OPA4350UA/2K5G4 [TI]

四路、单电源、轨到轨、高速、低噪声运算放大器 | D | 14;
OPA4350UA/2K5G4
型号: OPA4350UA/2K5G4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

四路、单电源、轨到轨、高速、低噪声运算放大器 | D | 14

放大器 光电二极管 运算放大器 放大器电路
文件: 总28页 (文件大小:1191K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OPA350  
OPA2350  
OPA4350  
SBOS099C − SEPTEMBER 2000 − REVISED JANUARY 2005  
High-Speed, Single-Supply, Rail-to-Rail  
OPERATIONAL AMPLIFIERS  
MicroAmplifiertSeries  
FD EATURES  
DESCRIPTION  
RAIL-TO-RAIL INPUT  
The OPA350 series rail-to-rail CMOS operational  
D
D
D
D
D
D
D
D
RAIL-TO-RAIL OUTPUT (within 10mV)  
WIDE BANDWIDTH: 38MHz  
HIGH SLEW RATE: 22V/µs  
LOW NOISE: 5nV/Hz  
amplifiers are optimized for low voltage, single-supply  
operation. Rail-to-rail input/output, low noise (5nV/Hz),  
and high speed operation (38MHz, 22V/µs) make them  
ideal for driving sampling Analog-to-Digital (A/D)  
converters. They are also well suited for cell phone PA  
control loops and video processing (75drive capability)  
as well as audio and general purpose applications. Single,  
dual, and quad versions have identical specifications for  
maximum design flexibility.  
LOW THD+NOISE: 0.0006%  
UNITY-GAIN STABLE  
MicroSIZE PACKAGES  
SINGLE, DUAL, AND QUAD  
The OPA350 series operates on a single supply as low as  
2.5V with an input common-mode voltage range that  
extends 300mV below ground and 300mV above the  
positive supply. Output voltage swing is to within 10mV of  
the supply rails with a 10kload. Dual and quad designs  
feature completely independent circuitry for lowest  
crosstalk and freedom from interaction.  
AD PPLICATIONS  
CELL PHONE PA CONTROL LOOPS  
D
D
D
D
D
D
D
D
DRIVING A/D CONVERTERS  
VIDEO PROCESSING  
DATA ACQUISITION  
PROCESS CONTROL  
AUDIO PROCESSING  
COMMUNICATIONS  
ACTIVE FILTERS  
The single (OPA350) and dual (OPA2350) come in the  
miniature MSOP-8 surface mount, SO-8 surface mount,  
and DIP-8 packages. The quad (OPA4350) packages are  
the space-saving SSOP-16 surface mount and SO-14  
surface mount. All are specified from −40°C to +85°C and  
operate from −55°C to +150°C.  
TEST EQUIPMENT  
SPICE model available at www.ti.com  
OPA4350  
OPA350  
NC  
NC  
In  
+In  
1
2
3
4
8
7
6
5
OPA4350  
V+  
Out A  
In A  
+In A  
+V  
1
2
3
4
5
6
7
8
16 Out D  
15 In D  
14 +In D  
Out A  
In A  
+In A  
V+  
1
2
3
4
5
6
7
14 Out D  
13 In D  
12 +In D  
11 V−  
Output  
NC  
A
B
D
C
V
A
B
D
C
13  
V
DIP−8, SO−8, MSOP−8  
OPA2350  
+In B  
In B  
Out B  
NC  
12 +In C  
11 In C  
10 Out C  
+In B  
In B  
Out B  
10 +In C  
Out A  
In A  
+In A  
1
2
3
4
8
V+  
9
8
In C  
A
7
Out B  
In B  
+In B  
Out C  
B
6
9
NC  
5
SO−14  
SSOP−16  
DIP−8, SO−8, MSOP−8  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments  
semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆꢇ ꢂꢈ ꢃ ꢉꢆꢉ ꢊꢋ ꢌꢍ ꢎ ꢏꢐ ꢑꢊꢍꢋ ꢊꢒ ꢓꢔ ꢎ ꢎ ꢕꢋꢑ ꢐꢒ ꢍꢌ ꢖꢔꢗ ꢘꢊꢓ ꢐꢑꢊ ꢍꢋ ꢙꢐ ꢑꢕꢚ ꢀꢎ ꢍꢙꢔ ꢓꢑꢒ  
ꢓ ꢍꢋ ꢌꢍꢎ ꢏ ꢑꢍ ꢒ ꢖꢕ ꢓ ꢊ ꢌꢊ ꢓ ꢐ ꢑꢊ ꢍꢋꢒ ꢖ ꢕꢎ ꢑꢛꢕ ꢑꢕ ꢎ ꢏꢒ ꢍꢌ ꢆꢕꢜ ꢐꢒ ꢇꢋꢒ ꢑꢎ ꢔꢏ ꢕꢋꢑ ꢒ ꢒꢑ ꢐꢋꢙ ꢐꢎ ꢙ ꢝ ꢐꢎ ꢎ ꢐ ꢋꢑꢞꢚ  
ꢀꢎ ꢍ ꢙꢔꢓ ꢑ ꢊꢍ ꢋ ꢖꢎ ꢍ ꢓ ꢕ ꢒ ꢒ ꢊꢋ ꢟ ꢙꢍ ꢕ ꢒ ꢋꢍꢑ ꢋꢕ ꢓꢕ ꢒꢒ ꢐꢎ ꢊꢘ ꢞ ꢊꢋꢓ ꢘꢔꢙ ꢕ ꢑꢕ ꢒꢑꢊ ꢋꢟ ꢍꢌ ꢐꢘ ꢘ ꢖꢐ ꢎ ꢐꢏ ꢕꢑꢕ ꢎ ꢒꢚ  
Copyright 2000−2005, Texas Instruments Incorporated  
www.ti.com  
ꢂꢀꢉꢠ ꢡꢢ  
ꢂꢀꢉꢣ ꢠꢡ ꢢ  
ꢂꢀꢉꢤ ꢠꢡ ꢢ  
SBOS099C − SEPTEMBER 2000 − REVISED JANUARY 2005  
www.ti.com  
(1)  
ELECTROSTATIC DISCHARGE SENSITIVITY  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.0V  
This integrated circuit can be damaged by ESD. Texas  
Instruments recommends that all integrated circuits be  
handledwith appropriate precautions. Failure to observe  
(2)  
Signal Input Terminals , Voltage . . . . . (V−) − 0.3V to (V+) + 0.3V  
Current . . . . . . . . . . . . . . . . . . . . . . 10mA  
(3)  
Open Short-Circuit Current  
. . . . . . . . . . . . . . . . . . . . Continuous  
proper handling and installation procedures can cause damage.  
Operating Temperature Range . . . . . . . . . . . . . . . −55°C to +150°C  
Storage Temperature Range . . . . . . . . . . . . . . . . . −55°C to +150°C  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +150°C  
Lead Temperature (soldering, 10s) . . . . . . . . . . . . . . . . . . . . . +300°C  
ESD damage can range from subtle performance degradation to  
complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could  
cause the device not to meet its published specifications.  
(1)  
Stresses above these ratings may cause permanent damage.  
Exposure to absolute maximum conditions for extended periods  
may degrade device reliability. These are stress ratings only, and  
functional operation of the device at these or any other conditions  
beyond those specified is not implied.  
(2)  
(3)  
Input terminals are diode-clamped to the power-supply rails.  
Input signals that can swing more than 0.3V beyond the supply  
rails should be current limited to 10mA or less.  
Short-circuit to ground, one amplifier per package.  
(1)  
PACKAGE/ORDERING INFORMATION  
SPECIFIED  
TEMPERATURE  
RANGE  
PACKAGE  
DESIGNATOR  
PACKAGE  
MARKING  
ORDERING  
NUMBER  
TRANSPORT  
MEDIA, QUANTITY  
PRODUCT  
SINGLE  
PACKAGE-LEAD  
OPA350EA/250  
OPA350EA/2K5  
OPA350UA  
Tape and Reel, 250  
Tape and Reel, 2500  
Rails  
OPA350EA  
MSOP-8  
DGK  
−40°C to +85°C  
C50  
OPA350UA  
OPA350PA  
SO-8  
DIP-8  
D
P
−40°C to +85°C  
−40°C to +85°C  
OPA350UA  
OPA350PA  
OPA350UA/2K5  
OPA350PA  
Tape and Reel, 2500  
Rails  
DUAL  
OPA2350EA/250  
Tape and Reel, 250  
OPA2350EA  
MSOP-8  
DGK  
−40°C to +85°C  
D50  
OPA2350EA/2K5 Tape and Reel, 2500  
OPA2350UA Rails  
OPA2350UA/2K5 Tape and Reel, 2500  
OPA2350UA  
OPA2350PA  
SO-8  
DIP-8  
D
P
−40°C to +85°C  
−40°C to +85°C  
OPA2350UA  
OPA2350PA  
OPA2350PA  
Rails  
QUAD  
OPA4350EA/250  
Tape and Reel, 250  
OPA4350EA  
OPA4350UA  
SSOP-16  
SO-14  
DBQ  
D
−40°C to +85°C  
−40°C to +85°C  
OPA4350EA  
OPA4350UA  
OPA4350EA/2K5 Tape and Reel, 2500  
OPA4350UA Rails  
OPA4350UA/2K5 Tape and Reel, 2500  
(1)  
For the most current package and ordering information, see the Package Option Addendum located at the end of this data sheet.  
2
ꢂ ꢀꢉ ꢠꢡꢢ  
ꢂ ꢀꢉ ꢣꢠꢡ ꢢ  
ꢂ ꢀꢉ ꢤꢠꢡ ꢢ  
www.ti.com  
SBOS099C − SEPTEMBER 2000 − REVISED JANUARY 2005  
ELECTRICAL CHARACTERISTICS: V = 2.7V to 5.5V  
S
Boldface limits apply over the temperature range, T = −40°C to +85°C. V = 5V.  
A
S
All specifications at T = +25°C, R = 1kconnected to V /2 and V  
= V /2, unless otherwise noted.  
A
L
S
OUT  
S
OPA350, OPA2350, OPA4350  
(1)  
TYP  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
OFFSET VOLTAGE  
Input Offset Voltage  
= −40°C to +85°C  
V
OS  
V
S
= 5V  
150  
500  
µV  
mV  
T
A
1
vs Temperature  
vs Power-Supply Rejection Ratio  
= −40°C to +85°C  
T
= −40°C to +85°C  
4
µV/°C  
µV/V  
µV/V  
µV/V  
A
PSRR  
V
= 2.7V to 5.5V, V  
= 2.7V to 5.5V, V  
dc  
= 0V  
40  
150  
S
CM  
T
A
V
S
= 0V  
175  
CM  
Channel Separation (dual, quad)  
INPUT BIAS CURRENT  
0.15  
0.5  
Input Bias Current  
I
B
10  
pA  
pA  
vs Temperature  
See Typical Characteristics  
Input Offset Current  
I
0.5  
10  
OS  
NOISE  
Input Voltage Noise, f = 100Hz to 400kHz  
Input Voltage Noise Density, f = 10kHz  
Input Current Noise Density, f = 100kHz  
Current Noise Density, f = 10kHz  
INPUT VOLTAGE RANGE  
Common-Mode Voltage Range  
Common-ModeRejection Ratio  
4
7
5
4
µVrms  
nV/Hz  
nV/Hz  
fA/Hz  
e
i
n
n
V
T
= −40°C to +85°C  
−0.1  
66  
(V+) + 0.1  
V
CM  
CMRR  
A
V
= 2.7V, −0.1V < V  
= 5.5V, −0.1V < V  
= 5.5V, −0.1V < V  
< 2.8V  
< 5.6V  
< 5.6V  
84  
90  
dB  
dB  
dB  
S
S
CM  
CM  
CM  
V
74  
T
= −40°C to +85°C  
V
74  
A
S
INPUT IMPEDANCE  
Differential  
13  
10 || 2.5  
|| pF  
|| pF  
13  
10 || 6.5  
Common-Mode  
OPEN-LOOP GAIN  
Open-Loop Voltage Gain  
A
OL  
R
= 10k, 50mV < V < (V+) −50mV  
100  
100  
100  
100  
122  
120  
dB  
dB  
dB  
dB  
L
O
T
A
= −40°C to +85°C  
R
L
= 10kW, 50mV < V < (V+) −50mV  
O
R
L
= 1k, 200mV < V < (V+) −200mV  
O
T
A
= −40°C to +85°C  
R
L
= 1kW, 200mV < V < (V+) −200mV  
O
FREQUENCY RESPONSE  
Gain-Bandwidth Product  
Slew Rate  
C
= 100pF  
L
GBW  
SR  
G = 1  
38  
22  
MHz  
V/µs  
µs  
G = 1  
Settling Time: 0.1%  
G = 1, 2V Step  
G = 1, 2V Step  
0.22  
0.5  
0.01%  
µs  
Overload Recovery Time  
Total Harmonic Distortion + Noise  
Differential Gain Error  
Differential Phase Error  
V
G = V  
0.1  
µs  
IN  
S
(2)  
THD+N R = 600, V = 2.5V  
, G = 1, f = 1kHz  
0.0006  
0.17  
0.17  
%
L
O
PP  
(3)  
(3)  
G = 2, R = 600, V = 1.4V  
%
L
O
G = 2, R = 600, V = 1.4V  
deg  
L
O
(1)  
(2)  
(3)  
(4)  
(5)  
V
V
= +5V.  
S
= 0.25V to 2.75V.  
OUT  
NTSC signal generator used. See Figure 6 for test circuit.  
Output voltage swings are measured between the output and power supply rails.  
See typical characteristic curve, Output Voltage Swing vs Output Current.  
3
ꢂꢀꢉꢠ ꢡꢢ  
ꢂꢀꢉꢣ ꢠꢡ ꢢ  
ꢂꢀꢉꢤ ꢠꢡ ꢢ  
SBOS099C − SEPTEMBER 2000 − REVISED JANUARY 2005  
www.ti.com  
ELECTRICAL CHARACTERISTICS: V = 2.7V to 5.5V (continued)  
S
Boldface limits apply over the temperature range, T = −40°C to +85°C. V = 5V.  
A
S
All specifications at T = +25°C, R = 1kconnected to V /2 and V  
= V /2, unless otherwise noted.  
A
L
S
OUT  
S
OPA350, OPA2350, OPA4350  
(1)  
TYP  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
OUTPUT  
Voltage Output Swing from Rail  
(4)  
V
R
= 10k, A  
= 10kW, A  
100dB  
100dB  
10  
25  
50  
50  
mV  
mV  
mV  
mV  
mA  
mA  
OUT  
OUT  
L
OL  
T
A
= −40°C to +85°C  
R
L
OL  
R
= 1k, A  
= 1kW, A  
100dB  
100dB  
200  
200  
L
OL  
T
A
= −40°C to +85°C  
R
L
OL  
(5)  
40  
Output Current  
I
Short-Circuit Current  
I
80  
See Typical Characteristics  
SC  
C
LOAD  
Capacitive Load Drive  
POWER SUPPLY  
Operating Voltage Range  
Minimum Operating Voltage  
Quiescent Current (per amplifier)  
V
T
A
= −40°C to +85°C  
2.7  
5.5  
V
S
2.5  
5.2  
V
I
Q
I
O
I
O
= 0  
= 0  
7.5  
mA  
mA  
T
= −40°C to +85°C  
8.5  
A
TEMPERATURE RANGE  
Specified Range  
−40  
−55  
−55  
+85  
+150  
+150  
°C  
°C  
°C  
Operating Range  
Storage Range  
Thermal Resistance  
MSOP-8 Surface Mount  
SO-8 Surface Mount  
DIP-8  
q
JA  
150  
150  
100  
100  
100  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
SO-14 Surface Mount  
SSOP-16 Surface Mount  
(1)  
(2)  
(3)  
(4)  
(5)  
V
V
= +5V.  
S
= 0.25V to 2.75V.  
OUT  
NTSC signal generator used. See Figure 6 for test circuit.  
Output voltage swings are measured between the output and power supply rails.  
See typical characteristic curve, Output Voltage Swing vs Output Current.  
4
ꢂ ꢀꢉ ꢠꢡꢢ  
ꢂ ꢀꢉ ꢣꢠꢡ ꢢ  
ꢂ ꢀꢉ ꢤꢠꢡ ꢢ  
www.ti.com  
SBOS099C − SEPTEMBER 2000 − REVISED JANUARY 2005  
TYPICAL CHARACTERISTICS  
All specifications at T = +25°C, V = +5V, and R = 1kconnected to V /2, unless otherwise noted.  
A
S
L
S
POWER SUPPLY AND COMMONMODE  
REJECTION RATIO vs FREQUENCY  
OPEN-LOOP GAIN/PHASE vs FREQUENCY  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
160  
140  
120  
100  
80  
0
PSRR  
45  
CMRR  
(VS = +5V  
= 0.1V to 5.1V)  
φ
90  
VCM  
60  
G
40  
135  
20  
0
180  
0.1  
1
10  
100  
1k  
10k 100k 1M 10M 100M  
Frequency (Hz)  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
INPUT VOLTAGE AND CURRENT NOISE  
SPECTRAL DENSITY vs FREQUENCY  
CHANNEL SEPARATION vs FREQUENCY  
140  
130  
120  
110  
100  
90  
10k  
1k  
100k  
10k  
1k  
Current Noise  
100  
10  
Voltage Noise  
100  
10  
80  
1
70  
Dual and quad devices.  
60  
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
TOTAL HARMONIC DISTORTION + NOISE  
vs FREQUENCY  
HARMONIC DISTORTION + NOISE vs FREQUENCY  
1
1
G = 1  
VO = 2.5VPP  
RL = 600Ω  
(40dBc)  
RL = 600Ω  
0.1  
(60dBc)  
G = 100, 3VPP (VO = 1V to 4V)  
G = 10, 3VPP (VO = 1V to 4V)  
0.1  
0.01  
0.01  
( 80dBc)  
G = 1, 3VPP (VO = 1V to 4V)  
Input goes through transition region  
0.001  
(100dBc)  
0.001  
0.0001  
3rd−Harmonic  
2nd−Harmonic  
G = 1, 2.5VPP (VO = 0.25V to 2.75V)  
Input does NOT go through transition region  
0.0001  
(120dBc)  
1k  
10k  
100k  
Frequency (Hz)  
1M  
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
5
ꢂꢀꢉꢠ ꢡꢢ  
ꢂꢀꢉꢣ ꢠꢡ ꢢ  
ꢂꢀꢉꢤ ꢠꢡ ꢢ  
SBOS099C − SEPTEMBER 2000 − REVISED JANUARY 2005  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
All specifications at T = +25°C, V = +5V, and R = 1kconnected to V /2, unless otherwise noted.  
A
S
L
S
OPEN−LOOP GAIN vs TEMPERATURE  
DIFFERENTIAL GAIN/PHASE vs RESISTIVE LOAD  
G = 2  
130  
125  
120  
115  
110  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VO = 1.4V  
Phase  
NTSC Signal Generator  
See Figure 6 for test circuit.  
RL = 1k  
RL = 10k  
Gain  
RL = 600  
25  
75  
50  
0
25  
50  
75  
100 125  
0
100 200 300 400 500 600 700 800 900 1000  
_
Temperature ( C)  
Resistive Load (  
)
SLEW RATE vs TEMPERATURE  
COMMON−MODE AND POWERSUPPLY REJECTION RATIO  
vs TEMPERATURE  
100  
40  
35  
30  
25  
20  
15  
10  
5
110  
100  
90  
CMRR, VS = 5.5V  
(VCM 0.1V to +5.6V)  
=
90  
80  
70  
60  
Negative Slew Rate  
Positive Slew Rate  
CMRR, VS = 2.7V  
(VCM = 0.1V to +2.8V)  
PSRR  
80  
0
70  
25  
75  
50 25  
0
25  
50  
75  
100  
125  
75  
50  
0
25  
50  
75  
100  
125  
_
Temperature (_C)  
Temperature ( C)  
QUIESCENT CURRENT vs SUPPLY VOLTAGE  
Per Amplifier  
QUIESCENT CURRENT AND  
SHORT−CIRCUIT CURRENT vs TEMPERATURE  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
100  
90  
80  
70  
60  
50  
40  
30  
+ISC  
I
SC  
IQ  
75  
50  
25  
0
25  
50  
75  
100 125  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Temperature ( C)  
_
Supply Voltage (V)  
6
ꢂ ꢀꢉ ꢠꢡꢢ  
ꢂ ꢀꢉ ꢣꢠꢡ ꢢ  
ꢂ ꢀꢉ ꢤꢠꢡ ꢢ  
www.ti.com  
SBOS099C − SEPTEMBER 2000 − REVISED JANUARY 2005  
TYPICAL CHARACTERISTICS (continued)  
All specifications at T = +25°C, V = +5V, and R = 1kconnected to V /2, unless otherwise noted.  
A
S
L
S
INPUT BIAS CURRENT  
vs INPUT COMMON−MODE VOLTAGE  
INPUT BIAS CURRENT vs TEMPERATURE  
1k  
100  
10  
1.5  
1.0  
0.5  
0.0  
1
0.1  
0.5  
25  
75  
50  
0
25  
50  
75  
100  
125  
0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
_
Temperature ( C)  
Common−Mode Voltage (V)  
MAXIMUM OUTPUT VOLTAGE vs FREQUENCY  
CLOSED−LOOP OUTPUT IMPEDANCE vs FREQUENCY  
6
5
4
3
2
1
0
100  
10  
VS = 5.5V  
Maximum output  
voltage without  
slew rate−induced  
distortion.  
1
G = 100  
VS = 2.7V  
0.1  
G = 10  
G = 1  
0.01  
0.001  
0.0001  
100k  
1M  
10M  
100M  
1
10  
100  
1k  
10k 100k  
1M  
10M 100M  
Frequency (Hz)  
Frequency (Hz)  
OPEN−LOOP GAIN vs OUTPUT VOLTAGE SWING  
IOUT = 2.5mA  
OUTPUT VOLTAGE SWING vs OUTPUT CURRENT  
140  
130  
120  
110  
100  
90  
V+  
µ
IOUT = 250 A  
(V+) 1  
_
+25 C  
_
55 C  
_
+125 C  
(V+) 2  
IOUT = 4.2mA  
Depending on circuit configuration  
(including closed−loop gain) performance  
may be degraded in shaded region.  
(V )+2  
80  
_
+25 C  
_
_
55 C  
+125 C  
(V )+1  
70  
60  
(V )  
0
20  
40 60 80 100 120 140 160 180 200  
Output Voltage Swing from Rails (mV)  
0
10  
20  
Output Current (mA)  
30  
40  
7
ꢂꢀꢉꢠ ꢡꢢ  
ꢂꢀꢉꢣ ꢠꢡ ꢢ  
ꢂꢀꢉꢤ ꢠꢡ ꢢ  
SBOS099C − SEPTEMBER 2000 − REVISED JANUARY 2005  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
All specifications at T = +25°C, V = +5V, and R = 1kconnected to V /2, unless otherwise noted.  
A
S
L
S
OFFSET VOLTAGE  
PRODUCTION DISTRIBUTION  
OFFSET VOLTAGE DRIFT  
PRODUCTION DISTRIBUTION  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
Typical distribution of  
packaged units.  
Typical production  
distribution of  
packaged units.  
6
6
4
4
2
2
0
0
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
Offset Voltage Drift (µV/_C)  
Offset Voltage ( V)  
µ
SETTLING TIME vs CLOSED−LOOP GAIN  
SMALL−SIGNAL OVERSHOOT vs LOAD CAPACITANCE  
10  
80  
70  
60  
50  
40  
30  
20  
10  
0
G = 1  
0.01%  
G =  
1
1
G = 10  
0.1%  
0.1  
10  
100  
1k  
10k  
100k  
1M  
100  
1
10  
Load Capacitance (pF)  
Closed−Loop Gain (V/V)  
SMALL−SIGNAL STEP RESPONSE  
CL = 100pF  
LARGE−SIGNAL STEP RESPONSE  
CL = 100pF  
100ns/div  
200ns/div  
8
ꢂ ꢀꢉ ꢠꢡꢢ  
ꢂ ꢀꢉ ꢣꢠꢡ ꢢ  
ꢂ ꢀꢉ ꢤꢠꢡ ꢢ  
www.ti.com  
SBOS099C − SEPTEMBER 2000 − REVISED JANUARY 2005  
OPERATING VOLTAGE  
APPLICATIONS INFORMATION  
OPA350 series op amps are fully specified from +2.7V  
to +5.5V. However, supply voltage may range from  
+2.5V to +5.5V. Parameters are tested over the  
specified supply range—a unique feature of the  
OPA350 series. In addition, many specifications apply  
from −40°C to +85°C. Most behavior remains virtually  
unchanged throughout the full operating voltage range.  
Parameters that vary significantly with operating  
voltage or temperature are shown in the typical  
characteristics.  
OPA350 series op amps are fabricated on a  
state-of-the-art 0.6 micron CMOS process. They are  
unity-gain stable and suitable for a wide range of  
general-purpose applications. Rail-to-rail input/output  
make them ideal for driving sampling A/D converters.  
They are also well-suited for controlling the output  
power in cell phones. These applications often require  
high speed and low noise. In addition, the OPA350  
series offers a low-cost solution for general-purpose  
and consumer video applications (75drive capability).  
Excellent ac performance makes the OPA350 series  
well-suited for audio applications. Their bandwidth,  
slew rate, low noise (5nV/Hz), low THD (0.0006%),  
and small package options are ideal for these  
applications. The class AB output stage is capable of  
driving 600loads connected to any point between V+  
and ground.  
RAIL-TO-RAIL INPUT  
The tested input common-mode voltage range of the  
OPA350 series extends 100mV beyond the supply rails.  
This is achieved with a complementary input stage—an  
N-channel input differential pair in parallel with a  
P-channel differential pair, as shown in Figure 2. The  
N-channel pair is active for input voltages close to the  
positive rail, typically (V+) – 1.8V to 100mV above the  
positive supply, while the P-channel pair is on for inputs  
from 100mV below the negative supply to  
approximately (V+) – 1.8V. There is a small transition  
region, typically (V+) – 2V to (V+) – 1.6V, in which both  
pairs are on. This 400mV transition region can vary  
400mV with process variation. Thus, the transition  
region (both input stages on) can range from (V+) –  
2.4V to (V+) – 2.0V on the low end, up to (V+) – 1.6V  
to (V+) – 1.2V on the high end.  
Rail-to-rail input and output swing significantly  
increases dynamic range, especially in low voltage  
supply applications. Figure 1 shows the input and  
output waveforms for the OPA350 in unity-gain  
configuration. Operation is from a single +5V supply  
with a 1kload connected to V /2. The input is a 5V  
S
PP  
sinusoid. Output voltage swing is approximately  
4.95V  
.
PP  
Power supply pins should be bypassed with 0.01µF  
ceramic capacitors.  
OPA350 series op amps are laser-trimmed to reduce  
offset voltage difference between the N-channel and  
P-channel input stages, resulting in improved  
common-mode rejection and a smooth transition  
between the N-channel pair and the P-channel pair.  
However, within the 400mV transition region PSRR,  
CMRR, offset voltage, offset drift, and THD may be  
degraded compared to operation outside this region.  
VS = +5, G = +1, RL = 1k  
5V  
VIN  
A double-folded cascode adds the signal from the two  
input pairs and presents a differential signal to the class  
AB output stage. Normally, input bias current is  
approximately 500fA. However, large inputs (greater  
than 300mV beyond the supply rails) can turn on the  
OPA350’s input protection diodes, causing excessive  
current to flow in or out of the input pins. Momentary  
voltages greater than 300mV beyond the power supply  
can be tolerated if the current on the input pins is limited  
to 10mA. This is easily accomplished with an input  
resistor, as shown in Figure 3. Many input signals are  
inherently current-limited to less than 10mA; therefore,  
a limiting resistor is not required.  
0
5V  
VOUT  
0
Figure 1. Rail-to-Rail Input and Output  
9
ꢂꢀꢉꢠ ꢡꢢ  
ꢂꢀꢉꢣ ꢠꢡ ꢢ  
ꢂꢀꢉꢤ ꢠꢡ ꢢ  
SBOS099C − SEPTEMBER 2000 − REVISED JANUARY 2005  
www.ti.com  
V+  
Reference  
Current  
VIN+  
VIN  
VBIAS1  
Class AB  
Control  
VO  
Circuitry  
VBIAS2  
V
(Ground)  
Figure 2. Simplified Schematic  
within a few tens of millivolts from the supply rails and  
maintain high open-loop gain. See the typical  
characteristics Output Voltage Swing vs Output Current  
and Open-Loop Gain vs Output Voltage.  
V+  
CAPACITIVE LOAD AND STABILITY  
IOVERLOAD  
10mA max  
OPA350 series op amps can drive a wide range of  
capacitive loads. However, all op amps under certain  
conditions may become unstable. Op amp  
configuration, gain, and load value are just a few of the  
factors to consider when determining stability. An op  
amp in unity-gain configuration is the most susceptible  
to the effects of capacitive load. The capacitive load  
reacts with the op amp’s output impedance, along with  
any additional load resistance, to create a pole in the  
small-signal response that degrades the phase margin.  
VOUT  
OPAx350  
VIN  
5k  
Figure 3. Input Current Protection for Voltages  
Exceeding the Supply Voltage  
In unity gain, OPA350 series op amps perform well with  
very large capacitive loads. Increasing gain enhances  
the amplifier’s ability to drive more capacitance. The  
typical characteristic Small-Signal Overshoot vs  
Capacitive Load shows performance with a 1kΩ  
resistive load. Increasing load resistance improves  
capacitive load drive capability.  
RAIL-TO-RAIL OUTPUT  
A class AB output stage with common-source  
transistors is used to achieve rail-to-rail output. For light  
resistive loads (>10k), the output voltage swing is  
typically ten millivolts from the supply rails. With heavier  
resistive loads (600to 10k), the output can swing to  
10  
ꢂ ꢀꢉ ꢠꢡꢢ  
ꢂ ꢀꢉ ꢣꢠꢡ ꢢ  
ꢂ ꢀꢉ ꢤꢠꢡ ꢢ  
www.ti.com  
SBOS099C − SEPTEMBER 2000 − REVISED JANUARY 2005  
series provides an effective means of buffering the  
A/D’s input capacitance and resulting charge injection  
while providing signal gain.  
FEEDBACK CAPACITOR IMPROVES  
RESPONSE  
For optimum settling time and stability with  
high-impedance feedback networks, it may be  
necessary to add a feedback capacitor across the  
feedback resistor, RF, as shown in Figure 4. This  
capacitor compensates for the zero created by the  
feedback network impedance and the OPA350’s input  
capacitance (and any parasitic layout capacitance).  
The effect becomes more significant with higher  
impedance networks.  
Figure 5 shows the OPA350 driving an ADS7861. The  
ADS7861 is a dual, 500kHz, 12-bit sampling converter  
in the tiny SSOP-24 package. When used with the  
miniature package options of the OPA350 series, the  
combination is ideal for space-limited applications. For  
further information, consult the ADS7861 data sheet  
(SBAS110A).  
OUTPUT IMPEDANCE  
CF  
The low frequency open-loop output impedance of the  
OPA350’s  
common-source  
output  
stage  
is  
RIN  
RF  
V+  
approximately 1k. When the op amp is connected with  
feedback, this value is reduced significantly by the loop  
gain of the op amp. For example, with 122dB of  
open-loop gain, the output impedance is reduced in  
unity-gain to less than 0.001. For each decade rise in  
the closed-loop gain, the loop gain is reduced by the  
same amount which results in a ten-fold increase in  
effective output impedance (see the typical  
characteristic, Output Impedance vs Frequency).  
VIN  
CIN  
RIN CIN = RF CF  
VOUT  
OPA350  
CL  
CIN  
At higher frequencies, the output impedance will rise as  
the open-loop gain of the op amp drops. However, at  
these frequencies the output also becomes capacitive  
due to parasitic capacitance. This prevents the output  
impedance from becoming too high, which can cause  
stability problems when driving capacitive loads. As  
mentioned previously, the OPA350 has excellent  
capacitive load drive capability for an op amp with its  
bandwidth.  
Where CIN is equal to the OPA350’s input  
capacitance (approximately 9pF) plus any  
parasitic layout capacitance.  
Figure 4. Feedback Capacitor Improves Dynamic  
Performance  
It is suggested that a variable capacitor be used for the  
feedback capacitor since input capacitance may vary  
between op amps and layout capacitance is difficult to  
determine. For the circuit shown in Figure 4, the value  
of the variable feedback capacitor should be chosen so  
that the input resistance times the input capacitance of  
the OPA350 (typically 9pF) plus the estimated parasitic  
layout capacitance equals the feedback capacitor times  
the feedback resistor:  
VIDEO LINE DRIVER  
Figure 6 shows a circuit for a single supply, G = 2  
composite video line driver. The synchronized outputs  
of a composite video line driver extend below ground.  
As shown, the input to the op amp should be ac-coupled  
and shifted positively to provide adequate signal swing  
to account for these negative signals in a single-supply  
configuration.  
RIN @ CIN + RF @ CF  
where CIN is equal to the OPA350’s input capacitance  
(sum of differential and common-mode) plus the layout  
capacitance. The capacitor can be varied until optimum  
performance is obtained.  
The input is terminated with a 75resistor and  
ac-coupled with a 47µF capacitor to a voltage divider  
that provides the dc bias point to the input. In Figure 6,  
this point is approximately (V−) + 1.7V. Setting the  
optimal bias point requires some understanding of the  
nature of composite video signals. For best  
performance, one should be careful to avoid the  
distortion caused by the transition region of the  
OPA350’s complementary input stage. Refer to the  
discussion of rail-to-rail input.  
DRIVING A/D CONVERTERS  
OPA350 series op amps are optimized for driving  
medium speed (up to 500kHz) sampling A/D  
converters. However, they also offer excellent  
performance for higher speed converters. The OPA350  
11  
ꢂꢀꢉꢠ ꢡꢢ  
ꢂꢀꢉꢣ ꢠꢡ ꢢ  
ꢂꢀꢉꢤ ꢠꢡ ꢢ  
SBOS099C − SEPTEMBER 2000 − REVISED JANUARY 2005  
www.ti.com  
CB1  
+5V  
2k  
2k  
2
3
4
1/ 4  
1
OPA4350  
VIN B1  
µ
µ
0.1 F  
0.1 F  
CB0  
24  
+VD  
13  
+VA  
2k  
2k  
2
3
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
CH B1+  
SERIAL DATA A  
SERIAL DATA B  
BUSY  
6
CH B1  
7
4
1/ 4  
CH B0+  
OPA4350  
5
5
VIN B0  
CH B0  
CLOCK  
6
CA1  
CH A1+  
CS  
Serial  
Interface  
7
ADS7861  
CH A1  
RD  
CONVST  
A0  
2k  
2k  
8
CH A0+  
9
CH A0  
9
10  
11  
8
1/ 4  
REFIN  
M0  
OPA4350  
10  
VIN A1  
REFOUT  
M1  
CA0  
DGND  
AGND  
12  
1
2k  
2k  
12  
13  
14  
1/ 4  
OPA4350  
VIN A0  
11  
VIN = 0V to 2.45V for 0V to 4.9V output.  
Choose CB1, CB0, CA1, CA0 to filter high frequency noise.  
Figure 5. OPA4350 Driving Sampling A/D Converter  
12  
ꢂ ꢀꢉ ꢠꢡꢢ  
ꢂ ꢀꢉ ꢣꢠꢡ ꢢ  
ꢂ ꢀꢉ ꢤꢠꢡ ꢢ  
www.ti.com  
SBOS099C − SEPTEMBER 2000 − REVISED JANUARY 2005  
RG  
RF  
1k  
1k  
+5V  
C1  
C4  
µ
220 F  
µ
0.1 F  
+
µ
µ
10 F  
0.1 F  
2
3
7
C5  
µ
1000 F  
ROUT  
Cable  
6
VOUT  
OPA350  
C2  
µ
47 F  
RL  
Video  
In  
4
R1  
R2  
75  
5k  
+5V (pin 7)  
R3  
R4  
5k  
5k  
C3  
µ
10 F  
Figure 6. Single-Supply Video Line Driver  
+5V  
50k  
(2.5V)  
8
4
RG  
REF1004−2.5  
R1  
R2  
100k  
25k  
+5V  
R3  
R4  
25k  
100k  
1/2  
OPA2350  
1/2  
VO  
OPA2350  
RL  
10k  
200k  
RG  
G = 5 +  
Figure 7. Two Op-Amp Instrumentation Amplifier With  
Improved High Frequency Common-Mode Rejection  
13  
ꢂꢀꢉꢠ ꢡꢢ  
ꢂꢀꢉꢣ ꢠꢡ ꢢ  
ꢂꢀꢉꢤ ꢠꢡ ꢢ  
SBOS099C − SEPTEMBER 2000 − REVISED JANUARY 2005  
www.ti.com  
R1  
10.5k  
C1  
4.7nF  
+2.5V  
+2.5V  
C1  
1830pF  
C2  
270pF  
R1  
2.74kΩ  
R2  
19.6kΩ  
VOUT  
OPA350  
VOUT  
OPA350  
RL  
20kΩ  
VIN  
RL  
VIN  
20kΩ  
R2  
49.9k  
C2  
1nF  
2.5V  
2.5V  
Figure 8. 10kHz Low-Pass Filter  
Figure 9. 10kHz High-Pass Filter  
14  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
PACKAGING INFORMATION  
Orderable Device  
OPA2350EA/250  
OPA2350EA/250G4  
OPA2350EA/2K5  
OPA2350EA/2K5G4  
OPA2350PA  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
ACTIVE  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
PDIP  
DGK  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
250  
Green (RoHS CU NIPDAUAG Level-2-260C-1 YEAR  
& no Sb/Br)  
D50  
D50  
D50  
D50  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DGK  
DGK  
DGK  
P
250  
2500  
2500  
50  
Green (RoHS CU NIPDAUAG Level-2-260C-1 YEAR  
& no Sb/Br)  
Green (RoHS CU NIPDAUAG Level-2-260C-1 YEAR  
& no Sb/Br)  
Green (RoHS CU NIPDAUAG Level-2-260C-1 YEAR  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
N / A for Pkg Type  
OPA2350PA  
OPA2350PA  
OPA2350PAG4  
OPA2350UA  
PDIP  
P
50  
Green (RoHS  
& no Sb/Br)  
N / A for Pkg Type  
SOIC  
D
75  
Green (RoHS  
& no Sb/Br)  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
OPA  
2350UA  
OPA2350UA/2K5  
OPA2350UA/2K5G4  
OPA2350UAG4  
OPA350EA/250  
OPA350EA/250G4  
OPA350EA/2K5  
OPA350EA/2K5G4  
OPA350PA  
SOIC  
D
2500  
2500  
75  
Green (RoHS  
& no Sb/Br)  
OPA  
2350UA  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
OPA  
2350UA  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
OPA  
2350UA  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
PDIP  
DGK  
DGK  
DGK  
DGK  
P
250  
250  
2500  
2500  
50  
Green (RoHS CU NIPDAUAG Level-2-260C-1 YEAR  
& no Sb/Br)  
C50  
Green (RoHS CU NIPDAUAG Level-2-260C-1 YEAR  
& no Sb/Br)  
C50  
Green (RoHS CU NIPDAUAG Level-2-260C-1 YEAR  
& no Sb/Br)  
C50  
Green (RoHS CU NIPDAUAG Level-2-260C-1 YEAR  
& no Sb/Br)  
C50  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
N / A for Pkg Type  
OPA350PA  
OPA350PA  
OPA350PAG4  
PDIP  
P
50  
Green (RoHS  
& no Sb/Br)  
N / A for Pkg Type  
OPA350UA  
SOIC  
D
75  
Green (RoHS  
& no Sb/Br)  
Level-2-260C-1 YEAR  
OPA  
350UA  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
OPA350UA/2K5  
OPA350UA/2K5G4  
OPA350UAG4  
ACTIVE  
SOIC  
SOIC  
SOIC  
SSOP  
SSOP  
SSOP  
SSOP  
SOIC  
SOIC  
SOIC  
SOIC  
D
8
2500  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
OPA  
350UA  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
D
D
8
2500  
75  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
OPA  
350UA  
8
Green (RoHS  
& no Sb/Br)  
-40 to 85  
OPA  
350UA  
OPA4350EA/250  
OPA4350EA/250G4  
OPA4350EA/2K5  
OPA4350EA/2K5G4  
OPA4350UA  
DBQ  
DBQ  
DBQ  
DBQ  
D
16  
16  
16  
16  
14  
14  
14  
14  
250  
250  
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
OPA  
4350EA  
Green (RoHS  
& no Sb/Br)  
OPA  
4350EA  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
-40 to 85  
OPA  
4350EA  
Green (RoHS  
& no Sb/Br)  
OPA  
4350EA  
Green (RoHS  
& no Sb/Br)  
OPA4350UA  
OPA4350UA  
OPA4350UA  
OPA4350UA  
OPA4350UA/2K5  
OPA4350UA/2K5G4  
OPA4350UAG4  
D
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
D
Green (RoHS  
& no Sb/Br)  
D
Green (RoHS  
& no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4)  
Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
22-Jun-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA2350EA/250  
OPA2350EA/2K5  
OPA350EA/250  
OPA350UA/2K5  
OPA4350EA/250  
OPA4350EA/2K5  
OPA4350UA/2K5  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
DGK  
D
8
8
250  
2500  
250  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
16.4  
5.3  
5.3  
5.3  
6.4  
6.4  
6.4  
6.5  
3.4  
3.4  
3.4  
5.2  
5.2  
5.2  
9.0  
1.4  
1.4  
1.4  
2.1  
2.1  
2.1  
2.1  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
16.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
8
8
2500  
250  
SSOP  
SSOP  
SOIC  
DBQ  
DBQ  
D
16  
16  
14  
2500  
2500  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
22-Jun-2013  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA2350EA/250  
OPA2350EA/2K5  
OPA350EA/250  
OPA350UA/2K5  
OPA4350EA/250  
OPA4350EA/2K5  
OPA4350UA/2K5  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
DGK  
D
8
8
250  
2500  
250  
210.0  
367.0  
210.0  
367.0  
210.0  
367.0  
367.0  
185.0  
367.0  
185.0  
367.0  
185.0  
367.0  
367.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
38.0  
8
8
2500  
250  
SSOP  
SSOP  
SOIC  
DBQ  
DBQ  
D
16  
16  
14  
2500  
2500  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

OPA4350UA2K5

High-Speed, Single-Supply, Rail-to-Rail OPERATIONAL AMPLIFIERS
TI

OPA4353

High-Speed, Single-Supply, Rail-to-Rail OPERATIONAL AMPLIFIERS MicroAmplifier ⑩ Series
BB

OPA4353

High-Speed, Single-Supply, Rail-to-Rail OPERATIONAL AMPLIFIERS
TI

OPA4353EA

High-Speed, Single-Supply, Rail-to-Rail OPERATIONAL AMPLIFIERS MicroAmplifier ⑩ Series
BB

OPA4353EA

High-Speed, Single-Supply, Rail-to-Rail OPERATIONAL AMPLIFIERS
TI

OPA4353EA/250

High-Speed, Single-Supply, Rail-to-Rail OPERATIONAL AMPLIFIERS
TI

OPA4353EA/250G4

High-Speed, Single-Supply, Rail-to-Rail OPERATIONAL AMPLIFIERS
TI

OPA4353EA/2K5

High-Speed, Single-Supply, Rail-to-Rail OPERATIONAL AMPLIFIERS
TI

OPA4353EA/2K5G4

High-Speed, Single-Supply, Rail-to-Rail OPERATIONAL AMPLIFIERS
TI

OPA4353EA250

High-Speed, Single-Supply, Rail-to-Rail PERATIONAL AMPLIFIERS
TI

OPA4353EA250G4

High-Speed, Single-Supply, Rail-to-Rail PERATIONAL AMPLIFIERS
TI

OPA4353EA2K5

High-Speed, Single-Supply, Rail-to-Rail PERATIONAL AMPLIFIERS
TI