
Must be 0x001F for the TAS3108/TAS3108IA to load  
0x00 Microprocessor program memory or termination  
header  
0x01 Microprocessor external data memory  
0x02 Audio DSP core program memory  
0x03 Audio DSP core coefficient memory  
0x04 Audio DSP core data memory  
0x05–0x0F Reserved for future expansion  
5
6
0x00  
1 byte  
Unused  
Start TAS3108/TAS3108IA memory address MS  
byte  
2 bytes  
If this is a termination header, this value is 0000.  
Start TAS3108/TAS3108IA memory address LS byte  
8
Total number of bytes transferred MS byte  
2 bytes  
12 + data bytes + last checksum bytes. If this is a  
termination header, this value is 0000.  
Total number of bytes transferred LS byte  
10  
11  
0x00  
0x00  
1 bytes  
1 bytes  
Unused  
Unused  
Data Block for Microprocessor Program or Data Memory (Following 12-Byte Header)  
12  
Data byte 1 (LS byte)  
Data byte 2  
4 bytes  
1–4 microprocessor bytes  
Data byte 3  
Data byte 4 (MS byte)  
Data byte 5  
16  
4 bytes  
5–8 microprocessor bytes  
Data byte 6  
Data byte 7  
Data byte 8  
N + 8  
Data byte 4*(Z – 1) + 1  
Data byte 4*(Z – 1) + 2  
Data byte 4*(Z – 1) + 3  
Data byte 4*(Z – 1) + 4 = N  
0x00  
4 bytes  
4 bytes  
N + 12  
Repeated checksum bytes 2 through N + 11  
0x00  
Checksum code MS byte  
Checksum code LS byte  
Data Block for Audio DSP Core Coefficient Memory (Following 12-Byte Header)  
12  
Data byte 1 (LS byte)  
Data byte 2  
4 bytes  
Coefficient word 1 (valid data in D27–D0) D7–D0  
D15–D8  
Data byte 3  
D23–D16  
D31–D24  
Data byte 4 (MS byte)  
34  
Microprocessor Controller  
Submit Documentation Feedback  
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
Table 6-5. TAS3108/TAS3108IA Memory Block Structures (continued)  
STARTING  
BYTE  
DATA BLOCK FORMAT  
SIZE  
NOTES  
16  
Data byte 5  
4 bytes  
Coefficient word 2  
Data byte 6  
Data byte 7  
Data byte 8  
N + 8  
Data byte 4*(Z – 1) + 1  
Data byte 4*(Z – 1) + 2  
Data byte 4*(Z – 1) + 3  
Data byte 4*(Z – 1) + 4 = N  
0x00  
4 bytes  
4 bytes  
Coefficient word Z  
N + 12  
Repeated checksum bytes 2 through N + 11  
0x00  
Checksum code MS byte  
Checksum code LS byte  
Data Block for Audio DSP Core Data Memory (Following 12-Byte Header)  
12  
18  
Data byte 1 (LS byte)  
Data byte 2  
6 bytes  
Data word 1 D7–D0  
D15–D8  
Data byte 3  
D23–D16  
Data byte 4  
D31–D24  
Data byte 5  
D39–D32  
Data byte 6 (MS byte)  
Data byte 7  
D47–D40  
6 bytes  
Data 2  
Data byte 8  
Data byte 9  
Data byte 10  
Data byte 11  
Data byte 12  
N + 6  
Data byte 6*(Z – 1) + 1  
Data byte 6*(Z – 1) + 2  
Data byte 6*(Z – 1) + 3  
Data byte 6*(Z – 1) + 4  
Data byte 6*(Z – 1) + 5  
Data byte 6*(Z – 1) + 6 = N  
0x00  
6 bytes  
Data Z  
N + 12  
6 bytes  
Repeated checksum bytes 2 through N + 11  
0x00  
0x00  
0x00  
Checksum code MS byte  
Checksum code LS byte  
Submit Documentation Feedback  
Microprocessor Controller  
35  
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
Table 6-5. TAS3108/TAS3108IA Memory Block Structures (continued)  
STARTING  
BYTE  
DATA BLOCK FORMAT  
SIZE  
NOTES  
Data Block for Audio DSP Core Program Memory (Following 12-Byte Header)  
7 bytes Program word 1 (valid data in D53–D0) D7–D0  
12  
Program byte 1 (LS byte)  
Program byte 2  
Program byte 3  
Program byte 4  
Program byte 5  
Program byte 6  
Program byte 7 (MS byte)  
Program byte 8  
Program byte 9  
Program byte 10  
Program byte 11  
Program byte 12  
Program byte 14  
Program byte 15  
D15–D8  
D23–D16  
D31–D24  
D39–D32  
D47–D40  
D55–D48  
Program word 2  
19  
7 bytes  
N + 5  
Program byte 7*(Z – 1) + 1  
Program byte 7*(Z – 1) + 2  
Program byte 7*(Z – 1) + 3  
Program byte 7*(Z – 1) + 4  
Program byte 7*(Z – 1) + 5  
Program byte 7*(Z – 1) + 6  
Program byte 7*(Z – 1) + 7 = N  
0x00  
7 bytes  
Program word Z  
N + 12  
7 bytes  
Repeated checksum bytes 2 through N + 11  
0x00  
0x00  
0x00  
0x00  
Checksum code MS byte  
Checksum code LS byte  
20-Byte Termination Block (Last Block of Entire Load Block)  
BLAST – 19  
BLAST – 17  
0x00  
0x00  
0x00  
0x1F  
0x00  
0x00  
2 bytes  
First two bytes of termination block are always 0x0000.  
2 bytes  
Second two bytes are always 0x001F.  
BLAST – 15  
BLAST – 14  
1 byte  
1 byte  
Last 16 bytes must each be 0x00.  
BLAST  
0x00  
1 byte  
36  
Microprocessor Controller  
Submit Documentation Feedback  
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
7 I2C Register Map  
NO. OF  
BYTES  
INITIALIZATION  
SUBADDRESS  
REGISTER NAME  
CONTENTS  
VALUE  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
Clock and SAP control register  
Reserved  
4
4
4
Description shown in Section 7.1  
0x01, 0x00, 0x1B, 0x22  
0x00, 0x00, 0x00, 0x40  
0x00, 0x00, 0x00, 0x00  
0x00, 0x00, 0x00, 0x00  
Reserved  
Status register  
Description shown in Section 7.2  
Unused  
I2C memory load control register  
I2C memory load data register  
PEEK/POKE address  
8
8
4
Description shown in Section 7.3  
Description shown in Section 7.3  
u(31:24)(1), MemSelect(23:16),  
Addr(15:8), Addr(7:0)  
0x00, 0x00, 0x00, 0x00  
0x07  
PEEK/POKE data  
16  
4
D(63:56), D(55:48), D(47:40), D(39:32), 0x00, 0x00, 0x00, 0x00  
D(31:24), D(23:16), D(15:8), D(7:0)  
0x08  
0x09  
Version number  
User-defined  
TAS3108/TAS3108IA version  
User-defined register 1  
0x00, 0x00, 0x00, 0x01  
User-defined  
4, 8, 12, 16, or  
20  
0x0A  
User-defined  
4, 8, 12, 16, or  
20  
User-defined register 2  
User-defined  
0xFE  
User-defined  
User-defined  
4, 8, 12, 16, or  
20  
User-defined register 246  
User-defined  
User-defined  
0xFF  
4, 8, 12, 16, or  
20  
User-defined register 247  
(1) u indicates unused bits.  
In the following sections, BOLD indicates the default state of the bit fields.  
I2C Register Map  
Submit Documentation Feedback  
37  
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
7.1 Clock Control Register (0x00)  
Register 0x00 provides the user with control over MCLK, LRCLK, SCLKOUT1, SCLKOUT2, data-word  
size, and serial audio port modes. Register 0x00 default = 0x0100 1B22.  
Table 7-1. Clock Control Register (0x00)  
D31  
D30  
D29  
D28  
D27  
D26  
D25  
D24  
DESCRIPTION  
0
0
0
Not Used  
W1  
W0  
Master clock output divider  
Y2  
Y1  
Y0  
Master mode LRCLK divider  
DESCRIPTION  
D23  
D22  
D21  
D20  
D19  
D18  
D17  
D16  
ICS  
SCLKOUT select (default = 0)  
IMS  
SAP master/slave mux select (1 = master mode, 0 = slave mode)  
SCLKIN and SCLKOUT clock divide  
X2  
X1  
X0  
Z2  
Z1  
Z0  
MCLK, SCLK ratio (master mode only)  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
DESCRIPTION  
Don't care  
X
X
X
Don't care  
IW1  
IW0  
Input audio data word size  
Don't care  
X
OW1  
OW0 Output audio data word size  
D0 DESCRIPTION  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
IM3  
IM2  
IM1  
IM0  
Input data format  
OM0 Output data format  
OM3  
OM2  
OM1  
7.1.1 Master Clock Output Divider  
Bits 28–27 (W1 and W0) define the ratio between MCLKI (or the crystal frequency) and MCLKO. This  
allows the accommodation of devices that require an MCLK = 128 LRCLK and devices that require an  
MCLK = 256 LRCLK, without having to use glue logic to divide that clock down. This bit has meaning  
whether in clock-master or clock-slave mode.  
W1  
0
W0  
0
DESCRIPTION  
MCLKO = MCLKI  
MCLKO = MCLKI/2  
MCLKO = MCLKI/4  
MCLKO = MCLKI/4  
0
1
1
0
1
1
I2C Register Map  
38  
Submit Documentation Feedback  
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
7.1.2 Master Mode LRCLK Divider  
Bits 26–24 (Y2, Y1, and Y0) define the ratio between SCLK and LRCLK, but only have meaning in the  
clock-master mode where LRCLK is an output. In the clock-slave mode, LRCLK is an input.  
Y2  
0
Y1  
0
Y0  
0
DESCRIPTION  
LRCLK out = SCLK/32  
LRCLK out = SCLK/64  
LRCLK out = SCLK/128  
LRCLK out = SCLK/192  
LRCLK out = SCLK/256  
LRCLK out = SCLK/384  
LRCLK out = SCLK/512  
LRCLK out = SCLK/32  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
7.1.3 SCLKIN and SCLKOUT Clock Divide  
Bits 21–19 (X2, X1, and X0) define the ratio between SCLKIN and SCLKOUT. These control bits are only  
used when the input and output rates are different, which can happen if TDM and discrete modes are both  
used (for example, input is TDM and output is discrete). Normally, these bits are set to 000, so that  
SCLKOUT1 (input SCLK) and SLCKOUT2 (output SCLK) are the same. (Note that SCLKIN is not the  
input SCLK, but is used in clock-slave mode to derive SCLKOUT1.)  
X2  
0
X1  
0
X0  
0
DESCRIPTION  
X MUX out = IMS_MUX (master/slave SCLK)  
0
0
1
X MUX out = IMS_MUX/2  
X MUX out = IMS_MUX/3  
X MUX out = IMS_MUX/4  
X MUX out = IMS_MUX/6  
X MUX out = IMS_MUX/8  
X MUX out = IMS_MUX/16  
X MUX out = IMS_MUX/32  
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
7.1.4 MCLK, SCLK Ratio (Master Mode Only)  
Bits 18–16 (Z2, Z1, and Z0) define the ratio between MCLK and SCLK when the TAS3108/TAS3108IA is  
the clock master. In clock-slave mode, these bits are don't care.  
Z2  
0
Z1  
0
Z0  
0
DESCRIPTION  
Z MUX out = MCLK (MCLKI or crystal oscillator)  
0
0
1
Z MUX out = MCLK/2  
Z MUX out = MCLK/3  
Z MUX out = MCLK/4  
Z MUX out = MCLK/6  
Z MUX out = MCLK/8  
Z MUX out = MCLK/16  
Z MUX out = MCLK/32  
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
I2C Register Map  
Submit Documentation Feedback  
39  
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
7.1.5 Audio Data Word Size  
Bits 12–11 (IW1 and IW0) define the data word size for the input SAP. Bits 9–8 (OW1 and OW0) define  
the data word size for the output SAP.  
IW1/OW1  
IW0/OW0  
DESCRIPTION  
0
0
1
1
0
1
0
1
32-bit audio data  
16-bit audio data  
20-bit audio data  
24-bit audio data  
7.1.6 Input and Output Data Format  
Bits 7–4 (IM3, IM2, IM1, and IM0) define the input data format. Bits 3–0 (OM3, OM2, OM1, and OM0)  
define the output data format. The two formats need not be the same, only compatible.  
IM3/OM3  
IM2/OM2  
IM1/OM1  
IM0/OM0  
DESCRIPTION  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
2 channel, left justified  
2 channel, right justified  
2 channel, I2S  
TDM, left justified (8 channels)  
TDM, left justified (6 channels)  
TDM, left justified (4 channels)  
TDM, I2S (8 channels)  
TDM, I2S (6 channels)  
TDM, I2S (4 channels)  
2 channel, I2S  
2 channel, I2S  
2 channel, I2S  
2 channel, I2S  
2 channel, I2S  
2 channel, I2S  
2 channel, I2S  
I2C Register Map  
40  
Submit Documentation Feedback  
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
7.2 Status Register (0x02)  
During I2C download, the write operation to indicate that a particular memory is to be written causes the  
TAS3108/TAS3108IA to set an error bit to indicate a load for that memory type. This error bit is cleared  
when the operation completes successfully.  
Table 7-2. Status Register (0x02)  
D31  
D30  
D29  
D28  
D27  
D26  
D25  
D24  
DESCRIPTION  
DESCRIPTION  
DESCRIPTION  
DESCRIPTION  
Firmware definable  
Firmware definable  
Firmware definable  
D23  
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
0
D6  
0
D5  
D4  
D3  
D2  
D1  
D0  
1
Microprocessor program memory load error  
Microprocessor external data memory load error  
Audio DSP core program memory load error  
Audio DSP core coefficient memory load error  
Audio DSP core data memory load error  
Invalid memory select  
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
1
1
1
1
0
0
0
0
End-of-load header error  
1
1
1
1
1
1
1
1
No EPROM present  
0
0
0
0
0
0
0
0
No errors  
I2C Register Map  
Submit Documentation Feedback  
41  
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
7.3 I2C Memory Load Control and Data Registers (0x04 and 0x05)  
Registers 0x04 (Table 7-3) and 0x05 (Table 7-4) allow the user to download TAS3108/TAS3108IA  
program code and data directly from the system I2C controller. This mode is called the I2C slave mode  
(from the TAS3108/TAS3108IA point-of-view). See the TAS3108/TAS3108IA Firmware Programmer's  
Guide (SLEU067) for more details.  
Table 7-3. TAS3108/TAS3108IA Memory Load Control Register (0x04)  
BYTE  
DATA BLOCK FORMAT  
SIZE  
NOTES  
1–2  
Checksum code  
2 bytes Checksum of bytes 2 through N + 8. If this is a termination header,  
this value is 0000.  
3–4  
Memory to be loaded  
2 bytes 0 Microprocessor program memory  
1 Microprocessor external data memory  
2 Audio DSP core program memory  
3 Audio DSP core coefficient memory  
4 Audio DSP core data memory  
5–15 Reserved for future expansion  
5
Unused  
1 byte  
Reserved for future expansion  
6–7  
Starting TAS3108/TAS3108IA memory  
address  
2 bytes If this is a termination header – this value is 0000.  
7–8  
Number of data bytes to be transferred  
2 bytes If this is a termination header – this value is 0000.  
Table 7-4. TAS3108/TAS3108IA Memory Load Data Register (0x05)  
BYTE  
8-BIT DATA  
28-BIT DATA  
0000 D27–D24  
D7–D0  
48-BIT DATA  
0000 0000  
0000 0000  
D47–D40  
D39–D32  
D31–D24  
D23–D16  
D15–D8  
54-BIT DATA  
0000 0000  
00 D53–D48  
D47–D40  
D39–D32  
D31–D24  
D23–D16  
D15–D8  
1
2
3
4
5
6
7
8
Datum 1 D7–D0  
Datum 2 D7–D0  
Datum 3 D7–D0  
Datum 4 D7–D0  
Datum 5 D7–D0  
Datum 6 D7–D0  
Datum 7 D7–D0  
Datum 8 D7–D0  
D15–D8  
D7–D0  
0000 D27–D24  
D23–D16  
D15–D8  
D7–D0  
D7–D0  
D7–D0  
I2C Register Map  
42  
Submit Documentation Feedback  
 
 
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
7.4 Memory Access Registers (0x06 and 0x07)  
Registers 0x06 (Table 7-5) and 0x07 (Table 7-6) allow the user to access the internal resources of the  
TAS3108/TAS3108IA. See TAS3108/TAS3108IA Firmware Programmer's Guide (SLEU067) for more  
details.  
Table 7-5. Memory Select and Address Register (0x06)  
D31  
D30  
D29  
D28  
D27  
D26  
D25  
D24  
DESCRIPTION  
Unused  
D23  
0
D22  
0
D21  
0
D20  
0
D19  
0
D18  
0
D17  
0
D16  
1
DESCRIPTION  
Audio DSP core coefficient memory select  
Audio DSP core data memory select  
Reserved  
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
1
0
0
0
0
0
1
0
0
Microprocessor internal data memory select  
Microprocessor external data memory select  
SFR select  
0
0
0
0
0
1
0
1
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1
1
Microprocessor program RAM select  
Audio DSP core program RAM select  
0
0
0
0
1
0
0
0
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
DESCRIPTION  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
Memory address  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DESCRIPTION  
A8  
A9  
A10  
A11  
A12  
A13  
A14  
A15 Memory address  
Table 7-6. Data Register (Peek and Poke) (0x07)  
D63  
D62  
D61  
D60  
D59  
D58  
D57  
D56  
DESCRIPTION  
DESCRIPTION  
DESCRIPTION  
DESCRIPTION  
DESCRIPTION  
DESCRIPTION  
DESCRIPTION  
DESCRIPTION  
D63  
D62  
D61  
D60  
D59  
D58  
D57  
D56 Data to be written or read  
D55  
D54  
D53  
D52  
D51  
D50  
D49  
D48  
D55  
D54  
D53  
D52  
D51  
D50  
D49  
D48 Data to be written or read  
D47  
D46  
D45  
D44  
D43  
D42  
D41  
D40  
D47  
D46  
D45  
D44  
D43  
D42  
D41  
D40 Data to be written or read  
D39  
D38  
D37  
D36  
D35  
D34  
D33  
D32  
D39  
D38  
D37  
D36  
D35  
D34  
D33  
D32 Data to be written or read  
D31  
D30  
D29  
D28  
D27  
D26  
D25  
D24  
D31  
D30  
D29  
D28  
D27  
D25  
D26  
D25 Data to be written or read  
D23  
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D23  
D22  
D21  
D20  
D19  
D18  
D17  
D16 Data to be written or read  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
Data to be written or read  
Data to be written or read  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
I2C Register Map  
Submit Documentation Feedback  
43  
 
 
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
8 Electrical Specifications  
8.1 Absolute Maximum Ratings Over Operating Temperature Range (unless otherwise noted)(1)  
Supply voltage range, DVDD  
Supply voltage, AVDD  
–0.5 V to 3.8 V  
–0.5 V to 3.8 V  
–0.5 V to DVDD + 0.5 V  
–0.5 V to 2.3 V  
–0.5 V to DVDD + 0.5 V  
–0.5 V to 2.3V(2)  
±20 µA  
3.3-V TTL  
Input voltage  
range  
VI  
1.8 V LVCMOS (XTLI)  
3.3 V TTL  
Output voltage  
range  
VO  
1.8 V LVCMOS (XTLO)  
IIK  
Input clamp current (VI < 0 or VI > DVDD  
Output clamp current (VO < 0 or VO > DVDD)  
TAS3108 operating free-air temperature  
TAS3108IA operating free-air temperature  
Storage temperature range  
IOK  
±20 µA  
0°C to 70°C  
TA  
–40°C to 105°C  
–65°C to 150°C  
Tstg  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Pin XTALO is the only TAS3108/TAS3108IA output that is derived from the internal 1.8-V logic supply. The absolute maximum rating  
listed is for reference; only a crystal should be connected to XTALO.  
8.2 Package Dissipation Ratings (TAS3108/TAS3108IA)  
PACKAGE  
PIN COUNT  
38  
TAS3108IA(1)  
TAS3108(2)  
TYPE  
DESIGNATOR  
θJA (°C/W)  
27.41  
θJC (°C/W)  
θJA (°C/W)  
52.93  
θJC (°C/W)  
TSSOP  
DCP  
0.72  
0.72  
(1) Use 2 oz. trace and thermal pad with solder  
(2) Use 2 oz. trace and thermal pad without solder  
See Application Information, Section 9, for PCB recommendations for TAS3108IA applications.  
8.3 Recommended Operating Conditions (TAS3108/TAS3108IA)  
MIN NOM  
MAX UNIT  
Digital supply voltage, DVDD  
High-level input voltage  
3
2
3.3  
3.6  
V
3.3 V TTL  
VIH  
VIL  
TA  
TJ  
V
1.8 V LVCMOS (XTL_IN)  
3.3 V TTL  
1.2  
0.8  
0.5  
70  
Low-level input voltage  
V
1.8 V LVCMOS (XTL_IN)  
TAS3108  
0
–40  
0
25  
25  
Operating ambient air temperature  
Operating junction temperature  
°C  
°C  
TAS3108IA  
105  
105  
125  
TAS3108  
TAS3108IA  
–40  
44  
Electrical Specifications  
Submit Documentation Feedback  
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
8.4 Electrical Characteristics (TAS3108/TAS3108IA)  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
3.3-V TTL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
IOH = –4 mA  
IOH = –0.55 mA  
IOL = 4 mA  
2.4  
VOH  
High-level output voltage  
V
1.8-V LVCMOS  
(XTL_OUT)  
1.44  
3.3-V TTL  
0.5  
0.4  
VOL  
Low-level output voltage  
V
1.8-V LVCMOS  
(XTL_OUT)  
IOL = 0.75 mA  
High-impedance output  
current  
IOZ  
IIL  
3.3-V TTL  
3.3-V TTL  
VI = VIL  
VI = VIL  
±20  
µA  
µA  
±1  
±1  
±1  
±1  
Low-level input current  
High-level input current  
1.8-V LVCMOS (XTL_IN) VI = VIL  
3.3-V TTL VI = VIH  
1.8-V LVCMOS (XTL_IN) VI = VIH  
MCLKI = 24.576 MHz,  
IIH  
µA  
110  
100  
LRCLK = 192 kHz  
MCLKI = 12.288 MHz,  
LRCLK = 48 kHz  
Normal operation  
IDVDD  
Digital supply current  
mA  
MCLKI = 8.192 MHz,  
LRCLK = 32 kHz  
70  
16  
3
Power down enabled  
Normal operation  
LRCLK, SCLK, MCLKI running  
MCLKI = 24.576 MHz,  
LRCLK = 192 kHz  
mA  
mA  
IA_DVDD Analog supply current  
Power down enabled  
LRCLK, SCLK, MCLKI running  
2
Submit Documentation Feedback  
Electrical Specifications  
45  
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
8.5 Timing Characteristics  
The following sections describe the timing characteristics of the TAS3108/TAS3108IA.  
8.5.1 Master Clock Signals (TAS3108/TAS3108IA)  
over recommended operating conditions (unless otherwise noted)  
TEST  
PARAMETER  
MIN  
TYP  
MAX UNIT  
CONDITIONS  
(1)  
f(XTALI)  
tc(1)  
f(MCLKI)  
tw(MCLKI)  
Frequency, XTALI (1/ tc(1)  
)
See  
6(2)  
50(2)  
6(2)  
20(2) MHz  
Cycle time, XTALI  
166(2)  
25 MHz  
ns  
Frequency, MCLKI (1/ tc(2)  
)
(3)  
Pulse duration, MCLKI high  
MCLKI jitter  
See  
0.4 tc(2)  
0.5 tc(2)  
0.6 tc(2)  
±5(2)  
ns  
ns  
f(MCLKO)  
tr(MCLKO)  
tf(MCLKO)  
tw(MCLKO)  
Frequency, MCLKO (1/ tc(3)  
)
6(2)  
25(2) MHz  
Rise time, MCLKO  
CL = 30 pF  
CL = 30 pF  
15(2)  
15(2)  
ns  
ns  
ns  
Fall time, MCLKO  
(4)  
Pulse duration, MCLKO high  
See  
HMCLKO  
80  
XTALI master clock source  
MCLKI master clock source See  
MCLKO jitter  
ps  
ns  
(5)  
(6)  
Delay time, MCLKI rising MCLKO = MCLKI  
edge to MCLKO rising  
See  
See  
20(2)  
20(2)  
td(MI-MO)  
(6) (7)  
MCLKO < MCLKI  
edge  
(1) Duty cycle is 50/50.  
(2) This measurement is specified by design.  
(3) Period of MCLKI = TMCLKI = 1 / fMCLKI  
(4) HMCLKO = 1/(2 × MCLKO). MCLKO has the same duty cycle as MCLKI when MCLKO = MCLKI. When MCLKO = 0.5 MCLKI or 0.25  
MCLKI, the duty cycle of MCLKO is typically 50%.  
(5) When MCLKO is derived from MCLKI, MCLKO jitter = MCLKI jitter  
(6) Only applies when MCLKI is selected as master source clock  
(7) Also applies to MCLKO falling edge when MCLKO = MCLKI/2 or MCLKI/4.  
XTALI  
t
c(1)  
t
w(MCLKI)  
MCLKI  
t
c(2)  
t
d(MI-MO)  
t
w(MCLKO)  
t
t
r(MCLKO)  
f(MCLKO)  
MCLKO  
t
c(3)  
T0088-01  
Figure 8-1. Master Clock Signal Timing Waveforms  
46  
Electrical Specifications  
Submit Documentation Feedback  
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
8.5.2 Serial Audio Port Slave Mode Signals (TAS3108/TAS3108IA)  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST  
MIN  
TYP  
MAX UNIT  
CONDITIONS  
fLRCLK  
Frequency, LRCLK (fS)  
32(1)  
192(1) kHz  
(2)  
(1)  
(1)  
tw(SCLKIN) Pulse duration, SCLKIN high  
See  
0.4 tc(SCLKIN)  
0.5 tc(SCLKIN) 0.6 tc(SCLKIN)  
ns  
(3)  
(1)  
fSCLKIN  
tpd1  
tsu1  
th1  
Frequency, SCLKIN  
See  
64 fS  
25(1) MHz  
Propagation delay, SCLKIN falling edge to SDOUT  
Setup time, LRCLK to SCLKIN rising edge  
Hold time, LRCLK from SCLKIN rising edge  
Setup time, SDIN to SCLKIN rising edge  
Hold time, SDIN from SCLKIN rising edge  
15(1)  
ns  
ns  
ns  
ns  
ns  
10(1)  
(1)  
0.5 tc(SCLKIN)  
tsu2  
th2  
10(1)  
10(1)  
Propagation delay, SCLKIN falling edge to  
SCLKOUT2 falling edge  
tpd2  
17(1)  
ns  
(1) This measurement is specified by design.  
(2) Period of SCLKIN = TSCLKIN = 1/fSCLKIN  
(3) Duty cycle is 50/50.  
t
t
c(SCLKIN)  
w(SCLKIN)  
SCLKIN  
t
h1  
t
su1  
LRCLK  
(Input)  
t
pd1  
SDOUT1  
SDOUT2  
SDOUT3  
SDOUT4  
t
h2  
t
su2  
SDIN1  
SDIN2  
SDIN3  
SDIN4  
t
pd2  
SCLKOUT2  
T0090-01  
Figure 8-2. Serial Audio Port Slave Mode Timing Waveforms  
Submit Documentation Feedback  
Electrical Specifications  
47  
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
8.5.3 Serial Audio Port Master Mode Signals (TAS3108/TAS3108IA)  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
Frequency LRCLK  
TEST CONDITIONS  
CL = 30 pF  
MIN  
32(1)  
TYP  
MAX UNIT  
f(LRCLK)  
192(1)  
12(1)  
12(1)  
25(1)  
kHz  
ns  
(2)  
tr(LRCLK)  
tf(LRCLK)  
f(SCLKOUT)  
Rise time, LRCLK  
Fall time, LRCLK  
CL = 30 pF  
(2)  
Duty cycle is 50/50.  
CL = 30 pF  
ns  
Frequency, SCLKOUT1/SCLKOUT2  
64  
MHz  
(1)  
fS  
tr(SCLKOUT)  
tf(SCLKOUT)  
Rise time, SCLKOUT1/SCLKOUT2  
Fall time, SCLKOUT1/SCLKOUT2  
CL = 30 pF  
CL = 30 pF  
20(1)  
20(1)  
4(1)  
4(1)  
4(1)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tpd1(SCLKOUT1) Propagation delay, SCLKOUT1 falling edge to LRCLK edge  
tpd1(SCLKOUT2) Propagation delay, SCLKOUT2 falling edge to LRCLK edge  
tpd2  
tsu  
Propagation delay, SCLKOUT2 falling edge to SDOUT  
Setup time, SDIN to SCLKOUT1 rising edge  
Hold time, SDIN from SCLKOUT1 rising edge  
Skew time, SCLKOUT1 to SCLKOUT2  
20(1)  
23(1)  
th  
t(SKEW)  
3(1)  
(1) This measurement in specified by design.  
(2) Rise time and fall time measured from 20% to 80% of maximum height of waveform.  
t
t
f(SCLKOUT)  
r(SCLKOUT)  
SCLKOUT2  
SCLKOUT1  
t
r(SCLKOUT)  
t
f(SCLKOUT)  
t
sk  
t
t
pd1(SCLKOUT2)  
pd1(SCLKOUT1)  
LRCLK  
(Output)  
t
, t  
f(LRCLK) r(LRCLK)  
t
pd2  
SDOUT1  
SDOUT2  
SDOUT3  
SDOUT4  
t
h
t
su  
SDIN1  
SDIN2  
SDIN3  
SDIN4  
T0091-01  
Figure 8-3. TAS3108/TAS3108IA Serial Audio Port Master Mode Timing Waveforms  
48  
Electrical Specifications  
Submit Documentation Feedback  
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
8.5.4 Pin-Related Characteristics of the SDA and SCL I/O Stages for F/S-Mode I2C-Bus Devices  
STANDARD MODE  
FAST MODE  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
–0.5(1)  
2
MAX  
MIN  
–0.5(1)  
MAX  
VIL  
LOW-level input voltage  
HIGH-level input voltage  
Hysteresis of inputs  
0.8  
0.8  
V
V
V
VIH  
Vhys  
2
(1)  
N/A  
N/A 0.05 VDD  
LOW-level output voltage (open drain or  
open collector)  
VOL1  
3-mA sink current  
0
0.4(1)  
V
Bus capacitance from 10 pF  
to 400 pF  
7 + 0.1 Cb  
tof  
Output fall time from VIHmin to VILmax  
Input current, each I/O pin  
250(1)  
10  
250(1)  
10(3)  
ns  
µA  
ns  
(2)(1)  
II  
–10  
N/A  
–10(3)  
SCL pulse duration of spikes that must  
be suppressed by the input filter  
tSP(SCL)  
N/A  
14(4)(1)  
SDA pulse duration of spikes that must  
be suppressed by the input filter  
tSP(SDA)  
CI  
N/A  
N/A  
22(4)(1)  
ns  
Capacitance, each I/O pin  
10(1)  
10(1)  
pF  
(1) This measurement in specified by design.  
(2) Cb = capacitance of one bus line in pF. The output fall time is faster than the standard I2C specification.  
(3) The I/O pins of fast-mode devices must not obstruct the SDA and SDL lines if VDD is switched off.  
(4) These values are valid at the 135-MHz DSP clock rate. If DSP clock is reduced by one half, the tSP doubles.  
NOTE  
SDA does not have the standard I2C specification 300-ns internal hold time. SDA must be  
valid by the rising and falling edges of SCL.  
Submit Documentation Feedback  
Electrical Specifications  
49  
 
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
8.5.5 Bus-Related Characteristics of the SDA and SCL I/O Stages for F/S-Mode I2C-Bus  
Devices  
All values are referred to VIHmin and VILmax (see Section 8.5.4).  
A
STANDARD MODE  
MIN MAX  
100  
FAST MODE  
MIN MAX  
TEST  
CONDITIONS  
PARAMETER  
UNIT  
fSCL  
SCL clock frequency(1)  
0(1)  
0(1)  
400(2)  
kHz  
Hold time (repeated) START condition.  
tHD-STA After this period, the first clock pulse is  
generated.  
4(1)  
0.6(1)  
µs  
tLOW  
tHIGH  
LOW period of the SCL clock  
HIGH period of the SCL clock  
4.7(1)  
4(1)  
4.7(1)  
250(1)  
0(1)  
1.3(1)  
0.6(1)  
0.6(1)  
100(1)  
0(1)  
µs  
µs  
µs  
ns  
µs  
tSU-STA Setup time for repeated START  
tSU-DAT Data setup time  
(3)(4)  
tHD-DAT Data hold time  
3.45(1)  
1000(1)  
0.9(1)  
20 + 0.1  
tr  
tf  
Rise time of both SDA and SCL signals  
Fall time of both SDA and SCL  
300(1)  
ns  
(5)(1)  
Cb  
20 + 0.1  
300(1)  
300(1)  
ns  
µs  
µs  
pF  
V
(5)(1)  
Cb  
tSU-STO Setup time for STOP condition  
4(1)  
0.6(1)  
Bus free time between a STOP and  
START condition  
tBUF  
4.7(1)  
1.3(1)  
Cb  
Capacitive load for each bus line  
400(1)  
400(1)  
Noise margin at the LOW level for each  
connected device (including hysteresis)  
(1)  
(1)  
VnL  
0.1 VDVDD  
0.1 VDVDD  
Noise margin at the HIGH level for each  
connected device (including hysteresis)  
(1)  
(1)  
VnH  
0.2 VDVDD  
0.2 VDVDD  
V
(1) This measurement is specified by design.  
(2) In master mode, the maximum speed is 375 kHz.  
(3) Note that SDA does not have the standard I2C specification 300-ns internal hold time. SDA must be valid by the rising and falling edges  
of SCL. TI recommends that a 2-kpullup resistor be used to avoid potential timing issues.  
(4) A fast-mode I2C-bus device can be used in a standard-mode I2C-bus system, but the requirement tSU-DAT 250 ns must then be met.  
This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW  
period of the SCL signal, it must output the next data bit to the SDA line tr-max + tSU-DAT = 1000 + 250 = 1250 ns (according to the  
standard-mode I2C bus specification) before the SCL line is released.  
(5) Cb = total capacitance of one bus line in pF.  
SDA  
t
f
t
t
t
r
SU-DAT  
HD-STA  
t
t
SP  
t
BUF  
LOW  
t
r
t
f
SCL  
t
t
t
SU-STO  
HD-DAT  
SU-STA  
t
t
HIGH  
HD-STA  
S
Sr  
P
S
T0114-01  
Figure 8-4. Start and Stop Conditions Timing Waveforms  
50  
Electrical Specifications  
Submit Documentation Feedback  
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
8.5.5.1 Recommended I2C Pullup Resistors  
It is recommended that the I2C pullup resistors RP be 4.7 k(see Figure 8-5). If a series resistor is in the  
circuit (see Figure 8-6), then the series resistor RS should be less than or equal to 300 .  
DVDD  
TAS3108/TAS3108IA  
External  
Microcontroller  
IP  
IP  
RP  
RP  
VI(SDA)  
VI(SCL)  
SDA  
SCL  
B0099-03  
Figure 8-5. I2C Pullup Circuit (With No Series Resistor)  
DVDD  
TAS3108/TAS3108IA  
External  
Microcontroller  
IP  
RP  
(2)  
(2)  
RS  
RS  
SDA  
or  
SCL  
VI  
(1)  
VS  
B0100-03  
(1) VS = DVDD × RS/S = RP). When driven low, VS << VIL requirements.  
(2) S 300 Ω  
R
Figure 8-6. I2C Pullup Circuit (With Series Resistor)  
8.5.6 Reset Timing (TAS3108/TAS3108IA)  
control signal parameters over recommended operating conditions; these measurements are specified by design (unless  
otherwise noted)  
PARAMETER  
Pulse duration, RESET active  
Time to enable I2C  
TEST CONDITIONS  
MIN  
10(1)  
10(1)  
MAX  
UNIT  
ns  
tw(RESET)  
tr(run)  
PLL0 = PLL1 = MICROCLK_DIV = 0  
ms  
(1) This measurement is specified by design.  
Submit Documentation Feedback  
Electrical Specifications  
51  
 
 
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
RESET  
Start of  
Boot Sequence  
t
w(RESET)  
Outputs  
Inactive  
t
r(run)  
2
Enable I C Start System  
T0029-02  
NOTE: MCLK input = 12.288 MHz  
Figure 8-7. Reset Timing  
52  
Electrical Specifications  
Submit Documentation Feedback  
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
9 Application Information  
9.1 Schematics  
Figure 9-1 shows a typical TAS3108/TAS3108IA application. In this application, the following conditions  
apply:  
TAS3108/TAS3108IA is in clock-slave mode. The audio (SDIN1, SDIN2, SDIN3, SDIN4) and clock  
source (MCLKI) are external.  
MCLKI = 12.288 MHz  
Because MCLKI is sourced externally, the TAS3108/TAS3108IA crystal interface is not used. MCLKI  
and XTLI are logically ORed together, meaning that when the MCLKI pin is used, the XTALI pin must  
be grounded.  
I2C register 0x00 contains the default settings which means:  
Audio data word size is 24-bit input and 24-bit output.  
Serial data format is 2 channel, I2S for input and output.  
I2C data transfer is approximately 400 kbps for both master and slave I2C interfaces.  
PLL0 = PLL1 = PLL2 = 0 means that fDSPCLK is 11 × MCLKI = 135.2 MHz and that  
fI2CSCL = 375 kHz.  
Sample frequency (fS) is 48 kHz, which requires that fLRCLK = 48 kHz and fSCLKIN = 3.072 MHz.  
Application code and data are loaded from an external EEPROM using the master I2C interface.  
Application commands come from the system microprocessor to the TAS3108/TAS3108IA using the  
slave I2C interface.  
Good design practice requires isolation between the digital and analog power as shown. Power-supply  
capacitors of 10 µF and 0.1 µF should be placed near the power-supply pins AVDD (AVSS) and DVDD  
(DVSS).  
The TAS3108/TAS3108IA reset needs external glitch protection. Also, reset going HIGH should be  
delayed until TAS3108/TAS3108IA internal power is good (~200 µs). This is provided by the 1-kresistor,  
1-µF capacitor, and diode placed near the RESET pin.  
It is recommended that a 4.7-µF capacitor (fast ceramic type) be placed near pin 28 (VR_DIG). This pin  
must not be used to source external components.  
Submit Documentation Feedback  
Application Information  
53  
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
1
AVSS  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
AVDD  
RESERVED  
PLL2  
3.3V_AVDD  
0.01 µF  
2
VR_PLL  
3
XTALI  
4
XTALO  
PLL1  
47 Ω  
5
MCLKI  
PLL0  
6
MICROCLK_DIV  
RESERVED  
RESET  
7
8
System  
Reset  
0.1 µF  
CS0  
1 kΩ  
+
GPIO  
DVDD  
DVSS  
SDIN1  
SDIN2  
SDIN3  
PDN  
Audio  
and  
9
3.3 V  
DVDD  
3.3 V  
Clock  
Source  
10  
11  
12  
13  
TAS3108  
(TAS3108IA)  
DVSS  
47 Ω  
4.7 µF  
47 Ω  
VR_DIG  
SDOUT1  
SDOUT2  
SDOUT3  
SDOUT4  
SCLKOUT2  
SCLKOUT1  
MCLKO  
SCLKIN  
47 Ω  
47 Ω  
47 Ω  
47 Ω  
47 Ω  
47 Ω  
47 Ω  
14  
15  
16  
SDIN4  
SDA1  
10 Ω  
10 Ω  
Audio  
Output  
3.3 V  
SCL1  
SDA2  
SCL2  
LRCLK  
17  
18  
19  
System  
Micropro-  
cessor  
System Reset  
10 kΩ  
10 kΩ  
to DVDD  
3.3 Ω  
3.3 V  
3.3V_AVDD  
TAS3108/  
TAS3108IA  
Power Supply  
to AVDD  
0.1 µF  
EEPROM  
(Program Code and Data)  
+
+
(1)  
(1)  
10 µF  
10 µF  
0.1 µF  
Ferrite Bead  
S0123-01  
(1) Capacitors should be placed as close as possible to the power-supply pins.  
Figure 9-1. Typical Application Diagram  
54  
Application Information  
Submit Documentation Feedback  
Not Recommended for New Designs  
TAS3108, TAS3108IA  
AUDIO DIGITAL SIGNAL PROCESSORS  
www.ti.com  
SLES152BOCTOBER 2005REVISED NOVEMBER 2007  
9.2 Recommended Oscillator Circuit  
TAS3108/TAS3108IA  
Osc  
Circuit  
C
C
1
r
d
XO  
2
XI  
AVSS  
S0114-01  
MCLKI and XTLI are logically ORed together, meaning that when the XTALI pin is used, the MCLKI pin  
must be grounded.  
Crystal type = Parallel-mode, fundamental-mode crystal  
rd = Drive-level control resistor – vendor specified  
CL = Crystal load capacitance (capacitance of circuitry between the two terminals of the crystal)  
CL = (C1 × C2)/C1 + C2) + CS (where CS = board stray capacitance, ~2 pF)  
9.3 Recommended PCB Design for TAS3108IA Applications  
Automotive applications require that the TAS3108IA operates properly while in an ambient temperature  
range of –40° C to 105°C. Under the high-temperature condition of 105°C ambient, the TAS3108IA  
thermal pad must be soldered to a copper area on the PCB designed for thermal relief.  
High-temperature applications also require that the application be built on a high-K dielectric PCB.  
High-K dielectric PCB requirements for using TAS3108IA with soldered thermal pad:  
0.062 in thick  
Minimum 3-in × 3-in PCB  
2-oz copper traces located on top of the board (0,071 mm thick)  
Copper area located on the top and bottom of the PCB for soldering  
Power and ground planes, 1-oz. copper (0,036 mm thick)  
Thermal vias, 0.3-mm diameter, 1.5-mm pitch  
Thermal isolation of power plane  
If the target application limits the ambient temperature to 0°C to 70°C (standard commercial  
temperature range), the thermal pad does not need to be soldered to the PCB.  
For more information, see PowerPAD™ Thermally Enhanced Package (SLMA002) and PowerPADTM  
Made Easy (SLMA004).  
Submit Documentation Feedback  
Application Information  
55  
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Feb-2012  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
TAS3108DCP  
TAS3108DCPG4  
TAS3108DCPR  
NRND  
NRND  
NRND  
NRND  
NRND  
NRND  
NRND  
NRND  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
DCP  
DCP  
DCP  
DCP  
DCP  
DCP  
DCP  
DCP  
38  
38  
38  
38  
38  
38  
38  
38  
50  
50  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
2000  
2000  
50  
Green (RoHS  
& no Sb/Br)  
TAS3108DCPRG4  
TAS3108IADCP  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
TAS3108IADCPG4  
TAS3108IADCPR  
TAS3108IADCPRG4  
50  
Green (RoHS  
& no Sb/Br)  
2000  
2000  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Feb-2012  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jul-2012  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TAS3108DCPR  
HTSSOP DCP  
HTSSOP DCP  
38  
38  
2000  
2000  
330.0  
330.0  
16.4  
16.4  
6.9  
6.9  
10.2  
10.2  
1.8  
1.8  
12.0  
12.0  
16.0  
16.0  
Q1  
Q1  
TAS3108IADCPR  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jul-2012  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TAS3108DCPR  
HTSSOP  
HTSSOP  
DCP  
DCP  
38  
38  
2000  
2000  
367.0  
367.0  
367.0  
367.0  
38.0  
38.0  
TAS3108IADCPR  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All  
semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time  
of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which  
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such  
components to meet such requirements.  
Products  
Audio  
Applications  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Medical  
Logic  
Security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
www.ti.com/video  
OMAP Mobile Processors www.ti.com/omap  
Wireless Connectivity www.ti.com/wirelessconnectivity  
TI E2E Community  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2012, Texas Instruments Incorporated  

相关型号:

TAS3108IADCPR

Digital Audio Processor 38-HTSSOP 0 to 0
TI

TAS3202

AUDIO DSP WITH ANALOG INTERFACE
TI

TAS3202PAG

AUDIO DSP WITH ANALOG INTERFACE
TI

TAS3202PAGR

AUDIO DSP WITH ANALOG INTERFACE
TI

TAS3204

AUDIO DSP WITH ANALOG INTERFACE
TI

TAS3204PAG

AUDIO DSP WITH ANALOG INTERFACE
TI

TAS3204PAGR

AUDIO DSP WITH ANALOG INTERFACE
TI

TAS3208

DIGITAL AUDIO PROCESSOR WITH ANALOG INTERFACE
TI

TAS3208I

双核数字音频处理器
TI

TAS3208IPZP

Dual Core Digital Audio Processor 100-HTQFP -40 to 85
TI

TAS3208IPZPR

Dual Core Digital Audio Processor 100-HTQFP -40 to 85
TI

TAS3208PZP

DIGITAL AUDIO PROCESSOR WITH ANALOG INTERFACE
TI