S4MF04207SPZQQ1 [TI]

TMS470MF04207/TMS470MF03107 16/32-Bit RISC Flash Microcontroller; TMS470MF04207 / TMS470MF03107 16位/ 32位RISC闪存微控制器
S4MF04207SPZQQ1
型号: S4MF04207SPZQQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TMS470MF04207/TMS470MF03107 16/32-Bit RISC Flash Microcontroller
TMS470MF04207 / TMS470MF03107 16位/ 32位RISC闪存微控制器

闪存 微控制器和处理器 外围集成电路 装置 时钟
文件: 总67页 (文件大小:536K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMS470MF04207  
TMS470MF03107  
www.ti.com  
SPNS159C JANUARY 2012  
TMS470MF04207/TMS470MF03107 16/32-Bit RISC Flash  
Microcontroller  
Check for Samples: TMS470MF04207, TMS470MF03107  
1 Features  
1
High-Performance Automotive Grade  
Two External Clock Prescale (ECP) Modules  
Microcontroller with Safety Features  
Programmable Low-Frequency External  
Full Automotive Temperature Range  
ECC on Flash and SRAM  
CPU and Memory BIST (Built-In Self Test)  
ARM Cortex-M3 32-Bit RISC CPU  
Efficient 1.2 DMIPS/MHz  
Clock (ECLK)  
One Dedicated Pin and One Muxed  
ECLK/HET pin  
Communication Interfaces  
Two CAN Controllers  
One with 32 mailboxes, one with 16  
Parity on mailbox RAM  
Optimized Thumb2 Instruction Set  
Memory Protection Unit (MPU)  
Open Architecture With Third-Party Support  
Built-In Debug Module  
Two Multi-buffered Serial Peripheral  
Interface (MibSPI)  
12 total chip selects  
64 buffers with parity on each  
Operating Features  
Up to 80MHz System Clock  
Single 3.3V Supply Voltage  
Integrated Memory  
Two UART (SCI) interfaces  
H/W Support for Local Interconnect  
Network (LIN 2.1 master mode)  
448KB Total Program Flash with ECC  
Support for Flash EEPROM Emulation  
24K-Byte Static RAM (SRAM) with ECC  
Key Peripherals  
High-End Timer, MibADC, CAN, MibSPI  
Common TMS470M/570 Platform Architecture  
Consistent Memory Map across the family  
Real-Time Interrupt Timer (RTI)  
Digital Watchdog  
Vectored Interrupt Module (VIM)  
Cyclic Redundancy Checker (CRC)  
Frequency-Modulated Zero-Pin Phase-Locked  
Loop (FMzPLL)-Based Clock Module  
Oscillator and PLL clock monitor  
Up to 49 Peripheral IO pins  
High-End Timer (HET)  
Up to 16 Programmable I/O Channels  
128-Word High-End Timer RAM with Parity  
16-Channel 10-Bit Multi-Buffered ADC  
(MibADC)  
64-Word FIFO Buffer with Parity  
Single- or Continuous-Conversion Modes  
1.55 µs Minimum Sample/Conversion Time  
Calibration Mode and Self-Test Features  
On-Chip Scan-Base Emulation Logic  
IEEE Standard 1149.1 (JTAG) Test-Access  
Port and Boundary Scan  
Packages supported  
100-Pin Plastic Quad Flatpack (PZ Suffix)  
Green/Lead-Free  
Development Tools Available  
Development Boards  
4 Dedicated GIO - w/ External Interrupts  
Code Composer StudioIntegrated  
Development Environment (IDE)  
HET Assembler and Simulator  
nowFlashFlash Programming Tool  
Community Resources  
TI E2E Community  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date. Products conform to  
specifications per the terms of the Texas Instruments standard warranty. Production  
processing does not necessarily include testing of all parameters.  
Copyright © 2012, Texas Instruments Incorporated  
 
TMS470MF04207  
TMS470MF03107  
SPNS159C JANUARY 2012  
www.ti.com  
1.1 PZ Package Views  
ADIN[7]  
ADIN[8]  
ADIN[9]  
ADIN[10]  
ADIN[11]  
ADIN[12]  
ADREFHI  
ADREFLO  
VSSAD  
76  
77  
78  
79  
80  
81  
82  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
HET[3]  
HET[2]  
TRST  
TMS  
TDI  
TDO  
TCK  
83  
84  
85  
86  
VCCIOR  
VSS  
VCC  
VCCAD  
HET[1]  
ADIN[13]  
ADIN[14]  
ADIN[15]  
PORRST  
MIBSPI2ENA  
ENZ  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
HET[0]  
CAN2SRX  
CAN2STX  
MIBSPI1SOMI  
MIBSPI1SIMO  
MIBSPI1CLK  
MIBSPI1SCS[0]  
MIBSPI1SCS[1]  
MIBSPI1SCS[2]  
MIBSPI1SCS[3]  
MIBSPI1SCS[4]  
MIBSPI1SCS[5]  
MIBSPI1SCS[6]  
MIBSPI1SCS[7]  
VCC  
VSS  
VCCIOR  
VCCP  
ECLK  
TEST  
RST  
FLTP1  
VSS  
Figure 1-1. TMS470MF04207 and TMS470MF03107 100-Pin PZ Package (Top View)  
2
Features  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
 
 
TMS470MF04207  
TMS470MF03107  
www.ti.com  
SPNS159C JANUARY 2012  
1.2 Description  
The TMS470MF04207/03107 devices are members of the Texas Instruments TMS470M family of  
Automotive Grade 16/32-bit reduced instruction set computer (RISC) microcontrollers. The TMS470M  
microcontrollers offer high performance utilizing the high efficiency Cortex-M3 16/32-bit RISC central  
processing unit (CPU), resulting in a high instruction throughput while maintaining greater code efficiency.  
The TMS470M devices utilize the big-endian format where the most-significant byte of a word is stored at  
the lowest numbered byte and the least-significant byte is stored at the highest numbered byte.  
High-end embedded control applications demand more performance from their controllers while  
maintaining low costs. The TMS470M microcontroller architecture offers solutions to these performance  
and cost demands while maintaining low power consumption.  
The TMS470MF04207/03107 device contains the following:  
16/32-Bit RISC CPU Core  
TMS470MF04207 Up to 448K-Byte Program Flash with SECDED ECC  
TMS470MF03107 Up to 320K-Byte Program Flash with SECDED ECC  
64K-Byte Flash with SECDED ECC for additional program space or EEPROM Emulation  
Up to 24K-Byte Static RAM (SRAM) with SECDED ECC  
Real-Time Interrupt Timer (RTI)  
Vectored Interrupt Module (VIM)  
Hardware built-in self-test (BIST) checkers for SRAM (MBIST) and CPU (LBIST)  
64-bit Cyclic Redundancy Checker (CRC)  
Frequency-Modulated Zero-Pin Phase-Locked Loop (FMzPLL)-Based Clock Module With Prescaler  
Two Multi-buffered Serial Peripheral Interfaces (MibSPI)  
Two UARTs (SCI) with Local Interconnect Network Interfaces (LIN)  
Two CAN Controller (DCAN)  
High-End Timer (HET)  
External Clock Prescale (ECP) Module  
One 16-Channel 10-Bit Multi-Buffered ADC (MibADC)  
Error Signaling Module (ESM)  
Four Dedicated General-Purpose I/O (GIO) Pins and 45 Additional Peripheral I/Os (100-Pin Package)  
The TMS470M memory includes general-purpose SRAM supporting single-cycle read/write accesses in  
byte, half-word, and word modes. The SRAM on the TMS470M devices can be protected by means of  
ECC. This feature utilizes a single error correction and double error detection circuit (SECDED circuit) to  
detect and optionally correct single bit errors as well as detect all dual bit and some multi-bit errors. This is  
achieved by maintaining an 8-bit ECC checksum/code for each 64-bit double-word of memory space in a  
separate ECC RAM memory space.  
The flash memory on this device is a nonvolatile, electrically erasable and programmable memory. It is  
implemented with a 144-bit wide data word (128-bit without ECC) and a 64-bit wide flash module interface.  
The flash operates with a system clock frequency of up to 28 MHz. Pipeline mode, which allows linear  
prefetching of flash data, enables a system clock of up to 80 MHz.  
The enhanced real-time interrupt (RTI) module on the TMS470M devices has the option to be driven by  
the oscillator clock. The digital watchdog (DWD) is a 25-bit resetable decrementing counter that provides a  
system reset when the watchdog counter expires.  
The TMS470M devices have six communication interfaces: two LIN/SCIs, two DCANs, and two MibSPIs.  
The LIN is the Local Interconnect Network standard and also supports an SCI mode. SCI can be used in a  
full-duplex, serial I/O interface intended for asynchronous communication between the CPU and other  
peripherals using the standard non-return-to-zero (NRZ) format. The DCAN uses a serial, multimaster  
communication protocol that efficiently supports distributed real-time control with robust communication  
Copyright © 2012, Texas Instruments Incorporated  
Features  
3
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
 
TMS470MF04207  
TMS470MF03107  
SPNS159C JANUARY 2012  
www.ti.com  
rates of up to 1 megabit per second (Mbps). The DCAN is ideal for applications operating in noisy and  
harsh environments (e.g., automotive and industrial fields) that require reliable serial communication or  
multiplexed wiring. The MibSPI provides a convenient method of serial interaction for high-speed  
communications between similar shift-register type devices. The MibSPI provides the standard SOMI,  
SIMO, and SPI clock interface as well as up to eight chip select lines.  
The HET is an advanced intelligent timer that provides sophisticated timing functions for real-time  
applications. The timer is software-controlled, using a reduced instruction set, with a specialized timer  
micromachine and an attached I/O port. The HET can be used for compare, capture, or general-purpose  
I/O. It is especially well suited for applications requiring multiple sensor information and drive actuators  
with complex and accurate time pulses. The TMS470M HET peripheral contains the XOR-share feature.  
This feature allows two adjacent HET high- resolution channels to be XORed together, making it possible  
to output smaller pulses than a standard HET.  
The TMS470M devices have one 10-bit-resolution, sample-and-hold MibADC. Each of the MibADC  
channels can be grouped by software for sequential conversion sequences. There are three separate  
groupings, all three of which can be triggered by an external event. Each sequence can be converted  
once when triggered or configured for continuous conversion mode.  
The frequency-modulated zero-pin phase-locked loop (FMzPLL) clock module contains a phase-locked  
loop, a clock-monitor circuit, a clock-enable circuit, and a prescaler. The function of the FMzPLL is to  
multiply the external frequency reference to a higher frequency for internal use. The FMzPLL provides the  
input to the global clock module (GCM). The GCM module subsequently provides system clock (HCLK),  
real-time interrupt clock (RTICLK), CPU clock (GCLK), HET clock (VCLK2), DCAN clock (AVCLK1), and  
peripheral interface clock (VCLK) to all other TMS470M device modules.  
The TMS470MF04207/TMS470MF03107 devices also have two external clock prescaler (ECP) modules  
that when enabled, output a continuous external clock (ECLK). The ECLK1 frequency is a  
user-programmable ratio of the peripheral interface clock (VCLK) frequency. The second ECLK output can  
be selected in place of HET15 output. It shares the same source clock as ECLK1 but can be  
independently programmed for a separate output frequency from ECLK1.  
An error signaling module (ESM) provides a common location within the device for error reporting allowing  
efficient error checking and identification.  
4
Features  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
TMS470MF04207  
TMS470MF03107  
www.ti.com  
SPNS159C JANUARY 2012  
1.3 Functional Block Diagram  
Figure 1-2 shows the functional block diagram of the TMS470M devices.  
TMS  
TCK  
TRST  
TDI  
TMS470MF04207/  
TMS470MF03107  
JTAG-DP  
ICEPICK  
LBIST  
TDO  
Cortex™  
Boundary  
M3  
Scan  
with MPU  
HET  
128 Words  
w/Parity  
M3VIM  
I
D
SYS  
HET[15:0]  
ESM  
RST  
PORRST  
TEST  
ECLK  
SYS  
BMM  
BMM  
LIN/SCI1TX  
LIN/SCI1RX  
LIN/SCI2TX  
LIN/SCI2RX  
LIN/SCI1  
LIN/SCI2  
A2V  
Flash  
Up to 384KB  
w/ECC  
RAM  
Up to 24KB  
w/ECC  
VCCP  
PSA  
MIBSPI1SIMO  
MIBSPI1SOMI  
MIBSPI1CLK  
MibSPI1  
64 Words/  
16TGs w/Parity  
FLTP1  
MIBSPI1SCS[7:0]  
MBIST  
Flash  
64KB  
w/ECC  
MIBSPI2SIMO  
MIBSPIP2SOMI  
MIBSPI2CLK  
MIBSPI2SCS[3:0]  
MIBSPI2ENA  
MibSPI2  
64 Words/  
8TGs w/Parity  
PCR  
RAM  
OSC  
PLL  
CLK  
ADIN[15:0]  
ADEVT  
VCCAD  
OSCIN1  
ADC  
64 Words  
w/Parity  
Flash  
Wrapper  
RTI/  
DWD  
OSCOUT1  
Monitor  
VSSAD  
ADREFHI  
ADREFLO  
Wrapper  
DCAN1  
16 Mailboxes  
w/Parity  
1.5-V  
P-Ch  
VREG  
CANS1RX  
CANS1TX  
VCCIOR  
ENZ  
DCAN2  
32 Mailboxes  
w/Parity  
VCCOUT  
CANS2RX  
CANS2TX  
VCC  
VCC  
VCC  
VCC  
Passgate1  
Passgate2  
Passgate3  
Passgate4  
GIO  
GIOOA[7:4]/INTA[7:4]  
Figure 1-2. TMS470M Functional Block Diagram  
Copyright © 2012, Texas Instruments Incorporated  
Features  
5
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
 
 
TMS470MF04207  
TMS470MF03107  
SPNS159C JANUARY 2012  
www.ti.com  
1.4 Terms and Acronyms  
Table 1-1. Terms and Acronyms  
Terms and Acronyms  
Description  
Comments  
A2V  
AHB to VBUSP Bridge  
The A2V bridge provides the memory interface between the  
proprietary TI VBUSP and the ARM AHB bus in the TMS470  
platform devices.  
ADC  
AHB  
BMM  
Analog To Digital Converter  
Advanced High-performance Bus  
Bus Matrix Master  
Part of the M3 core  
The BMM provides connectivity between different bus slave  
modules to different bus master modules. Accesses from  
different master modules are executed in parallel if no resource  
conflict occurs or if the master modules are kept in series  
through arbitration  
CRC  
DAP  
Cyclic Redundancy Check Controller  
Debug Access Port  
DAP is an implementation of an ARM Debug Interface.  
DCAN  
DWD  
ECC  
Controller Area Network  
Digital Watchdog  
Error Correction Code  
Error Signaling Module  
General-Purpose Input/Output  
High-End Timer  
ESM  
GIO  
HET  
ICEPICK  
In Circuit Emulation TAP (Test Access Port)  
Selection Module  
ICEPick can connect or isolate a module level TAP to or from a  
higher level chip TAP. ICEPick was designed with both  
emulation and test requirements in mind.  
JTAG  
Joint Test Access Group  
JTAG Debug Port  
IEEE Committee responsible for Test Access Ports  
JTAG-DP  
JTAG-DP contains a debug port state machine (JTAG) that  
controls the JTAG-DP operation, including controlling the scan  
chain interface that provides the external physical interface to  
the JTAG-DP. It is based closely on the JTAG TAP State  
Machine, see IEEE Std 1149.1-2001.  
LBIST  
LIN  
Logic Built-In Self Test  
Local Interconnect Network  
Cortex-M3 Vectored Interrupt Manager  
Memory Built-In Self Test  
Multi-Buffered Serial Peripheral Interface  
Protection Unit  
Test the integrity of M3 CPU  
Test the integrity of SRAM  
Part of the M3 core  
M3VIM  
MBIST  
MibSPI  
MPU  
NVIC  
OSC  
Nested Vectored Interrupt Controller  
Oscillator  
PCR  
Peripheral Central Resource  
Phase-Locked Loop  
PLL  
PSA  
Parallel Signature Analysis  
Real-Time Interrupt  
RTI  
SCI  
Serial Communication Interface  
SECDED  
Single Error Correction and Double Error  
Detection  
STC  
SYS  
Self Test Controller  
System Module  
Virtual Bus  
VBUS  
One of the protocols that comprises CBA (Common Bus  
Architecture)  
VBUSP  
VREG  
Virtual Bus-Pipelined  
Voltage Regulator  
One of the protocols that comprises CBA (Common Bus  
Architecture)  
6
Features  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
 
TMS470MF04207  
TMS470MF03107  
www.ti.com  
SPNS159C JANUARY 2012  
1
Features ................................................... 1  
3.12 Device Part Numbers ............................... 33  
1.1 PZ Package Views ................................... 2  
1.2 Description ........................................... 3  
1.3 Functional Block Diagram ............................ 5  
1.4 Terms and Acronyms ................................ 6  
Device Overview ........................................ 8  
2.1 Memory Map Summary .............................. 9  
2.2 Terminal Functions ................................. 14  
2.3 Device Support ..................................... 18  
Device Configurations ................................ 20  
3.1 Reset/Abort Sources ............................... 20  
3.2 Lockup Reset Module .............................. 21  
3.3 ESM Assignments .................................. 21  
4
5
Device Operating Conditions ....................... 34  
4.1  
Absolute Maximum Ratings Over Operating  
Free-Air Temperature Range, Q Version ........... 34  
4.2  
4.3  
Device Recommended Operating Conditions ...... 34  
Electrical Characteristics Over Recommended  
2
3
Operating Free-Air Temperature Range, Q Version  
...................................................... 35  
Peripheral Information and Electrical  
Specifications .......................................... 36  
5.1 RST and PORRST Timings ........................ 36  
5.2 PLL and Clock Specifications ...................... 39  
5.3 SPIn Master Mode Timing Parameters ............. 50  
5.4 SPIn Slave Mode Timing Parameters .............. 54  
5.5  
CAN Controller (DCANn) Mode Timings ........... 58  
5.6 High-End Timer (HET) Timings ..................... 58  
Multi-Buffered A-to-D Converter (MibADC) ......... 59  
3.4 Interrupt Priority (M3VIM) ........................... 22  
3.5 MibADC ............................................. 23  
3.6 MibSPI .............................................. 24  
5.7  
6
7
Revision History ....................................... 63  
Mechanical Data ....................................... 64  
7.1 Thermal Data ....................................... 64  
7.2 Packaging Information .............................. 64  
3.7 JTAG ID ............................................ 25  
3.8 Scan Chains ........................................ 25  
3.9 Adaptive Impedance 4 mA IO Buffer ............... 25  
3.10 Built-In Self Test (BIST) Features .................. 29  
3.11 Device Identification Code Register ................ 32  
Copyright © 2012, Texas Instruments Incorporated  
Contents  
7
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
TMS470MF04207  
TMS470MF03107  
SPNS159C JANUARY 2012  
www.ti.com  
2 Device Overview  
The TMS470MF04207/03107 device is a TMS470M Platform Architecture implemented in F035 130-nm TI  
technology. Table 2-1 identifies all the characteristics of the TMS470MF04207/03107 device except the  
SYSTEM and CPU, which are generic.  
Table 2-1. Device Characteristics  
DEVICE DESCRIPTION  
TMS470MF04207/03107  
CHARACTERISTICS  
COMMENTS FOR TMS470M  
MEMORY  
INTERNAL MEMORY  
Pipeline/Non-Pipeline  
2 Banks with up to 448K-Byte  
Flash with ECC  
Flash is pipeline-capable  
Up to 24K-Byte SRAM with ECC  
CRC, 1-channel  
PERIPHERALS  
For the device-specific interrupt priority configurations, see Table 3-4.  
For the peripheral address ranges and their peripheral selects, see Table 2-7.  
CLOCK  
FMzPLL  
4 I/O  
Frequency-modulated zero-pin PLL has no external loop filter pins.  
GENERAL-PURPOSE I/Os  
The GIOA port has up to four (4) external pins with external interrupt  
capability.  
LIN/SCI  
DCAN  
2 LIN/SCI  
2 DCAN  
2 MibSPI  
Each with 16/32 mailboxes, respectively.  
MibSPI  
One MibSPI with eight chip select pins, 16 transfer groups, and a 64  
word buffer with parity. A second MibSPI with four chip select pins, 1  
enable pin, 8 transfer groups, and a 64 word buffer with parity.  
HET with XOR Share  
16 I/O  
The high-resolution (HR) SHARE feature allows even-numbered HR  
pins to share the next higher odd-numbered HR pin structures. This  
HR sharing is independent of whether or not the odd pin is available  
externally. If an odd pin is available externally and shared, then the  
odd pin can only be used as a general-purpose I/O. HET RAM with  
parity checking capability.  
HET RAM  
MibADC  
128-Instruction Capacity  
10-bit, 16-channel  
64-word FIFO  
MibADC RAM includes parity support.  
CORE VOLTAGE  
1.55 V  
The core voltage is supplied and regulated by the device's internal  
voltage regulator. There is not need for an externally supplied core  
voltage.  
I/O VOLTAGE  
PINS  
3.3 V  
100  
Available in a 100-pin package.  
PACKAGE  
PZ (100 pin)  
The 100-pin package designator is PZ.  
8
Device Overview  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
 
TMS470MF04207  
TMS470MF03107  
www.ti.com  
SPNS159C JANUARY 2012  
2.1 Memory Map Summary  
2.1.1 Memory Map  
Figure 2-1 and Figure 2-2 show the TMS470MF04207 and TMS470MF03107 memory maps.  
0xFFFFFFFF  
SYSTEM Module  
0xFFF80000  
0xFFF7FFFF  
Peripherals  
0xFF000000  
0xFEFFFFFF  
PSA  
0xFE000000  
0x08405FFF  
RAM - ECC  
0x08400000  
0x08105FFF  
RAM - CLR Space(A) (24KB)  
0x08100000  
RAM - SET Space(A) (24KB)  
0x08085FFF  
0x08080000  
0x08005FFF  
RAM (24KB)  
0x08000000  
0x0047FFFF  
0x00440000  
FLASH - ECC (Bank 1)  
0x0042FFFF  
0x00400000  
0x0008FFFF  
FLASH - ECC (Bank 0)  
FLASH (64KB - Bank 1)  
0x00080000  
0x0005FFFF  
FLASH (384KB - Bank 0)  
0x00000000  
A. The RAM supports bit access operation which allows set/clear to dedicated bits without disturbing the other bits; for  
detailed description, see the Architecture Specification.  
Figure 2-1. TMS470MF04207 Memory Map  
Copyright © 2012, Texas Instruments Incorporated  
Device Overview  
9
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
 
TMS470MF04207  
TMS470MF03107  
SPNS159C JANUARY 2012  
www.ti.com  
0xFFFFFFFF  
0xFFF80000  
0xFFF7FFFF  
SYSTEM Module  
Peripherals  
0xFF000000  
0xFEFFFFFF  
0xFE000000  
PSA  
0x08403FFF  
0x08400000  
RAM - ECC  
0x08103FFF  
0x08100000  
RAM - CLR Space(A) (16KB)  
RAM - SET Space(A) (16KB)  
RAM (16KB)  
0x08083FFF  
0x08080000  
0x08003FFF  
0x08000000  
0x00447FFF  
0x00440000  
0x0041FFFF  
0x00400000  
FLASH - ECC (Bank 1)  
FLASH - ECC (Bank 0)  
0x0008FFFF  
0x00080000  
0x0003FFFF  
FLASH (64KB - Bank 1)  
FLASH (256KB - Bank 0)  
0x00000000  
A. The RAM supports bit access operation which allows set/clear to dedicated bits without disturbing the other bits; for  
detailed description, see the Architecture Specification.  
Figure 2-2. TMS470MF03107 Memory Map  
10  
Device Overview  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
TMS470MF04207  
TMS470MF03107  
www.ti.com  
SPNS159C JANUARY 2012  
2.1.2 Memory Selects  
Memories in the TMS470M devices are located at fixed addresses. Table 2-2 through Table 2-7 detail the  
mapping of the memory regions.  
Table 2-2. TMS470MF04207-Specific Memory Frame Assignment  
MEMORY FRAME NAME  
START ADDRESS  
0x0000 0000  
0x0008 0000  
0x0810 0000  
0x0808 0000  
0x0800 0000  
0x0840 0000  
ENDING ADDRESS  
0x0005 FFFF  
0x0008 FFFF  
0x0810 5FFF  
0x0808 5FFF  
0x0800 5FFF  
0x0840 5FFF  
MEMORY TYPE  
Flash  
ACTUAL MEMORY  
384K Bytes  
64K Bytes  
nCS0(1)  
Flash  
RAM-CLR  
RAM-SET  
Internal RAM  
Internal RAM  
Internal RAM  
Internal RAM-ECC  
24K Bytes  
24K Bytes  
24K Bytes  
CSRAM0(1)  
24K Bytes  
(1) Additional address mirroring could be present resulting in invalid but addressable locations beyond those listed above. TI recommends  
the use of the MPU for protecting access to addresses outside the intended range of use.  
Table 2-3. TMS470MF03107-Specific Memory Frame Assignment  
MEMORY FRAME NAME  
START ADDRESS  
0x0000 0000  
0x0008 0000  
0x0810 0000  
0x0808 0000  
0x0800 0000  
0x0840 0000  
ENDING ADDRESS  
0x0003 FFFF  
0x0008 FFFF  
0x0810 3FFF  
0x0808 3FFF  
0x0800 3FFF  
0x0840 3FFF  
MEMORY TYPE  
Flash  
ACTUAL MEMORY  
256K Bytes  
64K Bytes  
nCS0(1)  
Flash  
RAM-CLR  
RAM-SET  
Internal RAM  
Internal RAM  
Internal RAM  
Internal RAM-ECC  
16K Bytes  
16K Bytes  
16K Bytes  
CSRAM0(1)  
16K Bytes  
(1) Additional address mirroring could be present resulting in invalid but addressable locations beyond those listed above. TI recommends  
the use of the MPU for protecting access to addresses outside the intended range of use.  
Table 2-4. Memory Initialization and MBIST  
ADDRESS RANGE  
BASE ADDRESS  
MEMORY INITIALIZATION  
CHANNEL  
MBIST CONTROLLER  
ENABLE CHANNEL  
CONNECTING MODULE  
ENDING ADDRESS  
0x0800 5FFF  
0x0800 3FFF  
0xFF0F FFFF  
0xFF0D FFFF  
0xFF1F FFFF  
0xFF1D FFFF  
0xFF3F FFFF  
0xFF47 FFFF  
Not Applicable  
System RAM (TMS470MF04207)  
System RAM (TMS470MF03107)  
MibSPI1 RAM  
0x0800 0000  
0x0800 0000  
0xFF0E 0000  
0xFF0C 0000  
0xFF1E 0000  
0xFF1C 0000  
0xFF3E 0000  
0xFF46 0000  
Not Applicable  
0
0
0
0
1
1 or 2(1)  
3 or 4(1)  
MibSPI2 RAM  
2
DCAN1 RAM  
3
DCAN2 RAM  
4
ADC RAM  
5
5
6
7
HET RAM  
Not Available  
Not Applicable  
STC ROM  
(1) There are single MBIST controllers for both MibSPI RAMs and both DCAN RAMs. The MBIST controller for both MibSPI RAMs is  
mapped to channels 1 and 2 and the MBIST controller for both DCAN RAMs is mapped to channels 3 and 4. MBIST on these modules  
can be initiated by selecting one of the 2 channels or both.  
Table 2-5. Peripheral Memory Chip Select Assignment  
ADDRESS RANGE  
PERIPHERAL  
SELECTS  
CONNECTING MODULE  
BASE ADDRESS  
ENDING ADDRESS  
0xFF0F FFFF  
MibSPI1 RAM  
MibSPI2 RAM  
DCAN1 RAM  
DCAN2 RAM  
0xFF0E 0000  
0xFF0C 0000  
0xFF1E 0000  
0xFF1C 0000  
PCS[7]  
PCS[6]  
0xFF0D FFFF  
0xFF1F FFFF  
PCS[14]  
PCS[15]  
0xFF1D FFFF  
Copyright © 2012, Texas Instruments Incorporated  
Device Overview  
11  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
 
 
TMS470MF04207  
TMS470MF03107  
SPNS159C JANUARY 2012  
www.ti.com  
Table 2-5. Peripheral Memory Chip Select Assignment (continued)  
ADDRESS RANGE  
PERIPHERAL  
SELECTS  
CONNECTING MODULE  
BASE ADDRESS  
ENDING ADDRESS  
0xFF3F FFFF  
ADC RAM  
HET RAM  
0xFF3E 0000  
0xFF46 0000  
PCS[31]  
PCS[35]  
0xFF47 FFFF  
NOTE  
All used peripheral memory chip selects should decode down to the smallest possible  
address for this particular peripheral configuration, starting from 4kB upwards. Unused  
addresses should generate an illegal address error when accessed.  
Table 2-6. System Peripheral Registers  
ADDRESS RANGE  
FRAME NAME  
FRAME START ADDRESS FRAME ENDING ADDRESS  
PSA  
0xFE00 0000  
0xFFF8 7000  
0xFFFF E000  
0xFFFF E100  
0xFFFF E400  
0xFFFF F500  
0xFFFF F900  
0xFFFF FC00  
0xFFFF FE00  
0xFFFF FF00  
0xFEFF FFFF  
0xFFF8 7FFF  
0xFFFF E0FF  
0xFFFF E1FF  
0xFFFF E4FF  
0xFFFF F5FF  
0xFFFF F9FF  
0xFFFF FCFF  
0xFFFF FEFF  
0xFFFF FFFF  
Flash Wrapper Registers  
PCR Register  
System Frame 2 Registers  
CPU STC (LBIST)  
ESM Register  
RAM ECC Register  
RTI Register  
VIM Register  
System Registers  
Table 2-7. Peripheral Select Map with Address Range  
PERIPHERAL  
SELECTS  
CONNECTING MODULE  
BASE ADDRESS  
END ADDRESS  
MibSPI2  
MibSPI1  
LIN/SCI1  
LIN/SCI2  
DCAN2  
DCAN1  
ADC  
0xFFF7 F600  
0xFFF7 F400  
0xFFF7 E500  
0xFFF7 E400  
0xFFF7 DE00  
0xFFF7 DC00  
0xFFF7 C000  
0xFFF7 BC00  
0xFFF7 B800  
0xFFF7 F7FF  
0xFFF7 F5FF  
0xFFF7 E5FF  
0xFFF7 E4FF  
0xFFF7 DFFF  
0xFFF7 DDFF  
0xFFF7 C1FF  
0xFFF7 BCFF  
0xFFF7 B8FF  
PS[2]  
PS[6]  
PS[8]  
PS[15]  
PS[16]  
PS[17]  
GIO  
HET  
2.1.3 Flash Memory  
When in pipeline mode, the Flash operates with a system clock frequency of up to 80 MHz (versus a  
system clock in non-pipeline mode of up to 28 MHz). Flash in pipeline mode is capable of accessing  
128-bit words and provides four 32-bit pipelined words to the CPU.  
12  
Device Overview  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
TMS470MF04207  
TMS470MF03107  
www.ti.com  
SPNS159C JANUARY 2012  
NOTE  
1. After a system reset, pipeline mode is disabled [FRDCNTL[2:0] is 000b, see the Flash  
chapter in the TMS470M Series Technical Reference Manual (literature number  
SPNU495)]. In other words, the device powers up and comes out of reset in  
non-pipeline mode.  
2. The flash external pump voltage (VCCP) is required for all operations (program,  
erase, and read).  
2.1.4 Flash Program and Erase  
The TMS470MF04207/TMS470MF03107 devices flash contain one 384/256K-byte memory array (or  
bank) and one 64K-byte bank for a total of up to 12 sectors. Table 2-8 and Table 2-9 show the  
TMS470MF04207 and TMS470MF03107 flash memory banks and sectors.  
The minimum size for an erase operation is one sector. The maximum size for a program operation is one  
32-bit word.  
Table 2-8. TMS470MF04207 Flash Memory Banks and Sectors  
SECTOR  
NO.  
MEMORY ARRAYS (OR  
BANKS)  
SEGMENT  
LOW ADDRESS  
HIGH ADDRESS  
0
1
2
3
4
5
6
7
0
1
2
3
16k  
16k  
32k  
64k  
64k  
64k  
64k  
64k  
16k  
16k  
16k  
16k  
0x0000 0000  
0x0000 4000  
0x0000 8000  
0x0001 0000  
0x0002 0000  
0x0003 0000  
0x0004 0000  
0x0005 0000  
0x0008 0000  
0x0008 4000  
0x0008 8000  
0x0008 C000  
0x0000 3FFF  
0x0000 7FFF  
0x0000 FFFF  
0x0001 FFFF  
0x0002 FFFF  
0x0003 FFFF  
0x0004 FFFF  
0x0005 FFFF  
0x0008 3FFF  
0x0008 7FFF  
0x0008 BFFF  
0x0008 FFFF  
BANK 0  
(384K Bytes)  
BANK 1(1)  
(64K Bytes)  
(1) Bank 1 can be used as either EEPROM emulation space or as program space.  
Table 2-9. TMS470MF03107 Flash Memory Banks and Sectors  
SECTOR  
NO.  
MEMORY ARRAYS (OR  
BANKS)  
SEGMENT  
LOW ADDRESS  
HIGH ADDRESS  
0
1
2
3
4
5
0
1
2
3
16k  
16k  
32k  
64k  
64k  
64k  
16k  
16k  
16k  
16k  
0x0000 0000  
0x0000 4000  
0x0000 8000  
0x0001 0000  
0x0002 0000  
0x0003 0000  
0x0008 0000  
0x0008 4000  
0x0008 8000  
0x0008 C000  
0x0000 3FFF  
0x0000 7FFF  
0x0000 FFFF  
0x0001 FFFF  
0x0002 FFFF  
0x0003 FFFF  
0x0008 3FFF  
0x0008 7FFF  
0x0008 BFFF  
0x0008 FFFF  
BANK 0  
(256K Bytes)  
BANK 1(1)  
(64K Bytes)  
(1) Bank 1 can be used as either EEPROM emulation space or as program space.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Device Overview  
13  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
 
 
TMS470MF04207  
TMS470MF03107  
SPNS159C JANUARY 2012  
www.ti.com  
2.2 Terminal Functions  
The terminal functions table (Table 2-10) identifies the pin names, the associated pin numbers, input  
voltage, output voltage, whether the pin has any internal pullup/pulldown resistors and a functional pin  
description. The TMS470MF04207 and TMS470MF03107 devices have the same pin out.  
Table 2-10. Terminal Functions  
TERMINAL  
NAME  
INPUT  
OUTPUT  
VOLTAGE(1)  
IPU/IPD(4)  
DESCRIPTION  
CURRENT(3)  
(2)  
100 PIN  
HIGH-END TIMER (HET)  
HET[0]  
HET[1]  
HET[2]  
HET[3]  
HET[4]  
HET[5]  
HET[6]  
HET[7]  
HET[8]  
HET[9]  
39  
40  
49  
50  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
Timer input capture or output compare. The  
HET[15:0] applicable pins can be programmed as  
general-purpose input/output (GIO) pins.  
The high-resolution (HR) SHARE feature allows  
even HR pins to share the next higher odd HR pin  
structure. The next higher odd HR pin structure is  
always implemented, even if the next higher odd  
HR pad and/or pin itself is not.  
Adaptive  
impedance 4  
mA  
Programmable  
IPD (100 µA)  
Note: HET[15] is muxed with ECLK2 output. If  
ECLK2 output is enabled (through SYSPC1 register  
at 0xFFFFFF00), ECLK2 is output on this pin and  
HET[15] becomes an internal only HET channel.  
3.3-V I/O  
HET[10]  
HET[11]  
HET[12]  
HET[13]  
HET[14]  
Note: ECLK2 source select must be programmed  
the same as ECLK1 due to device specific  
implementation details.  
Note: ECLK2 is enabled and ECLK2 divider is  
programmed through ECP control register  
System Frame 2 Registers (0xFFFFE128).  
1 in  
HET[15]/ECLK2  
CAN CONTROLLER 1 (DCAN1)  
CAN1STX  
CAN1SRX  
7
8
Adaptive  
Programmable  
impedance 4  
IPU (100 µA)  
mA  
DCAN1 transmit pin or GIO pin.  
DCAN1 receive pin or GIO pin.  
3.3-V I/O  
3.3-V I/O  
CAN CONTROLLER 2 (DCAN2)  
CAN2STX  
CAN2SRX  
37  
38  
Adaptive  
Programmable  
impedance 4  
IPU (100 µA)  
mA  
DCAN2 transmit pin or GIO pin  
DCAN2 receive pin or GIO pin  
GENERAL-PURPOSE I/O (GIO)  
GIOA[4]/INT[4]  
GIOA[5]/INT[5]  
GIOA[6]/INT[6]  
GIOA[7]/INT[7]  
5
6
General-purpose input/output pins.  
They are interrupt-capable pins.  
Adaptive  
Programmable  
impedance 4  
IPD (100 µA)  
mA  
3.3-V I/O  
15  
16  
(1) PWR = power, GND = ground, REF = reference voltage, NC = no connect  
(2) All I/O pins, except RST, are configured as inputs while PORRST is low and immediately after PORRST goes high.  
(3) The TMS470M device utilizes adaptive impedance 4 mA buffers that default to an adaptive impedance mode of operation. As a fail-safe,  
the adaptive impedance features of the buffer may be disabled and revert the buffer to a standard buffer mode.  
(4) IPD = internal pulldown, IPU = internal pullup (all internal pullups and pulldowns are inactive on input pins when PORRST is asserted)  
14  
Device Overview  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
 
TMS470MF04207  
TMS470MF03107  
www.ti.com  
SPNS159C JANUARY 2012  
Table 2-10. Terminal Functions (continued)  
TERMINAL  
NAME  
INPUT  
OUTPUT  
VOLTAGE(1)  
IPU/IPD(4)  
DESCRIPTION  
CURRENT(3)  
(2)  
100 PIN  
MULTI-BUFFERED SERIAL PERIPHERAL INTERFACE 1 (MIBSPI1)  
MIBSPI1CLK  
34  
MIBSPI1 clock. MIBSPI1CLK can be programmed  
as a GIO pin.  
MIBSPI1SCS[0]  
MIBSPI1SCS[1]  
MIBSPI1SCS[2]  
MIBSPI1SCS[3]  
MIBSPI1SCS[4]  
MIBSPI1SCS[5]  
MIBSPI1SCS[6]  
MIBSPI1SCS[7]  
MIBSPI1SIMO  
33  
32  
31  
30  
29  
28  
27  
26  
35  
MIBSPI1 slave chip select. MIBSPI1SCS[7:0] can  
be programmed as a GIO pins.  
Adaptive  
impedance 4  
mA  
Programmable  
IPU (100 µA)  
3.3-V I/O  
MIBSPI1 data stream. Slave in/master out.  
MIBSPI1SIMO can be programmed as a GIO pin.  
MIBSPI1SOMI  
MibSPI2CLK  
36  
17  
MIBSPI1 data stream. Slave out/master in.  
MIBSPI1SOMI can be programmed as a GIO pin.  
MULTI-BUFFERED SERIAL PERIPHERAL INTERFACE 2 (MibSPI2)  
MibSPI2 clock. MibSPI2CLK can be programmed  
as a GIO pin.  
MibSPI2SCS[0]  
MibSPI2SCS[1]  
MibSPI2SCS[2]  
MibSPI2SCS[3]  
MibSPI2ENA  
1
2
MibSPI2 slave chip select MibSPI2SCS[3:0] can be  
programmed as GIO pins.  
3
4
Adaptive  
impedance 4  
mA  
Programmable  
IPU (100 µA)  
3.3-V I/O  
90  
MibSPI2 enable pin. MibSPI2ENA can be  
programmed as a GIO pin.  
MibSPI2SIMO[0]  
MibSPI2SOMI[0]  
18  
19  
MibSPI2 data stream. Slave in/master out.  
MibSPI2SIMO pins can be programmed as a GIO  
pins.  
MibSPI2 data stream. Slave out/master in.  
MibSPI2SOMI pins can be programmed as GIO  
pins.  
LOCAL INTERCONNECT NETWORK/SERIAL COMMUNICATIONS INTERFACE (LIN/SCI)  
LIN/SCI1RX  
LIN/SCI1TX  
LIN/SCI2RX  
LIN/SCI2TX  
23  
22  
25  
24  
LIN/SCI1 data receive. Can be programmed as a  
GIO pin.  
Adaptive  
impedance 4  
mA  
Programmable  
IPU (100 µA)  
3.3-V I/O  
3.3-V I/O  
LIN/SCI1 data transmit. Can be programmed as a  
GIO pin.  
LIN/SCI2 data receive. Can be programmed as a  
GIO pin.  
Adaptive  
impedance 4  
mA  
Programmable  
IPU (100 µA)  
LIN/SCI2 data transmit. Can be programmed as a  
GIO pin.  
MULTI-BUFFERED ANALOG-TO-DIGITAL CONVERTER (MIBADC)  
ADEVT  
68  
3.3-V I/O  
Adaptive  
impedance 4  
mA  
Programmable  
IPD (100 µA)  
MibADC event input. Can be programmed as a GIO  
pin.  
Copyright © 2012, Texas Instruments Incorporated  
Device Overview  
15  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
TMS470MF04207  
TMS470MF03107  
SPNS159C JANUARY 2012  
www.ti.com  
Table 2-10. Terminal Functions (continued)  
TERMINAL  
NAME  
INPUT  
OUTPUT  
VOLTAGE(1)  
IPU/IPD(4)  
DESCRIPTION  
CURRENT(3)  
(2)  
100 PIN  
ADIN[0]  
ADIN[1]  
ADIN[2]  
ADIN[3]  
ADIN[4]  
ADIN[5]  
ADIN[6]  
ADIN[7]  
ADIN[8]  
ADIN[9]  
ADIN[10]  
ADIN[11]  
ADIN[12]  
ADIN[13]  
ADIN[14]  
ADIN[15]  
ADREFHI  
ADREFLO  
VCCAD  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
86  
87  
88  
82  
83  
85  
84  
3.3 V  
MibADC analog input pins.  
3.3-V REF  
GND REF  
3.3-V PWR  
GND  
MibADC module high-voltage reference input.  
MibADC module low-voltage reference input.  
MibADC analog supply voltage.  
VSSAD  
MibADC analog ground reference.  
OSCILLATOR (OSC)  
OSCIN  
10  
11  
1.55-V I  
Crystal connection pin or external clock input.  
External crystal connection pin.  
OSCOUT  
1.55-V O  
SYSTEM MODULE (SYS)  
PORRST  
RST  
89  
98  
3.3-V I  
IPD (100 µA)  
Input master chip power-up reset. External VCC  
monitor circuitry must assert a power-on reset.  
Bidirectional reset. The internal circuitry can assert  
a reset, and an external system reset can assert a  
device reset.  
On this pin, the output buffer is implemented as an  
open drain (drives low only).  
To ensure an external reset is not arbitrarily  
generated, TI recommends that an external pullup  
resistor be connected to this pin.  
Adaptive  
impedance 4  
mA  
3.3-V I/O  
3.3-V I/O  
3.3-V I  
IPU (100 µA)  
ECLK  
96  
Adaptive  
impedance 4  
mA  
Programmable  
IPD (100 µA)  
Bidirectional pin. ECLK can be programmed as a  
GIO pin.  
TEST/DEBUG (T/D)  
TCK  
TDI  
44  
46  
IPD (100 µA)  
Test clock. TCK controls the test hardware (JTAG).  
Test data in pin. TDI inputs serial data to the test  
instruction register, test data register, and  
programmable test address (JTAG).  
IPU (100 µA)  
TDO  
45  
Adaptive  
impedance 4  
mA  
Test data out pin. TDO outputs serial data from the  
test instruction register, test data register,  
identification register, and programmable test  
address (JTAG).  
3.3-V I/O  
3.3-V I  
IPD (100 µA)  
TMS  
47  
48  
Serial input pin for controlling the state of the CPU  
test access port (TAP) controller (JTAG).  
IPU (100 µA)  
IPD (100 µA)  
TRST  
Test hardware reset to TAP. IEEE Standard 1149-1  
(JTAG) Boundary-Scan Logic.  
16  
Device Overview  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
TMS470MF04207  
TMS470MF03107  
www.ti.com  
SPNS159C JANUARY 2012  
Table 2-10. Terminal Functions (continued)  
TERMINAL  
NAME  
INPUT  
OUTPUT  
VOLTAGE(1)  
IPU/IPD(4)  
DESCRIPTION  
CURRENT(3)  
(2)  
100 PIN  
TEST  
ENZ  
97  
Test enable. Reserved for internal use only. TI  
recommends that this pin be connected to ground  
or pulled down to ground by an external resistor.  
3.3-V I  
3.3-V I  
IPD (100 µA)  
91  
Enables/disables the internal voltage regulator.  
0V - Enables internal voltage regulator.  
3.3V-Disables internal voltage regulator.  
IPD (100 µA)  
Note: The ENZ pin is provided to facilitate  
testing across the core voltage range and is not  
intended for disabling the on chip voltage  
regulator during application use.  
FLASH  
FLTP1  
99  
Flash Test Pad 1 pin. For proper operation, this  
pin must connect only to a test pad or not be  
connected at all [no connect (NC)]. The test pad  
must not be exposed in the final product where  
it might be subjected to an ESD event.  
VCCP1  
VCCP2  
95  
95  
Flash external pump voltage (3.3 V). This pin is  
required for both Flash read and Flash program and  
erase operations. VCCP1 and VCCP2 are double  
bonded to the same pin.  
3.3-V PWR  
SUPPLY VOLTAGE CORE (1.55 V)  
VCC  
12  
41  
67  
92  
Vreg output voltage when Vreg is enabled. VCC  
input when Vreg is disabled.  
1.55-V PWR  
SUPPLY VOLTAGE DIGITAL I/O AND REGULATOR (3.3 V)  
VCCIOR  
14  
20  
43  
52  
65  
94  
3.3-V PWR  
Digital I/O and internal regulator supply voltage.  
SUPPLY GROUND  
VSS  
9
13  
21  
42  
51  
66  
93  
100  
GND  
Digital I/O and core supply ground reference.  
Copyright © 2012, Texas Instruments Incorporated  
Device Overview  
17  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
TMS470MF04207  
TMS470MF03107  
SPNS159C JANUARY 2012  
www.ti.com  
2.3 Device Support  
2.3.1 Device and Development-Support Tool Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
devices and support tools. Each commercial family member has one of three prefixes: TMX, TMP, or TMS  
(e.g.,TMS470MF04207). Texas Instruments recommends two of three possible prefix designators for its  
support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development  
from engineering prototypes (TMX/TMDX) through fully qualified production devices/tools (TMS/TMDS).  
Device development evolutionary flow:  
TMX  
TMP  
TMS  
Experimental device that is not necessarily representative of the final device's electrical  
specifications.  
Final silicon die that conforms to the device's electrical specifications but has not completed  
quality and reliability verification.  
Fully-qualified production device.  
Support tool development evolutionary flow:  
TMDX  
Development-support product that has not yet completed Texas Instruments internal  
qualification testing.  
TMDS  
Fully qualified development-support product.  
TMX and TMP devices and TMDX development-support tools are shipped against the following  
disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
TMS devices and TMDS development-support tools have been characterized fully, and the quality and  
reliability of the device have been demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard  
production devices. Texas Instruments recommends that these devices not be used in any production  
system because their expected end-use failure rate still is undefined. Only qualified production devices are  
to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the  
package type (for example, PZ), the temperature range (for example, "Blank" is the commercial  
temperature range), and the device speed range in megahertz.  
Figure 2-3 illustrates the numbering and symbol nomenclature for the TMS470M family.  
18  
Device Overview  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
TMS470MF04207  
TMS470MF03107  
www.ti.com  
SPNS159C JANUARY 2012  
2
2
Q
Q
Q1  
Q1  
Full Part Number  
TMS  
S
470  
4
MF  
MF  
04  
04  
07  
07  
B
B
S
S
PZ  
PZ  
R
R
Orderable Part Number  
Prefix: TM  
S = TMS Qualified  
P = TMP Prototype  
X = TMX Samples  
Core Technology:  
4 = 470 Cortex M3  
Architecture:  
MF = M3 Flash  
Flash Memory Size:  
04 = 448K Bytes  
03 = 320K Bytes  
RAM Memory Size:  
2 = 24K Bytes  
1 = 16K Bytes  
Peripheral Configuration:  
Die Revision:  
Blank = Initial Die  
A = First Die Revision  
B = Second Die Revision  
Technology/Core Voltage:  
S = F035 (130 nm), 1.5-V Nominal Core Voltage  
Package Type:  
PZ = 100-Pin QFP Package (Green)  
Temperature Range:  
Q = -40°C to +125°C  
Quality Designator:  
Q1 = Automotive  
Shipping Options:  
R = Tape and Reel  
NOTE: The part number given above is for illustrative purposes only and does not necessarily represent the specific  
part number or silicon revision to which this document applies.  
Figure 2-3. TMS470M Device Numbering Conventions  
Copyright © 2012, Texas Instruments Incorporated  
Device Overview  
19  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
TMS470MF04207  
TMS470MF03107  
SPNS159C JANUARY 2012  
www.ti.com  
3 Device Configurations  
3.1 Reset/Abort Sources  
Resets/aborts are handled as shown in Table 3-1.  
Table 3-1. Reset/Abort Sources  
ESM HOOKUP,  
GROUP.CHANNEL  
ERROR SOURCE  
SYSTEM MODE  
ERROR RESPONSE  
1) CPU TRANSACTIONS  
Precise write error (NCNB/Strongly Ordered)  
Precise read error (NCB/Device or Normal)  
Imprecise write error (NCB/Device or Normal)  
User/Privilege  
User/Privilege  
User/Privilege  
User/Privilege  
Precise Abort (CPU)  
Precise Abort (CPU)  
Imprecise Abort (CPU)  
ESM  
n/a  
n/a  
n/a  
External imprecise error (Illegal transaction with ok  
response)  
2.17  
Illegal instruction  
User/Privilege  
Undefined Instruction Trap  
(CPU)(1)  
n/a  
M3 Lockup  
User/Privilege  
User/Privilege  
ESM => NMI  
2.16  
n/a  
MPU access violation  
Abort (CPU)  
2) SRAM  
ECC single error (correctable)  
ECC double error (uncorrectable)  
User/Privilege  
User/Privilege  
ESM  
1.26  
2.6  
ESM => NMI  
3) FLASH WITH ECC  
ECC single error (correctable)  
ECC double error (uncorrectable)  
User/Privilege  
User/Privilege  
ESM  
1.6  
2.4  
ESM => NMI  
8) HET  
HET Memory parity error  
User/Privilege  
ESM  
1.7  
9) MIBSPI  
MibSPI1 memory parity error  
MibSPI2 memory parity error  
User/Privilege  
User/Privilege  
ESM  
ESM  
1.17  
1.18  
10) MIBADC  
Memory parity error  
User/Privilege  
ESM  
1.19  
11) DCAN/CAN  
DCAN1 memory parity error  
DCAN2 memory parity error  
User/Privilege  
User/Privilege  
ESM  
ESM  
1.21  
1.23  
13) PLL  
PLL slip error  
User/Privilege  
User/Privilege  
n/a  
ESM  
ESM  
1.10  
1.11  
n/a  
14) CLOCK MONITOR  
Clock monitor interrupt  
19) VOLTAGE REGULATOR  
Vcc out of range  
Reset  
ESM  
20) CPU SELFTEST (LBIST)  
CPU Selftest (LogicBIST) error  
User/Privilege  
n/a  
1.27  
n/a  
21) ERRORS REFLECTED IN THE SYSESR REGISTER  
Power-Up Reset/Vreg out of voltage(2)  
Reset  
(1) The undefined instruction trap is NOT detected outside of the CPU. The trap is taken only if the code reaches the execute stage of the  
CPU.  
(2) Both a power-on reset and Vreg out-of-range reset are indicated by the PORST bit in the SYSESR register.  
20  
Device Configurations  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
 
TMS470MF04207  
TMS470MF03107  
www.ti.com  
SPNS159C JANUARY 2012  
Table 3-1. Reset/Abort Sources (continued)  
ESM HOOKUP,  
GROUP.CHANNEL  
ERROR SOURCE  
SYSTEM MODE  
ERROR RESPONSE  
Oscillator fail / PLL slip(3)  
M3 Lockup/LRM  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
Reset  
Reset  
Reset  
Reset  
Reset  
Reset  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
Watchdog time limit exceeded  
CPU Reset  
Software Reset  
External Reset  
(3) Oscillator fail/PLL slip can be configured in the system register (SYS.PLLCTL1) to generate a reset.  
3.2 Lockup Reset Module  
The lockup reset module (LRM) is implemented to communicate a lockup condition by the core. The LRM  
provides a small watchdog timer which can generate a system reset in case a lockup condition that is  
identified by the core cannot be cleared by software.  
3.3 ESM Assignments  
The ESM module is intended for the communication critical system failures in a central location. The error  
indication is by an error interrupt when the failure is recognized from any detection unit. The ESM module  
consist of three error groups with 32 inputs each. The generation of the interrupts is shown in Table 3-2.  
ESM assignments are listed in Table 3-3.  
Table 3-2. ESM Groups  
ERROR GROUP  
Group1  
INTERRUPT, LEVEL  
maskable, low/high  
non-maskable, high  
Not Used  
Group2  
Group3  
Table 3-3. ESM Assignments  
ERROR SOURCES  
GROUP 1  
CHANNEL  
Reserved  
Flash - ECC Single Bit  
HET memory parity error  
Reserved  
0 - 5  
6
7
8-9  
10  
PLL Slip Error  
Clock Monitor interrupt  
Reserved  
11  
12-16  
17  
MibSPI1 memory parity error  
MibSPI2 memory parity error  
MibADC memory parity error  
Reserved  
18  
19  
20  
DCAN1 memory parity error  
Reserved  
21  
22  
DCAN2 memory parity error  
Reserved  
23  
24-25  
26  
SRAM - single bit  
CPU LBIST - selftest error  
27  
Copyright © 2012, Texas Instruments Incorporated  
Device Configurations  
21  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
 
 
TMS470MF04207  
TMS470MF03107  
SPNS159C JANUARY 2012  
www.ti.com  
Table 3-3. ESM Assignments (continued)  
ERROR SOURCES  
CHANNEL  
Reserved  
28-31  
GROUP 2  
Reserved  
Flash - Double-Bit Error (uncorrectable)  
Reserved  
0-3  
4
5
SRAM - Double-Bit Error (uncorrectable)  
Reserved  
6
7-15  
16  
M3 Lockup  
M3 External Imprecise Abort  
Reserved  
17  
18-31  
3.4 Interrupt Priority (M3VIM)  
The TMS470M platform interrupt architecture includes a vectored interrupt manager (M3VIM) that provides  
hardware assistance for prioritizing and controlling the many interrupt sources present on a device.  
Table 3-4 communicates the default interrupt request assignments.  
Table 3-4. Interrupt Request Assignments  
DEFAULT VIM  
INTERRUPT REQUEST  
MODULES  
INTERRUPT SOURCES  
ESM  
Reserved  
ESM  
ESM High level interrupt (NMI)  
(NMI)  
0
1
ESM Low level interrupt  
Software interrupt (SSI)  
RTI compare interrupt 0  
RTI compare interrupt 1  
RTI compare interrupt 2  
RTI compare interrupt 3  
RTI overflow interrupt 0  
RTI overflow interrupt 1  
Reserved  
2
SYSTEM  
RTI  
3
4
RTI  
5
RTI  
6
RTI  
7
RTI  
8
RTI  
9
Reserved  
GIO  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
GIO Interrupt A  
GIO  
GIO Interrupt B  
HET  
HET level 0 interrupt  
HET level 1 interrupt  
MibSPI1 level 0 interrupt  
MibSPI1 level 1 interrupt  
Reserved  
HET  
MibSPI1  
MibSPI1  
Reserved  
LIN/SCI2  
LIN/SCI2  
LIN/SCI1  
LIN/SCI1  
DCAN1  
DCAN1  
ADC  
LIN/SCI2 level 0 interrupt  
LIN/SCI2 level 1 Interrupt  
LIN/SCI1 level 0 interrupt  
LIN/SCI1 level 1 Interrupt  
DCAN1 level 0 Interrupt  
DCAN1 level 1 Interrupt  
ADC event group interrupt  
ADC sw group 1 interrupt  
ADC sw group 2 interrupt  
ADC  
ADC  
22  
Device Configurations  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
 
TMS470MF04207  
TMS470MF03107  
www.ti.com  
SPNS159C JANUARY 2012  
Table 3-4. Interrupt Request Assignments (continued)  
DEFAULT VIM  
INTERRUPT REQUEST  
MODULES  
INTERRUPT SOURCES  
MibSPI2  
MibSPI2  
DCAN2  
DCAN2  
ADC  
MibSPI2 level 0 interrupt  
MibSPI2 level 1 interrupt  
DCAN2 level 0 interrupt  
DCAN2 level 1 interrupt  
ADC magnitude threshold interrupt  
Reserved  
27  
28  
29  
30  
31  
Reserved  
Reserved  
DCAN1  
DCAN2  
Reserved  
32  
Reserved  
33  
DCAN1 IF3 interrupt  
DCAN2 IF3 interrupt  
Reserved  
34  
35  
36-47  
3.5 MibADC  
The multi-buffered analog-to-digital converter (MibADC) accepts an analog signal and converts the signal  
to a 10-bit digital value.  
The TMS470M MibADC module stores its digital results in one of three FIFO buffers. There is one FIFO  
buffer for each conversion group [event, group1 (G1), and group2 (G2)], and the total MibADC FIFO on  
the device is divided amongst these three regions. The size of the individual group buffers are software  
programmable. MibADC buffers can be serviced by interrupts.  
Copyright © 2012, Texas Instruments Incorporated  
Device Configurations  
23  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
TMS470MF04207  
TMS470MF03107  
SPNS159C JANUARY 2012  
www.ti.com  
3.5.1 MibADC Event Triggers  
All three conversion groups can be configured for event-triggered operation, providing up to three  
event-triggered groups.  
The trigger source and polarity can be selected individually for group 1, group 2 and the event group from  
the options identified in Table 3-5.  
Table 3-5. MibADC Event Hookup Configuration  
SOURCE SELECT BITS for G1 or EVENT  
EVENT NO.  
SIGNAL PIN NAME  
(G1SRC[2:0] or EVSRC[2:0])  
1
2
3
4
5
6
7
8
000  
001  
010  
011  
100  
101  
110  
111  
ADEVT  
HET[1]  
HET[3]  
HET[16](1)  
HET[18](1)  
HET[24](1)  
HET[26](1)  
HET[28](1)  
(1) These channels are available as internal signals even if they are not included as pins (Section 1.1).  
3.6 MibSPI  
The multi-buffered serial peripheral interface module allows CPU independent SPI communications with  
system peripherals.  
The MibSPI1 module can support up to 16 transfer groups and 8 chip selects. In addition, up to 4 data  
formats can be supported allowing assignment of various formats to each transfer group.  
The MibSPI2 module can support up to 8 transfer groups, 4 chip selects, and up to 4 data formats.  
3.6.1 MibSPI Event Trigger  
The MibSPI module has the ability to automatically trigger SPI events based on internal and external  
event triggers.  
The trigger sources can be selected individually for each transfer group from the options identified in  
Table 3-6.  
Table 3-6. MibSPI1 and MibSPI2 Event Hookup Configuration  
SOURCE SELECT BITS FOR MIBSPI  
EVENT NO.  
EVENTS  
SIGNAL PIN NAME  
TGXCTRL TRIGSRC[3:0]  
Disabled  
EVENT0  
EVENT1  
EVENT2  
EVENT3  
EVENT4  
EVENT5  
EVENT6  
EVENT7  
EVENT8  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
No trigger source  
GIOA[0](1)  
GIOA[1](1)  
GIOA[2](1)  
GIOA[3](1)  
GIOA[4]  
GIOA[5]  
HET[20](1)  
HET[21](1)  
HET[22](1)  
(1) These channels are available as internal signals even if they are not included as pins (Section 1.1).  
Device Configurations  
24  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
 
 
TMS470MF04207  
TMS470MF03107  
www.ti.com  
SPNS159C JANUARY 2012  
Table 3-6. MibSPI1 and MibSPI2 Event Hookup Configuration (continued)  
SOURCE SELECT BITS FOR MIBSPI  
EVENTS  
EVENT NO.  
SIGNAL PIN NAME  
TGXCTRL TRIGSRC[3:0]  
EVENT9  
EVENT10  
EVENT11  
EVENT12  
EVENT13  
EVENT14  
1010  
1011  
1100  
1101  
1110  
1111  
HET[23](1)  
HET[28](1)  
HET[29](1)  
HET[30](1)  
HET[31](1)  
Internal Tick Counter  
3.7 JTAG ID  
The 32-bit JTAG ID code for this device is 0x0B8D802F.  
3.8 Scan Chains  
The device contains an ICEPICK module to access the debug scan chains; see Figure 3-1. Debug scan  
chain #0 handles the access to the CPU. The ICEPICK scan ID is 0x00366D05, which is the same as the  
device ID.  
TDI  
DAP  
CPU  
TDO  
Boundary Scan Chain #0  
Boundary  
Scan  
Boundary Scan Interface  
Figure 3-1. Debug Scan Chains  
3.9 Adaptive Impedance 4 mA IO Buffer  
The adaptive impedance 4 mA buffer is a buffer that has been explicitly designed to address the issue of  
decoupling EMI sources from the pins which they drive. This is accomplished by adaptively controlling the  
impedance of the output buffer and should be particularly effective with capacitive loads.  
The adaptive impedance 4 mA buffer features two modes of operation: Impedance Control Mode, and  
Low-Power Mode/Standard Buffer Mode as defined below:  
Impedance Control Mode is enabled in the design by default. This mode adaptively controls the  
impedance of the output buffer.  
Copyright © 2012, Texas Instruments Incorporated  
Device Configurations  
25  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
 
TMS470MF04207  
TMS470MF03107  
SPNS159C JANUARY 2012  
www.ti.com  
Standard Buffer Mode is used to configure the buffer back into a generic configuration. This buffer  
mode is used when it is necessary to drive the output at very high speeds, or when EMI reduction is  
not a concern.  
Table 3-7. Adaptive Impedance 4 mA Buffer Mode Availability  
MODULE OR PIN NAME  
SYS.ECLK  
SYS.nRST  
SYS.TDI/TDO  
SYS.TMSC  
HET  
STANDARD BUFFER ENABLE (SBEN)(1)  
GPREG1.0  
GPREG1.1  
Standard Buffer Enabled  
Standard Buffer Enabled  
GPREG1.2  
SCI1  
GPREG1.3  
LIN/SCI2  
GPREG1.4  
MIBSPI1  
GPREG1.5  
MibSPI2  
GPREG1.6  
Reserved  
MIBADC.ADEVT  
DCAN1  
GPREG1.7  
GPREG1.8  
GPREG1.9  
DCAN2  
GPREG1.10  
GIOA  
GPREG1.11  
(1) SBEN configuration can be achieved using the GPREG register within the system frame(0xFFFFFFA0).  
26  
Device Configurations  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
TMS470MF04207  
TMS470MF03107  
www.ti.com  
SPNS159C JANUARY 2012  
3.9.1 Standard Buffer Enable Register (GPREG1)  
A general purpose register with the system frame has been utilized to control the enabling of standard  
buffer mode. This register is shown in Figure 3-2 and described in Table 3-8  
NOTE  
In general, all device registers are defined within the TRM (SPNU450); however, in cases  
where the register definition is device specific, the register is defined within the device  
specific datasheet.  
31  
16  
Reserved  
R-0  
15  
7
12  
4
11  
GIOA_SBEN  
RW-0  
10  
9
8
ADC.ADEVT_  
SBEN  
Reserved  
R-0  
DCAN2_SBEN DCAN1_SBEN  
RW-0  
2
RW-0  
1
RW-0  
0
6
5
3
MibSPI2_  
SBEN  
MIBSPI1_  
SBEN  
LIN2SCI2_  
SBEN  
LIN1SCI1_  
SBEN  
Reserved  
RW-0  
HET_SBEN  
RW-0  
RST_SBEN  
RW-0  
ECLK_SBEN  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Figure 3-2. General-Purpose Register 1 (GPREG1)  
Table 3-8. General-Purpose Register 1 (GPREG1) Field Descriptions  
Bit  
Field  
Value Description  
31-12 Reserved  
These bits are reserved. Reads return 0 and writes have no effect.  
11  
10  
9
GIOA_SBEN  
GIOA port standard buffer enable bit.  
This bit enables/disables standard buffer mode for all GIOA pins  
0
1
Standard buffer mode is not enabled.  
Standard buffer mode is enabled for all associated module pins.  
DCAN2_SBEN  
DCAN2 standard buffer enable bit.  
This bit enables/disables standard buffer mode for all DCAN2 pins.  
0
1
Standard buffer mode is not enabled.  
Standard buffer mode is enabled for all associated module pins.  
DCAN1_SBEN  
DCAN1 standard buffer enable bit.  
This bit enables/disables standard buffer mode for all DCAN1 pins.  
0
1
Standard buffer mode is not enabled.  
Standard buffer mode is enabled for all associated module pins.  
8
ADC.ADEVT_SBEN  
ADC.ADEVT standard buffer enable bit.  
This bit enables/disables standard buffer mode for the ADC.ADEVT pin.  
0
1
Standard buffer mode is not enabled.  
Standard buffer mode is enabled for the ADEVT pin.  
These bits are reserved. Reads return 0 and writes have no effect.  
7
6
Reserved  
MibSPI2_SBEN  
MibSPI2 standard buffer enable bit.  
This bit enables/disables standard buffer mode for all MibSPI2 pins.  
0
1
Standard buffer mode is not enabled.  
Standard buffer mode is enabled for all associated module pins.  
5
MIBSPI1  
MIBSPI1 standard buffer enable bit.  
This bit enables/disables standard buffer mode for all MIBSPI1 pins.  
0
1
Standard buffer mode is not enabled.  
Standard buffer mode is enabled for all associated module pins.  
Copyright © 2012, Texas Instruments Incorporated  
Device Configurations  
27  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
 
 
TMS470MF04207  
TMS470MF03107  
SPNS159C JANUARY 2012  
www.ti.com  
Table 3-8. General-Purpose Register 1 (GPREG1) Field Descriptions (continued)  
Bit  
Field  
Value Description  
4
LIN2SCI2_SBEN  
LIN/SCI2 standard buffer enable bit.  
This bit enables/disables standard buffer mode for all LIN/SCI2 pins.  
Standard buffer mode is not enabled.  
0
1
Standard buffer mode is enabled for all associated module pins.  
3
2
1
0
LIN1SCI1_SBEN  
HET_SBEN  
LIN/SCI1 standard buffer enable bit.  
This bit enables/disables standard buffer mode for all LIN/SCI1 pins.  
0
1
Standard buffer mode is not enabled.  
Standard buffer mode is enabled for all associated module pins.  
HET standard buffer enable bit.  
This bit enables/disables standard buffer mode for all HET pins.  
0
1
Standard buffer mode is not enabled.  
Standard buffer mode is enabled for all associated module pins.  
RST_SBEN  
RST standard buffer enable bit.  
This bit enables/disables standard buffer mode for the RST pin.  
0
1
Standard buffer mode is not enabled.  
Standard buffer mode is enabled for the RST pin.  
ECLK_SBEN  
ECLK standard buffer enable bit.  
This bit enables/disables standard buffer mode for the ECLK pin.  
0
1
Standard buffer mode is not enabled.  
Standard buffer mode is enabled for the ECLK pin.  
3.9.2 Coresight Components/Debug ROM  
Coresight registers are memory-mapped and accessible via the CPU and JTAG.  
Table 3-9. Debug Component Memory Map  
FRAME START  
ADDRESS  
FRAME END  
ADDRESS  
COMPONENT  
FRAME SIZE  
MEMORY TYPE  
M3 INTEGRATION FRAME  
0xE000_1FFF  
DWT  
FPB  
0xE000_1000  
0xE000_2000  
0xE000_E000  
0xE00F_F000  
4K  
4K  
4K  
4K  
Control Registers for  
debug and trace  
modules  
0xE000_2FFF  
NVIC  
0xE000_EFFF  
Debug ROM 1  
0xE00F_FFFF  
28  
Device Configurations  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
 
TMS470MF04207  
TMS470MF03107  
www.ti.com  
SPNS159C JANUARY 2012  
Table 3-10. Debug ROM contents for Debug ROM 1 (M3 ROM)  
ADDRESS OFFSET  
see Table 3-9  
DESCRIPTION  
VALUE  
0x000  
0x004  
0x008  
0x00C  
0x010  
0x014  
0x018  
NVIC  
DWT  
0xFFF0_F003  
0xFFF0_2003  
0xFFF0_3003  
0xFFF0_1003  
0xFFF4_1002  
0xFFF4_2002  
0x0000_0000  
FPB  
ITM  
TPIU(1)  
ETM(1)  
End of Table  
(1) Cortex-M3 debug ROM always will have entries for optional components TPIU and ETM. Whether or  
not these components are present is determined by bit number 0 of the entry value.  
3.10 Built-In Self Test (BIST) Features  
3.10.1 STC/LBIST  
The TMS470M family supports a logic built-in self test (LBIST or CPUBIST) of the M3 CPU.  
LBIST testing can be performed in two modes of operation:  
Full Execution. In this mode, the full suite of test patterns is run without interruption. This test is  
started via CPU control and is well suited for use at device start up.  
Cyclic Execution. During cyclic execution, a small percentage of time will be dedicated to running a  
subset of the self-test (STC Intervals). This mode is well suited for executing on a periodic basis to  
minimize the bandwidth use. After all STC intervals are executed, all test patterns will have been run.  
NOTE  
1. The application will need to disable peripherals and or interrupts to avoid missing  
interrupts.  
2. No debugger interaction is possible with the CPU during self test. This includes access to  
memory and registers since access is through the CPU.  
The default value of the LBIST clock prescaler (STCDIV) is divide-by-1 and the device will support STC  
frequencies up to and including HCLK frequency. In order to minimize the current consumption during  
LBIST execution, the LBIST clock prescalar (STCDIV) may be configured to reduce the LBIST frequency.  
Copyright © 2012, Texas Instruments Incorporated  
Device Configurations  
29  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
TMS470MF04207  
TMS470MF03107  
SPNS159C JANUARY 2012  
www.ti.com  
100  
2500.00  
2000.00  
1500.00  
1000.00  
500.00  
0.00  
³ 90%  
coverage  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
50  
100 150 200 250 300 350 400 450 500 550  
No. of Intervals  
555 total  
intervals  
Test Coverage  
Test Time (µs)  
A. A single LBIST interval is 158 STC CLK cycles in duration, excluding clock transition timing of 20 cycles.  
B. This device has 555 total intervals.  
Figure 3-3. CPU BIST Intervals vs Coverage  
30  
Device Configurations  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
TMS470MF04207  
TMS470MF03107  
www.ti.com  
SPNS159C JANUARY 2012  
3.10.2 MBIST  
The TMS470M supports memory built-in self test (MBIST) of the SRAM. The MBIST is accessible via the  
application in order to facilitate memory self test by the application by enabling the MBIST controllers  
associated with the specific RAMs to be tested. (For device-specific MBIST controller assignments, see  
Table 2-4.)  
The MBIST controller:  
Supports testing of all system and peripheral RAM.  
Captures the MBIST results in the MBIST status register (MSTFAIL).  
Supports execution of each Memory BIST controller in parallel (MSINENA).  
For MSIENA bit assignments, see Table 2-4  
Supports execution of each Memory BIST controller individually (MSINENA).  
For MSIENA bit assignments, see Table 2-4  
The MBIST controller selection is mapped to the MBIST controller/memory initialization enable register  
(MSIENA) within the SYS register frame. Each MBIST controller is enabled by setting the corresponding  
bit within this register and then enabling memory self-test via the memory self-test global enable within the  
global control register (MSTGCR.MSTGENA[3:0]).  
The MBIST controllers support execution of the following tests:  
Table 3-11. MBIST Algorithms and Cycle Counts(1)  
Module  
Algorithm (Cycle Counts)  
March11N March13N  
Background Background Background  
Checker  
Board  
March13N  
PMOS Open  
Address  
ROM2  
0
A
3/0F/69  
4033  
3745  
79873  
24193  
9985  
-
Decode  
ADC RAM  
DCAN RAM  
SRAM  
1427  
1503  
26835  
7539  
3583  
-
1555  
1503  
26835  
8307  
3583  
-
1089  
1057  
22529  
6529  
2817  
-
4225  
3265  
147457  
29185  
10753  
-
-
-
-
HET RAM  
MibSPI RAM  
STC ROM  
-
-
18433  
(1) Cycle times provided are for the execution of the specific algorithms and do not include overhead from  
the BIST statemachine.  
NOTE  
The algorithm to be applied is selectable via the memory self-test global control register algo  
selection field (MSTGCR.MBIST_ALGSEL[7:0]).  
Copyright © 2012, Texas Instruments Incorporated  
Device Configurations  
31  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
TMS470MF04207  
TMS470MF03107  
SPNS159C JANUARY 2012  
www.ti.com  
3.11 Device Identification Code Register  
The device identification code register identifies the coprocessor status, an assigned device-specific part  
number, the technology family (TF), the I/O voltage, whether or not parity is supported, the levels of flash  
and RAM error detection, and the device version. The TMS470M device identification code base register  
value is 0X00366D05 and is subject to change based on the silicon version.  
31  
CP15  
R-0  
30  
17  
16  
TF  
PART NUMBER  
R-00000000011011  
R-0  
15  
7
13  
12  
I/O VOLT  
R-0  
11  
PP  
R-1  
10  
9
8
TF  
FLASHECC  
R-10  
RAMECC  
R-1  
R-011  
3
2
1
1
0
0
1
VERSION  
R-0000  
R-1  
R-0  
R-1  
LEGEND: R = Read only; -n = value after reset  
Figure 3-4. TMS470 Device ID Bit Allocation Register  
Table 3-12. TMS470 Device ID Bit Allocation Register Field Descriptions  
Bit  
Field  
Value Description  
31  
CP15  
This bit indicates the presence of coprocessor (CP15).  
0
1
No coprocessor present in the device.  
Coprocessor present in the device.  
30-17 PART NUMBER  
16-13 TF  
These bits indicate the assigned device-specific part number.  
The assigned device-specific part number for the TMS470M device is 00000000011011.  
Technology family bit.  
These bits indicate the technology family (C05, F05, F035, C035).  
0011 F035  
12  
11  
10  
I/O VOLT  
I/O voltage bit.  
This bit identifies the I/O power supply.  
0
1
3.3 V  
5 V  
PP  
Peripheral parity bit.  
This bit indicates whether parity is supported.  
0
1
No parity on peripheral.  
Parity on peripheral.  
FLASHECC  
Flash ECC bits.  
These bits indicate the level of error detection and correction on the flash memory.  
00  
01  
10  
11  
No error detection/correction.  
Program memory with parity.  
Program memory with ECC.  
Reserved  
8
RAMECC  
RAM ECC bits.  
This bit indicates the presence of error detection and correction on the CPU RAM.  
0
1
RAM ECC not present.  
RAM ECC present.  
7-3  
2-0  
VERSION  
101  
These bits identify the silicon version of the device.  
Bits 2:0 are set to 101 by default to indicate a platform device.  
32  
Device Configurations  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
TMS470MF04207  
TMS470MF03107  
www.ti.com  
SPNS159C JANUARY 2012  
3.12 Device Part Numbers  
Table 3-13 lists all the available TMS470MF04207/TMS470MF03107 device configurations.  
Table 3-13. Device Part Numbers  
PROGRAM  
MEMORY  
TEMPERATURE  
RANGE  
PACKAGE TYPE  
100-PIN LQFP  
PbFREE/  
GREEN(1)  
DEVICE PART NUMBER  
SAP PART NUMBER  
FLASH  
EEPROM  
-40°C to 125°C  
TMS470MF04207PZQ  
TMS470MF03107PZQ  
S4MF04207SPZQQ1  
S4MF03107SPZQQ1  
X
X
X
X
X
X
X
X
(1) RoHS compliant products are compatible with the current RoHS requirements for all six substances, including the requirement that lead  
not exceed 0.1% by weight in homogeneous materials, unless exempt. Pb-Free products are RoHS Compliant, plus suitable for use in  
higher temperature lead-free solder processes (typically 245 to 260°C). Green products are RoHS and Pb-Free, plus also free of  
Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).  
Copyright © 2012, Texas Instruments Incorporated  
Device Configurations  
33  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
 
TMS470MF04207  
TMS470MF03107  
SPNS159C JANUARY 2012  
www.ti.com  
4 Device Operating Conditions  
4.1 Absolute Maximum Ratings Over Operating Free-Air Temperature Range, Q Version(1)  
(2)  
VCC  
-0.5 V to 2.1 V  
Supply voltage range:  
Input voltage range:  
VCCIOR, VCCAD, VCC (Flash pump)(2)  
-0.5 V to 4.1 V  
-0.5 V to 4.1 V  
±20 mA  
All input pins  
IIK (VI < 0 or VI > VCCIOR  
)
All pins, except ADIN[0:15]  
Input clamp current:  
IIK (VI < 0 or VI > VCCIOR  
)
±10 mA  
ADIN[0:15]  
Operating free-air temperature range, TA:  
Operating junction temperature range, TJ:  
Storage temperature range, Tstg  
Q version  
Standard  
-40°C to 125°C  
-40°C to 150°C  
-65°C to 150°C  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only. Functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to their associated grounds.  
4.2 Device Recommended Operating Conditions(1)  
MIN  
3
NOM  
3.3  
1.55  
3.3  
3.3  
0
MAX UNIT  
VCCIOR  
VCC  
Digital I/O and internal regulator supply voltage  
Voltage regulator output voltage  
MibADC supply voltage  
3.6  
1.70  
3.6  
V
V
1.40  
3
VCCAD  
VCCP  
VSS  
V
Flash pump supply voltage  
3
3.6  
V
Digital logic supply ground  
V
VSSAD  
TA  
MibADC supply ground  
-0.1  
-40  
-40  
0.1  
125  
150  
V
Operating free-air temperature  
Operating junction temperature  
Q version  
°C  
°C  
TJ  
(1) All voltages are with respect to VSS, except VCCAD, which is with respect to VSSAD  
.
34  
Device Operating Conditions  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
TMS470MF04207  
TMS470MF03107  
www.ti.com  
SPNS159C JANUARY 2012  
4.3 Electrical Characteristics Over Recommended Operating Free-Air Temperature  
Range, Q Version(1)(2)  
PARAMETER  
Input hysteresis  
TEST CONDITIONS  
MIN  
150  
-0.3  
TYP  
MAX  
UNIT  
mV  
V
Vhys  
VIL  
All inputs(3)  
OSCIN  
All inputs(3)  
0.8  
Low-level input voltage  
High-level input voltage  
0.2 VCC  
V
2
VCCIOR + 0.3  
VIH  
V
OSCIN  
0.8 VCC  
IOL = IOL MAX  
0.2 VCCIOR  
0.2  
IOL = 50 µA  
Standard mode  
VOL  
Low-level output voltage  
High-level output voltage  
V
IOL = 50 µA  
Impedance Control  
mode  
0.2 VCCIOR  
IOH = IOH MAX  
0.8 VCCIOR  
VCCIOR -0.2  
IOH = 50 µA  
Standard mode  
VOH  
V
IOH = 50 µA  
Impedance Control  
mode  
0.8 VCCIOR  
VI < VSSIO - 0.3 or VI  
> VCCIOR + 0.3  
-2  
2
IIC  
Input clamp current (I/O pins)(4)  
Input current (I/O pins)  
mA  
IIH Pulldown  
IIL Pullup  
VI = VCCIOR  
VI = VSS  
40  
-190  
-1  
190  
-40  
1
II  
µA  
No pullup or  
pulldown  
All other pins  
Adaptive impedance VOL = VOL MAX  
4 mA Buffer  
4
IOL  
IOH  
Low-level output tcurrent  
High-level output current  
mA  
mA  
Adaptive impedance VOH = VOH MIN  
4 mA Buffer  
-4  
HCLK = 80 MHz,  
110  
115  
VCC digital supply current (operating mode, internal  
regulator disabled)  
ICC  
VCLK = 80 MHz,  
mA  
VCC = 1.70 V(5)  
HCLK = 80 MHz,  
VCLK = 80 MHz,  
No DC load,  
VCCIOR IO and digital supply current (operating  
mode, internal regulator enabled)  
VCCIOR = 3.6 V(5)(6)  
HCLK = 80 MHz,  
VCLK = 80 MHz,  
STCCLK = 80 MHz,  
No DC load,  
155  
130  
VCCIOR IO and digital supply current (LBIST  
execution, internal regulator enabled)(7)  
ICCIOR  
mA  
VCCIOR = 3.6 V(6)  
HCLK = 80 MHz,  
VCLK = 80 MHz,  
No DC load, VCCIOR  
= 3.6 V(6)  
VCCIOR IO and digital supply current (MBIST  
execution, internal regulator enabled)(8)  
(1) Source currents (out of the device) are negative while sink currents (into the device) are positive.  
(2) "All frequencies" will include all specified device configuration frequencies.  
(3) The VIL here does not apply to the OSCIN, OSCOUT and PORRST pins; the VIH here does not apply to the OSCIN, OSCOUT and RST  
pins; For RST and PORRST exceptions, see Section 5.1.  
(4) Parameter does not apply to input-only or output-only pins.  
(5) Maximum currents are measured using a system-level test case. This test case exercises all of the device peripherals concurrently  
(excluding MBIST and STC LBIST).  
(6) I/O pins configured as inputs or outputs with no load. All pulldown inputs 0.2 V. All pullup inputs VCCIO - 0.2 V. ECLK output ≤  
2 MHz.  
(7) LBIST current specified is peak current for the maximum supported operating clock (HCLK = 80 MHz) and STC CLK = HCLK. Lower  
current consumption can be achieved by configuring a slower STC Clock frequency. The current peak duration can last for the duration  
of 1 LBIST test interval.  
(8) MBIST currents specified are for execution of MBIST on all RAMs in parallel. Lower current consumption can be achieved by sequenced  
execution of MBIST on each of the RAM spaces available.  
Copyright © 2012, Texas Instruments Incorporated  
Device Operating Conditions  
35  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
TMS470MF04207  
TMS470MF03107  
SPNS159C JANUARY 2012  
www.ti.com  
Electrical Characteristics Over Recommended Operating Free-Air Temperature Range, Q  
Version(1)(2) (continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
All frequencies,  
VCCAD = 3.6 V  
8
ICCAD  
VCCAD supply current (operating mode)  
mA  
VCCP = 3.6 V read  
operation(5)  
10  
75  
ICCP  
VCCP pump supply current  
VCCP = 3.6 V  
program(9)  
mA  
VCCP = 3.6 V erase  
75  
HCLK = 80 MHz,  
VCLK = 80 MHz,  
No DC load,  
125  
VCCIOR + VCCAD + VCCP total digital supply current  
(operating mode, internal regulator enabled)  
(10)  
ICCTOTAL  
mA  
VCCIOR = 3.6 V(5)(6)  
CI  
Input capacitance  
Output capacitance  
6
7
pF  
pF  
CO  
(9) Assumes reading from one bank while programming a different bank.  
(10) Total device operating current is derived from the total ICCIOR, ICCAD, and ICCP in normal operating mode excluding MBIST and LBIST  
execution. It is expected that the total will be less than the sums of the values of the individual components due to statistical calculations  
involved in producing the specification values.  
5 Peripheral Information and Electrical Specifications  
5.1 RST and PORRST Timings  
Table 5-1. Timing Requirements for PORRST(1)  
(see Figure 5-1)  
NO.  
MIN  
MAX  
UNIT  
VCCPORL  
VCC low supply level when RST becomes active  
1.30  
V
V
V
VCCPORH  
VCCIOPORL  
VCCIOPORH  
VCC high supply level when RST becomes active  
1.80  
1.1  
VCCIO low supply level when PORRST must be active during power up  
VCCIO high supply level when PORRST must remain active during power up  
and become active during power down  
3.0  
V
(2)  
VIL  
Low-level input voltage after VCCIOR > VCCIOPORH  
0.2 VCCIOR  
V
(3)  
VOH  
High-level output voltage after VCCIOR > VCCIOPORH  
0.8 VCCIOR  
V
VIL(PORRST)  
tsu(PORRST)r  
tsu(VCCIOR)r  
th(PORRST)r  
tsu(PORRST)f  
th(PORRST)rio  
th(PORRST)d  
Low-level input voltage of PORRST before VCCIOR > VCCIOPORL  
Setup time, PORRST active before VCCIOR > VCCIOPORL during power up  
Setup time, VCCIOR > VCCIOPORL before VCC > VCCPORL  
Hold time, PORRST active after VCC > VCCPORH  
0.5  
V
3
5
6
7
8
9
0
0
1
8
1
0
0
0
ms  
ms  
ms  
µs  
ms  
ms  
ns  
ns  
Setup time, PORRST active before VCC VCCPORH during power down  
Hold time, PORRST active after VCCIOR > VCCIOPORH  
Hold time, PORRST active after VCCIOR < VCCIORPORL  
Setup time, PORRST active before VCC VCCIOPORH during power down  
10 tsu(PORRST)fio  
11 tsu(VCCIO)f  
tf(PORRST)  
Setup time, VCC  
< VCCPORE before VCCIO < VCCIOPORL  
Filter time PORRST, pulses less than MIN get filtered out; pulses greater  
than MAX generate a reset.  
30  
40  
185  
150  
ns  
ns  
tf(RST)  
Filter time RST, pulses less than MIN get filtered out; pulses greater than  
MAX generate a reset.  
(1) When the VCC timing requirements for PORRST are satisfied, there are no timing requirements for VCCP  
.
(2) Corresponds to PORRST.  
(3) Corresponds to RST.  
36  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
Copyright © 2012, Texas Instruments Incorporated  
 
TMS470MF04207  
TMS470MF03107  
www.ti.com  
SPNS159C JANUARY 2012  
VCCIOR  
VCCIOPORH  
VCCIOPORH  
VCCIOR  
8
6
11  
VCC  
VCC  
VCCPORH  
VCCPORH  
7
7
6
10  
VCCIOPORL  
VCCIOPORL  
VCCPORL  
VCCPORL  
5
3
9
VIL(PORRST)  
VIL(PORRST)  
VIL  
VIL  
VIL  
VIL  
PORRST  
VCC (1.55 V)  
VCCP/VCCIOR (3.3 V)  
Note: VCC is provided by the on-chip voltage regulator during normal application run time. It is not recommended to  
use the device in an application with the Vreg disabled due to potential glitching issues; however, if used in this mode,  
the application should ensure that the specified voltage ranges for VCC are maintained.  
Figure 5-1. PORRST Timing Diagram  
Table 5-2. Switching Characteristics Over Recommended Operating Conditions for RST and PORRST(1)  
PARAMETER  
Valid time, RST active after PORRST inactive  
Valid time, RST active (all others)  
MIN  
MAX  
UNIT  
1024tc(OSC)  
8tc(VCLK)  
tv(RST)  
ns  
Vccio low supply level when PORRST must be active during power-up and  
power-down  
VCCIOPORL  
1.1  
V
(1) Specified values do NOT include rise/fall times. For rise and fall timings, see Table 5-13.  
Table 5-3. Internal Voltage Regulator Specifications  
PARAMETER  
MIN  
12  
1
MAX  
UNIT  
µs  
tD(VCCIOR)0-3  
tV(PORRST)L  
Delay time, input supply to ramp from 0 V to 3 V  
Valid time, PORRST active after input supply becomes 3.0 V  
1000  
ms  
Minimum input voltage, when PORRST must be made active during power  
down or brown out  
VCCIORmin(PORRST)f  
3.0  
V
C(VCC)core  
Capacitance distributed over core VCC pins for voltage regulator stability  
Total combined ESR of stabilization capacitors on core VCC pins  
1.2  
0
6.0  
µF  
ESR(max)core  
0.75  
Ω
3 V  
VCCIORmin(PORRST)f  
tV(PORRST)L  
tD(VCCIOR)0-3  
VCC  
PORRST  
Figure 5-2. PORRST Timing Requirements  
Copyright © 2012, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
37  
TMS470MF04207  
TMS470MF03107  
SPNS159C JANUARY 2012  
www.ti.com  
Table 5-4. VREG Recommended Operation Conditions  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNIT  
Normal mode, regulator  
active  
0
200  
mA  
ICC  
VCC Load Rating  
Off, enable forced off  
-
-
µA  
38  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
Copyright © 2012, Texas Instruments Incorporated  
TMS470MF04207  
TMS470MF03107  
www.ti.com  
SPNS159C JANUARY 2012  
5.2 PLL and Clock Specifications  
Table 5-5. Timing Requirements for PLL Circuits Enabled or Disabled  
PARAMETER  
Input clock frequency  
MIN  
5
MAX  
UNIT  
MHz  
ns  
f(OSC)  
20  
tc(OSC)  
Cycle time, OSCIN  
50  
15  
15  
tw(OSCIL)  
tw(OSCIH)  
Pulse duration, OSCIN low  
Pulse duration, OSCIN high  
ns  
ns  
5.2.1 External Reference Resonator/Crystal Oscillator Clock Option  
The oscillator is enabled by connecting the appropriate fundamental 5-20 MHz resonator/crystal and load  
capacitors across the external OSCIN and OSCOUT pins as shown in Figure 5-3(a). The oscillator is a  
single stage inverter held in bias by an integrated bias resistor.  
TI strongly encourages each customer to submit samples of the device to the resonator/crystal  
vendors for validation. Vendors are equipped to determine which load capacitors will best tune their  
resonator/crystal to the microcontroller device for optimum start-up and operation over  
temperature/voltage extremes.  
5.2.2 External Clock Source  
An external oscillator source can be used by connecting a 1.55-V clock signal to the OSCIN pin and  
leaving the OSCOUT pin unconnected (open) as shown in Figure 5-3(b).  
OSCIN  
OSCOUT  
OSCIN  
OSCOUT  
External  
Clock Signal  
(toggling 0-1.55 V)  
C1(A)  
C2(A)  
Crystal  
(a)  
(b)  
A. The values of C1 and C2 should be provided by the resonator/crystal vendor.  
Figure 5-3. Recommended Crystal/Clock Connection  
Copyright © 2012, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
39  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
 
TMS470MF04207  
TMS470MF03107  
SPNS159C JANUARY 2012  
www.ti.com  
5.2.3 Validated FMPLL Settings  
The following table includes the validated FMPLL settings.  
Table 5-6. Validated FMPLL Settings  
Mode  
OSCIN  
PLLCTL1(1)  
PLLCTL2(1)  
FMPLL Output  
Modulation  
Modulation  
Frequency (MHz)  
Frequency (MHz) Bandwidth (KHz)  
Depth  
10  
0x20048B00  
0x20026100  
0x20058B00  
0x20055F00  
0x20068B00  
0x20036100  
0x20078B00  
0x20098B00  
0x20049F00  
0x20055F00  
0x20059F00  
0x20065F00  
0x20069F00  
0x20075F00  
0x20079F00  
0x20099F00  
0x20049F00  
0x20026300  
0x20059F00  
0x20067700  
0x20069F00  
0x20036300  
0x20079F00  
0x20099F00  
0x00007800  
0x00007C00  
0x00007800  
0x00007600  
0x00007800  
0x00007C00  
0x00007800  
0x00007800  
0x00007800  
0x00007400  
0x00007800  
0x00007400  
0x00007800  
0x00007400  
0x00007800  
0x00007800  
0x00007600  
0x00007800  
0x00007600  
0x00007400  
0x00007600  
0x00007800  
0x00007600  
0x00007600  
12  
Non-Modulated(2) 14  
16  
56  
64  
80  
-
-
-
-
20  
10  
12  
Non-Modulated(2) 14  
16  
-
20  
10  
12  
Non-Modulated(2) 14  
-
16  
20  
(1) The recommended PLLCTL1 and PLLCTL2 values make no assumption of the intended use of ROS, BPOS, and ROF fields within the  
PLL control registers. For these settings, the application should set these as appropriate for the specific application requirements.  
(2) Non-Modulated settings provided show FM related bit fields as 0. When initializing the PLLCTL registers for non-modulated use, the FM  
related bit fields should be masked such that reset/default values are retained.  
40  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
Copyright © 2012, Texas Instruments Incorporated  
TMS470MF04207  
TMS470MF03107  
www.ti.com  
Mode  
SPNS159C JANUARY 2012  
Table 5-6. Validated FMPLL Settings (continued)  
OSCIN  
PLLCTL1(1)  
PLLCTL2(1)  
FMPLL Output  
Modulation  
Modulation  
Depth  
Frequency (MHz)  
Frequency (MHz) Bandwidth (KHz)  
0x20048B00  
0x20048B00  
0x20048B00  
0x20048B00  
0x20058B00  
0x20058B00  
0x20058B00  
0x20058B00  
0x20068B00  
0x20068B00  
0x20068B00  
0x20068B00  
0x20078B00  
0x20078B00  
0x20078B00  
0x20078B00  
0x20098B00  
0x20098B00  
0x20098B00  
0x20098B00  
0x20049F00  
0x20049F00  
0x20049F00  
0x20049F00  
0x20059F00  
0x20059F00  
0x20059F00  
0x20059F00  
0x20069F00  
0x20069F00  
0x20069F00  
0x20069F00  
0x20079F00  
0x20079F00  
0x20079F00  
0x20079F00  
0x20099F00  
0x20099F00  
0x20099F00  
0x20099F00  
0x8300B844  
0x8300B889  
0x82409859  
0x824098B2  
0x8300B844  
0x8300B889  
0x82409859  
0x824098B2  
0x8300B844  
0x8300B889  
0x82409859  
0x824098B2  
0x8300B844  
0x8300B889  
0x82409859  
0x824098B2  
0x8300B844  
0x8300B889  
0x82409859  
0x824098B2  
0x8300C83B  
0x8300C878  
0x8240A84D  
0x8240A89C  
0x8300C83B  
0x8300C878  
0x8240A84D  
0x8240A89C  
0x8300C83B  
0x8300C878  
0x8240A84D  
0x8240A89C  
0x8300C83B  
0x8300C878  
0x8240A84D  
0x8240A89C  
0x8300C83B  
0x8300C878  
0x8240A84D  
0x8240A89C  
0.50%  
1.00%  
0.50%  
1.00%  
0.50%  
1.00%  
0.50%  
1.00%  
0.50%  
1.00%  
0.50%  
1.00%  
0.50%  
1.00%  
0.50%  
1.00%  
0.50%  
1.00%  
0.50%  
1.00%  
0.50%  
1.00%  
0.50%  
1.00%  
0.50%  
1.00%  
0.50%  
1.00%  
0.50%  
1.00%  
0.50%  
1.00%  
0.50%  
1.00%  
0.50%  
1.00%  
0.50%  
1.00%  
0.50%  
1.00%  
76.92  
100  
10  
12  
14  
16  
20  
10  
12  
14  
16  
20  
76.92  
100  
76.92  
Frequency  
Modulated  
56  
100  
76.92  
100  
76.92  
100  
76.92  
100  
76.92  
100  
76.92  
Frequency  
Modulated  
64  
100  
76.92  
100  
76.92  
100  
Copyright © 2012, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
41  
TMS470MF04207  
TMS470MF03107  
SPNS159C JANUARY 2012  
www.ti.com  
Table 5-6. Validated FMPLL Settings (continued)  
Mode  
OSCIN  
PLLCTL1(1)  
PLLCTL2(1)  
FMPLL Output  
Modulation  
Modulation  
Frequency (MHz)  
Frequency (MHz) Bandwidth (KHz)  
Depth  
0.50%  
1.00%  
0.50%  
1.00%  
0.50%  
1.00%  
0.50%  
1.00%  
0.50%  
1.00%  
0.50%  
1.00%  
0.50%  
1.00%  
0.50%  
1.00%  
0.50%  
1.00%  
0.50%  
1.00%  
0x20049F00  
0x20049F00  
0x20049F00  
0x20049F00  
0x20059F00  
0x20059F00  
0x20059F00  
0x20059F00  
0x20069F00  
0x20069F00  
0x20069F00  
0x20069F00  
0x20079F00  
0x20079F00  
0x20079F00  
0x20079F00  
0x20099F00  
0x20099F00  
0x20099F00  
0x20099F00  
0x8300C63B  
0x8300C678  
0x8240A64D  
0x8240A69C  
0x8300C63B  
0x8300C678  
0x8240A64D  
0x8240A69C  
0x8300C63B  
0x8300C678  
0x8240A64D  
0x8240A69C  
0x8300C63B  
0x8300C678  
0x8240A64D  
0x8240A69C  
0x8300C63B  
0x8300C678  
0x8240A64D  
0x8240A69C  
76.92  
10  
100  
76.92  
100  
12  
14  
16  
20  
76.92  
Frequency  
Modulated  
80  
100  
76.92  
100  
76.92  
100  
42  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
Copyright © 2012, Texas Instruments Incorporated  
TMS470MF04207  
TMS470MF03107  
www.ti.com  
SPNS159C JANUARY 2012  
5.2.4 LPO and Clock Detection  
The LPOCLKDET module consists of a clock monitor (CLKDET) and 2 low-power oscillators (LPO): a  
low-frequency (LF) and a high-frequency (HF) oscillator. The CLKDET is a supervisor circuit for an  
externally supplied clock signal. In case the externally supplied clock frequency falls out of a frequency  
window, the clock detector flags this condition and switches to the HF LPO clock (limp mode). The  
OSCFAIL flag and clock switch-over remain, regardless of the behavior of the oscillator clock signal. The  
only way OSCFAIL can be cleared (and OSCIN be again the driving clock) is a power-on reset.  
Table 5-7. LPO and Clock Detection  
PARAMETER  
Lower threshold  
MIN  
1.5  
TYP  
MAX  
5.0  
UNIT  
MHz  
MHz  
invalid frequency  
Higher threshold  
20.0  
50.0  
limp mode frequency  
(HFosc)  
7.6  
12  
14.0  
MHz  
LFosc frequency  
HFosc frequency  
50  
90  
12  
124  
kHz  
7.6  
14.0  
MHz  
upper  
threshold  
lower  
threshold  
guaranteed fail  
guaranteed pass  
guaranteed fail  
1.5  
5.0  
20.0  
50.0  
f (MHz)  
Figure 5-4. LPO and Clock Detection  
Copyright © 2012, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
43  
TMS470MF04207  
TMS470MF03107  
SPNS159C JANUARY 2012  
www.ti.com  
5.2.5 Device Clock Domains Block Diagram  
The clock domains block diagram and GCM clock source assignments are given in Figure 5-5 and  
Table 5-8.  
OSCOUT  
0
1
OSC  
OSCIN  
(5-20 MHz)  
FMZPLL  
GCLK (to CPU)(A)  
RCLK  
/1..64 x92..184  
/1..8  
/1..32  
HCLK (to SYSTEM)(A)  
LF OSC  
HF OSC  
4
5
LPO  
/1,2,4,8  
RTICLK (to RTI)(A)  
/1..16  
/1..16  
VCLK (to Peripherals)(A)  
VCLK2 (to HET)(A)  
AVCLK1  
HRP  
/1..64  
/2,3..224  
/1,2..256  
/1,2..256  
/1,2..65536  
/1,2..65536  
/1,..1024  
SPI Baud Rate LIN Baud Rate  
£ 20 kB/s  
ADCLK  
£ 20 MHz  
LRP  
/20..25  
£ VCLK/2  
ECLK1  
£ 20 MHz  
ECLK2  
£ 20 MHz  
Phase_  
seg2  
Prop_  
seg  
SCI Baud Rate  
£ 115.2 kB/s  
MibSPI  
ADC  
HET  
Loop  
CLK  
HET  
HiRes  
CLK  
External Clock  
LIN/SCI  
Phase_  
seg1  
HET  
CAN Baud Rate  
£ 1M Baud  
8-MHz OSCIN  
CAN (DCAN1)  
A. See Table 5-9.  
Figure 5-5. Device Clock Domains Block Diagram  
Table 5-8. GCM Clock Source Assignments  
GCM SOURCE NUMBER  
CLOCK SOURCE  
OSCIN  
0
1
2
3
4
5
6
7
F035 FMzPLL  
Reserved  
Reserved  
LF OSC  
HF OSC  
Reserved  
Reserved  
44  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
Copyright © 2012, Texas Instruments Incorporated  
 
 
TMS470MF04207  
TMS470MF03107  
www.ti.com  
SPNS159C JANUARY 2012  
Table 5-9. Switching Characteristics Over Recommended Operating Conditions for Clocks(1)(2)(3)(4)(5)  
PARAMETER  
TEST CONDITIONS(6)  
MIN  
MAX  
UNIT  
Pipeline mode enabled  
80  
f(HCLK)  
System clock frequency  
MHz  
Pipeline mode disabled, 0  
flash wait states  
28  
System clock frequency Flash  
programming/erase  
f(PROG/ERASE)  
f(VCLK/VCLK2)  
f(ECLK)  
80  
f(HCLK)  
20  
MHz  
MHz  
MHz  
Peripheral VBUS clock frequency  
External clock output frequency for ECP  
Module  
RCLK - Frequency out of PLL macro into  
R-divider (Post ODPLL divider)  
f(RCLK)  
145  
MHz  
ns  
Pipeline mode enabled  
12.50  
35.71  
tc(HCLK)  
Cycle time, system clock  
Pipeline mode disabled, 0  
flash wait states  
Cycle time, system clock - Flash  
programming/erase  
tc(PROG/ERASE)  
12.50  
ns  
tc(VCLK/VCLK2)  
tc(ECLK)  
Cycle time, peripheral clock  
tc(HCLK)  
50.0  
ns  
ns  
Cycle time, ECP module external clock output  
Cycle time, RCLK minimum input cycle time  
out of PLL macro into R-divider  
tc(RCLK)  
6.90  
ns  
(1) f(HCLK) = f(OSC) / NR *NF /ODPLL/PLLDIV; for details, see the PLL documentation. TI strongly recommends selection of NR and NF  
parameters such that NF 120 and (f(OSC) / NR *NF) 400.  
f(VCLK) = f(HCLK) / X, where X = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}. X is the peripheral VBUS clock divider ratio determined by the  
VCLKR[3:0] bits in the SYS module.  
(2) Enabling FM mode can reduce maximum rated operating frequencies. The degree of impact is application-specific and the specific  
settings, as well as the impact of the settings, should be discussed and agreed upon prior to using FM modes. Use of FM modes do not  
impact the maximum rated external clock output, f(ECLK), for the ECP module.  
(3) Pipeline mode enabled or disabled is determined by FRDCNTL[2:0].  
(4) f(ECLK) = f(VCLK) / N, where N = {1 to 65536}. N is the ECP prescale value defined by the ECPCTRL.[15:0] register bits in the ECP  
module.  
(5) ECLK output will increase radiated emissions within the system that is used. Rated emissions at the device level do not include  
emissions due to ECLK output.  
(6) All test conditions assume FM Mode disabled and RAM ECC enabled with 0 waitstates for RAM.  
RAM  
0
Address Waitstates  
0MHz  
0MHz  
f(HCLK)  
f(HCLK)  
Data Waitstates  
0
Flash  
0
1
Address Waitstates  
0MHz  
0MHz  
f(HCLK)  
f(HCLK)  
Data Waitstates  
0
2
28MHz  
56MHz  
Figure 5-6. Timing - Wait States  
NOTE  
If FMzPLL frequency modulation is enabled, special care must be taken to ensure that the  
maximum system clock frequency f(HCLK) and peripheral clock frequency f(VCLK) are not  
exceeded. The speed of the device clocks may need be derated to accommodate the  
modulation depth when FMzPLL frequency modulation is enabled.  
Copyright © 2012, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
45  
TMS470MF04207  
TMS470MF03107  
SPNS159C JANUARY 2012  
www.ti.com  
5.2.5.1 ECLK Specification  
Table 5-10. Switching Characteristics Over Recommended Operating Conditions for External Clocks(1)(2)  
(see Figure 5-7)  
NO.  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
Under all prescale factor  
combinations (X and N)  
1
tw(EOL)  
tw(EOH)  
Pulse duration, ECLK low  
0.5tc(ECLK) - tf  
ns  
Under all prescale factor  
combinations (X and N)  
2
Pulse duration, ECLK high  
0.5tc(ECLK) - tr  
ns  
(1) X = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}. X is the VBUS interface clock divider ratio determined by the CLKCNTL.[19:16] bits in the  
SYS module.  
(2) N = {1 to 65536}. N is the ECP prescale value defined by the ECPCNTL.[15:0] register bits in the SYS module.  
2
ECLK  
1
Figure 5-7. ECLK Timing Diagram  
5.2.6 TEST Pin Glitch Filter Timing  
Table 5-11. Test Pin Glitch Filter Timing  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
Filter time TEST, high pulses less than MIN will be  
filtered out.  
tf(TEST)  
40  
ns  
46  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
Copyright © 2012, Texas Instruments Incorporated  
 
TMS470MF04207  
TMS470MF03107  
www.ti.com  
SPNS159C JANUARY 2012  
5.2.7 JTAG Timing  
Table 5-12. JTAG Scan Interface Timing (JTAG Clock specification 10-MHz and 50-pF Load on TDO  
Output)  
(see Figure 5-8  
NO.  
1
MIN  
50  
5
MAX  
UNIT  
ns  
tc(JTAG)  
Cycle time, JTAG low and high period  
Setup time, TDI, TMS before TCK rise (TCKr)  
Hold time, TDI, TMS after TCKr  
2
tsu(TDI/TMS - TCKr)  
th(TCKr -TDI/TMS)  
th(TCKf -TDO)  
td(TCKf -TDO)  
ns  
3
5
ns  
4
Hold time, TDO after TCKf  
5
ns  
5
Delay time, TDO valid after TCK fall (TCKf)  
45  
ns  
TCK  
1
1
TMS  
TDI  
2
3
TDO  
4
5
Figure 5-8. JTAG Scan Timings  
Copyright © 2012, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
47  
 
TMS470MF04207  
TMS470MF03107  
SPNS159C JANUARY 2012  
www.ti.com  
5.2.8 Output Timings  
Table 5-13. Switching Characteristics for Output Timings Versus Load Capacitance (CL)(1)  
(see Figure 5-9)  
PARAMETER  
MAX  
4
UNIT  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
8
tr  
Adaptive impedance 4 mA pins  
ns  
15  
21  
5
8
tf  
Adaptive impedance 4 mA pins  
ns  
12  
17  
(1) Peripheral output timings given within this document are measured in either standard buffer or impedance control mode.  
tr  
tf  
VCCIO  
80%  
80%  
Output  
20%  
20%  
0
Figure 5-9. CMOS-Level Outputs  
5.2.9 Input Timings  
Table 5-14. Timing Requirements for Input Timings(1)  
(see Figure 5-10)  
MIN  
MAX  
UNIT  
tpw  
Input minimum pulse width  
tc(VCLK) + 10  
ns  
(1) tc(VCLK) = peripheral VBUS clock cycle time = 1 / f(VCLK)  
.
tpw  
VCC  
80%  
80%  
Input  
20%  
20%  
0
Figure 5-10. CMOS-Level Inputs  
48  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
Copyright © 2012, Texas Instruments Incorporated  
 
 
 
TMS470MF04207  
TMS470MF03107  
www.ti.com  
SPNS159C JANUARY 2012  
5.2.10 Flash Timings  
Table 5-15. Timing Requirements for Program Flash  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX UNIT  
From Sleep Mode to  
Standby Mode  
20  
Flash pump stabilization time  
Flash bank stabilization time  
From Standby Mode to  
Active Mode  
1
1.9  
0.1  
tacc_delay  
µs  
From Sleep Mode to  
Standby Mode  
From Standby Mode to  
Active Mode  
tprog(32-bit)  
tprog(Total)  
terase(sector)  
Half-word (32-bit) programming time  
384k-byte programming time(1)  
448k-byte programming time(1)  
Sector erase time  
37.5  
3.7  
4.3  
1.5  
300  
29.5  
34.4  
15  
µs  
s
s
Write/erase cycles at TA = -40 to 125°C with  
15-year Data Retention requirement  
1000(2) cycles  
Nwec  
Write/erase cycles at TA = -40 to 125°C  
EEPROM emulation requirement for 16k flash  
sectors in Bank 1  
25000(2)(3) cycles  
(1) tprog(Total) programming time includes overhead of state machine, but does not include data transfer time.  
(2) Flash write/erase cycles and data retention specifications are based on a validated implementation of the TI flash API. Non-TI flash API  
implementation is not supported. For detailed description see the F035 Flash Validation Procedure (SPNA127).  
(3) Flash write/erase cycle and data retention specifications are based on an assumed distribution of write/erase cycles over the life of the  
product including an even distribution over the rated temperature range and time between cycles. The EEPROM emulation bank has  
been qualified as outlined in the JEDEC specification JESD22-A117C.  
Copyright © 2012, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
49  
TMS470MF04207  
TMS470MF03107  
SPNS159C JANUARY 2012  
www.ti.com  
5.3 SPIn Master Mode Timing Parameters  
Table 5-16. SPIn Master Mode External Timing Parameters (CLOCK PHASE = 0, SPInCLK = output,  
SPInSIMO = output, and SPInSOMI = input)(1)(2)(3)  
(see Figure 5-11 and Figure 5-12)  
NO.  
MIN  
90  
MAX UNIT  
256tc(VCLK)  
1
tc(SPC)M  
Cycle time, SPICLK(4)  
Pulse duration, SPICLK high  
(clock polarity = 0)  
0.5tc(SPC)M - tr-8  
0.5tc(SPC)M + 5  
tw(SPCH)M  
2(5)  
tw(SPCL)M  
tw(SPCL)M  
Pulse duration, SPICLK low (clock polarity = 1)  
Pulse duration, SPICLK low (clock polarity = 0)  
0.5tc(SPC)M - tf-8  
0.5tc(SPC)M - tf-8  
0.5tc(SPC)M - tr-8  
0.5tc(SPC)M + 5  
0.5tc(SPC)M + 5  
0.5tc(SPC)M + 5  
3(5)  
Pulse duration, SPICLK high  
(clock polarity = 1)  
tw(SPCH)M  
Delay time, SPISIMO data valid before  
SPICLK low (clock polarity = 0)  
0.5tc(SPC)M - 10  
0.5tc(SPC)M - 10  
0.5tc(SPC)M - tf(SPC)-5  
0.5tc(SPC)M - tr(SPC)-5  
tr(SPC)+4  
td(SIMO-SPCL)M  
td(SIMO-SPCH)M  
tv(SPCL-SIMO)M  
tv(SPCH-SIMO)M  
tsu(SOMI-SPCL)M  
tsu(SOMI-SPCH)M  
th(SPCL-SOMI)M  
th(SPCH-SOMI)M  
4(5)  
5(5)  
6(5)  
7(5)  
Delay time, SPISIMO data valid before  
SPICLK high (clock polarity = 1)  
Valid time, SPISIMO data valid  
(clock polarity = 0)  
Valid time, SPISIMO data valid  
(clock polarity = 1)  
Setup time, SPISOMI before SPICLK low  
(clock polarity = 0)  
Setup time, SPISOMI before SPICLK high  
(clock polarity = 1)  
tf(SPC)+4  
ns  
Hold time, SPISOMI data valid after SPICLK  
low (clock polarity = 0)  
10  
Hold time, SPISOMI data valid after SPICLK  
high (clock polarity = 1)  
10  
(C2TDELAY+CSHOLD+ (C2TDELAY+CSHOLD+  
2)*tc(VCLK) - tf(SPICS) 2)*tc(VCLK) - tf(SPICS)  
tr(SPICLK)-21 tr(SPICLK)+6  
Setup time CS active until SPICLK high  
(clock polarity = 0)  
+
+
8(5)(6) tC2TDELAY  
(C2TDELAY+CSHOLD+ (C2TDELAY+CSHOLD+  
2)*tc(VCLK) - tf(SPICS) 2)*tc(VCLK) - tf(SPICS)  
Setup time CS active until SPICLK low  
(clock polarity = 1)  
+
+
tf(SPICLK)-21  
tf(SPICLK)+6  
9(5)(6)  
0.5*tc(SPC)M  
0.5*tc(SPC)M  
Hold time SPICLK low until CS inactive  
(clock polarity = 0)  
+T2CDELAY*tc(VCLK)  
tc(VCLK) - tf(SPICLK)  
+
+
+T2CDELAY*tc(VCLK)  
tc(VCLK) - tf(SPICLK)  
+
+
tr(SPICS)-4  
tr(SPICS)+17  
tT2CDELAY  
0.5*tc(SPC)M  
0.5*tc(SPC)M  
Hold time SPICLK high until CS inactive  
(clock polarity = 1)  
+T2CDELAY*tc(VCLK)  
tc(VCLK) - tr(SPICLK)  
+
+
+T2CDELAY*tc(VCLK)  
tc(VCLK) - tr(SPICLK)  
+
+
tr(SPICS)-4  
C2TDELAY * tc(VCLK)  
tf(SPICS)-25  
tr(SPICS)+17  
10  
-
C2TDELAY * tc(VCLK)  
tSPIENA  
SPIENAn sample point  
ns  
(1) The MASTER bit (SPIGCR1.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is clear.  
(2) tc(VCLK) = interface clock cycle time = 1 / f(VCLK)  
(3) For rise and fall timings, see Table 5-13.  
.
(4) When the SPI is in Master mode, the following must be true:  
For PS values from 1 to 255: t (PS +1)tc(VCLK) 90 ns, where PS is the prescale value set in the SPIFMTx.[15:8] register bits.  
For PS values of 0: tc(SPC)M = 2tc(VCLK) 90 ns.  
(5) The active edge of the SPInCLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).  
(6) C2TDELAY and T2CDELAY are programmed in the SPIDELAY register.  
50  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
Copyright © 2012, Texas Instruments Incorporated  
TMS470MF04207  
TMS470MF03107  
www.ti.com  
SPNS159C JANUARY 2012  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
SPISIMO  
SPISOMI  
Master Out Data is Valid  
6
7
Master In Data  
Must Be Valid  
Figure 5-11. SPI Master Mode External Timing (CLOCK PHASE = 0)  
SPICLK  
(clock polarity = 0)  
SPICLK  
(clock polarity = 1)  
SPISIMO  
Master Out Data is Valid  
8
9
SPICSn  
10  
SPIENAn  
Figure 5-12. SPI Master Mode Chip Select Timing (CLOCK PHASE = 0)  
Copyright © 2012, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
51  
TMS470MF04207  
TMS470MF03107  
SPNS159C JANUARY 2012  
www.ti.com  
Table 5-17. SPIn Master Mode External Timing Parameters (CLOCK PHASE = 1, SPInCLK = output,  
SPInSIMO = output, and SPInSOMI = input)(1)(2)(3)  
(see Figure 5-13 and Figure 5-14)  
NO.  
MIN  
90  
MAX UNIT  
256tc(VCLK)  
1
tc(SPC)M  
Cycle time, SPICLK(4)  
Pulse duration, SPICLK high  
(clock polarity = 0)  
0.5tc(SPC)M - tr-8  
0.5tc(SPC)M + 5  
tw(SPCH)M  
2(5)  
tw(SPCL)M  
tw(SPCL)M  
Pulse duration, SPICLK low (clock polarity = 1)  
Pulse duration, SPICLK low (clock polarity = 0)  
0.5tc(SPC)M - tf-8  
0.5tc(SPC)M - tf-8  
0.5tc(SPC)M - tr-8  
0.5tc(SPC)M + 5  
0.5tc(SPC)M + 5  
0.5tc(SPC)M + 5  
3(5)  
Pulse duration, SPICLK high  
(clock polarity = 1)  
tw(SPCH)M  
Valid time, SPISIMO data valid before SPICLK  
high (clock polarity = 0)  
0.5tc(SPC)M - 10  
0.5tc(SPC)M - 10  
0.5tc(SPC)M - tr(SPC)-5  
0.5tc(SPC)M - tf(SPC)-5  
tr(SPC)+4  
tv(SIMO-SPCH)M  
tv(SIMO-SPCL)M  
tv(SPCH-SIMO)M  
tv(SPCL-SIMO)M  
tsu(SOMI-SPCH)M  
tsu(SOMI-SPCL)M  
th(SPCH-SOMI)M  
th(SPCL-SOMI)M  
4(5)  
5(5)  
6(5)  
7(5)  
Valid time, SPISIMO data valid before SPICLK  
low (clock polarity = 1)  
Valid time, SPISIMO data valid after SPICLK  
high (clock polarity = 0)  
Valid time, SPISIMO data valid after SPICLK  
low (clock polarity = 1)  
Setup time, SPISOMI before SPICLK high  
(clock polarity = 0)  
ns  
Setup time, SPISOMI before SPICLK low  
(clock polarity = 1)  
tf(SPC)+4  
Hold time, SPISOMI data valid after SPICLK  
high (clock polarity = 0)  
10  
Hold time, SPISOMI data valid after SPICLK  
low (clock polarity = 1)  
10  
0.5tc(SPC)M+(C2TDELAY 0.5tc(SPC)M+(C2TDELAY  
+CSHOLD+2)*tc(VCLK) +CSHOLD+2)*tc(VCLK)  
tf(SPICS) + tr(SPICLK)-21 tf(SPICS) + tr(SPICLK)+6  
Setup time CS active until SPICLK high  
(clock polarity = 0)  
-
-
8(5)(6) tC2TDELAY  
0.5tc(SPC)M+(C2TDELAY 0.5tc(SPC)M+(C2TDELAY  
+CSHOLD+2)*tc(VCLK) +CSHOLD+2)*tc(VCLK)  
tf(SPICS) + tf(SPICLK)-21 tf(SPICS) + tf(SPICLK)+6  
Setup time CS active until SPICLK low  
(clock polarity = 1)  
-
-
T2CDELAY*tc(VCLK)  
tc(VCLK) - tf(SPICLK)  
+
+
T2CDELAY*tc(VCLK)  
tc(VCLK) - tf(SPICLK)  
+
+
Hold time SPICLK low CS until inactive  
(clock polarity = 0)  
tr(SPICS)-4  
tr(SPICS)+17  
9(5)(6) tT2CDELAY  
T2CDELAY*tc(VCLK)  
tc(VCLK) - tr(SPICLK)  
tr(SPICS)-4  
C2TDELAY * tc(VCLK)  
tf(SPICS)-25  
+
+
T2CDELAY*tc(VCLK)  
tc(VCLK) - tr(SPICLK)  
+
+
Hold time SPICLK high until CS inactive  
(clock polarity = 1)  
tr(SPICS)+17  
10(7)  
-
C2TDELAY * tc(VCLK)  
tSPIENA  
SPIENAn Sample Point  
ns  
(1) The MASTER bit (SPIGCR1.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is clear.  
(2) tc(VCLK) = interface clock cycle time = 1 / f(VCLK)  
(3) For rise and fall timings, see Table 5-13.  
.
(4) When the SPI is in Master mode, the following must be true:  
For PS values from 1 to 255: t (PS +1)tc(VCLK) 90 ns, where PS is the prescale value set in the SPIFMTx.[15:8] register bits.  
For PS values of 0: tc(SPC)M = 2tc(VCLK) 90 ns.  
(5) The active edge of the SPInCLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).  
(6) C2TDELAY and T2CDELAY is programmed in the SPIDELAY register.  
(7) C2TDELAY and T2CDELAY is programmed in the SPIDELAY register.  
52  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
Copyright © 2012, Texas Instruments Incorporated  
TMS470MF04207  
TMS470MF03107  
www.ti.com  
SPNS159C JANUARY 2012  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
SPISIMO  
SPISOMI  
Master Out Data is Valid  
Data Valid  
6
7
Master In Data  
Must Be Valid  
Figure 5-13. SPI Master Mode External Timing (CLOCK PHASE = 1)  
SPICLK  
(clock polarity = 0)  
SPICLK  
(clock polarity = 1)  
SPISIMO  
Master Out Data is Valid  
8
9
SPICSn  
10  
SPIENAn  
Figure 5-14. SPI Master Mode Chip Select timing (CLOCK PHASE = 1)  
Copyright © 2012, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
53  
TMS470MF04207  
TMS470MF03107  
SPNS159C JANUARY 2012  
www.ti.com  
5.4 SPIn Slave Mode Timing Parameters  
Table 5-18. SPIn Slave Mode External Timing Parameters (CLOCK PHASE = 0, SPInCLK = input,  
SPInSIMO = input, and SPInSOMI = output)(1)(2)(3)(4)  
(see Figure 5-15 and Figure 5-16)  
NO.  
MIN  
90  
MAX UNIT  
1
tc(SPC)S  
Cycle time, SPInCLK(5)  
tw(SPCH)S  
Pulse duration, SPInCLK high (clock polarity = 0)  
Pulse duration, SPInCLK low (clock polarity = 1)  
Pulse duration, SPInCLK low (clock polarity = 0)  
Pulse duration, SPInCLK high (clock polarity = 1)  
Delay time, SPInCLK high to SPInSOMI valid (clock polarity = 0)  
Delay time, SPInCLK low to SPInSOMI valid (clock polarity = 1)  
30  
2(6)  
3(6)  
4(6)  
tw(SPCL)S  
30  
tw(SPCL)S  
30  
tw(SPCH)S  
30  
td(SPCH-SOMI)S  
td(SPCL-SOMI)S  
trf(SOMI)+17  
trf(SOMI)+17  
Valid time, SPInSOMI data valid after SPInCLK high  
(clock polarity = 0)  
0
0
tv(SPCH-SOMI)S  
tv(SPCL-SOMI)S  
ns  
5(6)  
6(6)  
7(6)  
Valid time, SPInSOMI data valid after SPInCLK low  
(clock polarity = 1)  
tsu(SIMO-SPCL)S  
tsu(SIMO-SPCH)S  
Setup time, SPInSIMO before SPInCLK low (clock polarity = 0)  
Setup time, SPInSIMO before SPInCLK high (clock polarity = 1)  
5
5
6
Valid time, SPInSIMO data valid after SPInCLK low  
(clock polarity = 0)  
tv(SPCL-SIMO)S  
tv(SPCH-SIMO)S  
td(SPCL-SENAH)S  
td(SPCH-SENAH)S  
td(SCSL-SENAL)S  
Valid time, SPInSIMO data valid after SPInCLK high  
(clock polarity = 1)  
6
1.5tc(VCLK)  
1.5tc(VCLK)  
tf(ENAn)  
2.5tc(VCLK)  
tr(ENAn)+20  
+
Delay time, SPIENAn high after last SPICLK low (clock polarity = 0)  
Delay time, SPIENAn high after last SPICLK high (clock polarity = 1)  
8
9
ns  
ns  
2.5tc(VCLK)  
tr(ENAn)+20  
+
Delay time, SPIENAn low after SPICSn low (if new data has been  
written to the SPI buffer)  
tc(VCLK)  
tf(ENAn)+18  
+
(1) The MASTER bit (SPIGCR1.0) is clear and the CLOCK PHASE bit (SPIFMTx.16) is clear.  
(2) When the SPI is in Slave mode, the following must be true: tc(SPC)S > 2tc(VCLK) and tc(SPC)S 90 ns.  
(3) For rise and fall timings, see Table 5-13.  
(4) tc(VCLK) = interface clock cycle time = 1 / f(VCLK)  
.
(5) When the SPI is in Slave mode, the following must be true: tw(SPCL)S > tc(VCLK), tw(SPCL)S 30, tw(SPCH)S > tc(VCLK) ns and tw(SPCH)S 30  
ns.  
(6) The active edge of the SPInCLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).  
54  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
Copyright © 2012, Texas Instruments Incorporated  
TMS470MF04207  
TMS470MF03107  
www.ti.com  
SPNS159C JANUARY 2012  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
5
4
SPISOMI Data Is Valid  
SPISOMI  
SPISIMO  
6
7
SPISIMO Data  
Must Be Valid  
Figure 5-15. SPI Slave Mode External Timing (CLOCK PHASE = 0)  
SPICLK  
(clock polarity = 0)  
SPICLK  
(clock polarity = 1)  
8
SPIENAn  
9
SPICSn  
Figure 5-16. SPI Slave Mode Enable Timing (CLOCK PHASE = 0)  
Copyright © 2012, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
55  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
TMS470MF04207  
TMS470MF03107  
SPNS159C JANUARY 2012  
www.ti.com  
Table 5-19. SPIn Slave Mode External Timing Parameters (CLOCK PHASE = 1, SPInCLK = input,  
SPInSIMO = input, and SPInSOMI = output)(1)(2)(3)(4)  
(see Figure 5-17 and Figure 5-18)  
NO.  
MIN  
90  
MAX UNIT  
1
tc(SPC)S  
Cycle time, SPInCLK(5)  
tw(SPCH)S  
tw(SPCL)S  
tw(SPCL)S  
tw(SPCH)S  
Pulse duration, SPInCLK high (clock polarity = 0)  
Pulse duration, SPInCLK low (clock polarity = 1)  
Pulse duration, SPInCLK low (clock polarity = 0)  
Pulse duration, SPInCLK high (clock polarity = 1)  
30  
2(6)  
30  
30  
3(6)  
30  
Delay time, SPInSOMI data valid after SPInCLK high  
(clock polarity = 0)  
trf(SOMI)+17  
trf(SOMI)+17  
td(SPCH-SOMI)S  
td(SPCL-SOMI)S  
tv(SOMI-SPCH)S  
tv(SOMI-SPCL)S  
4(6)  
Delay time, SPInSOMI data valid after SPInCLK low  
(clock polarity = 1)  
ns  
Valid time, SPInCLK high after SPInSOMI data valid  
(clock polarity = 0)  
0
0
5(6)  
6(6)  
7(6)  
Valid time, SPInCLK low after SPInSOMI data valid  
(clock polarity = 1)  
tsu(SIMO-SPCH)S  
tsu(SIMO-SPCL)S  
Setup time, SPInSIMO before SPInCLK high (clock polarity = 0)  
Setup time, SPInSIMO before SPInCLK low (clock polarity = 1)  
5
5
6
Valid time, SPInSIMO data valid after SPInCLK high  
(clock polarity = 0)  
tv(SPCH-SIMO)S  
tv(SPCL-SIMO)S  
td(SPCH-SENAH)S  
td(SPCL-SENAH)S  
td(SCSL-SENAL)S  
Valid time, SPInSIMO data valid after SPInCLK low  
(clock polarity = 1)  
6
1.5tc(VCLK)  
1.5tc(VCLK)  
tf(ENAn)  
2.5tc(VCLK)  
+
Delay time, SPIENAn high after last SPICLK high (clock polarity = 0)  
Delay time, SPIENAn high after last SPICLK low (clock polarity = 1)  
tr(ENAn)+20  
8
9
ns  
2.5tc(VCLK)  
+
tr(ENAn)+20  
Delay time, SPIENAn low after SPICSn low (if new data has been  
written to the SPI buffer)  
tc(VCLK)  
+
ns  
ns  
tf(ENAn)+18  
Delay time, SOMI valid after SPICSn low (if new data has been  
written to the SPI buffer)  
tc(VCLK)  
2tc(VCLK)  
trf(SOMI)+17  
+
10 td(SCSL-SOMI)S  
(1) The MASTER bit (SPInCTRL2.3) is cleared and the CLOCK PHASE bit (SPInCTRL2.0) is set.  
(2) When the SPI is in Slave mode, the following must be true: tc(SPC)S > 2tc(VCLK) and tc(SPC)S 90 ns.  
(3) For rise and fall timings, see Table 5-13.  
(4) tc(VCLK) = interface clock cycle time = 1 /f(VCLK).  
(5) When the SPI is in Slave mode, the following must be true: tw(SPCL)S > tc(VCLK), tw(SPCL)S 30, tw(SPCH)S > tc(VCLK) ns and tw(SPCH)S 30  
ns.  
(6) The active edge of the SPInCLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).  
56  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
Copyright © 2012, Texas Instruments Incorporated  
TMS470MF04207  
TMS470MF03107  
www.ti.com  
SPNS159C JANUARY 2012  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
SPISOMI  
SPISIMO  
SPISOMI Data is Valid  
Data Valid  
6
7
SPISIMO Data  
Must Be Valid  
Figure 5-17. SPI Slave Mode External Timing (CLOCK PHASE = 1)  
SPICLK  
(clock polarity = 0)  
SPICLK  
(clock polarity = 1)  
8
SPIENAn  
SPICSn  
9
10  
SPISOMI  
Slave Out is Valid  
Figure 5-18. SPI Slave Mode Enable Timing (CLOCK PHASE = 1)  
Copyright © 2012, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
57  
TMS470MF04207  
TMS470MF03107  
SPNS159C JANUARY 2012  
www.ti.com  
5.5 CAN Controller (DCANn) Mode Timings  
Table 5-20. Dynamic Characteristics for the CANnSTX and CANnSRX Pins  
PARAMETER  
Delay time, transmit shift register to CANnSTX pin(1)  
MIN  
MAX  
15  
UNIT  
ns  
td(CANnSTX)  
td(CANnSRX)  
Delay time, CANnSRX pin to receive shift register  
6
ns  
(1) These values do not include rise/fall times of the output buffer.  
5.6 High-End Timer (HET) Timings  
Table 5-21. Dynamic Characteristics for the HET Pins  
PARAMETER  
MIN  
MAX  
UNIT  
ns  
topw(HET)  
tipw(HET)  
Output pulse width, this is the minimum pulse width that can be generated(1)  
Input pulse width, this is the minimum pulse width that can be captured(2)  
1/f(VCLK2)  
1/f(VCLK2)  
ns  
(1) topw(HET)min = HRP(min) = hr(min) / VCLK2.  
(2) tipw(HET) = LRP(min) = hr(min) * lr(min) / VCLK2.  
58  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
Copyright © 2012, Texas Instruments Incorporated  
TMS470MF04207  
TMS470MF03107  
www.ti.com  
SPNS159C JANUARY 2012  
5.7 Multi-Buffered A-to-D Converter (MibADC)  
The multi-buffered A-to-D converter (MibADC) has a separate power bus for its analog circuitry that  
enhances the A-to-D performance by preventing digital switching noise on the logic circuitry which could  
be present on VSS and VCC from coupling into the A-to-D analog stage. All A-to-D specifications are  
given with respect to ADREFLO unless otherwise noted.  
Resolution  
10 bits (1024 values)  
Assured  
Monotonic  
Output conversion code  
00h to 3FFh [00 for VAI ADREFLO; 3FF for VAI ADREFHI  
]
Table 5-22. MibADC Recommended Operating Conditions(1)  
MIN  
3.0  
MAX  
VCCAD  
0.3  
UNIT  
ADREFHI  
ADREFLO  
VAI  
A-to-D high -voltage reference source  
A-to-D low-voltage reference source  
Analog input voltage  
V
V
V
VSSAD  
ADREFLO  
ADREFHI  
IAIC  
Analog input clamp current(2)  
(VAI < VSSAD - 0.3 or VAI > VCCAD + 0.3)  
- 2  
2
mA  
(1) For VCCAD and VSSAD recommended operating conditions, see .  
(2) Input currents into any ADC input channel outside the specified limits could affect conversion results of other channels.  
Table 5-23. MibADC Operating Characteristics Over Full Range of Recommended Operating  
Conditions(1)  
PARAMETER  
DESCRIPTION/CONDITIONS  
See Figure 5-19  
MIN  
NOM  
125  
MAX  
1.5K  
1.5K  
16  
UNIT  
Ω
Rmux  
Rsamp  
Cmux  
Csamp  
IAIL  
Analog input mux on-resistance  
ADC sample switch on-resistance  
Input mux capacitance  
See Figure 5-19  
150  
Ω
See Figure 5-19  
pF  
pF  
nA  
mA  
ADC sample capacitance  
Analog input leakage current  
ADREFHI input current  
See Figure 5-19  
8
Input leakage per ADC input pin  
ADREFHI = 3.6 V, ADREFLO = VSSAD  
ADREFHI - ADREFLO  
-200  
3
200  
5
IADREFHI  
CR  
Conversion range over which  
specified accuracy is maintained  
3.6  
V
EDNL  
Differential non-linearity error  
Difference between the actual step  
width and the ideal value (see  
Figure 5-20).  
± 2  
LSB  
EINL  
Integral non-linearity error  
Maximum deviation from the best  
straight line through the MibADC.  
MibADC transfer characteristics,  
excluding the quantization error (see  
Figure 5-21).  
± 2  
± 2  
LSB  
LSB  
ETOT  
Total error/Absolute accuracy  
Maximum value of the difference  
between an analog value and the  
ideal midstep value (see Figure 5-22).  
(1) 1 - LSB = (ADREFHI ADREFLO)/ 210 for the MibADC.  
Copyright © 2012, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
59  
TMS470MF04207  
TMS470MF03107  
SPNS159C JANUARY 2012  
www.ti.com  
5.7.1 MibADC Input Model  
Pin  
Pin  
Smux Rmux  
Smux Rmux  
IAIL  
IAIL  
Pin  
Smux Rmux  
Ssamp Rsamp  
IAIL  
IAIL  
Cmux  
Csamp  
Figure 5-19. MibADC Input Equivalent Circuit  
Table 5-24. Multi-Buffer ADC Timing Requirements  
PARAMETER  
Cycle time, MibADC clock  
MIN  
0.05  
1
NOM  
MAX  
UNIT  
µs  
tc(ADCLK)  
td(SH)  
Delay time, sample and hold time  
µs  
td(C)  
Delay time, conversion time  
0.55  
1.55  
µs  
(1)  
td(SHC)  
Delay time, total sample/hold and conversion time  
µs  
(1) This is the minimum sample/hold and conversion time that can be achieved. These parameters are dependent on many factors.  
60  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
Copyright © 2012, Texas Instruments Incorporated  
TMS470MF04207  
TMS470MF03107  
www.ti.com  
SPNS159C JANUARY 2012  
The differential non-linearity error shown in Figure 5-20 (sometimes referred to as differential linearity) is  
the difference between an actual step width and the ideal value of 1 LSB.  
0 ... 110  
0 ... 101  
0 ... 100  
0 ... 011  
Differential Linearity  
Error (1/2 LSB)  
1 LSB  
0 ... 010  
0 ... 001  
0 ... 000  
Differential Linearity  
Error (-1/2 LSB)  
1 LSB  
0
1
2
3
4
5
Analog Input Value (LSB)  
A. 1 LSB = (ADREFHI ADREFLO)/210  
Figure 5-20. Differential Non-linearity (DNL)  
The integral non-linearity error shown in Figure 5-21 (sometimes referred to as linearity error) is the  
deviation of the values on the actual transfer function from a straight line.  
0 ... 111  
0 ... 110  
Ideal  
Transition  
0 ... 101  
0 ... 100  
0 ... 011  
0 ... 010  
0 ... 001  
0 ... 000  
Actual  
Transition  
At Transition  
011/100  
(-1/2 LSB)  
End-Point Lin. Error  
At Transition  
001/010 (-1/4 LSB)  
6
0
1
2
3
4
5
7
Analog Input Value (LSB)  
A. 1 LSB = (ADREFHI ADREFLO)/210  
Figure 5-21. Integral Non-linearity (INL) Error  
The absolute accuracy or total error of an MibADC as shown in Figure 5-22 is the maximum value of the  
difference between an analog value and the ideal midstep value.  
Copyright © 2012, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
61  
 
 
TMS470MF04207  
TMS470MF03107  
SPNS159C JANUARY 2012  
www.ti.com  
0 ... 111  
0 ... 110  
0 ... 101  
0 ... 100  
0 ... 011  
0 ... 010  
0 ... 001  
0 ... 000  
Total Error  
At Step 0 ... 101  
(-1 1/4 LSB)  
Total Error  
at Step 0 ... 001  
(1/2 LSB)  
6
0
1
2
3
4
5
7
Analog Input Value (LSB)  
A. 1 LSB = (ADREFHIµ ADREFLO)/210  
Figure 5-22. Absolute Accuracy (Total) Error  
62  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
Copyright © 2012, Texas Instruments Incorporated  
TMS470MF04207  
TMS470MF03107  
www.ti.com  
SPNS159C JANUARY 2012  
6 Revision History  
This data sheet revision history highlights the technical changes made to the device or the datasheet.  
Date  
Additions, Deletions, And Modifications  
Revision  
August 2011  
Added descriptions for the ENZ pin.  
A
December 2011  
Corrected number of GIO pins available from 8 to 4 in Device Characteristics table  
Updated LBIST section to include support for STCCLK = HCLK  
Added additional detail about MBIST cycle counts  
Operating Conditions and electrical specs upated with characterized values  
Added upper limit to Vreg ramp specification  
B
Removed support for low power modes  
Added TEST Pin Glitch Filter Timing specification  
Added note about back to back write/erase cycling in the EEPROM emulation bank.  
Added FMPLL validated settings table  
January 2012  
Updated programming times in the Flash Timings table.  
Corrected programming word size from 16-bit to 32-bit in the Flash Timings table to accurately  
reflect the default FSM configuration.  
C
Added assumed use case and qualification standards for EEPROM emulation use in an  
application in the Flash Timings table.  
Copyright © 2012, Texas Instruments Incorporated  
Revision History  
63  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
TMS470MF04207  
TMS470MF03107  
SPNS159C JANUARY 2012  
www.ti.com  
7 Mechanical Data  
7.1 Thermal Data  
Table 7-1 shows the thermal resistance characteristics for the PQFP - PZ mechanical packages.  
Table 7-1. Thermal Resistance Characteristics  
(S-PQFP Package) [PZ]  
PARAMETER  
RθJA  
°C/W  
48  
RθJC  
5
7.2 Packaging Information  
The following packaging information reflects the most current released data available for the designated  
device(s). This data is subject to change without notice and without revision of this document.  
64  
Mechanical Data  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS470MF04207 TMS470MF03107  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Mar-2012  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
S4MF03107SPZQQ1  
S4MF04207SPZQQ1  
ACTIVE  
ACTIVE  
LQFP  
LQFP  
PZ  
PZ  
100  
100  
90  
90  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
MECHANICAL DATA  
MTQF013A – OCTOBER 1994 – REVISED DECEMBER 1996  
PZ (S-PQFP-G100)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
75  
M
0,08  
51  
50  
76  
26  
100  
0,13 NOM  
1
25  
12,00 TYP  
Gage Plane  
14,20  
SQ  
13,80  
0,25  
16,20  
SQ  
0,05 MIN  
0°7°  
15,80  
1,45  
1,35  
0,75  
0,45  
Seating Plane  
0,08  
1,60 MAX  
4040149/B 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TIs terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TIs standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Audio  
Applications  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Medical  
Logic  
Security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
www.ti.com/video  
OMAP Mobile Processors www.ti.com/omap  
Wireless Connectivity www.ti.com/wirelessconnectivity  
TI E2E Community Home Page  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2012, Texas Instruments Incorporated  

相关型号:

S4MF06607BSPZQQ1

TMS470MF06607 16/32-Bit RISC Flash Microcontroller
TI

S4N1

SCRs
TECCOR

S4N1

SCRs (1 A to 70 A)
LITTELFUSE

S4N1RP

暂无描述
LITTELFUSE

S4NAD80

Twin Diode
SHINDENGEN

S4NF-S

RF N Connector, Female, Cable Mount, Solder Terminal, Jack
AMPHENOL

S4NM-S

RF N Connector, Male, Cable Mount, Solder Terminal, Plug
AMPHENOL

S4PB

High Current Density Surface Mount Glass Passivated Rectifiers
VISHAY

S4PB-E3/86A

Rectifier Diode, 1 Element, 4A, 100V V(RRM)
VISHAY

S4PB-E3/87A

Rectifier Diode, 1 Element, 4A, 100V V(RRM)
VISHAY

S4PB-G3/87A

DIODE 4 A, 100 V, SILICON, RECTIFIER DIODE, TO-277A, GREEN, PLASTIC, SMPC, 3 PIN, Rectifier Diode
VISHAY

S4PB-M3/86A

DIODE 4 A, 100 V, SILICON, RECTIFIER DIODE, TO-277A, HALOGEN FREE AND ROHS COMPLIANT, SMPC, 3 PIN, Rectifier Diode
VISHAY