SN74AVCH1T45YZPR [TI]

SINGLE BIT DUAL SUPPLY BUS TRANSCEIVER; 单位双电源总线收发器
SN74AVCH1T45YZPR
型号: SN74AVCH1T45YZPR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

SINGLE BIT DUAL SUPPLY BUS TRANSCEIVER
单位双电源总线收发器

总线收发器
文件: 总21页 (文件大小:426K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢉ ꢃꢊ  
ꢀꢋ ꢁꢌ ꢍ ꢎꢏꢐꢋ ꢉ ꢑꢒꢄ ꢍꢏꢀ ꢒꢓꢓꢍꢔ ꢐꢒꢀ ꢉ ꢕꢄꢁꢀ ꢆꢎ ꢋ ꢅꢎ ꢕ  
ꢖ ꢋ ꢉꢇ ꢆꢗ ꢁꢘ ꢋ ꢌꢒ ꢕ ꢄꢐꢍ ꢎ ꢅꢗ ꢍꢉꢄꢌ ꢎ ꢉ ꢕꢄꢁꢀ ꢍꢄꢉ ꢋꢗ ꢁ ꢄꢁꢑ ꢙ ꢏꢀꢉꢄꢉ ꢎ ꢗ ꢒꢉ ꢓ ꢒꢉꢀ  
SCES598C – JULY 2004 – REVISED OCTOBER 2004  
DBV OR DCK PACKAGE  
(TOP VIEW)  
D
D
D
Available in the Texas Instruments  
NanoStarand NanoFreePackages  
Control Inputs V /V Levels Are  
IH IL  
CCA  
1
2
3
6
5
4
V
GND  
V
CCB  
DIR  
CCA  
Referenced to V  
Voltage  
Fully Configurable Dual-Rail Design Allows  
Each Port to Operate Over the Full 1.2-V to  
3.6-V Power-Supply Range  
A
B
YEP OR YZP PACKAGE  
(BOTTOM VIEW)  
D
D
D
I/Os Are 4.6-V Tolerant  
I
Supports Partial-Power-Down Mode  
off  
3 4  
2 5  
1 6  
A
GND  
B
DIR  
Operation  
Bus Hold on Data Inputs Eliminates the  
Need for External Pullup/Pulldown  
Resistors  
V
V
CCB  
CCA  
D
D
Latch-Up Performance Exceeds 100 mA Per  
JESD 78, Class II  
ESD Protection Exceeds JESD 22  
− 2000-V Human-Body Model (A114-A)  
− 200-V Machine Model (A115-A)  
− 1000-V Charged-Device Model (C101)  
description/ordering information  
This single-bit noninverting bus transceiver uses two separate configurable power-supply rails. The A port is  
designed to track V . V accepts any supply voltage from 1.2 V to 3.6 V. The B port is designed to track  
CCA CCA  
V
. V  
accepts any supply voltage from 1.2 V to 3.6 V. This allows for universal low-voltage bidirectional  
CCB CCB  
translation between any of the 1.2-V, 1.5-V, 1.8-V, 2.5-V, and 3.3-V voltage nodes.  
The SN74AVCH1T45 is designed for asynchronous communication between data buses. The device transmits  
data from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the  
direction-control (DIR) input.  
The SN74AVCH1T45 is designed so that the DIR input is powered by V  
.
CCA  
ORDERING INFORMATION  
ORDERABLE  
PART NUMBER  
TOP-SIDE  
MARKING  
T
A
PACKAGE  
NanoStar− WCSP (DSBGA)  
0.23-mm Large Bump − YEP  
SN74AVCH1T45YEPR  
SN74AVCH1T45YZPR  
Tape and reel  
_ _ _TF_  
NanoFree− WCSP (DSBGA)  
0.23-mm Large Bump − YZP (Pb-free)  
−40°C to 85°C  
SOT (SOT-23) − DBV  
Tape and reel SN74AVCH1T45DBVR  
Tape and reel SN74AVCH1T45DCKR  
ET1_  
TF_  
SOT (SC-70) − DCK  
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at  
www.ti.com/sc/package.  
DBV/DCK: The actual top-side marking has one additional character that designates the assembly/test site.  
YEP/YZP: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one  
following character to designate the assembly/test site. Pin  
1 identifier indicates solder-bump composition  
(1 = SnPb, = Pb-free).  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
NanoStar and NanoFree are trademarks of Texas Instruments.  
ꢉꢥ  
Copyright 2004, Texas Instruments Incorporated  
ꢡ ꢥ ꢢ ꢡꢚ ꢛꢯ ꢝꢜ ꢠ ꢨꢨ ꢦꢠ ꢞ ꢠ ꢟ ꢥ ꢡ ꢥ ꢞ ꢢ ꢪ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄꢅꢆ ꢇ ꢈ ꢉꢃ ꢊ  
ꢀ ꢋꢁ ꢌꢍ ꢎꢏ ꢐꢋ ꢉ ꢑ ꢒꢄ ꢍꢏꢀ ꢒꢓ ꢓꢍꢔ ꢐꢒ ꢀ ꢉꢕ ꢄꢁ ꢀꢆꢎ ꢋꢅꢎ ꢕ  
ꢖꢋ ꢉ ꢇ ꢆ ꢗꢁ ꢘꢋ ꢌꢒ ꢕ ꢄꢐꢍ ꢎ ꢅ ꢗꢍꢉꢄꢌ ꢎ ꢉꢕ ꢄꢁ ꢀꢍ ꢄꢉ ꢋꢗ ꢁ ꢄꢁꢑ ꢙ ꢏꢀꢉꢄꢉ ꢎ ꢗ ꢒꢉ ꢓꢒꢉ ꢀ  
SCES598C – JULY 2004 – REVISED OCTOBER 2004  
description/ordering information (continued)  
This device is fully specified for partial-power-down applications using I . The I circuitry disables the outputs,  
off  
off  
preventing damaging current backflow through the device when it is powered down.  
The V isolation feature ensures that if either V input is at GND, then both outputs are in the high-impedance  
CC  
CC  
state. The bus-hold circuitry on the powered-up side always stays active.  
Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors  
with the bus-hold circuitry is not recommended.  
NanoStarand NanoFreepackage technology is a major breakthrough in IC packaging concepts, using the  
die as the package.  
FUNCTION TABLE  
INPUT  
OPERATION  
DIR  
L
B data to A bus  
A data to B bus  
H
logic diagram (positive logic)  
5
DIR  
3
A
4
B
V
CCA  
V
CCB  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢉ ꢃꢊ  
ꢀꢋ ꢁꢌ ꢍ ꢎꢏꢐꢋ ꢉ ꢑꢒꢄ ꢍꢏꢀ ꢒꢓꢓꢍꢔ ꢐꢒꢀ ꢉ ꢕꢄꢁꢀ ꢆꢎ ꢋ ꢅꢎ ꢕ  
ꢖ ꢋ ꢉꢇ ꢆꢗ ꢁꢘ ꢋ ꢌꢒ ꢕ ꢄꢐꢍ ꢎ ꢅꢗ ꢍꢉꢄꢌ ꢎ ꢉ ꢕꢄꢁꢀ ꢍꢄꢉ ꢋꢗ ꢁ ꢄꢁꢑ ꢙ ꢏꢀꢉꢄꢉ ꢎ ꢗ ꢒꢉ ꢓ ꢒꢉꢀ  
SCES598C – JULY 2004 – REVISED OCTOBER 2004  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage range, V  
and V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V  
CCA  
CCB  
Input voltage range, V (see Note 1): I/O ports (A port) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V  
I
I/O ports (B port) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V  
Control inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V  
Voltage range applied to any output in the high-impedance or power-off state, V  
O
(see Note 1): A port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V  
B port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V  
Voltage range applied to any output in the high or low state, V  
O
(see Notes 1 and 2): A port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to V  
B port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to V  
+ 0.5 V  
+ 0.5 V  
CCA  
CCB  
Input clamp current, I (V < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 mA  
IK  
OK  
I
Output clamp current, I  
(V < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 mA  
O
Continuous output current, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
Continuous current through V  
O
, V  
, or GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 mA  
CCA CCB  
Package thermal impedance, θ (see Note 3):DBV package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165°C/W  
JA  
DCK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259°C/W  
YEP/YZP package . . . . . . . . . . . . . . . . . . . . . . . . . . . 123°C/W  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
Storage temperature range, T  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. The input voltage and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.  
2. The output positive-voltage rating may be exceeded up to 4.6 V maximum if the output current rating is observed.  
3. The package thermal impedance is calculated in accordance with JESD 51-7.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄꢅꢆ ꢇ ꢈ ꢉꢃ ꢊ  
ꢀ ꢋꢁ ꢌꢍ ꢎꢏ ꢐꢋ ꢉ ꢑ ꢒꢄ ꢍꢏꢀ ꢒꢓ ꢓꢍꢔ ꢐꢒ ꢀ ꢉꢕ ꢄꢁ ꢀꢆꢎ ꢋꢅꢎ ꢕ  
ꢘꢋ  
ꢄꢉ  
ꢓꢒꢉ ꢀ  
SCES598C – JULY 2004 – REVISED OCTOBER 2004  
recommended operating conditions (see Notes 4 through 8)  
V
CCI  
V
CCO  
MIN  
1.2  
MAX  
3.6  
UNIT  
V
V
V
Supply voltage  
Supply voltage  
CCA  
1.2  
3.6  
V
CCB  
1.2 V to 1.95 V  
1.95 V to 2.7 V  
2.7 V to 3.6 V  
1.2 V to 1.95 V  
1.95 V to 2.7 V  
2.7 V to 3.6 V  
1.2 V to 1.95 V  
1.95 V to 2.7 V  
2.7 V to 3.6 V  
1.2 V to 1.95 V  
1.95 V to 2.7 V  
2.7 V to 3.6 V  
V
× 0.65  
1.6  
CCI  
High-level input  
voltage  
Data inputs  
(see Note 7)  
V
IH  
V
IL  
V
IH  
V
IL  
V
V
V
V
2
V
× 0.35  
CCI  
Low-level input  
voltage  
Data inputs  
(see Note 7)  
0.7  
0.8  
V
CCA  
× 0.65  
1.6  
DIR  
High-level input  
voltage  
(referenced to V  
(see Note 8)  
)
)
CCA  
2
V
CCA  
× 0.35  
0.7  
DIR  
Low-level input  
voltage  
(referenced to V  
(see Note 8)  
CCA  
0.8  
V
V
Input voltage  
0
0
0
3.6  
V
V
I
Active state  
3-state  
V
CCO  
Output voltage  
O
3.6  
−3  
−6  
−8  
−9  
−12  
3
1.2 V  
1.4 V to 1.6 V  
1.65 V to 1.95 V  
2.3 V to 2.7 V  
3 V to 3.6 V  
1.2 V  
I
High-level output current  
Low-level output current  
mA  
mA  
OH  
OL  
1.4 V to 1.6 V  
1.65 V to 1.95 V  
2.3 V to 2.7 V  
3 V to 3.6 V  
6
8
I
9
12  
5
t/v Input transition rise or fall rate  
Operating free-air temperature  
NOTES: 4. V is the V associated with the data input port.  
ns/V  
T
A
−40  
85  
°C  
CCI  
CCO  
CC  
CC  
5.  
V
is the V  
associated with the output port.  
6. All unused data inputs of the device must be held at V  
or GND to ensure proper device operation. Refer to the TI application report,  
CCI  
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.  
7. For V  
8. For V  
values not specified in the data sheet, V min = V  
× 0.7 V, V max = V  
× 0.7 V, V max = V  
IL CCA  
× 0.3 V.  
× 0.3 V.  
CCI  
CCI  
IH  
CCI  
IL CCI  
values not specified in the data sheet, V min = V  
IH  
CCA  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢉ ꢃꢊ  
ꢀꢋ ꢁꢌ ꢍ ꢎꢏꢐꢋ ꢉ ꢑꢒꢄ ꢍꢏꢀ ꢒꢓꢓꢍꢔ ꢐꢒꢀ ꢉ ꢕꢄꢁꢀ ꢆꢎ ꢋ ꢅꢎ ꢕ  
ꢖ ꢋ ꢉꢇ ꢆꢗ ꢁꢘ ꢋ ꢌꢒ ꢕ ꢄꢐꢍ ꢎ ꢅꢗ ꢍꢉꢄꢌ ꢎ ꢉ ꢕꢄꢁꢀ ꢍꢄꢉ ꢋꢗ ꢁ ꢄꢁꢑ ꢙ ꢏꢀꢉꢄꢉ ꢎ ꢗ ꢒꢉ ꢓ ꢒꢉꢀ  
SCES598C – JULY 2004 – REVISED OCTOBER 2004  
electrical characteristics over recommended operating free-air temperature range (unless  
otherwise noted) (see Notes 9 and 10)  
T
A
= 25°C  
−40°C to 85°C  
PARAMETER  
TEST CONDITIONS  
UNIT  
V
CCA  
V
CCB  
MIN  
TYP  
MAX  
MIN  
MAX  
I
I
I
I
I
I
I
I
I
I
I
I
= −100 µA  
= −3 mA  
= −6 mA  
1.2 V to 3.6 V  
1.2 V  
1.2 V to 3.6 V  
1.2 V  
V
CCO  
− 0.2 V  
OH  
OH  
OH  
OH  
OH  
OH  
OL  
OL  
OL  
OL  
OL  
OL  
0.95  
1.4 V  
1.4 V  
1.05  
1.2  
V
V = V  
IH  
V
OH  
I
= −8 mA  
= −9 mA  
= −12 mA  
= 100 µA  
= 3 mA  
1.65 V  
2.3 V  
1.65 V  
2.3 V  
1.75  
2.3  
3 V  
3 V  
1.2 V to 3.6 V  
1.2 V  
1.2 V to 3.6 V  
1.2 V  
0.2  
0.15  
= 6 mA  
1.4 V  
1.4 V  
0.35  
0.45  
0.55  
0.7  
V
OL  
V = V  
I IL  
V
= 8 mA  
1.65 V  
2.3 V  
1.65 V  
2.3 V  
= 9 mA  
= 12 mA  
3 V  
3 V  
DIR  
input  
I
I
V = V  
CCA  
or GND  
1.2 V to 3.6 V  
1.2 V to 3.6 V  
0.025  
25  
0.25  
1
µA  
µA  
I
I
V = 0.42 V  
I
1.2 V  
1.4 V  
1.65 V  
2.3 V  
3.3 V  
1.2 V  
1.4 V  
1.65 V  
2.3 V  
3.3 V  
1.2 V  
1.6 V  
1.95 V  
2.7 V  
3.6 V  
1.2 V  
1.6 V  
1.95 V  
2.7 V  
3.6 V  
1.2 V  
1.4 V  
1.65 V  
2.3 V  
3.3 V  
1.2 V  
1.4 V  
1.65 V  
2.3 V  
3.3 V  
1.2 V  
1.6 V  
1.95 V  
2.7 V  
3.6 V  
1.2 V  
1.6 V  
1.95 V  
2.7 V  
3.6 V  
V = 0.49 V  
I
15  
25  
V = 0.58 V  
I
BHL  
V = 0.7 V  
I
45  
V = 0.8 V  
I
100  
V = 0.78 V  
I
−25  
V = 0.91 V  
I
−15  
−25  
V = 1.07 V  
I
I
I
I
µA  
µA  
µA  
BHH  
V = 1.6 V  
I
−45  
V = 2 V  
I
−100  
50  
125  
200  
300  
500  
§
V = 0 to V  
CC  
BHLO  
I
−50  
−125  
−200  
−300  
−500  
V = 0 to V  
CC  
BHHO  
I
The bus-hold circuit can sink at least the minimum low sustaining current at V max. I  
IL BHL  
should be measured after lowering V to GND and  
IN  
then raising it to V max.  
IL  
The bus-hold circuit can source at least the minimum high sustaining current at V min. I  
should be measured after raising V to V and  
IN CC  
IH  
BHH  
then lowering it to V min.  
IH  
§
An external driver must source at least I  
to switch this node from low to high.  
BHLO  
to switch this node from high to low.  
An external driver must sink at least I  
BHHO  
associated with the output port.  
NOTES: 9. V  
is the V  
CCO  
is the V  
CC  
10.  
V
associated with the input port.  
CC  
CCI  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄꢅꢆ ꢇ ꢈ ꢉꢃ ꢊ  
ꢀ ꢋꢁ ꢌꢍ ꢎꢏ ꢐꢋ ꢉ ꢑ ꢒꢄ ꢍꢏꢀ ꢒꢓ ꢓꢍꢔ ꢐꢒ ꢀ ꢉꢕ ꢄꢁ ꢀꢆꢎ ꢋꢅꢎ ꢕ  
ꢖꢋ ꢉ ꢇ ꢆ ꢗꢁ ꢘꢋ ꢌꢒ ꢕ ꢄꢐꢍ ꢎ ꢅ ꢗꢍꢉꢄꢌ ꢎ ꢉꢕ ꢄꢁ ꢀꢍ ꢄꢉ ꢋꢗ ꢁ ꢄꢁꢑ ꢙ ꢏꢀꢉꢄꢉ ꢎ ꢗ ꢒꢉ ꢓꢒꢉ ꢀ  
SCES598C – JULY 2004 – REVISED OCTOBER 2004  
electrical characteristics over recommended operating free-air temperature range (unless  
otherwise noted) (see Notes 9 and 10) (continued)  
T
A
= 25°C  
TYP  
0.1  
−40°C to 85°C  
PARAMETER  
TEST CONDITIONS  
UNIT  
V
V
CCB  
CCA  
MIN  
MAX  
MIN  
MAX  
A port  
0 V  
0 to 3.6 V  
0 V  
1
1
5
5
I
I
V or V = 0 to 3.6 V  
µA  
µA  
off  
I
O
B port  
0 to 3.6 V  
0.1  
A or B  
ports  
V
O
= V  
CCO  
or GND  
1.2 V to 3.6 V  
1.2 V to 3.6 V  
0.5  
2.5  
5
OZ  
1.2 V to 3.6 V  
0 V  
1.2 V to 3.6 V  
3.6 V  
10  
−2  
10  
10  
10  
−2  
20  
I
V = V  
or GND,  
I
= 0  
µA  
µA  
CCA  
I
CCI  
O
3.6 V  
0 V  
1.2 V to 3.6 V  
0 V  
1.2 V to 3.6 V  
3.6 V  
I
I
V = V  
or GND,  
or GND,  
I
I
= 0  
= 0  
CCB  
I
CCI  
O
3.6 V  
0 V  
) I  
V = V  
1.2 V to 3.6 V  
1.2 V to 3.6 V  
µA  
CCA  
CCB  
I
CCI  
O
Control  
inputs  
C
C
V = 3.3 V or GND  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
2.5  
6
pF  
i
I
A or B  
ports  
V
O
= 3.3 V or GND  
pF  
io  
NOTES: 9.  
10.  
V
is the V  
associated with the output port.  
associated with the input port.  
CC  
CCO  
is the V  
CC  
V
CCI  
switching characteristics over recommended operating free-air temperature range,  
= 1.2 V (see Figure 11)  
V
CCA  
V
= 1.2 V  
V
= 1.5 V  
V
= 1.8 V  
V
= 2.5 V  
V = 3.3 V  
CCB  
FROM  
(INPUT)  
TO  
(OUTPUT)  
CCB  
TYP  
3.3  
CCB  
TYP  
2.7  
CCB  
TYP  
2.4  
CCB  
TYP  
2.3  
PARAMETER  
UNIT  
ns  
TYP  
2.4  
t
t
t
t
t
t
t
t
t
t
t
t
PLH  
PHL  
PLH  
PHL  
PHZ  
PLZ  
PHZ  
PLZ  
PZH  
A
B
A
A
B
A
B
3.3  
3.3  
3.3  
5.1  
5.1  
5.3  
5.3  
8.5  
8.5  
8.3  
8.3  
2.7  
3.1  
3.1  
5.2  
5.2  
4.3  
4.3  
6.9  
6.9  
7.8  
7.8  
2.4  
2.9  
2.9  
5.3  
5.3  
4
2.3  
2.8  
2.8  
5.2  
5.2  
3.3  
3.3  
5.5  
5.5  
7.5  
7.5  
2.4  
2.7  
2.7  
3.7  
3.7  
3.7  
3.7  
6.1  
6.1  
5.9  
5.9  
B
ns  
ns  
DIR  
DIR  
DIR  
DIR  
ns  
4
6.4  
6.4  
7.7  
7.7  
ns  
PZL  
PZH  
ns  
PZL  
The enable time is a calculated value, derived using the formula shown in the enable times section, page 16.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢉ ꢃꢊ  
ꢀꢋ ꢁꢌ ꢍ ꢎꢏꢐꢋ ꢉ ꢑꢒꢄ ꢍꢏꢀ ꢒꢓꢓꢍꢔ ꢐꢒꢀ ꢉ ꢕꢄꢁꢀ ꢆꢎ ꢋ ꢅꢎ ꢕ  
ꢖ ꢋ ꢉꢇ ꢆꢗ ꢁꢘ ꢋ ꢌꢒ ꢕ ꢄꢐꢍ ꢎ ꢅꢗ ꢍꢉꢄꢌ ꢎ ꢉ ꢕꢄꢁꢀ ꢍꢄꢉ ꢋꢗ ꢁ ꢄꢁꢑ ꢙ ꢏꢀꢉꢄꢉ ꢎ ꢗ ꢒꢉ ꢓ ꢒꢉꢀ  
SCES598C – JULY 2004 – REVISED OCTOBER 2004  
switching characteristics over recommended operating free-air temperature range,  
= 1.5 V 0.1 V (see Figure 11)  
V
CCA  
V
= 1.5 V  
0.1 V  
V
= 1.8 V  
0.15 V  
V
= 2.5 V  
0.2 V  
V
= 3.3 V  
0.3 V  
CCB  
CCB  
CCB  
CCB  
V
= 1.2 V  
CCB  
TYP  
2.9  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
UNIT  
MIN  
0.7  
0.7  
0.6  
0.6  
1.6  
1.6  
1.8  
1.8  
MAX  
5.6  
MIN  
0.6  
0.6  
0.4  
0.4  
1.5  
1.5  
1.6  
1.6  
MAX  
5.2  
5.2  
5.3  
5.3  
6.8  
6.8  
7.1  
7.1  
12.4  
12.4  
12  
MIN  
0.5  
0.5  
0.3  
0.3  
0.3  
0.3  
1.1  
1.1  
MAX  
4.2  
4.2  
4.9  
4.9  
6.9  
6.9  
4.7  
4.7  
9.6  
9.6  
11.1  
11.1  
MIN  
0.5  
0.5  
0.3  
0.3  
0.9  
0.9  
1.4  
1.4  
MAX  
3.8  
t
t
t
t
t
t
t
t
t
t
t
t
PLH  
PHL  
PLH  
PHL  
PHZ  
PLZ  
PHZ  
PLZ  
PZH  
A
B
A
A
B
A
B
ns  
ns  
ns  
ns  
ns  
ns  
2.9  
2.6  
2.6  
3.8  
3.8  
5.1  
5.1  
7.7  
7.7  
6.7  
6.7  
5.6  
3.8  
5.5  
4.8  
B
5.5  
4.8  
6.7  
6.9  
DIR  
DIR  
DIR  
DIR  
6.7  
6.9  
8.1  
4.5  
8.1  
4.5  
13.6  
13.6  
12.3  
12.3  
9.3  
9.3  
PZL  
10.7  
10.7  
PZH  
12  
PZL  
The enable time is a calculated value, derived using the formula shown in the enable times section, page 16.  
switching characteristics over recommended operating free-air temperature range,  
= 1.8 V 0.15 V (see Figure 11)  
V
CCA  
V
= 1.5 V  
0.1 V  
V
= 1.8 V  
0.15 V  
V
= 2.5 V  
0.2 V  
V
= 3.3 V  
0.3 V  
CCB  
CCB  
CCB  
CCB  
V
= 1.2 V  
CCB  
TYP  
2.8  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
UNIT  
MIN  
0.6  
0.6  
0.5  
0.5  
1.6  
1.6  
1.8  
1.89  
MAX  
5.3  
MIN  
0.5  
0.5  
0.4  
0.4  
1.6  
1.6  
1.4  
1.4  
MAX  
5
MIN  
0.4  
0.4  
0.3  
0.3  
1.6  
1.6  
1
MAX  
3.9  
3.9  
4.6  
4.6  
5.9  
5.9  
4.4  
4.4  
9
MIN  
0.4  
0.4  
0.2  
0.2  
0.5  
0.5  
1.4  
1.4  
MAX  
3.4  
3.4  
4.4  
4.4  
6
t
t
t
t
t
t
t
t
t
t
t
t
PLH  
PHL  
PLH  
PHL  
PHZ  
PLZ  
PHZ  
PLZ  
PZH  
A
B
A
A
B
A
B
ns  
ns  
ns  
ns  
ns  
ns  
2.8  
2.3  
2.3  
3.8  
3.8  
5
5.3  
5
5.2  
5
B
5.2  
5
5.9  
5.9  
5.9  
6.8  
6.8  
11.8  
11.8  
10.9  
10.9  
DIR  
DIR  
DIR  
DIR  
5.9  
6
7.7  
4.3  
4.3  
8.7  
8.7  
9.4  
9.4  
5
7.7  
1
7.3  
7.3  
6.5  
6.5  
12.9  
12.9  
11.2  
11.2  
9
PZL  
9.8  
9.8  
PZH  
PZL  
The enable time is a calculated value, derived using the formula shown in the enable times section, page 16.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄꢅꢆ ꢇ ꢈ ꢉꢃ ꢊ  
ꢀ ꢋꢁ ꢌꢍ ꢎꢏ ꢐꢋ ꢉ ꢑ ꢒꢄ ꢍꢏꢀ ꢒꢓ ꢓꢍꢔ ꢐꢒ ꢀ ꢉꢕ ꢄꢁ ꢀꢆꢎ ꢋꢅꢎ ꢕ  
ꢖꢋ ꢉ ꢇ ꢆ ꢗꢁ ꢘꢋ ꢌꢒ ꢕ ꢄꢐꢍ ꢎ ꢅ ꢗꢍꢉꢄꢌ ꢎ ꢉꢕ ꢄꢁ ꢀꢍ ꢄꢉ ꢋꢗ ꢁ ꢄꢁꢑ ꢙ ꢏꢀꢉꢄꢉ ꢎ ꢗ ꢒꢉ ꢓꢒꢉ ꢀ  
SCES598C – JULY 2004 – REVISED OCTOBER 2004  
switching characteristics over recommended operating free-air temperature range,  
= 2.5 V 0.2 V (see Figure 11)  
V
CCA  
V
= 1.5 V  
0.1 V  
V
= 1.8 V  
0.15 V  
V
= 2.5 V  
0.2 V  
V
= 3.3 V  
0.3 V  
CCB  
CCB  
CCB  
CCB  
V
= 1.2 V  
CCB  
TYP  
2.6  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
UNIT  
MIN  
0.5  
0.5  
0.4  
0.4  
0.3  
0.3  
2
MAX  
4.9  
4.9  
4.2  
4.2  
3.8  
3.8  
7.6  
7.6  
11.8  
11.8  
8.6  
8.6  
MIN  
0.4  
0.4  
0.3  
0.3  
0.8  
0.8  
1.5  
1.5  
MAX  
4.6  
MIN  
0.3  
0.3  
0.2  
0.2  
0.4  
0.4  
0.6  
0.6  
MAX  
3.4  
3.4  
3.4  
3.4  
3.8  
3.8  
4.1  
4.1  
7.5  
7.5  
7
MIN  
0.3  
0.3  
0.2  
0.2  
0.5  
0.5  
1
MAX  
3
t
t
t
t
t
t
t
t
t
t
t
t
PLH  
PHL  
PLH  
PHL  
PHZ  
PLZ  
PHZ  
PLZ  
PZH  
A
B
A
A
B
A
B
ns  
ns  
ns  
ns  
ns  
ns  
2.6  
2.2  
2.2  
2.8  
2.8  
4.9  
4.9  
7.1  
7.1  
5.4  
5.4  
4.6  
3
3.8  
3.3  
3.3  
3.8  
3.8  
4
B
3.8  
3.8  
DIR  
DIR  
DIR  
DIR  
3.8  
6.5  
2
6.5  
1
4
10.3  
10.3  
8.1  
7.3  
7.3  
6.6  
6.6  
PZL  
PZH  
8.1  
7
PZL  
The enable time is a calculated value, derived using the formula shown in the enable times section, page 16.  
switching characteristics over recommended operating free-air temperature range,  
= 3.3 V 0.3 V (see Figure 11)  
V
CCA  
V
= 1.5 V  
0.1 V  
V
= 1.8 V  
0.15 V  
V
= 2.5 V  
0.2 V  
V
= 3.3 V  
0.3 V  
CCB  
CCB  
CCB  
CCB  
V
= 1.2 V  
CCB  
TYP  
2.6  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
UNIT  
MIN  
0.4  
0.4  
0.4  
0.4  
1.3  
1.3  
0.7  
0.7  
MAX  
4.7  
4.7  
3.8  
3.8  
4.3  
4.3  
7.4  
7.4  
11.2  
11.2  
8.9  
8.9  
MIN  
0.3  
0.3  
0.3  
0.3  
1.3  
1.3  
0.6  
0.6  
MAX  
4.4  
4.4  
3.4  
3.4  
4.3  
4.3  
6.5  
6.5  
9.9  
9.9  
8.5  
8.5  
MIN  
0.2  
0.2  
0.2  
0.2  
1.3  
1.3  
0.7  
0.7  
MAX  
3.3  
3.3  
3
MIN  
0.2  
0.2  
0.1  
0.1  
1.3  
1.3  
1.5  
1.5  
MAX  
2.8  
2.8  
2.8  
2.8  
4.3  
4.3  
3.9  
3.9  
6.7  
6.7  
6.8  
6.8  
t
t
t
t
t
t
t
t
t
t
t
t
PLH  
PHL  
PLH  
PHL  
PHZ  
PLZ  
PHZ  
PLZ  
PZH  
A
B
A
A
B
A
B
ns  
ns  
ns  
ns  
ns  
ns  
2.6  
2.2  
2.2  
3.1  
3.1  
4
B
3
4.3  
4.3  
4
DIR  
DIR  
DIR  
DIR  
4
4
6.2  
6.2  
5.7  
5.7  
7
7
PZL  
7.2  
7.2  
PZH  
PZL  
The enable time is a calculated value, derived using the formula shown in the enable times section, page 16.  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢉ ꢃꢊ  
ꢉ ꢕꢄꢁꢀ ꢍꢄꢉ ꢋꢗ ꢁ ꢄꢁꢑ ꢙ ꢏꢀꢉꢄꢉ ꢎ ꢗ ꢒꢉ ꢓ ꢒꢉꢀ  
ꢌꢒ  
SCES598C – JULY 2004 – REVISED OCTOBER 2004  
operating characteristics, T = 25°C  
A
V
=
V
=
V
=
V
=
V
=
CCA  
CCA  
CCA  
CCA  
CCA  
TEST  
CONDITIONS  
V
= 1.2 V  
V
= 1.5 V  
V
= 1.8 V  
V
= 2.5 V  
V
= 3.3 V  
PARAMETER  
CCB  
CCB  
CCB  
CCB  
CCB  
UNIT  
TYP  
TYP  
TYP  
TYP  
TYP  
A-port input,  
B-port output  
3
14  
14  
3
3
14  
14  
3
3
14  
14  
3
3
15  
15  
3
4
16  
16  
4
C
= 0 pF,  
L
C
C
f = 10 MHz,  
t = t = 1 ns  
r
pF  
pdA  
B-port input,  
A-port output  
f
A-port input,  
B-port output  
C
= 0 pF,  
L
pF  
f = 10 MHz,  
t = t = 1 ns  
pdB  
B-port input,  
A-port output  
r
f
Power-dissipation capacitance per transceiver  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄꢅꢆ ꢇ ꢈ ꢉꢃ ꢊ  
ꢀ ꢋꢁ ꢌꢍ ꢎꢏ ꢐꢋ ꢉ ꢑ ꢒꢄ ꢍꢏꢀ ꢒꢓ ꢓꢍꢔ ꢐꢒ ꢀ ꢉꢕ ꢄꢁ ꢀꢆꢎ ꢋꢅꢎ ꢕ  
ꢖꢋ ꢉ ꢇ ꢆ ꢗꢁ ꢘꢋ ꢌꢒ ꢕ ꢄꢐꢍ ꢎ ꢅ ꢗꢍꢉꢄꢌ ꢎ ꢉꢕ ꢄꢁ ꢀꢍ ꢄꢉ ꢋꢗ ꢁ ꢄꢁꢑ ꢙ ꢏꢀꢉꢄꢉ ꢎ ꢗ ꢒꢉ ꢓꢒꢉ ꢀ  
SCES598C – JULY 2004 – REVISED OCTOBER 2004  
power-up considerations  
A proper power-up sequence always should be followed to avoid excessive supply current, bus contention,  
oscillations, or other anomalies. To guard against such power-up problems, take the following precautions:  
1. Connect ground before any supply voltage is applied.  
2. Power up V  
.
CCA  
3. V  
can be ramped up along with or after V  
.
CCB  
CCA  
typical total static power consumption (I  
+ I  
)
CCA  
CCB  
Table 1  
V
CCA  
V
UNIT  
CCB  
0 V  
0
1.2 V  
<0.5  
<1  
1.5 V  
<0.5  
<1  
1.8 V  
<0.5  
<1  
2.5 V  
<0.5  
<1  
3.3 V  
<0.5  
1
0 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
<0.5  
<0.5  
<0.5  
<0.5  
<0.5  
<1  
<1  
<1  
<1  
1
µA  
<1  
<1  
<1  
<1  
<1  
1
<1  
<1  
<1  
<1  
1
<1  
<1  
<1  
<1  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢉ ꢃꢊ  
ꢀꢋ ꢁꢌ ꢍ ꢎꢏꢐꢋ ꢉ ꢑꢒꢄ ꢍꢏꢀ ꢒꢓꢓꢍꢔ ꢐꢒꢀ ꢉ ꢕꢄꢁꢀ ꢆꢎ ꢋ ꢅꢎ ꢕ  
ꢖ ꢋ ꢉꢇ ꢆꢗ ꢁꢘ ꢋ ꢌꢒ ꢕ ꢄꢐꢍ ꢎ ꢅꢗ ꢍꢉꢄꢌ ꢎ ꢉ ꢕꢄꢁꢀ ꢍꢄꢉ ꢋꢗ ꢁ ꢄꢁꢑ ꢙ ꢏꢀꢉꢄꢉ ꢎ ꢗ ꢒꢉ ꢓ ꢒꢉꢀ  
SCES598C – JULY 2004 – REVISED OCTOBER 2004  
TYPICAL CHARACTERISTICS  
TYPICAL PROPAGATION DELAY (A to B) vs LOAD CAPACITANCE,  
T = 25°C, V  
= 1.2 V  
A
CCA  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
V
= 1.2 V  
= 1.5 V  
= 1.8 V  
CCB  
CCB  
CCB  
V
= 1.2 V  
= 1.5 V  
= 1.8 V  
CCB  
CCB  
CCB  
V
V
V
V
V
V
= 2.5 V  
= 3.3 V  
CCB  
CCB  
V
V
= 2.5 V  
= 3.3 V  
CCB  
CCB  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
C
− pF  
C
− pF  
L
L
Figure 1  
Figure 2  
TYPICAL PROPAGATION DELAY (A to B) vs LOAD CAPACITANCE,  
T = 25°C, V  
= 1.5 V  
A
CCA  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
V
V
= 1.2 V  
V
V
= 1.2 V  
= 1.5 V  
= 1.8 V  
CCB  
CCB  
= 1.5 V  
= 1.8 V  
CCB  
CCB  
CCB  
V
V
CCB  
V
V
= 2.5 V  
= 3.3 V  
V
V
= 2.5 V  
= 3.3 V  
CCB  
CCB  
CCB  
CCB  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
C
− pF  
C
− pF  
L
L
Figure 3  
Figure 4  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄꢅꢆ ꢇ ꢈ ꢉꢃ ꢊ  
ꢀ ꢋꢁ ꢌꢍ ꢎꢏ ꢐꢋ ꢉ ꢑ ꢒꢄ ꢍꢏꢀ ꢒꢓ ꢓꢍꢔ ꢐꢒ ꢀ ꢉꢕ ꢄꢁ ꢀꢆꢎ ꢋꢅꢎ ꢕ  
ꢖꢋ ꢉ ꢇ ꢆ ꢗꢁ ꢘꢋ ꢌꢒ ꢕ ꢄꢐꢍ ꢎ ꢅ ꢗꢍꢉꢄꢌ ꢎ ꢉꢕ ꢄꢁ ꢀꢍ ꢄꢉ ꢋꢗ ꢁ ꢄꢁꢑ ꢙ ꢏꢀꢉꢄꢉ ꢎ ꢗ ꢒꢉ ꢓꢒꢉ ꢀ  
SCES598C – JULY 2004 – REVISED OCTOBER 2004  
TYPICAL PROPAGATION DELAY (A to B) vs LOAD CAPACITANCE,  
T = 25°C, V  
= 1.8 V  
A
CCA  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
V
V
= 1.2 V  
= 1.5 V  
= 1.8 V  
V
V
= 1.2 V  
CCB  
CCB  
= 1.5 V  
= 1.8 V  
CCB  
CCB  
CCB  
V
V
CCB  
V
V
= 2.5 V  
= 3.3 V  
V
V
= 2.5 V  
= 3.3 V  
CCB  
CCB  
CCB  
CCB  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
C
− pF  
C
− pF  
L
L
Figure 6  
Figure 5  
TYPICAL PROPAGATION DELAY (A to B) vs LOAD CAPACITANCE,  
T = 25°C, V  
= 2.5 V  
A
CCA  
6
6
5
4
3
2
1
0
V
= 1.2 V  
= 1.5 V  
= 1.8 V  
CCB  
CCB  
CCB  
V
= 1.2 V  
= 1.5 V  
= 1.8 V  
CCB  
CCB  
CCB  
V
V
V
V
5
4
3
2
1
0
V
V
= 2.5 V  
= 3.3 V  
CCB  
CCB  
V
V
= 2.5 V  
= 3.3 V  
CCB  
CCB  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
C
− pF  
C
− pF  
L
L
Figure 7  
Figure 8  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢉ ꢃꢊ  
ꢀꢋ ꢁꢌ ꢍ ꢎꢏꢐꢋ ꢉ ꢑꢒꢄ ꢍꢏꢀ ꢒꢓꢓꢍꢔ ꢐꢒꢀ ꢉ ꢕꢄꢁꢀ ꢆꢎ ꢋ ꢅꢎ ꢕ  
ꢖ ꢋ ꢉꢇ ꢆꢗ ꢁꢘ ꢋ ꢌꢒ ꢕ ꢄꢐꢍ ꢎ ꢅꢗ ꢍꢉꢄꢌ ꢎ ꢉ ꢕꢄꢁꢀ ꢍꢄꢉ ꢋꢗ ꢁ ꢄꢁꢑ ꢙ ꢏꢀꢉꢄꢉ ꢎ ꢗ ꢒꢉ ꢓ ꢒꢉꢀ  
SCES598C – JULY 2004 – REVISED OCTOBER 2004  
TYPICAL PROPAGATION DELAY (A to B) vs LOAD CAPACITANCE,  
T = 25°C, V  
= 3.3 V  
A
CCA  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
V
V
= 1.2 V  
= 1.5 V  
= 1.8 V  
V
= 1.2 V  
= 1.5 V  
= 1.8 V  
CCB  
CCB  
V
CCB  
CCB  
CCB  
CCB  
V
V
V
V
= 2.5 V  
= 3.3 V  
V
V
= 2.5 V  
= 3.3 V  
CCB  
CCB  
CCB  
CCB  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
C
− pF  
C
− pF  
L
L
Figure 9  
Figure 10  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄꢅꢆ ꢇ ꢈ ꢉꢃ ꢊ  
ꢀ ꢋꢁ ꢌꢍ ꢎꢏ ꢐꢋ ꢉ ꢑ ꢒꢄ ꢍꢏꢀ ꢒꢓ ꢓꢍꢔ ꢐꢒ ꢀ ꢉꢕ ꢄꢁ ꢀꢆꢎ ꢋꢅꢎ ꢕ  
ꢘꢋ  
ꢄꢉ  
SCES598C – JULY 2004 – REVISED OCTOBER 2004  
PARAMETER MEASUREMENT INFORMATION  
2 × V  
CCO  
TEST  
S1  
S1  
R
Open  
GND  
t
Open  
L
pd  
/t  
From Output  
Under Test  
t
2 × V  
CCO  
GND  
PLZ PZL  
/t  
PHZ PZH  
t
C
L
R
L
(see Note A)  
t
LOAD CIRCUIT  
w
V
CCI  
V /2  
CCI  
V /2  
CCI  
Input  
V
TP  
C
R
V
CCO  
L
L
0 V  
1.2 V  
2 kΩ  
2 kΩ  
2 kΩ  
2 kΩ  
2 kΩ  
0.1 V  
0.1 V  
15 pF  
15 pF  
15 pF  
15 pF  
15 pF  
VOLTAGE WAVEFORMS  
PULSE DURATION  
1.5 V 0.1 V  
1.8 V 0.15 V  
2.5 V 0.2 V  
3.3 V 0.3 V  
0.15 V  
0.15 V  
0.3 V  
V
CCA  
Output  
Control  
(low-level  
enabling)  
V
CCA  
/2  
V
CCA  
/2  
0 V  
t
t
PLZ  
PZL  
V
V
CCO  
Output  
Waveform 1  
V
CCI  
V
CCO  
/2  
/2  
Input  
V /2  
CCI  
V /2  
CCI  
V
OL  
+ V  
TP  
S1 at 2 × V  
CCO  
OL  
0 V  
(see Note B)  
t
t
PZH  
PHZ  
t
t
PHL  
PLH  
Output  
Waveform 2  
S1 at GND  
V
OH  
V
OH  
V
OH  
− V  
TP  
V
CCO  
Output  
V
CCO  
/2  
V
/2  
CCO  
(see Note B)  
0 V  
V
OL  
VOLTAGE WAVEFORMS  
PROPAGATION DELAY TIMES  
VOLTAGE WAVEFORMS  
ENABLE AND DISABLE TIMES  
NOTES: A.  
C
includes probe and jig capacitance.  
L
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.  
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.  
C. All input pulses are supplied by generators having the following characteristics: PRRv10 MHz, Z = 50 , dv/dt 1 V/ns,  
O
dv/dt 1 V/ns.  
D. The outputs are measured one at a time, with one transition per measurement.  
E.  
F.  
G.  
H.  
I.  
t
t
t
V
V
and t  
and t  
are the same as t  
.
.
PLZ  
PZL  
PLH  
PHZ  
PZH  
dis  
are the same as t  
are the same as t .  
en  
and t  
PHL  
is the V  
pd  
associated with the input port.  
associated with the output port.  
CC  
CCI  
CC  
is the V  
CCO  
Figure 11. Load Circuit and Voltage Waveforms  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢉ ꢃꢊ  
ꢀꢋ ꢁꢌ ꢍ ꢎꢏꢐꢋ ꢉ ꢑꢒꢄ ꢍꢏꢀ ꢒꢓꢓꢍꢔ ꢐꢒꢀ ꢉ ꢕꢄꢁꢀ ꢆꢎ ꢋ ꢅꢎ ꢕ  
ꢖ ꢋ ꢉꢇ ꢆꢗ ꢁꢘ ꢋ ꢌꢒ ꢕ ꢄꢐꢍ ꢎ ꢅꢗ ꢍꢉꢄꢌ ꢎ ꢉ ꢕꢄꢁꢀ ꢍꢄꢉ ꢋꢗ ꢁ ꢄꢁꢑ ꢙ ꢏꢀꢉꢄꢉ ꢎ ꢗ ꢒꢉ ꢓ ꢒꢉꢀ  
SCES598C – JULY 2004 – REVISED OCTOBER 2004  
APPLICATION INFORMATION  
Figure 12 shows an example of the SN74AVCH1T45 being used in a unidirectional logic level-shifting application.  
V
CC1  
V
CC1  
V
CC2  
V
CC2  
1
2
3
6
5
4
SYSTEM-1  
SYSTEM-2  
PIN  
NAME  
FUNCTION  
DESCRIPTION  
1
V
SYSTEM-1 supply voltage (1.2 V to 3.6 V)  
Device GND  
V
CCA  
CC1  
2
3
4
5
6
GND  
A
GND  
OUT  
IN  
Output level depends on V  
CC1  
voltage.  
B
Input threshold value depends on V voltage.  
CC2  
DIR  
GND (low level) determines B-port to A-port direction.  
SYSTEM-2 supply voltage (1.2 V to 3.6 V)  
DIR  
V
CCB  
V
CC2  
Figure 12. Unidirectional Logic Level-Shifting Application  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄꢅꢆ ꢇ ꢈ ꢉꢃ ꢊ  
ꢀ ꢋꢁ ꢌꢍ ꢎꢏ ꢐꢋ ꢉ ꢑ ꢒꢄ ꢍꢏꢀ ꢒꢓ ꢓꢍꢔ ꢐꢒ ꢀ ꢉꢕ ꢄꢁ ꢀꢆꢎ ꢋꢅꢎ ꢕ  
ꢖꢋ ꢉ ꢇ ꢆ ꢗꢁ ꢘꢋ ꢌꢒ ꢕ ꢄꢐꢍ ꢎ ꢅ ꢗꢍꢉꢄꢌ ꢎ ꢉꢕ ꢄꢁ ꢀꢍ ꢄꢉ ꢋꢗ ꢁ ꢄꢁꢑ ꢙ ꢏꢀꢉꢄꢉ ꢎ ꢗ ꢒꢉ ꢓꢒꢉ ꢀ  
SCES598C – JULY 2004 – REVISED OCTOBER 2004  
APPLICATION INFORMATION  
Figure 13 shows the SN74AVCH1T45 being used in a bidirectional logic level-shifting application. Since the  
SN74AVCH1T45 does not have an output-enable (OE) pin, the system designer should take precautions to avoid  
bus contention between SYSTEM-1 and SYSTEM-2 when changing directions.  
V
CC1  
V
CC1  
V
CC2  
V
CC2  
I/O-1  
I/O-2  
1
2
3
6
5
4
DIR CTRL  
SYSTEM-1  
SYSTEM-2  
Following is a sequence that illustrates data transmission from SYSTEM-1 to SYSTEM-2 and then from SYSTEM-2  
to SYSTEM-1.  
STATE  
DIR CTRL  
I/O-1  
I/O-2  
DESCRIPTION  
1
H
SYSTEM-1 data to SYSTEM-2  
Out  
In  
SYSTEM-2 is getting ready to send data to  
SYSTEM-1. I/O-1 and I/O-2 are disabled.  
The bus-line state depends on bus hold.  
2
H
Hi-Z  
Hi-Z  
DIR bit is flipped. I/O-1 and I/O-2 are still disabled.  
The bus-line state depends on bus hold.  
3
4
L
L
Hi-Z  
Out  
Hi-Z  
In  
SYSTEM-2 data to SYSTEM-1  
Figure 13. Bidirectional Logic Level-Shifting Application  
enable times  
Calculate the enable times for the SN74AVCH1T45 using the following formulas:  
t
t
t
t
(DIR to A) = t  
(DIR to B) + t  
(DIR to B) + t  
(DIR to A) + t  
(DIR to A) + t  
(B to A)  
(B to A)  
(A to B)  
(A to B)  
PZH  
PZL  
PZH  
PZL  
PLZ  
PLH  
PHL  
PLH  
PHL  
(DIR to A) = t  
(DIR to B) = t  
PHZ  
PLZ  
PHZ  
(DIR to B) = t  
In a bidirectional application, these enable times provide the maximum delay from the time the DIR bit is  
switched until an output is expected. For example, if the SN74AVCH1T45 initially is transmitting from A to B,  
then the DIR bit is switched; the B port of the device must be disabled before presenting it with an input. After  
the B port has been disabled, an input signal applied to it appears on the corresponding A port after the specified  
propagation delay.  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MPDS114 – FEBRUARY 2002  
DCK (R-PDSO-G6)  
PLASTIC SMALL-OUTLINE PACKAGE  
0,30  
0,15  
M
0,10  
0,65  
6
4
0,13 NOM  
1,40 2,40  
1,10 1,80  
1
3
Gage Plane  
2,15  
1,85  
0,15  
0°–8°  
0,46  
0,26  
Seating Plane  
0,10  
1,10  
0,80  
0,10  
0,00  
4093553-3/D 01/02  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion.  
D. Falls within JEDEC MO-203  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

SN74AVCH20T245

20 BIT DUAL SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3 STATE OUTPUTS
TI

SN74AVCH20T245GR

20 BIT DUAL SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3 STATE OUTPUTS
TI

SN74AVCH20T245KR

20 BIT DUAL SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3 STATE OUTPUTS
TI

SN74AVCH20T245VR

20 BIT DUAL SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3 STATE OUTPUTS
TI

SN74AVCH20T245_07

20-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
TI

SN74AVCH20T245_09

20-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
TI

SN74AVCH245

OCTAL BUS TRANSCEIVER WITH 3-STATE OUTPUTS
TI

SN74AVCH245DGV

OCTAL BUS TRANSCEIVER WITH 3-STATE OUTPUTS
TI

SN74AVCH245DGVR

AVC SERIES, 8-BIT TRANSCEIVER, TRUE OUTPUT, PDSO20, PLASTIC, TVSOP-20
TI

SN74AVCH245DW

OCTAL BUS TRANSCEIVER WITH 3-STATE OUTPUTS
TI

SN74AVCH245PW

OCTAL BUS TRANSCEIVER WITH 3-STATE OUTPUTS
TI

SN74AVCH245PWLE

AVC SERIES, 8-BIT TRANSCEIVER, TRUE OUTPUT, PDSO20, PLASTIC, TSSOP-20
TI