OMAPL137DZKB3 [TI]

OMAP-L137 Low-Power Applications Processor;
OMAPL137DZKB3
型号: OMAPL137DZKB3
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

OMAP-L137 Low-Power Applications Processor

时钟 外围集成电路
文件: 总223页 (文件大小:1314K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
OMAP-L137 Low-Power Applications Processor  
Check for Samples: OMAP-L137  
1 OMAP-L137 Low-Power Applications Processor  
1.1 Features  
1234  
– 8K-Byte RAM (Vector Table)  
• Highlights  
– 64K-Byte ROM  
– Dual Core SoC  
• C674x Instruction Set Features  
375/456-MHz ARM926EJ-S™ RISC MPU  
375/456-MHz C674x VLIW DSP  
– Superset of the C67x+™ and C64x+™ ISAs  
– Up to 3648/2736 C674x MIPS/MFLOPS  
– Byte-Addressable (8-/16-/32-/64-Bit Data)  
– 8-Bit Overflow Protection  
– TMS320C674x Fixed/Floating-Point VLIW  
DSP Core  
– Enhanced Direct-Memory-Access Controller  
3 (EDMA3)  
– Bit-Field Extract, Set, Clear  
– 128K-Byte RAM Shared Memory  
– Two External Memory Interfaces  
– Normalization, Saturation, Bit-Counting  
– Compact 16-Bit Instructions  
– Three Configurable 16550 type UART  
Modules  
– LCD Controller  
• C674x Two Level Cache Memory Architecture  
– 32K-Byte L1P Program RAM/Cache  
– 32K-Byte L1D Data RAM/Cache  
– Two Serial Peripheral Interfaces (SPI)  
– Multimedia Card (MMC)/Secure Digital (SD)  
– Two Master/Slave Inter-Integrated Circuit  
– One Host-Port Interface (HPI)  
– 256K-Byte L2 Unified Mapped RAM/Cache  
– Flexible RAM/Cache Partition (L1 and L2)  
• Enhanced Direct-Memory-Access Controller 3  
(EDMA3):  
– USB 1.1 OHCI (Host) With Integrated PHY  
(USB1)  
• Applications  
– 2 Transfer Controllers  
– 32 Independent DMA Channels  
– 8 Quick DMA Channels  
– Industrial Diagnostics  
– Test and measurement  
– Military Sonar/ Radar  
– Programmable Transfer Burst Size  
• TMS320C674x Fixed/Floating-Point VLIW DSP  
Core  
– Medical measurement  
– Professional Audio  
– Load-Store Architecture With Non-Aligned  
Support  
• Software Support  
– 64 General-Purpose Registers (32 Bit)  
– Six ALU (32-/40-Bit) Functional Units  
– TI DSP/BIOS™  
– Chip Support Library and DSP Library  
• Dual Core SoC  
– 375/456-MHz ARM926EJ-S™ RISC MPU  
– 375/456-MHz C674x VLIW DSP  
• ARM926EJ-S Core  
Supports 32-Bit Integer, SP (IEEE Single  
Precision/32-Bit) and DP (IEEE Double  
Precision/64-Bit) Floating Point  
Supports up to Four SP Additions Per  
Clock, Four DP Additions Every 2 Clocks  
Supports up to Two Floating Point (SP or  
DP) Reciprocal Approximation (RCPxP)  
and Square-Root Reciprocal  
Approximation (RSQRxP) Operations Per  
Cycle  
– 32-Bit and 16-Bit (Thumb®) Instructions  
– DSP Instruction Extensions  
– Single Cycle MAC  
– ARM™ Jazelle® Technology  
– EmbeddedICE-RT™ for Real-Time Debug  
• ARM9 Memory Architecture  
– 16K-Byte Instruction Cache  
– 16K-Byte Data Cache  
– Two Multiply Functional Units  
Mixed-Precision IEEE Floating Point  
Multiply Supported up to:  
2 SP x SP -> SP Per Clock  
2 SP x SP -> DP Every Two Clocks  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
DSP/BIOS, TMS320C6000, C6000 are trademarks of Texas Instruments.  
ARM926EJ-S, ETM9, CoreSight are trademarks of ARM Limited.  
All other trademarks are the property of their respective owners.  
2
3
4
PRODUCTION DATA information is current as of publication date. Products conform to  
specifications per the terms of the Texas Instruments standard warranty. Production  
processing does not necessarily include testing of all parameters.  
Copyright © 2008–2013, Texas Instruments Incorporated  
 
 
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
2 SP x DP -> DP Every Three Clocks  
2 DP x DP -> DP Every Four Clocks  
Entire subsystem under a single PSC  
clock gating domain  
– Dedicated interrupt controller  
– Dedicated switched central resource  
Fixed Point Multiply Supports Two 32 x  
32-Bit Multiplies, Four 16 x 16-Bit  
Multiplies, or Eight 8 x 8-Bit Multiplies per  
Clock Cycle, and Complex Multiples  
• USB 1.1 OHCI (Host) With Integrated PHY  
(USB1)  
– Instruction Packing Reduces Code Size  
– All Instructions Conditional  
– Hardware Support for Modulo Loop  
Operation  
– Protected Mode Operation  
– Exceptions Support for Error Detection and  
Program Redirection  
• USB 2.0 OTG Port With Integrated PHY (USB0)  
– USB 2.0 High-/Full-Speed Client  
– USB 2.0 High-/Full-/Low-Speed Host  
– End Point 0 (Control)  
– End Points 1,2,3,4 (Control, Bulk, Interrupt or  
ISOC) Rx and Tx  
• Three Multichannel Audio Serial Ports:  
– Six Clock Zones and 28 Serial Data Pins  
– Supports TDM, I2S, and Similar Formats  
– DIT-Capable (McASP2)  
– FIFO buffers for Transmit and Receive  
• 10/100 Mb/s Ethernet MAC (EMAC):  
– IEEE 802.3 Compliant (3.3-V I/O Only)  
– RMII Media Independent Interface  
– Management Data I/O (MDIO) Module  
• Real-Time Clock With 32 KHz Oscillator and  
Separate Power Rail  
• One 64-Bit General-Purpose Timer  
(Configurable as Two 32-Bit Timers)  
• 128K-Byte RAM Shared Memory  
• 3.3V LVCMOS IOs (except for USB interfaces)  
• Two External Memory Interfaces:  
– EMIFA  
NOR (8-/16-Bit-Wide Data)  
NAND (8-/16-Bit-Wide Data)  
16-Bit SDRAM With 128MB Address  
Space  
– EMIFB  
32-Bit or 16-Bit SDRAM With 256MB  
Address Space  
• Three Configurable 16550 type UART Modules:  
– UART0 With Modem Control Signals  
• One 64-bit General-Purpose/Watchdog Timer  
(Configurable as Two 32-bit General-Purpose  
Timers)  
– Autoflow control signals (CTS, RTS) on  
UART0 only  
– 16-byte FIFO  
– 16x or 13x Oversampling Option  
• LCD Controller  
• Two Serial Peripheral Interfaces (SPI) Each  
With One Chip-Select  
• Multimedia Card (MMC)/Secure Digital (SD)  
Card Interface with Secure Data I/O (SDIO)  
• Two Master/Slave Inter-Integrated Circuit (I2C  
Bus™)  
• Three Enhanced Pulse Width Modulators  
(eHRPWM):  
– Dedicated 16-Bit Time-Base Counter With  
Period And Frequency Control  
– 6 Single Edge, 6 Dual Edge Symmetric or 3  
Dual Edge Asymmetric Outputs  
– Dead-Band Generation  
– PWM Chopping by High-Frequency Carrier  
– Trip Zone Input  
• One Host-Port Interface (HPI) With 16-Bit-Wide  
Muxed Address/Data Bus For High Bandwidth  
• Three 32-Bit Enhanced Capture Modules  
(eCAP):  
• Programmable Real-Time Unit Subsystem  
(PRUSS)  
– Configurable as 3 Capture Inputs or 3  
Auxiliary Pulse Width Modulator (APWM)  
outputs  
– Single Shot Capture of up to Four Event  
Time-Stamps  
– Two Independent Programmable Realtime  
Unit (PRU) Cores  
32-Bit Load/Store RISC architecture  
4K Byte instruction RAM per core  
512 Bytes data RAM per core  
PRU Subsystem (PRUSS) can be disabled  
via software to save power  
• Two 32-Bit Enhanced Quadrature Encoder  
Pulse Modules (eQEP)  
• 256-Ball Pb-Free Plastic Ball Grid Array (PBGA)  
[ZKB Suffix], 1.0-mm Ball Pitch  
• Commercial, Industrial, Extended, or  
Automotive Temperature  
– Standard power management mechanism  
Clock gating  
2
OMAP-L137 Low-Power Applications Processor  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
1.2 Description  
The OMAP-L137 is a low-power applications processor based on an ARM926EJ-S™ and a C674x DSP  
core. It consumes significantly lower power than other members of the TMS320C6000™ platform of  
DSPs.  
The OMAP-L137 enables OEMs and ODMs to quickly bring to market devices featuring robust operating  
systems support, rich user interfaces, and high processing performance life through the maximum  
flexibility of a fully integrated mixed processor solution.  
The dual-core architecture of the OMAP-L137 provides benefits of both DSP and Reduced Instruction Set  
Computer (RISC) technologies, incorporating a high-performance TMS320C674x DSP core and an  
ARM926EJ-S core.  
The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and  
processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and  
memory system can operate continuously.  
The ARM core has a coprocessor 15 (CP15), protection module, and Data and program Memory  
Management Units (MMUs) with table look-aside buffers. It has separate 16K-byte instruction and 16K-  
byte data caches. Both are four-way associative with virtual index virtual tag (VIVT). The ARM core also  
has a 8KB RAM (Vector Table) and 64KB ROM.  
The OMAP-L137 DSP core uses a two-level cache-based architecture. The Level 1 program cache (L1P)  
is a 32KB direct mapped cache and the Level 1 data cache (L1D) is a 32KB 2-way set-associative cache.  
The Level 2 program cache (L2P) consists of a 256KB memory space that is shared between program  
and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two.  
Although the DSP L2 is accessible by ARM and other hosts in the system, an additional 128KB RAM  
shared memory is available for use by other hosts without affecting DSP performance.  
The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output  
(MDIO) module; two inter-integrated circuit (I2C) bus interfaces; 3 multichannel audio serial ports (McASP)  
with 16/12/4 serializers and FIFO buffers; 2 64-bit general-purpose timers each configurable (one  
configurable as watchdog); a configurable 16-bit host port interface (HPI) ; up to 8 banks of 16 pins of  
general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed  
with other peripherals; 3 UART interfaces (one with RTS and CTS); 3 enhanced high-resolution pulse  
width modulator (eHRPWM) peripherals; 3 32-bit enhanced capture (eCAP) module peripherals which can  
be configured as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; 2 32-bit enhanced  
quadrature pulse (eQEP) peripherals; and 2 external memory interfaces: an asynchronous and SDRAM  
external memory interface (EMIFA) for slower memories or peripherals, and a higher speed memory  
interface (EMIFB) for SDRAM.  
The Ethernet Media Access Controller (EMAC) provides an efficient interface between the OMAP-L137  
and the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and  
100 Mbps in either half- or full-duplex mode. Additionally an Management Data Input/Output (MDIO)  
interface is available for PHY configuration.  
The HPI, I2C, SPI, USB1.1 and USB2.0 ports allow the OMAP-L137 to easily control peripheral devices  
and/or communicate with host processors.  
The rich peripheral set provides the ability to control external peripheral devices and communicate with  
external processors. For details on each of the peripherals, see the related sections later in this document  
and the associated peripheral reference guides.  
The OMAP-L137 has a complete set of development tools for both the ARM and DSP. These include C  
compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™  
debugger interface for visibility into source code execution.  
Copyright © 2008–2013, Texas Instruments Incorporated  
OMAP-L137 Low-Power Applications Processor  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
3
 
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
1.3 Functional Block Diagram  
ARM Subsystem  
DSP Subsystem  
JTAG Interface  
System Control  
ARM926EJ-S CPU  
With MMU  
C674x™  
DSP CPU  
PLL/Clock  
Generator  
w/OSC  
Input  
Clock(s)  
Memory  
Protection  
4 KB ETB  
AET  
General-  
Purpose  
Timer  
16 KB  
I-Cache  
32 KB  
L1 Pgm  
16 KB  
D-Cache  
32 KB  
L1 RAM  
Power/Sleep  
Controller  
General-  
Purpose  
Timer  
8 KB RAM  
(Vector Table)  
256 KB L2 RAM  
BOOT ROM  
RTC/  
32-KHz  
OSC  
Pin  
Multiplexing  
64 KB ROM  
(Watchdog)  
Switched Central Resource (SCR)  
Peripherals  
Display  
Internal Memory  
DMA  
Audio Ports  
Serial Interfaces  
McASP  
w/FIFO  
(3)  
2
SPI  
(2)  
UART  
(3)  
I C  
(2)  
LCD  
Ctlr  
PRU  
Subsystem  
128 KB  
RAM  
GPIO  
EDMA3  
Connectivity  
External Memory Interfaces  
Control Timers  
(10/100)  
EMAC  
(RMII)  
EMIFB  
SDRAM Only  
(16b/32b)  
USB2.0  
OTG Ctlr OHCI Ctlr  
PHY PHY  
USB1.1  
EMIFA(8b/16B)  
NAND/Flash  
16b SDRAM  
eHRPWM  
(3)  
eCAP  
(3)  
eQEP  
(2)  
MMC/SD  
(8b)  
MDIO  
HPI  
Note: Not all peripherals are available at the same time due to multiplexing.  
Figure 1-1. OMAP-L137 Functional Block Diagram  
4
OMAP-L137 Low-Power Applications Processor  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
 
 
 
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
1
OMAP-L137 Low-Power Applications Processor . 1  
5.9 General-Purpose Input/Output (GPIO) ............. 78  
5.10 EDMA ............................................... 81  
5.11 External Memory Interface A (EMIFA) ............. 86  
5.12 External Memory Interface B (EMIFB) ............. 97  
5.13 Memory Protection Units .......................... 104  
5.14 MMC / SD / SDIO (MMCSD) ...................... 107  
5.15 Ethernet Media Access Controller (EMAC) ....... 110  
1.1 Features ............................................. 1  
1.2 Description ........................................... 3  
1.3 Functional Block Diagram ........................... 4  
Revision History .............................................. 6  
2
Device Overview ........................................ 9  
2.1 Device Characteristics ............................... 9  
2.2 Device Compatibility ................................ 10  
2.3 ARM Subsystem .................................... 10  
2.4 DSP Subsystem .................................... 13  
2.5 Memory Map Summary ............................ 24  
2.6 Pin Assignments .................................... 27  
2.7 Terminal Functions ................................. 28  
Device Configuration ................................. 49  
3.1 Boot Modes ......................................... 49  
3.2 SYSCFG Module ................................... 50  
3.3 Pullup/Pulldown Resistors .......................... 52  
Device Operating Conditions ....................... 53  
5.16 Management Data Input/Output (MDIO) .......... 115  
5.17 Multichannel Audio Serial Ports (McASP0, McASP1,  
and McASP2) ..................................... 117  
5.18 Serial Peripheral Interface Ports (SPI0, SPI1) .... 130  
5.19 Enhanced Capture (eCAP) Peripheral ............ 149  
5.20 Enhanced Quadrature Encoder (eQEP) Peripheral  
..................................................... 152  
5.21 Enhanced High-Resolution Pulse-Width Modulator  
(eHRPWM) ........................................ 154  
3
4
5.22 LCD Controller .................................... 158  
5.23 Timers ............................................. 173  
5.24 Inter-Integrated Circuit Serial Ports (I2C0, I2C1) . 175  
5.25 Universal Asynchronous Receiver/Transmitter  
(UART) ............................................ 180  
5.26 USB1 Host Controller Registers (USB1.1 OHCI) . 182  
5.27 USB0 OTG (USB2.0 OTG) ........................ 183  
5.28 Host-Port Interface (UHPI) ........................ 191  
5.29 Power and Sleep Controller (PSC) ................ 198  
5.30 Programmable Real-Time Unit Subsystem (PRUSS)  
..................................................... 201  
4.1  
Absolute Maximum Ratings Over Operating Case  
Temperature Range  
(Unless Otherwise Noted) ................................. 53  
4.2 Recommended Operating Conditions .............. 54  
4.3  
Notes on Recommended Power-On Hours (POH) . 55  
4.4  
Electrical Characteristics Over Recommended  
Ranges of Supply Voltage and Operating Case  
Temperature (Unless Otherwise Noted) ........... 56  
5
Peripheral Information and Electrical  
5.31 Emulation Logic ................................... 204  
5.32 IEEE 1149.1 JTAG ................................ 211  
5.33 Real Time Clock (RTC) ........................... 213  
Device and Documentation Support ............. 216  
6.1 Device Support .................................... 216  
6.2 Documentation Support ........................... 217  
6.3 Community Resources ............................ 218  
Specifications .......................................... 57  
5.1 Parameter Information .............................. 57  
5.2  
Recommended Clock and Control Signal Transition  
Behavior ............................................ 58  
6
7
5.3 Power Supplies ..................................... 58  
5.4  
Unused USB0 (USB2.0) and USB1 (USB1.1) Pin  
Configurations ...................................... 59  
5.5 Reset ............................................... 60  
Mechanical Packaging and Orderable  
5.6  
Crystal Oscillator or External Clock Input .......... 63  
Information ............................................ 219  
7.1 Thermal Data for ZKB ............................. 219  
7.2 Packaging Information ............................ 219  
5.7 Clock PLLs ......................................... 65  
5.8 Interrupts ............................................ 69  
Copyright © 2008–2013, Texas Instruments Incorporated  
Contents  
5
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
This data manual revision history highlights the changes made to the SPRS563E device-specific data  
manual to make it an SPRS563F revision.  
Scope: Applicable updates to the OMAP-L137 Low-Power Applications Processor device family,  
specifically relating to the OMAP-L137 device, which are all now in the production data (PD) stage of  
development have been incorporated.  
Silicon Revision 3.0  
Digital I/O Buffers Premature Aging  
456 MHz Version now PD  
Revision History  
SEE  
ADDITIONS/MODIFICATIONS/DELETIONS  
Updated/Changed Product Status on the 456-MHz Version device from “Advanced Information (AI)” to  
“Production Data (PD)”  
Global  
Added DSP/BIOS as a Texas Instruments trademark  
Section 1.3  
Functional Block  
Diagram  
Figure 1-1, OMAP-L137 Functional Block Diagram:  
Added “Memory Protection” in the System Control Block  
Table 2-1, Characteristics of the OMAP-L137 Processor:  
Section 2.1  
Device  
Characteristics  
Updated/Changed EMIFB "16/32bit, up to 512 Mb SDRAM” to "16/32bit, up to 256 MB SDRAM”  
Added Silicon Revisions "3.0" and "2.1" to the JTAG BSDL_ID row  
Section 2.3.7  
ARM Memory  
Mapping  
Added “To improve security …” paragraph  
Section 2.5  
Memory Map  
Summary  
Added “Note: Read/Write accesses …” sentence  
Section 2.7.5  
External Memory  
Interface B (only  
SDRAM):  
Table 2-9, External Memory Interface B (EMIFB) Terminal Functions:  
Updated/Changed EMIFB SDRAM data bus upper byte (EMB_D[31:16]) TYPE from “O” to “I/O”  
Updated/Changed EMB_SDCKE, C13, EMIFB SDRAM clock TYPE from “I/O” to “O”  
Table 2-13, Enhanced Quadrature Encoder Pulse Module (eQEP) Terminal Functions:  
Section 2.7.9  
Enhanced  
Quadrature Encoder  
Pulse Module  
(eQEP):  
Updated/Changed eQEP0 MUXED column from “SPIO” and “SPI1” to “SPI0”  
Updated/Changed eQEP1 DESCRIPTION column for eQEP1 to “eQEP1A” and “eQEP1B”  
Split eQEP1 MUXED column for ZKB Pin No. T5 and T6  
Added "SIP0, GPIO, BOOT" to MUXED column for ZKB Pin No. T5  
Table 2-14, Boot Mode Selection Terminal Functions:  
Updated/Changed SPI0_CLK/EQEP1I/GP5[2]/BOOT[2], T5, MUXED column from “SPIO” to “SPI0”  
Section 2.7.10  
Boot  
Section 2.7.15  
Multichannel Audio  
Serial Ports  
(McASP0, McASP1,  
McASP2)  
Table 2-19, Multichannel Audio Serial Ports (McASPs) Terminal Functions:  
Split McASP2 MUXED column for pin AXR2[0] (A5) and added “McASP2, GPIO”  
Section 2.7.16  
Universal Serial Bus  
Modules (USB0,  
USB1)  
Table 2-20, Universal Serial Bus (USB) Terminal Functions:  
Updated/Changed the USB0_VDDA12 pin DESCRIPTION column and associated footnote  
Table 2-24, Reserved and No Connect Terminal Functions:  
Section 2.7.20  
Reserved and No  
Connect  
Updated/Changed the RSV1 TYPE column from “PWR” to “-“  
Updated/Changed RSV2 DESCRIPTION to “… be tied either directly to CVDD or left unconnected [do  
not connect to ground (VSS)]”  
Section 3.1  
Boot Modes  
Added “16-bit NAND” sub-bullet to NAND Flash boot  
6
Contents  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
Revision History (continued)  
SEE  
Section 3.2  
ADDITIONS/MODIFICATIONS/DELETIONS  
Table 3-1, System Configuration (SYSCFG) Module Register Access:  
Updated/Changed 0x01C1 4018, DEVIDR0 REGISTER DESCRIPTION from “Device Identification  
Register 0” to “JTAG Identification Register”  
SYSCFG Module  
Added 0x01C1 4024, CHIPREVID, Silicon Revision Identification Register row  
Section 4.1, Absolute Maximum Ratings Over Operating Case Temperature Range:  
Section 4  
Device Operating  
Conditions  
Updated/Changed Input voltage ranges, “VI I/O, CVDD" to "VI I/O, 1.2V"  
Updated/Changed Input voltage ranges, VI I/O, 3.3V (Steady State) from “-0.3V to DVDD + 0.3V” to “-  
0.3V to DVDD + 0.35V”  
Section 4.2, Recommended Operating Conditions:  
Updated/Change DVDD, Supply voltage, I/O, 3.3V (DVDD, USB0_VDDA33, USB1_VDDA33) MIN value  
from “3.15” to “3.0” V  
Section 5.3.1, Power-on Sequence:  
Updated/Changed, for clarity, the order the device should be powered-on  
Section 5.5.1, Power-On Reset (POR):  
Section 5.3  
Power Supplies  
Section 5.5  
Reset  
Updated/Changed "RTCK is maintained active through a POR." to "RTCK/GP7[14] is maintained active  
through a POR."  
Section 5.5.2, Warm Reset:  
Updated/Changed "RTCK is maintained active through a warm reset." to "RTCK/GP7[14] is maintained  
active through a warm reset."  
Table 5-7, AINTC System Interrupt Assignments:  
Table 5-7  
AINTC System  
Interrupt  
Updated/Changed SYSTEM INTERRUPT 27 INTERRUPT NAME from “PROTERR” to  
“MPU_BOOTCFG_ERR”  
Assignments on  
OMAP-L137  
Updated/Changed SYSTEM INTERRUPT 27 SOURCE from “SYSCFG Protection Shared Interrupt” to  
“Shared MPU and SYSCFG Address/Protection Error Interrupt"  
Table 5-8, AINTC Memory Map:  
Updated/Changed SRSR[0], SECR[0], ESR[0], and ECR[0] REGISTER NAME to [1] registers  
Updated/Changed "HIPIR[0] - HIPIR[1]" REGISTER NAME to "HIPIR[1] - HIPIR[2]"  
Updated/Changed BYTE ADDRESS 0xFFFE EF00 - 0xFFFE EF04 from "DSR[0] - DSR[1]" REGISTER  
NAME and "Debug Select Registers" DESCRIPTION to "-" REGISTER NAME and "Reserved"  
DESCRIPTION  
Section 5.8.1.5  
AINTC Memory Map  
Updated/Changed "HINLR[0] - HINLR[1]" REGISTER NAME to "HINLR[1] - HINLR[2]"  
Deleted "[0]" to 0xFFFE F500 "HIER" REGISTER NAME  
Updated/Changed "HIPVR[0] - HIPVR[1]" REGISTER NAME to "HIPVR[1] - HIPVR[2]"  
Table 5-9, OMAP-L137 DSP Interrupts:  
Section 5.8.2  
DSP Interrupts  
Updated/Changed EVT# 74 INTERRUPT NAME from “PROTERR” to “MPU_BOOTCFG_ERR”  
Updated/Changed EVT# 74 SOURCE from “SYSCFG Protection Shared Interrupt” to “Shared MPU and  
SYSCFG Address/Protection Error Interrupt"  
Section 5.11  
External Memory  
Interface A (EMIFA)  
Section 5.11.4, EMIFA Connection Examples:  
Added new Subsection  
Section 5.12  
External Memory  
Interface B (EMIFB)  
Figure 5-20, EMIFB Functional Block Diagram:  
Added MPU2 block to figure  
Section 5.12.1, EMIFB SDRAM Loading Limitations:  
Updated/Changed “EMIFB supports SDRAM up to 133MHz …” to “EMIFB supports SDRAM up to  
152MHz …”  
Table 5-30, EMIFB SDRAM Interface Switching Characteristics:  
Section 5.12.3  
EMIFB Electrical  
Data/Timing  
Updated/Changed PARAMETER No. 1, tc(CLK) Cycle time, EMIF clock EMB_CLK MIN value from “7.5”  
to “6.579” ns  
Updated/Changed PARAMETER No. 2, tw(CLK) Pulse width, EMIF clock EMB_CLK high or low MIN  
value from “3” to “2.63” ns  
Table 5-35, Switching Characteristics Over Recommended Operating Conditions for MMC/SD Module:  
Section 5.14.3  
MMC/SD Electrical  
Data/Timing  
Updated/Changed the MAX value of PARAMETER No. 14, td(CLKL-DAT), Delay time, MMCSD_CLK low to  
MMCSD_DATx transition from “2” to “2.5” ns  
Copyright © 2008–2013, Texas Instruments Incorporated  
Contents  
7
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
Revision History (continued)  
SEE  
ADDITIONS/MODIFICATIONS/DELETIONS  
Section 5.16.2  
Management Data  
Input/Output (MDIO)  
Electrical  
Table 5-8, Timing Requirements for MDIO Input:  
Updated/Changed the MIN value of No. 5, th(MDIO_CLKH-MDIO), Hold time, MDIO_D data input valid after  
MDIO_CLK high from “10” to “0” ns  
Data/Timing  
Table 5-57, General Timing Requirements for SPI0 Slave Modes:  
Section 5.18.2  
SPI Electrical  
Data/Timing  
Updated/Changed MIN value of PARAMETER No. 9, tc(SPC)S, Cycle Time, SPI0_CLK, All Slave Modes  
from “greater of 3P or 20” to “greater of 3P or 40” ns  
Section 5.22.1  
LCD Interface  
Display Driver (LIDD  
Mode):  
Table 5-84, LCD LIDD Mode Timing Requirements:  
Table 5-85, LCD LIDD Mode Timing Characteristics:  
Updated/Changed LCD_CLK (SYSCLK2) all references to "LCD_MCLK"  
Table 5-86, LCD Raster Mode Timing:  
Updated/Changed PARAMETER NO. 9, td(LCD_VSYNC_I) description from "Delay time, LCD_PCLK low to  
LCD_VSYNC high" to "Delay time, LCD_PCLK low to LCD_VSYNC low"  
Changed parameter descriptions, replacing arrows with text.  
Added "The activation edge of the control signals ..." footnote  
Section 5.22.2  
LCD Raster Mode  
Added associated footnote cross-references to PARAMETER No. 8, 9, 10, and 11  
Figure 5-56, LCD Raster-Mode Active:  
Updated/Changed LCD_AC_ENB_CS signal in figure  
Added LCD_AC_ENB_CS in expanded view  
Added "x" in "16 (1 to 1024)"  
Table 5-102, Switching Characteristics for Host-Port Interface Cycles:  
Added "UHPI_" to the all signal names and descriptions to match associated figures and Terminal  
Functions signal names  
Section 5.28.3  
HPI Electrical  
Data/Timing  
Figure 5-67 through Figure 5-70:  
Added "UHPI_" to the all signal names in footnotes to match figures  
Section 5.29.1  
Power Domain and  
Module Topology  
Section 5.29.1.1, Power Domain States:  
Added new subsection  
Section 5.32.1, JTAG Peripheral Register Description(s) – JTAG ID Register (DEVIDR0):  
Added Silicon Revisions "3.0" and "2.1" to the "0x9B7D F02F for silicon revision 2.0" bullet  
Section 5.32  
IEEE 1149.1 JTAG  
Section 6.1.2  
Device and  
Development-  
Support Tool  
Nomenclature  
Updated/Changed subsection title from “Device Nomenclature” to “Device and Development-Support Tool  
Nomenclature”  
Figure 6-1, Device Nomenclature:  
Updated/Changed Silicon Revision to include Revision 3.0  
Deleted the following document(s):  
SPRUG84, OMAP-L137 Applications Processor System Reference Guide  
Section 6.2  
Documentation  
Support  
SPRUGA6, OMAP-L137 Applications Processor Peripherals Overview Reference Guide  
Added the following document(s):  
SPRUH92, OMAP-L137 DSP_ARM Processor Technical Reference Manual  
Deleted “Mechanical Drawings” section and moved paragraph under Section 7, Mechanical Packaging  
and Orderable Information  
Section 7  
Mechanical  
Packaging and  
Orderable  
Deleted Packaging Materials Information subsection (was Section 7.1 in the previous revision), duplicate  
information  
Information  
Added Section 7.2, Packaging Information  
8
Device Overview  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
2 Device Overview  
2.1 Device Characteristics  
Table 2-1 provides an overview of the OMAP-L137 low power applications processor. The table shows  
significant features of the device, including the capacity of on-chip RAM, peripherals, and the package  
type with pin count.  
Table 2-1. Characteristics of the OMAP-L137 Processor  
HARDWARE FEATURES  
OMAP-L137  
EMIFB  
16/32bit, up to 256MB SDRAM  
Asynchronous (8/16-bit bus width) RAM, Flash, 16bit up to 128MB SDRAM, NOR,  
NAND  
EMIFA  
Flash Card Interface  
MMC and SD cards supported.  
EDMA3  
32 independent channels, 8 QDMA channels, 2 Transfer controllers  
2 64-Bit General Purpose (each configurable as 2 separate 32-bit timers, 1 configurable  
as Watch Dog)  
Timers  
UART  
SPI  
I2C  
3 (one with RTS and CTS flow control)  
2 (each with one hardware chip select)  
2 (both Master/Slave)  
Multichannel Audio  
Serial Port [McASP]  
Peripherals  
3 (each with transmit/receive, FIFO buffer, 16/12/4 serializers)  
Not all peripherals pins  
are available at the  
same time (for more  
detail, see the Device  
Configurations section).  
10/100 Ethernet MAC  
with Management Data  
I/O  
1 (RMII Interface)  
eHRPWM  
eCAP  
6 Single Edge, 6 Dual Edge Symmetric, or 3 Dual Edge Asymmetric Outputs  
3 32-bit capture inputs or 3 32-bit auxiliary PWM outputs  
2 32-bit QEP channels with 4 inputs/channel  
eQEP  
UHPI  
1 (16-bit multiplexed address/data)  
USB 2.0 (USB0)  
USB 1.1 (USB1)  
High-Speed OTG Controller with on-chip OTG PHY  
Full-Speed OHCI (as host) with on-chip PHY  
General-Purpose  
Input/Output Port  
8 banks of 16-bit  
1
LCD Controller  
PRU Subsystem  
(PRUSS)  
2 Programmable PRU Cores  
Size (Bytes)  
488KB RAM  
DSP  
32KB L1 Program (L1P)/Cache (up to 32KB)  
32KB L1 Data (L1D)/Cache (up to 32KB)  
256KB Unified Mapped RAM/Cache (L2)  
DSP Memories can be made accessible to ARM, EDMA3, and other peripherals.  
On-Chip Memory  
ARM  
16KB I-Cache  
Organization  
16KB D-Cache  
8KB RAM (Vector Table)  
64KB ROM  
ADDITIONAL SHARED MEMORY  
128KB RAM  
C674x CPU ID + CPU Control Status Register  
0x1400  
0x0000  
Rev ID  
(CSR.[31:16])  
C674x Megamodule  
Revision  
Revision ID Register  
(MM_REVID[15:0])  
0x0B7D F02F (Silicon Revision 1.0)  
0x8B7D F02F (Silicon Revision 1.1)  
JTAG BSDL_ID  
DEVIDR0 register  
0x9B7D F02F (Silicon Revisions 3.0, 2.1, and 2.0)  
Copyright © 2008–2013, Texas Instruments Incorporated  
Device Overview  
Submit Documentation Feedback  
9
Product Folder Links: OMAP-L137  
 
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
Table 2-1. Characteristics of the OMAP-L137 Processor (continued)  
HARDWARE FEATURES  
OMAP-L137  
674x DSP at 375 MHz(1.2V) or 456 MHz (1.3V)  
ARM926 at 375 MHz(1.2V) or 456 MHz (1.3V)  
1.2V / 1.3V  
CPU Frequency  
MHz  
Core (V)  
I/O (V)  
Voltage  
3.3 V / 1.8 V (1.8 V for USB only)  
Package  
17 mm x 17 mm, 256-Ball 1 mm pitch, PBGA (ZKB)  
Product Preview (PP),  
Advance Information  
(AI),  
or Production Data  
(PD)  
375 MHz Versions -PD  
456 MHz Version - PD  
Product Status(1)  
(1) PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
2.2 Device Compatibility  
The ARM926EJ-S RISC CPU is compatible with other ARM9 CPUs from ARM Holdings plc.  
The C674x DSP core is code-compatible with the C6000™ DSP platform and supports features of both  
the C64x+ and C67x+ DSP families.  
2.3 ARM Subsystem  
The ARM Subsystem includes the following features:  
ARM926EJ-S RISC processor  
ARMv5TEJ (32/16-bit) instruction set  
Little endian  
System Control Co-Processor 15 (CP15)  
MMU  
16KB Instruction cache  
16KB Data cache  
Write Buffer  
Embedded Trace Module and Embedded Trace Buffer (ETM/ETB)  
ARM Interrupt controller  
2.3.1 ARM926EJ-S RISC CPU  
The ARM Subsystem integrates the ARM926EJ-S processor. The ARM926EJ-S processor is a member of  
ARM9 family of general-purpose microprocessors. This processor is targeted at multi-tasking applications  
where full memory management, high performance, low die size, and low power are all important. The  
ARM926EJ-S processor supports the 32-bit ARM and 16 bit THUMB instruction sets, enabling the user to  
trade off between high performance and high code density. Specifically, the ARM926EJ-S processor  
supports the ARMv5TEJ instruction set, which includes features for efficient execution of Java byte codes,  
providing Java performance similar to Just in Time (JIT) Java interpreter, but without associated code  
overhead.  
The ARM926EJ-S processor supports the ARM debug architecture and includes logic to assist in both  
hardware and software debug. The ARM926EJ-S processor has a Harvard architecture and provides a  
complete high performance subsystem, including:  
ARM926EJ -S integer core  
CP15 system control coprocessor  
Memory Management Unit (MMU)  
Separate instruction and data caches  
10  
Device Overview  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
Write buffer  
Separate instruction and data (internal RAM) interfaces  
Separate instruction and data AHB bus interfaces  
Embedded Trace Module and Embedded Trace Buffer (ETM/ETB)  
For more complete details on the ARM9, refer to the ARM926EJ-S Technical Reference Manual, available  
at http://www.arm.com  
2.3.2 CP15  
The ARM926EJ-S system control coprocessor (CP15) is used to configure and control instruction and  
data caches, Memory Management Unit (MMU), and other ARM subsystem functions. The CP15 registers  
are programmed using the MRC and MCR ARM instructions, when the ARM in a privileged mode such as  
supervisor or system mode.  
2.3.3 MMU  
A single set of two level page tables stored in main memory is used to control the address translation,  
permission checks and memory region attributes for both data and instruction accesses. The MMU uses a  
single unified Translation Lookaside Buffer (TLB) to cache the information held in the page tables. The  
MMU features are:  
Standard ARM architecture v4 and v5 MMU mapping sizes, domains and access protection scheme.  
Mapping sizes are:  
1MB (sections)  
64KB (large pages)  
4KB (small pages)  
1KB (tiny pages)  
Access permissions for large pages and small pages can be specified separately for each quarter of  
the page (subpage permissions)  
Hardware page table walks  
Invalidate entire TLB, using CP15 register 8  
Invalidate TLB entry, selected by MVA, using CP15 register 8  
Lockdown of TLB entries, using CP15 register 10  
2.3.4 Caches and Write Buffer  
The size of the Instruction cache is 16KB, Data cache is 16KB. Additionally, the caches have the following  
features:  
Virtual index, virtual tag, and addressed using the Modified Virtual Address (MVA)  
Four-way set associative, with a cache line length of eight words per line (32-bytes per line) and with  
two dirty bits in the Dcache  
Dcache supports write-through and write-back (or copy back) cache operation, selected by memory  
region using the C and B bits in the MMU translation tables  
Critical-word first cache refilling  
Cache lockdown registers enable control over which cache ways are used for allocation on a line fill,  
providing a mechanism for both lockdown, and controlling cache corruption  
Dcache stores the Physical Address TAG (PA TAG) corresponding to each Dcache entry in the TAG  
RAM for use during the cache line write-backs, in addition to the Virtual Address TAG stored in the  
TAG RAM. This means that the MMU is not involved in Dcache write-back operations, removing the  
possibility of TLB misses related to the write-back address.  
Cache maintenance operations provide efficient invalidation of, the entire Dcache or Icache, regions of  
the Dcache or Icache, and regions of virtual memory.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Device Overview  
11  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
The write buffer is used for all writes to a noncachable bufferable region, write-through region and write  
misses to a write-back region. A separate buffer is incorporated in the Dcache for holding write-back for  
cache line evictions or cleaning of dirty cache lines. The main write buffer has 16-word data buffer and a  
four-address buffer. The Dcache write-back has eight data word entries and a single address entry.  
2.3.5 Advanced High-Performance Bus (AHB)  
The ARM Subsystem uses the AHB port of the ARM926EJ-S to connect the ARM to the Config bus and  
the external memories. Arbiters are employed to arbitrate access to the separate D-AHB and I-AHB by the  
Config Bus and the external memories bus.  
2.3.6 Embedded Trace Macrocell (ETM) and Embedded Trace Buffer (ETB)  
To support real-time trace, the ARM926EJ-S processor provides an interface to enable connection of an  
Embedded Trace Macrocell (ETM). The ARM926EJ-S Subsystem in the OMAP-L137 also includes the  
Embedded Trace Buffer (ETB). The ETM consists of two parts:  
Trace Port provides real-time trace capability for the ARM9.  
Triggering facilities provide trigger resources, which include address and data comparators, counter,  
and sequencers.  
The OMAP-L137 trace port is not pinned out and is instead only connected to the Embedded Trace Buffer.  
The ETB has a 4KB buffer memory. ETB enabled debug tools are required to read/interpret the captured  
trace data.  
This device uses ETM9™ version r2p2 and ETB version r0p1. Documentation on the ETM and ETB is  
available from ARM Ltd. Reference the ' CoreSight™ ETM9™ Technical Reference Manual, revision r0p1'  
and the 'ETM9 Technical Reference Manual, revision r2p2'.  
2.3.7 ARM Memory Mapping  
By default the ARM has access to most on and off chip memory areas, including the DSP Internal  
memories, EMIFA, EMIFB, and the additional 128K byte on chip shared SRAM. Likewise almost all of the  
on chip peripherals are accessible to the ARM by default.  
To improve security and/or robustness, the device has extensive memory and peripheral protection units  
which can be configured to limit access rights to the various on/off chip resources to specific hosts;  
including the ARM as well as other master peripherals. This allows the system tasks to be partitioned  
between the ARM and DSP as best suites the particular application; while enhancing the overall  
robustness of the solution.  
See Table 2-4 for a detailed top level OMAP-L137 memory map that includes the ARM memory space.  
12  
Device Overview  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
2.4 DSP Subsystem  
The DSP Subsystem includes the following features:  
C674x DSP CPU  
32KB L1 Program (L1P)/Cache (up to 32KB)  
32KB L1 Data (L1D)/Cache (up to 32KB)  
256KB Unified Mapped RAM/Cache (L2)  
Boot ROM (cannot be used for application code)  
Little endian  
32K Bytes  
L1P RAM/  
Cache  
256K Bytes  
L2 RAM  
Boot ROM  
256  
256  
256  
256  
Cache Control  
Memory Protect  
Bandwidth Mgmt  
Cache Control  
Memory Protect  
Bandwidth Mgmt  
L1P  
L2  
256  
256  
Power Down  
256  
256  
Instruction Fetch  
C674x  
Fixed/Floating Point CPU  
Interrupt  
Controller  
IDMA  
256  
Register  
File A  
Register  
File B  
64  
64  
CFG  
Bandwidth Mgmt  
Memory Protect  
Cache Control  
EMC  
Configuration  
Peripherals  
Bus  
32  
L1D  
MDMA  
SDMA  
8 x 32  
64  
64  
64  
64  
32K Bytes  
L1D RAM/  
Cache  
High  
Performance  
Switch Fabric  
Figure 2-1. C674x Megamodule Block Diagram  
Copyright © 2008–2013, Texas Instruments Incorporated  
Device Overview  
13  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
2.4.1 C674x DSP CPU Description  
The C674x Central Processing Unit (CPU) consists of eight functional units, two register files, and two  
data paths as shown in Figure 2-2. The two general-purpose register files (A and B) each contain 32 32-  
bit registers for a total of 64 registers. The general-purpose registers can be used for data or can be data  
address pointers. The data types supported include packed 8-bit data, packed 16-bit data, 32-bit data, 40-  
bit data, and 64-bit data. Values larger than 32 bits, such as 40-bit-long or 64-bit-long values are stored in  
register pairs, with the 32 LSBs of data placed in an even register and the remaining 8 or 32 MSBs in the  
next upper register (which is always an odd-numbered register).  
The eight functional units (.M1, .L1, .D1, .S1, .M2, .L2, .D2, and .S2) are each capable of executing one  
instruction every clock cycle. The .M functional units perform all multiply operations. The .S and .L units  
perform a general set of arithmetic, logical, and branch functions. The .D units primarily load data from  
memory to the register file and store results from the register file into memory.  
The C674x CPU combines the performance of the C64x+ core with the floating-point capabilities of the  
C67x+ core.  
Each C674x .M unit can perform one of the following each clock cycle: one 32 x 32 bit multiply, one 16 x  
32 bit multiply, two 16 x 16 bit multiplies, two 16 x 32 bit multiplies, two 16 x 16 bit multiplies with  
add/subtract capabilities, four 8 x 8 bit multiplies, four 8 x 8 bit multiplies with add operations, and four  
16 x 16 multiplies with add/subtract capabilities (including a complex multiply). There is also support for  
Galois field multiplication for 8-bit and 32-bit data. Many communications algorithms such as FFTs and  
modems require complex multiplication. The complex multiply (CMPY) instruction takes four 16-bit inputs  
and produces a 32-bit real and a 32-bit imaginary output. There are also complex multiplies with rounding  
capability that produces one 32-bit packed output that contain 16-bit real and 16-bit imaginary values. The  
32 x 32 bit multiply instructions provide the extended precision necessary for high-precision algorithms on  
a variety of signed and unsigned 32-bit data types.  
The .L Unit (or Arithmetic Logic Unit) now incorporates the ability to do parallel add/subtract operations on  
a pair of common inputs. Versions of this instruction exist to work on 32-bit data or on pairs of 16-bit data  
performing dual 16-bit add and subtracts in parallel. There are also saturated forms of these instructions.  
The C674x core enhances the .S unit in several ways. On the previous cores, dual 16-bit MIN2 and MAX2  
comparisons were only available on the .L units. On the C674x core they are also available on the .S unit  
which increases the performance of algorithms that do searching and sorting. Finally, to increase data  
packing and unpacking throughput, the .S unit allows sustained high performance for the quad 8-bit/16-bit  
and dual 16-bit instructions. Unpack instructions prepare 8-bit data for parallel 16-bit operations. Pack  
instructions return parallel results to output precision including saturation support.  
Other new features include:  
SPLOOP - A small instruction buffer in the CPU that aids in creation of software pipelining loops where  
multiple iterations of a loop are executed in parallel. The SPLOOP buffer reduces the code size  
associated with software pipelining. Furthermore, loops in the SPLOOP buffer are fully interruptible.  
Compact Instructions - The native instruction size for the C6000™ devices is 32 bits. Many common  
instructions such as MPY, AND, OR, ADD, and SUB can be expressed as 16 bits if the C674x  
compiler can restrict the code to use certain registers in the register file. This compression is  
performed by the code generation tools.  
Instruction Set Enhancement - As noted above, there are new instructions such as 32-bit  
multiplications, complex multiplications, packing, sorting, bit manipulation, and 32-bit Galois field  
multiplication.  
Exceptions Handling - Intended to aid the programmer in isolating bugs. The C674x CPU is able to  
detect and respond to exceptions, both from internally detected sources (such as illegal op-codes) and  
from system events (such as a watchdog time expiration).  
Privilege - Defines user and supervisor modes of operation, allowing the operating system to give a  
basic level of protection to sensitive resources. Local memory is divided into multiple pages, each with  
read, write, and execute permissions.  
14  
Device Overview  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
Time-Stamp Counter - Primarily targeted for Real-Time Operating System (RTOS) robustness, a free-  
running time-stamp counter is implemented in the CPU which is not sensitive to system stalls.  
For more details on the C674x CPU and its enhancements over the C64x architecture, see the following  
documents:  
TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number: SPRU732)  
TMS320C64x Technical Overview (literature number: SPRU395)  
Copyright © 2008–2013, Texas Instruments Incorporated  
Device Overview  
15  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
Even  
register  
file A  
(A0, A2,  
A4...A30)  
src1  
src2  
Odd  
register  
file A  
(A1, A3,  
A5...A31)  
.L1  
odd dst  
even dst  
long src  
(D)  
8
32 MSB  
ST1b  
ST1a  
32 LSB  
8
long src  
even dst  
odd dst  
src1  
(D)  
Data path A  
.S1  
src2  
32  
32  
(A)  
(B)  
dst2  
dst1  
src1  
.M1  
src2  
(C)  
32 MSB  
32 LSB  
LD1b  
LD1a  
dst  
src1  
src2  
.D1  
.D2  
DA1  
2x  
1x  
Even  
register  
file B  
(B0, B2,  
B4...B30)  
Odd  
register  
file B  
(B1, B3,  
B5...B31)  
src2  
DA2  
src1  
dst  
32 LSB  
LD2a  
LD2b  
32 MSB  
src2  
(C)  
.M2  
src1  
dst2  
32  
32  
(B)  
(A)  
dst1  
src2  
src1  
.S2  
odd dst  
even dst  
long src  
(D)  
Data path B  
8
8
32 MSB  
32 LSB  
ST2a  
ST2b  
long src  
even dst  
(D)  
odd dst  
.L2  
src2  
src1  
Control Register  
A. On .M unit, dst2 is 32 MSB.  
B. On .M unit, dst1 is 32 LSB.  
C. On C64x CPU .M unit, src2 is 32 bits; on C64x+ CPU .M unit, src2 is 64 bits.  
D. On .L and .S units, odd dst connects to odd register files and even dst connects to even register files.  
Figure 2-2. TMS320C674x CPU (DSP Core) Data Paths  
16  
Device Overview  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
2.4.2 DSP Memory Mapping  
The DSP memory map is shown in Section 2.5.  
By default the DSP also has access to most on and off chip memory areas, with the exception of the ARM  
RAM, ROM, and AINTC interrupt controller. The DSP also boots first, and must release the ARM from  
reset before the ARM can execute any code.  
Additionally, the DSP megamodule includes the capability to limit access to its internal memories through  
its SDMA port; without needing an external MPU unit.  
2.4.2.1 ARM Internal Memories  
The DSP does not have access to the ARM internal memory.  
2.4.2.2 External Memories  
The DSP has access to the following External memories:  
Asynchronous EMIF / SDRAM / NAND / NOR Flash (EMIFA)  
SDRAM (EMIFB)  
2.4.2.3 DSP Internal Memories  
The DSP has access to the following DSP memories:  
L2 RAM  
L1P RAM  
L1D RAM  
2.4.2.4 C674x CPU  
The C674x core uses a two-level cache-based architecture. The Level 1 Program cache (L1P) is 32 KB  
direct mapped cache and the Level 1 Data cache (L1D) is 32 KB 2-way set associated cache. The Level 2  
memory/cache (L2) consists of a 256 KB memory space that is shared between program and data space.  
L2 memory can be configured as mapped memory, cache, or a combination of both.  
Table 2-2 shows a memory map of the C674x CPU cache registers for the device.  
Table 2-2. C674x Cache Registers  
BYTE ADDRESS  
ACRONYM  
REGISTER DESCRIPTION  
L2 Cache configuration register (See the System reference Guide for the  
reset configuration)  
0x0184 0000  
L2CFG  
L1P Size Cache configuration register (See the System reference Guide for  
the reset configuration)  
0x0184 0020  
0x0184 0024  
0x0184 0040  
L1PCFG  
L1PCC  
L1P Freeze Mode Cache configuration register  
L1D Size Cache configuration register (See the System reference Guide for  
the reset configuration)  
L1DCFG  
0x0184 0044  
0x0184 0048 - 0x0184 0FFC  
0x0184 1000  
L1DCC  
-
L1D Freeze Mode Cache configuration register  
Reserved  
EDMAWEIGHT  
-
L2 EDMA access control register  
Reserved  
0x0184 1004 - 0x0184 1FFC  
0x0184 2000  
L2ALLOC0  
L2ALLOC1  
L2ALLOC2  
L2ALLOC3  
-
L2 allocation register 0  
L2 allocation register 1  
L2 allocation register 2  
L2 allocation register 3  
Reserved  
0x0184 2004  
0x0184 2008  
0x0184 200C  
0x0184 2010 - 0x0184 3FFF  
0x0184 4000  
L2WBAR  
L2WWC  
L2 writeback base address register  
L2 writeback word count register  
0x0184 4004  
Copyright © 2008–2013, Texas Instruments Incorporated  
Device Overview  
17  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
 
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
Table 2-2. C674x Cache Registers (continued)  
BYTE ADDRESS  
0x0184 4010  
ACRONYM  
L2WIBAR  
REGISTER DESCRIPTION  
L2 writeback invalidate base address register  
0x0184 4014  
L2WIWC  
L2IBAR  
L2IWC  
L2 writeback invalidate word count register  
L2 invalidate base address register  
L2 invalidate word count register  
L1P invalidate base address register  
L1P invalidate word count register  
L1D writeback invalidate base address register  
L1D writeback invalidate word count register  
Reserved  
0x0184 4018  
0x0184 401C  
0x0184 4020  
L1PIBAR  
L1PIWC  
L1DWIBAR  
L1DWIWC  
-
0x0184 4024  
0x0184 4030  
0x0184 4034  
0x0184 4038  
0x0184 4040  
L1DWBAR  
L1DWWC  
L1DIBAR  
L1DIWC  
-
L1D writeback base address register  
L1D writeback word count register  
L1D invalidate base address register  
L1D invalidate word count register  
Reserved  
0x0184 4044  
0x0184 4048  
0x0184 404C  
0x0184 4050 - 0x0184 4FFF  
0x0184 5000  
L2WB  
L2 writeback all register  
0x0184 5004  
L2WBINV  
L2INV  
L2 writeback invalidate all register  
L2 Global Invalidate without writeback  
Reserved  
0x0184 5008  
0x0184 500C - 0x0184 5027  
0x0184 5028  
-
L1PINV  
-
L1P Global Invalidate  
0x0184 502C - 0x0184 5039  
0x0184 5040  
Reserved  
L1DWB  
L1DWBINV  
L1DINV  
MAR0 - MAR63  
L1D Global Writeback  
0x0184 5044  
L1D Global Writeback with Invalidate  
L1D Global Invalidate without writeback  
Reserved 0x0000 0000 – 0x3FFF FFFF  
0x0184 5048  
0x0184 8000 – 0x0184 80FF  
Memory Attribute Registers for EMIFA SDRAM Data (CS0)  
0x4000 0000 – 0x5FFF FFFF  
0x0184 8100 – 0x0184 817F  
0x0184 8180 – 0x0184 8187  
0x0184 8188 – 0x0184 818F  
0x0184 8190 – 0x0184 8197  
MAR64 – MAR95  
MAR96 - MAR97  
MAR98 – MAR99  
MAR100 – MAR101  
Memory Attribute Registers for EMIFA Async Data (CS2)  
0x6000 0000 – 0x61FF FFFF  
Memory Attribute Registers for EMIFA Async Data (CS3)  
0x6200 0000 – 0x63FF FFFF  
Memory Attribute Registers for EMIFA Async Data (CS4)  
0x6400 0000 – 0x65FF FFFF  
Memory Attribute Registers for EMIFA Async Data (CS5)  
0x6600 0000 – 0x67FF FFFF  
0x0184 8198 – 0x0184 819F  
0x0184 81A0 – 0x0184 81FF  
MAR102 – MAR103  
MAR104 – MAR127  
Reserved 0x6800 0000 – 0x7FFF FFFF  
Memory Attribute Register for Shared RAM 0x8000 0000 – 0x8001 FFFF  
Reserved 0x8002 0000 – 0x81FF FFFF  
0x0184 8200  
MAR128  
0x0184 8204 – 0x0184 82FF  
0x0184 8300 – 0x0184 837F  
0x0184 8380 – 0x0184 83FF  
MAR129 – MAR191  
MAR192 – MAR223  
MAR224 – MAR255  
Reserved 0x8200 0000 – 0xBFFF FFFF  
Memory Attribute Registers for EMIFB SDRAM Data (CS0)  
0xC000 0000 – 0xDFFF FFFF  
Reserved 0xE000 0000 – 0xFFFF FFFF  
Table 2-3. C674x L1/L2 Memory Protection Registers  
BYTE ADDRESS  
0x0184 A000  
ACRONYM  
L2MPFAR  
L2MPFSR  
L2MPFCR  
-
REGISTER DESCRIPTION  
L2 memory protection fault address register  
L2 memory protection fault status register  
L2 memory protection fault command register  
Reserved  
0x0184 A004  
0x0184 A008  
0x0184 A00C - 0x0184 A0FF  
0x0184 A100  
L2MPLK0  
L2 memory protection lock key bits [31:0]  
18  
Device Overview  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
Table 2-3. C674x L1/L2 Memory Protection Registers (continued)  
BYTE ADDRESS  
ACRONYM  
L2MPLK1  
L2MPLK2  
L2MPLK3  
L2MPLKCMD  
L2MPLKSTAT  
-
REGISTER DESCRIPTION  
L2 memory protection lock key bits [63:32]  
0x0184 A104  
0x0184 A108  
L2 memory protection lock key bits [95:64]  
L2 memory protection lock key bits [127:96]  
L2 memory protection lock key command register  
L2 memory protection lock key status register  
Reserved  
0x0184 A10C  
0x0184 A110  
0x0184 A114  
0x0184 A118 - 0x0184 A1FF  
L2 memory protection page attribute register 0  
(controls memory address 0x0080 0000 - 0x0080 1FFF)  
0x0184 A200  
0x0184 A204  
0x0184 A208  
0x0184 A20C  
0x0184 A210  
0x0184 A214  
0x0184 A218  
0x0184 A21C  
0x0184 A220  
0x0184 A224  
0x0184 A228  
0x0184 A22C  
0x0184 A230  
0x0184 A234  
0x0184 A238  
0x0184 A23C  
0x0184 A240  
0x0184 A244  
0x0184 A248  
0x0184 A24C  
0x0184 A250  
0x0184 A254  
0x0184 A258  
0x0184 A25C  
L2MPPA0  
L2MPPA1  
L2MPPA2  
L2MPPA3  
L2MPPA4  
L2MPPA5  
L2MPPA6  
L2MPPA7  
L2MPPA8  
L2MPPA9  
L2MPPA10  
L2MPPA11  
L2MPPA12  
L2MPPA13  
L2MPPA14  
L2MPPA15  
L2MPPA16  
L2MPPA17  
L2MPPA18  
L2MPPA19  
L2MPPA20  
L2MPPA21  
L2MPPA22  
L2MPPA23  
L2 memory protection page attribute register 1  
(controls memory address 0x0080 2000 - 0x0080 3FFF)  
L2 memory protection page attribute register 2  
(controls memory address 0x0080 4000 - 0x0080 5FFF)  
L2 memory protection page attribute register 3  
(controls memory address 0x0080 6000 - 0x0080 7FFF)  
L2 memory protection page attribute register 4  
(controls memory address 0x0080 8000 - 0x0080 9FFF)  
L2 memory protection page attribute register 5  
(controls memory address 0x0080 A000 - 0x0080 BFFF)  
L2 memory protection page attribute register 6  
(controls memory address 0x0080 C000 - 0x0080 DFFF)  
L2 memory protection page attribute register 7  
(controls memory address 0x0080 E000 - 0x0080 FFFF)  
L2 memory protection page attribute register 8  
(controls memory address 0x0081 0000 - 0x0081 1FFF)  
L2 memory protection page attribute register 9  
(controls memory address 0x0081 2000 - 0x0081 3FFF)  
L2 memory protection page attribute register 10  
(controls memory address 0x0081 4000 - 0x0081 5FFF)  
L2 memory protection page attribute register 11  
(controls memory address 0x0081 6000 - 0x0081 7FFF)  
L2 memory protection page attribute register 12  
(controls memory address 0x0081 8000 - 0x0081 9FFF)  
L2 memory protection page attribute register 13  
(controls memory address 0x0081 A000 - 0x0081 BFFF)  
L2 memory protection page attribute register 14  
(controls memory address 0x0081 C000 - 0x0081 DFFF)  
L2 memory protection page attribute register 15  
(controls memory address 0x0081 E000 - 0x0081 FFFF)  
L2 memory protection page attribute register 16  
(controls memory address 0x0082 0000 - 0x0082 1FFF)  
L2 memory protection page attribute register 17  
(controls memory address 0x0082 2000 - 0x0082 3FFF)  
L2 memory protection page attribute register 18  
(controls memory address 0x0082 4000 - 0x0082 5FFF)  
L2 memory protection page attribute register 19  
(controls memory address 0x0082 6000 - 0x0082 7FFF)  
L2 memory protection page attribute register 20  
(controls memory address 0x0082 8000 - 0x0082 9FFF)  
L2 memory protection page attribute register 21  
(controls memory address 0x0082 A000 - 0x0082 BFFF)  
L2 memory protection page attribute register 22  
(controls memory address 0x0082 C000 - 0x0082 DFFF)  
L2 memory protection page attribute register 23  
(controls memory address 0x0082 E000 - 0x0082 FFFF)  
Copyright © 2008–2013, Texas Instruments Incorporated  
Device Overview  
19  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
Table 2-3. C674x L1/L2 Memory Protection Registers (continued)  
BYTE ADDRESS  
ACRONYM  
REGISTER DESCRIPTION  
L2 memory protection page attribute register 24  
(controls memory address 0x0083 0000 - 0x0083 1FFF)  
0x0184 A260  
L2MPPA24  
L2 memory protection page attribute register 25  
(controls memory address 0x0083 2000 - 0x0083 3FFF)  
0x0184 A264  
0x0184 A268  
0x0184 A26C  
0x0184 A270  
0x0184 A274  
0x0184 A278  
0x0184 A27C  
0x0184 A280  
0x0184 A284  
0x0184 A288  
0x0184 A28C  
0x0184 A290  
0x0184 A294  
0x0184 A298  
0x0184 A29C  
0x0184 A2A0  
0x0184 A2A4  
0x0184 A2A8  
0x0184 A2AC  
0x0184 A2B0  
0x0184 A2B4  
0x0184 A2B8  
0x0184 A2BC  
0x0184 A2C0  
0x0184 A2C4  
0x0184 A2C8  
0x0184 A2CC  
L2MPPA25  
L2MPPA26  
L2MPPA27  
L2MPPA28  
L2MPPA29  
L2MPPA30  
L2MPPA31  
L2MPPA32  
L2MPPA33  
L2MPPA34  
L2MPPA35  
L2MPPA36  
L2MPPA37  
L2MPPA38  
L2MPPA39  
L2MPPA40  
L2MPPA41  
L2MPPA42  
L2MPPA43  
L2MPPA44  
L2MPPA45  
L2MPPA46  
L2MPPA47  
L2MPPA48  
L2MPPA49  
L2MPPA50  
L2MPPA51  
L2 memory protection page attribute register 26  
(controls memory address 0x0083 4000 - 0x0083 5FFF)  
L2 memory protection page attribute register 27  
(controls memory address 0x0083 6000 - 0x0083 7FFF)  
L2 memory protection page attribute register 28  
(controls memory address 0x0083 8000 - 0x0083 9FFF)  
L2 memory protection page attribute register 29  
(controls memory address 0x0083 A000 - 0x0083 BFFF)  
L2 memory protection page attribute register 30  
(controls memory address 0x0083 C000 - 0x0083 DFFF)  
L2 memory protection page attribute register 31  
(controls memory address 0x0083 E000 - 0x0083 FFFF)  
L2 memory protection page attribute register 32  
(controls memory address 0x0070 0000 - 0x0070 7FFF)  
L2 memory protection page attribute register 33  
(controls memory address 0x0070 8000 - 0x0070 FFFF)  
L2 memory protection page attribute register 34  
(controls memory address 0x0071 0000 - 0x0071 7FFF)  
L2 memory protection page attribute register 35  
(controls memory address 0x0071 8000 - 0x0071 FFFF)  
L2 memory protection page attribute register 36  
(controls memory address 0x0072 0000 - 0x0072 7FFF)  
L2 memory protection page attribute register 37  
(controls memory address 0x0072 8000 - 0x0072 FFFF)  
L2 memory protection page attribute register 38  
(controls memory address 0x0073 0000 - 0x0073 7FFF)  
L2 memory protection page attribute register 39  
(controls memory address 0x0073 8000 - 0x0073 FFFF)  
L2 memory protection page attribute register 40  
(controls memory address 0x0074 0000 - 0x0074 7FFF)  
L2 memory protection page attribute register 41  
(controls memory address 0x0074 8000 - 0x0074 FFFF)  
L2 memory protection page attribute register 42  
(controls memory address 0x0075 0000 - 0x0075 7FFF)  
L2 memory protection page attribute register 43  
(controls memory address 0x0075 8000 - 0x0075 FFFF)  
L2 memory protection page attribute register 44  
(controls memory address 0x0076 0000 - 0x0076 7FFF)  
L2 memory protection page attribute register 45  
(controls memory address 0x0076 8000 - 0x0076 FFFF)  
L2 memory protection page attribute register 46  
(controls memory address 0x0077 0000 - 0x0077 7FFF)  
L2 memory protection page attribute register 47  
(controls memory address 0x0077 8000 - 0x0077 FFFF)  
L2 memory protection page attribute register 48  
(controls memory address 0x0078 0000 - 0x0078 7FFF)  
L2 memory protection page attribute register 49  
(controls memory address 0x0078 8000 - 0x0078 FFFF)  
L2 memory protection page attribute register 50  
(controls memory address 0x0079 0000 - 0x0079 7FFF)  
L2 memory protection page attribute register 51  
(controls memory address 0x0079 8000 - 0x0079 FFFF)  
20  
Device Overview  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
Table 2-3. C674x L1/L2 Memory Protection Registers (continued)  
BYTE ADDRESS  
ACRONYM  
REGISTER DESCRIPTION  
L2 memory protection page attribute register 52  
(controls memory address 0x007A 0000 - 0x007A 7FFF)  
0x0184 A2D0  
0x0184 A2D4  
0x0184 A2D8  
0x0184 A2DC  
0x0184 A2E0  
0x0184 A2E4  
0x0184 A2E8  
0x0184 A2EC  
0x0184 A2F0  
0x0184 A2F4  
0x0184 A2F8  
0x0184 A2FC  
L2MPPA52  
L2 memory protection page attribute register 53  
(controls memory address 0x007A 8000 - 0x007A FFFF)  
L2MPPA53  
L2MPPA54  
L2MPPA55  
L2MPPA56  
L2MPPA57  
L2MPPA58  
L2MPPA59  
L2MPPA60  
L2MPPA61  
L2MPPA62  
L2MPPA63  
L2 memory protection page attribute register 54  
(controls memory address 0x007B 0000 - 0x007B 7FFF)  
L2 memory protection page attribute register 55  
(controls memory address 0x007B 8000 - 0x007B FFFF)  
L2 memory protection page attribute register 56  
(controls memory address 0x007C 0000 - 0x007C 7FFF)  
L2 memory protection page attribute register 57  
(controls memory address 0x007C 8000 - 0x007C FFFF)  
L2 memory protection page attribute register 58  
(controls memory address 0x007D 0000 - 0x007D 7FFF)  
L2 memory protection page attribute register 59  
(controls memory address 0x007D 8000 - 0x007D FFFF)  
L2 memory protection page attribute register 60  
(controls memory address 0x007E 0000 - 0x007E 7FFF)  
L2 memory protection page attribute register 61  
(controls memory address 0x007E 8000 - 0x007E FFFF)  
L2 memory protection page attribute register 62  
(controls memory address 0x007F 0000 - 0x007F 7FFF)  
L2 memory protection page attribute register 63  
(controls memory address 0x007F 8000 - 0x007F FFFF)  
0x0184 A300 - 0x0184 A3FF  
0x0184 A400  
-
Reserved  
L1PMPFAR  
L1PMPFSR  
L1PMPFCR  
-
L1P memory protection fault address register  
L1P memory protection fault status register  
L1P memory protection fault command register  
Reserved  
0x0184 A404  
0x0184 A408  
0x0184 A40C - 0x0184 A4FF  
0x0184 A500  
L1PMPLK0  
L1PMPLK1  
L1PMPLK2  
L1PMPLK3  
L1PMPLKCMD  
L1PMPLKSTAT  
-
L1P memory protection lock key bits [31:0]  
L1P memory protection lock key bits [63:32]  
L1P memory protection lock key bits [95:64]  
L1P memory protection lock key bits [127:96]  
L1P memory protection lock key command register  
L1P memory protection lock key status register  
Reserved  
0x0184 A504  
0x0184 A508  
0x0184 A50C  
0x0184 A510  
0x0184 A514  
0x0184 A518 - 0x0184 A5FF  
0x0184 A600 - 0x0184 A63F  
(1)  
-
Reserved  
L1P memory protection page attribute register 16  
(controls memory address 0x00E0 0000 - 0x00E0 07FF)  
0x0184 A640  
0x0184 A644  
0x0184 A648  
0x0184 A64C  
0x0184 A650  
0x0184 A654  
0x0184 A658  
L1PMPPA16  
L1PMPPA17  
L1PMPPA18  
L1PMPPA19  
L1PMPPA20  
L1PMPPA21  
L1PMPPA22  
L1P memory protection page attribute register 17  
(controls memory address 0x00E0 0800 - 0x00E0 0FFF)  
L1P memory protection page attribute register 18  
(controls memory address 0x00E0 1000 - 0x00E0 17FF)  
L1P memory protection page attribute register 19  
(controls memory address 0x00E0 1800 - 0x00E0 1FFF)  
L1P memory protection page attribute register 20  
(controls memory address 0x00E0 2000 - 0x00E0 27FF)  
L1P memory protection page attribute register 21  
(controls memory address 0x00E0 2800 - 0x00E0 2FFF)  
L1P memory protection page attribute register 22  
(controls memory address 0x00E0 3000 - 0x00E0 37FF)  
(1) These addresses correspond to the L1P memory protection page attribute registers 0-15 (L1PMPPA0-L1PMPPA15) of the C674x  
megamaodule. These registers are not supported for this device.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Device Overview  
21  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
Table 2-3. C674x L1/L2 Memory Protection Registers (continued)  
BYTE ADDRESS  
ACRONYM  
REGISTER DESCRIPTION  
L1P memory protection page attribute register 23  
(controls memory address 0x00E0 3800 - 0x00E0 3FFF)  
0x0184 A65C  
L1PMPPA23  
L1P memory protection page attribute register 24  
(controls memory address 0x00E0 4000 - 0x00E0 47FF)  
0x0184 A660  
0x0184 A664  
0x0184 A668  
0x0184 A66C  
0x0184 A670  
0x0184 A674  
0x0184 A678  
0x0184 A67C  
L1PMPPA24  
L1PMPPA25  
L1PMPPA26  
L1PMPPA27  
L1PMPPA28  
L1PMPPA29  
L1PMPPA30  
L1PMPPA31  
L1P memory protection page attribute register 25  
(controls memory address 0x00E0 4800 - 0x00E0 4FFF)  
L1P memory protection page attribute register 26  
(controls memory address 0x00E0 5000 - 0x00E0 57FF)  
L1P memory protection page attribute register 27  
(controls memory address 0x00E0 5800 - 0x00E0 5FFF)  
L1P memory protection page attribute register 28  
(controls memory address 0x00E0 6000 - 0x00E0 67FF)  
L1P memory protection page attribute register 29  
(controls memory address 0x00E0 6800 - 0x00E0 6FFF)  
L1P memory protection page attribute register 30  
(controls memory address 0x00E0 7000 - 0x00E0 77FF)  
L1P memory protection page attribute register 31  
(controls memory address 0x00E0 7800 - 0x00E0 7FFF)  
0x0184 A67F – 0x0184 ABFF  
0x0184 AC00  
-
Reserved  
L1DMPFAR  
L1DMPFSR  
L1DMPFCR  
-
L1D memory protection fault address register  
L1D memory protection fault status register  
L1D memory protection fault command register  
Reserved  
0x0184 AC04  
0x0184 AC08  
0x0184 AC0C - 0x0184 ACFF  
0x0184 AD00  
L1DMPLK0  
L1DMPLK1  
L1DMPLK2  
L1DMPLK3  
L1DMPLKCMD  
L1DMPLKSTAT  
-
L1D memory protection lock key bits [31:0]  
L1D memory protection lock key bits [63:32]  
L1D memory protection lock key bits [95:64]  
L1D memory protection lock key bits [127:96]  
L1D memory protection lock key command register  
L1D memory protection lock key status register  
Reserved  
0x0184 AD04  
0x0184 AD08  
0x0184 AD0C  
0x0184 AD10  
0x0184 AD14  
0x0184 AD18 - 0x0184 ADFF  
0x0184 AE00 - 0x0184 AE3F  
(2)  
-
Reserved  
L1D memory protection page attribute register 16  
(controls memory address 0x00F0 0000 - 0x00F0 07FF)  
0x0184 AE40  
0x0184 AE44  
0x0184 AE48  
0x0184 AE4C  
0x0184 AE50  
0x0184 AE54  
0x0184 AE58  
0x0184 AE5C  
0x0184 AE60  
0x0184 AE64  
L1DMPPA16  
L1DMPPA17  
L1DMPPA18  
L1DMPPA19  
L1DMPPA20  
L1DMPPA21  
L1DMPPA22  
L1DMPPA23  
L1DMPPA24  
L1DMPPA25  
L1D memory protection page attribute register 17  
(controls memory address 0x00F0 0800 - 0x00F0 0FFF)  
L1D memory protection page attribute register 18  
(controls memory address 0x00F0 1000 - 0x00F0 17FF)  
L1D memory protection page attribute register 19  
(controls memory address 0x00F0 1800 - 0x00F0 1FFF)  
L1D memory protection page attribute register 20  
(controls memory address 0x00F0 2000 - 0x00F0 27FF)  
L1D memory protection page attribute register 21  
(controls memory address 0x00F0 2800 - 0x00F0 2FFF)  
L1D memory protection page attribute register 22  
(controls memory address 0x00F0 3000 - 0x00F0 37FF)  
L1D memory protection page attribute register 23  
(controls memory address 0x00F0 3800 - 0x00F0 3FFF)  
L1D memory protection page attribute register 24  
(controls memory address 0x00F0 4000 - 0x00F0 47FF)  
L1D memory protection page attribute register 25  
(controls memory address 0x00F0 4800 - 0x00F0 4FFF)  
(2) These addresses correspond to the L1D memory protection page attribute registers 0-15 (L1DMPPA0-L1DMPPA15) of the C674x  
megamaodule. These registers are not supported for this device.  
22  
Device Overview  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
Table 2-3. C674x L1/L2 Memory Protection Registers (continued)  
BYTE ADDRESS  
ACRONYM  
REGISTER DESCRIPTION  
L1D memory protection page attribute register 26  
(controls memory address 0x00F0 5000 - 0x00F0 57FF)  
0x0184 AE68  
0x0184 AE6C  
0x0184 AE70  
0x0184 AE74  
0x0184 AE78  
L1DMPPA26  
L1D memory protection page attribute register 27  
(controls memory address 0x00F0 5800 - 0x00F0 5FFF)  
L1DMPPA27  
L1DMPPA28  
L1DMPPA29  
L1DMPPA30  
L1D memory protection page attribute register 28  
(controls memory address 0x00F0 6000 - 0x00F0 67FF)  
L1D memory protection page attribute register 29  
(controls memory address 0x00F0 6800 - 0x00F0 6FFF)  
L1D memory protection page attribute register 30  
(controls memory address 0x00F0 7000 - 0x00F0 77FF)  
L1D memory protection page attribute register 31  
(controls memory address 0x00F0 7800 - 0x00F0 7FFF)  
0x0184 AE7C  
L1DMPPA31  
-
0x0184 AE80 – 0x0185 FFFF  
Reserved  
See Table 2-4 for a detailed top level OMAP-L137 memory map that includes the DSP memory space.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Device Overview  
23  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
2.5 Memory Map Summary  
Note: Read/Write accesses to illegal or reserved addresses in the memory map may cause undefined  
behavior.  
Table 2-4. OMAP-L137 Top Level Memory Map  
Start Address  
End Address  
Size  
ARM Mem  
Map  
DSP Mem Map  
EDMA Mem PRUSS Mem  
Master  
Peripheral  
Mem Map  
LCDC  
Mem  
Map  
Map  
Map  
0x0000 0000  
0x0000 0FFF  
4K  
-
PRUSS Local  
Address  
Space  
0x0000 1000  
0x0070 0000  
0x0080 0000  
0x0084 0000  
0x00E0 0000  
0x00E0 8000  
0x00F0 0000  
0x00F0 8000  
0x0180 0000  
0x006F FFFF  
0x007F FFFF  
0x0083 FFFF  
0x00DF FFFF  
0x00E0 7FFF  
0x00EF FFFF  
0x00F0 7FFF  
0x017F FFFF  
0x0180 FFFF  
-
(1)  
1024K  
256K  
-
-
DSP L2 ROM  
-
-
DSP L2 RAM  
DSP L1P RAM  
DSP L1D RAM  
-
32K  
32K  
-
-
-
-
-
-
64K  
4K  
-
-
DSP Interrupt  
Controller  
-
-
0x0181 0000  
0x0181 0FFF  
DSP Powerdown  
Controller  
0x0181 1000  
0x0181 2000  
0x0181 3000  
0x0182 0000  
0x0183 0000  
0x0181 1FFF  
0x0181 2FFF  
0x0181 FFFF  
0x0182 FFFF  
0x0183 FFFF  
4K  
4K  
-
-
-
-
-
DSP Security ID  
DSP Revision ID  
-
-
-
-
-
-
52K  
64K  
64K  
DSP EMC  
DSP Internal  
Reserved  
0x0184 0000  
0x0184 FFFF  
64K  
4K  
-
DSP Memory  
System  
-
0x0185 0000  
0x01BC 0000  
0x01BB FFFF  
0x01BC 0FFF  
-
-
ARM ETB  
memory  
-
0x01BC 1000  
0x01BC 1800  
0x01BC 17FF  
0x01BC 18FF  
2K  
ARM ETB reg  
-
-
256  
ARM Ice  
Crusher  
0x01BC 1900  
0x01C0 0000  
0x01C0 8000  
0x01C0 8400  
0x01C0 8800  
0x01C1 0000  
0x01C1 1000  
0x01C1 2000  
0x01C1 4000  
0x01C1 5000  
0x01C1 6000  
0x01C1 7000  
0x01C1 8000  
0x01C2 0000  
0x01C2 1000  
0x01BF FFFF  
0x01C0 7FFF  
0x01C0 83FF  
0x01C0 87FF  
0x01C0 FFFF  
0x01C1 0FFF  
0x01C1 1FFF  
0x01C1 3FFF  
0x01C1 4FFF  
0x01C1 5FFF  
0x01C1 6FFF  
0x01C1 7FFF  
0x01C1 FFFF  
0x01C2 0FFF  
0x01C2 1FFF  
32K  
1024  
1024  
EDMA3 Channel Controller  
-
-
-
EDMA3 Transfer Controller 0  
EDMA3 Transfer Controller 1  
-
4K  
4K  
PSC 0  
-
-
PLL Controller  
-
4K  
SYSCFG  
-
-
-
-
-
4K  
4K  
Timer64P 0  
Timer64P 1  
-
-
(1) The DSP L2 ROM is used for boot purposes and cannot be programmed with application code  
24 Device Overview  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
Table 2-4. OMAP-L137 Top Level Memory Map (continued)  
Start Address  
End Address  
Size  
ARM Mem  
Map  
DSP Mem Map  
EDMA Mem PRUSS Mem  
Map Map  
Master  
Peripheral  
Mem Map  
LCDC  
Mem  
Map  
0x01C2 2000  
0x01C2 3000  
0x01C2 4000  
0x01C2 5000  
0x01C4 0000  
0x01C4 1000  
0x01C4 2000  
0x01C4 3000  
0x01D0 0000  
0x01D0 1000  
0x01D0 2000  
0x01D0 3000  
0x01D0 4000  
0x01D0 5000  
0x01D0 6000  
0x01D0 7000  
0x01D0 8000  
0x01D0 9000  
0x01D0 A000  
0x01D0 B000  
0x01D0 C000  
0x01D0 D000  
0x01D0 E000  
0x01E0 0000  
0x01E1 0000  
0x01E1 1000  
0x01E1 2000  
0x01E1 3000  
0x01E1 4000  
0x01E1 5000  
0x01E1 6000  
0x01E2 0000  
0x01E2 2000  
0x01E2 3000  
0x01E2 4000  
0x01E2 5000  
0x01E2 6000  
0x01E2 7000  
0x01E2 8000  
0x01E2 9000  
0x01F0 0000  
0x01F0 1000  
0x01F0 2000  
0x01F0 3000  
0x01F0 4000  
0x01F0 5000  
0x01C2 2FFF  
0x01C2 3FFF  
0x01C2 4FFF  
0x01C3 FFFF  
0x01C4 0FFF  
0x01C4 1FFF  
0x01C4 2FFF  
0x01CF FFFF  
0x01D0 0FFF  
0x01D0 1FFF  
0x01D0 2FFF  
0x01D0 3FFF  
0x01D0 4FFF  
0x01D0 5FFF  
0x01D0 6FFF  
0x01D0 7FFF  
0x01D0 8FFF  
0x01D0 9FFF  
0x01D0 AFFF  
0x01D0 BFFF  
0x01D0 CFFF  
0x01D0 DFFF  
0x01DF FFFF  
0x01E0 FFFF  
0x01E1 0FFF  
0x01E1 1FFF  
0x01E1 2FFF  
0x01E1 3FFF  
0x01E1 4FFF  
0x01E1 5FFF  
0x01E1 FFFF  
0x01E2 1FFF  
0x01E2 2FFF  
0x01E2 3FFF  
0x01E2 4FFF  
0x01E2 5FFF  
0x01E2 6FFF  
0x01E2 7FFF  
0x01E2 8FFF  
0x01EF FFFF  
0x01F0 0FFF  
0x01F0 1FFF  
0x01F0 2FFF  
0x01F0 3FFF  
0x01F0 4FFF  
0x01F0 5FFF  
4K  
4K  
I2C 0  
-
-
-
RTC  
-
-
4K  
4K  
4K  
MMC/SD 0  
SPI 0  
-
-
-
UART 0  
-
4K  
4K  
4K  
McASP 0 Control  
-
-
-
McASP 0 AFIFO Control  
McASP 0 Data  
-
4K  
4K  
4K  
McASP 1 Control  
-
-
-
McASP 1 AFIFO Control  
McASP 1 Data  
-
4K  
4K  
4K  
McASP 2 Control  
-
-
-
McASP 2 AFIFO Control  
McASP 2 Data  
-
4K  
4K  
UART 1  
-
-
UART 2  
-
USB0  
64K  
4K  
-
-
UHPI  
-
4K  
4K  
4K  
4K  
SPI 1  
-
-
-
-
LCD Controller  
Memory Protection Unit 1 (MPU 1)  
Memory Protection Unit 2 (MPU 2)  
-
EMAC Control Module RAM  
EMAC Control Module Registers  
EMAC Control Registers  
EMAC MDIO port  
USB1  
8K  
4K  
4K  
4K  
4K  
4K  
4K  
4K  
-
-
-
-
-
-
-
-
GPIO  
PSC 1  
I2C 1  
-
4K  
4K  
4K  
4K  
4K  
4K  
eHRPWM 0  
-
-
-
-
-
-
HRPWM 0  
eHRPWM 1  
HRPWM 1  
eHRPWM 2  
HRPWM 2  
Copyright © 2008–2013, Texas Instruments Incorporated  
Device Overview  
25  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
Table 2-4. OMAP-L137 Top Level Memory Map (continued)  
Start Address  
End Address  
Size  
ARM Mem  
Map  
DSP Mem Map  
EDMA Mem PRUSS Mem  
Master  
Peripheral  
Mem Map  
LCDC  
Mem  
Map  
Map  
Map  
0x01F0 6000  
0x01F0 7000  
0x01F0 8000  
0x01F0 9000  
0x01F0 A000  
0x01F0 B000  
0x1170 0000  
0x1180 0000  
0x1184 0000  
0x11E0 0000  
0x11E0 8000  
0x11F0 0000  
0x11F0 8000  
0x4000 0000  
0x4800 0000  
0x6000 0000  
0x6200 0000  
0x6400 0000  
0x6600 0000  
0x6800 0000  
0x6800 8000  
0x8000 0000  
0x8002 0000  
0xB000 0000  
0xB000 8000  
0xC000 0000  
0xD000 0000  
0xFFFD 0000  
0x01F0 6FFF  
0x01F0 7FFF  
0x01F0 8FFF  
0x01F0 9FFF  
0x01F0 AFFF  
0x116F FFFF  
0x117F FFFF  
0x1183 FFFF  
0x11DF FFFF  
0x11E0 7FFF  
0x11EF FFFF  
0x11F0 7FFF  
0x3FFF FFFF  
0x47FF FFFF  
0x5FFF FFFF  
0x61FF FFFF  
0x63FF FFFF  
0x65FF FFFF  
0x67FF FFFF  
0x6800 7FFF  
0x7FFF FFFF  
0x8001 FFFF  
0xAFFF FFFF  
0xB000 7FFF  
0xBFFF FFFF  
0xCFFF FFFF  
0xFFFC FFFF  
0xFFFD FFFF  
4K  
4K  
4K  
4K  
4K  
ECAP 0  
ECAP 1  
ECAP 2  
EQEP 0  
EQEP 1  
-
-
-
-
-
-
(2)  
1024K  
256K  
DSP L2 ROM  
-
-
DSP L2 RAM  
-
32K  
32K  
DSP L1P RAM  
-
-
-
-
DSP L1D RAM  
-
128M  
EMIFA SDRAM data (CS0)  
32M  
32M  
32M  
32M  
32K  
EMIFA async data (CS2)  
EMIFA async data (CS3)  
EMIFA async data (CS4)  
EMIFA async data (CS5)  
EMIFA Control Registers  
-
-
-
-
-
-
128K  
32K  
Shared RAM  
-
-
EMIFB Control Registers  
-
256M  
64K  
EMIFB SDRAM Data  
-
ARM local  
ROM  
-
0xFFFE 0000  
0xFFFE E000  
0xFFFE DFFF  
0xFFFE FFFF  
-
8K  
8K  
ARM Interrupt  
Controller  
-
ARM Local  
RAM (PRU0  
only)  
0xFFFF 0000  
0xFFFF 1FFF  
ARM local  
RAM  
-
0xFFFF 2000  
0xFFFF FFFF  
-
(2) The DSP L2 ROM is used for boot purposes and cannot be programmed with application code  
26  
Device Overview  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
2.6 Pin Assignments  
Extensive use of pin multiplexing is used to accommodate the largest number of peripheral functions in  
the smallest possible package. Pin multiplexing is controlled using a combination of hardware  
configuration at device reset and software programmable register settings.  
2.6.1 Pin Map (Bottom View)  
Figure 2-3 shows the pin assignments for the ZKB package.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
EMA_D[0]/  
MMCSD_DAT[0]/  
UHPI_HD[0]/  
GP0[0]/  
SPI0_CLK/  
EQEP1I/  
GP5[2]/  
SPI1_CLK/  
EQEP1S/  
GP5[7]/  
EMA_D[9]/  
UHPI_HD[9]/  
LCD_D[9]/  
GP0[9]  
EMA_CS[3]/ EMA_CS[0]/  
AMUTE2/  
GP2[6]  
EMA_A[0]/  
LCD_D[7]/  
GP1[0]  
EMA_A[4]/  
LCD_D[3]/  
GP1[4]  
EMA_A[8]/  
LCD_PCLK/  
GP1[8]  
AXR1[0]/  
GP4[0]  
AXR1[11]/  
GP5[11]  
EMA_SDCKE/  
GP2[0]  
T
R
P
N
M
L
T
R
P
N
M
L
VSS  
VSS  
UHPI_HAS/  
GP2[4]  
VSS  
VSS  
BOOT[2]  
BOOT[7]  
BOOT[12]  
UART0_RXD/  
I2C0_SDA/  
TM64P0_IN12/ UART2_RXD/  
GP5[8]/  
BOOT[8]  
SPI0_ENA/  
UART0_CTS/  
EQEP0A/  
GP5[3]/  
EMA_A[1]/  
MMCSD_CLK/  
UHPI_HCNTL0/  
GP1[1]  
EMA_CLK/  
OBSCLK/  
AHCLKR2/  
GP1[15]  
EMA_D[2]/  
EMA_D[10]/  
EMA_D[1]/  
SPI0_SOMI[0]/  
EQEP0I/  
GP5[0]/  
EMA_OE/  
UHPI_HDS1/  
AXR0[13]/  
GP2[7]  
SPI1_ENA/  
EMA_BA[0]/  
LCD_D[4]/  
GP1[14]  
EMA_A[5]/ EMA_A[9]/  
LCD_D[2]/ LCD_HSYNC/  
GP1[5]  
AXR1[1]/  
GP4[1]  
MMCSD_DAT[2]/ UHPI_HD[10]/ MMCSD_DAT[1]/  
UHPI_HD[2]/  
GP0[2]  
DVDD  
DVDD  
LCD_D[10]/  
GP0[10]  
UHPI_HD[1]/  
GP0[1]  
GP5[12]  
GP1[9]  
BOOT[0]  
BOOT[3]  
UART0_TXD/  
I2C0_SCL/  
TM64P0_OUT12/ UART2_TXD/  
GP5[9]/  
BOOT[9]  
EMA_WE_  
DQM[1]/  
UHPI_HDS2/  
AXR0[14]/  
GP2[8]  
SPI1_SOMI[0]/ SPI0_SIMO[0]/  
I2C1_SCL/  
GP5[5]/  
EMA_BA[1]/  
LCD_D[5]/ MMCSD_CMD/  
UHPI_HHWIL/ UHPI_HCNTL1/  
EMA_A[2]/  
EMA_A[11]/  
LCD_AC_  
ENB_CS/  
GP1[11]  
EMA_D[4]/  
EMA_D[12]/  
EMA_D[3]/  
EMA_D[11]/  
EMA_CS[2]/  
UHPI_HCS/  
GP2[5]/  
AXR1[3]/  
EQEP1A/  
GP4[3]  
SPI1_SCS[0]/  
EMA_A[6]/  
LCD_D[1]/  
GP1[6]  
AXR1[2]/  
GP4[2]  
EQEP0S/  
GP5[1]/  
BOOT[1]  
MMCSD_DAT[4]/ UHPI_HD[12]/ MMCSD_DAT[3]/ UHPI_HD[11]/  
UHPI_HD[4]/  
GP0[4]  
LCD_D[12]/  
GP0[12]  
UHPI_HD[3]/  
GP0[3]  
LCD_D[11]  
GP0[11]  
GP5[13]  
BOOT[5]  
GP1[13]  
GP1[2]  
BOOT[15]  
SPI0_SCS[0]/  
UART0_RTS/  
SPI1_SIMO[0]/  
I2C1_SDA/  
GP5[6]/  
EMA_D[8]/  
EMA_D[6]/  
EMA_D[14]/  
EMA_D[5]/  
EMA_D[13]/  
AXR1[5]/  
EPWM2B/  
GP4[5]  
AXR1[4]/  
EQEP1B/  
GP4[4]  
EMA_WAIT[0]/ EMA_RAS/ EMA_A[10]/ EMA_A[3]/  
UHPI_HRDY/ EMA_CS[5]/ LCD_VSYNC/ LCD_D[6]/  
GP2[10]  
EMA_A[7]/  
LCD_D[0]/  
GP1[7]  
EMA_A[12]/  
LCD_MCLK/  
GP1[12]  
AXR1[10]/  
UHPI_HD[8]/ MMCSD_DAT[6]/ UHPI_HD[14]/ MMCSD_DAT[5]/ UHPI_HD[13]/  
EQEP0B/  
GP5[10]  
LCD_D[8]/  
GP0[8]  
UHPI_HD[6]/  
GP0[6]  
LCD_D[14]/  
GP0[14]  
UHPI_HD[5]/  
GP0[5]  
LCD_D[13]/  
GP0[13]  
GP5[4]/  
BOOT[4]  
GP2[2]  
GP1[10]  
GP1[3]  
BOOT[6]  
EMA_D[7]/  
MMCSD_DAT[7]/  
UHPI_HD[7]/  
GP0[7]/  
EMA_WE/  
UHPI_HRW/  
AXR0[12]/  
GP2[3]/  
EMA_WE_  
DQM[0]/  
UHPI_HINT/  
AXR0[15]/  
GP2[9]  
EMA_D[15]/  
UHPI_HD[15]/  
LCD_D[15]/  
GP0[15]  
AXR1[8]/  
EPWM1A/  
GP4[8]  
AXR1[7]/  
EPWM1B/  
GP4[7]  
AXR1[6]/  
EPWM2A/  
GP4[6]  
AXR1[9]/  
GP4[9]  
DVDD  
VSS  
VSS  
DVDD  
DVDD  
VSS  
VSS  
DVDD  
DVDD  
DVDD  
CVDD  
RVDD  
DVDD  
DVDD  
BOOT[14]]  
BOOT[13]  
ACLKR1/  
ECAP2/  
APWM2/  
GP4[12]  
EMA_CAS/  
EMB_D[23] EMA_CS[4]/  
GP2[1]  
AHCLKR1/  
GP4[11]  
AFSR1/  
GP4[13]  
AMUTE0/  
RESETOUT  
DVDD  
CVDD  
CVDD  
CVDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DVDD  
CVDD  
CVDD  
CVDD  
CVDD  
DVDD  
VSS  
EMB_CAS  
EMB_D[20]  
EMB_D[22]  
AFSX1/  
EPWMSYNCI/  
EPWMSYNCO/  
GP4[10]  
AHCLKX1/  
EPWM0B/  
GP3[14]  
ACLKX1/  
EPWM0A/  
GP3[15]  
EMB_WE_  
DQM[0]/  
GP5[15]  
K
J
K
J
DVDD  
CVDD  
CVDD  
CVDD  
CVDD  
RSV1  
CVDD  
CVDD  
CVDD  
CVDD  
VSS  
EMB_WE  
EMB_D[21]  
RTCK/GP7[14]  
EMB_D[5]/  
GP6[5]  
EMB_D[6]/  
GP6[6]  
EMB_D[7]/  
GP6[7]  
TMS  
TDI  
TDO  
TCK  
TRST  
EMB_D[19]  
EMB_D[17]  
EMB_D[31]  
EMB_D[29]  
EMB_D[27]  
EMU0/GP7[15]  
EMB_D[3]/  
GP6[3]  
EMB_D[4]/  
GP6[4]  
USB0_  
VDDA33  
H
G
F
H
G
F
RTC_XI  
RTC_XO  
RTC_VSS  
OSCIN  
RV  
DD  
CV  
DD  
CV  
DD  
EMB_D[18]  
EMB_D[16]  
EMB_D[30]  
EMB_D[28]  
NC  
EMB_D[1]/  
GP6[1]  
EMB_D[2]/  
GP6[2]  
RTC_CVDD  
OSCOUT  
RESET  
USB0_DM  
DV  
DD  
DV  
DD  
DV  
DD  
EMB_D[15]/  
GP6[15]  
EMB_D[0]/  
GP6[0]  
NC  
USB0_DP  
USB0_  
DRVVBUS/  
GP4[15]  
EMB_D[13]/  
GP6[13]  
EMB_D[14]/  
GP6[14]  
USB0_  
VDDA18  
E
D
C
B
A
E
D
C
B
A
PLL0_VSSA  
PLL0_VDDA  
OSCVSS  
USB0_ID  
VSS  
VSS  
DV  
DD  
DV  
DD  
VSS  
DV  
DD  
AXR0[6]/ AXR0[2]/  
RMII_RXER/ RMII_TXEN/  
AMUTE1/  
USB0_VBUS EPWMTZ/  
GP4[14]  
AFSX0/  
GP2[13]/  
BOOT[10]  
UART1_TXD/  
AXR0[10]/  
GP3[10]  
EMB_A[0]/  
GP7[2]  
EMB_A[4]/  
GP7[6]  
EMB_A[8]/  
GP7[10]  
EMB_D[9]/  
GP6[9]  
EMB_D[10]/ EMB_D[11]/ EMB_D[12]/  
GP6[11]  
EMB_CS[0]  
ACLKR2/  
GP3[6]  
AXR2[3]/  
GP3[2]  
GP6[10]  
GP6[12]  
ACLKX0/  
ECAP0/  
APWM0/  
GP2[12]  
AXR0[5]/ AXR0[1]/  
RMII_RXD[1]/ RMII_TXD[1]/ EMB_BA[0]/  
UART1_RXD/  
AXR0[9]/  
GP3[9]  
EMB_WE_  
DQM[1]/  
GP5[14]  
EMB_A[1]/  
GP7[3]  
EMB_A[5]/  
GP7[7]  
EMB_A[9]/  
GP7[11]  
EMB_D[8]/  
GP6[8]  
USB1_  
VDDA33  
USB1_  
VDDA18  
USB0_  
VDDA12  
AFSR0/  
GP3[12]  
EMB_SDCKE EMB_CLK  
AFSX2/  
GP3[5]  
ACLKX2/  
GP3[1]  
GP7[1]  
AHCLKX0/  
AHCLKX2/  
USB_  
REFCLKIN/  
GP2[11]  
ACLKR0/  
ECAP1/  
APWM1/  
GP2[15]  
AXR0[4]/ AXR0[0]/  
RMII_RXD[0]/ RMII_TXD[0]/ EMB_BA[1]/  
AXR0[8]/  
MDIO_D/  
GP3[8]  
EMB_A[2]/  
GP7[4]  
EMB_A[6]/  
GP7[8]  
EMB_A[11]/  
GP7[13]  
EMB_A[12]/  
GP3[13]  
EMB_WE_  
EMB_D[25]  
DQM[2]  
RSV2  
VSS  
USB1_DM  
DVDD  
AXR2[1]/  
GP3[4]  
AFSR2/  
GP3[0]  
GP7[0]  
AHCLKR0/  
RMII_MHZ_ AXR0[11]/  
AXR0[3]/  
RMII_CRS_DV/  
AXR2[2]/  
AXR0[7]/  
MDIO_CLK/  
GP3[7]  
EMB_A[10]/  
GP7[12]  
EMB_A[3]/  
GP7[5]  
EMB_A[7]/  
GP7[9]  
EMB_WE_  
DQM[3]  
VSS  
VSS  
USB1_DP  
3
50_CLK/  
GP2[14]/  
BOOT[11]  
AXR2[0]/  
GP3[11]  
EMB_RAS  
8
EMB_D[24]  
13  
EMB_D[26]  
14  
VSS  
VSS  
GP3[3]  
1
2
4
5
6
7
9
10  
11  
12  
15  
16  
Figure 2-3. Pin Map (ZKB)  
Copyright © 2008–2013, Texas Instruments Incorporated  
Device Overview  
27  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
 
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
2.7 Terminal Functions  
Table 2-5 to Table 2-25 identify the external signal names, the associated pin/ball numbers along with the  
mechanical package designator, the pin type (I, O, IO, OZ, or PWR), whether the pin/ball has any internal  
pullup/pulldown resistors, whether the pin/ball is configurable as an IO in GPIO mode, and a functional pin  
description.  
2.7.1 Device Reset and JTAG  
Table 2-5. Reset and JTAG Terminal Functions  
PIN NO  
SIGNAL NAME  
TYPE(1)  
PULL(2)  
DESCRIPTION  
ZKB  
RESET  
Device reset input  
Reset output. Multiplexed with McASP0 mute output.  
JTAG  
RESET  
G3  
L4  
I
AMUTE0/ RESETOUT  
O(3)  
IPD  
TMS  
J1  
J2  
J3  
H3  
J4  
J5  
K1  
I
I
IPU  
IPU  
IPD  
IPU  
IPD  
IPU  
IPD  
JTAG test mode select  
JTAG test data input  
JTAG test data output  
JTAG test clock  
TDI  
TDO  
O
I
TCK  
TRST  
I
JTAG test reset  
EMU[0]/GP7[15]  
RTCK/GP7[14]  
I/O  
I/O  
Emulation Signal  
JTAG Test Clock Return Clock Output  
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.  
Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for  
that particular peripheral.  
(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor  
(3) Open drain mode for RESETOUT function.  
2.7.2 High-Frequency Oscillator and PLL  
Table 2-6. High-Frequency Oscillator and PLL Terminal Functions  
PIN NO  
SIGNAL NAME  
TYPE(1)  
PULL(2)  
DESCRIPTION  
ZKB  
EMA_CLK/OBSCLK/AHCLKR2/  
GP1[15]  
R12  
O
IPU  
PLL Observation Clock  
1.2-V OSCILLATOR  
Oscillator input  
Oscillator output  
Oscillator ground (for filter only)  
1.2-V PLL  
OSCIN  
F2  
F1  
E2  
I
OSCOUT  
OSCVSS  
O
GND  
PLL0_VDDA  
PLL0_VSSA  
D1  
E1  
PWR  
GND  
PLL analog VDD (1.2-V filtered supply)  
PLL analog VSS (for filter)  
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.  
Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for  
that particular peripheral.  
(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor  
28  
Device Overview  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
 
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
2.7.3 Real-Time Clock and 32-kHz Oscillator  
Table 2-7. Real-Time Clock (RTC) and 1.2-V, 32-kHz Oscillator Terminal Functions  
PIN NO  
SIGNAL NAME  
RTC_CVDD  
TYPE(1)  
PULL(2)  
DESCRIPTION  
ZKB  
G1  
H1  
PWR  
I
RTC module core power (isolated from rest of chip CVDD)  
RTC_XI  
RTC_XO  
RTC_Vss  
Low-frequency (32-kHz) oscillator receiver for real-time clock  
Low-frequency (32-kHz) oscillator driver for real-time clock  
Oscillator ground (for filter)  
H2  
O
G2  
GND  
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.  
Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for  
that particular peripheral.  
(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor  
2.7.4 External Memory Interface A (ASYNC, SDRAM)  
Table 2-8. External Memory Interface A (EMIFA) Terminal Functions  
PIN  
NO  
SIGNAL NAME  
TYPE(1) PULL(2)  
MUXED  
DESCRIPTION  
ZKB  
M16  
N14  
N16  
P14  
P16  
R14  
T14  
N12  
EMA_D[15]/UHPI_HD[15]/LCD_D[15]/GP0[15]  
EMA_D[14]/UHPI_HD[14]/LCD_D[14]/GP0[14]  
EMA_D[13]/UHPI_HD[13]/LCD_D[13]/GP0[13]  
EMA_D[12]/UHPI_HD[12]/LCD_D[12]/GP0[12]  
EMA_D[11]/UHPI_HD[11]/LCD_D[11]/GP0[11]  
EMA_D[10]/UHPI_HD[10]/LCD_D[10]/GP0[10]  
EMA_D[9]/UHPI_HD[9]/LCD_D[9]/GP0[9]  
EMA_D[8]/UHPI_HD[8]/LCD_D[8]/GP0[8]  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
UHPI, LCD,  
GPIO  
MMC/SD, UHPI,  
GPIO, BOOT  
EMIFA data bus  
EMA_D[7]/MMCSD_DAT[7]/UHPI_HD[7]/GP0[7]/BOOT[13]  
M15  
I/O  
IPU  
EMA_D[6]/MMCSD_DAT[6]/UHPI_HD[6]/GP0[6]  
EMA_D[5]/MMCSD_DAT[5]/UHPI_HD[5]/GP0[5]  
EMA_D[4]/MMCSD_DAT[4]/UHPI_HD[4]/GP0[4]  
EMA_D[3]/MMCSD_DAT[3]/UHPI_HD[3]/GP0[3]  
EMA_D[2]/MMCSD_DAT[2]/UHPI_HD[2]/GP0[2]  
EMA_D[1]/MMCSD_DAT[1]/UHPI_HD[1]/GP0[1]  
N13  
N15  
P13  
P15  
R13  
R15  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
MMC/SD, UHPI,  
GPIO  
MMC/SD, UHPI,  
GPIO, BOOT  
EMA_D[0]/MMCSD_DAT[0]/UHPI_HD[0]/GP0[0]/BOOT[12]  
T13  
I/O  
IPU  
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.  
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name  
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured  
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different  
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.  
(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor  
Copyright © 2008–2013, Texas Instruments Incorporated  
Device Overview  
29  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
Table 2-8. External Memory Interface A (EMIFA) Terminal Functions (continued)  
PIN  
NO  
SIGNAL NAME  
TYPE(1) PULL(2)  
MUXED  
DESCRIPTION  
ZKB  
N11  
P11  
N8  
EMA_A[12]/LCD_MCLK/GP1[12]  
O
O
O
O
O
O
O
O
O
O
O
O
O
IPU  
IPU  
IPU  
IPU  
IPU  
IPD  
IPD  
IPD  
IPD  
IPD  
IPU  
IPU  
IPD  
EMA_A[11]/LCD_AC_ENB_CS/GP1[11]  
EMA_A[10]/LCD_VSYNC/GP1[10]  
EMA_A[9]/LCD_HSYNC/GP1[9]  
EMA_A[8]/LCD_PCLK/GP1[8]  
R11  
T11  
N10  
P10  
R10  
T10  
N9  
LCD, GPIO  
EMIFA address bus  
EMA_A[7]/LCD_D[0]/GP1[7]  
EMA_A[6]/LCD_D[1]/GP1[6]  
EMA_A[5]/LCD_D[2]/GP1[5]  
EMA_A[4]/LCD_D[3]/GP1[4]  
EMA_A[3]/LCD_D[6]/GP1[3]  
EMA_A[2]/MMCSD_CMD/UHPI_HCNTL1/GP1[2]  
EMA_A[1]/MMCSD_CLK/UHPI_HCNTL0/GP1[1]  
EMA_A[0]/LCD_D[7]/GP1[0]  
P9  
MMCSD, UHPI,  
GPIO  
R9  
EMIFA address bus  
T9  
LCD, GPIO  
LCD, UHPI,  
GPIO  
EMA_BA[1]/LCD_D[5]/UHPI_HHWIL/GP1[13]  
EMA_BA[0]/LCD_D[4]/GP1[14]  
P8  
R8  
O
O
O
IPU  
IPU  
IPU  
EMIFA bank address  
EMIFA clock  
LCD, GPIO  
McASP2, GPIO,  
OBSCLK  
EMA_CLK/OBSCLK/AHCLKR2/GP1[15]  
R12  
EMIFA SDRAM clock  
enable  
EMA_SDCKE/GP2[0]  
T12  
N7  
O
O
O
IPU  
IPU  
IPU  
GPIO  
EMIFA SDRAM row  
address strobe  
EMA_RAS/EMA_CS[5]/GP2[2]  
EMA_CAS/EMA_CS[4]/GP2[1]  
EMIF A chip  
select, GPIO  
EMIFA SDRAM column  
address strobe  
L16  
EMA_RAS/EMA_CS[5] /GP2[2]  
EMA_CAS/EMA_CS[4] /GP2[1]  
EMA_CS[3]/AMUTE2/GP2[6]  
N7  
L16  
T7  
O
O
O
IPU  
IPU  
IPU  
EMIF A  
SDRAM, GPIO  
EMIFA Async Chip  
Select  
McASP2, GPIO  
UHPI, GPIO,  
BOOT  
EMA_CS[2]/UHPI_HCS/GP2[5]/BOOT[15]  
EMA_CS[0]/UHPI_HAS/GP2[4]  
P7  
T8  
O
O
O
IPU  
IPU  
IPU  
EMIFA SDRAM chip  
select  
UHPI, GPIO  
UHPI, MCASP0, EMIFA SDRAM write  
GPIO, BOOT  
EMA_WE/UHPI_HRW/AXR0[12]/GP2[3]/BOOT[14]  
M13  
enable  
EMIFA write  
EMA_WE_DQM[1]/UHPI_HDS2/AXR0[14]/GP2[8]  
EMA_WE_DQM[0]/UHPI_HINT/AXR0[15]/GP2[9]  
P12  
M14  
O
O
IPU  
IPU  
enable/data mask for  
EMA_D[15:8]  
UHPI, McASP,  
GPIO  
EMIFA write  
enable/data mask for  
EMA_D[7:0]  
UHPI, McASP0,  
GPIO  
EMA_OE/UHPI_HDS1/AXR0[13]/GP2[7]  
EMA_WAIT[0]/UHPI_HRDY/GP2[10]  
R7  
N6  
O
I
IPU  
IPU  
EMIFA output enable  
EMIFA wait  
input/interrupt  
UHPI, GPIO  
30  
Device Overview  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
2.7.5 External Memory Interface B (only SDRAM)  
Table 2-9. External Memory Interface B (EMIFB) Terminal Functions  
PIN NO  
ZKB  
G14  
F15  
F14  
E15  
E14  
A14  
B14  
A13  
L15  
L14  
K16  
K13  
J14  
SIGNAL NAME  
TYPE(1)  
PULL(2)  
MUXED  
DESCRIPTION  
EMB_D[31]  
EMB_D[30]  
EMB_D[29]  
EMB_D[28]  
EMB_D[27]  
EMB_D[26]  
EMB_D[25]  
EMB_D[24]  
EMB_D[23]  
EMB_D[22]  
EMB_D[21]  
EMB_D[20]  
EMB_D[19]  
EMB_D[18]  
EMB_D[17]  
EMB_D[16]  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
H15  
H14  
G15  
F13  
E16  
E13  
D16  
D15  
D14  
D13  
C16  
J16  
EMIFB SDRAM data bus  
EMB_D[15]/GP6[15]  
EMB_D[14]/GP6[14]  
EMB_D[13]/GP6[13]  
EMB_D[12]/GP6[12]  
EMB_D[11]/GP6[11]  
EMB_D[10]/GP6[10]  
EMB_D[9]/GP6[9]  
EMB_D[8]/GP6[8]  
EMB_D[7]/GP6[7]  
EMB_D[6]/GP6[6]  
EMB_D[5]/GP6[5]  
EMB_D[4]/GP6[4]  
EMB_D[3]/GP6[3]  
EMB_D[2]/GP6[2]  
EMB_D[1]/GP6[1]  
EMB_D[0]/GP6[0]  
EMB_A[12]/GP3[13]  
EMB_A[11]/GP7[13]  
EMB_A[10]/GP7[12]  
EMB_A[9]/GP7[11]  
EMB_A[8]/GP7[10]  
EMB_A[7]/GP7[9]  
EMB_A[6]/GP7[8]  
EMB_A[5]/GP7[7]  
GPIO  
J15  
J13  
H16  
H13  
G16  
G13  
F16  
B15  
B12  
A9  
O
O
C12  
D12  
A11  
B11  
C11  
O
EMIFB SDRAM row/column  
address bus  
GPIO  
O
O
O
O
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.  
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name  
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured  
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different  
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.  
(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor  
Copyright © 2008–2013, Texas Instruments Incorporated  
Device Overview  
31  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
Table 2-9. External Memory Interface B (EMIFB) Terminal Functions (continued)  
PIN NO  
ZKB  
D11  
A10  
B10  
C10  
D10  
B9  
SIGNAL NAME  
TYPE(1)  
PULL(2)  
MUXED  
DESCRIPTION  
EMB_A[4]/GP7[6]  
EMB_A[3]/GP7[5]  
EMB_A[2]/GP7[4]  
EMB_A[1]/GP7[3]  
EMB_A[0]/GP7[2]  
EMB_BA[1]/GP7[0]  
EMB_BA[0]/GP7[1]  
EMB_CLK  
O
O
O
O
O
O
O
O
O
O
IPD  
IPD  
IPD  
IPD  
IPD  
IPU  
IPU  
IPU  
IPU  
IPU  
EMIFB SDRAM row/column  
address  
GPIO  
EMIFB SDRAM bank address  
C9  
C14  
C13  
K15  
EMIF SDRAM clock  
EMB_SDCKE  
EMIFB SDRAM clock enable  
EMIFB write enable  
EMB_WE  
EMIFB SDRAM row address  
strobe  
EMB_RAS  
A8  
O
IPU  
EMB_CAS  
L13  
D9  
O
O
O
O
O
O
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
EMIFB column address strobe  
EMIFB SDRAM chip select 0  
EMB_CS[0]  
EMB_WE_DQM[3]  
EMB_WE_DQM[2]  
A12  
B13  
C15  
K14  
EMIFB write enable/data mask  
for EMB_D  
EMB_WE_DQM[1] /GP5[14]  
EMB_WE_DQM[0] /GP5[15]  
GPIO  
32  
Device Overview  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
2.7.6 Serial Peripheral Interface Modules (SPI0, SPI1)  
Table 2-10. Serial Peripheral Interface (SPI) Terminal Functions  
PIN  
NO  
SIGNAL NAME  
TYPE(1)  
SPI0  
PULL(2)  
MUXED  
DESCRIPTION  
ZKB  
UART0, EQEP0B,  
GPIO, BOOT  
SPI0_SCS[0] /UART0_RTS/EQEP0B/GP5[4]/BOOT[4]  
N4  
I/O  
IPU  
SPI0 chip select  
SPI0 enable  
UART0, EQEP0A,  
GPIO, BOOT  
SPI0_ENA /UART0_CTS/EQEP0A/GP5[3]/BOOT[3]  
SPI0_CLK/EQEP1I/GP5[2]/BOOT[2]  
R5  
T5  
P6  
I/O  
I/O  
I/O  
IPU  
IPD  
IPD  
eQEP1, GPIO, BOOT SPI0 clock  
SPI0 data slave-in-  
SPI0_SIMO[0]/EQEP0S/GP5[1]/BOOT[1]  
master-out  
eQEP0, GPIO, BOOT  
SPI0 data slave-out-  
master-in  
SPI0_SOMI[0]/EQEP0I/GP5[0]/BOOT[0]  
R6  
I/O  
IPD  
SPI1  
SPI1_SCS[0] /UART2_TXD/GP5[13]  
SPI1_ENA /UART2_RXD/GP5[12]  
SPI1_CLK/EQEP1S/GP5[7]/BOOT[7]  
P4  
R4  
T6  
I/O  
I/O  
I/O  
IPU  
IPU  
IPD  
SPI1 chip select  
SPI1 enable  
UART2, GPIO  
eQEP1, GPIO, BOOT SPI1 clock  
SPI1 data slave-in-  
SPI1_SIMO[0]/I2C1_SDA/GP5[6]/BOOT[6]  
SPI1_SOMI[0]/I2C1_SCL/GP5[5]/BOOT[5]  
N5  
P5  
I/O  
I/O  
IPU  
IPU  
master-out  
I2C1, GPIO, BOOT  
SPI1 data slave-out-  
master-in  
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.  
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name  
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured  
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different  
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.  
(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor  
Copyright © 2008–2013, Texas Instruments Incorporated  
Device Overview  
33  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
2.7.7 Enhanced Capture/Auxiliary PWM Modules (eCAP0, eCAP1, eCAP2)  
The eCAP Module pins function as either input captures or auxilary PWM 32-bit outputs, depending upon  
how the eCAP module is programmed.  
Table 2-11. Enhanced Capture Module (eCAP) Terminal Functions  
PIN  
NO  
SIGNAL NAME  
TYPE(1)  
PULL(2)  
MUXED  
DESCRIPTION  
ZKB  
eCAP0  
enhanced capture 0  
input or auxiliary  
PWM 0 output  
ACLKX0/ECAP0/APWM0/GP2[12]  
C5  
I/O  
I/O  
I/O  
IPD  
IPD  
IPD  
McASP0, GPIO  
McASP0, GPIO  
McASP1, GPIO  
eCAP1  
enhanced capture 1  
input or auxiliary  
PWM 1 output  
ACLKR0/ECAP1/APWM1/GP2[15]  
ACLKR1/ECAP2/APWM2/GP4[12]  
B4  
eCAP2  
L2  
enhanced capture 2  
input or auxiliary  
PWM 2 output  
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.  
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name  
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured  
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different  
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.  
(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor  
34  
Device Overview  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
2.7.8 Enhanced Pulse Width Modulators (eHRPWM0, eHRPWM1, eHRPWM2)  
Table 2-12. Enhanced Pulse Width Modulator (eHRPWM) Terminal Functions  
PIN NO  
SIGNAL NAME  
TYPE(1)  
PULL(2)  
MUXED  
DESCRIPTION  
ZKB  
eHRPWM0  
eHRPWM0 A output  
(with high-resolution)  
ACLKX1/EPWM0A/GP3[15]  
K3  
K2  
D4  
I/O  
I/O  
I/O  
IPD  
IPD  
IPD  
McASP1, GPIO  
AHCLKX1/EPWM0B/GP3[14]  
AMUTE1/EPWMTZ/GP4[14]  
eHRPWM0 B output  
McASP1, eHRPWM1, eHRPWM0 trip zone  
GPIO, eHRPWM2  
input  
Sync input to  
McASP1, eHRPWM0, eHRPWM0 module or  
AFSX1/EPWMSYNCI/EPWMSYNCO/GP4[10]  
K4  
I/O  
IPD  
GPIO  
sync output to external  
PWM  
eHRPWM1  
eHRPWM1 A output  
(with high-resolution)  
AXR1[8]/EPWM1A/GP4[8]  
AXR1[7]/EPWM1B/GP4[7]  
AMUTE1/EPWMTZ/GP4[14]  
M2  
M3  
D4  
I/O  
I/O  
IPD  
IPD  
IPD  
McASP1, GPIO  
eHRPWM1 B output  
McASP1, eHRPWM1, eHRPWM1 trip zone  
I/O  
GPIO, eHRPWM2  
input  
eHRPWM2  
I/O  
eHRPWM2 A output  
(with high-resolution)  
AXR1[6]/EPWM2A/GP4[6]  
AXR1[5]/EPWM2B/GP4[5]  
AMUTE1/EPWMTZ/GP4[14]  
M4  
N1  
D4  
IPD  
IPD  
IPD  
McASP1, GPIO  
I/O  
eHRPWM2 B output  
McASP1, eHRPWM1, eHRPWM2 trip zone  
GPIO, eHRPWM2 input  
I/O  
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.  
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name  
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured  
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different  
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.  
(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor  
Copyright © 2008–2013, Texas Instruments Incorporated  
Device Overview  
35  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
2.7.9 Enhanced Quadrature Encoder Pulse Module (eQEP)  
Table 2-13. Enhanced Quadrature Encoder Pulse Module (eQEP) Terminal Functions  
PIN  
NO  
SIGNAL NAME  
TYPE(1) PULL(2)  
MUXED  
DESCRIPTION  
ZKB  
eQEP0  
eQEP0A quadrature  
input  
SPI0_ENA/UART0_CTS/EQEP0A/GP5[3]/BOOT[3]  
SPI0_SCS[0]/UART0_RTS/EQEP0B/GP5[4]/BOOT[4]  
R5  
N4  
I
I
IPU  
IPU  
SPI0, UART0, GPIO,  
BOOT  
eQEP0B quadrature  
input  
SPI0_SOMI[0]/EQEP0I/GP5[0]/BOOT[0]  
SPI0_SIMO[0]/EQEP0S/GP5[1]/BOOT[1]  
R6  
P6  
I
I
IPD  
IPD  
eQEP0 index  
eQEP0 strobe  
SPI0, GPIO, BOOT  
McASP1, GPIO  
eQEP1  
eQEP1A quadrature  
input  
AXR1[3]/EQEP1A/GP4[3]  
AXR1[4]/EQEP1B/GP4[4]  
P1  
N2  
I
I
IPD  
IPD  
eQEP1B quadrature  
input  
SPI0_CLK/EQEP1I/GP5[2]/BOOT[2]  
SPI1_CLK/EQEP1S/GP5[7]/BOOT[7]  
T5  
T6  
I
I
IPD  
IPD  
SPI0, GPIO, BOOT  
SPI1, GPIO, BOOT  
eQEP1 index  
eQEP1 strobe  
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.  
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name  
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured  
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different  
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.  
(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor  
36  
Device Overview  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
2.7.10 Boot  
Table 2-14. Boot Mode Selection Terminal Functions(1)  
PIN NO  
ZKB  
P7  
SIGNAL NAME  
TYPE(2)  
PULL(3)  
MUXED  
DESCRIPTION  
EMA_CS[2]/UHPI_HCS/GP2[5]/BOOT[15]  
I
I
IPU  
IPU  
EMIFA, UHPI, GPIO  
EMIFA, UHPI,  
McASP0, GPIO  
EMA_WE/UHPI_HRW/AXR0[12]/GP2[3]/BOOT[14]  
M13  
EMA_D[7]/MMCSD_DAT[7]/UHPI_HD[7]/GP0[7]/BOOT[13]  
EMA_D[0]/MMCSD_DAT[0]/UHPI_HD[0]/GP0[0]/BOOT[12]  
M15  
T13  
I
I
IPU  
IPU  
EMIFA, MMC/SD,  
UHPI, GPIO  
McASP0, EMAC,  
GPIO  
AHCLKR0/RMII_MHZ_50_CLK/GP2[14]/BOOT[11]  
AFSX0/GP2[13]/BOOT[10]  
A4  
D5  
P3  
I
I
I
IPD  
IPD  
IPU  
McASP0, GPIO  
UART0, I2C0, Timer0,  
GPIO  
UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9]  
UART0, I2C0, Timer0,  
GPIO  
Boot Mode  
Selection Pins  
UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8]  
R3  
I
IPU  
SPI1_CLK/EQEP1S/GP5[7]/BOOT[7]  
SPI1_SIMO[0]/I2C1_SDA/GP5[6]/BOOT[6]  
SPI1_SOMI[0]/I2C1_SCL/GP5[5]/BOOT[5]  
T6  
N5  
P5  
I
I
I
IPD  
IPU  
IPU  
SPI1, eQEP1, GPIO  
SPI1, I2C1, GPIO  
SPI0, UART0,  
eQEP0, GPIO  
SPI0_SCS[0]/UART0_RTS/EQEP0B/GP5[4]/BOOT[4]  
SPI0_ENA/UART0_CTS/EQEP0A/GP5[3]/BOOT[3]  
N4  
R5  
I
I
IPU  
IPU  
SPI0, UART0,  
eQEP0, GPIO  
SPI0_CLK/EQEP1I/GP5[2]/BOOT[2]  
SPI0_SIMO[0]/EQEP0S/GP5[1]/BOOT[1]  
SPI0_SOMI[0]/EQEP0I/GP5[0]/BOOT[0]  
T5  
P6  
R6  
I
I
I
IPD  
IPD  
IPD  
SPI0, eQEP1, GPIO  
SPI0, eQEP0, GPIO  
(1) Boot decoding will be defined in the ROM datasheet.  
(2) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.  
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name  
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured  
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different  
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.  
(3) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor  
Copyright © 2008–2013, Texas Instruments Incorporated  
Device Overview  
37  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
2.7.11 Universal Asynchronous Receiver/Transmitters (UART0, UART1, UART2)  
Table 2-15. Universal Asynchronous Receiver/Transmitter (UART) Terminal Functions  
PIN  
NO  
SIGNAL NAME  
TYPE(1) PULL(2)  
MUXED  
DESCRIPTION  
ZKB  
UART0  
I2C0, BOOT,  
Timer0, GPIO,  
UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8]  
UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9]  
SPI0_SCS[0]/ UART0_RTS /EQEP0B/GP5[4]/BOOT[4]  
SPI0_ENA/ UART0_CTS /EQEP0A/GP5[3]/BOOT[3]  
R3  
P3  
N4  
R5  
I
IPU  
IPU  
IPU  
IPU  
UART0 receive data  
I2C0, Timer0, GPIO, UART0 transmit  
BOOT  
O
O
I
data  
UART0 ready-to-  
send output  
SPI0, eQEP0, GPIO,  
BOOT  
UART0 clear-to-  
send input  
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.  
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name  
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured  
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different  
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.  
(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor  
38  
Device Overview  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
Table 2-15. Universal Asynchronous Receiver/Transmitter (UART) Terminal Functions (continued)  
PIN  
NO  
SIGNAL NAME  
TYPE(1) PULL(2)  
MUXED  
McASP0, GPIO  
SPI1, GPIO  
DESCRIPTION  
ZKB  
UART1  
C6  
UART1_RXD/AXR0[9]/GP3[9](1)  
I
IPD  
IPD  
UART1 receive data  
UART1 transmit  
data  
UART1_TXD/AXR0[10]/GP3[10](1)  
D6  
O
UART2  
SPI1_ENA/UART2_RXD/GP5[12]  
SPI1_SCS[0]/UART2_TXD/GP5[13]  
R4  
I
IPU  
IPU  
UART2 receive data  
UART2 transmit  
data  
P4  
O
(1) As these signals are internally pulled down while the device is in reset, it is necessary to externally pull them high with resistors if  
UART1 boot mode is used. Please see the OMAP-L137 Applications Processor System Reference Guide - Literature Number  
SPRUG84 for more for details on entering UART1 boot mode.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Device Overview  
39  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
2.7.12 Inter-Integrated Circuit Modules(I2C0, I2C1)  
Table 2-16. Inter-Integrated Circuit (I2C) Terminal Functions  
PIN  
NO  
SIGNAL NAME  
TYPE(1) PULL(2)  
MUXED  
DESCRIPTION  
ZKB  
I2C0  
UART0, Timer0,  
GPIO, BOOT  
UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8]  
UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9]  
R3  
P3  
I/O  
I/O  
IPU  
IPU  
I2C0 serial data  
I2C0 serial clock  
UART0, Timer0,  
GPIO, BOOT  
I2C1  
N5  
SPI1_SIMO[0]/I2C1_SDA/GP5[6]/BOOT[6]  
SPI1_SOMI[0]/I2C1_SCL/GP5[5]/BOOT[5]  
I/O  
I/O  
IPU  
IPU  
I2C1 serial data  
I2C1 serial clock  
SPI1, GPIO, BOOT  
P5  
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.  
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name  
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured  
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different  
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.  
(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor  
2.7.13 Timers  
Table 2-17. Timers Terminal Functions  
PIN  
NO  
SIGNAL NAME  
TYPE(1) PULL(2)  
MUXED  
DESCRIPTION  
ZKB  
TIMER0  
UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8]  
UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9]  
R3  
I
IPU  
IPU  
Timer0 lower input  
UART0, I2C0,  
GPIO, BOOT  
Timer0 lower  
output  
P3  
O
TIMER1 (Watchdog )  
No external pins. The Timer1 peripheral signals are not pinned out as external pins.  
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.  
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name  
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured  
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different  
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.  
(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor  
40  
Device Overview  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
2.7.14 Universal Host-Port Interface (UHPI)  
Table 2-18. Universal Host-Port Interface (UHPI) Terminal Functions  
PIN  
NO  
SIGNAL NAME  
TYPE(1) PULL(2)  
MUXED  
DESCRIPTION  
ZKB  
M16  
N14  
N16  
P14  
P16  
R14  
T14  
N12  
EMA_D[15]/UHPI_HD[15]/LCD_D[15]/GP0[15]  
EMA_D[14]/UHPI_HD[14]/LCD_D[14]/GP0[14]  
EMA_D[13]/UHPI_HD[13]/LCD_D[13]/GP0[13]  
EMA_D[12]/UHPI_HD[12]/LCD_D[12]/GP0[12]  
EMA_D[11]/UHPI_HD[11]/LCD_D[11]/GP0[11]  
EMA_D[10]/UHPI_HD[10]/LCD_D[10]/GP0[10]  
EMA_D[9]/UHPI_HD[9]/LCD_D[9]/GP0[9]  
EMA_D[8]/UHPI_HD[8]/LCD_D[8]/GP0[8]  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
EMIFA, LCD, GPIO  
EMA_D[7]/MMCSD_DAT[7]/UHPI_HD[7]/GP0[7]/  
BOOT[13]  
EMIFA, MMC/SD,  
GPIO, BOOT  
UHPI data bus  
M15  
I/O  
IPU  
EMA_D[6]/MMCSD_DAT[6]/UHPI_HD[6]/GP0[6]  
EMA_D[5]/MMCSD_DAT[5]/UHPI_HD[5]/GP0[5]  
EMA_D[4]/MMCSD_DAT[4]/UHPI_HD[4]/GP0[4]  
EMA_D[3]/MMCSD_DAT[3]/UHPI_HD[3]/GP0[3]  
EMA_D[2]/MMCSD_DAT[2]/UHPI_HD[2]/GP0[2]  
EMA_D[1]/MMCSD_DAT[1]/UHPI_HD[1]/GP0[1]  
N13  
N15  
P13  
P15  
R13  
R15  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
EMIFA, MMC/SD,  
GPIO  
EMA_D[0]/MMCSD_DAT[0]/UHPI_HD[0]/GP0[0]/  
BOOT[12]  
EMIFA, MMC/SD,  
GPIO, BOOT  
T13  
I/O  
IPU  
EMA_A[2]/MMCSD_CMD/UHPI_HCNTL1/GP1[2]  
EMA_A[1]/MMCSD_CLK/UHPI_HCNTL0/GP1[1]  
P9  
R9  
I/O  
I/O  
IPU  
IPU  
EMIFA,  
MMCSD_CMD,  
GPIO  
UHPI access control  
UHPI half-word  
identification control  
EMA_BA[1]/LCD_D[5]/UHPI_HHWIL/GP1[13]  
EMA_WE/UHPI_HRW /AXR0[12]/GP2[3]/BOOT[14]  
EMA_CS[2]/ UHPI_HCS /GP2[5]/BOOT[15]  
P8  
M13  
P7  
I/O  
I/O  
I/O  
IPU  
IPU  
IPU  
EMIFA, LCD, GPIO  
EMIFA, McASP,  
GPIO, BOOT  
UHPI read/write  
UHPI chip select  
EMIFA, GPIO,  
BOOT  
EMA_WE_DQM[1]/ UHPI_HDS2 /AXR0[14]/GP2[8]  
EMA_OE/ UHPI_HDS1 /AXR0[13]/GP2[7]  
EMA_WE_DQM[0]/ UHPI_HINT /AXR0[15]/GP2[9]  
EMA_WAIT[0]/ UHPI_HRDY /GP2[10]  
P12  
R7  
I/O  
I/O  
I/O  
I/O  
I/O  
IPU  
IPU  
IPU  
IPU  
IPU  
UHPI data strobe  
EMIFA, McASP0,  
GPIO  
M14  
N6  
UHPI host interrupt  
UHPI ready  
EMIFA, GPIO  
EMA_CS[0]/ UHPI_HAS /GP2[4]  
T8  
UHPI address strobe  
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.  
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name  
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured  
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different  
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.  
(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor  
Copyright © 2008–2013, Texas Instruments Incorporated  
Device Overview  
41  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
2.7.15 Multichannel Audio Serial Ports (McASP0, McASP1, McASP2)  
Table 2-19. Multichannel Audio Serial Ports (McASPs) Terminal Functions  
PIN  
NO  
SIGNAL NAME  
TYPE(1) PULL(2)  
MUXED  
DESCRIPTION  
ZKB  
McASP0  
EMA_WE_DQM[0]/UHPI_HINT/AXR0[15]/GP2[9]  
EMA_WE_DQM[1]/UHPI_HDS2/AXR0[14]/GP2[8]  
EMA_OE/UHPI_HDS1/AXR0[13]/GP2[7]  
M14  
P12  
R7  
I/O  
I/O  
I/O  
IPU  
IPU  
IPU  
EMIFA, UHPI,  
GPIO  
EMIFA, UHPI,  
GPIO, BOOT  
EMA_WE/UHPI_HRW/AXR0[12]/GP2[3]/BOOT[14]  
M13  
I/O  
IPU  
AXR0[11]/AXR2[0]/GP3[11]  
A5  
D6  
C6  
B6  
A6  
D7  
C7  
B7  
A7  
D8  
C8  
B8  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IPD  
IPD  
IPD  
IPU  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
McASP2, GPIO  
GPIO  
UART1_TXD/AXR0[10]/GP3[10]  
UART1_RXD/AXR0[9]/GP3[9]  
GPIO  
McASP0 serial  
data  
AXR0[8]/MDIO_D/GP3[8]  
MDIO, GPIO  
AXR0[7]/MDIO_CLK/GP3[7]  
AXR0[6]/RMII_RXER/ACLKR2/GP3[6]  
AXR0[5]/RMII_RXD[1]/AFSX2/GP3[5]  
AXR0[4]/RMII_RXD[0]/AXR2[1]/GP3[4]  
AXR0[3]/RMII_CRS_DV/AXR2[2]/GP3[3]  
AXR0[2]/RMII_TXEN/AXR2[3]/GP3[2]  
AXR0[1]/RMII_TXD[1]/ACLKX2/GP3[1]  
AXR0[0]/RMII_TXD[0]/AFSR2/GP3[0]  
EMAC,  
McASP2, GPIO  
McASP2, USB, McASP1 transmit  
AHCLKX0/AHCLKX2/USB_REFCLKIN/GP2[11]  
ACLKX0/ECAP0/APWM0/GP2[12]  
AFSX0/GP2[13]/BOOT[10]  
B5  
C5  
D5  
A4  
B4  
C4  
L4  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
GPIO  
master clock  
McASP0 transmit  
bit clock  
eCAP0, GPIO  
McASP0 transmit  
frame sync  
GPIO, BOOT  
EMAC, GPIO,  
BOOT  
McASP0 receive  
master clock  
AHCLKR0/RMII_MHZ_50_CLK/GP2[14]/BOOT[11]  
ACLKR0/ECAP1/APWM1/GP2[15]  
AFSR0/GP3[12]  
McASP0 receive  
bit clock  
eCAP1, GPIO  
GPIO  
McASP0 receive  
frame sync  
McASP0 mute  
output  
AMUTE0/RESETOUT  
RESETOUT  
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.  
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name  
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured  
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different  
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.  
(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor  
42  
Device Overview  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
Table 2-19. Multichannel Audio Serial Ports (McASPs) Terminal Functions (continued)  
PIN  
NO  
SIGNAL NAME  
TYPE(1) PULL(2)  
MUXED  
DESCRIPTION  
ZKB  
McASP1  
AXR1[11]/GP5[11]  
AXR1[10]/GP5[10]  
AXR1[9]/GP4[9]  
T4  
N3  
M1  
I/O  
I/O  
I/O  
IPU  
IPU  
IPD  
GPIO  
eHRPWM1 A,  
GPIO  
AXR1[8]/EPWM1A/GP4[8]  
AXR1[7]/EPWM1B/GP4[7]  
AXR1[6]/EPWM2A/GP4[6]  
AXR1[5]/EPWM2B/GP4[5]  
M2  
M3  
M4  
N1  
I/O  
I/O  
I/O  
I/O  
IPD  
IPD  
IPD  
IPD  
eHRPWM1 B,  
GPIO  
eHRPWM2 A,  
GPIO  
McASP1 serial  
data  
eHRPWM2 B,  
GPIO  
AXR1[4]/EQEP1B/GP4[4]  
AXR1[3]/EQEP1A/GP4[3]  
AXR1[2]/GP4[2]  
N2  
P1  
P2  
R2  
T3  
I/O  
I/O  
I/O  
I/O  
I/O  
IPD  
IPD  
IPD  
IPD  
IPD  
eQEP1, GPIO  
AXR1[1]/GP4[1]  
GPIO  
AXR1[0]/GP4[0]  
eHRPWM0,  
GPIO  
McASP1 transmit  
master clock  
AHCLKX1/EPWM0B/GP3[14]  
ACLKX1/EPWM0A/GP3[15]  
AFSX1/EPWMSYNCI/EPWMSYNCO/GP4[10]  
AHCLKR1/GP4[11]  
K2  
K3  
K4  
L1  
L2  
L3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
eHRPWM0,  
GPIO  
McASP1 transmit  
bit clock  
eHRPWM0,  
GPIO  
McASP1 transmit  
frame sync  
McASP1 receive  
master clock  
GPIO  
McASP1 receive  
bit clock  
ACLKR1/ECAP2/APWM2/GP4[12]  
AFSR1/GP4[13]  
eCAP2, GPIO  
GPIO  
McASP1 receive  
frame sync  
eHRPWM0,  
eHRPWM1,  
eHRPWM2,  
GPIO  
McASP1 mute  
output  
AMUTE1/EPWMTZ/GP4[14]  
D4  
I/O  
IPD  
McASP2  
AXR0[0]/RMII_TXD[0]/AFSR2/GP3[0]  
AXR0[2]/RMII_TXEN/AXR2[3]/GP3[2]  
AXR0[3]/RMII_CRS_DV/AXR2[2]/GP3[3]  
AXR0[4]/RMII_RXD[0]/AXR2[1]/GP3[4]  
AXR0[11]/AXR2[0]/GP3[11]  
B8  
D8  
A7  
B7  
A5  
I/O  
I/O  
I/O  
I/O  
I/O  
IPD  
IPD  
IPD  
IPD  
IPD  
McASP0,  
EMAC, GPIO  
McASP2 serial  
data  
McASP0, GPIO  
McASP2 transmit  
master clock  
AHCLKX0/AHCLKX2/USB_REFCLKIN/GP2[11]  
AXR0[1]/RMII_TXD[1]/ACLKX2/GP3[1]  
AXR0[5]/RMII_RXD[1]/AFSX2/GP3[5]  
EMA_CLK/OBSCLK/AHCLKR2/GP1[15]  
AXR0[6]/RMII_RXER/ACLKR2/GP3[6]  
EMA_CS[3]/AMUTE2/GP2[6]  
B5  
C8  
C7  
R12  
D7  
T7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IPD  
IPD  
IPD  
IPU  
IPD  
IPU  
McASP0, USB,  
GPIO  
McASP2 transmit  
bit clock  
McASP0,  
EMAC, GPIO  
McASP2 transmit  
frame sync  
EMIFA, GPIO,  
OBSCLK  
McASP2 receive  
master clock  
McASP0,  
EMAC, GPIO  
McASP2 receive  
bit clock  
McASP2 mute  
output  
EMIFA, GPIO  
Copyright © 2008–2013, Texas Instruments Incorporated  
Device Overview  
43  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
2.7.16 Universal Serial Bus Modules (USB0, USB1)  
Table 2-20. Universal Serial Bus (USB) Terminal Functions  
PIN  
NO  
SIGNAL NAME  
TYPE(1) PULL(2) MUXED  
DESCRIPTION  
ZKB  
USB0 2.0 OTG (USB0)  
USB0_DM  
G4  
F4  
H5  
E3  
A
NA  
NA  
NA  
NA  
USB0 PHY data minus  
USB0_DP  
A
USB0 PHY data plus  
USB0_VDDA33  
USB0_VDDA18  
PWR  
PWR  
USB0 PHY 3.3-V supply  
USB0 PHY 1.8-V supply input  
USB0 PHY 1.2-V LDO output for bypass cap  
USB0_VDDA12(3)  
C3  
PWR  
NA  
For proper device operation, this pin must always  
be connected via a 1 uF capacitor to VSS (GND),  
even if USB0 is not being used.  
USB0_ID  
D2  
D3  
E4  
A
A
0
NA  
USB0 PHY identification (mini-A or mini-B plug)  
USB0 bus voltage  
USB0_VBUS  
NA  
USB0_DRVVBUS/GP4[15]  
IPD  
IPD  
GPIO  
USB0 controller VBUS control output  
AHCLKX0/AHCLKX2/USB_REFCLKIN/  
GP2[11]  
B5  
I
USB_REFCLKIN. Optional clock input  
USB1 1.1 OHCI (USB1)  
USB1_DM  
B3  
A3  
C1  
C2  
A
NA  
USB1 PHY data minus  
USB1 PHY data plus  
USB1_DP  
A
NA  
NA  
NA  
USB1_VDDA33  
USB1_VDDA18  
PWR  
PWR  
USB1 PHY 3.3-V supply  
USB1 PHY 1.8-V supply  
AHCLKX0/AHCLKX2/USB_REFCLKIN/  
GP2[11]  
B5  
I
IPD  
NA  
USB_REFCLKIN. Optional clock input  
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.  
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name  
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured  
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different  
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.  
(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor  
(3) Core power supply LDO output for USB PHY.  
44  
Device Overview  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
2.7.17 Ethernet Media Access Controller (EMAC)  
Table 2-21. Ethernet Media Access Controller (EMAC) Terminal Functions  
PIN  
NO  
SIGNAL NAME  
TYPE(1) PULL(2)  
RMII  
MUXED  
DESCRIPTION  
ZKB  
EMAC 50-MHz  
clock input or output  
AHCLKR0/RMII_MHZ_50_CLK/GP2[14]/BOOT[11]  
AXR0[6]/RMII_RXER/ACLKR2/GP3[6]  
A4  
D7  
I/O  
I
IPD  
IPD  
McASP0, GPIO, BOOT  
EMAC RMII receiver  
error  
AXR0[5]/RMII_RXD[1]/AFSX2/GP3[5]  
AXR0[4]/RMII_RXD[0]/AXR2[1]/GP3[4]  
C7  
B7  
I
I
IPD  
IPD  
EMAC RMII receive  
data  
EMAC RMII carrier  
sense data valid  
AXR0[3]/RMII_CRS_DV/AXR2[2]/GP3[3]  
AXR0[2]/RMII_TXEN/AXR2[3]/GP3[2]  
A7  
D8  
I
IPD  
IPD  
McASP0, McASP2, GPIO  
EMAC RMII transmit  
enable  
O
AXR0[1]/RMII_TXD[1]/ACLKX2/GP3[1]  
AXR0[0]/RMII_TXD[0]/AFSR2/GP3[0]  
C8  
B8  
O
O
IPD  
IPD  
EMAC RMII trasmit  
data  
MDIO  
I/O  
AXR0[8]/MDIO_D/GP3[8]  
B6  
A6  
IPU  
IPD  
MDIO serial data  
MDIO clock  
McASP0, GPIO  
AXR0[7]/MDIO_CLK/GP3[7]  
O
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.  
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name  
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured  
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different  
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.  
(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor  
Copyright © 2008–2013, Texas Instruments Incorporated  
Device Overview  
45  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
2.7.18 Multimedia Card/Secure Digital (MMC/SD)  
Table 2-22. Multimedia Card/Secure Digital (MMC/SD) Terminal Functions  
PIN  
NO  
SIGNAL NAME  
TYPE(1) PULL(2)  
MUXED  
DESCRIPTION  
ZKB  
R9  
EMA_A[1]/MMCSD_CLK/UHPI_HCNTL0/GP1[1]  
EMA_A[2]/MMCSD_CMD/UHPI_HCNTL1/GP1[2]  
O
IPU  
IPU  
MMCSD Clock  
EMIFA, UHPI, GPIO  
P9  
I/O  
MMCSD Command  
EMIFA, UHPI, GPIO,  
BOOT  
EMA_D[7]/MMCSD_DAT[7]/UHPI_HD[7]/GP0[7]/BOOT[13]  
M15  
I/O  
IPU  
EMA_D[6]/MMCSD_DAT[6]/UHPI_HD[6]/GP0[6]  
EMA_D[5]/MMCSD_DAT[5]/UHPI_HD[5]/GP0[5]  
EMA_D[4]/MMCSD_DAT[4]/UHPI_HD[4]/GP0[4]  
EMA_D[3]/MMCSD_DAT[3]/UHPI_HD[3]/GP0[3]  
EMA_D[2]/MMCSD_DAT[2]/UHPI_HD[2]/GP0[2]  
EMA_D[1]/MMCSD_DAT[1]/UHPI_HD[1]/GP0[1]  
N13  
N15  
P13  
P15  
R13  
R15  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
EMIFA, UHPI, GPIO  
MMC/SD data  
EMIFA, UHPI, GPIO,  
BOOT  
EMA_D[0]/MMCSD_DAT[0]/UHPI_HD[0]/GP0[0]/BOOT[12]  
T13  
I/O  
IPU  
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.  
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name  
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured  
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different  
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.  
(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor  
46  
Device Overview  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
2.7.19 Liquid Crystal Display Controller (LCD)  
Table 2-23. Liquid Crystal Display Controller (LCD) Terminal Functions  
PIN NO  
ZKB  
M16  
N14  
N16  
P14  
P16  
R14  
T14  
N12  
T9  
SIGNAL NAME  
TYPE(1) PULL(2)  
MUXED  
DESCRIPTION  
EMA_D[15]/UHPI_HD[15]/LCD_D [15]/GP0[15]  
EMA_D[14]/UHPI_HD[14]/LCD_D[14]/GP0[14]  
EMA_D[13]/UHPI_HD[13]/LCD_D[13]/GP0[13]  
EMA_D[12]/UHPI_HD[12]/LCD_D[12]/GP0[12]  
EMA_D[11]/UHPI_HD[11]/LCD_D[11 ]/GP0[11]  
EMA_D[10]/UHPI_HD[10]/LCD_D[10]/GP0[10]  
EMA_D[9]/UHPI_HD[9]/LCD_D[9]/GP0[9]  
EMA_D[8]/UHPI_HD[8]/LCD_D[8]/GP0[8]  
EMA_A[0]/LCD_D[7]/GP1[0]  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
EMIFA, UHPI,  
GPIO  
LCD data bus  
EMIFA, GPIO  
EMA_A[3]/LCD_D[6]/GP1[3]  
N9  
EMIFA, UHPI,  
GPIO  
EMA_BA[1]/LCD_D[5]/UHPI_HHWIL/GP1[13]  
P8  
I/O  
IPU  
EMA_BA[0]/LCD_D[4]/GP1[14]  
EMA_A[4]/LCD_D[3]/GP1[4]  
EMA_A[5]/LCD_D[2]/GP1[5]  
EMA_A[6]/LCD_D[1]/GP1[6]  
EMA_A[7]/LCD_D[0]/GP1[7]  
EMA_A[8]/LCD_PCLK/GP1[8]  
EMA_A[9]/LCD_HSYNC/GP1[9]  
EMA_A[10]/LCD_VSYNC/GP1[10]  
R8  
T10  
R10  
P10  
N10  
T11  
R11  
N8  
I/O  
I/O  
I/O  
I/O  
I/O  
O
IPU  
IPD  
IPD  
IPD  
IPD  
IPU  
IPU  
IPU  
LCD data bus  
EMIFA, GPIO  
LCD pixel clock  
O
LCD horizontal sync  
LCD vertical sync  
O
LCD AC bias enable  
chip select  
EMA_A[11]/ LCD_AC_ENB_CS /GP1[11]  
EMA_A[12]/LCD_MCLK/GP1[12]  
P11  
N11  
O
O
IPU  
IPU  
LCD memory clock  
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.  
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name  
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured  
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different  
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.  
(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor  
Copyright © 2008–2013, Texas Instruments Incorporated  
Device Overview  
47  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
2.7.20 Reserved and No Connect  
Table 2-24. Reserved and No Connect Terminal Functions  
PIN NO  
ZKB  
F7  
SIGNAL NAME  
TYPE(1)  
DESCRIPTION  
RSV1  
RSV2  
-
Reserved. (Leave unconnected, do not connect to power or ground.)  
Reserved. For proper device operation, this pin must be tied either directly  
to CVDD or left unconnected [do not connect to ground (VSS)].  
B1  
PWR  
NC  
NC  
F3  
H4  
-
-
No Connect (leave unconnected)  
No Connect (leave unconnected)  
(1) PWR = Supply voltage.  
2.7.21 Supply and Ground  
Table 2-25. Supply and Ground Terminal Functions  
PIN NO  
SIGNAL NAME  
TYPE(1)  
DESCRIPTION  
ZKB  
F6,G6, G7,  
G10, G11, H7,  
H10, H11, J6,  
J7, J10, J11,  
J12, K6, K7,  
K10, K11,L6  
CVDD (Core supply)  
PWR  
PWR  
Core supply voltage pins  
RVDD (Internal RAM supply)  
DVDD (I/O supply)  
H6, H12  
Internal ram supply voltage pins  
B16, E5, E8,  
E9, E12, F5,  
F11, F12, G5,  
G12, K5, K12,  
L5, L11, L12,  
M5, M8, M9,  
M12, R1, R16  
PWR  
I/O supply voltage pins  
A1, A2, A15,  
A16,  
B2,  
E6, E7, E10,  
E11,  
F8, F9, F10,  
G8, G9,  
H8, H9,  
J8, J9,  
VSS (Ground)  
GND  
Ground pins  
K8, K9,  
L7, L8, L9,  
L10,  
M6, M7, M10,  
M11,  
T1, T2, T15,  
T16  
(1) PWR = Supply voltage, GND - Ground.  
48  
Device Overview  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
3 Device Configuration  
3.1 Boot Modes  
This device supports a variety of boot modes through an internal ROM bootloader. This device does not  
support dedicated hardware boot modes; therefore, all boot modes utilize the internal ROM. The input  
states of the BOOT pins are sampled and latched into the BOOTCFG register, which is part of the system  
configuration (SYSCFG) module, when device reset is deasserted. Boot mode selection is determined by  
the values of the BOOT pins  
The following boot modes are supported:  
NAND Flash boot  
8-bit NAND  
16-bit NAND  
NOR Flash boot  
NOR Direct boot (8-bit or 16-bit)  
NOR Legacy boot (8-bit or 16-bit)  
NOR AIS boot (8-bit or 16-bit)  
HPI Boot  
I2C0 / I2C1 Boot  
EEPROM (Master Mode)  
External Host (Slave Mode)  
SPI0 / SPI1 Boot  
Serial Flash (Master Mode)  
SERIAL EEPROM (Master Mode)  
External Host (Slave Mode)  
UART0 / UART1 / UART2 Boot  
External Host  
Copyright © 2008–2013, Texas Instruments Incorporated  
Device Configuration  
49  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
3.2 SYSCFG Module  
The following system level features of the chip are controlled by the SYSCFG peripheral:  
Readable Device, Die, and Chip Revision ID  
Control of Pin Multiplexing  
Priority of bus accesses different bus masters in the system  
Capture at power on reset the chip BOOT[15:0] pin values and make them available to software  
Special case settings for peripherals:  
Locking of PLL controller settings  
Default burst sizes for EDMA3 TC0 and TC1  
Selection of the source for the eCAP module input capture (including on chip sources)  
McASP AMUTEIN selection and clearing of AMUTE status for the three McASP peripherals  
Control of the reference clock source and other side-band signals for both of the integrated USB  
PHYs  
Clock source selection for EMIFA and EMIFB  
Selects the source of emulation suspend signal (from either ARM or DSP) of peripherals supporting  
this function.  
Control of on-chip inter-processor interrupts for signaling between ARM and DSP  
Many registers are accessible only by a host (ARM or DSP) when it is operating in its privileged mode.  
(ex. from the kernel, but not from user space code).  
Table 3-1. System Configuration (SYSCFG) Module Register Access  
BYTE ADDRESS  
0x01C1 4000  
0x01C14008  
0x01C1 400C  
0x01C1 4010  
0x01C1 4014  
0x01C1 4018  
0x01C1 4020  
0x01C1 4024  
0x01C1 4038  
0x01C1 403C  
0x01C1 4040  
0x01C1 4044  
0x01C1 40E0  
0x01C1 40E4  
0x01C1 40E8  
0x01C1 40EC  
0x01C1 40F0  
0x01C1 40F4  
0x01C1 40F8  
0x01C1 4110  
0x01C1 4114  
0x01C1 4118  
0x01C1 4120  
0x01C1 4124  
0x01C1 4128  
0x01C1 412C  
ACRONYM  
REVID  
REGISTER DESCRIPTION  
Revision Identification Register  
ACCESS  
DIEIDR0  
DIEIDR1  
DIEIDR2  
DIEIDR3  
DEVIDR0  
BOOTCFG  
CHIPREVID  
KICK0R  
Device Identification Register 0  
Device Identification Register 1  
Device Identification Register 2  
Device Identification Register 3  
JTAG Identification Register  
Boot Configuration Register  
Silicon Revision Identification Register  
Kick 0 Register  
Privileged mode  
Privileged mode  
Privileged mode  
Privileged mode  
KICK1R  
Kick 1 Register  
HOST0CFG  
HOST1CFG  
IRAWSTAT  
IENSTAT  
IENSET  
Host 0 Configuration Register  
Host 1 Configuration Register  
Interrupt Raw Status/Set Register  
Interrupt Enable Status/Clear Register  
Interrupt Enable Register  
Privileged mode  
Privileged mode  
Privileged mode  
Privileged mode  
Privileged mode  
Privileged mode  
IENCLR  
Interrupt Enable Clear Register  
End of Interrupt Register  
EOI  
FLTADDRR  
FLTSTAT  
MSTPRI0  
MSTPRI1  
MSTPRI2  
PINMUX0  
PINMUX1  
PINMUX2  
PINMUX3  
Fault Address Register  
Fault Status Register  
Master Priority 0 Register  
Privileged mode  
Privileged mode  
Privileged mode  
Privileged mode  
Privileged mode  
Privileged mode  
Privileged mode  
Master Priority 1 Register  
Master Priority 2 Register  
Pin Multiplexing Control 0 Register  
Pin Multiplexing Control 1 Register  
Pin Multiplexing Control 2 Register  
Pin Multiplexing Control 3 Register  
50  
Device Configuration  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
Table 3-1. System Configuration (SYSCFG) Module Register Access (continued)  
BYTE ADDRESS  
0x01C1 4130  
0x01C1 4134  
0x01C1 4138  
0x01C1 413C  
0x01C1 4140  
0x01C1 4144  
0x01C1 4148  
0x01C1 414C  
0x01C1 4150  
0x01C1 4154  
0x01C1 4158  
0x01C1 415C  
0x01C1 4160  
0x01C1 4164  
0x01C1 4168  
0x01C1 416C  
0x01C1 4170  
0x01C1 4174  
0x01C1 4178  
0x01C1 417C  
0x01C1 4180  
0x01C1 4184  
0x01C1 4188  
0x01C1 418C  
ACRONYM  
PINMUX4  
REGISTER DESCRIPTION  
Pin Multiplexing Control 4 Register  
ACCESS  
Privileged mode  
Privileged mode  
Privileged mode  
Privileged mode  
Privileged mode  
Privileged mode  
Privileged mode  
Privileged mode  
Privileged mode  
Privileged mode  
Privileged mode  
Privileged mode  
Privileged mode  
Privileged mode  
Privileged mode  
Privileged mode  
Privileged mode  
PINMUX5  
Pin Multiplexing Control 5 Register  
Pin Multiplexing Control 6 Register  
Pin Multiplexing Control 7 Register  
Pin Multiplexing Control 8 Register  
Pin Multiplexing Control 9 Register  
Pin Multiplexing Control 10 Register  
Pin Multiplexing Control 11 Register  
Pin Multiplexing Control 12 Register  
Pin Multiplexing Control 13 Register  
Pin Multiplexing Control 14 Register  
Pin Multiplexing Control 15 Register  
Pin Multiplexing Control 16 Register  
Pin Multiplexing Control 17 Register  
Pin Multiplexing Control 18 Register  
Pin Multiplexing Control 19 Register  
Suspend Source Register  
PINMUX6  
PINMUX7  
PINMUX8  
PINMUX9  
PINMUX10  
PINMUX11  
PINMUX12  
PINMUX13  
PINMUX14  
PINMUX15  
PINMUX16  
PINMUX17  
PINMUX18  
PINMUX19  
SUSPSRC  
CHIPSIG  
Chip Signal Register  
CHIPSIG_CLR  
CFGCHIP0  
CFGCHIP1  
CFGCHIP2  
CFGCHIP3  
CFGCHIP4  
Chip Signal Clear Register  
Chip Configuration 0 Register  
Privileged mode  
Privileged mode  
Privileged mode  
Privileged mode  
Privileged mode  
Chip Configuration 1 Register  
Chip Configuration 2 Register  
Chip Configuration 3 Register  
Chip Configuration 4 Register  
Copyright © 2008–2013, Texas Instruments Incorporated  
Device Configuration  
51  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
3.3 Pullup/Pulldown Resistors  
Proper board design should ensure that input pins to the device always be at a valid logic level and not  
floating. This may be achieved via pullup/pulldown resistors. The device features internal pullup (IPU) and  
internal pulldown (IPD) resistors on most pins to eliminate the need, unless otherwise noted, for external  
pullup/pulldown resistors.  
An external pullup/pulldown resistor needs to be used in the following situations:  
Boot and Configuration Pins: If the pin is both routed out and 3-stated (not driven), an external  
pullup/pulldown resistor is strongly recommended, even if the IPU/IPD matches the desired value/state.  
Other Input Pins: If the IPU/IPD does not match the desired value/state, use an external  
pullup/pulldown resistor to pull the signal to the opposite rail.  
For the boot and configuration pins, if they are both routed out and 3-stated (not driven), it is strongly  
recommended that an external pullup/pulldown resistor be implemented. Although, internal  
pullup/pulldown resistors exist on these pins and they may match the desired configuration value,  
providing external connectivity can help ensure that valid logic levels are latched on these device boot and  
configuration pins. In addition, applying external pullup/pulldown resistors on the boot and configuration  
pins adds convenience to the user in debugging and flexibility in switching operating modes.  
Tips for choosing an external pullup/pulldown resistor:  
Consider the total amount of current that may pass through the pullup or pulldown resistor. Make sure  
to include the leakage currents of all the devices connected to the net, as well as any internal pullup or  
pulldown resistors.  
Decide a target value for the net. For a pulldown resistor, this should be below the lowest VIL level of  
all inputs connected to the net. For a pullup resistor, this should be above the highest VIH level of all  
inputs on the net. A reasonable choice would be to target the VOL or VOH levels for the logic family of  
the limiting device; which, by definition, have margin to the VIL and VIH levels.  
Select a pullup/pulldown resistor with the largest possible value; but, which can still ensure that the net  
will reach the target pulled value when maximum current from all devices on the net is flowing through  
the resistor. The current to be considered includes leakage current plus, any other internal and  
external pullup/pulldown resistors on the net.  
For bidirectional nets, there is an additional consideration which sets a lower limit on the resistance  
value of the external resistor. Verify that the resistance is small enough that the weakest output buffer  
can drive the net to the opposite logic level (including margin).  
Remember to include tolerances when selecting the resistor value.  
For pullup resistors, also remember to include tolerances on the IO supply rail.  
For most systems, a 1-kresistor can be used to oppose the IPU/IPD while meeting the above  
criteria. Users should confirm this resistor value is correct for their specific application.  
For most systems, a 20-kresistor can be used to compliment the IPU/IPD on the boot and  
configuration pins while meeting the above criteria. Users should confirm this resistor value is correct  
for their specific application.  
For more detailed information on input current (II), and the low-/high-level input voltages (VIL and VIH)  
for the device, see Section 4.2, Recommended Operating Conditions.  
For the internal pullup/pulldown resistors for all device pins, see the peripheral/system-specific terminal  
functions table.  
52  
Device Configuration  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
4 Device Operating Conditions  
4.1 Absolute Maximum Ratings Over Operating Case Temperature Range  
(1)  
(Unless Otherwise Noted)  
Core  
-0.5 V to 1.4 V  
-0.5 V to 2 V  
(2)  
(CVDD, RVDD, RTC_CVDD, PLL0_VDDA )  
I/O, 1.8V  
(USB0_VDDA18, USB1_VDDA18)  
Supply voltage ranges  
(2)  
I/O, 3.3V  
-0.5 V to 3.8V  
(2)  
(DVDD, USB0_VDDA33, USB1_VDDA33)  
VI I/O, 1.2V  
(OSCIN, RTC_XI)  
-0.3 V to CVDD + 0.3V  
-0.3V to DVDD + 0.35V  
VI I/O, 3.3V  
(Steady State)  
VI I/O, 3.3V  
DVDD + 20%  
up to 20% of Signal  
Period  
Input voltage ranges  
(Transient)  
VI I/O, USB 5V Tolerant Pins:  
5.25V(3)  
(USB0_DM, USB0_DP, USB0_ID, USB1_DM, USB1_DP)  
VI I/O, USB0 VBUS  
VO I/O, 3.3V  
5.50V(3)  
-0.5 V to DVDD + 0.3V  
(Steady State)  
Output voltage ranges  
VO I/O, 3.3V  
20% of DVDD for up to  
20% of the signal period  
(Transient Overshoot/Undershoot)  
Input or Output Voltages 0.3V above or below their respective power  
±20mA  
Clamp Current  
rails. Limit clamp current that flows through the I/O's internal diode  
protection cells.  
Commercial  
0°C to 90°C  
-40°C to 90°C  
-40°C to 105°C  
-40°C to 125°C  
-55°C to 150°C  
>2000V  
Industrial (D suffix )  
Extended (A suffix)  
Automotive (T suffix)  
(default)  
Human Body Model (HBM)(5)  
Charged Device Model (CDM)(6)  
Operating Junction Temperature ranges,  
TJ  
Storage temperature range, Tstg  
(4)  
ESD Stress Voltage, VESD  
>500V  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to VSS, PLL0_VSSA, OSCVSS, RTC_VSS  
(3) Up to a max of 24 hours.  
(4) Electrostatic discharge (ESD) to measure device sensitivity/immunity to damage caused by electrostatic discharges into the device.  
(5) Level listed above is the passing level per ANSI/ESDA/JEDEC JS-001-2010. JEDEC document JEP155 states that 500V HBM allows  
safe manufacturing with a standard ESD control process, and manufacturing with less than 500V HBM is possible if necessary  
precautions are taken. Pins listed as 1000V may actually have higher performance.  
(6) Level listed above is the passing level per EIA-JEDEC JESD22-C101E. JEDEC document JEP157 states that 250V CDM allows safe  
manufacturing with a standard ESD control process. Pins listed as 250V may actually have higher performance.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Device Operating Conditions  
53  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
4.2 Recommended Operating Conditions  
MIN  
1.14  
1.25  
0.9  
NOM  
1.2  
1.3  
1.2  
1.3  
1.2  
1.3  
MAX  
1.32  
1.35  
1.32  
1.35  
1.32  
1.35  
UNIT  
375 MHz versions  
Supply voltage, Core  
(CVDD, PLL0_VDDA)  
CVDD  
V
456 MHz version  
375 MHz versions  
Supply Voltage, RTC Core  
Logic  
(1)  
RTC_CVDD  
V
V
456 MHz version  
0.9  
375 MHz versions  
1.14  
1.25  
RVDD  
Supply Voltage, Internal RAM  
Supply voltage, I/O, 1.8V  
456 MHz version  
1.71  
3.0  
0
1.8  
3.3  
0
1.89  
3.45  
0
V
V
V
(USB0_VDDA18, USB1_VDDA18)  
DVDD  
VSS  
Supply voltage, I/O, 3.3V  
(DVDD, USB0_VDDA33, USB1_VDDA33)  
Supply ground  
(VSS, PLL0_VSSA, OSCVSS(2), RTC_VSS(2)  
)
High-level input voltage, I/O, 3.3V  
High-level input voltage, RTC_XI  
High-level input voltage, OSCIN  
Low-level input voltage, I/O, 3.3V  
Low-level input voltage, RTC_XI  
Low-level input voltage, OSCIN  
Input Hysteresis  
2
V
V
(3)  
VIH  
0.7*RTC_CVDD  
0.7*CVDD  
0.8  
V
V
(3)  
VIL  
0.3*RTC_CVDD  
0.3*CVDD  
VHYS  
USB  
160  
5
mV  
V
USB0_VBUS  
4.75  
5.25  
Transition time, 10%-90%, All Inputs (unless otherwise specified  
in the electrical data sections)  
tt  
0.25P or 10(4)  
ns  
Commercial  
0
-40  
-40  
-40  
0
70  
70  
°C  
°C  
Industrial (D suffix)  
Operating ambient  
TA  
temperature range  
Extended (A suffix)  
85  
°C  
Automotive (T suffix)  
Commercial  
105  
°C  
375 / 456  
456  
MHz  
MHz  
MHz  
MHz  
DSP and ARM  
Operating Frequency  
(SYSCLK1,6)  
Industrial (D suffix)  
Extended (A suffix)  
Automotive (T suffix)  
0
FSYSCLK1,6  
0
375  
0
375  
(1) The RTC provides an option for isolating the RTC_CVDD from the CVDD to reduce current leakage when the RTC is powered  
independently. If these power supplies are not isolated (CTRL.SPLITPOWER=0), RTC_CVDD must be equal to or greater than CVDD.  
If these power supplies are isolated (CTRL.SPLITPOWER=1), RTC_CVDD may be lower than CVDD.  
(2) When an external crystal is used, oscillator (OSC_VSS, RTC_VSS) ground must be kept separate from other grounds and connected  
directly to the crystal load capacitor ground. These pins are shorted to VSS on the device itself and should not be connected to VSS on  
the circuit board. If a crystal is not used and the clock input is driven directly, then the oscillator VSS may be connected to board ground.  
(3) These I/O specifications do not apply to USB I/Os. USB0 I/Os adhere to USB2.0 specification. USB1 I/Os adhere to USB1.1  
specification.  
(4) Whichever is smaller. P = the period of the applied signal. Maintaining transition times as fast as possible is recommended to improve  
noise immunity on input signals.  
54  
Device Operating Conditions  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
4.3 Notes on Recommended Power-On Hours (POH)  
The information in the section below is provided solely for your convenience and does not extend or  
modify the warranty provided under TI’s standard terms and conditions for TI semiconductor products.  
To avoid significant degradation, the device power-on hours (POH) must be limited to the following:  
Table 4-1. Recommended Power-On Hours  
Silicon  
Revision  
Operating Junction  
Temperature (Tj)  
Power-On Hours [POH]  
(hours)  
Speed Grade  
Nominal CVDD Voltage (V)  
A
B
B
B
B
B
B
300 MHz  
300 MHz  
375 MHz  
375 MHz  
375 MHz  
456 MHz  
456 MHz  
0 to 90 °C  
0 to 90 °C  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
1.3V  
1.3V  
100,000  
100,000  
100,000  
75,000(1)  
20,000  
0 to 90 °C  
-40 to 105 °C  
-40 to 125 °C  
0 to 90 °C  
100,000  
100,000  
-40 to 90 °C  
(1) 100,000 POH can be achieved at this temperature condition if the device operation is limited to 345 MHz.  
Note: Logic functions and parameter values are not assured out of the range specified in the recommended  
operating conditions.  
The above notations cannot be deemed a warranty or deemed to extend or modify the warranty under  
TI’s standard terms and conditions for TI semiconductor products.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Device Operating Conditions  
55  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
4.4 Electrical Characteristics Over Recommended Ranges of Supply Voltage and  
Operating Case Temperature (Unless Otherwise Noted)  
PARAMETER  
TEST CONDITIONS  
DVDD= 3.15V, IOH = -4 mA  
DVDD= 3.15V, IOH = 100 μA  
DVDD= 3.15V, IOL = 4mA  
MIN  
TYP  
MAX  
UNIT  
2.4  
V
V
V
V
(1)  
(1)  
VOH  
High-level output voltage (3.3V I/O)  
2.95  
0.4  
0.2  
VOL  
Low-level output voltage (3.3V I/O)  
DVDD= 3.15V, IOL = -100 μA  
VI = VSS to DVDD without opposing  
internal resistor  
±35  
-200  
300  
±40  
μA  
μA  
μA  
μA  
VI = VSS to DVDD with opposing  
-30  
50  
(3)  
internal pullup resistor  
II  
Input current  
(2) (1)  
,
VI = VSS to DVDD with opposing  
(3)  
internal pulldown resistor  
VI = VSS to USB1_VDDA33 -  
USB1_DM and USB1_DP  
(1)  
IOH  
High-level output current  
Low-level output current  
I/O Off-state output current  
-4  
4
mA  
mA  
μA  
pF  
(1)  
IOL  
(4)  
IOZ  
VO = VDD or VSS; Internal pull disabled  
LVCMOS signals  
±35  
3
CI  
Input capacitance  
Output capacitance  
OSCIN and RTC_XI  
2
pF  
CO  
LVCMOS signals  
3
pF  
(1) These I/O specifications apply to regular 3.3V IOs and do not apply to USB0 or USB1 unless specifically indicated. USB0 I/Os adhere to  
the USB 2.0 specification. USB1 I/Os adhere to the USB 1.1 specification.  
(2) II applies to input-only pins and bi-directional pins. For input-only pins, II indicates the input leakage current. For bi-directional pins, II  
indicates the input leakage current and off-state (Hi-Z) output leakage current.  
(3) Applies only to pins with an internal pullup (IPU) or pulldown (IPD) resistor.  
(4) IOZ applies to output-only pins, indicating off-state (Hi-Z) output leakage current.  
56  
Device Operating Conditions  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
5 Peripheral Information and Electrical Specifications  
5.1 Parameter Information  
5.1.1 Parameter Information Device-Specific Information  
Tester Pin Electronics  
Data Sheet Timing Reference Point  
42  
3.5 nH  
Output  
Under  
Test  
Transmission Line  
Z0 = 50 Ω  
(see note)  
Device Pin  
(see note)  
4.0 pF  
1.85 pF  
A. The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its  
transmission line effects must be taken into account. A transmission line with a delay of 2 ns or longer can be used to  
produce the desired transmission line effect. The transmission line is intended as a load only. It is not necessary to  
add or subtract the transmission line delay (2 ns or longer) from the data sheet timings.  
Input requirements in this data sheet are tested with an input slew rate of < 4 Volts per nanosecond (4 V/ns) at the  
device pin and the input signals are driven between 0V and the appropriate IO supply rail for the signal.  
Figure 5-1. Test Load Circuit for AC Timing Measurements  
The load capacitance value stated is only for characterization and measurement of AC timing signals. This  
load capacitance value does not indicate the maximum load the device is capable of driving.  
5.1.1.1 Signal Transition Levels  
All input and output timing parameters are referenced to Vref for both "0" and "1" logic levels. For 3.3 V I/O,  
Vref = 1.65 V. For 1.8 V I/O, Vref = 0.9 V. For 1.2 V I/O, Vref = 0.6 V.  
V
ref  
Figure 5-2. Input and Output Voltage Reference Levels for AC Timing Measurements  
All rise and fall transition timing parameters are referenced to VIL MAX and VIH MIN for input clocks,  
VOLMAX and VOH MIN for output clocks.  
V
ref  
= V MIN (or V MIN)  
IH OH  
V
ref  
= V MAX (or V MAX)  
IL OL  
Figure 5-3. Rise and Fall Transition Time Voltage Reference Levels  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
57  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
5.2 Recommended Clock and Control Signal Transition Behavior  
All clocks and control signals must transition between VIH and VIL (or between VIL and VIH) in a monotonic  
manner.  
5.3 Power Supplies  
5.3.1 Power-on Sequence  
The device should be powered-on in the following order:  
1. RTC (RTC_CVDD) may be powered from an external device (such as a battery) prior to all other  
supplies being applied or powered-up at the same time as CVDD. If the RTC is not used, RTC_CVDD  
should be connected to CVDD. RTC_CVDD should not be left unpowered while CVDD is powered.  
2. Core logic supplies:  
(a) CVDD core logic and RVDD supply  
(b) Other 1.2V logic supplies (PLL0_VDDA).  
Groups 2a) and 2b) may be powered up together or 2a) first followed by 2b).  
3. All 1.8V IO supplies (USB0_VDDA18, USB1_VDDA18).  
4. All digital IO and analog 3.3V PHY supplies (DVDD, USB0_VDDA33, USB1_VDDA33).  
If both USB0 and USB1 are not used, USB0_VDDA33 and USB1_VDDA33 are not required and may  
be left unconnected.  
Group 3) and group 4) may be powered on in either order [3 then 4, or 4 then 3] but group 4) must be  
powered-on after the core logic supplies.  
There is no specific required voltage ramp rate for any of the supplies.  
RESET must be maintained active until all power supplies have reached their nominal values.  
5.3.2 Power-off Sequence  
The power supplies can be powered-off in any order as long as the 3.3V supplies do not remain powered  
with the other supplies unpowered.  
58  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
5.4 Unused USB0 (USB2.0) and USB1 (USB1.1) Pin Configurations  
If one or both USB modules on the device are not used, then some of the power supplies to those  
modules may not be required. This can eliminate the requirement for a 1.8V power supply to the USB  
modules. The required pin configurations for unused USB modules are shown below.  
Table 5-1. Unused USB0 and USB1 Pin Configurations  
SIGNAL NAME  
Configuration  
Configuration  
(When USB0 and USB1 are not used)  
(When USB0 is used  
and USB1 is not used)  
USB0_DM  
USB0_DP  
No connect  
No connect  
Use as USB0 function  
Use as USB0 function  
3.3V  
USB0_VDDA33  
USB0_VDDA18  
USB0_ID  
No connect  
No connect  
1.8V  
No connect  
Use as USB0 function  
Use as USB0 function  
Use as USB0 or alternate function  
USB0_VBUS  
No connect  
USB0_DRVVBUS/GP4[15]  
USB0_VDDA12  
No connect or use as alternate function  
No connect  
Internal USB0 PHY output connected to an  
external filter capacitor  
USB1_DM  
USB1_DP  
No connect  
No connect  
VSS  
VSS  
USB1_VDDA33  
USB1_VDDA18  
No connect  
No connect  
No connect  
No connect  
AHCLKX0/AHCLKX2/USB_REFCLKIN/  
GP2[11]  
No connect or use as alternate function  
Use as USB0 or alternate function  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
59  
 
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
5.5 Reset  
www.ti.com  
5.5.1 Power-On Reset (POR)  
A power-on reset (POR) is required to place the device in a known good state after power-up. Power-On  
Reset is initiated by bringing RESET and TRST low at the same time. POR sets all of the device internal  
logic to its default state. All pins are tri-stated with the exception of RESETOUT, which remains active  
through the reset sequence, and RTCK/GP7[14]. If an emulator is driving TCK into the device during  
reset, then RTCK/GP7[14] will drive out RTCK. If TCK is not being driven into the device during reset,  
then RTCK/GP7[14] will drive low.RESETOUT is an output for use by other controllers in the system that  
indicates the device is currently in reset.  
While both TRST and RESET need to be asserted upon power up, only RESET needs to be released for  
the device to boot properly. TRST may be asserted indefinitely for normal operation, keeping the JTAG  
port interface and device's emulation logic in the reset state.  
TRST only needs to be released when it is necessary to use a JTAG controller to debug the device or  
exercise the device's boundary scan functionality. Note: TRST is synchronous and must be clocked by  
TCK; otherwise, the boundary scan logic may not respond as expected after TRST is asserted.  
RESET must be released only in order for boundary-scan JTAG to read the variant field of IDCODE  
correctly. Other boundary-scan instructions work correctly independent of current state of RESET. For  
maximum reliability, the device includes an internal pulldown on the TRST pin to ensure that TRST will  
always be asserted upon power up and the device's internal emulation logic will always be properly  
initialized.  
JTAG controllers from Texas Instruments actively drive TRST high. However, some third-party JTAG  
controllers may not drive TRST high but expect the use of a pullup resistor on TRST. When using this type  
of JTAG controller, assert TRST to intialize the device after powerup and externally drive TRST high  
before attempting any emulation or boundary scan operations.  
RTCK/GP7[14] is maintained active through a POR.  
A summary of the effects of Power-On Reset is given below:  
All internal logic (including emulation logic and the PLL logic) is reset to its default state  
Internal memory is not maintained through a POR  
RESETOUT goes active  
All device pins go to a high-impedance state  
The RTC peripheral is not reset during a POR. A software sequence is required to reset the RTC.  
CAUTION: A watchdog reset triggers a POR.  
5.5.2 Warm Reset  
A warm reset provides a limited reset to the device. Warm Reset is initiated by bringing only RESET low  
(TRST is maintained high through a warm reset). Warm reset sets certain portions of the device to their  
default state while leaving others unaltered. All pins are tri-stated with the exception of RESETOUT, which  
remains active through the reset sequence, and RTCK/GP7[14]. If an emulator is driving TCK into the  
device during reset, then RTCK/GP7[14] will drive out RTCK. If TCK is not being driven into the device  
during reset, then RTCK/GP7[14] will drive low. RESETOUT is an output for use by other controllers in the  
system that indicates the device is currently in reset.  
During emulation, the emulator will maintain TRST high and hence only warm reset (not POR) is available  
during emulation debug and development.  
RTCK/GP7[14] is maintained active through a warm reset.  
A summary of the effects of Warm Reset is given below:  
All internal logic (except for the emulation logic and the PLL logic) is reset to its default state  
60  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
Internal memory is maintained through a warm reset  
RESETOUT goes active  
All device pins go to a high-impedance state  
The RTC peripheral is not reset during a warm reset. A software sequence is required to reset the  
RTC.  
5.5.3 Reset Electrical Data Timings  
Table 5-2 assumes testing over the recommended operating conditions.  
(2)  
Table 5-2. Reset Timing Requirements ((1)  
,
)
No.  
1
MIN  
100  
20  
MAX  
UNIT  
ns  
tw(RSTL)  
Pulse width, RESET/TRST low  
2
tsu(BPV-RSTH)  
th(RSTH-BPV)  
Setup time, boot pins valid before RESET/TRST high  
Hold time, boot pins valid after RESET/TRST high  
RESET high to RESETOUT high; Warm reset  
RESET high to RESETOUT high; Power-on Reset  
ns  
3
20  
ns  
cycles(3)  
4
td(RSTH-  
RESETOUTH)  
4096  
6192  
(1) RESETOUT is multiplexed with other pin functions. See the Terminal Functions table, Table 2-5 for details.  
(2) For power-on reset (POR), the reset timings in this table refer to RESET and TRST together. For warm reset, the reset timings in this  
table refer to RESET only (TRST is held high).  
(3) OSCIN cycles.  
Power  
Supplies  
Ramping  
Power Supplies Stable  
Clock Source Stable  
OSCIN  
RESET  
1
TRST  
4
RESETOUT  
3
2
Boot Pins  
Config  
Figure 5-4. Power-On Reset (RESET and TRST active) Timing  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
61  
 
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
Power Supplies Stable  
OSCIN  
TRST  
1
RESET  
4
RESETOUT  
3
2
Config  
Boot Pins  
Driven or Hi-Z  
Figure 5-5. Warm Reset (RESET active, TRST high) Timing  
62  
Peripheral Information and Electrical Specifications  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
5.6 Crystal Oscillator or External Clock Input  
The OMAP-L137 device includes two choices to provide an external clock input, which is fed to the on-  
chip PLL to generate high-frequency system clocks. These options are illustrated in Figure 5-6 and  
Figure 5-7. For input clock frequencies between 12 and 20 MHz, a crystal with 80 ohm max ESR is  
recommended. For input clock frequencies between 20 and 30 MHz, a crystal with 60 ohm max ESR is  
recommended. Typical load capacitance values are 10-20 pF, where the load capacitance is the series  
combination of C1 and C2.  
The CLKMODE bit in the PLLCTL register must be 0 to use the on-chip oscillator. If CLKMODE is set to 1,  
the internal oscillator is disabled.  
Figure 5-6 illustrates the option that uses on-chip 1.2V oscillator with external crystal circuit.  
Figure 5-7 illustrates the option that uses an external 1.2V clock input.  
C2  
OSCIN  
Clock Input  
to PLL  
X1  
OSCOUT  
C1  
OSCVSS  
Figure 5-6. On-Chip 1.2V Oscillator  
Table 5-3. Oscillator Timing Requirements  
PARAMETER  
MIN  
MAX  
UNIT  
fosc  
Oscillator frequency range (OSCIN/OSCOUT)  
12  
30  
MHz  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
63  
 
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
Clock  
Input  
to PLL  
OSCIN  
OSCOUT  
NC  
OSCVSS  
Figure 5-7. External 1.2V Clock Source  
Table 5-4. OSCIN Timing Requirements  
PARAMETER  
OSCIN frequency range (OSCIN)  
MIN  
MAX  
UNIT  
MHz  
ns  
fOSCIN  
12  
50  
tc(OSCIN)  
tw(OSCINH)  
tw(OSCINL)  
tt(OSCIN)  
tj(OSCIN)  
Cycle time, external clock driven on OSCIN  
Pulse width high, external clock on OSCIN  
Pulse width low, external clock on OSCIN  
Transition time, OSCIN  
20  
0.4 tc(OSCIN)  
0.4 tc(OSCIN)  
ns  
ns  
(1)  
0.25P or 10  
0.02P  
ns  
Period jitter, OSCIN  
ns  
(1) Whichever is smaller. P = the period of the applied signal. Maintaining transition times as fast as possible is recommended to improve  
noise immunity on input signals.  
64  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
5.7 Clock PLLs  
The OMAP-L137 has one PLL controller that provides clock to different parts of the system. PLL0 provides  
clocks (though various dividers) to most of the components of the device.  
The PLL controller provides the following:  
Glitch-Free Transitions (on changing clock settings)  
Domain Clocks Alignment  
Clock Gating  
PLL power down  
The various clock outputs given by the controller are as follows:  
Domain Clocks: SYSCLK [1:n]  
Auxiliary Clock from reference clock source: AUXCLK  
Various dividers that can be used are as follows:  
Post-PLL Divider: POSTDIV  
SYSCLK Divider: D1, ¼, Dn  
Various other controls supported are as follows:  
PLL Multiplier Control: PLLM  
Software programmable PLL Bypass: PLLEN  
5.7.1 PLL Device-Specific Information  
The OMAP-L137 DSP generates the high-frequency internal clocks it requires through an on-chip PLL.  
The PLL requires some external filtering components to reduce power supply noise as shown in Figure 5-  
8.  
1.14V - 1.32V  
50R  
PLL0_VDDA  
0.1  
µF  
0.01  
µF  
VSS  
50R  
PLL0_VSSA  
Ferrite Bead: Murata BLM31PG500SN1L or Equivalent  
Figure 5-8. PLL External Filtering Components  
The input to the PLL is either from the on-chip oscillator (OSCIN pin) or from an external clock on the  
OSCIN pin. The PLL outputs seven clocks that have programmable divider options. Figure 5-9 illustrates  
the PLL Topology.  
The PLL is disabled by default after a device reset. It must be configured by software according to the  
allowable operating conditions listed in Table 5-5 before enabling the DSP to run from the PLL by setting  
PLLEN = 1.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
65  
 
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
CLKMODE  
PLLEN  
Square  
1
Wave  
PLLDIV1 (/1)  
PLLDIV2 (/2)  
OSCIN  
Pre-Div  
PLL  
Post-Div  
1
0
SYSCLK1  
Crystal  
0
SYSCLK2  
PLLM  
PLLDIV3 (/3)  
PLLDIV4 (/4)  
SYSCLK3  
SYSCLK4  
PLLDIV5 (/3)  
PLLDIV6 (/1)  
PLLDIV7 (/6)  
SYSCLK5  
SYSCLK6  
SYSCLK7  
AUXCLK  
EMIFA  
0
1
Internal  
Clock  
Source  
DIV4.5  
CFGCHIP3[EMA_CLKSRC]  
EMIFB  
DIV4.5  
1
0
Internal  
Clock  
Source  
CFGCHIP3[EMB_CLKSRC]  
OBSCLK Pin  
14h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
OSCDIV  
SYSCLK1  
SYSCLK2  
SYSCLK3  
SYSCLK4  
SYSCLK5  
SYSCLK6  
SYSCLK7  
OCSEL[OCSRC]  
Figure 5-9. PLL Topology  
66  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
Table 5-5. Allowed PLL Operating Conditions  
Default  
Value  
No.  
PARAMETER  
MIN  
MAX  
N/A  
UNIT  
PLLRST: Assertion time during  
initialization  
1
N/A  
1000  
ns  
2000 N  
m
Max PLL Lock Time =  
Lock time: The time that the application  
has to wait for the PLL to acquire locks  
before setting PLLEN, after changing  
PREDIV, PLLM, or OSCIN  
OSCIN  
cycles  
2
N/A  
/1  
N/A  
where N = Pre-Divider Ratio  
M = PLL Multiplier  
3
4
PREDIV  
/1  
/32  
PLL input frequency  
( PLLREF)  
30 (if internal oscillator is used)  
50 (if external clock source is used)  
12  
MHz  
MHz  
(1)  
5
6
7
PLL multiplier values (PLLM)  
x20  
N/A  
/1  
x4  
300  
/1  
x32  
600  
/32  
PLL output frequency. ( PLLOUT )  
POSTDIV  
(1) The multiplier values must be chosen such that the PLL output frequency (at PLLOUT) is between 300 and 600 MHz, but the frequency  
going into the SYSCLK dividers (after the post divider) cannot exceed the maximum clock frequency defined for the device at a given  
voltage operating point.  
5.7.2 Device Clock Generation  
PLL0 is controlled by PLL Controller 0. The PLLC0 manages the clock ratios, alignment, and gating for the  
system clocks to the chip. The PLLC is responsible for controlling all modes of the PLL through software,  
in terms of pre-division of the clock inputs, multiply factor within the PLL, and post-division for each of the  
chip-level clocks from the PLL output. The PLLC also controls reset propagation through the chip, clock  
alignment, and test points.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
67  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
5.7.3 PLL Controller 0 Registers  
Table 5-6. PLL Controller 0 Registers  
BYTE  
ADDRESS  
ACRONYM  
REGISTER DESCRIPTION  
0x01C1 1000  
0x01C1 10E4  
0x01C1 1100  
0x01C1 1104  
0x01C1 1110  
0x01C1 1114  
0x01C1 1118  
0x01C1 111C  
0x01C1 1120  
0x01C1 1124  
0x01C1 1128  
0x01C1 1138  
0x01C1 113C  
0x01C1 1140  
0x01C1 1144  
0x01C1 1148  
0x01C1 114C  
0x01C1 1150  
0x01C1 1160  
0x01C1 1164  
0x01C1 1168  
0x01C1 116C  
REVID  
RSTYPE  
PLLCTL  
OCSEL  
Revision Identification Register  
Reset Type Status Register  
PLL Control Register  
OBSCLK Select Register  
PLLM  
PLL Multiplier Control Register  
PLL Pre-Divider Control Register  
PLL Controller Divider 1 Register  
PLL Controller Divider 2 Register  
PLL Controller Divider 3 Register  
PREDIV  
PLLDIV1  
PLLDIV2  
PLLDIV3  
OSCDIV  
POSTDIV  
PLLCMD  
PLLSTAT  
ALNCTL  
DCHANGE  
CKEN  
Oscillator Divider 1 Register (OBSCLK)  
PLL Post-Divider Control Register  
PLL Controller Command Register  
PLL Controller Status Register  
PLL Controller Clock Align Control Register  
PLLDIV Ratio Change Status Register  
Clock Enable Control Register  
Clock Status Register  
CKSTAT  
SYSTAT  
PLLDIV4  
PLLDIV5  
PLLDIV6  
PLLDIV7  
SYSCLK Status Register  
PLL Controller Divider 4 Register  
PLL Controller Divider 5 Register  
PLL Controller Divider 6 Register  
PLL Controller Divider 7 Register  
68  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
5.8 Interrupts  
The OMAP-L137 devices have a large number of interrupts to service the needs of its many peripherals  
and subsystems. Both the ARM and C674x CPUs are capable of servicing these interrupts equally. The  
interrupts can be selectively enabled or disabled in either of the controllers. Also, the ARM and DSP can  
communicate with each other through interrupts controlled by registers in the SYSCFG module.  
5.8.1 ARM CPU Interrupts  
The ARM9 CPU core supports 2 direct interrupts: FIQ and IRQ. The ARM Interrupt Controller on the  
OMAP-L13x extends the number of interrupts to 100, and provides features like programmable masking,  
priority, hardware nesting support, and interrupt vector generation. The OMAP-L13x ARM Interrupt  
controller is enhanced from previous devices like the DM6446 and DM355.  
5.8.1.1 ARM Interrupt Controller (AINTC) Interrupt Signal Hierarchy  
On OMAP-L13x, the ARM Interrupt controller organizes interrupts into the following hierarchy:  
Peripheral Interrupt Requests  
Individual Interrupt Sources from Peripherals  
100 System Interrupts  
One or more Peripheral Interrupt Requests are combined (fixed configuration) to generate a  
System Interrupt.  
After prioritization, the AINTC will provide an interrupt vector based unique to each System Interrupt  
32 Interrupt Channels  
Each System Interrupt is mapped to one of the 32 Interrupt Channels  
Channel Number determines the first level of prioritization, Channel 0 is highest priority and 31  
lowest.  
If more than one system interrupt is mapped to a channel, priority within the channel is determined  
by system interrupt number (0 highest priority)  
Host Interrupts (FIQ and IRQ)  
Interrupt Channels 0 and 1 generate the ARM FIQ interrupt  
Interrupt Channels 2 through 31 Generate the ARM IRQ interrupt  
Debug Interrupts  
Two Debug Interrupts are supported and can be used to trigger events in the debug subsystem  
Sources can be selected from any of the System Interrupts or Host Interrupts  
5.8.1.2 AINTC Hardware Vector Generation  
The AINTC also generates an interrupt vector in hardware for both IRQ and FIQ host interrupts. This may  
be used to accelerate interrupt dispatch. A unique vector is generated for each of the 100 system  
interrupts. The vector is computed in hardware as:  
VECTOR = BASE + (SYSTEM INTERRUPT NUMBER × SIZE)  
Where BASE and SIZE are programmable. The computed vector is a 32-bit address which may  
dispatched to using a single instruction of type LDR PC, [PC, #-<offset_12>] at the FIQ and IRQ vector  
locations (0xFFFF0018 and 0xFFFF001C respectively).  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
69  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
5.8.1.3 AINTC Hardware Interrupt Nesting Support  
Interrupt nesting occurs when an interrupt service routine re-enables interrupts, to allow the CPU to  
interrupt the ISR if a higher priority event occurs. The AINTC provides hardware support to facilitate  
interrupt nesting. It supports both global and per host interrupt (FIQ and IRQ in this case) automatic  
nesting. If enabled, the AINTC will automatically update an internal nesting register that temporarily masks  
interrupts at and below the priority of the current interrupt channel. Then if the ISR re-enables interrupts;  
only higher priority channels will be able to interrupt it. The nesting level is restored by the ISR by writing  
to the nesting level register on completion. Support for nesting can be enabled/disabled by software, with  
the option of automatic nesting on a global or per host interrupt basis; or manual nesting.  
5.8.1.4 AINTC System Interrupt Assignments on OMAP-L137  
System Interrupt assignments for the OMAP-L137 are listed in Table 5-7  
Table 5-7. AINTC System Interrupt Assignments  
SYSTEM INTERRUPT  
INTERRUPT NAME  
COMMTX  
SOURCE  
0
ARM  
1
COMMRX  
ARM  
2
NINT  
ARM  
3
PRU_EVTOUT0  
PRU_EVTOUT1  
PRU_EVTOUT2  
PRU_EVTOUT3  
PRU_EVTOUT4  
PRU_EVTOUT5  
PRU_EVTOUT6  
PRU_EVTOUT7  
EDMA3_CC0_CCINT  
EDMA3_CC0_CCERRINT  
EDMA3_TC0_TCERRINT  
EMIFA_INT  
PRUSS Interrupt  
PRUSS Interrupt  
PRUSS Interrupt  
PRUSS Interrupt  
PRUSS Interrupt  
PRUSS Interrupt  
PRUSS Interrupt  
PRUSS Interrupt  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
EDMA Channel Controller Region 0  
EDMA Channel Controller  
EDMA Transfer Controller 0  
EMIFA  
IIC0_INT  
I2C0  
MMCSD_INT0  
MMCSD_INT1  
PSC0_ALLINT  
RTC_IRQS[1:0]  
SPI0_INT  
MMCSD  
MMCSD  
PSC0  
RTC  
SPI0  
T64P0_TINT12  
T64P0_TINT34  
T64P1_TINT12  
T64P1_TINT34  
UART0_INT  
Timer64P0 Interrupt 12  
Timer64P0 Interrupt 34  
Timer64P1 Interrupt 12  
Timer64P1 Interrupt 34  
UART0  
-
Reserved  
MPU_BOOTCFG_ERR  
Shared MPU and SYSCFG Address/Protection Error  
Interrupt  
28  
29  
30  
31  
32  
33  
SYSCFG_CHIPINT0  
SYSCFG_CHIPINT1  
SYSCFG_CHIPINT2  
SYSCFG_CHIPINT3  
EDMA3_TC1_TCERRINT  
EMAC_C0RXTHRESH  
SYSCFG CHIPSIG Register  
SYSCFG CHIPSIG Register  
SYSCFG CHIPSIG Register  
SYSCFG CHIPSIG Register  
EDMA Transfer Controller 1  
EMAC - Core 0 Receive Threshold Interrupt  
70  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
 
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
Table 5-7. AINTC System Interrupt Assignments (continued)  
SYSTEM INTERRUPT  
INTERRUPT NAME  
EMAC_C0RX  
EMAC_C0TX  
EMAC_C0MISC  
EMAC_C1RXTHRESH  
EMAC_C1RX  
EMAC_C1TX  
EMAC_C1MISC  
EMIF_MEMERR  
GPIO_B0INT  
GPIO_B1INT  
GPIO_B2INT  
GPIO_B3INT  
GPIO_B4INT  
GPIO_B5INT  
GPIO_B6INT  
GPIO_B7INT  
-
SOURCE  
EMAC - Core 0 Receive Interrupt  
EMAC - Core 0 Transmit Interrupt  
EMAC - Core 0 Miscellaneous Interrupt  
EMAC - Core 1 Receive Threshold Interrupt  
EMAC - Core 1 Receive Interrupt  
EMAC - Core 1 Transmit Interrupt  
EMAC - Core 1 Miscellaneous Interrupt  
EMIFB  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
GPIO Bank 0 Interrupt  
GPIO Bank 1 Interrupt  
GPIO Bank 2 Interrupt  
GPIO Bank 3 Interrupt  
GPIO Bank 4 Interrupt  
GPIO Bank 5 Interrupt  
GPIO Bank 6 Interrupt  
GPIO Bank 7 Interrupt  
Reserved  
IIC1_INT  
I2C1  
LCDC_INT  
LCD Controller  
UART_INT1  
MCASP_INT  
PSC1_ALLINT  
SPI1_INT  
UART1  
McASP0, 1, 2 Combined RX / TX Interrupts  
PSC1  
SPI1  
UHPI_ARMINT  
USB0_INT  
HPI ARM Interrupt  
USB0 Interrupt  
USB1_HCINT  
USB1_RWAKEUP  
UART2_INT  
-
USB1 OHCI Host Controller Interrupt  
USB1 Remote Wakeup Interrupt  
UART2  
Reserved  
EHRPWM0  
HiResTimer / PWM0 Interrupt  
HiResTimer / PWM0 Trip Zone Interrupt  
HiResTimer / PWM1 Interrupt  
HiResTimer / PWM1 Trip Zone Interrupt  
HiResTimer / PWM2 Interrupt  
HiResTimer / PWM2 Trip Zone Interrupt  
ECAP0  
EHRPWM0TZ  
EHRPWM1  
EHRPWM1TZ  
EHRPWM2  
EHRPWM2TZ  
ECAP0  
ECAP1  
ECAP1  
ECAP2  
ECAP2  
EQEP0  
EQEP0  
EQEP1  
EQEP1  
T64P0_CMPINT0  
T64P0_CMPINT1  
T64P0_CMPINT2  
T64P0_CMPINT3  
T64P0_CMPINT4  
T64P0_CMPINT5  
T64P0_CMPINT6  
Timer64P0 - Compare 0  
Timer64P0 - Compare 1  
Timer64P0 - Compare 2  
Timer64P0 - Compare 3  
Timer64P0 - Compare 4  
Timer64P0 - Compare 5  
Timer64P0 - Compare 6  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
71  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
Table 5-7. AINTC System Interrupt Assignments (continued)  
SYSTEM INTERRUPT  
INTERRUPT NAME  
T64P0_CMPINT7  
T64P1_CMPINT0  
T64P1_CMPINT1  
T64P1_CMPINT2  
T64P1_CMPINT3  
T64P1_CMPINT4  
T64P1_CMPINT5  
T64P1_CMPINT6  
T64P1_CMPINT7  
ARMCLKSTOPREQ  
-
SOURCE  
Timer64P0 - Compare 7  
81  
82  
Timer64P1 - Compare 0  
Timer64P1 - Compare 1  
Timer64P1 - Compare 2  
Timer64P1 - Compare 3  
Timer64P1 - Compare 4  
Timer64P1 - Compare 5  
Timer64P1 - Compare 6  
Timer64P1 - Compare 7  
PSC0  
83  
84  
85  
86  
87  
88  
89  
90  
91 - 100  
Reserved  
72  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
5.8.1.5 AINTC Memory Map  
Table 5-8. AINTC Memory Map  
BYTE ADDRESS  
0xFFFE E000  
ACRONYM  
REGISTER DESCRIPTION  
REV  
Revision Register  
Control Register  
Reserved  
0xFFFE E004  
CR  
0xFFFE E008 - 0xFFFE E00F  
0xFFFE E010  
-
GER  
Global Enable Register  
Reserved  
0xFFFE E014 - 0xFFFE E01B  
0xFFFE E01C  
-
GNLR  
Global Nesting Level Register  
System Interrupt Status Indexed Set Register  
System Interrupt Status Indexed Clear Register  
System Interrupt Enable Indexed Set Register  
System Interrupt Enable Indexed Clear Register  
Reserved  
0xFFFE E020  
SISR  
0xFFFE E024  
SICR  
0xFFFE E028  
EISR  
0xFFFE E02C  
EICR  
0xFFFE E030  
-
0xFFFE E034  
HIEISR  
Host Interrupt Enable Indexed Set Register  
Host Interrupt Enable Indexed Clear Register  
Reserved  
0xFFFE E038  
HIDISR  
0xFFFE E03C - 0xFFFE E04F  
0xFFFE E050  
-
VBR  
Vector Base Register  
0xFFFE E054  
VSR  
Vector Size Register  
0xFFFE E058  
VNR  
Vector Null Register  
0xFFFE E05C - 0xFFFE E07F  
0xFFFE E080  
-
Reserved  
GPIR  
Global Prioritized Index Register  
Global Prioritized Vector Register  
Reserved  
0xFFFE E084  
GPVR  
0xFFFE E088 - 0xFFFE E1FF  
0xFFFE E200 - 0xFFFE E20B  
0xFFFE E20C- 0xFFFE E27F  
0xFFFE E280 - 0xFFFE E28B  
0xFFFE E28C - 0xFFFE E2FF  
0xFFFE E300 - 0xFFFE E30C  
0xFFFE E30C - 0xFFFE E37F  
0xFFFE E380 - 0xFFFE E38B  
0xFFFE E38C - 0xFFFE E3FF  
0xFFFE E400 - 0xFFFE E458  
0xFFFE E459 - 0xFFFE E7FF  
0xFFFE E800 - 0xFFFE E81F  
0xFFFE E820 - 0xFFFE E8FF  
0xFFFE E900 - 0xFFFE E904  
0xFFFE E908 - 0xFFFE EEFF  
0xFFFE EF00 - 0xFFFE EF04  
0xFFFE EF08 - 0xFFFE F0FF  
0xFFFE F100 - 0xFFFE F104  
0xFFFE F108 - 0xFFFE F4FF  
0xFFFE F500  
-
SRSR[1] - SRSR[3]  
System Interrupt Status Raw / Set Registers  
Reserved  
-
SECR[1] - SECR[3]  
System Interrupt Status Enabled / Clear Registers  
Reserved  
-
ESR[1] - ESR[3]  
System Interrupt Enable Set Registers  
Reserved  
-
ECR[1] - ECR[3]  
System Interrupt Enable Clear Registers  
Reserved  
-
CMR[0] - CMR[22]  
Channel Map Registers (Byte Wide Registers)  
Reserved  
-
-
Reserved  
-
Reserved  
HIPIR[1] - HIPIR[2]  
Host Interrupt Prioritized Index Registers  
Reserved  
-
-
-
Reserved  
Reserved  
HINLR[1] - HINLR[2] Host Interrupt Nesting Level Registers  
-
HIER  
-
Reserved  
Host Interrupt Enable Register  
Reserved  
0xFFFE F504 - 0xFFFE F5FF  
0xFFFE F600  
HIPVR[1] - HIPVR[2] Host Interrupt Prioritized Vector Registers  
Reserved  
0xFFFE F608 - 0xFFFE FFFF  
-
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
73  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
5.8.2 DSP Interrupts  
The C674x DSP interrupt controller combines device events into 12 prioritized interrupts. The source for  
each of the 12 CPU interrupts is user programmable and is listed in Table 5-9. Also, the interrupt  
controller controls the generation of the CPU exception, NMI, and emulation interrupts. Table 5-10  
summarizes the C674x interrupt controller registers and memory locations.  
Table 5-9. OMAP-L137 DSP Interrupts  
EVT#  
0
INTERRUPT NAME  
EVT0  
SOURCE  
C674x Int Ctl 0  
1
EVT1  
C674x Int Ctl 1  
2
EVT2  
C674x Int Ctl 2  
3
EVT3  
C674x Int Ctl 3  
4
T64P0_TINT12  
SYSCFG_CHIPINT2  
PRU_EVTOUT0  
EHRPWM0  
Timer64P0 - TINT12  
5
SYSCFG_CHIPSIG Register  
PRU Interrupt  
6
7
HiResTimer/PWM0 Interrupt  
EDMA3 Channel Controller 0 Region 1 interrupt  
C674x-ECM  
8
EDMA3_CC0_INT1  
EMU-DTDMA  
EHRPWM0TZ  
EMU-RTDXRX  
EMU-RTDXTX  
IDMAINT0  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
HiResTimer/PWM0 Trip Zone Interrupt  
C674x-RTDX  
C674x-RTDX  
C674x-EMC  
IDMAINT1  
C674x-EMC  
MMCSD_INT0  
MMCSD_INT1  
PRU_EVTOUT1  
EHRPWM1  
MMCSD MMC/SD Interrupt  
MMCSD SDIO Interrupt  
PRU Interrupt  
HiResTimer/PWM1 Interrupt  
USB0 Interrupt  
USB0_INT  
USB1_HCINT  
USB1_RWAKEUP  
PRU_EVTOUT2  
EHRPWM1TZ  
EHRPWM2  
USB1 OHCI Host Controller Interrupt  
USB1 Remote Wakeup Interrupt  
PRU Interrupt  
HiResTimer/PWM1 Trip Zone Interrupt  
HiResTimer/PWM2 Interrupt  
HiResTimer/PWM2 Trip Zone Interrupt  
EMAC - Core 0 Receive Threshold Interrupt  
EMAC - Core 0 Receive Interrupt  
EMAC - Core 0 Transmit Interrupt  
EMAC - Core 0 Miscellaneous Interrupt  
EMAC - Core 1 Receive Threshold Interrupt  
EMAC - Core 1 Receive Interrupt  
EMAC - Core 1 Transmit Interrupt  
EMAC - Core 1 Miscellaneous Interrupt  
UHPI DSP Interrupt  
EHRPWM2TZ  
EMAC_C0RXTHRESH  
EMAC_C0RX  
EMAC_C0TX  
EMAC_C0MISC  
EMAC_C1RXTHRESH  
EMAC_C1RX  
EMAC_C1TX  
EMAC_C1MISC  
UHPI_DSPINT  
PRU_EVTOUT3  
IIC0_INT  
PRU Interrupt  
I2C0  
SP0_INT  
SPI0  
UART0_INT  
UART0  
PRU_EVTOUT5  
T64P1_TINT12  
PRU Interrupt  
Timer64P1 Interrupt 12  
74  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
 
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
Table 5-9. OMAP-L137 DSP Interrupts (continued)  
EVT#  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75 - 77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
INTERRUPT NAME  
GPIO_B1INT  
SOURCE  
GPIO Bank 1 Interrupt  
I2C1  
IIC1_INT  
SPI1_INT  
SPI1  
PRU_EVTOUT6  
ECAP0  
PRU Interrupt  
ECAP0  
UART_INT1  
UART1  
ECAP1  
ECAP1  
T64P1_TINT34  
GPIO_B2INT  
Timer64P1 Interrupt 34  
GPIO Bank 2 Interrupt  
PRU Interrupt  
PRU_EVTOUT7  
ECAP2  
ECAP2  
GPIO_B3INT  
GPIO Bank 3 Interrupt  
EQEP1  
EQEP1  
GPIO_B4INT  
GPIO Bank 4 Interrupt  
EMIFA  
EMIFA_INT  
EDMA3_CC0_ERRINT  
EDMA3_TC0_ERRINT  
EDMA3_TC1_ERRINT  
GPIO_B5INT  
EDMA3 Channel Controller 0  
EDMA3 Transfer Controller 0  
EDMA3 Transfer Controller 1  
GPIO Bank 5 Interrupt  
EMIFB Memory Error Interrupt  
McASP0,1,2 Combined RX/TX Interrupts  
GPIO Bank 6 Interrupt  
RTC Combined  
EMIFB_INT  
MCASP_INT  
GPIO_B6INT  
RTC_IRQS  
T64P0_TINT34  
GPIO_B0INT  
Timer64P0 Interrupt 34  
GPIO Bank 0 Interrupt  
PRU Interrupt  
PRU_EVTOUT4  
SYSCFG_CHIPINT3  
EQEP0  
SYSCFG_CHIPSIG Register  
EQEP0  
UART2_INT  
UART2  
PSC0_ALLINT  
PSC1_ALLINT  
GPIO_B7INT  
PSC0  
PSC1  
GPIO Bank 7 Interrupt  
LCD Controller  
LCDC_INT  
MPU_BOOTCFG_ERR  
-
Shared MPU and SYSCFG Address/Protection Error Interrupt  
Reserved  
T64P0_CMPINT0  
T64P0_CMPINT1  
T64P0_CMPINT2  
T64P0_CMPINT3  
T64P0_CMPINT4  
T64P0_CMPINT5  
T64P0_CMPINT6  
T64P0_CMPINT7  
T64P1_CMPINT0  
T64P1_CMPINT1  
T64P1_CMPINT2  
T64P1_CMPINT3  
Timer64P0 - Compare 0  
Timer64P0 - Compare 1  
Timer64P0 - Compare 2  
Timer64P0 - Compare 3  
Timer64P0 - Compare 4  
Timer64P0 - Compare 5  
Timer64P0 - Compare 6  
Timer64P0 - Compare 7  
Timer64P1 - Compare 0  
Timer64P1 - Compare 1  
Timer64P1 - Compare 2  
Timer64P1 - Compare 3  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
75  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
Table 5-9. OMAP-L137 DSP Interrupts (continued)  
EVT#  
90  
INTERRUPT NAME  
T64P1_CMPINT4  
T64P1_CMPINT5  
T64P1_CMPINT6  
T64P1_CMPINT7  
-
SOURCE  
Timer64P1 - Compare 4  
Timer64P1 - Compare 5  
Timer64P1 - Compare 6  
Timer64P1 - Compare 7  
Reserved  
91  
92  
93  
94 - 95  
96  
INTERR  
C674x-Int Ctl  
C674x-EMC  
97  
EMC_IDMAERR  
-
98 - 112  
113  
Reserved  
PMC_ED  
C674x-PMC  
114 - 115  
116  
-
Reserved  
UMC_ED1  
C674x-UMC  
117  
UMC_ED2  
C674x-UMC  
118  
PDC_INT  
C674x-PDC  
119  
SYS_CMPA  
PMC_CMPA  
PMC_CMPA  
DMC_CMPA  
DMC_CMPA  
UMC_CMPA  
UMC_CMPA  
EMC_CMPA  
EMC_BUSERR  
C674x-SYS  
120  
C674x-PMC  
121  
C674x-PMC  
122  
C674x-DMC  
123  
C674x-DMC  
124  
C674x-UMC  
125  
C674x-UMC  
126  
C674x-EMC  
127  
C674x-EMC  
76  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
Table 5-10. C674x DSP Interrupt Controller Registers  
BYTE ADDRESS  
0x0180 0000  
0x0180 0004  
0x0180 0008  
0x0180 000C  
0x0180 0020  
0x0180 0024  
0x0180 0028  
0x0180 002C  
0x0180 0040  
0x0180 0044  
0x0180 0048  
0x0180 004C  
0x0180 0080  
0x0180 0084  
0x0180 0088  
0x0180 008C  
0x0180 00A0  
0x0180 00A4  
0x0180 00A8  
0x0180 00AC  
0x0180 00C0  
0x0180 00C4  
0x0180 00C8  
0x0180 00CC  
0x0180 00E0  
0x0180 00E4  
0x0180 00E8  
0x0180 00EC  
0x0180 0104  
0x0180 0108  
0x0180 010C  
ACRONYM  
EVTFLAG0  
EVTFLAG1  
EVTFLAG2  
EVTFLAG3  
EVTSET0  
REGISTER DESCRIPTION  
Event flag register 0  
Event flag register 1  
Event flag register 2  
Event flag register 3  
Event set register 0  
EVTSET1  
Event set register 1  
EVTSET2  
Event set register 2  
EVTSET3  
Event set register 3  
EVTCLR0  
Event clear register 0  
EVTCLR1  
Event clear register 1  
EVTCLR2  
Event clear register 2  
EVTCLR3  
Event clear register 3  
EVTMASK0  
EVTMASK1  
EVTMASK2  
EVTMASK3  
MEVTFLAG0  
MEVTFLAG1  
MEVTFLAG2  
MEVTFLAG3  
EXPMASK0  
EXPMASK1  
EXPMASK2  
EXPMASK3  
MEXPFLAG0  
MEXPFLAG1  
MEXPFLAG2  
MEXPFLAG3  
INTMUX1  
Event mask register 0  
Event mask register 1  
Event mask register 2  
Event mask register 3  
Masked event flag register 0  
Masked event flag register 1  
Masked event flag register 2  
Masked event flag register 3  
Exception mask register 0  
Exception mask register 1  
Exception mask register 2  
Exception mask register 3  
Masked exception flag register 0  
Masked exception flag register 1  
Masked exception flag register 2  
Masked exception flag register 3  
Interrupt mux register 1  
Interrupt mux register 2  
Interrupt mux register 3  
Reserved  
INTMUX2  
INTMUX3  
0x0180 0140 - 0x0180 0144  
0x0180 0180  
-
INTXSTAT  
INTXCLR  
Interrupt exception status  
Interrupt exception clear  
Dropped interrupt mask register  
Event assert register  
0x0180 0184  
0x0180 0188  
INTDMASK  
EVTASRT  
0x0180 01C0  
5.8.3 ARM/DSP Communications Interrupts  
Communications Interrupts between the ARM and DSP are part of the SYSCFG module on the OMAP-  
L13x family of devices.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
77  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
5.9 General-Purpose Input/Output (GPIO)  
The GPIO peripheral provides general-purpose pins that can be configured as either inputs or outputs.  
When configured as an output, a write to an internal register can control the state driven on the output pin.  
When configured as an input, the state of the input is detectable by reading the state of an internal  
register. In addition, the GPIO peripheral can produce CPU interrupts and EDMA events in different  
interrupt/event generation modes. The GPIO peripheral provides generic connections to external devices.  
The GPIO pins are grouped into banks of 16 pins per bank (i.e., bank 0 consists of GPIO [0:15]).  
The OMAP-L137 GPIO peripheral supports the following:  
Up to 128 Pins on ZKB package configurable as GPIO  
External Interrupt and DMA request Capability  
Every GPIO pin may be configured to generate an interrupt request on detection of rising and/or  
falling edges on the pin.  
The interrupt requests within each bank are combined (logical or) to create eight unique bank level  
interrupt requests.  
The bank level interrupt service routine may poll the INTSTATx register for its bank to determine  
which pin(s) have triggered the interrupt.  
GPIO Banks 0, 1, 2, 3, 4, 5, 6, and 7 Interrupts assigned to ARM INTC Interrupt Requests 42, 43,  
44, 45, 46, 47, 48, and 49 respectively  
GPIO Banks 0, 1, 2, 3, 4, 5, 6, and 7 Interrupts assigned to DSP Events 65, 41, 49, 52, 54, 59, 62  
and 72 respectively  
Additionally, GPIO Banks 0, 1, 2, 3, 4, and 5 Interrupts assigned to EDMA events 6, 7, 22, 23, 28,  
and 29 respectively.  
Set/clear functionality: Firmware writes 1 to corresponding bit position(s) to set or to clear GPIO  
signal(s). This allows multiple firmware processes to toggle GPIO output signals without critical section  
protection (disable interrupts, program GPIO, re-enable interrupts, to prevent context switching to  
anther process during GPIO programming).  
Separate Input/Output registers  
Output register in addition to set/clear so that, if preferred by firmware, some GPIO output signals can  
be toggled by direct write to the output register(s).  
Output register, when read, reflects output drive status. This, in addition to the input register reflecting  
pin status and open-drain I/O cell, allows wired logic be implemented.  
The memory map for the GPIO registers is shown in Table 5-11. See the OMAP-L137 Applications  
Processor DSP Peripherals Overview Reference Guide. (SPRUGA6) for more details.  
5.9.1 GPIO Register Description(s)  
Table 5-11. GPIO Registers  
BYTE ADDRESS  
0x01E2 6000  
0x01E2 6004  
0x01E2 6008  
ACRONYM  
REV  
REGISTER DESCRIPTION  
Peripheral Revision Register  
Reserved  
-
BINTEN  
GPIO Interrupt Per-Bank Enable Register  
GPIO BANKS 0 AND 1  
0x01E2 6010  
0x01E2 6014  
0x01E2 6018  
0x01E2 601C  
0x01E2 6020  
0x01E2 6024  
0x01E2 6028  
DIR01  
GPIO Banks 0 and 1 Direction Register  
GPIO Banks 0 and 1 Output Data Register  
GPIO Banks 0 and 1 Set Data Register  
OUT_DATA01  
SET_DATA01  
CLR_DATA01  
IN_DATA01  
GPIO Banks 0 and 1 Clear Data Register  
GPIO Banks 0 and 1 Input Data Register  
SET_RIS_TRIG01  
CLR_RIS_TRIG01  
GPIO Banks 0 and 1 Set Rising Edge Interrupt Register  
GPIO Banks 0 and 1 Clear Rising Edge Interrupt Register  
78  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
 
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
Table 5-11. GPIO Registers (continued)  
BYTE ADDRESS  
ACRONYM  
SET_FAL_TRIG01  
CLR_FAL_TRIG01  
INTSTAT01  
REGISTER DESCRIPTION  
0x01E2 602C  
0x01E2 6030  
0x01E2 6034  
GPIO Banks 0 and 1 Set Falling Edge Interrupt Register  
GPIO Banks 0 and 1 Clear Falling Edge Interrupt Register  
GPIO Banks 0 and 1 Interrupt Status Register  
GPIO BANKS 2 AND 3  
0x01E2 6038  
0x01E2 603C  
0x01E2 6040  
0x01E2 6044  
0x01E2 6048  
0x01E2 604C  
0x01E2 6050  
0x01E2 6054  
0x01E2 6058  
0x01E2 605C  
DIR23  
GPIO Banks 2 and 3 Direction Register  
GPIO Banks 2 and 3 Output Data Register  
OUT_DATA23  
SET_DATA23  
CLR_DATA23  
IN_DATA23  
GPIO Banks 2 and 3 Set Data Register  
GPIO Banks 2 and 3 Clear Data Register  
GPIO Banks 2 and 3 Input Data Register  
SET_RIS_TRIG23  
CLR_RIS_TRIG23  
SET_FAL_TRIG23  
CLR_FAL_TRIG23  
INTSTAT23  
GPIO Banks 2 and 3 Set Rising Edge Interrupt Register  
GPIO Banks 2 and 3 Clear Rising Edge Interrupt Register  
GPIO Banks 2 and 3 Set Falling Edge Interrupt Register  
GPIO Banks 2 and 3 Clear Falling Edge Interrupt Register  
GPIO Banks 2 and 3 Interrupt Status Register  
GPIO BANKS 4 AND 5  
0x01E2 6060  
0x01E2 6064  
0x01E2 6068  
0x01E2 606C  
0x01E2 6070  
0x01E2 6074  
0x01E2 6078  
0x01E2 607C  
0x01E2 6080  
0x01E2 6084  
DIR45  
GPIO Banks 4 and 5 Direction Register  
GPIO Banks 4 and 5 Output Data Register  
OUT_DATA45  
SET_DATA45  
CLR_DATA45  
IN_DATA45  
GPIO Banks 4 and 5 Set Data Register  
GPIO Banks 4 and 5 Clear Data Register  
GPIO Banks 4 and 5 Input Data Register  
SET_RIS_TRIG45  
CLR_RIS_TRIG45  
SET_FAL_TRIG45  
CLR_FAL_TRIG45  
INTSTAT45  
GPIO Banks 4 and 5 Set Rising Edge Interrupt Register  
GPIO Banks 4 and 5 Clear Rising Edge Interrupt Register  
GPIO Banks 4 and 5 Set Falling Edge Interrupt Register  
GPIO Banks 4 and 5 Clear Falling Edge Interrupt Register  
GPIO Banks 4 and 5 Interrupt Status Register  
GPIO BANKS 6 AND 7  
0x01E2 6088  
0x01E2 608C  
0x01E2 6090  
0x01E2 6094  
0x01E2 6098  
0x01E2 609C  
0x01E2 60A0  
0x01E2 60A4  
0x01E2 60A8  
0x01E2 60AC  
DIR67  
GPIO Banks 6 and 7 Direction Register  
GPIO Banks 6 and 7 Output Data Register  
OUT_DATA67  
SET_DATA67  
CLR_DATA67  
IN_DATA67  
GPIO Banks 6 and 7 Set Data Register  
GPIO Banks 6 and 7 Clear Data Register  
GPIO Banks 6 and 7 Input Data Register  
SET_RIS_TRIG67  
CLR_RIS_TRIG67  
SET_FAL_TRIG67  
CLR_FAL_TRIG67  
INTSTAT67  
GPIO Banks 6 and 7 Set Rising Edge Interrupt Register  
GPIO Banks 6 and 7 Clear Rising Edge Interrupt Register  
GPIO Banks 6 and 7 Set Falling Edge Interrupt Register  
GPIO Banks 6 and 7 Clear Falling Edge Interrupt Register  
GPIO Banks 6 and 7 Interrupt Status Register  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
79  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
5.9.2 GPIO Peripheral Input/Output Electrical Data/Timing  
Table 5-12. Timing Requirements for GPIO Inputs(1) (see Figure 5-10)  
No.  
1
PARAMETER  
MIN  
MAX  
UNIT  
ns  
tw(GPIH)  
tw(GPIL)  
Pulse duration, GPn[m] as input high  
Pulse duration, GPn[m] as input low  
2C(1) (2)  
2C(1) (2)  
2
ns  
(1) The pulse width given is sufficient to generate a CPU interrupt or an EDMA event. However, if a user wants to have OMAP-L137  
recognize the GPIx changes through software polling of the GPIO register, the GPIx duration must be extended to allow OMAP-L137  
enough time to access the GPIO register through the internal bus.  
(2) C=SYSCLK4 period in ns.  
Table 5-13. Switching Characteristics Over Recommended Operating Conditions for GPIO Outputs  
(see Figure 5-10)  
No.  
3
PARAMETER  
Pulse duration, GPn[m] as output high  
Pulse duration, GPn[m] as output low  
MIN  
MAX  
UNIT  
ns  
tw(GPOH)  
tw(GPOL)  
2C(1) (2)  
2C(1) (2)  
4
ns  
(1) This parameter value should not be used as a maximum performance specification. Actual performance of back-to-back accesses of the  
GPIO is dependent upon internal bus activity.  
(2) C=SYSCLK4 period in ns.  
2
1
GPn[m] as input  
4
3
GPn[m] as output  
Figure 5-10. GPIO Port Timing  
5.9.3 GPIO Peripheral External Interrupts Electrical Data/Timing  
Table 5-14. Timing Requirements for External Interrupts(1) (see Figure 5-11)  
No.  
1
PARAMETER  
Width of the external interrupt pulse low  
Width of the external interrupt pulse high  
MIN  
2C(1) (2)  
MAX  
UNIT  
ns  
tw(ILOW)  
tw(IHIGH)  
(1) (2)  
2
2C  
ns  
(1) The pulse width given is sufficient to generate an interrupt or an EDMA event. However, if a user wants to have OMAP-L137 recognize  
the GPIO changes through software polling of the GPIO register, the GPIO duration must be extended to allow OMAP-L137 enough  
time to access the GPIO register through the internal bus.  
(2) C=SYSCLK4 period in ns.  
2
1
GPn[m] as input  
Figure 5-11. GPIO External Interrupt Timing  
80  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
 
 
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
5.10 EDMA  
Table 5-15 is the list of EDMA3 Channel Contoller Registers and Table 5-16 is the list of EDMA3 Transfer  
Controller registers.  
Table 5-15. EDMA3 Channel Controller (EDMA3CC) Registers  
BYTE ADDRESS  
0x01C0 0000  
ACRONYM  
PID  
REGISTER DESCRIPTION  
Peripheral Identification Register  
0x01C0 0004  
CCCFG  
EDMA3CC Configuration Register  
GLOBAL REGISTERS  
0x01C0 0200  
0x01C0 0204  
0x01C0 0208  
0x01C0 020C  
0x01C0 0210  
0x01C0 0214  
0x01C0 0218  
0x01C0 021C  
0x01C0 0240  
0x01C0 0244  
0x01C0 0248  
0x01C0 024C  
0x01C0 0260  
0x01C0 0284  
0x01C0 0300  
0x01C0 0308  
0x01C0 0310  
0x01C0 0314  
0x01C0 0318  
0x01C0 031C  
0x01C0 0320  
0x01C0 0340  
0x01C0 0348  
0x01C0 0350  
0x01C0 0358  
0x01C0 0380  
0x01C0 0384  
0x01C0 0388  
0x01C0 038C  
0x01C0 0400 - 0x01C0 043C  
0x01C0 0440 - 0x01C0 047C  
0x01C0 0600  
0x01C0 0604  
0x01C0 0620  
0x01C0 0640  
QCHMAP0  
QCHMAP1  
QCHMAP2  
QCHMAP3  
QCHMAP4  
QCHMAP5  
QCHMAP6  
QCHMAP7  
DMAQNUM0  
DMAQNUM1  
DMAQNUM2  
DMAQNUM3  
QDMAQNUM  
QUEPRI  
QDMA Channel 0 Mapping Register  
QDMA Channel 1 Mapping Register  
QDMA Channel 2 Mapping Register  
QDMA Channel 3 Mapping Register  
QDMA Channel 4 Mapping Register  
QDMA Channel 5 Mapping Register  
QDMA Channel 6 Mapping Register  
QDMA Channel 7 Mapping Register  
DMA Channel Queue Number Register 0  
DMA Channel Queue Number Register 1  
DMA Channel Queue Number Register 2  
DMA Channel Queue Number Register 3  
QDMA Channel Queue Number Register  
Queue Priority Register(1)  
EMR  
Event Missed Register  
EMCR  
Event Missed Clear Register  
QEMR  
QDMA Event Missed Register  
QEMCR  
QDMA Event Missed Clear Register  
EDMA3CC Error Register  
CCERR  
CCERRCLR  
EEVAL  
EDMA3CC Error Clear Register  
Error Evaluate Register  
DRAE0  
DMA Region Access Enable Register for Region 0  
DMA Region Access Enable Register for Region 1  
DMA Region Access Enable Register for Region 2  
DMA Region Access Enable Register for Region 3  
QDMA Region Access Enable Register for Region 0  
QDMA Region Access Enable Register for Region 1  
QDMA Region Access Enable Register for Region 2  
QDMA Region Access Enable Register for Region 3  
Event Queue Entry Registers Q0E0-Q0E15  
Event Queue Entry Registers Q1E0-Q1E15  
Queue 0 Status Register  
DRAE1  
DRAE2  
DRAE3  
QRAE0  
QRAE1  
QRAE2  
QRAE3  
Q0E0-Q0E15  
Q1E0-Q1E15  
QSTAT0  
QSTAT1  
Queue 1 Status Register  
QWMTHRA  
CCSTAT  
Queue Watermark Threshold A Register  
EDMA3CC Status Register  
GLOBAL CHANNEL REGISTERS  
Event Register  
0x01C0 1000  
0x01C0 1008  
ER  
ECR  
Event Clear Register  
(1) On previous architectures, the EDMA3TC priority was controlled by the queue priority register (QUEPRI) in the EDMA3CC memory-  
map. However for this device, the priority control for the transfer controllers is controlled by the chip-level registers in the System  
Configuration Module. You should use the chip-level registers and not QUEPRI to configure the TC priority.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
81  
 
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
Table 5-15. EDMA3 Channel Controller (EDMA3CC) Registers (continued)  
BYTE ADDRESS  
0x01C0 1010  
0x01C0 1018  
0x01C0 1020  
0x01C0 1028  
0x01C0 1030  
0x01C0 1038  
0x01C0 1040  
0x01C0 1050  
0x01C0 1058  
0x01C0 1060  
0x01C0 1068  
0x01C0 1070  
0x01C0 1078  
0x01C0 1080  
0x01C0 1084  
0x01C0 1088  
0x01C0 108C  
0x01C0 1090  
0x01C0 1094  
ACRONYM  
ESR  
REGISTER DESCRIPTION  
Event Set Register  
CER  
Chained Event Register  
Event Enable Register  
Event Enable Clear Register  
Event Enable Set Register  
Secondary Event Register  
EER  
EECR  
EESR  
SER  
SECR  
IER  
Secondary Event Clear Register  
Interrupt Enable Register  
IECR  
Interrupt Enable Clear Register  
Interrupt Enable Set Register  
Interrupt Pending Register  
IESR  
IPR  
ICR  
Interrupt Clear Register  
IEVAL  
QER  
Interrupt Evaluate Register  
QDMA Event Register  
QEER  
QEECR  
QEESR  
QSER  
QSECR  
QDMA Event Enable Register  
QDMA Event Enable Clear Register  
QDMA Event Enable Set Register  
QDMA Secondary Event Register  
QDMA Secondary Event Clear Register  
SHADOW REGION 0 CHANNEL REGISTERS  
Event Register  
0x01C0 2000  
0x01C0 2008  
0x01C0 2010  
0x01C0 2018  
0x01C0 2020  
0x01C0 2028  
0x01C0 2030  
0x01C0 2038  
0x01C0 2040  
0x01C0 2050  
0x01C0 2058  
0x01C0 2060  
0x01C0 2068  
0x01C0 2070  
0x01C0 2078  
0x01C0 2080  
0x01C0 2084  
0x01C0 2088  
0x01C0 208C  
0x01C0 2090  
0x01C0 2094  
ER  
ECR  
Event Clear Register  
ESR  
Event Set Register  
CER  
Chained Event Register  
EER  
Event Enable Register  
EECR  
EESR  
SER  
Event Enable Clear Register  
Event Enable Set Register  
Secondary Event Register  
Secondary Event Clear Register  
Interrupt Enable Register  
Interrupt Enable Clear Register  
Interrupt Enable Set Register  
Interrupt Pending Register  
Interrupt Clear Register  
SECR  
IER  
IECR  
IESR  
IPR  
ICR  
IEVAL  
QER  
Interrupt Evaluate Register  
QDMA Event Register  
QEER  
QEECR  
QEESR  
QSER  
QSECR  
QDMA Event Enable Register  
QDMA Event Enable Clear Register  
QDMA Event Enable Set Register  
QDMA Secondary Event Register  
QDMA Secondary Event Clear Register  
SHADOW REGION 1 CHANNEL REGISTERS  
Event Register  
0x01C0 2200  
0x01C0 2208  
0x01C0 2210  
0x01C0 2218  
0x01C0 2220  
ER  
ECR  
ESR  
CER  
EER  
Event Clear Register  
Event Set Register  
Chained Event Register  
Event Enable Register  
82  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
Table 5-15. EDMA3 Channel Controller (EDMA3CC) Registers (continued)  
BYTE ADDRESS  
ACRONYM  
EECR  
EESR  
SER  
REGISTER DESCRIPTION  
0x01C0 2228  
0x01C0 2230  
Event Enable Clear Register  
Event Enable Set Register  
Secondary Event Register  
0x01C0 2238  
0x01C0 2240  
SECR  
IER  
Secondary Event Clear Register  
Interrupt Enable Register  
0x01C0 2250  
0x01C0 2258  
IECR  
Interrupt Enable Clear Register  
Interrupt Enable Set Register  
Interrupt Pending Register  
0x01C0 2260  
IESR  
0x01C0 2268  
IPR  
0x01C0 2270  
ICR  
Interrupt Clear Register  
0x01C0 2278  
IEVAL  
QER  
Interrupt Evaluate Register  
0x01C0 2280  
QDMA Event Register  
0x01C0 2284  
QEER  
QEECR  
QEESR  
QSER  
QSECR  
QDMA Event Enable Register  
QDMA Event Enable Clear Register  
QDMA Event Enable Set Register  
QDMA Secondary Event Register  
QDMA Secondary Event Clear Register  
Parameter RAM (PaRAM)  
0x01C0 2288  
0x01C0 228C  
0x01C0 2290  
0x01C0 2294  
0x01C0 4000 - 0x01C0 4FFF  
Table 5-16. EDMA3 Transfer Controller (EDMA3TC) Registers  
Transfer Controller 0 Transfer Controller 1  
ACRONYM  
REGISTER DESCRIPTION  
BYTE ADDRESS  
0x01C0 8000  
0x01C0 8004  
0x01C0 8100  
0x01C0 8120  
0x01C0 8124  
0x01C0 8128  
0x01C0 812C  
0x01C0 8130  
0x01C0 8140  
0x01C0 8240  
0x01C0 8244  
0x01C0 8248  
0x01C0 824C  
0x01C0 8250  
0x01C0 8254  
0x01C0 8258  
0x01C0 825C  
0x01C0 8260  
0x01C0 8280  
0x01C0 8284  
0x01C0 8288  
0x01C0 8300  
0x01C0 8304  
0x01C0 8308  
0x01C0 830C  
0x01C0 8310  
BYTE ADDRESS  
0x01C0 8400  
0x01C0 8404  
0x01C0 8500  
0x01C0 8520  
0x01C0 8524  
0x01C0 8528  
0x01C0 852C  
0x01C0 8530  
0x01C0 8540  
0x01C0 8640  
0x01C0 8644  
0x01C0 8648  
0x01C0 864C  
0x01C0 8650  
0x01C0 8654  
0x01C0 8658  
0x01C0 865C  
0x01C0 8660  
0x01C0 8680  
0x01C0 8684  
0x01C0 8688  
0x01C0 8700  
0x01C0 8704  
0x01C0 8708  
0x01C0 870C  
0x01C0 8710  
PID  
Peripheral Identification Register  
TCCFG  
EDMA3TC Configuration Register  
TCSTAT  
EDMA3TC Channel Status Register  
Error Status Register  
ERRSTAT  
ERREN  
Error Enable Register  
ERRCLR  
ERRDET  
ERRCMD  
RDRATE  
SAOPT  
Error Clear Register  
Error Details Register  
Error Interrupt Command Register  
Read Command Rate Register  
Source Active Options Register  
SASRC  
Source Active Source Address Register  
Source Active Count Register  
SACNT  
SADST  
Source Active Destination Address Register  
Source Active B-Index Register  
SABIDX  
SAMPPRXY  
SACNTRLD  
SASRCBREF  
SADSTBREF  
DFCNTRLD  
DFSRCBREF  
DFDSTBREF  
DFOPT0  
Source Active Memory Protection Proxy Register  
Source Active Count Reload Register  
Source Active Source Address B-Reference Register  
Source Active Destination Address B-Reference Register  
Destination FIFO Set Count Reload Register  
Destination FIFO Set Source Address B-Reference Register  
Destination FIFO Set Destination Address B-Reference Register  
Destination FIFO Options Register 0  
Destination FIFO Source Address Register 0  
Destination FIFO Count Register 0  
DFSRC0  
DFCNT0  
DFDST0  
Destination FIFO Destination Address Register 0  
Destination FIFO B-Index Register 0  
DFBIDX0  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
83  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
Table 5-16. EDMA3 Transfer Controller (EDMA3TC) Registers (continued)  
Transfer Controller 0 Transfer Controller 1  
ACRONYM  
REGISTER DESCRIPTION  
BYTE ADDRESS  
0x01C0 8314  
0x01C0 8340  
0x01C0 8344  
0x01C0 8348  
0x01C0 834C  
0x01C0 8350  
0x01C0 8354  
0x01C0 8380  
0x01C0 8384  
0x01C0 8388  
0x01C0 838C  
0x01C0 8390  
0x01C0 8394  
0x01C0 83C0  
0x01C0 83C4  
0x01C0 83C8  
0x01C0 83CC  
0x01C0 83D0  
0x01C0 83D4  
BYTE ADDRESS  
0x01C0 8714  
0x01C0 8740  
0x01C0 8744  
0x01C0 8748  
0x01C0 874C  
0x01C0 8750  
0x01C0 8754  
0x01C0 8780  
0x01C0 8784  
0x01C0 8788  
0x01C0 878C  
0x01C0 8790  
0x01C0 8794  
0x01C0 87C0  
0x01C0 87C4  
0x01C0 87C8  
0x01C0 87CC  
0x01C0 87D0  
0x01C0 87D4  
DFMPPRXY0  
DFOPT1  
Destination FIFO Memory Protection Proxy Register 0  
Destination FIFO Options Register 1  
DFSRC1  
Destination FIFO Source Address Register 1  
Destination FIFO Count Register 1  
DFCNT1  
DFDST1  
Destination FIFO Destination Address Register 1  
Destination FIFO B-Index Register 1  
DFBIDX1  
DFMPPRXY1  
DFOPT2  
Destination FIFO Memory Protection Proxy Register 1  
Destination FIFO Options Register 2  
DFSRC2  
Destination FIFO Source Address Register 2  
Destination FIFO Count Register 2  
DFCNT2  
DFDST2  
Destination FIFO Destination Address Register 2  
Destination FIFO B-Index Register 2  
DFBIDX2  
DFMPPRXY2  
DFOPT3  
Destination FIFO Memory Protection Proxy Register 2  
Destination FIFO Options Register 3  
DFSRC3  
Destination FIFO Source Address Register 3  
Destination FIFO Count Register 3  
DFCNT3  
DFDST3  
Destination FIFO Destination Address Register 3  
Destination FIFO B-Index Register 3  
DFBIDX3  
DFMPPRXY3  
Destination FIFO Memory Protection Proxy Register 3  
Table 5-17 shows an abbreviation of the set of registers which make up the parameter set for each of 128  
EDMA events. Each of the parameter register sets consist of 8 32-bit word entries. Table 5-18 shows the  
parameter set entry registers with relative memory address locations within each of the parameter sets.  
Table 5-17. EDMA Parameter Set RAM  
BYTE ADDRESS RANGE  
0x01C0 4000 - 0x01C0 401F  
0x01C0 4020 - 0x01C0 403F  
0x01C0 4040 - 0x01cC0 405F  
0x01C0 4060 - 0x01C0 407F  
0x01C0 4080 - 0x01C0 409F  
0x01C0 40A0 - 0x01C0 40BF  
...  
DESCRIPTION  
Parameters Set 0 (8 32-bit words)  
Parameters Set 1 (8 32-bit words)  
Parameters Set 2 (8 32-bit words)  
Parameters Set 3 (8 32-bit words)  
Parameters Set 4 (8 32-bit words)  
Parameters Set 5 (8 32-bit words)  
...  
0x01C0 4FC0 - 0x01C0 4FDF  
0x01C0 4FE0 - 0x01C0 4FFF  
Parameters Set 126 (8 32-bit words)  
Parameters Set 127 (8 32-bit words)  
Table 5-18. Parameter Set Entries  
BYTE OFFSET ADDRESS  
WITHIN THE PARAMETER SET  
ACRONYM  
PARAMETER ENTRY  
0x0000  
0x0004  
0x0008  
0x000C  
0x0010  
0x0014  
0x0018  
0x001C  
OPT  
SRC  
Option  
Source Address  
A_B_CNT  
DST  
A Count, B Count  
Destination Address  
SRC_DST_BIDX  
LINK_BCNTRLD  
SRC_DST_CIDX  
CCNT  
Source B Index, Destination B Index  
Link Address, B Count Reload  
Source C Index, Destination C Index  
C Count  
84  
Peripheral Information and Electrical Specifications  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
 
 
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
Table 5-19. EDMA Events  
Event  
Event Name / Source  
Event  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Event Name / Source  
MMCSD Receive  
MMCSD Transmit  
SPI1 Receive  
0
1
McASP0 Receive  
McASP0 Transmit  
McASP1 Receive  
McASP1 Transmit  
McASP2 Receive  
McASP2 Transmit  
GPIO Bank 0 Interrupt  
GPIO Bank 1 Interrupt  
UART0 Receive  
2
3
SPI1 Transmit  
4
PRU_EVENTOUT6  
PRU_EVENTOUT7  
GPIO Bank 2 Interrupt  
GPIO Bank 3 Interrupt  
I2C0 Receive  
5
6
7
8
9
UART0 Transmit  
I2C0 Transmit  
10  
11  
12  
13  
14  
15  
Timer64P0 Event Out 12  
Timer64P0 Event Out 34  
UART1 Receive  
I2C1 Receive  
I2C1 Transmit  
GPIO Bank 4 Interrupt  
GPIO Bank 5 Interrupt  
UART2 Receive  
UART1 Transmit  
SPI0 Receive  
SPI0 Transmit  
UART2 Transmit  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
85  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
5.11 External Memory Interface A (EMIFA)  
EMIFA is one of two external memory interfaces supported on the OMAP-L137. It is primarily intended to  
support asynchronous memory types, such as NAND and NOR flash and Asynchronous SRAM. However  
on OMAP-L137 EMIFA also provides a secondary interface to SDRAM.  
5.11.1 EMIFA Asynchronous Memory Support  
EMIFA supports asynchronous:  
SRAM memories  
NAND Flash memories  
NOR Flash memories  
The EMIFA data bus width is up to 16-bits on the ZKB package. The device supports up to fifteen address  
lines and an external wait/interrupt input. Up to four asynchronous chip selects are supported by EMIFA  
(EMA_CS[5:2]) . All four chip selects are available on the ZKB package.  
Each chip select has the following individually programmable attributes:  
Data Bus Width  
Read cycle timings: setup, hold, strobe  
Write cycle timings: setup, hold, strobe  
Bus turn around time  
Extended Wait Option With Programmable Timeout  
Select Strobe Option  
NAND flash controller supports 1-bit and 4-bit ECC calculation on blocks of 512 bytes.  
5.11.2 EMIFA Synchronous DRAM Memory Support  
The OMAP-L137 ZKB package supports 16-bit SDRAM in addition to the asynchronous memories listed in  
Section 5.11.1. It has a single SDRAM chip select (EMA_CS[0]). SDRAM configurations that are  
supported are:  
One, Two, and Four Bank SDRAM devices  
Devices with Eight, Nine, Ten, and Eleven Column Address  
CAS Latency of two or three clock cycles  
Sixteen Bit Data Bus Width  
3.3V LVCMOS Interface  
Additionally, the SDRAM interface of EMIFA supports placing the SDRAM in Self Refresh and Powerdown  
Modes. Self Refresh mode allows the SDRAM to be put into a low power state while still retaining memory  
contents; since the SDRAM will continue to refresh itself even without clocks from the DSP. Powerdown  
mode achieves even lower power, except the DSP must periodically wake the SDRAM up and issue  
refreshes if data retention is required.  
Finally, note that the EMIFA does not support Mobile SDRAM devices. Table 5-20 below shows the  
supported SDRAM configurations for EMIFA.  
86  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
 
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
Table 5-20. EMIFA Supported SDRAM Configurations(1)  
SDRAM  
Memory  
Data Bus  
Width  
Memory  
Density  
(Mbits)  
Number of EMIFB Data  
Total Memory  
(Mbits)  
Total Memory  
(Mbytes)  
Rows  
Columns  
Banks  
Memories  
Bus Size  
(bits)  
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
13  
13  
13  
13  
13  
13  
13  
13  
13  
13  
13  
13  
13  
13  
13  
13  
13  
13  
13  
13  
13  
13  
13  
13  
8
8
1
2
4
1
2
4
1
2
4
1
2
4
1
2
4
1
2
4
1
2
4
1
2
4
32  
64  
4
8
32  
64  
8
128  
64  
16  
8
128  
64  
9
9
128  
256  
128  
256  
512  
256  
512  
1024  
32  
16  
32  
16  
32  
64  
32  
64  
128  
4
128  
256  
128  
256  
512  
256  
512  
1024  
16  
9
16  
10  
10  
10  
11  
11  
11  
8
8
64  
8
32  
8
128  
64  
16  
8
64  
9
32  
9
128  
256  
128  
256  
512  
256  
512  
1024  
16  
32  
16  
32  
64  
32  
64  
128  
64  
9
128  
64  
8
10  
10  
10  
11  
11  
11  
128  
256  
128  
256  
512  
(1) The shaded cells indicate configurations that are possible on the EMIFA interface but as of this writing SDRAM memories capable of  
supporting these densities are not available in the market.  
5.11.3 EMIFA SDRAM Loading Limitations  
EMIFA supports SDRAM up to 100 MHz with up to two SDRAM or asynchronous memory loads.  
Additional loads will limit the SDRAM operation to lower speeds and the maximum speed should be  
confirmed by board simulation using IBIS models.  
5.11.4 EMIFA Connection Examples  
Figure 5-12 illustrates an example of how SDRAM, NOR, and NAND flash devices might be connected to  
EMIFA of a OMAP-L137 device simultaneously. The SDRAM chip select must be EMA_CS[0]. Note that  
the NOR flash is connected to EMA_CS[2] and the NAND flash is connected to EMA_CS[3] in this  
example. Note that any type of asynchronous memory may be connected to EMA_CS[5:2].  
The on-chip bootloader makes some assumptions on which chip select the contains the boot image, and  
this depends on the boot mode. For NOR boot mode; the on-chip bootloader requires that the image be  
stored in NOR flash on EMA_CS[2]. For NAND boot mode, the bootloader requires that the boot image is  
stored in NAND flash on EMA_CS[3]. It is always possible to have the image span multiple chip selects,  
but this must be supported by second stage boot code stored in the external flash.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
87  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
A likely use case with more than one EMIFA chip select used for NAND flash is illustrated in Figure 5-13.  
This figure shows how two multiplane NAND flash devices with two chip selects each would connect to the  
EMIFA. In this case if NAND is the boot memory, then the boot image needs to be stored in the NAND  
area selected by EMA_CS[3]. Part of the application image could spill over into the NAND regions  
selected by other EMIFA chip selects; but would rely on the code stored in the EMA_CS[3] area to  
bootload it.  
EMA_CS[0]  
EMA_CAS  
CE  
CAS  
EMIFA  
EMA_RAS  
RAS  
EMA_WE  
WE  
SDRAM  
2M x 16 x 4  
Bank  
EMA_CLK  
CLK  
EMA_SDCKE  
EMA_BA[1:0]  
EMA_A[12:0]  
CKE  
BA[1:0]  
A[11:0]  
LDQM  
UDQM  
DQ[15:0]  
EMA_WE_DQM[0]  
EMA_WE_DQM[1]  
EMA_D[15:0]  
EMA_CS[2]  
EMA_CS[3]  
EMA_WAIT  
EMA_OE  
A[0]  
A[12:1]  
DQ[15:0]  
CE  
GPIO  
(6 Pins)  
RESET  
NOR  
FLASH  
512K x 16  
WE  
RESET  
OE  
RESET  
A[18:13]  
...  
RY/BY  
EMA_A[1]  
EMA_A[2]  
ALE  
CLE  
DQ[15:0]  
CE  
NAND  
FLASH  
1Gb x 16  
DVDD  
WE  
RE  
RB  
Figure 5-12. OMAP-L137 Connection Diagram: SDRAM, NOR, NAND  
88  
Peripheral Information and Electrical Specifications  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
EMA_A[1]  
EMA_A[2]  
EMA_D[7:0]  
EMA_CS[2]  
EMA_CS[3]  
EMA_WE  
ALE  
CLE  
DQ[7:0]  
NAND  
FLASH  
x8,  
MultiPlane  
CE1  
CE2  
WE  
EMA_OE  
RE  
EMIFA  
R/B1  
R/B2  
EMA_WAIT  
DVDD  
ALE  
CLE  
DQ[7:0]  
NAND  
FLASH  
x8,  
MultiPlane  
EMA_CS[4]  
EMA_CS[5]  
CE1  
CE2  
WE  
RE  
R/B1  
R/B2  
Figure 5-13. OMAP-L137 EMIFA Connection Diagram: Multiple NAND Flash Planes  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
89  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
5.11.5 External Memory Interface A (EMIFA) Registers  
Table 5-21 is a list of the EMIF registers. For more information about these registers, see the C674x DSP  
External Memory Interface (EMIF) User's Guide (literature number SPRUFL6).  
Table 5-21. External Memory Interface (EMIFA) Registers  
BYTE ADDRESS  
0x6800 0000  
0x6800 0004  
0x6800 0008  
0x6800 000C  
0x6800 0010  
0x6800 0014  
0x6800 0018  
0x6800 001C  
0x6800 0020  
0x6800 003C  
0x6800 0040  
0x6800 0044  
0x6800 0048  
0x6800 004C  
0x6800 0060  
0x6800 0064  
0x6800 0070  
0x6800 0074  
0x6800 0078  
0x6800 007C  
0x6800 00BC  
0x6800 00C0  
0x6800 00C4  
0x6800 00C8  
0x6800 00CC  
0x6800 00D0  
0x6800 00D4  
0x6800 00D8  
0x6800 00DC  
ACRONYM  
MIDR  
REGISTER DESCRIPTION  
Module ID Register  
AWCC  
Asynchronous Wait Cycle Configuration Register  
SDRAM Configuration Register  
SDCR  
SDRCR  
SDRAM Refresh Control Register  
Asynchronous 1 Configuration Register  
Asynchronous 2 Configuration Register  
Asynchronous 3 Configuration Register  
Asynchronous 4 Configuration Register  
SDRAM Timing Register  
CE2CFG  
CE3CFG  
CE4CFG  
CE5CFG  
SDTIMR  
SDSRETR  
INTRAW  
SDRAM Self Refresh Exit Timing Register  
EMIFA Interrupt Raw Register  
INTMSK  
EMIFA Interrupt Mask Register  
INTMSKSET  
INTMSKCLR  
NANDFCR  
NANDFSR  
NANDF1ECC  
NANDF2ECC  
NANDF3ECC  
NANDF4ECC  
EMIFA Interrupt Mask Set Register  
EMIFA Interrupt Mask Clear Register  
NAND Flash Control Register  
NAND Flash Status Register  
NAND Flash 1 ECC Register (CS2 Space)  
NAND Flash 2 ECC Register (CS3 Space)  
NAND Flash 3 ECC Register (CS4 Space)  
NAND Flash 4 ECC Register (CS5 Space)  
NAND4BITECCLOAD NAND Flash 4-Bit ECC Load Register  
NAND4BITECC1  
NAND4BITECC2  
NAND4BITECC3  
NAND4BITECC4  
NANDERRADD1  
NANDERRADD2  
NANDERRVAL1  
NANDERRVAL2  
NAND Flash 4-Bit ECC Register 1  
NAND Flash 4-Bit ECC Register 2  
NAND Flash 4-Bit ECC Register 3  
NAND Flash 4-Bit ECC Register 4  
NAND Flash 4-Bit ECC Error Address Register 1  
NAND Flash 4-Bit ECC Error Address Register 2  
NAND Flash 4-Bit ECC Error Value Register 1  
NAND Flash 4-Bit ECC Error Value Register 2  
90  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
 
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
5.11.6 EMIFA Electrical Data/Timing  
Table 5-22 through Table 5-25 assume testing over recommended operating conditions.  
Table 5-22. EMIFA SDRAM Interface Timing Requirements  
No.  
19  
PARAMETER  
MIN MAX UNIT  
tsu(DV-CLKH)  
th(CLKH-DIV)  
Input setup time, read data valid on EMA_D[15:0] before EMA_CLK rising  
Input hold time, read data valid on EMA_D[15:0] after EMA_CLK rising  
1.3  
1.5  
ns  
ns  
20  
Table 5-23. EMIFA SDRAM Interface Switching Characteristics  
No.  
1
PARAMETER  
MIN MAX UNIT  
tc(CLK)  
Cycle time, EMIF clock EMA_CLK  
10  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
tw(CLK)  
Pulse width, EMIF clock EMA_CLK high or low  
Delay time, EMA_CLK rising to EMA_CS[0] valid  
Output hold time, EMA_CLK rising to EMA_CS[0] invalid  
Delay time, EMA_CLK rising to EMA_WE_DQM[1:0] valid  
Output hold time, EMA_CLK rising to EMA_WE_DQM[1:0] invalid  
Delay time, EMA_CLK rising to EMA_A[12:0] and EMA_BA[1:0] valid  
3
td(CLKH-CSV)  
toh(CLKH-CSIV)  
td(CLKH-DQMV)  
toh(CLKH-DQMIV)  
td(CLKH-AV)  
7
7
7
4
1
1
5
6
7
Output hold time, EMA_CLK rising to EMA_A[12:0] and EMA_BA[1:0]  
invalid  
8
toh(CLKH-AIV)  
1
ns  
9
td(CLKH-DV)  
Delay time, EMA_CLK rising to EMA_D[15:0] valid  
Output hold time, EMA_CLK rising to EMA_D[15:0] invalid  
Delay time, EMA_CLK rising to EMA_RAS valid  
7
7
7
7
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
10  
11  
12  
13  
14  
15  
16  
17  
18  
toh(CLKH-DIV)  
td(CLKH-RASV)  
toh(CLKH-RASIV)  
td(CLKH-CASV)  
toh(CLKH-CASIV)  
td(CLKH-WEV)  
toh(CLKH-WEIV)  
tdis(CLKH-DHZ)  
tena(CLKH-DLZ)  
1
1
1
1
1
Output hold time, EMA_CLK rising to EMA_RAS invalid  
Delay time, EMA_CLK rising to EMA_CAS valid  
Output hold time, EMA_CLK rising to EMA_CAS invalid  
Delay time, EMA_CLK rising to EMA_WE valid  
Output hold time, EMA_CLK rising to EMA_WE invalid  
Delay time, EMA_CLK rising to EMA_D[15:0] 3-stated  
Output hold time, EMA_CLK rising to EMA_D[15:0] driving  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
91  
 
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
1
BASIC SDRAM  
WRITE OPERATION  
2
2
EMA_CLK  
EMA_CS[0]  
3
5
7
7
9
4
6
EMA_WE_DQM[1:0]  
EMA_BA[1:0]  
8
8
EMA_A[12:0]  
10  
EMA_D[15:0]  
EMA_RAS  
EMA_CAS  
EMA_WE  
11  
12  
13  
15  
16  
Figure 5-14. EMIFA Basic SDRAM Write Operation  
1
BASIC SDRAM  
READ OPERATION  
2
2
EMA_CLK  
EMA_CS[0]  
3
5
7
7
4
6
EMA_WE_DQM[1:0]  
EMA_BA[1:0]  
8
8
EMA_A[12:0]  
19  
20  
2 EM_CLK Delay  
17  
18  
EMA_D[15:0]  
EMA_RAS  
11  
12  
13  
14  
EMA_CAS  
EMA_WE  
Figure 5-15. EMIFA Basic SDRAM Read Operation  
92  
Peripheral Information and Electrical Specifications  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
www.ti.com  
No.  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
Table 5-24. EMIFA Asynchronous Memory Timing Requirements(1)  
PARAMETER  
READS and WRITES  
MIN  
NOM  
MAX  
UNIT  
E
2
tc(CLK)  
Cycle time, EMIFA module clock  
10  
2E  
ns  
ns  
tw(EM_WAIT)  
Pulse duration, EM_WAIT assertion and deassertion  
READS  
12  
13  
14  
tsu(EMDV-EMOEH)  
th(EMOEH-EMDIV)  
tsu (EMOEL-EMWAIT)  
Setup time, EM_D[15:0] valid before EM_OE high  
Hold time, EM_D[15:0] valid after EM_OE high  
Setup Time, EM_WAIT asserted before end of Strobe Phase(2)  
WRITES  
3
0
ns  
ns  
ns  
4E+3  
28  
tsu (EMWEL-EMWAIT)  
Setup Time, EM_WAIT asserted before end of Strobe Phase(2)  
4E+3  
ns  
(1) E = EMA_CLK period or in ns. EMA_CLK is selected either as SYSCLK3 or the PLL output clock divided by 4.5. As an example, when  
SYSCLK3 is selected and set to 100MHz, E=10ns.  
(2) Setup before end of STROBE phase (if no extended wait states are inserted) by which EM_WAIT must be asserted to add extended  
wait states. Figure 5-18 and Figure 5-19 describe EMIF transactions that include extended wait states inserted during the STROBE  
phase. However, cycles inserted as part of this extended wait period should not be counted; the 4E requirement is to the start of where  
the HOLD phase would begin if there were no extended wait cycles.  
Table 5-25. EMIFA Asynchronous Memory Switching Characteristics(1) (2) (3)  
No.  
PARAMETER  
MIN  
NOM  
MAX  
UNIT  
READS and WRITES  
1
td(TURNAROUND)  
Turn around time  
(TA)*E - 3  
(TA)*E  
(TA)*E + 3  
ns  
READS  
(RS+RST+RH)*E  
- 3  
(RS+RST+RH)*E  
+ 3  
EMIF read cycle time (EW = 0)  
EMIF read cycle time (EW = 1)  
(RS+RST+RH)*E  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3
4
5
tc(EMRCYCLE)  
(RS+RST+RH+(E (RS+RST+RH+(EW (RS+RST+RH+(E  
WC*16))*E - 3  
C*16))*E  
WC*16))*E + 3  
Output setup time, EMA_CE[5:2] low to  
EMA_OE low (SS = 0)  
(RS)*E-3  
(RS)*E  
(RS)*E+3  
tsu(EMCEL-EMOEL)  
Output setup time, EMA_CE[5:2] low to  
EMA_OE low (SS = 1)  
-3  
(RH)*E - 3  
-3  
0
(RH)*E  
0
+3  
(RH)*E + 3  
+3  
Output hold time, EMA_OE high to  
EMA_CE[5:2] high (SS = 0)  
th(EMOEH-EMCEH)  
Output hold time, EMA_OE high to  
EMA_CE[5:2] high (SS = 1)  
Output setup time, EMA_BA[1:0] valid to  
EMA_OE low  
6
7
8
9
tsu(EMBAV-EMOEL)  
th(EMOEH-EMBAIV)  
tsu(EMBAV-EMOEL)  
th(EMOEH-EMAIV)  
(RS)*E-3  
(RH)*E-3  
(RS)*E-3  
(RS)*E  
(RH)*E  
(RS)*E  
(RS)*E+3  
(RH)*E+3  
(RS)*E+3  
Output hold time, EMA_OE high to  
EMA_BA[1:0] invalid  
Output setup time, EMA_A[13:0] valid to  
EMA_OE low  
Output hold time, EMA_OE high to  
EMA_A[13:0] invalid  
(RH)*E-3  
(RH)*E  
(RST)*E  
(RH)*E+3  
ns  
ns  
ns  
EMA_OE active low width (EW = 0)  
(RST)*E-3  
(RST)*E+3  
10 tw(EMOEL)  
(RST+(EWC*16))  
*E-3  
(RST+(EWC*16))  
*E+3  
EMA_OE active low width (EW = 1)  
(RST+(EWC*16))*E  
td(EMWAITH-  
EMOEH)  
Delay time from EMA_WAIT deasserted to  
EMA_OE high  
11  
3E-3  
4E  
4E+3  
ns  
WRITES  
(1) TA = Turn around, RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold,  
MEWC = Maximum external wait cycles. These parameters are programmed via the Asynchronous Bank and Asynchronous Wait Cycle  
Configuration Registers. These support the following range of values: TA[4-1], RS[16-1], RST[64-1], RH[8-1], WS[16-1], WST[64-1],  
WH[8-1], and MEW[1-256].  
(2) E = EMA_CLK period or in ns. EMA_CLK is selected either as SYSCLK3 or the PLL output clock divided by 4.5. As an example, when  
SYSCLK3 is selected and set to 100MHz, E=10ns.  
(3) EWC = external wait cycles determined by EMA_WAIT input signal. EWC supports the following range of values EWC[256-1]. Note that  
the maximum wait time before timeout is specified by bit field MEWC in the Asynchronous Wait Cycle Configuration Register.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
93  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
UNIT  
Table 5-25. EMIFA Asynchronous Memory Switching Characteristics(1) (2) (3) (continued)  
No.  
PARAMETER  
MIN  
NOM  
MAX  
(WS+WST+WH)*  
E-3  
(WS+WST+WH)*  
E+3  
EMIF write cycle time (EW = 0)  
(WS+WST+WH)*E  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
15 tc(EMWCYCLE)  
(WS+WST+WH+( (WS+WST+WH+(E (WS+WST+WH+(  
EWC*16))*E - 3  
EMIF write cycle time (EW = 1)  
WC*16))*E  
EWC*16))*E + 3  
Output setup time, EMA_CE[5:2] low to  
EMA_WE low (SS = 0)  
(WS)*E - 3  
(WS)*E  
(WS)*E + 3  
16 tsu(EMCEL-EMWEL)  
Output setup time, EMA_CE[5:2] low to  
EMA_WE low (SS = 1)  
-3  
(WH)*E-3  
-3  
0
(WH)*E  
0
+3  
(WH)*E+3  
+3  
Output hold time, EMA_WE high to  
EMA_CE[5:2] high (SS = 0)  
17 th(EMWEH-EMCEH)  
Output hold time, EMA_WE high to  
EMA_CE[5:2] high (SS = 1)  
tsu(EMDQMV-  
EMWEL)  
Output setup time, EMA_BA[1:0] valid to  
EMA_WE low  
18  
19  
(WS)*E-3  
(WH)*E-3  
(WS)*E-3  
(WH)*E-3  
(WS)*E-3  
(WS)*E  
(WH)*E  
(WS)*E  
(WH)*E  
(WS)*E  
(WS)*E+3  
(WH)*E+3  
(WS)*E+3  
(WH)*E+3  
(WS)*E+3  
th(EMWEH-  
EMDQMIV)  
Output hold time, EMA_WE high to  
EMA_BA[1:0] invalid  
Output setup time, EMA_BA[1:0] valid to  
EMA_WE low  
20 tsu(EMBAV-EMWEL)  
Output hold time, EMA_WE high to  
EMA_BA[1:0] invalid  
21 th(EMWEH-EMBAIV)  
22 tsu(EMAV-EMWEL)  
23 th(EMWEH-EMAIV)  
Output setup time, EMA_A[13:0] valid to  
EMA_WE low  
Output hold time, EMA_WE high to  
EMA_A[13:0] invalid  
(WH)*E-3  
(WH)*E  
(WST)*E  
(WH)*E+3  
ns  
ns  
ns  
EMA_WE active low width (EW = 0)  
(WST)*E-3  
(WST)*E+3  
24 tw(EMWEL)  
(WST+(EWC*16))  
*E-3  
(WST+(EWC*16))  
*E+3  
EMA_WE active low width (EW = 1)  
(WST+(EWC*16))*E  
td(EMWAITH-  
EMWEH)  
Delay time from EMA_WAIT deasserted to  
EMA_WE high  
25  
3E-3  
(WS)*E-3  
(WH)*E-3  
4E  
(WS)*E  
(WH)*E  
4E+3  
(WS)*E+3  
(WH)*E+3  
ns  
ns  
ns  
Output setup time, EMA_D[15:0] valid to  
EMA_WE low  
26 tsu(EMDV-EMWEL)  
Output hold time, EMA_WE high to  
EMA_D[15:0] invalid  
27 th(EMWEH-EMDIV)  
94  
Peripheral Information and Electrical Specifications  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
 
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
3
1
EMA_CS[5:2]  
EMA_BA[1:0]  
EMA_A[12:0]  
EMA_WE_DQM[1:0]  
4
8
5
9
7
6
10  
EMA_OE  
13  
12  
EMA_D[15:0]  
EMA_WE  
Figure 5-16. Asynchronous Memory Read Timing for EMIFA  
15  
1
EMA_CS[5:2]  
EMA_BA[1:0]  
EMA_A[12:0]  
EMA_WE_DQM[1:0]  
16  
18  
20  
22  
17  
19  
21  
23  
24  
EMA_WE  
26  
27  
EMA_D[15:0]  
EMA_OE  
Figure 5-17. Asynchronous Memory Write Timing for EMIFA  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
95  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
SETUP  
STROBE  
Extended Due to EMA_WAIT  
STROBE HOLD  
EMA_CS[5:2]  
EMA_BA[1:0]  
EMA_A[12:0]  
EMA_D[15:0]  
14  
11  
EMA_OE  
2
2
EMA_WAIT  
Asserted  
Deasserted  
Figure 5-18. EMA_WAIT Read Timing Requirements  
Figure 5-19. EMA_WAIT Write Timing Requirements  
96  
Peripheral Information and Electrical Specifications  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
5.12 External Memory Interface B (EMIFB)  
Figure 5-20 illustrates a high-level view of the EMIFB and its connections within the device. Multiple  
requesters have access to EMIFB through a switched central resource (indicated as crossbar in the  
figure). The EMIFB implements a split transaction internal bus, allowing concurrence between reads and  
writes from the various requesters.  
EMIFB  
Registers  
CPU  
EMB_CS  
EMB_CAS  
EDMA  
Cmd/Write  
FIFO  
EMB_RAS  
EMB_WE  
Crossbar  
MPU2  
Master  
Peripherals  
(USB, UHPI...)  
EMB_CLK  
SDRAM  
Interface  
EMB_SDCKE  
EMB_BA[1:0]  
EMB_A[x:0]  
Read  
FIFO  
EMB_D[x:0]  
EMB_WE_DQM[x:0]  
Figure 5-20. EMIFB Functional Block Diagram  
EMIFB supports a 3.3V LVCMOS Interface.  
5.12.1 EMIFB SDRAM Loading Limitations  
EMIFB supports SDRAM up to 152MHz with up to two SDRAM or asynchronous memory loads. Additional  
loads will limit the SDRAM operation to lower speeds and the maximum speed should be confirmed by  
board simulation using IBIS models.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
97  
 
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
5.12.2 Interfacing to SDRAM  
The EMIFB supports a glueless interface to SDRAM devices with the following characteristics:  
Pre-charge bit is A[10]  
Supports 8, 9, 10 or 11 column address bits  
Supports up to 13 row address bits  
Supports 1, 2 or 4 internal banks  
Table 5-26 shows the supported SDRAM configurations for EMIFB.  
Table 5-26. EMIFB Supported SDRAM Configurations(1)  
SDRAM  
Memory  
Data Bus  
Width  
Memory  
Density  
(Mbits)  
Number of EMIFB Data  
Total Memory  
(Mbits)  
Total Memory  
(Mbytes)  
Rows  
Columns  
Banks  
Memories  
Bus Size  
(bits)  
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
13  
13  
13  
13  
13  
13  
13  
13  
13  
13  
13  
13  
13  
13  
13  
13  
13  
13  
13  
13  
13  
13  
13  
13  
8
8
1
2
4
1
2
4
1
2
4
1
2
4
1
2
4
1
2
4
1
2
4
1
2
4
64  
128  
256  
128  
256  
512  
256  
512  
1024  
512  
1024  
2048  
64  
8
16  
64  
128  
256  
128  
256  
512  
256  
512  
1024  
512  
1024  
2048  
32  
8
32  
9
16  
9
32  
9
64  
32  
10  
10  
10  
11  
11  
11  
8
32  
64  
128  
64  
128  
256  
8
8
128  
256  
128  
256  
512  
256  
512  
1024  
512  
1024  
2048  
16  
64  
8
32  
128  
64  
9
16  
9
32  
128  
256  
128  
256  
512  
256  
512  
1024  
9
64  
16  
10  
10  
10  
11  
11  
11  
32  
64  
128  
64  
128  
256  
(1) The shaded cells indicate configurations that are possible on the EMIFB interface but as of this writing SDRAM memories capable of  
supporting these densities are not available in the market.  
Figure 5-21 shows an interface between the EMIFB and a 2M × 16 × 4 bank SDRAM device. In addition,  
Figure 5-22 shows an interface between the EMIFB and a 2M × 32 × 4 bank SDRAM device and Figure 5-  
23 shows an interface between the EMIFB and two 4M × 16 × 4 bank SDRAM devices. Refer to Table 5-  
27, as an example that shows additional list of commonly-supported SDRAM devices and the required  
connections for the address pins. Note that in Table 5-27, page size/column size (not indicated in the  
table) is varied to get the required addressability range.  
98  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
 
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
SDRAM  
2M x 16 x 4  
Bank  
EMIFB  
EMB_CS  
CE  
EMB_CAS  
EMB_RAS  
CAS  
RAS  
EMB_WE  
WE  
EMB_CLK  
CLK  
EMB_SDCKE  
EMB_BA[1:0]  
EMB_A[11:0]  
EMB_WE_DQM[0]  
EMB_WE_DQM[1]  
EMB_D[15:0]  
CKE  
BA[1:0]  
A[11:0]  
LDQM  
UDQM  
DQ[15:0]  
Figure 5-21. EMIFB to 2M × 16 × 4 bank SDRAM Interface  
SDRAM  
2M x 32 x 4  
Bank  
EMIFB  
EMB_CS  
CE  
EMB_CAS  
EMB_RAS  
CAS  
RAS  
WE  
EMB_WE  
EMB_CLK  
CLK  
CKE  
EMB_SDCKE  
EMB_BA[1:0]  
EMB_A[11:0]  
EMB_WE_DQM[3:0]  
EMB_D[31:0]  
BA[1:0]  
A[11:0]  
DQM[3:0]  
DQ[31:0]  
Figure 5-22. EMIFB to 2M × 32 × 4 bank SDRAM Interface  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
99  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
SDRAM  
4M x 16 x 4  
Bank  
EMIFB  
EMB_CS  
EMB_CAS  
CE  
CAS  
RAS  
WE  
EMB_RAS  
EMB_WE  
EMB_CLK  
CLK  
CKE  
EMB_SDCKE  
EMB_BA[1:0]  
EMB_A[12:0]  
EMB_WE_DQM[0]  
EMB_WE_DQM[1]  
EMB_D[15:0]  
EMB_WE_DQM[2]  
EMB_WE_DQM[3]  
EMB_D[31:16]  
BA[1:0]  
A[12:0]  
LDQM  
UDQM  
DQ[15:0]  
SDRAM  
4M x 16 x 4  
Bank  
CE  
CAS  
RAS  
WE  
CLK  
CKE  
BA[1:0]  
A[12:0]  
LDQM  
UDQM  
DQ[15:0]  
Figure 5-23. EMIFB to Dual 4M × 16 × 4 bank SDRAM Interface  
Table 5-27. Example of 16/32-bit EMIFB Address Pin Connections  
SDRAM SIZE  
WIDTH  
BANKS  
MEMORY  
SDRAM  
EMIFB  
ADDRESS PINS  
64M bits  
×16  
4
A[11:0]  
EMB_A[11:0]  
A[10:0]  
×32  
×16  
×32  
×16  
×32  
×16  
×32  
4
4
4
4
4
4
4
SDRAM  
EMIFB  
EMB_A[10:0]  
A[11:0]  
128M bits  
256M bits  
512M bits  
SDRAM  
EMIFB  
EMB_A[11:0]  
A[11:0]  
SDRAM  
EMIFB  
EMB_A[11:0]  
A[12:0]  
SDRAM  
EMIFB  
EMB_A[12:0]  
A[11:0]  
SDRAM  
EMIFB  
EMB_A[11:0]  
A[12:0]  
SDRAM  
EMIFB  
EMB_A[12:0]  
A[12:0]  
SDRAM  
EMIFB  
EMB_A[12:0]  
Table 5-28 is a list of the EMIFB registers.  
Table 5-28. EMIFB Base Controller Registers  
BYTE ADDRESS  
ACRONYM  
REGISTER DESCRIPTION  
0xB000 0000  
MIDR  
Module ID Register  
100  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
 
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
Table 5-28. EMIFB Base Controller Registers (continued)  
BYTE ADDRESS  
ACRONYM  
SDCFG  
SDRFC  
SDTIM1  
SDTIM2  
SDCFG2  
BPRIO  
PC1  
REGISTER DESCRIPTION  
0xB000 0008  
0xB000 000C  
0xB000 0010  
0xB000 0014  
0xB000 001C  
0xB000 0020  
0xB000 0040  
0xB000 0044  
0xB000 0048  
0xB000 004C  
0xB000 0050  
0xB000 00C0  
0xB000 00C4  
0xB000 00C8  
0xB000 00CC  
SDRAM Configuration Register  
SDRAM Refresh Control Register  
SDRAM Timing Register 1  
SDRAM Timing Register 2  
SDRAM Configuration 2 Register  
Peripheral Bus Burst Priority Register  
Performance Counter 1 Register  
Performance Counter 2 Register  
Performance Counter Configuration Register  
Performance Counter Master Region Select Register  
Performance Counter Time Register  
Interrupt Raw Register  
PC2  
PCC  
PCMRS  
PCT  
IRR  
IMR  
Interrupt Mask Register  
IMSR  
Interrupt Mask Set Register  
IMCR  
Interrupt Mask Clear Register  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
101  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
5.12.3 EMIFB Electrical Data/Timing  
Table 5-29. EMIFB SDRAM Interface Timing Requirements  
No.  
19  
PARAMETER  
MIN  
MAX  
MAX  
UNIT  
ns  
Input setup time, read data valid on EMB_D[31:0] before EMB_CLK  
rising  
tsu(DV-CLKH)  
th(CLKH-DIV)  
0.8  
20  
Input hold time, read data valid on EMB_D[31:0] after EMB_CLK rising  
1.5  
ns  
Table 5-30. EMIFB SDRAM Interface Switching Characteristics  
No.  
1
PARAMETER  
MIN  
6.579  
2.63  
UNIT  
ns  
tc(CLK)  
Cycle time, EMIF clock EMB_CLK  
2
tw(CLK)  
Pulse width, EMIF clock EMB_CLK high or low  
ns  
3
td(CLKH-CSV)  
toh(CLKH-CSIV)  
td(CLKH-DQMV)  
toh(CLKH-DQMIV)  
td(CLKH-AV)  
Delay time, EMB_CLK rising to EMB_CS[0] valid  
Output hold time, EMB_CLK rising to EMB_CS[0] invalid  
Delay time, EMB_CLK rising to EMB_WE_DQM[3:0] valid  
Output hold time, EMB_CLK rising to EMB_WE_DQM[3:0] invalid  
Delay time, EMB_CLK rising to EMB_A[12:0] and EMB_BA[1:0] valid  
5.1  
5.1  
5.1  
ns  
4
0.9  
0.9  
ns  
5
ns  
6
ns  
7
ns  
Output hold time, EMB_CLK rising to EMB_A[12:0] and EMB_BA[1:0]  
invalid  
8
toh(CLKH-AIV)  
0.9  
ns  
9
td(CLKH-DV)  
Delay time, EMB_CLK rising to EMB_D[31:0] valid  
Output hold time, EMB_CLK rising to EMB_D[31:0] invalid  
Delay time, EMB_CLK rising to EMB_RAS valid  
5.1  
5.1  
5.1  
5.1  
5.1  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
10  
11  
12  
13  
14  
15  
16  
17  
18  
toh(CLKH-DIV)  
td(CLKH-RASV)  
toh(CLKH-RASIV)  
td(CLKH-CASV)  
toh(CLKH-CASIV)  
td(CLKH-WEV)  
toh(CLKH-WEIV)  
tdis(CLKH-DHZ)  
tena(CLKH-DLZ)  
0.9  
0.9  
0.9  
0.9  
0.9  
Output hold time, EMB_CLK rising to EMB_RAS invalid  
Delay time, EMB_CLK rising to EMB_CAS valid  
Output hold time, EMB_CLK rising to EMB_CAS invalid  
Delay time, EMB_CLK rising to EMB_WE valid  
Output hold time, EMB_CLK rising to EMB_WE invalid  
Delay time, EMB_CLK rising to EMB_D[31:0] 3-stated  
Output hold time, EMB_CLK rising to EMB_D[31:0] driving  
102  
Peripheral Information and Electrical Specifications  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
1
BASIC SDRAM  
WRITE OPERATION  
2
2
EMB_CLK  
3
5
7
7
9
4
EMB_CS[0]  
6
EMB_WE_DQM[3:0]  
EMB_BA[1:0]  
8
8
EMB_A[12:0]  
10  
EMB_D[31:0]  
EMB_RAS  
EMB_CAS  
EMB_WE  
11  
12  
13  
15  
16  
Figure 5-24. EMIFB Basic SDRAM Write Operation  
1
BASIC SDRAM  
READ OPERATION  
2
2
EMB_CLK  
EMB_CS[0]  
3
5
7
7
4
6
EMB_WE_DQM[3:0]  
EMB_BA[1:0]  
8
8
EMB_A[12:0]  
19  
20  
2 EM_CLK Delay  
17  
18  
EMB_D[31:0]  
EMB_RAS  
11  
12  
13  
14  
EMB_CAS  
EMB_WE  
Figure 5-25. EMIFB Basic SDRAM Read Operation  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
103  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
5.13 Memory Protection Units  
The MPU performs memory protection checking. It receives requests from a bus master in the system and  
checks the address against the fixed and programmable regions to see if the access is allowed. If allowed,  
the transfer is passed unmodified to its output bus (to the targeted address). If the transfer is illegal (fails  
the protection check) then the MPU does not pass the transfer to the output bus but rather services the  
transfer internally back to the input bus (to prevent a hang) returning the fault status to the requestor as  
well as generating an interrupt about the fault. The following features are supported by the MPU:  
Provides memory protection for fixed and programmable address ranges  
Supports multiple programmable address region  
Supports secure and debug access privileges  
Supports read, write, and execute access privileges  
Supports privid(8) associations with ranges  
Generates an interrupt when there is a protection violation, and saves violating transfer parameters  
MMR access is also protected  
Table 5-31. MPU1 Configuration Registers  
MPU1  
BYTE ADDRESS  
ACRONYM  
REGISTER DESCRIPTION  
0x01E1 4000  
REVID  
CONFIG  
Revision ID  
0x01E1 4004  
Configuration  
0x01E1 4010  
IRAWSTAT  
IENSTAT  
Interrupt raw status/set  
0x01E1 4014  
Interrupt enable status/clear  
0x01E1 4018  
IENSET  
Interrupt enable  
0x01E1 401C  
IENCLR  
Interrupt enable clear  
0x01E1 4020 - 0x01E1 41FF  
0x01E1 4200  
-
Reserved  
PROG1_MPSAR  
PROG1_MPEAR  
PROG1_MPPA  
-
Programmable range 1, start address  
Programmable range 1, end address  
Programmable range 1, memory page protection attributes  
Reserved  
0x01E1 4204  
0x01E1 4208  
0x01E1 420C - 0x01E1 420F  
0x01E1 4210  
PROG2_MPSAR  
PROG2_MPEAR  
PROG2_MPPA  
-
Programmable range 2, start address  
Programmable range 2, end address  
Programmable range 2, memory page protection attributes  
Reserved  
0x01E1 4214  
0x01E1 4218  
0x01E1 421C - 0x01E1 421F  
0x01E1 4220  
PROG3_MPSAR  
PROG3_MPEAR  
PROG3_MPPA  
-
Programmable range 3, start address  
Programmable range 3, end address  
Programmable range 3, memory page protection attributes  
Reserved  
0x01E1 4224  
0x01E1 4228  
0x01E1 422C - 0x01E1 422F  
0x01E1 4230  
PROG4_MPSAR  
PROG4_MPEAR  
PROG4_MPPA  
-
Programmable range 4, start address  
Programmable range 4, end address  
Programmable range 4, memory page protection attributes  
Reserved  
0x01E1 4234  
0x01E1 4238  
0x01E1 423C - 0x01E1 423F  
0x01E1 4240  
PROG5_MPSAR  
PROG5_MPEAR  
PROG5_MPPA  
-
Programmable range 5, start address  
Programmable range 5, end address  
Programmable range 5, memory page protection attributes  
Reserved  
0x01E1 4244  
0x01E1 4248  
0x01E1 424C - 0x01E1 424F  
0x01E1 4250  
PROG6_MPSAR  
PROG6_MPEAR  
PROG6_MPPA  
-
Programmable range 6, start address  
Programmable range 6, end address  
Programmable range 6, memory page protection attributes  
Reserved  
0x01E1 4254  
0x01E1 4258  
0x01E1 425C - 0x01E1 42FF  
104  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
Table 5-31. MPU1 Configuration Registers (continued)  
MPU1  
BYTE ADDRESS  
ACRONYM  
REGISTER DESCRIPTION  
0x01E14300  
FLTADDRR  
FLTSTAT  
FLTCLR  
-
Fault address  
Fault status  
Fault clear  
Reserved  
0x01E1 4304  
0x01E1 4308  
0x01E1 430C - 0x01E1 4FFF  
Table 5-32. MPU2 Configuration Registers  
MPU2  
BYTE ADDRESS  
ACRONYM  
REGISTER DESCRIPTION  
0x01E1 5000  
0x01E1 5004  
REVID  
CONFIG  
Revision ID  
Configuration  
0x01E1 5010  
IRAWSTAT  
IENSTAT  
Interrupt raw status/set  
0x01E1 5014  
Interrupt enable status/clear  
0x01E1 5018  
IENSET  
Interrupt enable  
0x01E1 501C  
IENCLR  
Interrupt enable clear  
0x01E1 5020 - 0x01E1 50FF  
0x01E1 5100  
-
Reserved  
FXD_MPSAR  
FXD_MPEAR  
FXD_MPPA  
-
Fixed range start address  
0x01E1 5104  
Fixed range end start address  
Fixed range memory page protection attributes  
Reserved  
0x01E1 5108  
0x01E1 510C - 0x01E1 51FF  
0x01E1 5200  
PROG1_MPSAR  
PROG1_MPEAR  
PROG1_MPPA  
-
Programmable range 1, start address  
Programmable range 1, end address  
Programmable range 1, memory page protection attributes  
Reserved  
0x01E1 5204  
0x01E1 5208  
0x01E1 520C - 0x01E1 520F  
0x01E1 5210  
PROG2_MPSAR  
PROG2_MPEAR  
PROG2_MPPA  
-
Programmable range 2, start address  
Programmable range 2, end address  
Programmable range 2, memory page protection attributes  
Reserved  
0x01E1 5214  
0x01E1 5218  
0x01E1 521C - 0x01E1 521F  
0x01E1 5220  
PROG3_MPSAR  
PROG3_MPEAR  
PROG3_MPPA  
-
Programmable range 3, start address  
Programmable range 3, end address  
Programmable range 3, memory page protection attributes  
Reserved  
0x01E1 5224  
0x01E1 5228  
0x01E1 522C - 0x01E1 522F  
0x01E1 5230  
PROG4_MPSAR  
PROG4_MPEAR  
PROG4_MPPA  
-
Programmable range 4, start address  
Programmable range 4, end address  
Programmable range 4, memory page protection attributes  
Reserved  
0x01E1 5234  
0x01E1 5238  
0x01E1 523C - 0x01E1 523F  
0x01E1 5240  
PROG5_MPSAR  
PROG5_MPEAR  
PROG5_MPPA  
-
Programmable range 5, start address  
Programmable range 5, end address  
Programmable range 5, memory page protection attributes  
Reserved  
0x01E1 5244  
0x01E1 5248  
0x01E1 524C - 0x01E1 524F  
0x01E1 5250  
PROG6_MPSAR  
PROG6_MPEAR  
PROG6_MPPA  
-
Programmable range 6, start address  
Programmable range 6, end address  
Programmable range 6, memory page protection attributes  
Reserved  
0x01E1 5254  
0x01E1 5258  
0x01E1 525C - 0x01E1 525F  
0x01E1 5260  
PROG7_MPSAR  
PROG7_MPEAR  
PROG7_MPPA  
-
Programmable range 7, start address  
Programmable range 7, end address  
Programmable range 7, memory page protection attributes  
Reserved  
0x01E1 5264  
0x01E1 5268  
0x01E1 526C - 0x01E1 526F  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
105  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
Table 5-32. MPU2 Configuration Registers (continued)  
MPU2  
BYTE ADDRESS  
ACRONYM  
REGISTER DESCRIPTION  
0x01E1 5270  
0x01E1 5274  
PROG8_MPSAR  
PROG8_MPEAR  
PROG8_MPPA  
-
Programmable range 8, start address  
Programmable range 8, end address  
Programmable range 8, memory page protection attributes  
Reserved  
0x01E1 5278  
0x01E1 527C - 0x01E1 527F  
0x01E1 5280  
PROG9_MPSAR  
PROG9_MPEAR  
PROG9_MPPA  
-
Programmable range 9, start address  
Programmable range 9, end address  
Programmable range 9, memory page protection attributes  
Reserved  
0x01E1 5284  
0x01E1 5288  
0x01E1 528C - 0x01E1 528F  
0x01E1 5290  
PROG10_MPSAR  
PROG10_MPEAR  
PROG10_MPPA  
-
Programmable range 10, start address  
Programmable range 10, end address  
Programmable range 10, memory page protection attributes  
Reserved  
0x01E1 5294  
0x01E1 5298  
0x01E1 529C - 0x01E1 529F  
0x01E1 52A0  
PROG11_MPSAR  
PROG11_MPEAR  
PROG11_MPPA  
-
Programmable range 11, start address  
Programmable range 11, end address  
Programmable range 11, memory page protection attributes  
Reserved  
0x01E1 52A4  
0x01E1 52A8  
0x01E1 52AC - 0x01E1 52AF  
0x01E1 52B0  
PROG12_MPSAR  
PROG12_MPEAR  
PROG12_MPPA  
-
Programmable range 12, start address  
Programmable range 12, end address  
Programmable range 12, memory page protection attributes  
Reserved  
0x01E1 52B4  
0x01E1 52B8  
0x01E1 52BC - 0x01E1 52FF  
0x01E1 5300  
FLTADDRR  
FLTSTAT  
Fault address  
0x01E1 5304  
Fault status  
0x01E1 5308  
FLTCLR  
Fault clear  
0x01E1 530C - 0x01E1 5FFF  
-
Reserved  
106  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
5.14 MMC / SD / SDIO (MMCSD)  
5.14.1 MMCSD Peripheral Description  
The OMAP-L137 includes an MMCSD controller which is compliant with MMC V4.0, Secure Digital Part 1  
Physical Layer Specification V1.1 and Secure Digital Input Output (SDIO) V2.0 specifications.  
The MMC/SD Controller has following features:  
MultiMediaCard (MMC) support  
Secure Digital (SD) Memory Card support  
MMC/SD protocol support  
SD high capacity support  
SDIO protocol support  
Programmable clock frequency  
512 bit Read/Write FIFO to lower system overhead  
Slave EDMA transfer capability  
The OMAP-L137 MMC/SD Controller does not support SPI mode.  
5.14.2 MMCSD Peripheral Register Description(s)  
Table 5-33. Multimedia Card/Secure Digital (MMC/SD) Card Controller Registers  
BYTE  
ACRONYM  
REGISTER DESCRIPTION  
ADDRESS  
0x01C4 0000  
0x01C4 0004  
0x01C4 0008  
0x01C4 000C  
0x01C4 0010  
0x01C4 0014  
0x01C4 0018  
0x01C4 001C  
0x01C4 0020  
0x01C4 0024  
0x01C4 0028  
0x01C4 002C  
0x01C4 0030  
0x01C4 0034  
0x01C4 0038  
0x01C4 003C  
0x01C4 0040  
0x01C4 0044  
0x01C4 0048  
0x01C4 0050  
0x01C4 0064  
0x01C4 0068  
0x01C4 006C  
0x01C4 0070  
0x01C4 0074  
MMCCTL  
MMCCLK  
MMC Control Register  
MMC Memory Clock Control Register  
MMC Status Register 0  
MMCST0  
MMCST1  
MMC Status Register 1  
MMCIM  
MMC Interrupt Mask Register  
MMC Response Time-Out Register  
MMC Data Read Time-Out Register  
MMC Block Length Register  
MMC Number of Blocks Register  
MMC Number of Blocks Counter Register  
MMC Data Receive Register  
MMC Data Transmit Register  
MMC Command Register  
MMCTOR  
MMCTOD  
MMCBLEN  
MMCNBLK  
MMCNBLC  
MMCDRR  
MMCDXR  
MMCCMD  
MMCARGHL  
MMCRSP01  
MMCRSP23  
MMCRSP45  
MMCRSP67  
MMCDRSP  
MMCCIDX  
SDIOCTL  
MMC Argument Register  
MMC Response Register 0 and 1  
MMC Response Register 2 and 3  
MMC Response Register 4 and 5  
MMC Response Register 6 and 7  
MMC Data Response Register  
MMC Command Index Register  
SDIO Control Register  
SDIOST0  
SDIO Status Register 0  
SDIOIEN  
SDIO Interrupt Enable Register  
SDIO Interrupt Status Register  
MMC FIFO Control Register  
SDIOIST  
MMCFIFOCTL  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
107  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
5.14.3 MMC/SD Electrical Data/Timing  
Table 5-34. Timing Requirements for MMC/SD Module  
(see Figure 5-27 and Figure 5-29)  
No.  
1
PARAMETER  
MIN  
3.2  
1.5  
3.2  
1.5  
MAX  
UNIT  
ns  
tsu(CMDV-CLKH)  
th(CLKH-CMDV)  
tsu(DATV-CLKH)  
th(CLKH-DATV)  
Setup time, MMCSD_CMD valid before MMCSD_CLK high  
Hold time, MMCSD_CMD valid after MMCSD_CLK high  
Setup time, MMCSD_DATx valid before MMCSD_CLK high  
Hold time, MMCSD_DATx valid after MMCSD_CLK high  
2
ns  
3
ns  
4
ns  
Table 5-35. Switching Characteristics Over Recommended Operating Conditions for MMC/SD Module  
(see Figure 5-26 through Figure 5-29)  
No.  
7
PARAMETER  
MIN  
0
MAX  
52  
UNIT  
MHz  
KHz  
ns  
f(CLK)  
Operating frequency, MMCSD_CLK  
Identification mode frequency, MMCSD_CLK  
Pulse width, MMCSD_CLK low  
8
f(CLK_ID)  
tW(CLKL)  
tW(CLKH)  
tr(CLK)  
0
400  
9
6.5  
6.5  
10  
11  
12  
13  
14  
Pulse width, MMCSD_CLK high  
ns  
Rise time, MMCSD_CLK  
3
ns  
tf(CLK)  
Fall time, MMCSD_CLK  
3
ns  
td(CLKL-CMD)  
td(CLKL-DAT)  
Delay time, MMCSD_CLK low to MMCSD_CMD transition  
Delay time, MMCSD_CLK low to MMCSD_DATx transition  
-4.5  
-4.5  
2.5  
2.5  
ns  
ns  
108  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
10  
9
7
MMCSD_CLK  
MMCSD_CMD  
13  
13  
13  
Valid  
13  
START  
XMIT  
Valid  
Valid  
END  
Figure 5-26. MMC/SD Host Command Timing  
9
10  
7
MMCSD_CLK  
MMCSD_CMD  
1
2
Valid  
START  
XMIT  
Valid  
Valid  
END  
Figure 5-27. MMC/SD Card Response Timing  
10  
9
7
MMCSD_CLK  
MMCSD_DATx  
14  
14  
14  
Dx  
14  
START  
D0  
D1  
END  
Figure 5-28. MMC/SD Host Write Timing  
9
10  
7
MMCSD_CLK  
MMCSD_DATx  
4
4
3
3
Start  
D0  
D1  
Dx  
End  
Figure 5-29. MMC/SD Host Read and Card CRC Status Timing  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
109  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
5.15 Ethernet Media Access Controller (EMAC)  
The Ethernet Media Access Controller (EMAC) provides an efficient interface between OMAP-L137 and  
the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100  
Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support.  
The EMAC controls the flow of packet data from the OMAP-L137 device to the PHY. The MDIO module  
controls PHY configuration and status monitoring.  
Both the EMAC and the MDIO modules interface to the OMAP-L137 device through a custom interface  
that allows efficient data transmission and reception. This custom interface is referred to as the EMAC  
control module, and is considered integral to the EMAC/MDIO peripheral. The control module is also used  
to multiplex and control interrupts.  
5.15.1 EMAC Peripheral Register Description(s)  
Table 5-36. Ethernet Media Access Controller (EMAC) Registers  
BYTE ADDRESS  
0x01E2 3000  
0x01E2 3004  
0x01E2 3008  
0x01E2 3010  
0x01E2 3014  
0x01E2 3018  
0x01E2 3080  
0x01E2 3084  
0x01E2 3088  
0x01E2 308C  
0x01E2 3090  
0x01E2 3094  
0x01E2 30A0  
0x01E2 30A4  
0x01E2 30A8  
0x01E2 30AC  
0x01E2 30B0  
0x01E2 30B4  
0x01E2 30B8  
0x01E2 30BC  
0x01E2 3100  
0x01E2 3104  
0x01E2 3108  
0x01E2 310C  
0x01E2 3110  
0x01E2 3114  
0x01E2 3120  
0x01E2 3124  
0x01E2 3128  
0x01E2 312C  
0x01E2 3130  
0x01E2 3134  
0x01E2 3138  
0x01E2 313C  
ACRONYM  
TXREV  
REGISTER DESCRIPTION  
Transmit Revision Register  
TXCONTROL  
Transmit Control Register  
TXTEARDOWN  
Transmit Teardown Register  
RXREV  
Receive Revision Register  
RXCONTROL  
Receive Control Register  
RXTEARDOWN  
Receive Teardown Register  
TXINTSTATRAW  
TXINTSTATMASKED  
TXINTMASKSET  
TXINTMASKCLEAR  
MACINVECTOR  
Transmit Interrupt Status (Unmasked) Register  
Transmit Interrupt Status (Masked) Register  
Transmit Interrupt Mask Set Register  
Transmit Interrupt Clear Register  
MAC Input Vector Register  
MACEOIVECTOR  
RXINTSTATRAW  
RXINTSTATMASKED  
RXINTMASKSET  
RXINTMASKCLEAR  
MACINTSTATRAW  
MACINTSTATMASKED  
MACINTMASKSET  
MACINTMASKCLEAR  
RXMBPENABLE  
RXUNICASTSET  
RXUNICASTCLEAR  
RXMAXLEN  
MAC End Of Interrupt Vector Register  
Receive Interrupt Status (Unmasked) Register  
Receive Interrupt Status (Masked) Register  
Receive Interrupt Mask Set Register  
Receive Interrupt Mask Clear Register  
MAC Interrupt Status (Unmasked) Register  
MAC Interrupt Status (Masked) Register  
MAC Interrupt Mask Set Register  
MAC Interrupt Mask Clear Register  
Receive Multicast/Broadcast/Promiscuous Channel Enable Register  
Receive Unicast Enable Set Register  
Receive Unicast Clear Register  
Receive Maximum Length Register  
RXBUFFEROFFSET  
RXFILTERLOWTHRESH  
RX0FLOWTHRESH  
RX1FLOWTHRESH  
RX2FLOWTHRESH  
RX3FLOWTHRESH  
RX4FLOWTHRESH  
RX5FLOWTHRESH  
RX6FLOWTHRESH  
RX7FLOWTHRESH  
Receive Buffer Offset Register  
Receive Filter Low Priority Frame Threshold Register  
Receive Channel 0 Flow Control Threshold Register  
Receive Channel 1 Flow Control Threshold Register  
Receive Channel 2 Flow Control Threshold Register  
Receive Channel 3 Flow Control Threshold Register  
Receive Channel 4 Flow Control Threshold Register  
Receive Channel 5 Flow Control Threshold Register  
Receive Channel 6 Flow Control Threshold Register  
Receive Channel 7 Flow Control Threshold Register  
110  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
Table 5-36. Ethernet Media Access Controller (EMAC) Registers (continued)  
BYTE ADDRESS  
ACRONYM  
RX0FREEBUFFER  
RX1FREEBUFFER  
RX2FREEBUFFER  
RX3FREEBUFFER  
RX4FREEBUFFER  
RX5FREEBUFFER  
RX6FREEBUFFER  
RX7FREEBUFFER  
MACCONTROL  
MACSTATUS  
EMCONTROL  
FIFOCONTROL  
MACCONFIG  
SOFTRESET  
MACSRCADDRLO  
MACSRCADDRHI  
MACHASH1  
MACHASH2  
BOFFTEST  
TPACETEST  
RXPAUSE  
REGISTER DESCRIPTION  
Receive Channel 0 Free Buffer Count Register  
Receive Channel 1 Free Buffer Count Register  
Receive Channel 2 Free Buffer Count Register  
Receive Channel 3 Free Buffer Count Register  
Receive Channel 4 Free Buffer Count Register  
Receive Channel 5 Free Buffer Count Register  
Receive Channel 6 Free Buffer Count Register  
Receive Channel 7 Free Buffer Count Register  
MAC Control Register  
0x01E2 3140  
0x01E2 3144  
0x01E2 3148  
0x01E2 314C  
0x01E2 3150  
0x01E2 3154  
0x01E2 3158  
0x01E2 315C  
0x01E2 3160  
0x01E2 3164  
0x01E2 3168  
0x01E2 316C  
0x01E2 3170  
0x01E2 3174  
0x01E2 31D0  
0x01E2 31D4  
0x01E2 31D8  
0x01E2 31DC  
0x01E2 31E0  
0x01E2 31E4  
0x01E2 31E8  
0x01E2 31EC  
0x01E2 3200 - 0x01E2 32FC  
0x01E2 3500  
0x01E2 3504  
0x01E2 3508  
0x01E2 3600  
0x01E2 3604  
0x01E2 3608  
0x01E2 360C  
0x01E2 3610  
0x01E2 3614  
0x01E2 3618  
0x01E2 361C  
0x01E2 3620  
0x01E2 3624  
0x01E2 3628  
0x01E2 362C  
0x01E2 3630  
0x01E2 3634  
0x01E2 3638  
0x01E2 363C  
0x01E2 3640  
0x01E2 3644  
0x01E2 3648  
0x01E2 364C  
0x01E2 3650  
MAC Status Register  
Emulation Control Register  
FIFO Control Register  
MAC Configuration Register  
Soft Reset Register  
MAC Source Address Low Bytes Register  
MAC Source Address High Bytes Register  
MAC Hash Address Register 1  
MAC Hash Address Register 2  
Back Off Test Register  
Transmit Pacing Algorithm Test Register  
Receive Pause Timer Register  
TXPAUSE  
Transmit Pause Timer Register  
(see Table 5-37)  
MACADDRLO  
MACADDRHI  
MACINDEX  
TX0HDP  
EMAC Statistics Registers  
MAC Address Low Bytes Register, Used in Receive Address Matching  
MAC Address High Bytes Register, Used in Receive Address Matching  
MAC Index Register  
Transmit Channel 0 DMA Head Descriptor Pointer Register  
Transmit Channel 1 DMA Head Descriptor Pointer Register  
Transmit Channel 2 DMA Head Descriptor Pointer Register  
Transmit Channel 3 DMA Head Descriptor Pointer Register  
Transmit Channel 4 DMA Head Descriptor Pointer Register  
Transmit Channel 5 DMA Head Descriptor Pointer Register  
Transmit Channel 6 DMA Head Descriptor Pointer Register  
Transmit Channel 7 DMA Head Descriptor Pointer Register  
Receive Channel 0 DMA Head Descriptor Pointer Register  
Receive Channel 1 DMA Head Descriptor Pointer Register  
Receive Channel 2 DMA Head Descriptor Pointer Register  
Receive Channel 3 DMA Head Descriptor Pointer Register  
Receive Channel 4 DMA Head Descriptor Pointer Register  
Receive Channel 5 DMA Head Descriptor Pointer Register  
Receive Channel 6 DMA Head Descriptor Pointer Register  
Receive Channel 7 DMA Head Descriptor Pointer Register  
Transmit Channel 0 Completion Pointer Register  
Transmit Channel 1 Completion Pointer Register  
Transmit Channel 2 Completion Pointer Register  
Transmit Channel 3 Completion Pointer Register  
Transmit Channel 4 Completion Pointer Register  
TX1HDP  
TX2HDP  
TX3HDP  
TX4HDP  
TX5HDP  
TX6HDP  
TX7HDP  
RX0HDP  
RX1HDP  
RX2HDP  
RX3HDP  
RX4HDP  
RX5HDP  
RX6HDP  
RX7HDP  
TX0CP  
TX1CP  
TX2CP  
TX3CP  
TX4CP  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
111  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
Table 5-36. Ethernet Media Access Controller (EMAC) Registers (continued)  
BYTE ADDRESS  
0x01E2 3654  
0x01E2 3658  
0x01E2 365C  
0x01E2 3660  
0x01E2 3664  
0x01E2 3668  
0x01E2 366C  
0x01E2 3670  
0x01E2 3674  
0x01E2 3678  
0x01E2 367C  
ACRONYM  
TX5CP  
TX6CP  
TX7CP  
RX0CP  
RX1CP  
RX2CP  
RX3CP  
RX4CP  
RX5CP  
RX6CP  
RX7CP  
REGISTER DESCRIPTION  
Transmit Channel 5 Completion Pointer Register  
Transmit Channel 6 Completion Pointer Register  
Transmit Channel 7 Completion Pointer Register  
Receive Channel 0 Completion Pointer Register  
Receive Channel 1 Completion Pointer Register  
Receive Channel 2 Completion Pointer Register  
Receive Channel 3 Completion Pointer Register  
Receive Channel 4 Completion Pointer Register  
Receive Channel 5 Completion Pointer Register  
Receive Channel 6 Completion Pointer Register  
Receive Channel 7 Completion Pointer Register  
Table 5-37. EMAC Statistics Registers  
BYTE  
ADDRESS  
ACRONYM  
REGISTER DESCRIPTION  
Good Receive Frames Register  
0x01E2 3200  
RXGOODFRAMES  
RXBCASTFRAMES  
Broadcast Receive Frames Register  
(Total number of good broadcast frames received)  
0x01E2 3204  
Multicast Receive Frames Register  
(Total number of good multicast frames received)  
0x01E2 3208  
0x01E2 320C  
0x01E2 3210  
RXMCASTFRAMES  
RXPAUSEFRAMES  
RXCRCERRORS  
Pause Receive Frames Register  
Receive CRC Errors Register  
(Total number of frames received with CRC errors)  
Receive Alignment/Code Errors Register  
(Total number of frames received with alignment/code errors)  
0x01E2 3214  
0x01E2 3218  
0x01E2 321C  
0x01E2 3220  
RXALIGNCODEERRORS  
RXOVERSIZED  
Receive Oversized Frames Register  
(Total number of oversized frames received)  
Receive Jabber Frames Register  
(Total number of jabber frames received)  
RXJABBER  
Receive Undersized Frames Register  
(Total number of undersized frames received)  
RXUNDERSIZED  
0x01E2 3224  
0x01E2 3228  
0x01E2 322C  
RXFRAGMENTS  
RXFILTERED  
Receive Frame Fragments Register  
Filtered Receive Frames Register  
Received QOS Filtered Frames Register  
RXQOSFILTERED  
Receive Octet Frames Register  
(Total number of received bytes in good frames)  
0x01E2 3230  
0x01E2 3234  
RXOCTETS  
Good Transmit Frames Register  
(Total number of good frames transmitted)  
TXGOODFRAMES  
0x01E2 3238  
0x01E2 323C  
0x01E2 3240  
0x01E2 3244  
0x01E2 3248  
0x01E2 324C  
0x01E2 3250  
0x01E2 3254  
0x01E2 3258  
0x01E2 325C  
0x01E2 3260  
0x01E2 3264  
TXBCASTFRAMES  
TXMCASTFRAMES  
TXPAUSEFRAMES  
TXDEFERRED  
Broadcast Transmit Frames Register  
Multicast Transmit Frames Register  
Pause Transmit Frames Register  
Deferred Transmit Frames Register  
Transmit Collision Frames Register  
Transmit Single Collision Frames Register  
Transmit Multiple Collision Frames Register  
Transmit Excessive Collision Frames Register  
Transmit Late Collision Frames Register  
Transmit Underrun Error Register  
TXCOLLISION  
TXSINGLECOLL  
TXMULTICOLL  
TXEXCESSIVECOLL  
TXLATECOLL  
TXUNDERRUN  
TXCARRIERSENSE  
TXOCTETS  
Transmit Carrier Sense Errors Register  
Transmit Octet Frames Register  
112  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
Table 5-37. EMAC Statistics Registers (continued)  
BYTE  
ADDRESS  
ACRONYM  
REGISTER DESCRIPTION  
0x01E2 3268  
0x01E2 326C  
0x01E2 3270  
0x01E2 3274  
0x01E2 3278  
0x01E2 327C  
0x01E2 3280  
0x01E2 3284  
0x01E2 3288  
0x01E2 328C  
FRAME64  
Transmit and Receive 64 Octet Frames Register  
FRAME65T127  
Transmit and Receive 65 to 127 Octet Frames Register  
Transmit and Receive 128 to 255 Octet Frames Register  
Transmit and Receive 256 to 511 Octet Frames Register  
Transmit and Receive 512 to 1023 Octet Frames Register  
Transmit and Receive 1024 to 1518 Octet Frames Register  
Network Octet Frames Register  
FRAME128T255  
FRAME256T511  
FRAME512T1023  
FRAME1024TUP  
NETOCTETS  
RXSOFOVERRUNS  
RXMOFOVERRUNS  
RXDMAOVERRUNS  
Receive FIFO or DMA Start of Frame Overruns Register  
Receive FIFO or DMA Middle of Frame Overruns Register  
Receive DMA Start of Frame and Middle of Frame Overruns Register  
Table 5-38. EMAC Control Module Registers  
BYTE ADDRESS  
0x01E2 2000  
0x01E2 2004  
0x01E2 200C  
0x01E2 2010  
0x01E2 2014  
0x01E2 2018  
0x01E2 201C  
0x01E2 2020  
0x01E2 2024  
0x01E2 2028  
0x01E2 202C  
0x01E2 2030  
0x01E2 2034  
0x01E2 2038  
0x01E2 203C  
0x01E2 2040  
0x01E2 2044  
0x01E2 2048  
0x01E2 204C  
0x01E2 2050  
0x01E2 2054  
0x01E2 2058  
0x01E2 205C  
0x01E2 2060  
0x01E2 2064  
0x01E2 2068  
0x01E2 206C  
0x01E2 2070  
0x01E2 2074  
0x01E2 2078  
0x01E2 207C  
0x01E2 2080  
0x01E2 2084  
ACRONYM  
REGISTER DESCRIPTION  
REV  
SOFTRESET  
INTCONTROL  
C0RXTHRESHEN  
C0RXEN  
EMAC Control Module Revision Register  
EMAC Control Module Software Reset Register  
EMAC Control Module Interrupt Control Register  
EMAC Control Module Interrupt Core 0 Receive Threshold Interrupt Enable Register  
EMAC Control Module Interrupt Core 0 Receive Interrupt Enable Register  
EMAC Control Module Interrupt Core 0 Transmit Interrupt Enable Register  
EMAC Control Module Interrupt Core 0 Miscellaneous Interrupt Enable Register  
EMAC Control Module Interrupt Core 1 Receive Threshold Interrupt Enable Register  
EMAC Control Module Interrupt Core 1 Receive Interrupt Enable Register  
EMAC Control Module Interrupt Core 1 Transmit Interrupt Enable Register  
EMAC Control Module Interrupt Core 1 Miscellaneous Interrupt Enable Register  
EMAC Control Module Interrupt Core 2 Receive Threshold Interrupt Enable Register  
EMAC Control Module Interrupt Core 2 Receive Interrupt Enable Register  
EMAC Control Module Interrupt Core 2 Transmit Interrupt Enable Register  
EMAC Control Module Interrupt Core 2 Miscellaneous Interrupt Enable Register  
EMAC Control Module Interrupt Core 0 Receive Threshold Interrupt Status Register  
EMAC Control Module Interrupt Core 0 Receive Interrupt Status Register  
EMAC Control Module Interrupt Core 0 Transmit Interrupt Status Register  
EMAC Control Module Interrupt Core 0 Miscellaneous Interrupt Status Register  
EMAC Control Module Interrupt Core 1 Receive Threshold Interrupt Status Register  
EMAC Control Module Interrupt Core 1 Receive Interrupt Status Register  
EMAC Control Module Interrupt Core 1 Transmit Interrupt Status Register  
EMAC Control Module Interrupt Core 1 Miscellaneous Interrupt Status Register  
EMAC Control Module Interrupt Core 2 Receive Threshold Interrupt Status Register  
EMAC Control Module Interrupt Core 2 Receive Interrupt Status Register  
EMAC Control Module Interrupt Core 2 Transmit Interrupt Status Register  
EMAC Control Module Interrupt Core 2 Miscellaneous Interrupt Status Register  
EMAC Control Module Interrupt Core 0 Receive Interrupts Per Millisecond Register  
EMAC Control Module Interrupt Core 0 Transmit Interrupts Per Millisecond Register  
EMAC Control Module Interrupt Core 1 Receive Interrupts Per Millisecond Register  
EMAC Control Module Interrupt Core 1 Transmit Interrupts Per Millisecond Register  
EMAC Control Module Interrupt Core 2 Receive Interrupts Per Millisecond Register  
EMAC Control Module Interrupt Core 2 Transmit Interrupts Per Millisecond Register  
C0TXEN  
C0MISCEN  
C1RXTHRESHEN  
C1RXEN  
C1TXEN  
C1MISCEN  
C2RXTHRESHEN  
C2RXEN  
C2TXEN  
C2MISCEN  
C0RXTHRESHSTAT  
C0RXSTAT  
C0TXSTAT  
C0MISCSTAT  
C1RXTHRESHSTAT  
C1RXSTAT  
C1TXSTAT  
C1MISCSTAT  
C2RXTHRESHSTAT  
C2RXSTAT  
C2TXSTAT  
C2MISCSTAT  
C0RXIMAX  
C0TXIMAX  
C1RXIMAX  
C1TXIMAX  
C2RXIMAX  
C2TXIMAX  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
113  
Product Folder Links: OMAP-L137  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
Table 5-39. EMAC Control Module RAM  
BYTE ADRESS  
REGISTER DESCRIPTION  
EMAC Local Buffer Descriptor Memory  
0x01E2 0000 - 0x01E2 1FFF  
Table 5-40. RMII Timing Requirements  
No.  
1
PARAMETER  
MIN  
TYP MAX UNIT  
tc(REFCLK)  
Cycle Time, RMII_MHZ_50_CLK  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
tw(REFCLKH)  
Pulse Width, RMII_MHZ_50_CLK High  
7
7
4
2
4
2
4
2
13  
13  
3
tw(REFCLKL)  
Pulse Width, RMII_MHZ_50_CLK Low  
6
tsu(RXD-REFCLK)  
th(REFCLK-RXD)  
tsu(CRSDV-REFCLK)  
th(REFCLK-CRSDV)  
tsu(RXER-REFCLK)  
th(REFCLKR-RXER)  
Input Setup Time, RXD Valid before RMII_MHZ_50_CLK High  
Input Hold Time, RXD Valid after RMII_MHZ_50_CLK High  
Input Setup Time, CRSDV Valid before RMII_MHZ_50_CLK High  
Input Hold Time, CRSDV Valid after RMII_MHZ_50_CLK High  
Input Setup Time, RXER Valid before RMII_MHZ_50_CLK High  
Input Hold Time, RXER Valid after RMII_MHZ_50_CLK High  
7
8
9
10  
11  
Note: Per the RMII industry specification, the RMII reference clock (RMII_MHZ_50_CLK) must have jitter  
tolerance of 50 ppm or less.  
Table 5-41. RMII Switching Characteristics  
No.  
4
PARAMETER  
MIN  
2.5  
TYP MAX UNIT  
td(REFCLK-TXD)  
td(REFCLK-TXEN)  
Output Delay Time, RMII_MHZ_50_CLK High to TXD Valid  
Output Delay Time, RMII_MHZ_50_CLK High to TXEN Valid  
13  
13  
ns  
ns  
5
2.5  
1
2
3
RMII_MHz_50_CLK  
5
5
RMII_TXEN  
4
RMII_TXD[1:0]  
6
7
RMII_RXD[1:0]  
RMII_CRS_DV  
8
9
10  
11  
RMII_RXER  
Figure 5-30. RMII Timing Diagram  
114  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
5.16 Management Data Input/Output (MDIO)  
The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to  
enumerate all PHY devices in the system.  
The Management Data Input/Output (MDIO) module implements the 802.3 serial management interface to  
interrogate and control Ethernet PHY(s) using a shared two-wire bus. Host software uses the MDIO  
module to configure the auto-negotiation parameters of each PHY attached to the EMAC, retrieve the  
negotiation results, and configure required parameters in the EMAC module for correct operation. The  
module is designed to allow almost transparent operation of the MDIO interface, with very little  
maintenance from the core processor. Only one PHY may be connected at any given time.  
For more detailed information on the MDIO peripheral, see the OMAP-L137 Applications Processor DSP  
Peripherals Overview Reference Guide. (SPRUGA6).  
5.16.1 MDIO Registers  
For a list of supported MDIO registers see Table 5-42 [MDIO Registers].  
Table 5-42. MDIO Register Memory Map  
BYTE ADDRESS  
0x01E2 4000  
ACRONYM  
REV  
REGISTER DESCRIPTION  
Revision Identification Register  
0x01E2 4004  
CONTROL  
ALIVE  
MDIO Control Register  
0x01E2 4008  
MDIO PHY Alive Status Register  
0x01E2 400C  
LINK  
MDIO PHY Link Status Register  
0x01E2 4010  
LINKINTRAW  
LINKINTMASKED  
MDIO Link Status Change Interrupt (Unmasked) Register  
MDIO Link Status Change Interrupt (Masked) Register  
Reserved  
0x01E2 4014  
0x01E2 4018  
0x01E2 4020  
USERINTRAW  
USERINTMASKED  
USERINTMASKSET  
MDIO User Command Complete Interrupt (Unmasked) Register  
MDIO User Command Complete Interrupt (Masked) Register  
MDIO User Command Complete Interrupt Mask Set Register  
0x01E2 4024  
0x01E2 4028  
0x01E2 402C  
USERINTMASKCLEAR MDIO User Command Complete Interrupt Mask Clear Register  
0x01E2 4030 - 0x01E2 407C  
0x01E2 4080  
Reserved  
USERACCESS0  
USERPHYSEL0  
USERACCESS1  
USERPHYSEL1  
MDIO User Access Register 0  
MDIO User PHY Select Register 0  
MDIO User Access Register 1  
MDIO User PHY Select Register 1  
Reserved  
0x01E2 4084  
0x01E2 4088  
0x01E2 408C  
0x01E2 4090 - 0x01E2 47FF  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
115  
 
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
5.16.2 Management Data Input/Output (MDIO) Electrical Data/Timing  
Table 5-43. Timing Requirements for MDIO Input (see Figure 5-31 and Figure 5-32)  
No.  
1
PARAMETER  
MIN  
400  
180  
MAX  
UNIT  
ns  
tc(MDIO_CLK)  
tw(MDIO_CLK)  
tt(MDIO_CLK)  
Cycle time, MDIO_CLK  
2
Pulse duration, MDIO_CLK high/low  
Transition time, MDIO_CLK  
ns  
3
5
ns  
4
tsu(MDIO-MDIO_CLKH) Setup time, MDIO_D data input valid before MDIO_CLK high  
10  
0
ns  
5
th(MDIO_CLKH-MDIO)  
Hold time, MDIO_D data input valid after MDIO_CLK high  
ns  
1
3
3
MDIO_CLK  
4
5
MDIO_D  
(input)  
Figure 5-31. MDIO Input Timing  
Table 5-44. Switching Characteristics Over Recommended Operating Conditions for MDIO Output  
(see Figure 5-32)  
No.  
PARAMETER  
MIN  
MAX  
UNIT  
7
td(MDIO_CLKL-MDIO)  
Delay time, MDIO_CLK low to MDIO_D data output valid  
0
100  
ns  
1
MDIO_CLK  
7
MDIO_D  
(output)  
Figure 5-32. MDIO Output Timing  
116  
Peripheral Information and Electrical Specifications  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
 
 
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
5.17 Multichannel Audio Serial Ports (McASP0, McASP1, and McASP2)  
The McASP serial port is specifically designed for multichannel audio applications. Its key features are:  
Flexible clock and frame sync generation logic and on-chip dividers  
Up to sixteen transmit or receive data pins and serializers  
Large number of serial data format options, including:  
TDM Frames with 2 to 32 time slots per frame (periodic) or 1 slot per frame (burst)  
Time slots of 8,12,16, 20, 24, 28, and 32 bits  
First bit delay 0, 1, or 2 clocks  
MSB or LSB first bit order  
Left- or right-aligned data words within time slots  
DIT Mode (optional) with 384-bit Channel Status and 384-bit User Data registers  
Extensive error checking and mute generation logic  
All unused pins GPIO-capable  
Additionally, while the OMAP-L13x McASP modules are backward compatible with the McASP on  
previous devices; the OMAP-L13x McASP includes the following new features:  
Transmit & Receive FIFO Buffers for each McASP. Allows the McASP to operate at a higher sample  
rate by making it more tolerant to DMA latency.  
Dynamic Adjustment of Clock Dividers  
Clock Divider Value may be changed without resetting the McASP  
The three McASPs on the OMAP-L137 are configured with the following options:  
Table 5-45. OMAP-L137 McASP Configurations(1)  
Module  
Serializers  
AFIFO  
DIT  
OMAP-L137 Pins  
64 Word RX  
64 Word TX  
AXR0[15:0], AHCLKR0, ACLKR0, AFSR0, AHCLKX0, ACLKX0,  
AFSX0, AMUTE0  
McASP0  
16  
N
64 Word RX  
64 Word TX  
AXR1[11:10], AXR1[8:0], AHCLKR1, ACLKR1, AFSR1, AHCLKX1,  
ACLKX1, AFSX1, AMUTE1  
McASP1  
McASP2  
12  
4
N
Y
16 Word RX  
16 Word TX  
AXR2[3:0], AHCLKR2, ACLKR2, AFSR2, AHCLKX2, ACLKX2,  
AFSX2, AMUTE2  
(1) Pins available are the maximum number of pins that may be configured for a particular McASP; not including pin multiplexing.  
Pins Function  
AHCLKRx Receive Master Clock  
Receive Logic  
Clock/Frame Generator  
State Machine  
Peripheral  
Configuration  
Bus  
GIO  
Control  
ACLKRx  
AFSRx  
Receive Bit Clock  
Receive Left/Right Clock or Frame Sync  
The McASPs DO NOT have  
dedicated AMUTEINx pins.  
AMUTEINx  
AMUTEx  
Clock Check and  
Error Detection  
DIT RAM  
384 C  
384 U  
AFSXx  
ACLKXx  
AHCLKXx  
Transmit Left/Right Clock or Frame Sync  
Transmit Bit Clock  
Transmit Master Clock  
Transmit Logic  
Clock/Frame Generator  
State Machine  
Optional  
Transmit  
Formatter  
Serializer 0  
Serializer 1  
AXRx[0]  
AXRx[1]  
Transmit/Receive Serial Data Pin  
Transmit/Receive Serial Data Pin  
McASP  
DMA Bus  
(Dedicated)  
Receive  
Formatter  
Serializer y  
AXRx[y]  
Transmit/Receive Serial Data Pin  
McASPx (x = 0, 1, 2)  
Figure 5-33. McASP Block Diagram  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
117  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
5.17.1 McASP Peripheral Registers Description(s)  
Registers for the McASP are summarized in Table 5-46. The registers are accessed through the  
peripheral configuration port. The receive buffer registers (RBUF) and transmit buffer registers (XBUF) can  
also be accessed through the DMA port, as listed in Table 5-47  
Registers for the McASP Audio FIFO (AFIFO) are summarized in Table 5-48. Note that the AFIFO Write  
FIFO (WFIFO) and Read FIFO (RFIFO) have independent control and status registers. The AFIFO control  
registers are accessed through the peripheral configuration port.  
Table 5-46. McASP Registers Accessed Through Peripheral Configuration Port  
McASP0  
BYTE  
McASP1  
BYTE  
McASP2  
BYTE  
ACRONYM  
REGISTER DESCRIPTION  
ADDRESS  
ADDRESS  
ADDRESS  
0x01D0 0000  
0x01D0 0010  
0x01D0 0014  
0x01D0 0018  
0x01D0 001C  
0x01D0 001C  
0x01D0 4000  
0x01D0 4010  
0x01D0 4014  
0x01D0 4018  
0x01D0 401C  
0x01D0 401C  
0x01D0 8000  
0x01D0 8010  
0x01D0 8014  
0x01D0 8018  
0x01D0 801C  
0x01D0 801C  
REV  
PFUNC  
PDIR  
Revision identification register  
Pin function register  
Pin direction register  
PDOUT  
PDIN  
Pin data output register  
Read returns: Pin data input register  
PDSET  
Writes affect: Pin data set register  
(alternate write address: PDOUT)  
0x01D0 0020  
0x01D0 0044  
0x01D0 0048  
0x01D0 004C  
0x01D0 0050  
0x01D0 0060  
0x01D0 4020  
0x01D0 4044  
0x01D0 4048  
0x01D0 404C  
0x01D0 4050  
0x01D0 4060  
0x01D0 8020  
0x01D0 8044  
0x01D0 8048  
0x01D0 804C  
0x01D0 8050  
0x01D0 8060  
PDCLR  
GBLCTL  
AMUTE  
Pin data clear register (alternate write address: PDOUT)  
Global control register  
Audio mute control register  
DLBCTL  
DITCTL  
Digital loopback control register  
DIT mode control register  
RGBLCTL  
Receiver global control register: Alias of GBLCTL, only receive bits  
are affected - allows receiver to be reset independently from  
transmitter  
0x01D0 0064  
0x01D0 0068  
0x01D0 006C  
0x01D0 0070  
0x01D0 0074  
0x01D0 0078  
0x01D0 007C  
0x01D0 0080  
0x01D0 0084  
0x01D0 0088  
0x01D0 008C  
0x01D0 00A0  
0x01D0 4064  
0x01D0 4068  
0x01D0 406C  
0x01D0 4070  
0x01D0 4074  
0x01D0 4078  
0x01D0 407C  
0x01D0 4080  
0x01D0 4084  
0x01D0 4088  
0x01D0 408C  
0x01D0 40A0  
0x01D0 8064  
0x01D0 8068  
0x01D0 806C  
0x01D0 8070  
0x01D0 8074  
0x01D0 8078  
0x01D0 807C  
0x01D0 8080  
0x01D0 8084  
0x01D0 8088  
0x01D0 808C  
0x01D0 80A0  
RMASK  
RFMT  
Receive format unit bit mask register  
Receive bit stream format register  
Receive frame sync control register  
Receive clock control register  
AFSRCTL  
ACLKRCTL  
AHCLKRCTL Receive high-frequency clock control register  
RTDM  
RINTCTL  
RSTAT  
Receive TDM time slot 0-31 register  
Receiver interrupt control register  
Receiver status register  
RSLOT  
Current receive TDM time slot register  
Receive clock check control register  
Receiver DMA event control register  
RCLKCHK  
REVTCTL  
XGBLCTL  
Transmitter global control register. Alias of GBLCTL, only transmit  
bits are affected - allows transmitter to be reset independently from  
receiver  
0x01D0 00A4  
0x01D0 00A8  
0x01D0 00AC  
0x01D0 00B0  
0x01D0 00B4  
0x01D0 00B8  
0x01D0 00BC  
0x01D0 00C0  
0x01D0 00C4  
0x01D0 00C8  
0x01D0 40A4  
0x01D0 40A8  
0x01D0 40AC  
0x01D0 40B0  
0x01D0 40B4  
0x01D0 40B8  
0x01D0 40BC  
0x01D0 40C0  
0x01D0 40C4  
0x01D0 40C8  
0x01D0 80A4  
0x01D0 80A8  
0x01D0 80AC  
0x01D0 80B0  
0x01D0 80B4  
0x01D0 80B8  
0x01D0 80BC  
0x01D0 80C0  
0x01D0 80C4  
0x01D0 80C8  
XMASK  
XFMT  
Transmit format unit bit mask register  
Transmit bit stream format register  
Transmit frame sync control register  
Transmit clock control register  
AFSXCTL  
ACLKXCTL  
AHCLKXCTL Transmit high-frequency clock control register  
XTDM  
XINTCTL  
XSTAT  
Transmit TDM time slot 0-31 register  
Transmitter interrupt control register  
Transmitter status register  
XSLOT  
Current transmit TDM time slot register  
Transmit clock check control register  
XCLKCHK  
118  
Peripheral Information and Electrical Specifications  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
 
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
Table 5-46. McASP Registers Accessed Through Peripheral Configuration Port (continued)  
McASP0  
BYTE  
McASP1  
BYTE  
McASP2  
BYTE  
ACRONYM  
REGISTER DESCRIPTION  
ADDRESS  
ADDRESS  
ADDRESS  
0x01D0 00CC  
0x01D0 0100  
0x01D0 0104  
0x01D0 0108  
0x01D0 010C  
0x01D0 0110  
0x01D0 0114  
0x01D0 0118  
0x01D0 011C  
0x01D0 0120  
0x01D0 0124  
0x01D0 0128  
0x01D0 012C  
0x01D0 0130  
0x01D0 0134  
0x01D0 0138  
0x01D0 013C  
0x01D0 0140  
0x01D0 0144  
0x01D0 0148  
0x01D0 014C  
0x01D0 0150  
0x01D0 0154  
0x01D0 0158  
0x01D0 015C  
0x01D0 0180  
0x01D0 0184  
0x01D0 0188  
0x01D0 018C  
0x01D0 0190  
0x01D0 0194  
0x01D0 0198  
0x01D0 019C  
0x01D0 01A0  
0x01D0 01A4  
0x01D0 01A8  
0x01D0 01AC  
0x01D0 01B0  
0x01D0 01B4  
0x01D0 01B8  
0x01D0 01BC  
0x01D0 0200  
0x01D0 0204  
0x01D0 0208  
0x01D0 020C  
0x01D0 40CC  
0x01D0 4100  
0x01D0 4104  
0x01D0 4108  
0x01D0 410C  
0x01D0 4110  
0x01D0 4114  
0x01D0 4118  
0x01D0 411C  
0x01D0 4120  
0x01D0 4124  
0x01D0 4128  
0x01D0 412C  
0x01D0 4130  
0x01D0 4134  
0x01D0 4138  
0x01D0 413C  
0x01D0 4140  
0x01D0 4144  
0x01D0 4148  
0x01D0 414C  
0x01D0 4150  
0x01D0 4154  
0x01D0 4158  
0x01D0 415C  
0x01D0 4180  
0x01D0 4184  
0x01D0 4188  
0x01D0 418C  
0x01D0 4190  
0x01D0 4194  
0x01D0 4198  
0x01D0 419C  
0x01D0 41A0  
0x01D0 41A4  
0x01D0 41A8  
0x01D0 41AC  
0x01D0 41B0  
0x01D0 41B4  
0x01D0 41B8  
0x01D0 41BC  
0x01D0 4200  
0x01D0 4204  
0x01D0 4208  
0x01D0 420C  
0x01D0 80CC  
0x01D0 8100  
0x01D0 8104  
0x01D0 8108  
0x01D0 810C  
0x01D0 8110  
0x01D0 8114  
0x01D0 8118  
0x01D0 811C  
0x01D0 8120  
0x01D0 8124  
0x01D0 8128  
0x01D0 812C  
0x01D0 8130  
0x01D0 8134  
0x01D0 8138  
0x01D0 813C  
0x01D0 8140  
0x01D0 8144  
0x01D0 8148  
0x01D0 814C  
0x01D0 8150  
0x01D0 8154  
0x01D0 8158  
0x01D0 815C  
0x01D0 8180  
0x01D0 8184  
0x01D0 8188  
0x01D0 818C  
0x01D0 8190  
0x01D0 8194  
0x01D0 8198  
0x01D0 819C  
0x01D0 81A0  
0x01D0 81A4  
0x01D0 81A8  
0x01D0 81AC  
0x01D0 81B0  
0x01D0 81B4  
0x01D0 81B8  
0x01D0 81BC  
0x01D0 8200  
0x01D0 8204  
0x01D0 8208  
0x01D0 820C  
XEVTCTL  
DITCSRA0  
DITCSRA1  
DITCSRA2  
DITCSRA3  
DITCSRA4  
DITCSRA5  
DITCSRB0  
DITCSRB1  
DITCSRB2  
DITCSRB3  
DITCSRB4  
DITCSRB5  
DITUDRA0  
DITUDRA1  
DITUDRA2  
DITUDRA3  
DITUDRA4  
DITUDRA5  
DITUDRB0  
DITUDRB1  
DITUDRB2  
DITUDRB3  
DITUDRB4  
DITUDRB5  
SRCTL0  
Transmitter DMA event control register  
Left (even TDM time slot) channel status register (DIT mode) 0  
Left (even TDM time slot) channel status register (DIT mode) 1  
Left (even TDM time slot) channel status register (DIT mode) 2  
Left (even TDM time slot) channel status register (DIT mode) 3  
Left (even TDM time slot) channel status register (DIT mode) 4  
Left (even TDM time slot) channel status register (DIT mode) 5  
Right (odd TDM time slot) channel status register (DIT mode) 0  
Right (odd TDM time slot) channel status register (DIT mode) 1  
Right (odd TDM time slot) channel status register (DIT mode) 2  
Right (odd TDM time slot) channel status register (DIT mode) 3  
Right (odd TDM time slot) channel status register (DIT mode) 4  
Right (odd TDM time slot) channel status register (DIT mode) 5  
Left (even TDM time slot) channel user data register (DIT mode) 0  
Left (even TDM time slot) channel user data register (DIT mode) 1  
Left (even TDM time slot) channel user data register (DIT mode) 2  
Left (even TDM time slot) channel user data register (DIT mode) 3  
Left (even TDM time slot) channel user data register (DIT mode) 4  
Left (even TDM time slot) channel user data register (DIT mode) 5  
Right (odd TDM time slot) channel user data register (DIT mode) 0  
Right (odd TDM time slot) channel user data register (DIT mode) 1  
Right (odd TDM time slot) channel user data register (DIT mode) 2  
Right (odd TDM time slot) channel user data register (DIT mode) 3  
Right (odd TDM time slot) channel user data register (DIT mode) 4  
Right (odd TDM time slot) channel user data register (DIT mode) 5  
Serializer control register 0  
SRCTL1  
Serializer control register 1  
SRCTL2  
Serializer control register 2  
SRCTL3  
Serializer control register 3  
SRCTL4  
Serializer control register 4  
SRCTL5  
Serializer control register 5  
SRCTL6  
Serializer control register 6  
SRCTL7  
Serializer control register 7  
SRCTL8  
Serializer control register 8  
SRCTL9  
Serializer control register 9  
SRCTL10  
SRCTL11  
SRCTL12  
SRCTL13  
SRCTL14  
SRCTL15  
XBUF0(1)  
XBUF1(1)  
XBUF2(1)  
XBUF3(1)  
Serializer control register 10  
Serializer control register 11  
Serializer control register 12  
Serializer control register 13  
Serializer control register 14  
Serializer control register 15  
Transmit buffer register for serializer 0  
Transmit buffer register for serializer 1  
Transmit buffer register for serializer 2  
Transmit buffer register for serializer 3  
(1) Writes to XRBUF originate from peripheral configuration port only when XBUSEL = 1 in XFMT.  
Peripheral Information and Electrical Specifications  
Copyright © 2008–2013, Texas Instruments Incorporated  
119  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
Table 5-46. McASP Registers Accessed Through Peripheral Configuration Port (continued)  
McASP0  
BYTE  
McASP1  
BYTE  
McASP2  
BYTE  
ACRONYM  
REGISTER DESCRIPTION  
ADDRESS  
ADDRESS  
ADDRESS  
0x01D0 0210  
0x01D0 0214  
0x01D0 0218  
0x01D0 021C  
0x01D0 0220  
0x01D0 0224  
0x01D0 0228  
0x01D0 022C  
0x01D0 0230  
0x01D0 0234  
0x01D0 0238  
0x01D0 023C  
0x01D0 0280  
0x01D0 0284  
0x01D0 0288  
0x01D0 028C  
0x01D0 0290  
0x01D0 0294  
0x01D0 0298  
0x01D0 029C  
0x01D0 02A0  
0x01D0 02A4  
0x01D0 02A8  
0x01D0 02AC  
0x01D0 02B0  
0x01D0 02B4  
0x01D0 02B8  
0x01D0 02BC  
0x01D0 4210  
0x01D0 4214  
0x01D0 4218  
0x01D0 421C  
0x01D0 4220  
0x01D0 4224  
0x01D0 4228  
0x01D0 422C  
0x01D0 4230  
0x01D0 4234  
0x01D0 4238  
0x01D0 423C  
0x01D0 4280  
0x01D0 4284  
0x01D0 4288  
0x01D0 428C  
0x01D0 4290  
0x01D0 4294  
0x01D0 4298  
0x01D0 429C  
0x01D0 42A0  
0x01D0 42A4  
0x01D0 42A8  
0x01D0 42AC  
0x01D0 42B0  
0x01D0 42B4  
0x01D0 42B8  
0x01D0 42BC  
0x01D0 8210  
0x01D0 8214  
0x01D0 8218  
0x01D0 821C  
0x01D0 8220  
0x01D0 8224  
0x01D0 8228  
0x01D0 822C  
0x01D0 8230  
0x01D0 8234  
0x01D0 8238  
0x01D0 823C  
0x01D0 8280  
0x01D0 8284  
0x01D0 8288  
0x01D0 828C  
0x01D0 8290  
0x01D0 8294  
0x01D0 8298  
0x01D0 829C  
0x01D0 82A0  
0x01D0 82A4  
0x01D0 82A8  
0x01D0 82AC  
0x01D0 82B0  
0x01D0 82B4  
0x01D0 82BB  
0x01D0 82BC  
XBUF4(1)  
XBUF5(1)  
XBUF6(1)  
XBUF7(1)  
XBUF8(1)  
XBUF9(1)  
XBUF10(1)  
XBUF11(1)  
XBUF12(1)  
XBUF13(1)  
XBUF14(1)  
XBUF15(1)  
RBUF0(2)  
RBUF1(2)  
RBUF2(3)  
RBUF3(3)  
RBUF4(3)  
RBUF5(3)  
RBUF6(3)  
RBUF7(3)  
RBUF8(3)  
RBUF9(3)  
RBUF10(3)  
RBUF11(3)  
RBUF12(3)  
RBUF13(3)  
RBUF14(3)  
RBUF15(3)  
Transmit buffer register for serializer 4  
Transmit buffer register for serializer 5  
Transmit buffer register for serializer 6  
Transmit buffer register for serializer 7  
Transmit buffer register for serializer 8  
Transmit buffer register for serializer 9  
Transmit buffer register for serializer 10  
Transmit buffer register for serializer 11  
Transmit buffer register for serializer 12  
Transmit buffer register for serializer 13  
Transmit buffer register for serializer 14  
Transmit buffer register for serializer 15  
Receive buffer register for serializer 0  
Receive buffer register for serializer 1  
Receive buffer register for serializer 2  
Receive buffer register for serializer 3  
Receive buffer register for serializer 4  
Receive buffer register for serializer 5  
Receive buffer register for serializer 6  
Receive buffer register for serializer 7  
Receive buffer register for serializer 8  
Receive buffer register for serializer 9  
Receive buffer register for serializer 10  
Receive buffer register for serializer 11  
Receive buffer register for serializer 12  
Receive buffer register for serializer 13  
Receive buffer register for serializer 14  
Receive buffer register for serializer 15  
(2) Reads from XRBUF originate on peripheral configuration port only when RBUSEL = 1 in RFMT.  
(3) Reads from XRBUF originate on peripheral configuration port only when RBUSEL = 1 in RFMT.  
120  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
Table 5-47. McASP Registers Accessed Through DMA Port  
Hex  
Address  
Register  
Name  
McASP0  
BYTE  
McASP1  
BYTE  
McASP2  
BYTE  
REGISTER DESCRIPTION  
ADDRESS ADDRESS ADDRESS  
Read  
Accesses  
RBUF  
01D0 2000 01D0 6000 01D0 A000  
Receive buffer DMA port address. Cycles through receive serializers,  
skipping over transmit serializers and inactive serializers. Starts at the  
lowest serializer at the beginning of each time slot. Reads from DMA port  
only if XBUSEL = 0 in XFMT.  
Write  
Accesses  
XBUF  
01D0 2000 01D0 6000 01D0 A000  
Transmit buffer DMA port address. Cycles through transmit serializers,  
skipping over receive and inactive serializers. Starts at the lowest  
serializer at the beginning of each time slot. Writes to DMA port only if  
RBUSEL = 0 in RFMT.  
Table 5-48. McASP AFIFO Registers Accessed Through Peripheral Configuration Port  
McASP0  
McASP1  
McASP2  
ACRONYM  
REGISTER DESCRIPTION  
BYTE ADDRESS  
0x01D0 1000  
0x01D0 1010  
0x01D0 1014  
0x01D0 1018  
0x01D0 101C  
BYTE ADDRESS  
BYTE ADDRESS  
0x01D0 5000  
0x01D0 5010  
0x01D0 5014  
0x01D0 5018  
0x01D0 501C  
0x01D0 9000  
0x01D0 9010  
0x01D0 9014  
0x01D0 9018  
0x01D0 901C  
AFIFOREV  
WFIFOCTL  
WFIFOSTS  
RFIFOCTL  
RFIFOSTS  
AFIFO revision identification register  
Write FIFO control register  
Write FIFO status register  
Read FIFO control register  
Read FIFO status register  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
121  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
5.17.2 McASP Electrical Data/Timing  
5.17.2.1 Multichannel Audio Serial Port 0 (McASP0) Timing  
Table 5-49 and Table 5-50 assume testing over recommended operating conditions (see Figure 5-34 and  
Figure 5-35).  
Table 5-49. McASP0 Timing Requirements(1) (2)  
No.  
PARAMATER  
MIN  
MAX  
UNIT  
Cycle time, AHCLKR0 external, AHCLKR0 input  
Cycle time, AHCLKX0 external, AHCLKX0 input  
Pulse duration, AHCLKR0 external, AHCLKR0 input  
Pulse duration, AHCLKX0 external, AHCLKX0 input  
Cycle time, ACLKR0 external, ACLKR0 input  
25  
25  
1
tc(AHCLKRX)  
tw(AHCLKRX)  
tc(ACLKRX)  
tw(ACLKRX)  
ns  
12.5  
12.5  
2
3
4
ns  
ns  
ns  
greater of 2P or 25  
Cycle time, ACLKX0 external, ACLKX0 input  
greater of 2P or 25  
Pulse duration, ACLKR0 external, ACLKR0 input  
Pulse duration, ACLKX0 external, ACLKX0 input  
Setup time, AFSR0 input to ACLKR0 internal(3)  
Setup time, AFSX0 input to ACLKX0 internal  
12.5  
12.5  
9.4  
9.4  
2.9  
2.9  
2.9  
2.9  
-1.2  
-1.2  
0.9  
0.9  
0.9  
0.9  
9.4  
9.4  
2.9  
2.9  
2.9  
2.9  
-1.3  
-1.3  
0.5  
0.5  
0.5  
0.5  
Setup time, AFSR0 input to ACLKR0 external input(3)  
Setup time, AFSX0 input to ACLKX0 external input  
Setup time, AFSR0 input to ACLKR0 external output(3)  
Setup time, AFSX0 input to ACLKX0 external output  
Hold time, AFSR0 input after ACLKR0 internal(3)  
Hold time, AFSX0 input after ACLKX0 internal  
Hold time, AFSR0 input after ACLKR0 external input(3)  
Hold time, AFSX0 input after ACLKX0 external input  
Hold time, AFSR0 input after ACLKR0 external output(3)  
Hold time, AFSX0 input after ACLKX0 external output  
Setup time, AXR0[n] input to ACLKR0 internal(3)  
Setup time, AXR0[n] input to ACLKX0 internal(4)  
Setup time, AXR0[n] input to ACLKR0 external input(3)  
Setup time, AXR0[n] input to ACLKX0 external input(4)  
Setup time, AXR0[n] input to ACLKR0 external output(3)  
Setup time, AXR0[n] input to ACLKX0 external output(4)  
Hold time, AXR0[n] input after ACLKR0 internal(3)  
Hold time, AXR0[n] input after ACLKX0 internal(4)  
Hold time, AXR0[n] input after ACLKR0 external input(3)  
Hold time, AXR0[n] input after ACLKX0 external input(4)  
Hold time, AXR0[n] input after ACLKR0 external output(3)  
Hold time, AXR0[n] input after ACLKX0 external output(4)  
5
6
7
8
tsu(AFSRX-ACLKRX)  
th(ACLKRX-AFSRX)  
tsu(AXR-ACLKRX)  
th(ACLKRX-AXR)  
ns  
ns  
ns  
ns  
(1) ACLKX0 internal – McASP0 ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1  
ACLKX0 external input – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0  
ACLKX0 external output – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1  
ACLKR0 internal – McASP0 ACLKRCTL.CLKRM = 1, PDIR.ACLKR =1  
ACLKR0 external input – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0  
ACLKR0 external output – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1  
(2) P = SYSCLK2 period  
(3) McASP0 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR0  
(4) McASP0 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX0  
122  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
 
OMAP-L137  
www.ti.com  
No.  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
Table 5-50. McASP0 Switching Characteristics(1)  
PARAMETER  
MIN  
MAX  
UNIT  
Cycle time, AHCLKR0 internal, AHCLKR0 output  
Cycle time, AHCLKR0 external, AHCLKR0 output  
Cycle time, AHCLKX0 internal, AHCLKX0 output  
Cycle time, AHCLKX0 external, AHCLKX0 output  
Pulse duration, AHCLKR0 internal, AHCLKR0 output  
Pulse duration, AHCLKR0 external, AHCLKR0 output  
Pulse duration, AHCLKX0 internal, AHCLKX0 output  
Pulse duration, AHCLKX0 external, AHCLKX0 output  
Cycle time, ACLKR0 internal, ACLKR0 output  
Cycle time, ACLKR0 external, ACLKR0 output  
Cycle time, ACLKX0 internal, ACLKX0 output  
Cycle time, ACLKX0 external, ACLKX0 output  
Pulse duration, ACLKR0 internal, ACLKR0 output  
Pulse duration, ACLKR0 external, ACLKR0 output  
Pulse duration, ACLKX0 internal, ACLKX0 output  
Pulse duration, ACLKX0 external, ACLKX0 output  
Delay time, ACLKR0 internal, AFSR output(7)  
Delay time, ACLKX0 internal, AFSX output  
Delay time, ACLKR0 external input, AFSR output(7)  
Delay time, ACLKX0 external input, AFSX output  
Delay time, ACLKR0 external output, AFSR output(7)  
Delay time, ACLKX0 external output, AFSX output  
Delay time, ACLKX0 internal, AXR0[n] output  
Delay time, ACLKX0 external input, AXR0[n] output  
Delay time, ACLKX0 external output, AXR0[n] output  
Disable time, ACLKX0 internal, AXR0[n] output  
Disable time, ACLKX0 external input, AXR0[n] output  
Disable time, ACLKX0 external output, AXR0[n] output  
25  
25  
25  
25  
9
tc(AHCLKRX)  
ns  
(AHR/2) – 2.5(2)  
(AHR/2) – 2.5(2)  
(AHX/2) – 2.5(3)  
(AHX/2) – 2.5(3)  
10  
11  
12  
tw(AHCLKRX)  
tc(ACLKRX)  
tw(ACLKRX)  
ns  
ns  
ns  
greater of 2P or 25(4)  
greater of 2P or 25(4)  
greater of 2P or 25(4)  
greater of 2P or 25(4)  
(AR/2) – 2.5(5)  
(AR/2) – 2.5(5)  
(AX/2) – 2.5(6)  
(AX/2) – 2.5(6)  
0
0
5.8  
5.8  
11.6  
11.6  
11.6  
11.6  
5.8  
2.5  
2.5  
2.5  
2.5  
0
13  
td(ACLKRX-AFSRX)  
ns  
14  
15  
td(ACLKX-AXRV)  
2.5  
2.5  
0
11.6  
11.6  
5.8  
ns  
ns  
tdis(ACLKX-AXRHZ)  
3
11.6  
11.6  
3
(1) McASP0 ACLKX0 internal – ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1  
ACLKX0 external input – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0  
ACLKX0 external output – McASP0ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1  
ACLKR0 internal – McASP0 ACLKR0CTL.CLKRM = 1, PDIR.ACLKR =1  
ACLKR0 external input – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0  
ACLKR0 external output – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1  
(2) AHR - Cycle time, AHCLKR0.  
(3) AHX - Cycle time, AHCLKX0.  
(4) P = SYSCLK2 period  
(5) AR - ACLKR0 period.  
(6) AX - ACLKX0 period.  
(7) McASP0 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR0  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
123  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
5.17.2.2 Multichannel Audio Serial Port 1 (McASP1) Timing  
Table 5-51 and Table 5-52 assume testing over recommended operating conditions (see Figure 5-34 and  
Figure 5-35).  
Table 5-51. McASP1 Timing Requirements(1) (2)  
No.  
PARAMATER  
MIN  
MAX  
UNIT  
Cycle time, AHCLKR1 external, AHCLKR1 input  
Cycle time, AHCLKX1 external, AHCLKX1 input  
Pulse duration, AHCLKR1 external, AHCLKR1 input  
Pulse duration, AHCLKX1 external, AHCLKX1 input  
Cycle time, ACLKR1 external, ACLKR1 input  
25  
25  
1
tc(AHCLKRX)  
tw(AHCLKRX)  
tc(ACLKRX)  
tw(ACLKRX)  
ns  
12.5  
12.5  
2
3
4
ns  
ns  
ns  
greater of 2P or 25  
Cycle time, ACLKX1 external, ACLKX1 input  
greater of 2P or 25  
Pulse duration, ACLKR1 external, ACLKR1 input  
Pulse duration, ACLKX1 external, ACLKX1 input  
Setup time, AFSR1 input to ACLKR1 internal(3)  
Setup time, AFSX1 input to ACLKX1 internal  
12.5  
12.5  
10.4  
10.4  
2.6  
Setup time, AFSR1 input to ACLKR1 external input(3)  
Setup time, AFSX1 input to ACLKX1 external input  
Setup time, AFSR1 input to ACLKR1 external output(3)  
Setup time, AFSX1 input to ACLKX1 external output  
Hold time, AFSR1 input after ACLKR1 internal(3)  
Hold time, AFSX1 input after ACLKX1 internal  
Hold time, AFSR1 input after ACLKR1 external input(3)  
Hold time, AFSX1 input after ACLKX1 external input  
Hold time, AFSR1 input after ACLKR1 external output(3)  
Hold time, AFSX1 input after ACLKX1 external output  
Setup time, AXR1[n] input to ACLKR1 internal(3)  
Setup time, AXR1[n] input to ACLKX1 internal(4)  
Setup time, AXR1[n] input to ACLKR1 external input(3)  
Setup time, AXR1[n] input to ACLKX1 external input(4)  
Setup time, AXR1[n] input to ACLKR1 external output(3)  
Setup time, AXR1[n] input to ACLKX1 external output(4)  
Hold time, AXR1[n] input after ACLKR1 internal(3)  
Hold time, AXR1[n] input after ACLKX1 internal(4)  
Hold time, AXR1[n] input after ACLKR1 external input(3)  
Hold time, AXR1[n] input after ACLKX1 external input(4)  
Hold time, AXR1[n] input after ACLKR1 external output(3)  
Hold time, AXR1[n] input after ACLKX1 external output(4)  
5
6
7
8
tsu(AFSRX-ACLKRX)  
th(ACLKRX-AFSRX)  
tsu(AXR-ACLKRX)  
th(ACLKRX-AXR)  
ns  
ns  
ns  
ns  
2.6  
2.6  
2.6  
-1.9  
-1.9  
0.7  
0.7  
0.7  
0.7  
10.4  
10.4  
2.6  
2.6  
2.6  
2.6  
-1.8  
-1.8  
0.5  
0.5  
0.5  
0.5  
(1) ACLKX1 internal – McASP1 ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1  
ACLKX1 external input – McASP1 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0  
ACLKX1 external output – McASP1 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1  
ACLKR1 internal – McASP1 ACLKRCTL.CLKRM = 1, PDIR.ACLKR =1  
ACLKR1 external input – McASP1 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0  
ACLKR1 external output – McASP1 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1  
(2) P = SYSCLK2 period  
(3) McASP1 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR1  
(4) McASP1 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX1  
124  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
 
OMAP-L137  
www.ti.com  
NO.  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
Table 5-52. McASP1 Switching Characteristics(1)  
PARAMETER  
MIN  
MAX  
UNIT  
Cycle time, AHCLKR1 internal, AHCLKR1 output  
Cycle time, AHCLKR1 external, AHCLKR1 output  
Cycle time, AHCLKX1 internal, AHCLKX1 output  
Cycle time, AHCLKX1 external, AHCLKX1 output  
Pulse duration, AHCLKR1 internal, AHCLKR1 output  
Pulse duration, AHCLKR1 external, AHCLKR1 output  
Pulse duration, AHCLKX1 internal, AHCLKX1 output  
Pulse duration, AHCLKX1 external, AHCLKX1 output  
Cycle time, ACLKR1 internal, ACLKR1 output  
Cycle time, ACLKR1 external, ACLKR1 output  
Cycle time, ACLKX1 internal, ACLKX1 output  
Cycle time, ACLKX1 external, ACLKX1 output  
Pulse duration, ACLKR1 internal, ACLKR1 output  
Pulse duration, ACLKR1 external, ACLKR1 output  
Pulse duration, ACLKX1 internal, ACLKX1 output  
Pulse duration, ACLKX1 external, ACLKX1 output  
Delay time, ACLKR1 internal, AFSR output(7)  
Delay time, ACLKX1 internal, AFSX output  
Delay time, ACLKR1 external input, AFSR output(7)  
Delay time, ACLKX1 external input, AFSX output  
Delay time, ACLKR1 external output, AFSR output(7)  
Delay time, ACLKX1 external output, AFSX output  
Delay time, ACLKX1 internal, AXR1[n] output  
Delay time, ACLKX1 external input, AXR1[n] output  
Delay time, ACLKX1 external output, AXR1[n] output  
Disable time, ACLKX1 internal, AXR1[n] output  
Disable time, ACLKX1 external input, AXR1[n] output  
Disable time, ACLKX1 external output, AXR1[n] output  
25  
25  
25  
25  
9
tc(AHCLKRX)  
ns  
(AHR/2) – 2.5(2)  
(AHR/2) – 2.5(2)  
(AHX/2) – 2.5(3)  
(AHX/2) – 2.5(3)  
10  
11  
12  
tw(AHCLKRX)  
tc(ACLKRX)  
tw(ACLKRX)  
ns  
ns  
ns  
greater of 2P or 25(4)  
greater of 2P or 25(4)  
greater of 2P or 25(4)  
greater of 2P or 25(4)  
(AR/2) – 2.5(5)  
(AR/2) – 2.5(5)  
(AX/2) – 2.5(6)  
(AX/2) – 2.5(6)  
0.5  
0.5  
3.4  
3.4  
3.4  
3.4  
0.5  
3.4  
3.4  
0.5  
3.9  
3.9  
6.7  
6.7  
13.8  
13.8  
13.8  
13.8  
6.7  
13  
td(ACLKRX-AFSRX)  
ns  
14  
15  
td(ACLKX-AXRV)  
13.8  
13.8  
6.7  
ns  
ns  
tdis(ACLKX-AXRHZ)  
13.8  
13.8  
(1) McASP1 ACLKX1 internal – ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1  
McASP1 ACLKX1 external input – ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0  
McASP1 ACLKX1 external output – ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1  
McASP1 ACLKR1 internal – ACLKR1CTL.CLKRM = 1, PDIR.ACLKR =1  
McASP1 ACLKR1 external input – ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0  
McASP1 ACLKR1 external output – ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1  
(2) AHR - Cycle time, AHCLKR1.  
(3) AHX - Cycle time, AHCLKX1.  
(4) P = SYSCLK2 period  
(5) AR - ACLKR1 period.  
(6) AX - ACLKX1 period.  
(7) McASP1 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR1  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
125  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
5.17.2.3 Multichannel Audio Serial Port 2 (McASP2) Timing  
Table 5-53 and Table 5-54 assume testing over recommended operating conditions (see Figure 5-34 and  
Figure 5-35).  
Table 5-53. McASP2 Timing Requirements(1) (2)  
NO.  
MIN  
MAX  
UNIT  
Cycle time, AHCLKR2 external, AHCLKR2 input  
Cycle time, AHCLKX2 external, AHCLKX2 input  
Pulse duration, AHCLKR2 external, AHCLKR2 input  
Pulse duration, AHCLKX2 external, AHCLKX2 input  
Cycle time, ACLKR2 external, ACLKR2 input  
15  
15  
1
tc(AHCLKRX)  
tw(AHCLKRX)  
tc(ACLKRX)  
tw(ACLKRX)  
ns  
7.5  
7.5  
2
3
4
ns  
ns  
ns  
greater of 2P or 15  
Cycle time, ACLKX2 external, ACLKX2 input  
greater of 2P or 15  
Pulse duration, ACLKR2 external, ACLKR2 input  
Pulse duration, ACLKX2 external, ACLKX2 input  
Setup time, AFSR2 input to ACLKR2 internal(3)  
Setup time, AFSX2 input to ACLKX2 internal  
7.5  
7.5  
10  
10  
Setup time, AFSR2 input to ACLKR2 external input(3)  
Setup time, AFSX2 input to ACLKX2 external input  
Setup time, AFSR2 input to ACLKR2 external output(3)  
Setup time, AFSX2 input to ACLKX2 external output  
Hold time, AFSR2 input after ACLKR2 internal(3)  
Hold time, AFSX2 input after ACLKX2 internal  
1.6  
1.6  
1.6  
1.6  
-1.7  
-1.7  
1.3  
1.3  
1.3  
1.3  
10  
5
6
7
8
tsu(AFSRX-ACLKRX)  
th(ACLKRX-AFSRX)  
tsu(AXR-ACLKRX)  
th(ACLKRX-AXR)  
ns  
ns  
ns  
ns  
Hold time, AFSR2 input after ACLKR2 external input(3)  
Hold time, AFSX2 input after ACLKX2 external input  
Hold time, AFSR2 input after ACLKR2 external output(3)  
Hold time, AFSX2 input after ACLKX2 external output  
Setup time, AXR2[n] input to ACLKR2 internal(3)  
Setup time, AXR2[n] input to ACLKX2 internal(4)  
Setup time, AXR2[n] input to ACLKR2 external input(3)  
Setup time, AXR2[n] input to ACLKX2 external input(4)  
Setup time, AXR2[n] input to ACLKR2 external output(3)  
Setup time, AXR2[n] input to ACLKX2 external output(4)  
Hold time, AXR2[n] input after ACLKR2 internal(3)  
Hold time, AXR2[n] input after ACLKX2 internal(4)  
Hold time, AXR2[n] input after ACLKR2 external input(3)  
Hold time, AXR2[n] input after ACLKX2 external input(4)  
Hold time, AXR2[n] input after ACLKR2 external output(3)  
Hold time, AXR2[n] input after ACLKX2 external output(4)  
10  
1.6  
1.6  
1.6  
1.6  
-1.7  
-1.7  
1.3  
1.3  
1.3  
1.3  
(1) ACLKX2 internal – McASP2 ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1  
ACLKX2 external input – McASP2 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0  
ACLKX2 external output – McASP2 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1  
ACLKR2 internal – McASP2 ACLKRCTL.CLKRM = 1, PDIR.ACLKR =1  
ACLKR2 external input – McASP2 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0  
ACLKR2 external output – McASP2 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1  
(2) P = SYSCLK2 period  
(3) McASP2 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR2  
(4) McASP2 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX2  
126  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
 
OMAP-L137  
www.ti.com  
NO.  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
Table 5-54. McASP2 Switching Characteristics(1)  
PARAMETER  
MIN  
MAX  
UNIT  
Cycle time, AHCLKR2 internal, AHCLKR2 output  
Cycle time, AHCLKR2 external, AHCLKR2 output  
Cycle time, AHCLKX2 internal, AHCLKX2 output  
Cycle time, AHCLKX2 external, AHCLKX2 output  
Pulse duration, AHCLKR2 internal, AHCLKR2 output  
Pulse duration, AHCLKR2 external, AHCLKR2 output  
Pulse duration, AHCLKX2 internal, AHCLKX2 output  
Pulse duration, AHCLKX2 external, AHCLKX2 output  
Cycle time, ACLKR2 internal, ACLKR2 output  
Cycle time, ACLKR2 external, ACLKR2 output  
Cycle time, ACLKX2 internal, ACLKX2 output  
Cycle time, ACLKX2 external, ACLKX2 output  
Pulse duration, ACLKR2 internal, ACLKR2 output  
Pulse duration, ACLKR2 external, ACLKR2 output  
Pulse duration, ACLKX2 internal, ACLKX2 output  
Pulse duration, ACLKX2 external, ACLKX2 output  
Delay time, ACLKR2 internal, AFSR output(7)  
Delay time, ACLKX2 internal, AFSX output  
Delay time, ACLKR2 external input, AFSR output(7)  
Delay time, ACLKX2 external input, AFSX output  
Delay time, ACLKR2 external output, AFSR output(7)  
Delay time, ACLKX2 external output, AFSX output  
Delay time, ACLKX2 internal, AXR2[n] output  
Delay time, ACLKX2 external input, AXR2[n] output  
Delay time, ACLKX2 external output, AXR2[n] output  
Disable time, ACLKX2 internal, AXR2[n] output  
Disable time, ACLKX2 external input, AXR2[n] output  
Disable time, ACLKX2 external output, AXR2[n] output  
15  
15  
15  
15  
9
tc(AHCLKRX)  
ns  
(AHR/2) – 2.5(2)  
(AHR/2) – 2.5(2)  
(AHX/2) – 2.5(3)  
(AHX/2) – 2.5(3)  
10  
11  
12  
tw(AHCLKRX)  
tc(ACLKRX)  
tw(ACLKRX)  
ns  
ns  
ns  
greater of 2P or 15(4)  
greater of 2P or 15(4)  
greater of 2P or 15(4)  
greater of 2P or 15(4)  
(AR/2) – 2.5(5)  
(AR/2) – 2.5(5)  
(AX/2) – 2.5(6)  
(AX/2) – 2.5(6)  
-1.4  
-1.4  
2.1  
2.1  
2.1  
2.1  
-1.4  
2.1  
2.1  
-1.4  
2.9  
2.9  
2.8  
2.8  
10  
10  
10  
10  
2.8  
10  
10  
2.8  
10  
10  
13  
td(ACLKRX-AFSRX)  
ns  
14  
15  
td(ACLKX-AXRV)  
ns  
ns  
tdis(ACLKX-AXRHZ)  
(1) McASP2 ACLKX2 internal – ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1  
McASP2 ACLKX2 external input – ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0  
McASP2 ACLKX2 external output – ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1  
McASP2 ACLKR2 internal – ACLKR2CTL.CLKRM = 1, PDIR.ACLKR =1  
McASP2 ACLKR2 external input – ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0  
McASP2 ACLKR2 external output – ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1  
(2) AHR - Cycle time, AHCLKR2.  
(3) AHX - Cycle time, AHCLKX2.  
(4) P = SYSCLK2 period  
(5) AR - ACLKR2 period.  
(6) AX - ACLKX2 period.  
(7) McASP2 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR2  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
127  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
2
1
2
AHCLKR/X (Falling Edge Polarity)  
AHCLKR/X (Rising Edge Polarity)  
4
3
4
(A)  
ACLKR/X (CLKRP = CLKXP = 0)  
(B)  
ACLKR/X (CLKRP = CLKXP = 1)  
6
5
AFSR/X (Bit Width, 0 Bit Delay)  
AFSR/X (Bit Width, 1 Bit Delay)  
AFSR/X (Bit Width, 2 Bit Delay)  
AFSR/X (Slot Width, 0 Bit Delay)  
AFSR/X (Slot Width, 1 Bit Delay)  
AFSR/X (Slot Width, 2 Bit Delay)  
8
7
AXR[n] (Data In/Receive)  
A0 A1  
A30 A31 B0 B1  
B30 B31 C0 C1 C2 C3  
C31  
A. For CLKRP = CLKXP = 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP  
receiver is configured for falling edge (to shift data in).  
B. For CLKRP = CLKXP = 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP  
receiver is configured for rising edge (to shift data in).  
Figure 5-34. McASP Input Timings  
128  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
10  
10  
9
AHCLKR/X (Falling Edge Polarity)  
AHCLKR/X (Rising Edge Polarity)  
12  
11  
12  
(A)  
ACLKR/X (CLKRP = CLKXP = 1)  
(B)  
ACLKR/X (CLKRP = CLKXP = 0)  
13  
13  
13  
13  
AFSR/X (Bit Width, 0 Bit Delay)  
AFSR/X (Bit Width, 1 Bit Delay)  
AFSR/X (Bit Width, 2 Bit Delay)  
AFSR/X (Slot Width, 0 Bit Delay)  
AFSR/X (Slot Width, 1 Bit Delay)  
AFSR/X (Slot Width, 2 Bit Delay)  
AXR[n] (Data Out/Transmit)  
13  
13  
13  
14  
15  
A0 A1  
A30 A31 B0 B1  
B30 B31 C0 C1 C2 C3  
C31  
A. For CLKRP = CLKXP = 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP  
receiver is configured for rising edge (to shift data in).  
B. For CLKRP = CLKXP = 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP  
receiver is configured for falling edge (to shift data in).  
Figure 5-35. McASP Output Timings  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
129  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
5.18 Serial Peripheral Interface Ports (SPI0, SPI1)  
Figure 5-36 is a block diagram of the SPI module, which is a simple shift register and buffer plus control  
logic. Data is written to the shift register before transmission occurs and is read from the buffer at the end  
of transmission. The SPI can operate either as a master, in which case, it initiates a transfer and drives  
the SPIx_CLK pin, or as a slave. Four clock phase and polarity options are supported as well as many  
data formatting options.  
SPIx_SIMO  
SPIx_SOMI  
Peripheral  
16-Bit Shift Register  
16-Bit Buffer  
Configuration Bus  
SPIx_ENA  
SPIx_SCS  
SPIx_CLK  
State  
Machine  
GPIO  
Control  
(all pins)  
Interrupt and  
Clock  
Control  
DMA Requests  
Figure 5-36. Block Diagram of SPI Module  
The SPI supports 3-, 4-, and 5-pin operation with three basic pins (SPIx_CLK, SPIx_SIMO, and  
SPIx_SOMI) and two optional pins (SPIx_SCS, SPIx_ENA).  
The optional SPIx_SCS (Slave Chip Select) pin is most useful to enable in slave mode when there are  
other slave devices on the same SPI port. The OMAP-L137 will only shift data and drive the SPIx_SOMI  
pin when SPIx_SCS is held low.  
In slave mode, SPIx_ENA is an optional output. The SPIx_ENA output provides the status of the internal  
transmit buffer (SPIDAT0/1 registers). In four-pin mode with the enable option, SPIx_ENA is asserted only  
when the transmit buffer is full, indicating that the slave is ready to begin another transfer. In five-pin  
mode, the SPIx_ENA is additionally qualified by SPIx_SCS being asserted. This allows a single  
handshake line to be shared by multiple slaves on the same SPI bus.  
In master mode, the SPIx_ENA pin is an optional input and the master can be configured to delay the start  
of the next transfer until the slave asserts SPIx_ENA. The addition of this handshake signal simplifies SPI  
communications and, on average, increases SPI bus throughput since the master does not need to delay  
each transfer long enough to allow for the worst-case latency of the slave device. Instead, each transfer  
can begin as soon as both the master and slave have actually serviced the previous SPI transfer.  
Although the SPI module supports two interrupt outputs, SPIx_INT1 is the only interrupt connected on this  
device.  
130  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
 
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
Optional − Slave Chip Select  
Optional Enable (Ready)  
SPIx_SCS  
SPIx_ENA  
SPIx_CLK  
SPIx_SOMI  
SPIx_SIMO  
SPIx_SCS  
SPIx_ENA  
SPIx_CLK  
SPIx_SOMI  
SPIx_SIMO  
MASTER SPI  
SLAVE SPI  
Figure 5-37. Illustration of SPI Master-to-SPI Slave Connection  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
131  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
5.18.1 SPI Peripheral Registers Description(s)  
Table 5-55 is a list of the SPI registers.  
Table 5-55. SPIx Configuration Registers  
SPI0  
BYTE ADDRESS  
SPI1  
BYTE ADDRESS  
ACRONYM  
REGISTER DESCRIPTION  
0x01C4 1000  
0x01C4 1004  
0x01C4 1008  
0x01C4 100C  
0x01C4 1010  
0x01C4 1014  
0x01C4 1018  
0x01C4 101C  
0x01C4 1020  
0x01C4 1024  
0x01C4 1028  
0x01C4 102C  
0x01C4 1030  
0x01C4 1034  
0x01C4 1038  
0x01C4 103C  
0x01C4 1040  
0x01C4 1044  
0x01C4 1048  
0x01C4 104C  
0x01C4 1050  
0x01C4 1054  
0x01C4 1058  
0x01C4 105C  
0x01C4 1060  
0x01C4 1064  
0x01E1 2000  
0x01E1 2004  
0x01E1 2008  
0x01E1 200C  
0x01E1 2010  
0x01E1 2014  
0x01E1 2018  
0x01E1 201C  
0x01E1 2020  
0x01E1 2024  
0x01E1 2028  
0x01E1 202C  
0x01E1 2030  
0x01E1 2034  
0x01E1 2038  
0x01E1 203C  
0x01E1 2040  
0x01E1 2044  
0x01E1 2048  
0x01E1 204C  
0x01E1 2050  
0x01E1 2054  
0x01E1 2058  
0x01E1 205C  
0x01E1 2060  
0x01E1 2064  
SPIGCR0  
SPIGCR1  
SPIINT0  
SPILVL  
Global Control Register 0  
Global Control Register 1  
Interrupt Register  
Interrupt Level Register  
SPIFLG  
Flag Register  
SPIPC0  
Pin Control Register 0 (Pin Function)  
Pin Control Register 1 (Pin Direction)  
Pin Control Register 2 (Pin Data In)  
Pin Control Register 3 (Pin Data Out)  
Pin Control Register 4 (Pin Data Set)  
Pin Control Register 5 (Pin Data Clear)  
Reserved - Do not write to this register  
Reserved - Do not write to this register  
Reserved - Do not write to this register  
Shift Register 0 (without format select)  
Shift Register 1 (with format select)  
Buffer Register  
SPIPC1  
SPIPC2  
SPIPC3  
SPIPC4  
SPIPC5  
Reserved  
Reserved  
Reserved  
SPIDAT0  
SPIDAT1  
SPIBUF  
SPIEMU  
SPIDELAY  
SPIDEF  
Emulation Register  
Delay Register  
Default Chip Select Register  
Format Register 0  
SPIFMT0  
SPIFMT1  
SPIFMT2  
SPIFMT3  
Reserved  
INTVEC1  
Format Register 1  
Format Register 2  
Format Register 3  
Reserved - Do not write to this register  
Interrupt Vector for SPI INT1  
132  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
 
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
5.18.2 SPI Electrical Data/Timing  
5.18.2.1 Serial Peripheral Interface (SPI) Timing  
Table 5-56 through Table 5-71 assume testing over recommended operating conditions (see Figure 5-38  
through Figure 5-41).  
Table 5-56. General Timing Requirements for SPI0 Master Modes(1)  
No.  
1
PARAMETER  
MIN  
MAX  
UNIT  
ns  
tc(SPC)M  
Cycle Time, SPI0_CLK, All Master Modes  
Pulse Width High, SPI0_CLK, All Master Modes  
Pulse Width Low, SPI0_CLK, All Master Modes  
greater of 3P or 20  
0.5tc(SPC)M - 1  
0.5tc(SPC)M - 1  
256P  
5
2
tw(SPCH)M  
tw(SPCL)M  
ns  
3
ns  
Polarity = 0, Phase = 0,  
to SPI0_CLK rising  
Polarity = 0, Phase = 1,  
to SPI0_CLK rising  
- 0.5tc(SPC)M + 5  
Delay, initial data bit valid on  
SPI0_SIMO after initial edge  
on SPI0_CLK(2)  
4
5
6
7
8
td(SIMO_SPC)M  
td(SPC_SIMO)M  
toh(SPC_SIMO)M  
tsu(SOMI_SPC)M  
tih(SPC_SOMI)M  
ns  
ns  
ns  
ns  
ns  
Polarity = 1, Phase = 0,  
to SPI0_CLK falling  
5
Polarity = 1, Phase = 1,  
to SPI0_CLK falling  
- 0.5tc(SPC)M + 5  
Polarity = 0, Phase = 0,  
from SPI0_CLK rising  
5
5
5
5
Polarity = 0, Phase = 1,  
from SPI0_CLK falling  
Delay, subsequent bits valid  
on SPI0_SIMO after transmit  
edge of SPI0_CLK  
Polarity = 1, Phase = 0,  
from SPI0_CLK falling  
Polarity = 1, Phase = 1,  
from SPI0_CLK rising  
Polarity = 0, Phase = 0,  
from SPI0_CLK falling  
0.5tc(SPC)M -3  
Polarity = 0, Phase = 1,  
from SPI0_CLK rising  
0.5tc(SPC)M -3  
Output hold time, SPI0_SIMO  
valid after  
receive edge of SPI0_CLK  
Polarity = 1, Phase = 0,  
from SPI0_CLK rising  
0.5tc(SPC)M -3  
Polarity = 1, Phase = 1,  
from SPI0_CLK falling  
0.5tc(SPC)M -3  
Polarity = 0, Phase = 0,  
to SPI0_CLK falling  
0
0
0
0
5
5
5
5
Polarity = 0, Phase = 1,  
to SPI0_CLK rising  
Input Setup Time, SPI0_SOMI  
valid before  
receive edge of SPI0_CLK  
Polarity = 1, Phase = 0,  
to SPI0_CLK rising  
Polarity = 1, Phase = 1,  
to SPI0_CLK falling  
Polarity = 0, Phase = 0,  
from SPI0_CLK falling  
Polarity = 0, Phase = 1,  
from SPI0_CLK rising  
Input Hold Time, SPI0_SOMI  
valid after  
receive edge of SPI0_CLK  
Polarity = 1, Phase = 0,  
from SPI0_CLK rising  
Polarity = 1, Phase = 1,  
from SPI0_CLK falling  
(1) P = SYSCLK2 period  
(2) First bit may be MSB or LSB depending upon SPI configuration. MO(0) refers to first bit and MO(n) refers to last bit output on  
SPI0_SIMO. MI(0) refers to the first bit input and MI(n) refers to the last bit input on SPI0_SOMI.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
133  
 
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
Table 5-57. General Timing Requirements for SPI0 Slave Modes(1)  
No.  
9
PARAMETER  
MIN  
MAX  
UNIT  
ns  
tc(SPC)S  
Cycle Time, SPI0_CLK, All Slave Modes  
Pulse Width High, SPI0_CLK, All Slave Modes  
Pulse Width Low, SPI0_CLK, All Slave Modes  
greater of 3P or 40  
10  
11  
tw(SPCH)S  
tw(SPCL)S  
18  
18  
ns  
ns  
Polarity = 0, Phase = 0,  
to SPI0_CLK rising  
2P  
2P  
2P  
2P  
Polarity = 0, Phase = 1,  
to SPI0_CLK rising  
Setup time, transmit data written to  
SPI before initial clock edge from  
master.(2) (3)  
12  
13  
14  
15  
16  
tsu(SOMI_SPC)S  
td(SPC_SOMI)S  
toh(SPC_SOMI)S  
tsu(SIMO_SPC)S  
tih(SPC_SIMO)S  
ns  
Polarity = 1, Phase = 0,  
to SPI0_CLK falling  
Polarity = 1, Phase = 1,  
to SPI0_CLK falling  
Polarity = 0, Phase = 0,  
from SPI0_CLK rising  
18.5  
Polarity = 0, Phase = 1,  
from SPI0_CLK falling  
18.5  
18.5  
18.5  
Delay, subsequent bits valid on  
SPI0_SOMI after transmit edge of  
SPI0_CLK  
ns  
ns  
ns  
ns  
Polarity = 1, Phase = 0,  
from SPI0_CLK falling  
Polarity = 1, Phase = 1,  
from SPI0_CLK rising  
Polarity = 0, Phase = 0,  
from SPI0_CLK falling  
0.5tc(SPC)S -3  
Polarity = 0, Phase = 1,  
from SPI0_CLK rising  
0.5tc(SPC)S -3  
Output hold time, SPI0_SOMI valid  
after  
receive edge of SPI0_CLK  
Polarity = 1, Phase = 0,  
from SPI0_CLK rising  
0.5tc(SPC)S -3  
Polarity = 1, Phase = 1,  
from SPI0_CLK falling  
0.5tc(SPC)S -3  
Polarity = 0, Phase = 0,  
to SPI0_CLK falling  
0
0
0
0
5
5
5
5
Polarity = 0, Phase = 1,  
to SPI0_CLK rising  
Input Setup Time, SPI0_SIMO valid  
before  
receive edge of SPI0_CLK  
Polarity = 1, Phase = 0,  
to SPI0_CLK rising  
Polarity = 1, Phase = 1,  
to SPI0_CLK falling  
Polarity = 0, Phase = 0,  
from SPI0_CLK falling  
Polarity = 0, Phase = 1,  
from SPI0_CLK rising  
Input Hold Time, SPI0_SIMO valid  
after  
receive edge of SPI0_CLK  
Polarity = 1, Phase = 0,  
from SPI0_CLK rising  
Polarity = 1, Phase = 1,  
from SPI0_CLK falling  
(1) P = SYSCLK2 period  
(2) First bit may be MSB or LSB depending upon SPI configuration. SO(0) refers to first bit and SO(n) refers to last bit output on  
SPI0_SOMI. SI(0) refers to the first bit input and SI(n) refers to the last bit input on SPI0_SIMO.  
(3) Measured from the termination of the write of new data to the SPI module, In analyzing throughput requirements, additional internal bus  
cycles must be accounted for to allow data to be written to the SPI module by the DSP CPU.  
134  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
 
OMAP-L137  
www.ti.com  
No.  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
Table 5-58. Additional(1) SPI0 Master Timings, 4-Pin Enable Option(2) (3)  
PARAMATER  
MIN  
MAX  
UNIT  
Polarity = 0, Phase = 0,  
to SPI0_CLK rising  
3P + 3.6  
Polarity = 0, Phase = 1,  
to SPI0_CLK rising  
0.5tc(SPC)M + 3P + 3.6  
3P + 3.6  
Delay from slave assertion of  
SPI0_ENA active to first SPI0_CLK  
from master.(4)  
17  
td(ENA_SPC)M  
ns  
Polarity = 1, Phase = 0,  
to SPI0_CLK falling  
Polarity = 1, Phase = 1,  
to SPI0_CLK falling  
0.5tc(SPC)M + 3P + 3.6  
0.5tc(SPC)M + P + 5  
P + 5  
Polarity = 0, Phase = 0,  
from SPI0_CLK falling  
Polarity = 0, Phase = 1,  
from SPI0_CLK falling  
Max delay for slave to deassert  
SPI0_ENA after final SPI0_CLK edge  
to ensure master does not begin the  
next transfer.(5)  
18  
td(SPC_ENA)M  
ns  
Polarity = 1, Phase = 0,  
from SPI0_CLK rising  
0.5tc(SPC)M + P + 5  
P + 5  
Polarity = 1, Phase = 1,  
from SPI0_CLK rising  
(1) These parameters are in addition to the general timings for SPI master modes (Table 5-56).  
(2) P = SYSCLK2 period  
(3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.  
(4) In the case where the master SPI is ready with new data before SPI0_ENA assertion.  
(5) In the case where the master SPI is ready with new data before SPI0_EN A deassertion.  
Table 5-59. Additional(1) SPI0 Master Timings, 4-Pin Chip Select Option(2) (3)  
No.  
PARAMATER  
MIN  
MAX  
UNIT  
Polarity = 0, Phase = 0,  
to SPI0_CLK rising  
2P - 5  
Polarity = 0, Phase = 1,  
to SPI0_CLK rising  
0.5tc(SPC)M + 2P - 5  
2P - 5  
Delay from SPI0_SCS active to first  
SPI0_CLK(4) (5)  
19  
td(SCS_SPC)M  
ns  
Polarity = 1, Phase = 0,  
to SPI0_CLK falling  
Polarity = 1, Phase = 1,  
to SPI0_CLK falling  
0.5tc(SPC)M + 2P - 5  
0.5tc(SPC)M + P - 3  
P - 3  
Polarity = 0, Phase = 0,  
from SPI0_CLK falling  
Polarity = 0, Phase = 1,  
from SPI0_CLK falling  
Delay from final SPI0_CLK edge to  
master deasserting SPI0_SCS  
20  
td(SPC_SCS)M  
ns  
(6) (7)  
Polarity = 1, Phase = 0,  
from SPI0_CLK rising  
0.5tc(SPC)M + P - 3  
P - 3  
Polarity = 1, Phase = 1,  
from SPI0_CLK rising  
(1) These parameters are in addition to the general timings for SPI master modes (Table 5-56).  
(2) P = SYSCLK2 period  
(3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.  
(4) In the case where the master SPI is ready with new data before SPI0_SCS assertion.  
(5) This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0].  
(6) Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI0_SCS will remain  
asserted.  
(7) This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0].  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
135  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
UNIT  
Table 5-60. Additional(1) SPI0 Master Timings, 5-Pin Option(2) (3)  
No.  
PARAMATER  
MIN  
MAX  
Polarity = 0, Phase = 0,  
from SPI0_CLK falling  
0.5tc(SPC)M + P + 5  
P + 5  
Max delay for slave to  
Polarity = 0, Phase = 1,  
from SPI0_CLK falling  
deassert SPI0_ENA after final  
SPI0_CLK edge to ensure  
master does not begin the  
next transfer.(4)  
18  
td(SPC_ENA)M  
ns  
Polarity = 1, Phase = 0,  
from SPI0_CLK rising  
0.5tc(SPC)M + P + 5  
P + 5  
Polarity = 1, Phase = 1,  
from SPI0_CLK rising  
Polarity = 0, Phase = 0,  
from SPI0_CLK falling  
0.5tc(SPC)M + P - 3  
P - 3  
0.5tc(SPC)M + P -3  
P - 3  
Polarity = 0, Phase = 1,  
from SPI0_CLK falling  
Delay from final SPI0_CLK  
edge to  
20  
21  
22  
td(SPC_SCS)M  
td(SCSL_ENAL)M  
td(SCS_SPC)M  
ns  
ns  
ns  
master deasserting  
Polarity = 1, Phase = 0,  
from SPI0_CLK rising  
(5) (6)  
SPI0_SCS  
Polarity = 1, Phase = 1,  
from SPI0_CLK rising  
Max delay for slave SPI to drive SPI0_ENA valid after  
master asserts SPI0_SCS to delay the  
master from beginning the next transfer,  
C2TDELAY + P  
Polarity = 0, Phase = 0,  
to SPI0_CLK rising  
2P -5  
0.5tc(SPC)M + 2P -5  
2P -5  
Polarity = 0, Phase = 1,  
to SPI0_CLK rising  
Delay from SPI0_SCS active  
to first SPI0_CLK(7) (8) (9)  
Polarity = 1, Phase = 0,  
to SPI0_CLK falling  
Polarity = 1, Phase = 1,  
to SPI0_CLK falling  
0.5tc(SPC)M + 2P -5  
Polarity = 0, Phase = 0,  
to SPI0_CLK rising  
3P + 3.6  
0.5tc(SPC)M + 3P + 3.6  
3P + 3.6  
Polarity = 0, Phase = 1,  
to SPI0_CLK rising  
Delay from assertion of  
SPI0_ENA low to first  
SPI0_CLK edge.(10)  
23  
td(ENA_SPC)M  
ns  
Polarity = 1, Phase = 0,  
to SPI0_CLK falling  
Polarity = 1, Phase = 1,  
to SPI0_CLK falling  
0.5tc(SPC)M + 3P + 3.6  
(1) These parameters are in addition to the general timings for SPI master modes (Table 5-57).  
(2) P = SYSCLK2 period  
(3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.  
(4) In the case where the master SPI is ready with new data before SPI0_ENA deassertion.  
(5) Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI0_SCS will remain  
asserted.  
(6) This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0].  
(7) If SPI0_ENA is asserted immediately such that the transmission is not delayed by SPI0_ENA.  
(8) In the case where the master SPI is ready with new data before SPI0_SCS assertion.  
(9) This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0].  
(10) If SPI0_ENA was initially deasserted high and SPI0_CLK is delayed.  
136  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
OMAP-L137  
www.ti.com  
No.  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
Table 5-61. Additional(1) SPI0 Slave Timings, 4-Pin Enable Option(2) (3)  
PARAMATER  
MIN  
MAX  
2.5 P + 18.5  
– 0.5tc(SPC)M + 1.5 P -3 – 0.5tc(SPC)M + 2.5 P + 18.5  
1.5 P -3 2.5 P + 18.5  
– 0.5tc(SPC)M + 1.5 P -3 – 0.5tc(SPC)M + 2.5 P + 18.5  
UNIT  
Polarity = 0, Phase = 0,  
from SPI0_CLK falling  
1.5 P -3  
Polarity = 0, Phase = 1,  
from SPI0_CLK falling  
Delay from final  
SPI0_CLK edge to  
slave deasserting  
SPI0_ENA.  
24  
td(SPC_ENAH)S  
ns  
Polarity = 1, Phase = 0,  
from SPI0_CLK rising  
Polarity = 1, Phase = 1,  
from SPI0_CLK rising  
(1) These parameters are in addition to the general timings for SPI slave modes (Table 5-57).  
(2) P = SYSCLK2 period  
(3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.  
Table 5-62. Additional(1) SPI0 Slave Timings, 4-Pin Chip Select Option(2) (3)  
No.  
PARAMATER  
MIN  
MAX  
UNIT  
Required delay from SPI0_SCS asserted at slave to first  
SPI0_CLK edge at slave.  
25  
td(SCSL_SPC)S  
2P  
ns  
Polarity = 0, Phase = 0,  
from SPI0_CLK falling  
0.5tc(SPC)M + P+5  
P+5  
Polarity = 0, Phase = 1,  
Required delay from final  
from SPI0_CLK falling  
26  
td(SPC_SCSH)S  
SPI0_CLK edge before  
ns  
Polarity = 1, Phase = 0,  
SPI0_SCS is deasserted.  
0.5tc(SPC)M + P+5  
P+5  
from SPI0_CLK rising  
Polarity = 1, Phase = 1,  
from SPI0_CLK rising  
Delay from master asserting SPI0_SCS to slave driving  
SPI0_SOMI valid  
27  
28  
tena(SCSL_SOMI)S  
tdis(SCSH_SOMI)S  
P + 18.5  
P + 18.5  
ns  
ns  
Delay from master deasserting SPI0_SCS to slave 3-stating  
SPI0_SOMI  
(1) These parameters are in addition to the general timings for SPI slave modes (Table 5-57).  
(2) P = SYSCLK2 period  
(3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
137  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
Table 5-63. Additional(1) SPI0 Slave Timings, 5-Pin Option(2) (3)  
No.  
PARAMATER  
MIN  
MAX  
UNIT  
Required delay from SPI0_SCS asserted at slave to first  
SPI0_CLK edge at slave.  
25  
td(SCSL_SPC)S  
2P  
ns  
Polarity = 0, Phase = 0,  
from SPI0_CLK falling  
0.5tc(SPC)M + P +  
5
Polarity = 0, Phase = 1,  
from SPI0_CLK falling  
P + 5  
Required delay from final SPI0_CLK  
edge before SPI0_SCS is  
deasserted.  
26  
td(SPC_SCSH)S  
ns  
Polarity = 1, Phase = 0,  
from SPI0_CLK rising  
0.5tc(SPC)M + P +  
5
Polarity = 1, Phase = 1,  
from SPI0_CLK rising  
P + 5  
Delay from master asserting SPI0_SCS to slave driving  
SPI0_SOMI valid  
27  
28  
29  
tena(SCSL_SOMI)S  
tdis(SCSH_SOMI)S  
tena(SCSL_ENA)S  
P + 18.5  
P + 18.5  
ns  
ns  
ns  
Delay from master deasserting SPI0_SCS to slave 3-stating  
SPI0_SOMI  
Delay from master deasserting SPI0_SCS to slave driving  
SPI0_ENA valid  
18.5  
2.5 P + 18.5  
2.5 P + 18.5  
2.5 P + 18.5  
2.5 P + 18.5  
Polarity = 0, Phase = 0,  
from SPI0_CLK falling  
Polarity = 0, Phase = 1,  
Delay from final clock receive edge  
from SPI0_CLK rising  
30  
tdis(SPC_ENA)S  
on SPI0_CLK to slave 3-stating or  
ns  
driving high SPI0_ENA.(4)  
Polarity = 1, Phase = 0,  
from SPI0_CLK rising  
Polarity = 1, Phase = 1,  
from SPI0_CLK falling  
(1) These parameters are in addition to the general timings for SPI slave modes (Table 5-57).  
(2) P = SYSCLK2 period  
(3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.  
(4) SPI0_ENA is driven low after the transmission completes if the SPIINT0.ENABLE_HIGHZ bit is programmed to 0. Otherwise it is 3-  
stated. If 3-stated, an external pullup resistor should be used to provide a valid level to the master. This option is useful when tying  
several SPI slave devices to a single master.  
Table 5-64. General Timing Requirements for SPI1 Master Modes(1)  
No.  
1
PARAMATER  
MIN  
MAX  
UNIT  
256P ns  
tc(SPC)M  
Cycle Time, SPI1_CLK, All Master Modes  
Pulse Width High, SPI1_CLK, All Master Modes  
Pulse Width Low, SPI1_CLK, All Master Modes  
greater of 3P or 20 ns  
0.5tc(SPC)M - 1  
2
tw(SPCH)M  
tw(SPCL)M  
ns  
ns  
3
0.5tc(SPC)M - 1  
Polarity = 0, Phase =  
0,  
5
to SPI1_CLK rising  
Polarity = 0, Phase =  
1,  
to SPI1_CLK rising  
- 0.5tc(SPC)M + 5  
Delay, initial data bit valid on  
SPI1_SIMO to initial edge on  
SPI1_CLK(2)  
4
td(SIMO_SPC)M  
ns  
Polarity = 1, Phase =  
0,  
5
to SPI1_CLK falling  
Polarity = 1, Phase =  
1,  
- 0.5tc(SPC)M + 5  
to SPI1_CLK falling  
(1) P = SYSCLK2 period  
(2) First bit may be MSB or LSB depending upon SPI configuration. MO(0) refers to first bit and MO(n) refers to last bit output on  
SPI1_SIMO. MI(0) refers to the first bit input and MI(n) refers to the last bit input on SPI1_SOMI.  
138  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
 
OMAP-L137  
www.ti.com  
No.  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
Table 5-64. General Timing Requirements for SPI1 Master Modes(1) (continued)  
PARAMATER  
MIN  
MAX  
UNIT  
Polarity = 0, Phase =  
0,  
from SPI1_CLK rising  
5
5
5
5
Polarity = 0, Phase =  
1,  
from SPI1_CLK falling  
Delay, subsequent bits valid on  
SPI1_SIMO after transmit edge of  
SPI1_CLK  
5
6
7
8
td(SPC_SIMO)M  
ns  
Polarity = 1, Phase =  
0,  
from SPI1_CLK falling  
Polarity = 1, Phase =  
1,  
from SPI1_CLK rising  
Polarity = 0, Phase =  
0,  
from SPI1_CLK falling  
0.5tc(SPC)M -3  
Polarity = 0, Phase =  
1,  
from SPI1_CLK rising  
0.5tc(SPC)M -3  
Output hold time, SPI1_SIMO valid  
after  
receive edge of SPI1_CLK  
toh(SPC_SIMO)M  
tsu(SOMI_SPC)M  
tih(SPC_SOMI)M  
ns  
ns  
ns  
Polarity = 1, Phase =  
0,  
from SPI1_CLK rising  
0.5tc(SPC)M -3  
Polarity = 1, Phase =  
1,  
from SPI1_CLK falling  
0.5tc(SPC)M -3  
Polarity = 0, Phase =  
0,  
to SPI1_CLK falling  
0
0
0
0
5
5
5
5
Polarity = 0, Phase =  
1,  
to SPI1_CLK rising  
Input Setup Time, SPI1_SOMI valid  
before  
receive edge of SPI1_CLK  
Polarity = 1, Phase =  
0,  
to SPI1_CLK rising  
Polarity = 1, Phase =  
1,  
to SPI1_CLK falling  
Polarity = 0, Phase =  
0,  
from SPI1_CLK falling  
Polarity = 0, Phase =  
1,  
from SPI1_CLK rising  
Input Hold Time, SPI1_SOMI valid  
after  
receive edge of SPI1_CLK  
Polarity = 1, Phase =  
0,  
from SPI1_CLK rising  
Polarity = 1, Phase =  
1,  
from SPI1_CLK falling  
Table 5-65. General Timing Requirements for SPI1 Slave Modes(1)  
No.  
9
PARAMATER  
MIN  
MAX  
UNIT  
ns  
tc(SPC)S  
Cycle Time, SPI1_CLK, All Slave Modes  
Pulse Width High, SPI1_CLK, All Slave Modes  
Pulse Width Low, SPI1_CLK, All Slave Modes  
greater of 3P or 40 ns  
10  
11  
tw(SPCH)S  
tw(SPCL)S  
18  
18  
ns  
ns  
(1) P = SYSCLK2 period  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
139  
 
 
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
UNIT  
Table 5-65. General Timing Requirements for SPI1 Slave Modes(1) (continued)  
No.  
PARAMATER  
MIN  
MAX  
Polarity = 0, Phase = 0,  
to SPI1_CLK rising  
2P  
2P  
2P  
2P  
Polarity = 0, Phase = 1,  
to SPI1_CLK rising  
Setup time, transmit data written to  
SPI before initial clock edge from  
master.(2) (3)  
12  
tsu(SOMI_SPC)S  
td(SPC_SOMI)S  
toh(SPC_SOMI)S  
tsu(SIMO_SPC)S  
tih(SPC_SIMO)S  
ns  
Polarity = 1, Phase = 0,  
to SPI1_CLK falling  
Polarity = 1, Phase = 1,  
to SPI1_CLK falling  
Polarity = 0, Phase = 0,  
from SPI1_CLK rising  
19  
Polarity = 0, Phase = 1,  
from SPI1_CLK falling  
19  
ns  
19  
Delay, subsequent bits valid on  
SPI1_SOMI after transmit edge of  
SPI1_CLK  
13  
14  
15  
16  
Polarity = 1, Phase = 0,  
from SPI1_CLK falling  
Polarity = 1, Phase = 1,  
from SPI1_CLK rising  
19  
Polarity = 0, Phase = 0,  
from SPI1_CLK falling  
0.5tc(SPC)S -3  
Polarity = 0, Phase = 1,  
from SPI1_CLK rising  
0.5tc(SPC)S -3  
Output hold time, SPI1_SOMI valid  
after  
receive edge of SPI1_CLK  
ns  
Polarity = 1, Phase = 0,  
from SPI1_CLK rising  
0.5tc(SPC)S -3  
Polarity = 1, Phase = 1,  
from SPI1_CLK falling  
0.5tc(SPC)S -3  
Polarity = 0, Phase = 0,  
to SPI1_CLK falling  
0
0
0
0
5
5
5
5
Polarity = 0, Phase = 1,  
to SPI1_CLK rising  
Input Setup Time, SPI1_SIMO valid  
before  
receive edge of SPI1_CLK  
ns  
Polarity = 1, Phase = 0,  
to SPI1_CLK rising  
Polarity = 1, Phase = 1,  
to SPI1_CLK falling  
Polarity = 0, Phase = 0,  
from SPI1_CLK falling  
Polarity = 0, Phase = 1,  
from SPI1_CLK rising  
Input Hold Time, SPI1_SIMO valid  
after  
receive edge of SPI1_CLK  
ns  
Polarity = 1, Phase = 0,  
from SPI1_CLK rising  
Polarity = 1, Phase = 1,  
from SPI1_CLK falling  
(2) First bit may be MSB or LSB depending upon SPI configuration. SO(0) refers to first bit and SO(n) refers to last bit output on  
SPI1_SOMI. SI(0) refers to the first bit input and SI(n) refers to the last bit input on SPI1_SIMO.  
(3) Measured from the termination of the write of new data to the SPI module, In analyzing throughput requirements, additional internal bus  
cycles must be accounted for to allow data to be written to the SPI module by the DSP CPU.  
140  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
 
OMAP-L137  
www.ti.com  
No.  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
Table 5-66. Additional(1) SPI1 Master Timings, 4-Pin Enable Option(2) (3)  
PARAMETER  
MIN  
MAX  
UNIT  
Polarity = 0, Phase = 0,  
to SPI1_CLK rising  
3P + 3  
Polarity = 0, Phase = 1,  
to SPI1_CLK rising  
0.5tc(SPC)M + 3P + 3  
3P + 3  
Delay from slave assertion of  
SPI1_ENA active to first SPI1_CLK  
from master.(4)  
17  
td(EN A_SPC)M  
ns  
Polarity = 1, Phase = 0,  
to SPI1_CLK falling  
Polarity = 1, Phase = 1,  
to SPI1_CLK falling  
0.5tc(SPC)M + 3P + 3  
0.5tc(SPC)M + P + 5  
P + 5  
Polarity = 0, Phase = 0,  
from SPI1_CLK falling  
Polarity = 0, Phase = 1,  
from SPI1_CLK falling  
Max delay for slave to deassert  
SPI1_ENA after final SPI1_CLK edge  
to ensure master does not begin the  
next transfer.(5)  
18  
td(SPC_ENA)M  
ns  
Polarity = 1, Phase = 0,  
from SPI1_CLK rising  
0.5tc(SPC)M + P + 5  
P + 5  
Polarity = 1, Phase = 1,  
from SPI1_CLK rising  
(1) These parameters are in addition to the general timings for SPI master modes (Table 5-64).  
(2) P = SYSCLK2 period  
(3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.  
(4) In the case where the master SPI is ready with new data before SPI1_ENA assertion.  
(5) In the case where the master SPI is ready with new data before SPI1_ENA deassertion.  
Table 5-67. Additional(1) SPI1 Master Timings, 4-Pin Chip Select Option(2) (3)  
No.  
PARAMATER  
MIN  
MAX  
UNIT  
Polarity = 0, Phase = 0,  
to SPI1_CLK rising  
2P -5  
Polarity = 0, Phase = 1,  
to SPI1_CLK rising  
0.5tc(SPC)M + 2P -5  
2P -5  
Delay from SPI1_SCS active to first  
SPI1_CLK(4) (5)  
19  
td(SCS_SPC)M  
ns  
Polarity = 1, Phase = 0,  
to SPI1_CLK falling  
Polarity = 1, Phase = 1,  
to SPI1_CLK falling  
0.5tc(SPC)M + 2P -5  
0.5tc(SPC)M + P - 3  
P - 3  
Polarity = 0, Phase = 0,  
from SPI1_CLK falling  
Polarity = 0, Phase = 1,  
from SPI1_CLK falling  
Delay from final SPI1_CLK edge to  
master deasserting SPI1_SCS  
20  
td(SPC_SCS)M  
ns  
(6) (7)  
Polarity = 1, Phase = 0,  
from SPI1_CLK rising  
0.5tc(SPC)M + P -3  
P - 3  
Polarity = 1, Phase = 1,  
from SPI1_CLK rising  
(1) These parameters are in addition to the general timings for SPI master modes (Table 5-64).  
(2) P = SYSCLK2 period  
(3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.  
(4) In the case where the master SPI is ready with new data before SPI1_SCS assertion.  
(5) This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0].  
(6) Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI1_SCS will remain  
asserted.  
(7) This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0].  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
141  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
UNIT  
Table 5-68. Additional(1) SPI1 Master Timings, 5-Pin Option(2) (3)  
No.  
PARAMATER  
MIN  
MAX  
Polarity = 0, Phase = 0,  
from SPI1_CLK falling  
0.5tc(SPC)M+P+5  
P+5  
Max delay for slave to  
Polarity = 0, Phase = 1,  
from SPI1_CLK falling  
deassert SPI1_ENA after final  
SPI1_CLK edge to ensure  
master does not begin the  
next transfer.(4)  
18  
td(SPC_ENA)M  
ns  
Polarity = 1, Phase = 0,  
from SPI1_CLK rising  
0.5tc(SPC)M+P+5  
P+5  
Polarity = 1, Phase = 1,  
from SPI1_CLK rising  
Polarity = 0, Phase = 0,  
from SPI1_CLK falling  
0.5tc(SPC)M + P -3  
P - 3  
Polarity = 0, Phase = 1,  
from SPI1_CLK falling  
Delay from final SPI1_CLK  
edge to  
20  
21  
22  
td(SPC_SCS)M  
td(SCSL_ENAL)M  
td(SCS_SPC)M  
ns  
ns  
ns  
master deasserting  
Polarity = 1, Phase = 0,  
from SPI1_CLK rising  
(5) (6)  
0.5tc(SPC)M+ P -3  
P - 3  
SPI1_SCS  
Polarity = 1, Phase = 1,  
from SPI1_CLK rising  
Max delay for slave SPI to drive SPI1_ENA valid after  
master asserts SPI1_SCS to delay the  
master from beginning the next transfer,  
C2TDELAY + P  
Polarity = 0, Phase = 0,  
to SPI1_CLK rising  
2P -5  
0.5tc(SPC)M + 2P -5  
2P -5  
Polarity = 0, Phase = 1,  
to SPI1_CLK rising  
Delay from SPI1_SCS active  
to first SPI1_CLK(7) (8) (9)  
Polarity = 1, Phase = 0,  
to SPI1_CLK falling  
Polarity = 1, Phase = 1,  
to SPI1_CLK falling  
0.5tc(SPC)M + 2P -5  
Polarity = 0, Phase = 0,  
to SPI1_CLK rising  
3P + 3  
0.5tc(SPC)M + 3P + 3  
3P + 3  
Polarity = 0, Phase = 1,  
to SPI1_CLK rising  
Delay from assertion of  
SPI1_ENA low to first  
SPI1_CLK edge.(10)  
23  
td(ENA_SPC)M  
ns  
Polarity = 1, Phase = 0,  
to SPI1_CLK falling  
Polarity = 1, Phase = 1,  
to SPI1_CLK falling  
0.5tc(SPC)M + 3P + 3  
(1) These parameters are in addition to the general timings for SPI master modes (Table 5-65).  
(2) P = SYSCLK2 period  
(3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.  
(4) In the case where the master SPI is ready with new data before SPI1_ENA deassertion.  
(5) Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI1_SCS will remain  
asserted.  
(6) This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0].  
(7) If SPI1_ENA is asserted immediately such that the transmission is not delayed by SPI1_ENA.  
(8) In the case where the master SPI is ready with new data before SPI1_SCS assertion.  
(9) This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0].  
(10) If SPI1_ENA was initially deasserted high and SPI1_CLK is delayed.  
142  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
OMAP-L137  
www.ti.com  
No.  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
Table 5-69. Additional(1) SPI1 Slave Timings, 4-Pin Enable Option(2) (3)  
PARAMETER  
MIN  
MAX  
UNIT  
Polarity = 0, Phase = 0,  
from SPI1_CLK falling  
1.5 P -3  
2.5 P + 19  
Polarity = 0, Phase = 1,  
from SPI1_CLK falling  
Delay from final  
– 0.5tc(SPC)M + 1.5 P -3  
1.5 P -3  
– 0.5tc(SPC)M + 2.5 P + 19  
2.5 P + 19  
SPI1_CLK edge to  
slave deasserting  
SPI1_ENA.  
24  
td(SPC_ENAH)S  
ns  
Polarity = 1, Phase = 0,  
from SPI1_CLK rising  
Polarity = 1, Phase = 1,  
from SPI1_CLK rising  
– 0.5tc(SPC)M + 1.5 P -3  
– 0.5tc(SPC)M + 2.5 P + 19  
(1) These parameters are in addition to the general timings for SPI slave modes (Table 5-65).  
(2) P = SYSCLK2 period  
(3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.  
Table 5-70. Additional(1) SPI1 Slave Timings, 4-Pin Chip Select Option(2) (3)  
No.  
PARAMETER  
MIN  
MAX  
UNIT  
Required delay from SPI1_SCS asserted at slave to first  
SPI1_CLK edge at slave.  
25  
td(SCSL_SPC)S  
2P  
ns  
Polarity = 0, Phase = 0,  
from SPI1_CLK falling  
0.5tc(SPC)M + P + 5  
P + 5  
Polarity = 0, Phase = 1,  
Required delay from final  
from SPI1_CLK falling  
26  
td(SPC_SCSH)S  
SPI1_CLK edge before  
ns  
Polarity = 1, Phase = 0,  
SPI1_SCS is deasserted.  
0.5tc(SPC)M + P + 5  
P + 5  
from SPI1_CLK rising  
Polarity = 1, Phase = 1,  
from SPI1_CLK rising  
Delay from master asserting SPI1_SCS to slave driving  
SPI1_SOMI valid  
27  
28  
tena(SCSL_SOMI)S  
tdis(SCSH_SOMI)S  
P + 19  
ns  
ns  
Delay from master deasserting SPI1_SCS to slave 3-stating  
SPI1_SOMI  
P + 19  
(1) These parameters are in addition to the general timings for SPI slave modes (Table 5-65).  
(2) P = SYSCLK2 period  
(3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.  
Table 5-71. Additional(1) SPI1 Slave Timings, 5-Pin Option(2) (3)  
No.  
PARAMETER  
MIN  
MAX  
UNIT  
Required delay from SPI1_SCS asserted at slave to first  
SPI1_CLK edge at slave.  
25  
td(SCSL_SPC)S  
2P  
ns  
Polarity = 0, Phase = 0,  
from SPI1_CLK falling  
0.5tc(SPC)M + P +  
5
Polarity = 0, Phase = 1,  
from SPI1_CLK falling  
P + 5  
Required delay from final SPI1_CLK  
edge before SPI1_SCS is  
deasserted.  
26  
td(SPC_SCSH)S  
ns  
Polarity = 1, Phase = 0,  
from SPI1_CLK rising  
0.5tc(SPC)M + P +  
5
Polarity = 1, Phase = 1,  
from SPI1_CLK rising  
P + 5  
Delay from master asserting SPI1_SCS to slave driving  
SPI1_SOMI valid  
27  
28  
29  
tena(SCSL_SOMI)S  
tdis(SCSH_SOMI)S  
tena(SCSL_ENA)S  
P + 19  
P + 19  
19  
ns  
ns  
ns  
Delay from master deasserting SPI1_SCS to slave 3-stating  
SPI1_SOMI  
Delay from master deasserting SPI1_SCS to slave driving  
SPI1_ENA valid  
(1) These parameters are in addition to the general timings for SPI slave modes (Table 5-65).  
(2) P = SYSCLK2 period  
(3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
143  
Product Folder Links: OMAP-L137  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
UNIT  
Table 5-71. Additional(1) SPI1 Slave Timings, 5-Pin Option(2) (3) (continued)  
No.  
PARAMETER  
MIN  
MAX  
Polarity = 0, Phase = 0,  
from SPI1_CLK falling  
2.5 P + 19  
2.5 P + 19  
2.5 P + 19  
2.5 P + 19  
Polarity = 0, Phase = 1,  
from SPI1_CLK rising  
Delay from final clock receive edge  
on SPI1_CLK to slave 3-stating or  
driving high SPI1_ENA.(4)  
30  
tdis(SPC_ENA)S  
ns  
Polarity = 1, Phase = 0,  
from SPI1_CLK rising  
Polarity = 1, Phase = 1,  
from SPI1_CLK falling  
(4) SPI1_ENA is driven low after the transmission completes if the SPIINT0.ENABLE_HIGHZ bit is programmed to 0. Otherwise it is 3-  
stated. If 3-stated, an external pullup resistor should be used to provide a valid level to the master. This option is useful when tying  
several SPI slave devices to a single master.  
144  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
 
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
1
MASTER MODE  
POLARITY = 0 PHASE = 0  
2
3
SPIx_CLK  
SPIx_SIMO  
SPIx_SOMI  
5
4
6
MO(0)  
7
MO(1)  
MO(n−1)  
MO(n)  
MI(n)  
8
MI(0)  
MI(1)  
MI(n−1)  
MASTER MODE  
POLARITY = 0 PHASE = 1  
4
SPIx_CLK  
SPIx_SIMO  
SPIx_SOMI  
6
5
MO(0)  
7
MO(1)  
MI(1)  
MO(n−1)  
MI(n−1)  
MO(n)  
MI(n)  
8
MI(0)  
4
MASTER MODE  
POLARITY = 1 PHASE = 0  
SPIx_CLK  
SPIx_SIMO  
SPIx_SOMI  
5
6
MO(0)  
7
MO(1)  
MI(1)  
MO(n−1)  
MO(n)  
MI(n)  
8
MI(0)  
MI(n−1)  
MASTER MODE  
POLARITY = 1 PHASE = 1  
SPIx_CLK  
SPIx_SIMO  
SPIx_SOMI  
5
4
6
MO(0)  
7
MO(1)  
MI(1)  
MO(n−1)  
MI(n−1)  
MO(n)  
MI(n)  
8
MI(0)  
Figure 5-38. SPI Timings—Master Mode  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
145  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
9
SLAVE MODE  
POLARITY = 0 PHASE = 0  
12  
10  
15  
11  
SPIx_CLK  
SPIx_SIMO  
SPIx_SOMI  
16  
SI(0)  
SI(1)  
13  
SI(n−1)  
SI(n)  
14  
SO(0)  
SO(1)  
SO(n−1)  
SO(n)  
12  
SLAVE MODE  
POLARITY = 0 PHASE = 1  
SPIx_CLK  
SPIx_SIMO  
SPIx_SOMI  
15  
SI(0)  
16  
SI(1)  
SI(n−1)  
SI(n)  
13  
SO(1)  
14  
SO(0)  
SO(n−1)  
SO(n)  
SLAVE MODE  
POLARITY = 1 PHASE = 0  
12  
SPIx_CLK  
SPIx_SIMO  
SPIx_SOMI  
15  
16  
SI(0)  
SI(1)  
SI(n−1)  
SI(n)  
13  
SO(1)  
14  
SO(n−1)  
SO(0)  
SO(n)  
SLAVE MODE  
POLARITY = 1 PHASE = 1  
12  
SPIx_CLK  
SPIx_SIMO  
SPIx_SOMI  
15  
16  
SI(0)  
SI(1)  
SI(n−1)  
SI(n)  
13  
SO(1)  
14  
SO(0)  
SO(n−1)  
SO(n)  
Figure 5-39. SPI Timings—Slave Mode  
146  
Peripheral Information and Electrical Specifications  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
MASTER MODE 4 PIN WITH ENABLE  
17  
18  
SPIx_CLK  
SPIx_SIMO  
SPIx_SOMI  
SPIx_ENA  
MO(0)  
MI(0)  
MO(n)  
MI(n)  
MO(n−1)  
MI(n−1)  
MO(1)  
MI(1)  
MASTER MODE 4 PIN WITH CHIP SELECT  
19  
20  
SPIx_CLK  
SPIx_SIMO  
SPIx_SOMI  
SPIx_SCS  
MO(0)  
MO(n)  
MI(n)  
MO(n−1)  
MI(n−1)  
MO(1)  
MI(1)  
MI(0)  
MASTER MODE 5 PIN  
23  
22  
20  
MO(1)  
18  
SPIx_CLK  
SPIx_SIMO  
SPIx_SOMI  
MO(0)  
MO(n−1)  
MO(n)  
MI(0)  
MI(1)  
MI(n−1)  
MI(n)  
21  
(A)  
(A)  
SPIx_ENA  
SPIx_SCS  
DESEL  
DESEL  
A. DESELECTED IS PROGRAMMABLE EITHER HIGH OR  
3−STATE (REQUIRES EXTERNAL PULLUP)  
Figure 5-40. SPI Timings—Master Mode (4-Pin and 5-Pin)  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
147  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
SLAVE MODE 4 PIN WITH ENABLE  
24  
SPIx_CLK  
SPIx_SOMI  
SPIx_SIMO  
SPIx_ENA  
SO(0)  
SI(0)  
SO(1)  
SO(n−1) SO(n)  
SI(n−1) SI(n)  
SI(1)  
SLAVE MODE 4 PIN WITH CHIP SELECT  
25  
26  
SPIx_CLK  
27  
28  
SO(n−1)  
SPIx_SOMI  
SPIx_SIMO  
SPIx_SCS  
SO(0)  
SO(1)  
SO(n)  
SI(0)  
SI(1)  
SI(n−1)  
SI(n)  
SLAVE MODE 5 PIN  
25  
26  
30  
SPIx_CLK  
27  
29  
28  
SO(1)  
SPIx_SOMI  
SPIx_SIMO  
SO(0)  
SI(0)  
SO(n−1)  
SO(n)  
SI(1)  
SI(n−1) SI(n)  
SPIx_ENA  
SPIx_SCS  
(A)  
(A)  
DESEL  
DESEL  
A. DESELECTED IS PROGRAMMABLE EITHER HIGH OR  
3−STATE (REQUIRES EXTERNAL PULLUP)  
Figure 5-41. SPI Timings—Slave Mode (4-Pin and 5-Pin)  
148  
Peripheral Information and Electrical Specifications  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
5.19 Enhanced Capture (eCAP) Peripheral  
The OMAP-L137 device contains up to three enhanced capture (eCAP) modules. Figure 5-42 shows a  
functional block diagram of a module. See the OMAP-L137 Applications Processor DSP Peripherals  
Overview Reference Guide. (SPRUGA6) for more details.  
Uses for ECAP include:  
Speed measurements of rotating machinery (e.g. toothed sprockets sensed via Hall sensors)  
Elapsed time measurements between position sensor triggers  
Period and duty cycle measurements of Pulse train signals  
Decoding current or voltage amplitude derived from cuty cycle encoded current/voltage sensors  
The ECAP module described in this specification includes the following features:  
32 bit time base  
4 event time-stamp registers (each 32 bits)  
Edge polarity selection for up to 4 sequenced time-stamp capture events  
Interrupt on either of the 4 events  
Single shot capture of up to 4 event time-stamps  
Continuous mode capture of time-stamps in a 4 deep circular buffer  
Absolute time-stamp capture  
Difference mode time-stamp capture  
All the above resources are dedicated to a single input pin  
The eCAP modules are clocked at the SYSCLK2 rate.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
149  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
CTRPHS  
(phase register−32 bit)  
SYNCIn  
APWM mode  
CTR_OVF  
OVF  
CTR [0−31]  
PRD [0−31]  
CMP [0−31]  
TSCTR  
(counter−32 bit)  
RST  
SYNCOut  
PWM  
compare  
logic  
Delta−mode  
32  
CTR=PRD  
CTR=CMP  
CTR [0−31]  
32  
PRD [0−31]  
eCAPx  
32  
LD1  
CAP1  
(APRD active)  
Polarity  
select  
LD  
APRD  
shadow  
32  
CMP [0−31]  
32  
32  
LD2  
Polarity  
select  
CAP2  
(ACMP active)  
LD  
Event  
qualifier  
32  
Event  
Pre-scale  
ACMP  
shadow  
Polarity  
select  
32  
32  
CAP3  
(APRD shadow)  
LD3  
LD4  
LD  
CAP4  
(ACMP shadow)  
Polarity  
select  
LD  
4
Capture events  
4
CEVT[1:4]  
Interrupt  
Trigger  
and  
Flag  
control  
Continuous /  
Oneshot  
Capture Control  
to Interrupt  
Controller  
CTR_OVF  
CTR=PRD  
CTR=CMP  
Figure 5-42. eCAP Functional Block Diagram  
150  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
Table 5-72 is the list of the ECAP registers.  
Table 5-72. ECAPx Configuration Registers  
ECAP0  
ECAP1  
BYTE ADDRESS  
ECAP2  
BYTE ADDRESS  
ACRONYM  
REGISTER DESCRIPTION  
Time-Stamp Counter  
BYTE ADDRESS  
0x01F0 6000  
0x01F0 6004  
0x01F0 6008  
0x01F0 600C  
0x01F0 6010  
0x01F0 6014  
0x01F0 6028  
0x01F0 602A  
0x01F0 602C  
0x01F0 602E  
0x01F0 6030  
0x01F0 6032  
0x01F0 605C  
0x01F0 7000  
0x01F0 7004  
0x01F0 7008  
0x01F0 700C  
0x01F0 7010  
0x01F0 7014  
0x01F0 7028  
0x01F0 702A  
0x01F0 702C  
0x01F0 702E  
0x01F0 7030  
0x01F0 7032  
0x01F0 705C  
0x01F0 8000  
0x01F0 8004  
0x01F0 8008  
0x01F0 800C  
0x01F0 8010  
0x01F0 8014  
0x01F0 8028  
0x01F0 802A  
0x01F0 802C  
0x01F0 802E  
0x01F0 8030  
0x01F0 8032  
0x01F0 805C  
TSCTR  
CTRPHS  
CAP1  
Counter Phase Offset Value Register  
Capture 1 Register  
CAP2  
Capture 2 Register  
CAP3  
Capture 3 Register  
CAP4  
Capture 4 Register  
ECCTL1  
ECCTL2  
ECEINT  
ECFLG  
ECCLR  
ECFRC  
REVID  
Capture Control Register 1  
Capture Control Register 2  
Capture Interrupt Enable Register  
Capture Interrupt Flag Register  
Capture Interrupt Clear Register  
Capture Interrupt Force Register  
Revision ID  
Table 5-73 shows the eCAP timing requirement and Table 5-74 shows the eCAP switching characteristics.  
Table 5-73. Enhanced Capture (eCAP) Timing Requirement  
PARAMETER  
TEST CONDITIONS  
Asynchronous  
Synchronous  
MIN  
MAX  
MAX  
UNIT  
cycles  
cycles  
tw(CAP)  
Capture input pulse width  
2tc(SCO)  
2tc(SCO)  
Table 5-74. eCAP Switching Characteristics  
PARAMETER  
Pulse duration, APWMx output high/low  
TEST CONDITIONS  
MIN  
UNIT  
tw(APWM)  
20  
ns  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
151  
 
 
 
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
5.20 Enhanced Quadrature Encoder (eQEP) Peripheral  
The OMAP-L137 device contains up to two enhanced quadrature encoder (eQEP) modules. See the  
OMAP-L137 Applications Processor DSP Peripherals Overview Reference Guide. (SPRUGA6) for more  
details.  
System  
control registers  
To CPU  
EQEPxENCLK  
SYSCLK2  
QCPRD  
QCAPCTL  
16  
QCTMR  
16  
16  
Quadrature  
capture unit  
(QCAP)  
QCTMRLAT  
QCPRDLAT  
QUTMR  
QUPRD  
QWDTMR  
QWDPRD  
Registers  
used by  
multiple units  
32  
16  
QEPCTL  
QEPSTS  
QFLG  
UTOUT  
UTIME  
QWDOG  
QDECCTL  
16  
WDTOUT  
EQEPxAIN  
EQEPxBIN  
EQEPxIIN  
EQEPxINT  
16  
EQEPxA/XCLK  
EQEPxB/XDIR  
EQEPxI  
QCLK  
QDIR  
QI  
QS  
Position counter/  
control unit  
(PCCU)  
EQEPxIOUT  
EQEPxIOE  
EQEPxSIN  
EQEPxSOUT  
EQEPxSOE  
Quadrature  
decoder  
(QDU)  
GPIO  
MUX  
QPOSLAT  
QPOSSLAT  
QPOSILAT  
PHE  
PCSOUT  
EQEPxS  
32  
32  
16  
QPOSCNT  
QPOSINIT  
QPOSMAX  
QEINT  
QFRC  
QPOSCMP  
QCLR  
QPOSCTL  
Enhanced QEP (eQEP) Peripheral  
Figure 5-43. eQEP Functional Block Diagram  
Table 5-75 is the list of the EQEP registers.  
Table 5-76 shows the eQEP timing requirement and Table 5-77 shows the eQEP switching  
characteristics.  
152  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
Table 5-75. EQEP Registers  
EQEP0  
EQEP1  
BYTE ADDRESS  
0x01F0 9000  
0x01F0 9004  
0x01F0 9008  
0x01F0 900C  
0x01F0 9010  
0x01F0 9014  
0x01F0 9018  
0x01F0 901C  
0x01F0 9020  
0x01F0 9024  
0x01F0 9026  
0x01F0 9028  
0x01F0 902A  
0x01F0 902C  
0x01F0 902E  
0x01F0 9030  
0x01F0 9032  
0x01F0 9034  
0x01F0 9036  
0x01F0 9038  
0x01F0 903A  
0x01F0 903C  
0x01F0 903E  
0x01F0 9040  
0x01F0 905C  
BYTE ADDRESS  
ACRONYM  
QPOSCNT  
QPOSINIT  
QPOSMAX  
QPOSCMP  
QPOSILAT  
QPOSSLAT  
QPOSLAT  
QUTMR  
REGISTER DESCRIPTION  
eQEP Position Counter  
0x01F0 A000  
0x01F0 A004  
0x01F0 A008  
0x01F0 A00C  
0x01F0 A010  
0x01F0 A014  
0x01F0 A018  
0x01F0 A01C  
0x01F0 A020  
0x01F0 A024  
0x01F0 A026  
0x01F0 A028  
0x01F0 A02A  
0x01F0 A02C  
0x01F0 A02E  
0x01F0 A030  
0x01F0 A032  
0x01F0 A034  
0x01F0 A036  
0x01F0 A038  
0x01F0 A03A  
0x01F0 A03C  
0x01F0 A03E  
0x01F0 A040  
0x01F0 A05C  
eQEP Initialization Position Count  
eQEP Maximum Position Count  
eQEP Position-compare  
eQEP Index Position Latch  
eQEP Strobe Position Latch  
eQEP Position Latch  
eQEP Unit Timer  
QUPRD  
eQEP Unit Period Register  
eQEP Watchdog Timer  
QWDTMR  
QWDPRD  
QDECCTL  
QEPCTL  
QCAPCTL  
QPOSCTL  
QEINT  
eQEP Watchdog Period Register  
eQEP Decoder Control Register  
eQEP Control Register  
eQEP Capture Control Register  
eQEP Position-compare Control Register  
eQEP Interrupt Enable Register  
eQEP Interrupt Flag Register  
eQEP Interrupt Clear Register  
eQEP Interrupt Force Register  
eQEP Status Register  
QFLG  
QCLR  
QFRC  
QEPSTS  
QCTMR  
eQEP Capture Timer  
QCPRD  
eQEP Capture Period Register  
eQEP Capture Timer Latch  
eQEP Capture Period Latch  
eQEP Revision ID  
QCTMRLAT  
QCPRDLAT  
REVID  
Table 5-76. Enhanced Quadrature Encoder Pulse (eQEP) Timing Requirements  
PARAMETER  
TEST CONDITIONS  
Asynchronous/synchronous  
Asynchronous/synchronous  
Asynchronous/synchronous  
Asynchronous/synchronous  
Asynchronous/synchronous  
MIN  
MAX  
UNIT  
cycles  
cycles  
cycles  
cycles  
cycles  
tw(QEPP)  
QEP input period  
2tc(SCO)  
2tc(SCO)  
2tc(SCO)  
2tc(SCO)  
2tc(SCO)  
tw(INDEXH)  
tw(INDEXL)  
tw(STROBH)  
tw(STROBL)  
QEP Index Input High time  
QEP Index Input Low time  
QEP Strobe High time  
QEP Strobe Input Low time  
Table 5-77. eQEP Switching Characteristics  
PARAMETER  
MIN  
MAX  
UNIT  
cycles  
cycles  
td(CNTR)xin  
Delay time, external clock to counter increment  
Delay time, QEP input edge to position compare sync output  
4tc(SCO)  
6tc(SCO)  
td(PCS-OUT)QEP  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
153  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
5.21 Enhanced High-Resolution Pulse-Width Modulator (eHRPWM)  
The OMAP-L137 device contains up to three enhanced PWM Modules (eHRPWM). Figure 5-44 shows a  
block diagram of multiple eHRPWM modules. Figure 4-4 shows the signal interconnections with the  
eHRPWM. See the OMAP-L137 Applications Processor DSP Peripherals Overview Reference Guide.  
(SPRUGA6) for more details.  
EPWMSYNCI  
EPWM0SYNCI  
EPWM0INT  
EPWM0A  
EPWM0B  
eHRPWM0 module  
EPWMTZ  
EPWM0SYNCO  
EPWM1SYNCI  
Interrupt  
Controllers  
EPWM1INT  
EPWM1A  
EPWM1B  
EPWMTZ  
GPIO  
MUX  
eHRPWM1 module  
EPWM1SYNCO  
EPWM2SYNCI  
EPWM2INT  
EPWM2A  
EPWM2B  
eHRPWM2 module  
EPWMTZ  
EPWM2SYNCO  
To eCAP0  
module  
(sync in)  
EPWMSYNCO  
Peripheral Bus  
Figure 5-44. Multiple PWM Modules in a OMAP-L137 System  
154  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
 
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
Time−base (TB)  
Sync  
in/out  
CTR=ZERO  
CTR=CMPB  
Disabled  
TBPRD shadow (16)  
TBPRD active (16)  
EPWMSYNCO  
control  
Mux  
CTR=PRD  
TBCTL[SYNCOSEL]  
TBCTL[CNTLDE]  
EPWMSYNCI  
TBCTL[SWFSYNC]  
(software forced sync)  
Counter  
up/down  
(16 bit)  
CTR=ZERO  
CTR_Dir  
TBCNT  
active (16)  
TBPHSHR (8)  
16  
8
CTR = PRD  
CTR = ZERO  
Phase  
control  
Event  
trigger  
and  
interrupt  
(ET)  
TBPHS active (24)  
EPWMxINT  
CTR = CMPA  
CTR = CMPB  
CTR_Dir  
Counter compare (CC)  
CTR=CMPA  
CMPAHR (8)  
Action  
qualifier  
(AQ)  
16  
8
HiRes PWM (HRPWM)  
CMPA active (24)  
EPWMA  
EPWMB  
EPWMxA  
CMPA shadow (24)  
CTR=CMPB  
Dead  
band  
(DB)  
PWM  
chopper  
(PC)  
Trip  
zone  
(TZ)  
16  
EPWMxB  
EPWMxTZINT  
TZ  
CMPB active (16)  
CMPB shadow (16)  
CTR = ZERO  
Figure 5-45. eHRPWM Sub-Modules Showing Critical Internal Signal Interconnections  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
155  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
Table 5-78. eHRPWM Module Control and Status Registers Grouped by Submodule  
eHRPWM0  
BYTE  
ADDRESS  
eHRPWM1  
BYTE  
ADDRESS  
eHRPWM2  
BYTE  
ADDRESS  
SIZE  
(×16) SHADOW  
ACRONYM  
REGISTER DESCRIPTION  
TIME-BASE SUBMODULE REGISTERS  
0x01F0 0000 0x01F0 2000 0x01F0 4000  
0x01F0 0002 0x01F0 2002 0x01F0 4002  
0x01F0 0004 0x01F0 2004 0x01F0 4004  
0x01F0 0006 0x01F0 2006 0x01F0 4006  
0x01F0 0008 0x01F0 2008 0x01F0 4008  
0x01F0 000A 0x01F0 200A 0x01F0 400A  
TBCTL  
TBSTS  
1
1
1
1
1
1
No  
No  
No  
No  
No  
Yes  
Time-Base Control Register  
Time-Base Status Register  
Extension for HRPWM Phase Register  
Time-Base Phase Register  
Time-Base Counter Register  
Time-Base Period Register  
(1)  
TBPHSHR  
TBPHS  
TBCNT  
TBPRD  
COUNTER-COMPARE SUBMODULE REGISTERS  
0x01F0 000E 0x01F0 200E 0x01F0 400E  
0x01F0 0010 0x01F0 2010 0x01F0 4010  
0x01F0 0012 0x01F0 2012 0x01F0 4012  
0x01F0 0014 0x01F0 2014 0x01F0 4014  
CMPCTL  
CMPAHR  
CMPA  
1
1
1
1
No  
No  
Counter-Compare Control Register  
(1)  
Extension for HRPWM Counter-Compare A Register  
Counter-Compare A Register  
Yes  
Yes  
CMPB  
Counter-Compare B Register  
ACTION-QUALIFIER SUBMODULE REGISTERS  
0x01F0 0016 0x01F0 2016 0x01F0 4016  
0x01F0 0018 0x01F0 2018 0x01F0 4018  
AQCTLA  
1
No  
Action-Qualifier Control Register for Output A  
(eHRPWMxA)  
AQCTLB  
1
No  
Action-Qualifier Control Register for Output B  
(eHRPWMxB)  
0x01F0 001A 0x01F0 201A 0x01F0 401A  
0x01F0 001C 0x01F0 201C 0x01F0 401C  
AQSFRC  
1
1
No  
Action-Qualifier Software Force Register  
AQCSFRC  
Yes  
Action-Qualifier Continuous S/W Force Register Set  
DEAD-BAND GENERATOR SUBMODULE REGISTER  
0x01F0 001E 0x01F0 201E 0x01F0 401E  
0x01F0 0020 0x01F0 2020 0x01F0 4020  
DBCTL  
DBRED  
1
1
No  
No  
Dead-Band Generator Control Register  
Dead-Band Generator Rising Edge Delay Count  
Register  
0x01F0 0022 0x01F0 2022 0x01F0 4022  
0x01F0 003C 0x01F0 203C 0x01F0 403C  
DBFED  
1
No  
Dead-Band Generator Falling Edge Delay Count  
Register  
PWM-CHOPPER SUBMODULE REGISTERS  
PCCTL No PWM-Chopper Control Register  
TRIP-ZONE SUBMODULE REGISTERS  
1
0x01F0 0024 0x01F0 2024 0x01F0 4024  
0x01F0 0028 0x01F0 2028 0x01F0 4028  
0x01F0 002A 0x01F0 202A 0x01F0 402A  
0x01F0 002C 0x01F0 202C 0x01F0 402C  
0x01F0 002E 0x01F0 202E 0x01F0 402E  
0x01F0 0030 0x01F0 2030 0x01F0 4030  
TZSEL  
TZCTL  
TZEINT  
TZFLG  
TZCLR  
TZFRC  
1
1
1
1
1
1
No  
No  
No  
No  
No  
No  
Trip-Zone Select Register  
Trip-Zone Control Register  
Trip-Zone Enable Interrupt Register  
Trip-Zone Flag Register  
Trip-Zone Clear Register  
Trip-Zone Force Register  
EVENT-TRIGGER SUBMODULE REGISTERS  
0x01F0 0032 0x01F0 2032 0x01F0 4032  
0x01F0 0034 0x01F0 2034 0x01F0 4034  
0x01F0 0036 0x01F0 2036 0x01F0 4036  
0x01F0 0038 0x01F0 2038 0x01F0 4038  
0x01F0 003A 0x01F0 203A 0x01F0 403A  
ETSEL  
ETPS  
1
1
1
1
1
No  
No  
No  
No  
No  
Event-Trigger Selection Register  
Event-Trigger Pre-Scale Register  
Event-Trigger Flag Register  
Event-Trigger Clear Register  
Event-Trigger Force Register  
ETFLG  
ETCLR  
ETFRC  
HIGH-RESOLUTION PWM (HRPWM) SUBMODULE REGISTERS  
(1)  
0x01F0 1040 0x01F0 3040 0x01F0 5040  
HRCNFG  
1
No  
HRPWM Configuration Register  
(1) These registers are only available on eHRPWM instances that include the high-resolution PWM (HRPWM) extension; otherwise, these  
locations are reserved.  
156  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
5.21.1 Enhanced Pulse Width Modulator (eHRPWM) Timing  
PWM refers to PWM outputs on eHRPWM1-6. Table 5-79 shows the PWM timing requirements and  
Table 5-80, switching characteristics.  
Table 5-79. eHRPWM Timing Requirements  
PARAMETER  
TEST CONDITIONS  
Asynchronous  
MIN  
MAX  
UNIT  
cycles  
cycles  
tw(SYNCIN)  
Sync input pulse width  
2tc(SCO)  
2tc(SCO)  
Synchronous  
Table 5-80. eHRPWM Switching Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
20  
MAX  
UNIT  
ns  
tw(PWM)  
Pulse duration, PWMx output high/low  
Sync output pulse width  
tw(SYNCOUT)  
td(PWM)TZA  
8tc(SCO)  
cycles  
ns  
Delay time, trip input active to PWM forced high  
Delay time, trip input active to PWM forced low  
no pin load;  
no additional  
programmable delay  
25  
20  
td(TZ-PWM)HZ  
Delay time, trip input active to PWM Hi-Z  
no additional  
ns  
programmable delay  
5.21.2 Trip-Zone Input Timing  
t
w(TZ)  
TZ  
t
d(TZ_PWM)HZ  
(A)  
PWM  
A. PWM refers to all the PWM pins in the device. The state of the PWM pins after TZ is taken high depends on the PWM  
recovery software.  
Figure 5-46. PWM Hi-Z Characteristics  
Table 5-81. Trip-Zone input Timing Requirements  
PARAMETER  
MIN  
MAX  
UNIT  
cycles  
cycles  
tw(TZ)  
Pulse duration, TZx input low  
Asynchronous  
Synchronous  
1tc(SCO)  
2tc(SCO)  
Table 5-82 shows the high-resolution PWM switching characteristics.  
Table 5-82. High Resolution PWM Characteristics at SYSCLKOUT = (60 - 100 MHz)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Micro Edge Positioning (MEP) step size(1)  
200  
ps  
(1) MEP step size will increase with low voltage and high temperature and decrease with high voltage and cold temperature.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
157  
 
 
 
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
5.22 LCD Controller  
The LCD controller consists of two independent controllers, the Raster Controller and the LCD Interface  
Display Driver (LIDD) controller. Each controller operates independently from the other and only one of  
them is active at any given time.  
The Raster Controller handles the synchronous LCD interface. It provides timing and data for constant  
graphics refresh to a passive display. It supports a wide variety of monochrome and full-color display  
types and sizes by use of programmable timing controls, a built-in palette, and a gray-scale/serializer.  
Graphics data is processed and stored in frame buffers. A frame buffer is a contiguous memory block  
in the system. A built-in DMA engine supplies the graphics data to the Raster engine which, in turn,  
outputs to the external LCD device.  
The LIDD Controller supports the asynchronous LCD interface. It provides full-timing programmability  
of control signals (CS, WE, OE, ALE) and output data.  
The maximum resolution for the LCD controller is 1024 x 1024 pixels. The maximum frame rate is  
determined by the image size in combination with the pixel clock rate. OMAP-L1x/C674x/AM1x SOC  
Architecture and Throughput Overview (SPRAB93).  
Table 5-83 lists the LCD Controller registers  
Table 5-83. LCD Controller (LCDC) Registers  
BYTE ADDRESS  
0x01E1 3000  
0x01E1 3004  
0x01E1 3008  
0x01E1 300C  
0x01E1 3010  
0x01E1 3014  
0x01E1 3018  
0x01E1 301C  
0x01E1 3020  
0x01E1 3024  
0x01E1 3028  
0x01E1 302C  
0x01E1 3030  
0x01E1 3034  
0x01E1 3038  
0x01E1 3040  
0x01E1 3044  
0x01E1 3048  
0x01E1 304C  
0x01E1 3050  
ACRONYM  
REVID  
REGISTER DESCRIPTION  
LCD Revision Identification Register  
LCD_CTRL  
LCD Control Register  
LCD_STAT  
LCD Status Register  
LIDD_CTRL  
LCD LIDD Control Register  
LIDD_CS0_CONF  
LIDD_CS0_ADDR  
LIDD_CS0_DATA  
LIDD_CS1_CONF  
LIDD_CS1_ADDR  
LIDD_CS1_DATA  
RASTER_CTRL  
LCD LIDD CS0 Configuration Register  
LCD LIDD CS0 Address Read/Write Register  
LCD LIDD CS0 Data Read/Write Register  
LCD LIDD CS1 Configuration Register  
LCD LIDD CS1 Address Read/Write Register  
LCD LIDD CS1 Data Read/Write Register  
LCD Raster Control Register  
RASTER_TIMING_0  
RASTER_TIMING_1  
RASTER_TIMING_2  
RASTER_SUBPANEL  
LCDDMA_CTRL  
LCDDMA_FB0_BASE  
LCDDMA_FB0_CEILING  
LCDDMA_FB1_BASE  
LCDDMA_FB1_CEILING  
LCD Raster Timing 0 Register  
LCD Raster Timing 1 Register  
LCD Raster Timing 2 Register  
LCD Raster Subpanel Display Register  
LCD DMA Control Register  
LCD DMA Frame Buffer 0 Base Address Register  
LCD DMA Frame Buffer 0 Ceiling Address Register  
LCD DMA Frame Buffer 1 Base Address Register  
LCD DMA Frame Buffer 1 Ceiling Address Register  
158  
Peripheral Information and Electrical Specifications  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
 
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
5.22.1 LCD Interface Display Driver (LIDD Mode)  
Table 5-84. LCD LIDD Mode Timing Requirements  
No.  
16  
PARAMETER  
MIN  
7
MAX  
UNIT  
ns  
tsu(LCD_D)  
th(LCD_D)  
Setup time, LCD_D[15:0] valid before LCD_MCLK high  
Hold time, LCD_D[15:0] valid after LCD_MCLK high  
17  
0.5  
ns  
Table 5-85. LCD LIDD Mode Timing Characteristics  
No.  
4
PARAMETER  
MIN  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
MAX  
10  
10  
7
UNIT  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
td(LCD_D_V)  
td(LCD_D_I)  
td(LCD_E_A  
td(LCD_E_I)  
td(LCD_A_A)  
td(LCD_A_I)  
Delay time, LCD_MCLK high to LCD_D[15:0] valid (write)  
Delay time, LCD_MCLK high to LCD_D[15:0] invalid (write)  
Delay time, LCD_MCLK high to LCD_AC_ENB_CS low  
Delay time, LCD_MCLK high to LCD_AC_ENB_CS high  
Delay time, LCD_MCLK high to LCD_VSYNC low  
Delay time, LCD_MCLK high to LCD_VSYNC high  
Delay time, LCD_MCLK high to LCD_HSYNC low  
Delay time, LCD_MCLK high to LCD_HSYNC high  
Delay time, LCD_MCLK high to LCD_PCLK active  
Delay time, LCD_MCLK high to LCD_PCLK inactive  
Delay time, LCD_MCLK high to LCD_D[15:0] in 3-state  
Delay time, LCD_MCLK high to LCD_D[15:0] (valid from 3-state)  
5
6
)
7
7
8
8
9
8
10  
11  
12  
13  
14  
15  
td(LCD_W_A)  
td(LCD_W_I)  
td(LCD_STRB_A)  
td(LCD_STRB_I)  
td(LCD_D_Z)  
td(Z_LCD_D)  
8
8
12  
12  
12  
12  
CS_DELAY  
R_SU  
(0 to 31)  
W_HOLD  
(1 to 15)  
1
2
R_HOLD  
(1 to 15)  
W_SU  
(0 to 31)  
W_STROBE  
(1 to 63)  
CS_DELAY  
R_STROBE  
(1 to 63)  
3
LCD_MCLK  
4
5
14  
17  
16  
15  
LCD_D[15:0]  
LCD_PCLK  
Write Data  
Data[7:0]  
Read Status  
Not Used  
8
9
LCD_VSYNC  
LCD_HSYNC  
RS  
10  
11  
R/W  
12  
12  
13  
13  
E0  
E1  
LCD_AC_ENB_CS  
Figure 5-47. Character Display HD44780 Write  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
159  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
W_HOLD  
(1–15)  
R_SU  
(0–31)  
R_STROBE R_HOLD CS_DELAY  
(1–63) (1–5)  
W_SU  
(0–31)  
W_STROBE  
(1–63)  
CS_DELAY  
1
2
Not  
3
Used  
LCD_MCLK  
LCD_D[7:0]  
4
17  
15  
5
14  
16  
Data[7:0]  
Write Instruction  
Read  
Data  
LCD_PCLK  
Not  
Used  
8
9
RS  
LCD_VSYNC  
LCD_HSYNC  
10  
11  
R/W  
12  
13  
13  
12  
E0  
E1  
LCD_AC_ENB_CS  
Figure 5-48. Character Display HD44780 Read  
160  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
W_HOLD  
(1−15)  
W_HOLD  
(1−15)  
W_SU  
(0−31)  
W_STROBE  
(1−63)  
CS_DELAY  
W_SU  
(0−31)  
W_STROBE  
(1−63)  
CS_DELAY  
1
2
3
Clock  
LCD_MCLK  
4
6
5
7
5
4
LCD_D[15:0]  
Write Address  
Write Data  
Data[15:0]  
6
7
LCD_AC_ENB_CS  
(async mode)  
CS0  
CS1  
9
8
A0  
R/W  
E
LCD_VSYNC  
10  
11  
10  
11  
LCD_HSYNC  
LCD_PCLK  
12  
13  
12  
13  
Figure 5-49. Micro-Interface Graphic Display 6800 Write  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
161  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
W_HOLD  
(1−15)  
R_SU  
(0−31)  
W_SU  
(0−31)  
W_STROBE  
(1−63)  
CS_DELAY  
R_STROBE R_HOLD CS_DELAY  
(1−63  
1
(1−15)  
3
2
Clock  
LCD_MCLK  
4
14  
5
16  
15  
Data[15:0]  
17  
LCD_D[15:0]  
Write Address  
Read  
Data  
6
6
7
7
LCD_AC_ENB_CS  
(async mode)  
CS0  
CS1  
9
8
LCD_VSYNC  
LCD_HSYNC  
LCD_PCLK  
A0  
R/W  
E
11  
10  
13  
12  
13  
12  
Figure 5-50. Micro-Interface Graphic Display 6800 Read  
162  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
R_SU  
(0−31)  
R_SU  
(0−31)  
R_STROBE R_HOLD CS_DELAY  
(1−63) (1−15)  
R_HOLD CS_DELAY  
(1−15)  
R_STROBE  
(1−63)  
1
2
3
Clock  
LCD_MCLK  
17  
17  
14 16  
14  
15  
7
16  
15  
LCD_D[15:0]  
Data[15:0]  
Read  
Read  
Data  
Status  
6
7
6
LCD_AC_ENB_CS  
(async mode)  
CS0  
CS1  
8
9
LCD_VSYNC  
LCD_HSYNC  
A0  
R/W  
E
13  
12  
12  
13  
LCD_PCLK  
Figure 5-51. Micro-Interface Graphic Display 6800 Status  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
163  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
W_HOLD  
(1−15)  
W_HOLD  
(1−15)  
W_SU  
W_STROBE  
CS_DELAY  
W_SU  
(0−31)  
W_STROBE  
(1−63)  
CS_DELAY  
1
2
(0−31)  
3
(1−63)  
Clock  
LCD_MCLK  
4
5
4
5
LCD_D[15:0]  
Write Address  
Write Data  
7
6
6
7
LCD_AC_ENB_CS  
(async mode)  
CS0  
CS1  
8
9
LCD_VSYNC  
LCD_HSYNC  
LCD_PCLK  
A0  
WR  
RD  
11  
10  
10  
11  
Figure 5-52. Micro-Interface Graphic Display 8080 Write  
164  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
W_HOLD  
(1−15)  
R_SU  
(0−31)  
W_SU  
(0−31)  
W_STROBE  
(1−63)  
CS_DELAY  
R_STROBE  
(1−63)  
R_HOLD CS_DELAY  
(1−15)  
1
Clock  
2
3
LCD_MCLK  
4
5
16  
17  
15  
Data[15:0]  
14  
LCD_D[15:0]  
Write Address  
Read  
Data  
7
6
7
6
LCD_AC_ENB_CS  
(async mode)  
CS0  
CS1  
9
8
LCD_VSYNC  
LCD_HSYNC  
LCD_PCLK  
A0  
11  
10  
WR  
12  
13  
RD  
Figure 5-53. Micro-Interface Graphic Display 8080 Read  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
165  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
R_SU  
(0−31)  
R_SU  
(0−31)  
R_STROBE R_HOLD CS_DELAY  
R_STROBE R_HOLD  
CS_DELAY  
1
2
(1−15)  
(1−63)  
(1−63)  
(1−15)  
3
Clock  
LCD_MCLK  
17  
16  
17  
15  
Data[15:0]  
14  
6
16  
15  
14  
LCD_D[15:0]  
Read Data  
Read Status  
7
6
7
9
LCD_AC_ENB_CS  
CS0  
CS1  
8
A0  
WR  
RD  
LCD_VSYNC  
LCD_HSYNC  
12  
13  
13  
12  
LCD_PCLK  
Figure 5-54. Micro-Interface Graphic Display 8080 Status  
166  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
5.22.2 LCD Raster Mode  
Table 5-86. LCD Raster Mode Timing  
See Figure 5-55 through Figure 5-59  
No.  
PARAMETER  
Cycle time, pixel clock  
MIN  
26.6  
MAX  
UNIT  
ns  
1
2
tc(PIXEL_CLK)  
tw(PIXEL_CLK_H)  
tw(PIXEL_CLK_L)  
td(LCD_D_V)  
Pulse duration, pixel clock high  
10  
ns  
3
Pulse duration, pixel clock low  
10  
ns  
4
Delay time, LCD_PCLK high to LCD_D[15:0] valid (write)  
Delay time, LCD_PCLK high to LCD_D[15:0] invalid (write)  
Delay time, LCD_PCLK low to LCD_AC_ENB_CS high  
Delay time, LCD_PCLK low to LCD_AC_ENB_CS low  
Delay time, LCD_PCLK low to LCD_VSYNC high(2)  
Delay time, LCD_PCLK low to LCD_VSYNC low(2)  
Delay time, LCD_PCLK high to LCD_HSYNC high(2)  
Delay time, LCD_PCLK high to LCD_HSYNC low(2)  
-0.5  
9
ns  
5
td(LCD_D_IV)  
-0.5  
9
S2 + 9(1)  
S2 + 9(1)  
12  
ns  
6
td(LCD_AC_ENB_CS_A)  
td(LCD_AC_ENB_CS_I)  
td(LCD_VSYNC_A)  
td(LCD_VSYNC_I)  
td(LCD_HSYNC_A)  
td(LCD_HSYNC_I)  
S2 - 0.5(1)  
S2 - 0.5(1)  
-0.5  
ns  
7
ns  
8
ns  
9
-0.5  
12  
ns  
10  
11  
-0.5  
12  
ns  
-0.5  
12  
ns  
(1) S2 = SYSCLK2 cycle time in ns  
(2) The activation edge of the control signals LCD_VSYNC and LCD_HSYNC may be programmed to either the rising or falling edge of the  
pixel clock through the LCD (RASTER_TIMING_2) register. In Figure 5-56 through Figure 5-59, all signal polarity and activation edges  
are based on the default LCD (RASTER_TIMING_2) register settings.  
Frame-to-frame timing is derived through the following parameters in the LCD (RASTER_TIMING_1)  
register:  
Vertical front porch (VFP)  
Vertical sync pulse width (VSW)  
Vertical back porch (VBP)  
Lines per panel (LPP)  
Line-to-line timing is derived through the following parameters in the LCD (RASTER_TIMING_0) register:  
Horizontal front porch (HFP)  
Horizontal sync pulse width (HSW)  
Horizontal back porch (HBP)  
Pixels per panel (PPL)  
LCD_AC_ENB_CS timing is derived through the following parameter in the LCD (RASTER_TIMING_2)  
register:  
AC bias frequency (ACB)  
The display format produced in raster mode is shown in Figure 5-55. An entire frame is delivered one line  
at a time. The first line delivered starts at data pixel (1, 1) and ends at data pixel (P, 1). The last line  
delivered starts at data pixel (1, L) and ends at data pixel (P, L). The beginning of each new frame is  
denoted by the activation of I/O signal LCD_VSYNC. The beginning of each new line is denoted by the  
activation of I/O signal LCD_HSYNC.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
167  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
Data Pixels (From 1 to P)  
P−2,  
1
P−1,  
1
1, 1  
1, 2  
1, 3  
2, 1  
2, 2  
3, 1  
P, 1  
P, 2  
P, 3  
P−1,  
2
LCD  
P,  
1,  
L−2  
L−2  
1,  
2,  
P,  
P−1,  
L−1  
L−1  
L−1  
L−1  
P−2,  
L
P−1,  
L
1, L  
2, L  
3, L  
P, L  
Figure 5-55. LCD Raster-Mode Display Format  
168  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
Frame Time ~ 70 Hz  
Active TFT  
VSW  
VBP  
LPP  
(1 to 1024)  
VFP  
VSW  
(1 to 64)  
(0 to 255)  
(1 to 64)  
(0 to 255)  
Line  
Time  
Hsync  
LCD_HSYNC  
LCD_VSYNC  
Vsync  
Data  
LCD_D[15:0]  
1, L-1  
P, L-1  
1, L  
P, L  
1, 2  
P, 2  
1, 1  
P, 1  
LCD_AC_ENB_CS  
10  
11  
Hsync  
LCD_HSYNC  
CLK  
LCD_PCLK  
Data  
LCD_D[15:0]  
2, 1  
1, 2  
P, 2  
P, 1  
1, 1  
2, 2  
Enable  
LCD_AC_ENB_CS  
PLL  
HFP  
(1 to 256)  
HSW  
HBP  
PLL  
(1 to 256)  
(1 to 64)  
16 × (1 to 1024)  
Line 1  
16 × (1 to 1024)  
Line 2  
Figure 5-56. LCD Raster-Mode Active  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
169  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
Frame Time ~ 70Hz  
VBP = 0  
VFP = 0  
VBP = 0  
VFP = 0  
VSW = 1  
VSW = 1  
(1 to 64)  
LPP  
Passive STN  
LCD_HSYNC  
(1 to 64)  
(1 to 1024)  
Line  
Time  
LP  
FP  
LCD_VSYNC  
1, L  
Data  
1, 2  
P, 2  
1, 1:  
P, 1  
1, 5:  
P, 5  
1, L  
P, L  
1, 1  
P, 1  
1, L:  
P, L  
1, 3: 1, 4:  
P, 3 P, 4  
1, 6:  
P, 6  
1, 2:  
P, 2  
LCD_D[7:0]  
1, L−1  
P, L−1  
1, L−4 1, L−3  
P, L−4 P, L−3  
1, L−2  
P, L−2  
1, L−1  
P, L−1  
M
LCD_AC_ENB_CS  
ACB  
ACB  
(0 to 255)  
(0 to 255)  
11  
10  
LP  
LCD_HSYNC  
LCD_PCLK  
LCD_D[7:0]  
CP  
Data  
1, 5  
P, 6  
1, 6  
2, 6  
2, 5  
P, 5  
PPL  
HFP  
HSW  
(1 to 64)  
HBP  
PPL  
16 (1 to 1024)  
Line 5  
(1 to 256)  
(1 to 256)  
16 (1 to 2024)  
Line 6  
Figure 5-57. LCD Raster-Mode Passive  
170  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
6
LCD_AC_ENB_CS  
8
LCD_VSYNC  
LCD_HSYNC  
11  
10  
1
2
3
LCD_PCLK  
(passive mode)  
5
4
LCD_D[7:0]  
2, L  
2, 1  
1, L  
P, L  
1, 1  
P, 1  
(passive mode)  
1
3
2
LCD_PCLK  
(active mode)  
4
5
LCD_D[15:0]  
(active mode)  
1, L  
P, L  
2, L  
VBP = 0  
VFP = 0  
VSW = 1  
PPL  
HSW  
HBP  
PPL  
(1 to 1024)  
×
HFP  
(1 to 256  
(1 to 1024)  
(1 to 64)  
(1 to 256)  
×
16  
16  
Line L  
Line 1 (Passive Only)  
Figure 5-58. LCD Raster-Mode Control Signal Activation  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
171  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
7
LCD_AC_ENB_CS  
LCD_VSYNC  
9
11  
10  
LCD_HSYNC  
1
3
4
LCD_PCLK  
(passive mode)  
5
4
LCD_D[7:0]  
2, 1  
2, 2  
1, 1  
P, 1  
1, 2  
P, 2  
(passive mode)  
1
3
2
LCD_PCLK  
(active mode)  
4
5
LCD_D[15:0]  
(active mode)  
1, 1  
P, 1  
2, 1  
VBP = 0  
VFP = 0  
VSW = 1  
PPL  
HSW  
HBP  
PPL  
(1 to 1024)  
×
HFP  
(1 to 1024)  
(1 to 256  
(1 to 64)  
(1 to 256)  
×
16  
16  
Line 1 for passive  
Line 1 for active  
Line 2 for passive  
Figure 5-59. LCD Raster-Mode Control Signal Deactivation  
172  
Peripheral Information and Electrical Specifications  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
5.23 Timers  
The timers support the following features:  
Configurable as single 64-bit timer or two 32-bit timers  
Period timeouts generate interrupts, DMA events or external pin events  
8 32-bit compare registers  
Compare matches generate interrupt events  
Capture capability  
64-bit Watchdog capability (Timer64P1 only)  
Table 5-87 lists the timer registers.  
Table 5-87. Timer Registers  
Timer64P 0  
0x01C2 0000  
0x01C2 0004  
0x01C2 0008  
0x01C2 000C  
0x01C2 0010  
0x01C2 0014  
0x01C2 0018  
0x01C2 001C  
0x01C2 0020  
0x01C2 0024  
0x01C2 0028  
0x01C2 0034  
0x01C2 0038  
0x01C2 003C  
0x01C2 0040  
0x01C2 0044  
0x01C2 0060  
0x01C2 0064  
0x01C2 0068  
0x01C2 006C  
0x01C2 0070  
0x01C2 0074  
0x01C2 0078  
0x01C2 007C  
Timer64P 1  
0x01C2 1000  
0x01C2 1004  
0x01C2 1008  
0x01C2 100C  
0x01C2 1010  
0x01C2 1014  
0x01C2 1018  
0x01C2 101C  
0x01C2 1020  
0x01C2 1024  
0x01C2 1028  
0x01C2 1034  
0x01C2 1038  
0x01C2 103C  
0x01C2 1040  
0x01C2 1044  
0x01C2 1060  
0x01C2 1064  
0x01C2 1068  
0x01C2 106C  
0x01C2 1070  
0x01C2 1074  
0x01C2 1078  
0x01C2 107C  
ACRONYM  
REGISTER DESCRIPTION  
REV  
EMUMGT  
GPINTGPEN  
GPDATGPDIR  
TIM12  
Revision Register  
Emulation Management Register  
GPIO Interrupt and GPIO Enable Register  
GPIO Data and GPIO Direction Register  
Timer Counter Register 12  
Timer Counter Register 34  
Timer Period Register 12  
Timer Period Register 34  
Timer Control Register  
TIM34  
PRD12  
PRD34  
TCR  
TGCR  
Timer Global Control Register  
Watchdog Timer Control Register  
Timer Reload Register 12  
Timer Reload Register 34  
Timer Capture Register 12  
Timer Capture Register 34  
Timer Interrupt Control and Status Register  
Compare Register 0  
WDTCR  
REL12  
REL34  
CAP12  
CAP34  
INTCTLSTAT  
CMP0  
CMP1  
Compare Register 1  
CMP2  
Compare Register 2  
CMP3  
Compare Register 3  
CMP4  
Compare Register 4  
CMP5  
Compare Register 5  
CMP6  
Compare Register 6  
CMP7  
Compare Register 7  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
173  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
 
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
5.23.1 Timer Electrical Data/Timing  
Table 5-88. Timing Requirements for Timer Input(1) (2) (see Figure 5-60)  
No.  
1
PARAMETER  
Cycle time, TM64Px_IN12  
MIN  
MAX  
UNIT  
tc(TM64Px_IN12)  
tw(TINPH)  
4P  
ns  
2
Pulse duration, TM64Px_IN12 high  
Pulse duration, TM64Px_IN12 low  
Transition time, TM64Px_IN12  
0.45C  
0.45C  
0.55C  
0.55C  
0.25P or 10(3)  
ns  
ns  
ns  
3
tw(TINPL)  
4
tt(TM64Px_IN12)  
(1) P = OSCIN cycle time in ns.  
(2) C = TM64P0_IN12 cycle time in ns. For example, when TM64Px_IN12 frequency is 27 MHz, use C = 37.037 ns  
(3) Whichever is smaller. P = the period of the applied signal. Maintaining transition times as fast as possible is recommended to improve  
noise immunity on input signals.  
1
2
3
4
4
TM64P0_IN12  
Figure 5-60. Timer Timing  
Table 5-89. Switching Characteristics Over Recommended Operating Conditions for Timer Output  
(1)  
No.  
5
PARAMETER  
Pulse duration, TM64P0_OUT12 high  
Pulse duration, TM64P0_OUT12 low  
MIN  
4P  
MAX  
UNIT  
ns  
tw(TOUTH)  
tw(TOUTL)  
6
4P  
ns  
(1) P = OSCIN cycle time in ns. For example, when OSCIN frequency is 27 MHz, use P = 37.037 ns.  
5
6
TM64P0_OUT12  
Figure 5-61. Timer Timing  
174  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
 
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
5.24 Inter-Integrated Circuit Serial Ports (I2C0, I2C1)  
5.24.1 I2C Device-Specific Information  
Having two I2C modules on the OMAP-L137 simplifies system architecture, since one module may be  
used by the DSP to control local peripherals ICs (DACs, ADCs, etc.) while the other may be used to  
communicate with other controllers in a system or to implement a user interface. Figure 5-62 is block  
diagram of the OMAP-L137 I2C Module.  
Each I2C port supports:  
Compatible with Philips® I2C Specification Revision 2.1 (January 2000)  
Fast Mode up to 400 Kbps (no fail-safe I/O buffers)  
Noise Filter to Remove Noise 50 ns or less  
Seven- and Ten-Bit Device Addressing Modes  
Master (Transmit/Receive) and Slave (Transmit/Receive) Functionality  
Events: DMA, Interrupt, or Polling  
General-Purpose I/O Capability if not used as I2C  
Clock Prescaler  
I2CPSCx  
Control  
I2CCOARx  
Prescaler  
Register  
Own Address  
Register  
Slave Address  
Register  
I2CSARx  
Bit Clock Generator  
I2CCLKHx  
Noise  
Filter  
I2Cx_SCL  
Clock Divide  
High Register  
I2CCMDRx  
I2CEMDRx  
I2CCNTx  
I2CPID1  
Mode Register  
Extended Mode  
Register  
Clock Divide  
Low Register  
I2CCLKLx  
Data Count  
Register  
Peripheral  
Configuration  
Bus  
Transmit  
Peripheral ID  
Register 1  
Transmit Shift  
Register  
I2CXSRx  
Peripheral ID  
Register 2  
I2CPID2  
I2CDXRx  
Transmit Buffer  
Noise  
Filter  
I2Cx_SDA  
Interrupt/DMA  
Interrupt Enable  
Register  
Receive  
I2CIERx  
Interrupt DMA  
Requests  
Receive Buffer  
I2CDRRx  
Interrupt Status  
Register  
I2CSTRx  
I2CSRCx  
Receive Shift  
Register  
Interrupt Source  
Register  
I2CRSRx  
Control  
Pin Function  
Register  
Pin Data Out  
Register  
I2CPDOUT  
I2CPFUNC  
Pin Direction  
Register  
Pin Data Set  
Register  
I2CPDIR  
I2CPDIN  
I2CPDSET  
I2CPDCLR  
Pin Data In  
Register  
Pin Data Clear  
Register  
Figure 5-62. I2C Module Block Diagram  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
175  
 
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
5.24.2 I2C Peripheral Registers Description(s)  
Table 5-90 is the list of the I2C registers.  
Table 5-90. Inter-Integrated Circuit (I2C) Registers  
I2C0  
BYTE ADDRESS  
I2C1  
ACRONYM  
REGISTER DESCRIPTION  
I2C Own Address Register  
BYTE ADDRESS  
0x01E2 8000  
0x01E2 8004  
0x01E2 8008  
0x01E2 800C  
0x01E2 8010  
0x01E2 8014  
0x01E2 8018  
0x01E2 801C  
0x01E2 8020  
0x01E2 8024  
0x01E2 8028  
0x01E2 802C  
0x01E2 8030  
0x01E2 8034  
0x01E2 8038  
0x01E2 8048  
0x01E2 804C  
0x01E2 8050  
0x01E2 8054  
0x01E2 8058  
0x01E2 805C  
0x01C2 2000  
0x01C2 2004  
0x01C2 2008  
0x01C2 200C  
0x01C2 2010  
0x01C2 2014  
0x01C2 2018  
0x01C2 201C  
0x01C2 2020  
0x01C2 2024  
0x01C2 2028  
0x01C2 202C  
0x01C2 2030  
0x01C2 2034  
0x01C2 2038  
0x01C2 2048  
0x01C2 204C  
0x01C2 2050  
0x01C2 2054  
0x01C2 2058  
0x01C2 205C  
ICOAR  
ICIMR  
I2C Interrupt Mask Register  
I2C Interrupt Status Register  
I2C Clock Low-Time Divider Register  
I2C Clock High-Time Divider Register  
I2C Data Count Register  
ICSTR  
ICCLKL  
ICCLKH  
ICCNT  
ICDRR  
I2C Data Receive Register  
I2C Slave Address Register  
I2C Data Transmit Register  
I2C Mode Register  
ICSAR  
ICDXR  
ICMDR  
ICIVR  
I2C Interrupt Vector Register  
I2C Extended Mode Register  
I2C Prescaler Register  
ICEMDR  
ICPSC  
REVID1  
REVID2  
ICPFUNC  
ICPDIR  
ICPDIN  
ICPDOUT  
ICPDSET  
ICPDCLR  
I2C Revision Identification Register 1  
I2C Revision Identification Register 2  
I2C Pin Function Register  
I2C Pin Direction Register  
I2C Pin Data In Register  
I2C Pin Data Out Register  
I2C Pin Data Set Register  
I2C Pin Data Clear Register  
176  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
 
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
5.24.3 I2C Electrical Data/Timing  
5.24.3.1 Inter-Integrated Circuit (I2C) Timing  
Table 5-91 and Table 5-92 assume testing over recommended operating conditions (see Figure 5-63 and  
Figure 5-64).  
Table 5-91. I2C Input Timing Requirements  
No.  
PARAMETER  
MIN  
MAX  
UNIT  
Standard Mode  
Fast Mode  
10  
2.5  
4.7  
0.6  
4
1
tc(SCL)  
Cycle time, I2Cx_SCL  
μs  
Standard Mode  
Fast Mode  
2
3
4
5
6
7
8
9
tsu(SCLH-SDAL)  
th(SCLL-SDAL)  
tw(SCLL)  
Setup time, I2Cx_SCL high before I2Cx_SDA low  
Hold time, I2Cx_SCL low after I2Cx_SDA low  
Pulse duration, I2Cx_SCL low  
μs  
μs  
μs  
μs  
ns  
μs  
μs  
ns  
ns  
ns  
ns  
μs  
ns  
pF  
Standard Mode  
Fast Mode  
0.6  
4.7  
1.3  
4
Standard Mode  
Fast Mode  
Standard Mode  
Fast Mode  
tw(SCLH)  
Pulse duration, I2Cx_SCL high  
0.6  
250  
100  
0
Standard Mode  
Fast Mode  
tsu(SDA-SCLH)  
th(SDA-SCLL)  
tw(SDAH)  
Setup time, I2Cx_SDA before I2Cx_SCL high  
Hold time, I2Cx_SDA after I2Cx_SCL low  
Pulse duration, I2Cx_SDA high  
Standard Mode  
Fast Mode  
0
0.9  
Standard Mode  
Fast Mode  
4.7  
1.3  
Standard Mode  
Fast Mode  
1000  
300  
1000  
300  
300  
300  
300  
300  
tr(SDA)  
Rise time, I2Cx_SDA  
20 + 0.1Cb  
20 + 0.1Cb  
20 + 0.1Cb  
Standard Mode  
Fast Mode  
10 tr(SCL)  
11 tf(SDA)  
12 tf(SCL)  
13 tsu(SCLH-SDAH)  
14 tw(SP)  
Rise time, I2Cx_SCL  
Standard Mode  
Fast Mode  
Fall time, I2Cx_SDA  
Standard Mode  
Fast Mode  
Fall time, I2Cx_SCL  
20 + 0.1Cb  
Standard Mode  
Fast Mode  
4
0.6  
N/A  
0
Setup time, I2Cx_SCL high before I2Cx_SDA high  
Pulse duration, spike (must be suppressed)  
Capacitive load for each bus line  
Standard Mode  
Fast Mode  
50  
400  
400  
Standard Mode  
Fast Mode  
15 Cb  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
177  
 
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
Table 5-92. I2C Switching Characteristics(1)  
No.  
PARAMETER  
MIN  
MAX  
UNIT  
Standard Mode  
Fast Mode  
10  
2.5  
4.7  
0.6  
4
16 tc(SCL)  
Cycle time, I2Cx_SCL  
μs  
Standard Mode  
Fast Mode  
17 tsu(SCLH-SDAL)  
18 th(SDAL-SCLL)  
19 tw(SCLL)  
Setup time, I2Cx_SCL high before I2Cx_SDA low  
Hold time, I2Cx_SCL low after I2Cx_SDA low  
Pulse duration, I2Cx_SCL low  
μs  
μs  
μs  
μs  
ns  
μs  
μs  
μs  
Standard Mode  
Fast Mode  
0.6  
4.7  
1.3  
4
Standard Mode  
Fast Mode  
Standard Mode  
Fast Mode  
20 tw(SCLH)  
Pulse duration, I2Cx_SCL high  
0.6  
250  
100  
0
Standard Mode  
Fast Mode  
21 tsu(SDAV-SCLH)  
22 th(SCLL-SDAV)  
23 tw(SDAH)  
Setup time, I2Cx_SDA valid before I2Cx_SCL high  
Hold time, I2Cx_SDA valid after I2Cx_SCL low  
Pulse duration, I2Cx_SDA high  
Standard Mode  
Fast Mode  
0
0.9  
Standard Mode  
Fast Mode  
4.7  
1.3  
4
Standard Mode  
Fast Mode  
28 tsu(SCLH-SDAH)  
Setup time, I2Cx_SCL high before I2Cx_SDA high  
0.6  
(1) I2C must be configured correctly to meet the timings in Table 5-92.  
11  
9
I2Cx_SDA  
6
8
14  
4
13  
5
10  
I2Cx_SCL  
1
12  
3
2
7
3
Stop  
Start  
Repeated  
Start  
Stop  
Figure 5-63. I2C Receive Timings  
178  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
 
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
26  
24  
I2Cx_SDA  
21  
23  
19  
28  
20  
25  
I2Cx_SCL  
16  
27  
18  
17  
22  
18  
Stop  
Start  
Repeated  
Start  
Stop  
Figure 5-64. I2C Transmit Timings  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
179  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
5.25 Universal Asynchronous Receiver/Transmitter (UART)  
OMAP-L137 has three UART peripherals. Each UART has the following features:  
16-byte storage space for both the transmitter and receiver FIFOs  
Autoflow control signals (CTS, RTS) on UART0 only  
1, 4, 8, or 14 byte selectable receiver FIFO trigger level for autoflow control and DMA  
DMA signaling capability for both received and transmitted data  
Programmable auto-rts and auto-cts for autoflow control  
Programmable Baud Rate up to 3MBaud  
Programmable Oversampling Options of x13 and x16  
Frequency pre-scale values from 1 to 65,535 to generate appropriate baud rates  
Prioritized interrupts  
Programmable serial data formats  
5, 6, 7, or 8-bit characters  
Even, odd, or no parity bit generation and detection  
1, 1.5, or 2 stop bit generation  
False start bit detection  
Line break generation and detection  
Internal diagnostic capabilities  
Loopback controls for communications link fault isolation  
Break, parity, overrun, and framing error simulation  
The UART registers are listed in Section 5.25.1  
5.25.1 UART Peripheral Registers Description(s)  
Table 5-93 is the list of UART registers.  
Table 5-93. UART Registers  
UART0  
UART1  
UART2  
ACRONYM  
REGISTER DESCRIPTION  
BYTE ADDRESS  
BYTE ADDRESS  
BYTE ADDRESS  
0x01C4 2000  
0x01C4 2000  
0x01C4 2004  
0x01C4 2008  
0x01C4 2008  
0x01C4 200C  
0x01C4 2010  
0x01C4 2014  
0x01C4 2018  
0x01C4 201C  
0x01C4 2020  
0x01C4 2024  
0x01C4 2028  
0x01C4 2030  
0x01C4 2034  
0x01D0 C000  
0x01D0 C000  
0x01D0 C004  
0x01D0 C008  
0x01D0 C008  
0x01D0 C00C  
0x01D0 C010  
0x01D0 C014  
0x01D0 C018  
0x01D0 C01C  
0x01D0 C020  
0x01D0 C024  
0x01D0 C028  
0x01D0 C030  
0x01D0 C034  
0x01D0 D000  
0x01D0 D000  
0x01D0 D004  
0x01D0 D008  
0x01D0 D008  
0x01D0 D00C  
0x01D0 D010  
0x01D0 D014  
0x01D0 D018  
0x01D0 D01C  
0x01D0 D020  
0x01D0 D024  
0x01D0 D028  
0x01D0 D030  
0x01D0 D034  
RBR  
THR  
IER  
Receiver Buffer Register (read only)  
Transmitter Holding Register (write only)  
Interrupt Enable Register  
Interrupt Identification Register (read only)  
FIFO Control Register (write only)  
Line Control Register  
IIR  
FCR  
LCR  
MCR  
LSR  
Modem Control Register  
Line Status Register  
MSR  
SCR  
DLL  
Modem Status Register  
Scratchpad Register  
Divisor LSB Latch  
DLH  
REVID1  
Divisor MSB Latch  
Revision Identification Register 1  
PWREMU_MGMT Power and Emulation Management Register  
MDR  
Mode Definition Register  
180  
Peripheral Information and Electrical Specifications  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
 
 
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
5.25.2 UART Electrical Data/Timing  
Table 5-94. Timing Requirements for UARTx Receive(1) (see Figure 5-65)  
No.  
4
PARAMETER  
Pulse duration, receive data bit (RXDn)  
Pulse duration, receive start bit  
MIN  
MAX  
1.05U  
1.05U  
UNIT  
ns  
tw(URXDB)  
tw(URXSB)  
0.96U  
0.96U  
5
ns  
(1) U = UART baud time = 1/programmed baud rate.  
Table 5-95. Switching Characteristics Over Recommended Operating Conditions for UARTx Transmit(1)  
(see Figure 5-65)  
No.  
1
PARAMETER  
Maximum programmable baud rate  
Pulse duration, transmit data bit (TXDn)  
Pulse duration, transmit start bit  
MIN  
MAX  
UNIT  
MBaud(4)  
ns  
(2) (3)  
f(baud)  
D/E  
2
tw(UTXDB)  
tw(UTXSB)  
U - 2  
U - 2  
U + 2  
U + 2  
3
ns  
(1) U = UART baud time = 1/programmed baud rate.  
(2) D = UART input clock in MHz. The UART(s) input clock source is PLL0_SYSCLK2.  
(3) E = UART divisor x UART sampling rate. The UART divisor is set through the UART divisor latch registers (DLL and DLH). The UART  
sampling rate is set through the over-sampling mode select bit (OSM_SEL) of the UART mode definition register (MDR).  
(4) Baud rate is not indicative of data rate. Actual data rate will be limited by system factors such as EDMA loading, EMIF loading, system  
frequency, etc.  
3
2
Start  
Bit  
UART_TXDn  
Data Bits  
5
4
Start  
Bit  
UART_RXDn  
Data Bits  
Figure 5-65. UART Transmit/Receive Timing  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
181  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
 
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
5.26 USB1 Host Controller Registers (USB1.1 OHCI)  
All the device USB interfaces are compliant with Universal Serial Bus Specification, Revision 1.1.  
Table 5-96 is the list of USB Host Controller registers.  
Table 5-96. USB1 Host Controller Registers  
BYTE ADDRESS  
0x01E2 5000  
0x01E2 5004  
0x01E2 5008  
0x01E2 500C  
0x01E2 5010  
0x01E2 5014  
0x01E2 5018  
0x01E2 501C  
0x01E2 5020  
0x01E2 5024  
0x01E2 5028  
0x01E2 502C  
0x01E2 5030  
0x01E2 5034  
0x01E2 5038  
0x01E2 503C  
0x01E2 5040  
0x01E2 5044  
0x01E2 5048  
0x01E2 504C  
0x01E2 5050  
0x01E2 5054  
0x01E2 5058  
ACRONYM  
HCREVISION  
REGISTER DESCRIPTION  
OHCI Revision Number Register  
HCCONTROL  
HC Operating Mode Register  
HC Command and Status Register  
HC Interrupt and Status Register  
HC Interrupt Enable Register  
HC Interrupt Disable Register  
HC HCAA Address Register(1)  
HC Current Periodic Register(1)  
HC Head Control Register(1)  
HC Current Control Register(1)  
HC Head Bulk Register(1)  
HCCOMMANDSTATUS  
HCINTERRUPTSTATUS  
HCINTERRUPTENABLE  
HCINTERRUPTDISABLE  
HCHCCA  
HCPERIODCURRENTED  
HCCONTROLHEADED  
HCCONTROLCURRENTED  
HCBULKHEADED  
HCBULKCURRENTED  
HCDONEHEAD  
HC Current Bulk Register(1)  
HC Head Done Register(1)  
HCFMINTERVAL  
HC Frame Interval Register  
HC Frame Remaining Register  
HC Frame Number Register  
HC Periodic Start Register  
HCFMREMAINING  
HCFMNUMBER  
HCPERIODICSTART  
HCLSTHRESHOLD  
HCRHDESCRIPTORA  
HCRHDESCRIPTORB  
HCRHSTATUS  
HC Low-Speed Threshold Register  
HC Root Hub A Register  
HC Root Hub B Register  
HC Root Hub Status Register  
HC Port 1 Status and Control Register(2)  
HC Port 2 Status and Control Register(3)  
HCRHPORTSTATUS1  
HCRHPORTSTATUS2  
(1) Restrictions apply to the physical addresses used in these registers.  
(2) Connected to the integrated USB1.1 phy pins (USB1_DM, USB1_DP).  
(3) Although the controller implements two ports, the second port cannot be used.  
Table 5-97. Switching Characteristics Over Recommended Operating Conditions for USB1  
LOW SPEED  
FULL SPEED  
No.  
PARAMETER  
UNIT  
MIN  
MAX  
300(1)  
300(1)  
120(2)  
2(1)  
MIN  
MAX  
20(1)  
20(1)  
110(2)  
2(1)  
U1  
U2  
U3  
U4  
U5  
U6  
tr  
Rise time, USB1_DP and USB1_DM signals(1)  
Fall time, USB1_DP and USB1_DM signals(1)  
Rise/Fall time matching(2)  
Output signal cross-over voltage(1)  
Differential propagation jitter(3)  
75(1)  
75(1)  
80(2)  
1.3(1)  
-25(3)  
4(1)  
4(1)  
90(2)  
1.3(1)  
-2(3)  
ns  
ns  
tf  
tRFM  
VCRS  
tj  
%
V
25(3)  
2(3)  
ns  
fop  
Operating frequency(4)  
1.5  
12  
MHz  
(1) Low Speed: CL = 200 pF. High Speed: CL = 50pF  
(2) tRFM =( tr/tf ) x 100  
(3) t jr = t px(1) - tpx(0)  
(4) fop = 1/tper  
5.26.1 USB1 Unused Signal Configuration  
If USB1 is unused, then the USB1 signals should be configured as shown in Section 5.4.  
182  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
 
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
5.27 USB0 OTG (USB2.0 OTG)  
The OMAP-L137 USB2.0 peripheral supports the following features:  
USB 2.0 peripheral at speeds high speed (HS: 480 Mb/s ) and full speed (FS: 12 Mb/s)  
USB 2.0 host at speeds HS, FS, and low speed (LS: 1.5 Mb/s)  
All transfer modes (control, bulk, interrupt, and isochronous)  
4 Transmit (TX) and 4 Receive (RX) endpoints in addition to endpoint 0  
FIFO RAM  
4K endpoint  
Programmable size  
Integrated USB 2.0 High Speed PHY  
Connects to a standard Charge Pump for VBUS 5 V generation  
RNDIS mode for accelerating RNDIS type protocols using short packet termination over USB  
Important Notice: On the original device pinout (marked "A" in the lower right corner of the package),  
pins USB0_VSSA33 (H4) and USB0_VSSA (F3) were connected to ground outside the package. For  
more robust ESD performance, the USB0 ground references are now connected inside the package on  
packages marked "B" and the package pins are unconnected. This change will require that any external  
filter circuits previously referenced to ground at these pins will need to reference the board ground instead.  
Important Notice: The USB0 controller module clock (PLL0_SYSCLK2) must be greater than 30 MHz for  
proper operation of the USB controller. A clock rate of 60 MHz or greater is recommended to avoid data  
throughput reduction.  
Table 5-98 is the list of USB OTG registers.  
Table 5-98. Universal Serial Bus OTG (USB0) Registers  
BYTE ADDRESS  
0x01E0 0000  
0x01E0 0004  
0x01E0 0008  
0x01E0 000C  
0x01E0 0010  
0x01E0 0014  
0x01E0 0018  
0x01E0 001C  
0x01E0 0020  
0x01E0 0024  
0x01E0 0028  
0x01E0 002C  
0x01E0 0030  
0x01E0 0034  
0x01E0 0038  
0x01E0 003C  
0x01E0 0040  
0x01E0 0050  
0x01E0 0054  
0x01E0 0058  
0x01E0 005C  
0x01E0 0400  
0x01E0 0401  
0x01E0 0402  
ACRONYM  
REVID  
REGISTER DESCRIPTION  
Revision Register  
Control Register  
CTRLR  
STATR  
Status Register  
EMUR  
Emulation Register  
Mode Register  
MODE  
AUTOREQ  
SRPFIXTIME  
TEARDOWN  
INTSRCR  
INTSETR  
Autorequest Register  
SRP Fix Time Register  
Teardown Register  
USB Interrupt Source Register  
USB Interrupt Source Set Register  
USB Interrupt Source Clear Register  
USB Interrupt Mask Register  
USB Interrupt Mask Set Register  
USB Interrupt Mask Clear Register  
USB Interrupt Source Masked Register  
USB End of Interrupt Register  
Reserved  
INTCLRR  
INTMSKR  
INTMSKSETR  
INTMSKCLRR  
INTMASKEDR  
EOIR  
-
GENRNDISSZ1  
GENRNDISSZ2  
GENRNDISSZ3  
GENRNDISSZ4  
FADDR  
Generic RNDIS Size EP1  
Generic RNDIS Size EP2  
Generic RNDIS Size EP3  
Generic RNDIS Size EP4  
Function Address Register  
POWER  
Power Management Register  
Interrupt Register for Endpoint 0 plus Transmit Endpoints 1 to 4  
INTRTX  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
183  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
 
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
Table 5-98. Universal Serial Bus OTG (USB0) Registers (continued)  
BYTE ADDRESS  
0x01E0 0404  
0x01E0 0406  
0x01E0 0408  
0x01E0 040A  
0x01E0 040B  
0x01E0 040C  
0x01E0 040E  
0x01E0 040F  
ACRONYM  
INTRRX  
REGISTER DESCRIPTION  
Interrupt Register for Receive Endpoints 1 to 4  
Interrupt Enable Register for INTRTX  
Interrupt Enable Register for INTRRX  
Interrupt Register for Common USB Interrupts  
Interrupt Enable Register for INTRUSB  
Frame Number Register  
INTRTXE  
INTRRXE  
INTRUSB  
INTRUSBE  
FRAME  
INDEX  
Index Register for Selecting the Endpoint Status and Control Registers  
Register to Enable the USB 2.0 Test Modes  
TESTMODE  
INDEXED REGISTERS  
These registers operate on the endpoint selected by the INDEX register  
0x01E0 0410  
0x01E0 0412  
TXMAXP  
PERI_CSR0  
HOST_CSR0  
PERI_TXCSR  
HOST_TXCSR  
RXMAXP  
Maximum Packet Size for Peripheral/Host Transmit Endpoint  
(Index register set to select Endpoints 1-4 only)  
Control Status Register for Endpoint 0 in Peripheral Mode.  
(Index register set to select Endpoint 0)  
Control Status Register for Endpoint 0 in Host Mode.  
(Index register set to select Endpoint 0)  
Control Status Register for Peripheral Transmit Endpoint.  
(Index register set to select Endpoints 1-4)  
Control Status Register for Host Transmit Endpoint.  
(Index register set to select Endpoints 1-4)  
0x01E0 0414  
0x01E0 0416  
Maximum Packet Size for Peripheral/Host Receive Endpoint  
(Index register set to select Endpoints 1-4 only)  
PERI_RXCSR  
HOST_RXCSR  
COUNT0  
Control Status Register for Peripheral Receive Endpoint.  
(Index register set to select Endpoints 1-4)  
Control Status Register for Host Receive Endpoint.  
(Index register set to select Endpoints 1-4)  
0x01E0 0418  
0x01E0 041A  
0x01E0 041B  
Number of Received Bytes in Endpoint 0 FIFO.  
(Index register set to select Endpoint 0)  
RXCOUNT  
Number of Bytes in Host Receive Endpoint FIFO.  
(Index register set to select Endpoints 1- 4)  
HOST_TYPE0  
Defines the speed of Endpoint 0  
HOST_TXTYPE  
Sets the operating speed, transaction protocol and peripheral endpoint  
number for the host Transmit endpoint.  
(Index register set to select Endpoints 1-4 only)  
HOST_NAKLIMIT0  
Sets the NAK response timeout on Endpoint 0.  
(Index register set to select Endpoint 0)  
HOST_TXINTERVAL  
Sets the polling interval for Interrupt/ISOC transactions or the NAK  
response timeout on Bulk transactions for host Transmit endpoint.  
(Index register set to select Endpoints 1-4 only)  
0x01E0 041C  
0x01E0 041D  
0x01E0 041F  
HOST_RXTYPE  
HOST_RXINTERVAL  
CONFIGDATA  
Sets the operating speed, transaction protocol and peripheral endpoint  
number for the host Receive endpoint.  
(Index register set to select Endpoints 1-4 only)  
Sets the polling interval for Interrupt/ISOC transactions or the NAK  
response timeout on Bulk transactions for host Receive endpoint.  
(Index register set to select Endpoints 1-4 only)  
Returns details of core configuration.  
(Index register set to select Endpoint 0)  
FIFO  
0x01E0 0420  
0x01E0 0424  
0x01E0 0428  
0x01E0 042C  
0x01E0 0430  
FIFO0  
FIFO1  
FIFO2  
FIFO3  
FIFO4  
Transmit and Receive FIFO Register for Endpoint 0  
Transmit and Receive FIFO Register for Endpoint 1  
Transmit and Receive FIFO Register for Endpoint 2  
Transmit and Receive FIFO Register for Endpoint 3  
Transmit and Receive FIFO Register for Endpoint 4  
OTG DEVICE CONTROL  
184  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
Table 5-98. Universal Serial Bus OTG (USB0) Registers (continued)  
BYTE ADDRESS  
ACRONYM  
REGISTER DESCRIPTION  
Device Control Register  
DYNAMIC FIFO CONTROL  
0x01E0 0460  
DEVCTL  
0x01E0 0462  
0x01E0 0463  
0x01E0 0464  
0x01E0 0466  
0x01E0 046C  
TXFIFOSZ  
RXFIFOSZ  
Transmit Endpoint FIFO Size  
(Index register set to select Endpoints 1-4 only)  
Receive Endpoint FIFO Size  
(Index register set to select Endpoints 1-4 only)  
TXFIFOADDR  
RXFIFOADDR  
HWVERS  
Transmit Endpoint FIFO Address  
(Index register set to select Endpoints 1-4 only)  
Receive Endpoint FIFO Address  
(Index register set to select Endpoints 1-4 only)  
Hardware Version Register  
TARGET ENDPOINT 0 CONTROL REGISTERS, VALID ONLY IN HOST MODE  
0x01E0 0480  
0x01E0 0482  
TXFUNCADDR  
Address of the target function that has to be accessed through the  
associated Transmit Endpoint.  
TXHUBADDR  
Address of the hub that has to be accessed through the associated  
Transmit Endpoint. This is used only when full speed or low speed  
device is connected via a USB2.0 high-speed hub.  
0x01E0 0483  
TXHUBPORT  
Port of the hub that has to be accessed through the associated  
Transmit Endpoint. This is used only when full speed or low speed  
device is connected via a USB2.0 high-speed hub.  
0x01E0 0484  
0x01E0 0486  
RXFUNCADDR  
RXHUBADDR  
Address of the target function that has to be accessed through the  
associated Receive Endpoint.  
Address of the hub that has to be accessed through the associated  
Receive Endpoint. This is used only when full speed or low speed  
device is connected via a USB2.0 high-speed hub.  
0x01E0 0487  
RXHUBPORT  
Port of the hub that has to be accessed through the associated Receive  
Endpoint. This is used only when full speed or low speed device is  
connected via a USB2.0 high-speed hub.  
TARGET ENDPOINT 1 CONTROL REGISTERS, VALID ONLY IN HOST MODE  
0x01E0 0488  
0x01E0 048A  
TXFUNCADDR  
Address of the target function that has to be accessed through the  
associated Transmit Endpoint.  
TXHUBADDR  
Address of the hub that has to be accessed through the associated  
Transmit Endpoint. This is used only when full speed or low speed  
device is connected via a USB2.0 high-speed hub.  
0x01E0 048B  
TXHUBPORT  
Port of the hub that has to be accessed through the associated  
Transmit Endpoint. This is used only when full speed or low speed  
device is connected via a USB2.0 high-speed hub.  
0x01E0 048C  
0x01E0 048E  
RXFUNCADDR  
RXHUBADDR  
Address of the target function that has to be accessed through the  
associated Receive Endpoint.  
Address of the hub that has to be accessed through the associated  
Receive Endpoint. This is used only when full speed or low speed  
device is connected via a USB2.0 high-speed hub.  
0x01E0 048F  
RXHUBPORT  
Port of the hub that has to be accessed through the associated Receive  
Endpoint. This is used only when full speed or low speed device is  
connected via a USB2.0 high-speed hub.  
TARGET ENDPOINT 2 CONTROL REGISTERS, VALID ONLY IN HOST MODE  
0x01E0 0490  
0x01E0 0492  
TXFUNCADDR  
Address of the target function that has to be accessed through the  
associated Transmit Endpoint.  
TXHUBADDR  
Address of the hub that has to be accessed through the associated  
Transmit Endpoint. This is used only when full speed or low speed  
device is connected via a USB2.0 high-speed hub.  
0x01E0 0493  
0x01E0 0494  
TXHUBPORT  
Port of the hub that has to be accessed through the associated  
Transmit Endpoint. This is used only when full speed or low speed  
device is connected via a USB2.0 high-speed hub.  
RXFUNCADDR  
Address of the target function that has to be accessed through the  
associated Receive Endpoint.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
185  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
Table 5-98. Universal Serial Bus OTG (USB0) Registers (continued)  
BYTE ADDRESS  
ACRONYM  
REGISTER DESCRIPTION  
0x01E0 0496  
RXHUBADDR  
Address of the hub that has to be accessed through the associated  
Receive Endpoint. This is used only when full speed or low speed  
device is connected via a USB2.0 high-speed hub.  
0x01E0 0497  
RXHUBPORT  
Port of the hub that has to be accessed through the associated Receive  
Endpoint. This is used only when full speed or low speed device is  
connected via a USB2.0 high-speed hub.  
TARGET ENDPOINT 3 CONTROL REGISTERS, VALID ONLY IN HOST MODE  
0x01E0 0498  
0x01E0 049A  
TXFUNCADDR  
Address of the target function that has to be accessed through the  
associated Transmit Endpoint.  
TXHUBADDR  
Address of the hub that has to be accessed through the associated  
Transmit Endpoint. This is used only when full speed or low speed  
device is connected via a USB2.0 high-speed hub.  
0x01E0 049B  
TXHUBPORT  
Port of the hub that has to be accessed through the associated  
Transmit Endpoint. This is used only when full speed or low speed  
device is connected via a USB2.0 high-speed hub.  
0x01E0 049C  
0x01E0 049E  
RXFUNCADDR  
RXHUBADDR  
Address of the target function that has to be accessed through the  
associated Receive Endpoint.  
Address of the hub that has to be accessed through the associated  
Receive Endpoint. This is used only when full speed or low speed  
device is connected via a USB2.0 high-speed hub.  
0x01E0 049F  
RXHUBPORT  
Port of the hub that has to be accessed through the associated Receive  
Endpoint. This is used only when full speed or low speed device is  
connected via a USB2.0 high-speed hub.  
TARGET ENDPOINT 4 CONTROL REGISTERS, VALID ONLY IN HOST MODE  
0x01E0 04A0  
0x01E0 04A2  
TXFUNCADDR  
Address of the target function that has to be accessed through the  
associated Transmit Endpoint.  
TXHUBADDR  
Address of the hub that has to be accessed through the associated  
Transmit Endpoint. This is used only when full speed or low speed  
device is connected via a USB2.0 high-speed hub.  
0x01E0 04A3  
TXHUBPORT  
Port of the hub that has to be accessed through the associated  
Transmit Endpoint. This is used only when full speed or low speed  
device is connected via a USB2.0 high-speed hub.  
0x01E0 04A4  
0x01E0 04A6  
RXFUNCADDR  
RXHUBADDR  
Address of the target function that has to be accessed through the  
associated Receive Endpoint.  
Address of the hub that has to be accessed through the associated  
Receive Endpoint. This is used only when full speed or low speed  
device is connected via a USB2.0 high-speed hub.  
0x01E0 04A7  
RXHUBPORT  
Port of the hub that has to be accessed through the associated Receive  
Endpoint. This is used only when full speed or low speed device is  
connected via a USB2.0 high-speed hub.  
CONTROL AND STATUS REGISTER FOR ENDPOINT 0  
0x01E0 0502  
PERI_CSR0  
HOST_CSR0  
COUNT0  
Control Status Register for Endpoint 0 in Peripheral Mode  
Control Status Register for Endpoint 0 in Host Mode  
Number of Received Bytes in Endpoint 0 FIFO  
Defines the Speed of Endpoint 0  
0x01E0 0508  
0x01E0 050A  
0x01E0 050B  
0x01E0 050F  
HOST_TYPE0  
HOST_NAKLIMIT0  
CONFIGDATA  
Sets the NAK Response Timeout on Endpoint 0  
Returns details of core configuration.  
CONTROL AND STATUS REGISTER FOR ENDPOINT 1  
0x01E0 0510  
0x01E0 0512  
TXMAXP  
Maximum Packet Size for Peripheral/Host Transmit Endpoint  
PERI_TXCSR  
Control Status Register for Peripheral Transmit Endpoint  
(peripheral mode)  
HOST_TXCSR  
RXMAXP  
Control Status Register for Host Transmit Endpoint  
(host mode)  
0x01E0 0514  
Maximum Packet Size for Peripheral/Host Receive Endpoint  
186  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
Table 5-98. Universal Serial Bus OTG (USB0) Registers (continued)  
BYTE ADDRESS  
ACRONYM  
REGISTER DESCRIPTION  
0x01E0 0516  
PERI_RXCSR  
Control Status Register for Peripheral Receive Endpoint  
(peripheral mode)  
HOST_RXCSR  
Control Status Register for Host Receive Endpoint  
(host mode)  
0x01E0 0518  
0x01E0 051A  
RXCOUNT  
Number of Bytes in Host Receive endpoint FIFO  
HOST_TXTYPE  
Sets the operating speed, transaction protocol and peripheral endpoint  
number for the host Transmit endpoint.  
0x01E0 051B  
0x01E0 051C  
0x01E0 051D  
HOST_TXINTERVAL  
HOST_RXTYPE  
Sets the polling interval for Interrupt/ISOC transactions or the NAK  
response timeout on Bulk transactions for host Transmit endpoint.  
Sets the operating speed, transaction protocol and peripheral endpoint  
number for the host Receive endpoint.  
HOST_RXINTERVAL  
Sets the polling interval for Interrupt/ISOC transactions or the NAK  
response timeout on Bulk transactions for host Receive endpoint.  
CONTROL AND STATUS REGISTER FOR ENDPOINT 2  
0x01E0 0520  
0x01E0 0522  
TXMAXP  
Maximum Packet Size for Peripheral/Host Transmit Endpoint  
PERI_TXCSR  
Control Status Register for Peripheral Transmit Endpoint  
(peripheral mode)  
HOST_TXCSR  
Control Status Register for Host Transmit Endpoint  
(host mode)  
0x01E0 0524  
0x01E0 0526  
RXMAXP  
Maximum Packet Size for Peripheral/Host Receive Endpoint  
PERI_RXCSR  
Control Status Register for Peripheral Receive Endpoint  
(peripheral mode)  
HOST_RXCSR  
Control Status Register for Host Receive Endpoint  
(host mode)  
0x01E0 0528  
0x01E0 052A  
RXCOUNT  
Number of Bytes in Host Receive endpoint FIFO  
HOST_TXTYPE  
Sets the operating speed, transaction protocol and peripheral endpoint  
number for the host Transmit endpoint.  
0x01E0 052B  
0x01E0 052C  
0x01E0 052D  
HOST_TXINTERVAL  
HOST_RXTYPE  
Sets the polling interval for Interrupt/ISOC transactions or the NAK  
response timeout on Bulk transactions for host Transmit endpoint.  
Sets the operating speed, transaction protocol and peripheral endpoint  
number for the host Receive endpoint.  
HOST_RXINTERVAL  
Sets the polling interval for Interrupt/ISOC transactions or the NAK  
response timeout on Bulk transactions for host Receive endpoint.  
CONTROL AND STATUS REGISTER FOR ENDPOINT 3  
0x01E0 0530  
0x01E0 0532  
TXMAXP  
Maximum Packet Size for Peripheral/Host Transmit Endpoint  
PERI_TXCSR  
Control Status Register for Peripheral Transmit Endpoint  
(peripheral mode)  
HOST_TXCSR  
Control Status Register for Host Transmit Endpoint  
(host mode)  
0x01E0 0534  
0x01E0 0536  
RXMAXP  
Maximum Packet Size for Peripheral/Host Receive Endpoint  
PERI_RXCSR  
Control Status Register for Peripheral Receive Endpoint  
(peripheral mode)  
HOST_RXCSR  
Control Status Register for Host Receive Endpoint  
(host mode)  
0x01E0 0538  
0x01E0 053A  
RXCOUNT  
Number of Bytes in Host Receive endpoint FIFO  
HOST_TXTYPE  
Sets the operating speed, transaction protocol and peripheral endpoint  
number for the host Transmit endpoint.  
0x01E0 053B  
0x01E0 053C  
0x01E0 053D  
HOST_TXINTERVAL  
HOST_RXTYPE  
Sets the polling interval for Interrupt/ISOC transactions or the NAK  
response timeout on Bulk transactions for host Transmit endpoint.  
Sets the operating speed, transaction protocol and peripheral endpoint  
number for the host Receive endpoint.  
HOST_RXINTERVAL  
Sets the polling interval for Interrupt/ISOC transactions or the NAK  
response timeout on Bulk transactions for host Receive endpoint.  
CONTROL AND STATUS REGISTER FOR ENDPOINT 4  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
187  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
Table 5-98. Universal Serial Bus OTG (USB0) Registers (continued)  
BYTE ADDRESS  
0x01E0 0540  
ACRONYM  
TXMAXP  
REGISTER DESCRIPTION  
Maximum Packet Size for Peripheral/Host Transmit Endpoint  
0x01E0 0542  
PERI_TXCSR  
Control Status Register for Peripheral Transmit Endpoint  
(peripheral mode)  
HOST_TXCSR  
Control Status Register for Host Transmit Endpoint  
(host mode)  
0x01E0 0544  
0x01E0 0546  
RXMAXP  
Maximum Packet Size for Peripheral/Host Receive Endpoint  
PERI_RXCSR  
Control Status Register for Peripheral Receive Endpoint (peripheral  
mode)  
HOST_RXCSR  
Control Status Register for Host Receive Endpoint  
(host mode)  
0x01E0 0548  
0x01E0 054A  
RXCOUNT  
Number of Bytes in Host Receive endpoint FIFO  
HOST_TXTYPE  
Sets the operating speed, transaction protocol and peripheral endpoint  
number for the host Transmit endpoint.  
0x01E0 054B  
0x01E0 054C  
0x01E0 054D  
HOST_TXINTERVAL  
HOST_RXTYPE  
Sets the polling interval for Interrupt/ISOC transactions or the NAK  
response timeout on Bulk transactions for host Transmit endpoint.  
Sets the operating speed, transaction protocol and peripheral endpoint  
number for the host Receive endpoint.  
HOST_RXINTERVAL  
Sets the polling interval for Interrupt/ISOC transactions or the NAK  
response timeout on Bulk transactions for host Receive endpoint.  
DMA REGISTERS  
0x01E0 1000  
0x01E0 1004  
0x01E0 1008  
0x01E0 1800  
0x01E0 1808  
0x01E0 180C  
0x01E0 1810  
0x01E0 1820  
0x01E0 1828  
0x01E0 182C  
0x01E0 1830  
0x01E0 1840  
0x01E0 1848  
0x01E0 184C  
0x01E0 1850  
0x01E0 1860  
0x01E0 1868  
0x01E0 186C  
0x01E0 1870  
0x01E0 2000  
0x01E0 2800  
0x01E0 2804  
. . .  
DMAREVID  
TDFDQ  
DMA Revision Register  
DMA Teardown Free Descriptor Queue Control Register  
DMA Emulation Control Register  
DMAEMU  
TXGCR[0]  
Transmit Channel 0 Global Configuration Register  
Receive Channel 0 Global Configuration Register  
Receive Channel 0 Host Packet Configuration Register A  
Receive Channel 0 Host Packet Configuration Register B  
Transmit Channel 1 Global Configuration Register  
Receive Channel 1 Global Configuration Register  
Receive Channel 1 Host Packet Configuration Register A  
Receive Channel 1 Host Packet Configuration Register B  
Transmit Channel 2 Global Configuration Register  
Receive Channel 2 Global Configuration Register  
Receive Channel 2 Host Packet Configuration Register A  
Receive Channel 2 Host Packet Configuration Register B  
Transmit Channel 3 Global Configuration Register  
Receive Channel 3 Global Configuration Register  
Receive Channel 3 Host Packet Configuration Register A  
Receive Channel 3 Host Packet Configuration Register B  
DMA Scheduler Control Register  
RXGCR[0]  
RXHPCRA[0]  
RXHPCRB[0]  
TXGCR[1]  
RXGCR[1]  
RXHPCRA[1]  
RXHPCRB[1]  
TXGCR[2]  
RXGCR[2]  
RXHPCRA[2]  
RXHPCRB[2]  
TXGCR[3]  
RXGCR[3]  
RXHPCRA[3]  
RXHPCRB[3]  
DMA_SCHED_CTRL  
WORD[0]  
DMA Scheduler Table Word 0  
WORD[1]  
DMA Scheduler Table Word 1  
. . .  
. . .  
0x01E0 28FC  
WORD[63]  
DMA Scheduler Table Word 63  
QUEUE MANAGER REGISTERS  
0x01E0 4000  
0x01E0 4008  
0x01E0 4020  
0x01E0 4024  
0x01E0 4028  
QMGRREVID  
DIVERSION  
FDBSC0  
Queue Manager Revision Register  
Queue Diversion Register  
Free Descriptor/Buffer Starvation Count Register 0  
Free Descriptor/Buffer Starvation Count Register 1  
Free Descriptor/Buffer Starvation Count Register 2  
FDBSC1  
FDBSC2  
188  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
Table 5-98. Universal Serial Bus OTG (USB0) Registers (continued)  
BYTE ADDRESS  
ACRONYM  
FDBSC3  
REGISTER DESCRIPTION  
Free Descriptor/Buffer Starvation Count Register 3  
Linking RAM Region 0 Base Address Register  
Linking RAM Region 0 Size Register  
Linking RAM Region 1 Base Address Register  
Queue Pending Register 0  
0x01E0 402C  
0x01E0 4080  
0x01E0 4084  
0x01E0 4088  
0x01E0 4090  
0x01E0 4094  
0x01E0 5000  
0x01E0 5004  
0x01E0 5010  
0x01E0 5014  
. . .  
LRAM0BASE  
LRAM0SIZE  
LRAM1BASE  
PEND0  
PEND1  
Queue Pending Register 1  
QMEMRBASE[0]  
QMEMRCTRL[0]  
QMEMRBASE[1]  
QMEMRCTRL[1]  
. . .  
Memory Region 0 Base Address Register  
Memory Region 0 Control Register  
Memory Region 1 Base Address Register  
Memory Region 1 Control Register  
. . .  
0x01E0 50F0  
0x01E0 50F4  
0x01E0 600C  
0x01E0 601C  
. . .  
QMEMRBASE[15]  
QMEMRCTRL[15]  
CTRLD[0]  
Memory Region 15 Base Address Register  
Memory Region 15 Control Register  
Queue Manager Queue 0 Control Register D  
Queue Manager Queue 1 Control Register D  
. . .  
CTRLD[1]  
. . .  
0x01E0 63FC  
0x01E0 6800  
0x01E0 6804  
0x01E0 6808  
0x01E0 6810  
0x01E0 6814  
0x01E0 6818  
. . .  
CTRLD[63]  
QSTATA[0]  
QSTATB[0]  
QSTATC[0]  
QSTATA[1]  
QSTATB[1]  
QSTATC[1]  
. . .  
Queue Manager Queue 63 Status Register D  
Queue Manager Queue 0 Status Register A  
Queue Manager Queue 0 Status Register B  
Queue Manager Queue 0 Status Register C  
Queue Manager Queue 1 Status Register A  
Queue Manager Queue 1 Status Register B  
Queue Manager Queue 1 Status Register C  
. . .  
0x01E0 6BF0  
0x01E0 6BF4  
0x01E0 6BF8  
QSTATA[63]  
QSTATB[63]  
QSTATC[63]  
Queue Manager Queue 63 Status Register A  
Queue Manager Queue 63 Status Register B  
Queue Manager Queue 63 Status Register C  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
189  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
5.27.1 USB2.0 Electrical Data/Timing  
The USB PHY PLL can support input clock of the following frequencies: 12.0 MHz, 13.0 MHz, 19.2 MHz,  
20.0 MHz, 24.0 MHz, 26.0 MHz, 38.4 MHz, 40.0 MHz or 48.0 MHz. USB_REFCLKIN jitter tolerance is 50  
ppm maximum.  
Table 5-99. Switching Characteristics Over Recommended Operating Conditions for USB2.0 (see  
Figure 5-66)  
LOW SPEED  
1.5 Mbps  
FULL SPEED  
12 Mbps  
HIGH SPEED  
480 Mbps  
No.  
PARAMETER  
UNIT  
MIN  
75  
MAX  
300  
300  
120  
2
MIN  
4
MAX  
20  
20  
111  
2
MIN  
0.5  
0.5  
MAX  
1
2
3
4
5
tr(D)  
Rise time, USB0_DP and USB0_DM signals(1)  
Fall time, USB0_DP and USB0_DM signals(1)  
Rise/Fall time, matching(2)  
ns  
ns  
tf(D)  
75  
4
trfM  
80  
90  
1.3  
%
VCRS  
Output signal cross-over voltage(1)  
1.3  
V
(3)ns  
tjr(source)NT  
tjr(FUNC)NT  
tjr(source)PT  
tjr(FUNC)PT  
tw(EOPT)  
tw(EOPR)  
t(DRATE)  
Source (Host) Driver jitter, next transition  
Function Driver jitter, next transition  
Source (Host) Driver jitter, paired transition(4)  
Function Driver jitter, paired transition  
2
2
(3)  
(3)  
(3)  
25  
2
ns  
6
1
1
ns  
10  
1
ns  
(5)  
7
8
9
Pulse duration, EOP transmitter  
1250  
670  
1500  
160  
82  
175  
ns  
(5)  
Pulse duration, EOP receiver  
ns  
Data Rate  
1.5  
12  
480  
49.5  
-
Mb/s  
10 ZDRV  
11 ZINP  
Driver Output Resistance  
Receiver Input Impedance  
40.5  
49.5  
40.5  
-
100k  
100k  
(1) Low Speed: CL = 200 pF, Full Speed: CL = 50 pF, High Speed: CL = 50 pF  
(2) tRFM = (tr/tf) x 100. [Excluding the first transaction from the Idle state.]  
(3) For more detailed information, see the Universal Serial Bus Specification Revision 2.0, Chapter 7. Electrical.  
(4) tjr = tpx(1) - tpx(0)  
(5) Must accept as valid EOP  
t
- t  
per jr  
USB0_DM  
V
90% V  
OH  
CRS  
10% V  
OL  
USB0_DP  
t
f
t
r
Figure 5-66. USB0 Integrated Transceiver Interface Timing  
5.27.2 USB0 Unused Signal Configuration  
If USB0 is unused, then the USB0 signals should be configured as shown in Section 5.4.  
190  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
 
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
5.28 Host-Port Interface (UHPI)  
5.28.1 HPI Device-Specific Information  
The device includes a user-configurable 16-bit Host-port interface (HPI16). See the OMAP-L137  
Applications Processor DSP Peripherals Overview Reference Guide. (SPRUGA6) for more details.  
5.28.2 HPI Peripheral Register Description(s)  
Table 5-100. HPI Control Registers  
BYTE ADDRESS  
ACRONYM  
REGISTER DESCRIPTION  
COMMENTS  
0x01E1 0000  
PID  
Peripheral Identification Register  
The CPU has read/write  
access to the  
0x01E1 0004  
PWREMU_MGMT  
HPI power and emulation management register  
PWREMU_MGMT register.  
0x01E1 0008  
0x01E1 000C  
0x01E1 0010  
0x01E1 0014  
0x01E1 0018  
0x01E1 001C  
0x01E1 0020  
0x01E1 0024  
01E1 0028  
-
Reserved  
GPIO_EN  
GPIO_DIR1  
GPIO_DAT1  
GPIO_DIR2  
GPIO_DAT2  
GPIO_DIR3  
GPIO_DAT3  
-
General Purpose IO Enable Register  
General Purpose IO Direction Register 1  
General Purpose IO Data Register 1  
General Purpose IO Direction Register 2  
General Purpose IO Data Register 2  
General Purpose IO Direction Register 3  
General Purpose IO Data Register 3  
Reserved  
01E1 002C  
-
Reserved  
The Host and the CPU both  
have read/write access to the  
HPIC register.  
01E1 0030  
01E1 0034  
HPIC  
HPI control register  
HPIA  
HPI address register  
(Write)  
The Host has read/write  
access to the HPIA registers.  
The CPU has only read  
(HPIAW)(1)  
HPIA  
HPI address register  
(Read)  
01E1 0038  
(HPIAR)(1)  
access to the HPIA registers.  
01E1 000C - 01E1 07FF  
-
Reserved  
(1) There are two 32-bit HPIA registers: HPIAR for read operations and HPIAW for write operations. The HPI can be configured such that  
HPIAR and HPIAW act as a single 32-bit HPIA (single-HPIA mode) or as two separate 32-bit HPIAs (dual-HPIA mode) from the  
perspective of the Host. The CPU can access HPIAW and HPIAR independently.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
191  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
5.28.3 HPI Electrical Data/Timing  
Table 5-101. Timing Requirements for Host-Port Interface Cycles(1) (2)  
No.  
1
PARAMETER  
MIN MAX UNIT  
tsu(SELV-HSTBL)  
th(HSTBL-SELV)  
tw(HSTBL)  
Setup time, select signals(3) valid before UHPI_HSTROBE low  
Hold time, select signals(3) valid after UHPI_HSTROBE low  
Pulse duration, UHPI_HSTROBE active low  
5
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
3
15  
2M  
5
4
tw(HSTBH)  
Pulse duration, UHPI_HSTROBE inactive high between consecutive accesses  
Setup time, selects signals valid before UHPI_HAS low  
Hold time, select signals valid after UHPI_HAS low  
Setup time, host data valid before UHPI_HSTROBE high  
Hold time, host data valid after UHPI_HSTROBE high  
9
tsu(SELV-HASL)  
th(HASL-SELV)  
tsu(HDV-HSTBH)  
th(HSTBH-HDV)  
10  
11  
12  
2
5
2
Hold time, UHPI_HSTROBE high after UHPI_HRDY low. UHPI_HSTROBE should  
not be inactivated until UHPI_HRDY is active (low); otherwise, HPI writes will not  
complete properly.  
13  
th(HRDYL-HSTBH)  
2
ns  
16  
17  
tsu(HASL-HSTBL)  
th(HSTBL-HASH)  
Setup time, UHPI_HAS low before UHPI_HSTROBE low  
Hold time, UHPI_HAS low after UHPI_HSTROBE low  
2
2
ns  
ns  
(1) UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2: [NOT(UHPI_HDS1 XOR  
UHPI_HDS2)] OR UHPI_HCS.  
(2) M=SYSCLK2 period (CPU clock frequency)/2 in ns. For example, when running parts at 300 MHz, use M=6.67 ns.  
(3) Select signals include: UHPI_HCNTL[1:0], UHPI_HRW and UHPI_HHWIL.  
192  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
OMAP-L137  
www.ti.com  
No.  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
Table 5-102. Switching Characteristics for Host-Port Interface Cycles(1) (2) (3)  
PARAMETER  
MIN MAX UNIT  
For HPI Write, UHPI_HRDY can go high (not  
ready) for these HPI Write conditions;  
otherwise, UHPI_HRDY stays low (ready):  
Case 1: Back-to-back HPIA writes (can be  
either first or second half-word)  
Case 2: HPIA write following a PREFETCH  
command (can be either first or second half-  
word)  
Case 3: HPID write when FIFO is full or  
flushing (can be either first or second half-  
word)  
Case 4: HPIA write and Write FIFO not empty  
For HPI Read, UHPI_HRDY can go high (not  
ready) for these HPI Read conditions:  
Case 1: HPID read (with auto-increment) and  
data not in Read FIFO (can only happen to  
first half-word of HPID access)  
Delay time,  
UHPI_HSTROBE low to  
UHPI_HRDY valid  
5
td(HSTBL-HRDYV)  
12  
ns  
Case 2: First half-word access of HPID Read  
without auto-increment  
For HPI Read, UHPI_HRDY stays low (ready)  
for these HPI Read conditions:  
Case 1: HPID read with auto-increment and  
data is already in Read FIFO (applies to either  
half-word of HPID access)  
Case 2: HPID read without auto-increment  
and data is already in Read FIFO (always  
applies to second half-word of HPID access)  
Case 3: HPIC or HPIA read (applies to either  
half-word access)  
5a  
6
td(HASL-HRDYV)  
ten(HSTBL-HDLZ)  
td(HRDYL-HDV)  
toh(HSTBH-HDV)  
tdis(HSTBH-HDHZ)  
Delay time, UHPI_HAS low to UHPI_HRDY valid  
Enable time, HD driven from UHPI_HSTROBE low  
Delay time, UHPI_HRDY low to HD valid  
13  
0
2
ns  
ns  
ns  
ns  
7
8
Output hold time, HD valid after UHPI_HSTROBE high  
Disable time, HD high-impedance from UHPI_ HSTROBE high  
1.5  
14  
12  
For HPI Read. Applies to conditions where  
data is already residing in HPID/FIFO:  
Case 1: HPIC or HPIA read  
Delay time,  
UHPI_HSTROBE low to HD valid  
Case 2: First half-word of HPID read with  
auto-increment and data is already in Read  
FIFO  
15  
td(HSTBL-HDV)  
15  
ns  
Case 3: Second half-word of HPID read with  
or without auto-increment  
For HPI Write, UHPI_HRDY can go high (not  
ready) for these HPI Write conditions;  
otherwise, UHPI_HRDY stays low (ready):  
Case 1: HPID write when Write FIFO is full  
(can happen to either half-word)  
Delay time,  
UHPI_HSTROBE high to  
UHPI_HRDY valid  
18  
td(HSTBH-HRDYV)  
12  
ns  
Case 2: HPIA write (can happen to either half-  
word)  
Case 3: HPID write without auto-increment  
(only happens to second half-word)  
(1) M=SYSCLK2 period (CPU clock frequency)/2 in ns.  
(2) UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2: [NOT(UHPI_HDS1 XOR  
UHPI_HDS2)] OR UHPI_HCS.  
(3) By design, whenever UHPI_HCS is driven inactive (high), HPI will drive UHPI_HRDY active (low).  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
193  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
UHPI_HCS  
(D)  
UHPI_HAS  
2
2
1
1
1
1
UHPI_HCNTL[1:0]  
2
2
2
1
UHPI_HR/W  
2
1
UHPI_HHWIL  
4
3
3
(A)(C)  
UHPI_HSTROBE  
15  
6
15  
14  
14  
8
6
8
UHPI_HD[15:0]  
(output)  
13  
7
1st Half-Word  
2nd Half-Word  
5
(B)  
UHPI_HRDY  
A. UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2:  
[NOT(UHPI_HDS1 XOR UHPI_HDS2)] OR UHPI_HCS.  
B. Depending on the type of write or read operation (HPID without auto-incrementing; HPIA, HPIC, or HPID with auto-  
incrementing) and the state of the FIFO, transitions on UHPI_HRDY may or may not occur.  
C. UHPI_HCS reflects typical UHPI_HCS behavior when UHPI_HSTROBE assertion is caused by UHPI_HDS1 or  
UHPI_HDS2. UHPI_HCS timing requirements are reflected by parameters for UHPI_HSTROBE.  
D. The diagram above assumes UHPI_HAS has been pulled high.  
Figure 5-67. UHPI Read Timing (UHPI_HAS Not Used, Tied High)  
194  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
(A)  
UHPI_HAS  
17  
17  
10  
9
10  
9
UHPI_HCNTL[1:0]  
UHPI_HR/W  
10  
10  
10  
9
9
9
10  
9
UHPI_HHWIL  
4
3
(B)  
UHPI_HSTROBE  
16  
16  
UHPI_HCS  
14  
14  
6
8
15  
8
UHPI_HD[15:0]  
(output)  
1st Half-Word  
2nd Half-Word  
5a  
7
UHPI_HRDY  
A. For correct operation, strobe the UHPI_HAS signal only once per UHPI_HSTROBE active cycle.  
B. UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2:  
[NOT(UHPI_HDS1 XOR UHPI_HDS2)] OR UHPI_HCS.  
Figure 5-68. UHPI Read Timing (UHPI_HAS Used)  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
195  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
UHPI_HCS  
(D)  
UHPI_HAS  
1
1
1
1
2
2
2
UHPI_HCNTL[1:0]  
1
2
UHPI_HR/W  
1
2
2
3
UHPI_HHWIL  
3
4
(A)(C)  
UHPI_HSTROBE  
11  
11  
12  
12  
2nd Half-Word  
18  
UHPI_HD[15:0]  
(input)  
1st Half-Word  
5
18  
13  
13  
5
(B)  
UHPI_HRDY  
A. UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2:  
[NOT(UHPI_HDS1 XOR UHPI_HDS2)] OR UHPI_HCS.  
B. Depending on the type of write or read operation (HPID without auto-incrementing; HPIA, HPIC, or HPID with auto-  
incrementing) and the state of the FIFO, transitions on UHPI_HRDY may or may not occur.  
C. UHPI_HCS reflects typical UHPI_HCS behavior when UHPI_HSTROBE assertion is caused by UHPI_HDS1 or  
UHPI_HDS2. UHPI_HCS timing requirements are reflected by parameters for UHPI_HSTROBE.  
D. he diagram above assumes UHPI_HAS has been pulled high.  
Figure 5-69. UHPI Write Timing (UHPI_HAS Not Used, Tied High)  
196  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
17  
10  
17  
(A)  
UHPI_HAS  
10  
9
9
9
9
UHPI_HCNTL[1:0]  
UHPI_HR/W  
10  
10  
10  
9
10  
9
UHPI_HHWIL  
3
4
(B)  
UHPI_HSTROBE  
16  
16  
UHPI_HCS  
11  
11  
12  
12  
UHPI_HD[15:0]  
(input)  
1st Half-Word  
2nd Half-Word  
5a  
13  
UHPI_HRDY  
A. For correct operation, strobe the UHPI_HAS signal only once per UHPI_HSTROBE active cycle.  
B. UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2:  
[NOT(UHPI_HDS1 XOR UHPI_HDS2)] OR UHPI_HCS.  
Figure 5-70. UHPI Write Timing (UHPI_HAS Used)  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
197  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
5.29 Power and Sleep Controller (PSC)  
The Power and Sleep Controllers (PSC) are responsible for managing transitions of system power on/off,  
clock on/off, resets (device level and module level). It is used primarily to provide granular power control  
for on chip modules (peripherals and CPU). A PSC module consists of a Global PSC (GPSC) and a set of  
Local PSCs (LPSCs). The GPSC contains memory mapped registers, PSC interrupts, a state machine for  
each peripheral/module it controls. An LPSC is associated with every module that is controlled by the PSC  
and provides clock and reset control.  
The PSC includes the following features:  
Provides a software interface to:  
Control module clock enable/disable  
Control module reset  
Control CPU local reset  
Supports ICEpick TAP Router power, clock and reset features. For details on ICEpick features see  
http://tiexpressdsp.com/wiki/index.php?title=ICEPICK.  
Table 5-103. Power and Sleep Controller (PSC) Registers  
PSC0  
PSC1  
ACRONYM  
REGISTER DESCRIPTION  
BYTE ADDRESS  
0x01C1 0000  
0x01C1 0018  
0x01C1 0040  
BYTE ADDRESS  
0x01E2 7000  
0x01E2 7018  
0x01E2 7040  
REVID  
INTEVAL  
MERRPR0  
Peripheral Revision and Class Information Register  
Interrupt Evaluation Register  
Module Error Pending Register 0 (module 0-15) (PSC0)  
Module Error Pending Register 0 (module 0-31) (PSC1)  
Module Error Clear Register 0 (module 0-15) (PSC0)  
Module Error Clear Register 0 (module 0-31) (PSC1)  
Power Error Pending Register  
0x01C1 0050  
0x01E2 7050  
MERRCR0  
0x01C1 0060  
0x01C1 0068  
0x01C1 0120  
0x01C1 0128  
0x01C1 0200  
0x01C1 0204  
0x01C1 0300  
0x01C1 0304  
0x01C1 0400  
0x01C1 0404  
0x01E2 7060  
0x01E2 7068  
0x01E2 7120  
0x01E2 7128  
0x01E2 7200  
0x01E2 7204  
0x01E2 7300  
0x01E2 7304  
0x01E2 7400  
0x01E2 7404  
PERRPR  
PERRCR  
Power Error Clear Register  
PTCMD  
Power Domain Transition Command Register  
Power Domain Transition Status Register  
Power Domain 0 Status Register  
PTSTAT  
PDSTAT0  
PDSTAT1  
Power Domain 1 Status Register  
PDCTL0  
Power Domain 0 Control Register  
PDCTL1  
Power Domain 1 Control Register  
PDCFG0  
Power Domain 0 Configuration Register  
Power Domain 1 Configuration Register  
Module Status n Register (modules 0-15) (PSC0)  
Module Status n Register (modules 0-31) (PSC1)  
Module Control n Register (modules 0-15) (PSC0)  
Module Control n Register (modules 0-31) (PSC1)  
PDCFG1  
0x01C1 0800 -  
0x01C1 083C  
0x01E2 7800 -  
0x01E2 787C  
MDSTAT0-MDSTAT15  
MDSTAT0-MDSTAT31  
MDCTL0-MDCTL15  
MDCTL0-MDCTL31  
0x01C1 0A00 -  
0x01C1 0A3C  
0x01E2 7A00 -  
0x01E2 7A7C  
5.29.1 Power Domain and Module Topology  
The SoC includes two PSC modules.  
Each PSC module controls clock states for several of the on chip modules, controllers and interconnect  
components. Table 5-104 and Table 5-105 lists the set of peripherals/modules that are controlled by the  
PSC, the power domain they are associated with, the LPSC assignment and the default (power-on reset)  
module states. The module states and terminology are defined in Section 5.29.1.2.  
198  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
Table 5-104. PSC0 Default Module Configuration  
LPSC  
Module Name  
Power Domain  
Default Module State  
Auto Sleep/Wake Only  
Number  
0
EDMA3 Channel Controller  
EDMA3 Transfer Controller 0  
EDMA3 Transfer Controller 1  
EMIFA (BR7)  
AlwaysON (PD0)  
AlwaysON (PD0)  
AlwaysON (PD0)  
AlwaysON (PD0)  
AlwaysON (PD0)  
AlwaysON (PD0)  
AlwaysON (PD0)  
AlwaysON (PD0)  
SwRstDisable  
SwRstDisable  
SwRstDisable  
SwRstDisable  
SwRstDisable  
SwRstDisable  
SwRstDisable  
Enable  
1
2
3
4
SPI 0  
5
MMC/SD 0  
6
ARM Interrupt Controller  
ARM RAM/ROM  
Not Used  
7
Yes  
8
9
UART 0  
AlwaysON (PD0)  
AlwaysON (PD0)  
AlwaysON (PD0)  
AlwaysON (PD0)  
AlwaysON (PD0)  
AlwaysON (PD0)  
PD_DSP (PD1)  
SwRstDisable  
Enable  
10  
11  
12  
13  
14  
15  
SCR0 (Br 0, Br 1, Br 2, Br 8)  
SCR1 (Br 4)  
Yes  
Yes  
Yes  
Enable  
SCR2 (Br 3, Br 5, Br 6)  
PRUSS  
Enable  
SwRstDisable  
SwRstDisable  
Enable  
ARM  
DSP  
Table 5-105. PSC1 Default Module Configuration  
LPSC  
Module Name  
Power Domain  
Default Module State  
Auto Sleep/Wake Only  
Number  
0
Not Used  
1
USB0 (USB2.0)  
USB1 (USB1.1)  
GPIO  
AlwaysON (PD0)  
AlwaysON (PD0)  
AlwaysON (PD0)  
AlwaysON (PD0)  
AlwaysON (PD0)  
AlwaysON (PD0)  
AlwaysON (PD0)  
AlwaysON (PD0)  
AlwaysON (PD0)  
AlwaysON (PD0)  
AlwaysON (PD0)  
AlwaysON (PD0)  
AlwaysON (PD0)  
SwRstDisable  
SwRstDisable  
SwRstDisable  
SwRstDisable  
SwRstDisable  
SwRstDisable  
SwRstDisable  
SwRstDisable  
SwRstDisable  
SwRstDisable  
SwRstDisable  
SwRstDisable  
SwRstDisable  
2
3
4
UHPI  
5
EMAC  
6
EMIFB (Br 20)  
McASP0 ( + McASP0 FIFO)  
McASP1 ( + McASP1 FIFO)  
McASP2( + McASP2 FIFO)  
SPI 1  
7
8
9
10  
11  
12  
13  
14-15  
16  
17  
18-19  
20  
21  
22-23  
24  
25  
26  
27-30  
31  
I2C 1  
UART 1  
UART 2  
Not Used  
LCDC  
AlwaysON (PD0)  
AlwaysON (PD0)  
SwRstDisable  
SwRstDisable  
eHRPWM0/1/2  
Not Used  
ECAP0/1/2  
AlwaysON (PD0)  
AlwaysON (PD0)  
SwRstDisable  
SwRstDisable  
EQEP0/1  
Not Used  
SCR8 (Br 15)  
SCR7 (Br 12)  
SCR12 (Br 18)  
Not Used  
AlwaysON (PD0)  
AlwaysON (PD0)  
AlwaysON (PD0)  
Enable  
Yes  
Yes  
Yes  
Enable  
Enable  
Shared RAM (Br 13)  
PD_SHRAM  
Enable  
Yes  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
199  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
5.29.1.1 Power Domain States  
A power domain can only be in one of the two states: ON or OFF, defined as follows:  
ON: power to the domain is on  
OFF: power to the domain is off  
In the device, for both PSC0 and PSC1, the Always ON domain, or PD0 power domain, is always in the  
ON state when the chip is powered-on. This domain is not programmable to OFF state.  
On PSC0 PD1/PD_DSP Domain: Controls the sleep state for DSP L1 and L2 Memories  
On PSC1 PD1/PD_SHRAM Domain: Controls the sleep state for the 128K Shared RAM  
5.29.1.2 Module States  
The PSC defines several possible states for a module. This states are essentially a combination of the  
module reset asserted or de-asserted and module clock on/enabled or off/disabled. The module states are  
defined in Table 5-106.  
Table 5-106. Module States  
Module State  
Module Reset  
Module Clock  
Module State Definition  
Enable  
De-asserted  
On  
A module in the enable state has its module reset de-asserted and it has its  
clock on. This is the normal operational state for a given module  
Disable  
De-asserted  
Off  
A module in the disabled state has its module reset de-asserted and it has its  
module clock off. This state is typically used for disabling a module clock to  
save power. The SoC is designed in full static CMOS, so when you stop a  
module clock, it retains the module’s state. When the clock is restarted, the  
module resumes operating from the stopping point.  
SyncReset  
Asserted  
Asserted  
On  
Off  
A module state in the SyncReset state has its module reset asserted and it has  
its clock on. Generally, software is not expected to initiate this state  
SwRstDisable  
A module in the SwResetDisable state has its module reset asserted and it has  
its clock disabled. After initial power-on, several modules come up in the  
SwRstDisable state. Generally, software is not expected to initiate this state  
Auto Sleep  
De-asserted  
Off  
A module in the Auto Sleep state also has its module reset de-asserted and its  
module clock disabled, similar to the Disable state. However this is a special  
state, once a module is configured in this state by software, it can  
“automatically” transition to “Enable” state whenever there is an internal  
read/write request made to it, and after servicing the request it will  
“automatically” transition into the sleep state (with module reset re de-asserted  
and module clock disabled), without any software intervention. The transition  
from sleep to enabled and back to sleep state has some cycle latency  
associated with it. It is not envisioned to use this mode when peripherals are  
fully operational and moving data.  
Auto Wake  
De-asserted  
Off  
A module in the Auto Wake state also has its module reset de-asserted and its  
module clock disabled, similar to the Disable state. However this is a special  
state, once a module is configured in this state by software, it will  
“automatically” transition to “Enable” state whenever there is an internal  
read/write request made to it, and will remain in the “Enabled” state from then  
on (with module reset re de-asserted and module clock on), without any  
software intervention. The transition from sleep to enabled state has some  
cycle latency associated with it. It is not envisioned to use this mode when  
peripherals are fully operational and moving data.  
200  
Peripheral Information and Electrical Specifications  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
 
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
5.30 Programmable Real-Time Unit Subsystem (PRUSS)  
The Programmable Real-Time Unit Subsystem (PRUSS) consists of  
Two Programmable Real-Time Units (PRU0 and PRU1) and their associated memories  
An Interrupt Controller (INTC) for handling system interrupt events. The INTC also supports posting  
events back to the device level host CPU.  
A Switched Central Resource (SCR) for connecting the various internal and external masters to the  
resources inside the PRUSS.  
The two PRUs can operate completely independently or in coordination with each other. The PRUs can  
also work in coordination with the device level host CPU. This is determined by the nature of the program  
which is loaded into the PRUs instruction memory. Several different signaling mechanisms are available  
between the two PRUs and the device level host CPU.  
The PRUs are optimized for performing embedded tasks that require manipulation of packed memory  
mapped data structures, handling of system events that have tight realtime constraints and interfacing with  
systems external to the device.  
The PRUSS comprises various distinct addressable regions. Externally the subsystem presents a single  
64Kbyte range of addresses. The internal interconnect bus (also called switched central resource, or SCR)  
of the PRUSS decodes accesses for each of the individual regions. The PRUSS memory map is  
documented in Table 5-107 and in Table 5-108. Note that these two memory maps are implemented  
inside the PRUSS and are local to the components of the PRUSS.  
Table 5-107. Programmable Real-Time Unit Subsystem (PRUSS) Local Instruction Space Memory Map  
BYTE ADDRESS  
PRU0  
PRU1  
0x0000 0000 - 0x0000 0FFF  
PRU0 Instruction RAM  
PRU1 Instruction RAM  
Table 5-108. Programmable Real-Time Unit Subsystem (PRUSS) Local Data Space Memory Map  
BYTE ADDRESS  
PRU0  
Data RAM 0  
Reserved  
PRU1  
Data RAM 1  
Reserved  
(1)  
(1)  
(1)  
(1)  
0x0000 0000 - 0x0000 01FF  
0x0000 0200 - 0x0000 1FFF  
0x0000 2000 - 0x0000 21FF  
0x0000 2200 - 0x0000 3FFF  
0x0000 4000 - 0x0000 6FFF  
0x0000 7000 - 0x0000 73FF  
0x0000 7400 - 0x0000 77FF  
0x0000 7800 - 0x0000 7BFF  
0x0000 7C00 - 0xFFFF FFFF  
Data RAM 1  
Reserved  
Data RAM 0  
Reserved  
INTC Registers  
PRU0 Control Registers  
Reserved  
INTC Registers  
PRU0 Control Registers  
Reserved  
PRU1 Control Registers  
Reserved  
PRU1 Control Registers  
Reserved  
(1) Note that PRU0 accesses Data RAM0 at address 0x0000 0000, also PRU1 accesses Data RAM1 at address 0x0000 0000. Data RAM0  
is intended to be the primary data memory for PRU0 and Data RAM1 is intended to be the primary data memory for PRU1. However for  
passing information between PRUs, each PRU can access the data ram of the ‘other’ PRU through address 0x0000 2000.  
The global view of the PRUSS internal memories and control ports is documented in Table 5-109. The  
offset addresses of each region are implemented inside the PRUSS but the global device memory  
mapping places the PRUSS slave port in the address range 0x01C3 0000-0x01C3 FFFF. The PRU0 and  
PRU1 can use either the local or global addresses to access their internal memories, but using the local  
addresses will provide access time several cycles faster than using the global addresses. This is because  
when accessing via the global address the access needs to be routed through the switch fabric outside  
PRUSS and back in through the PRUSS slave port.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
201  
 
 
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
Table 5-109. Programmable Real-Time Unit Subsystem (PRUSS) Global Memory Map  
BYTE ADDRESS  
REGION  
Data RAM 0  
0x01C3 0000 - 0x01C3 01FF  
0x01C3 0200 - 0x01C3 1FFF  
0x01C3 2000 - 0x01C3 21FF  
0x01C3 2200 - 0x01C3 3FFF  
0x01C3 4000 - 0x01C3 6FFF  
0x01C3 7000 - 0x01C3 73FF  
0x01C3 7400 - 0x01C3 77FF  
0x01C3 7800 - 0x01C3 7BFF  
0x01C3 7C00 - 0x01C3 7FFF  
0x01C3 8000 - 0x01C3 8FFF  
0x01C3 9000 - 0x01C3 BFFF  
0x01C3 C000 - 0x01C3 CFFF  
0x01C3 D000 - 0x01C3 FFFF  
Reserved  
Data RAM 1  
Reserved  
INTC Registers  
PRU0 Control Registers  
PRU0 Debug Registers  
PRU1 Control Registers  
PRU1 Debug Registers  
PRU0 Instruction RAM  
Reserved  
PRU1 Instruction RAM  
Reserved  
Each of the PRUs can access the rest of the device memory (including memory mapped peripheral and  
configuration registers) using the global memory space addresses.  
5.30.1 PRUSS Register Descriptions  
Table 5-110. Programmable Real-Time Unit Subsystem (PRUSS) Control / Status Registers  
PRU0 BYTE ADDRESS  
0x01C3 7000  
PRU1 BYTE ADDRESS  
0x01C3 7800  
ACRONYM  
CONTROL  
STATUS  
REGISTER DESCRIPTION  
PRU Control Register  
PRU Status Register  
0x01C3 7004  
0x01C3 7804  
0x01C3 7008  
0x01C3 7808  
WAKEUP  
CYCLCNT  
STALLCNT  
PRU Wakeup Enable Register  
PRU Cycle Count  
0x01C3 700C  
0x01C3 780C  
0x01C3 7010  
0x01C3 7810  
PRU Stall Count  
PRU Constant Table Block Index  
Register 0  
0x01C3 7020  
0x01C3 7028  
0x01C3 7820  
0x01C3 7828  
CONTABBLKIDX0  
CONTABPROPTR0  
PRU Constant Table Programmable  
Pointer Register 0  
PRU Constant Table Programmable  
Pointer Register 1  
0x01C3 702C  
0x01C3 782C  
CONTABPROPTR1  
PRU Internal General Purpose  
Register 0 (for Debug)  
0x01C37400 - 0x01C3747C  
0x01C37480 - 0x01C374FC  
0x01C3 7C00 - 0x01C3 7C7C  
0x01C3 7C80 - 0x01C3 7CFC  
INTGPR0 – INTGPR31  
INTCTER0 – INTCTER31  
PRU Internal General Purpose  
Register 0 (for Debug)  
Table 5-111. Programmable Real-Time Unit Subsystem Interrupt Controller (PRUSS INTC) Registers  
BYTE ADDRESS  
0x01C3 4000  
0x01C3 4004  
0x01C3 4010  
0x01C3 401C  
0x01C3 4020  
0x01C3 4024  
0x01C3 4028  
0x01C3 402C  
0x01C3 4034  
0x01C3 4038  
ACRONYM  
REVID  
REGISTER DESCRIPTION  
Revision ID Register  
CONTROL  
Control Register  
GLBLEN  
Global Enable Register  
GLBLNSTLVL  
STATIDXSET  
STATIDXCLR  
ENIDXSET  
Global Nesting Level Register  
System Interrupt Status Indexed Set Register  
System Interrupt Status Indexed Clear Register  
System Interrupt Enable Indexed Set Register  
System Interrupt Enable Indexed Clear Register  
Host Interrupt Enable Indexed Set Register  
Host Interrupt Enable Indexed Clear Register  
ENIDXCLR  
HSTINTENIDXSET  
HSTINTENIDXCLR  
202  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
Table 5-111. Programmable Real-Time Unit Subsystem Interrupt Controller (PRUSS INTC)  
Registers (continued)  
BYTE ADDRESS  
0x01C3 4080  
ACRONYM  
GLBLPRIIDX  
REGISTER DESCRIPTION  
Global Prioritized Index Register  
0x01C3 4200  
STATSETINT0  
System Interrupt Status Raw/Set Register 0  
System Interrupt Status Raw/Set Register 1  
System Interrupt Status Enabled/Clear Register 0  
System Interrupt Status Enabled/Clear Register 1  
System Interrupt Enable Set Register 0  
System Interrupt Enable Set Register 1  
System Interrupt Enable Clear Register 0  
System Interrupt Enable Clear Register 1  
Channel Map Registers 0-15  
0x01C3 4204  
STATSETINT1  
0x01C3 4280  
STATCLRINT0  
0x01C3 4284  
STATCLRINT1  
0x01C3 4300  
ENABLESET0  
0x01C3 4304  
ENABLESET1  
0x01C3 4380  
ENABLECLR0  
0x01C3 4384  
ENABLECLR1  
0x01C3 4400 - 0x01C3 4440  
0x01C3 4800 - 0x01C3 4808  
CHANMAP0 - CHANMAP15  
HOSTMAP0 - HOSTMAP2  
Host Map Register 0-2  
HOSTINTPRIIDX0 -  
HOSTINTPRIIDX9  
0x01C3 4900 - 0x01C3 4928  
Host Interrupt Prioritized Index Registers 0-9  
0x01C3 4D00  
0x01C3 4D04  
0x01C3 4D80  
0x01C3 4D84  
POLARITY0  
POLARITY1  
TYPE0  
System Interrupt Polarity Register 0  
System Interrupt Polarity Register 1  
System Interrupt Type Register 0  
System Interrupt Type Register 1  
TYPE1  
HOSTINTNSTLVL0-  
HOSTINTNSTLVL9  
0x01C3 5100 - 0x01C3 5128  
0x01C3 5500  
Host Interrupt Nesting Level Registers 0-9  
Host Interrupt Enable Register  
HOSTINTEN  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
203  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
5.31 Emulation Logic  
This section describes the steps to use a third party debugger. The debug capabilities and features for  
DSP and ARM are as shown below.  
For TI’s latest debug and emulation information see :  
http://tiexpressdsp.com/wiki/index.php?title=Category:Emulation  
DSP:  
Basic Debug  
Execution Control  
System Visibility  
Real-Time Debug  
Interrupts serviced while halted  
Low/non-intrusive system visibility while running  
Advanced Debug  
Global Start  
Global Stop  
Specify targeted memory level(s) during memory accesses  
HSRTDX (High Speed Real Time Data eXchange)  
Advanced System Control  
Subsystem reset via debug  
Peripheral notification of debug events  
Cache-coherent debug accesses  
Analysis Actions  
Stop program execution  
Generate debug interrupt  
Benchmarking with counters  
External trigger generation  
Debug state machine state transition  
Combinational and Sequential event generation  
Analysis Events  
Program event detection  
Data event detection  
External trigger Detection  
System event detection (i.e. cache miss)  
Debug state machine state detection  
Analysis Configuration  
Application access  
Debugger access  
204  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
OMAP-L137  
www.ti.com  
Category  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
Table 5-112. DSP Debug Features  
Hardware Feature  
Availability  
Unlimited  
Software breakpoint  
Up to 10 HWBPs, including:  
4 precise(1) HWBPs inside DSP core and one of them is  
associated with a counter.  
2 imprecise(1) HWBPs from AET.  
4 imprecise(1) HWBPs from AET which are shared for  
watch point.  
Basic Debug  
Hardware breakpoint  
Watch point  
Up to 4 watch points, which are shared with HWBPs,  
and can also be used as 2 watch points with data (32  
bits)  
Watch point with Data  
Counters/timers  
Up to 2, Which can also be used as 4 watch points.  
Analysis  
1x64-bits (cycle only) + 2x32-bits (watermark counters)  
External Event Trigger In  
External Event Trigger Out  
1
1
(1) Precise hardware breakpoints will halt the processor immediately prior to the execution of the selected instruction. Imprecise breakpoints  
will halt the processor some number of cycles after the selected instruction depending on device conditions.  
ARM:  
Basic Debug  
Execution Control  
System Visibility  
Advanced Debug  
Global Start  
Global Stop  
Advanced System Control  
Subsystem reset via debug  
Peripheral notification of debug events  
Cache-coherent debug accesses  
Program Trace  
Program flow corruption  
Code coverage  
Path coverage  
Thread/interrupt synchronization problems  
Data Trace  
Memory corruption  
Timing Trace  
Profiling  
Analysis Actions  
Stop program execution  
Control trace streams  
Generate debug interrupt  
Benchmarking with counters  
External trigger generation  
Debug state machine state transition  
Combinational and Sequential event generation  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
205  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
Analysis Events  
Program event detection  
Data event detection  
External trigger Detection  
System event detection (i.e. cache miss)  
Debug state machine state detection  
Analysis Configuration  
Application access  
Debugger access  
Table 5-113. ARM Debug Features  
Category  
Hardware Feature  
Availability  
Unlimited  
Software breakpoint  
Hardware breakpoint  
Up to 14 HWBPs, including:  
2 precise(1) HWBP inside ARM core which are shared  
with watch points.  
8 imprecise(1) HWBPs from ETM’s address comparators,  
which are shared with trace function, and can be used  
as watch point too.  
Basic Debug  
4 imprecise(1) HWBPs from ICECrusher.  
Up to 6 watch points, including:  
2 from ARM core which is shared with HWBPs and can  
be associated with a data.  
Watch point  
8 from ETM’s address comparators, which are shared  
with trace function, and HWBPs.  
2 from ARM core which is shared with HWBPs.  
Analysis  
Watch point with Data  
8 watch points from ETM can be associated with a data  
comparator, and ETM has total 4 data comparators.  
Counters/timers  
3x32-bit (1 cycle ; 2 event)  
External Event Trigger In  
External Event Trigger Out  
Internal Cross-Triggering Signals  
Address range for trace  
1
1
One between ARM and DSP  
4
Data qualification for trace  
System events for trace control  
Counters/Timers for trace control  
State Machines/Sequencers  
Context/Thread ID Comparator  
Independent trigger control units  
Capture depth PC  
2
20  
Trace Control  
2x16-bit  
1x3-State State Machine  
1
12  
4k bytes ETB  
4k bytes ETB  
Y
On-chip Trace  
Capture  
Capture depth PC + Timing  
Application accessible  
(1) Precise hardware breakpoints will halt the processor immediately prior to the execution of the selected instruction. Imprecise breakpoints  
will halt the processor some number of cycles after the selected instruction depending on device conditions.  
206  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
5.31.1 JTAG Port Description  
The device target debug interface uses the five standard IEEE 1149.1(JTAG) signals (TRST, TCK, TMS,  
TDI, and TDO), a return clock (RTCK) due to the clocking requirements of the ARM926EJ-S and EMU[0].  
TRST holds the debug and boundary scan logic in reset (normal DSP operation) when pulled low (its  
default state). Since TRST has an internal pull-down resistor, this ensures that at power up the device  
functions in its normal (non-test) operation mode if TRST is not connected. Otherwise, TRST should be  
driven inactive by the emulator or boundary scan controller. Boundary scan test cannot be performed  
while the TRST pin is pulled low.  
Table 5-114. JTAG Port Description  
PIN  
TYPE  
NAME  
DESCRIPTION  
When asserted (active low) causes all test and debug logic in the device  
to be reset along with the IEEE 1149.1 interface  
TRST  
I
Test Logic Reset  
This is the test clock used to drive an IEEE 1149.1 TAP state machine  
and logic. Depending on the emulator attached to , this is a free running  
clock or a gated clock depending on RTCK monitoring.  
TCK  
I
Test Clock  
Synchronized TCK. Depending on the emulator attached to, the JTAG  
signals are clocked from RTCK or RTCK is monitored by the emulator to  
gate TCK.  
RTCK  
O
Returned Test Clock  
TMS  
TDI  
I
I
Test Mode Select  
Test Data Input  
Test Data Output  
Emulation 0  
Directs the next state of the IEEE 1149.1 test access port state machine  
Scan data input to the device  
TDO  
O
I/O  
Scan data output of the device  
EMU[0]  
Channel 0 trigger + HSRTDX  
5.31.2 Scan Chain Configuration Parameters  
Table 5-115 shows the TAP configuration details required to configure the router/emulator for this device.  
Table 5-115. JTAG Port Description  
Router Port ID  
Default TAP  
TAP Name  
C674x  
Tap IR Length  
17  
18  
19  
No  
No  
No  
38  
4
ARM926  
ETB  
4
The router is ICEpick revision C and has a 6-bit IR length.  
5.31.3 Initial Scan Chain Configuration  
The first level of debug interface that sees the scan controller is the TAP router module. The debugger  
can configure the TAP router for serially linking up to 16 TAP controllers or individually scanning one of  
the TAP controllers without disrupting the IR state of the other TAPs.  
5.31.3.1 Adding TAPS to the Scan Chain  
The TAP router must be programmed to add additional TAPs to the scan chain. The following JTAG scans  
must be completed to add the ARM926EJ-S to the scan chain.  
A Power-On Reset (POR) or the JTAG Test-Logic Reset state configures the TAP router to contain only  
the router’s TAP.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
207  
 
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
TDO  
TDI  
Router  
CLK  
TMS  
Steps  
Router  
ARM926EJ-S/ETM  
Figure 5-71. Adding ARM926EJ-S to the scan chain  
Pre-amble: The device whose data reaches the emulator first is listed first in the board configuration file.  
This device is a pre-amble for all the other devices. This device has the lowest device ID.  
Post-amble: The device whose data reaches the emulator last is listed last in the board configuration file.  
This device is a post-amble for all the other devices. This device has the highest device ID.  
Function : Update the JTAG preamble and post-amble counts.  
Parameter : The IR pre-amble count is '0'.  
Parameter : The IR post-amble count is '0'.  
Parameter : The DR pre-amble count is '0'.  
Parameter : The DR post-amble count is '0'.  
Parameter : The IR main count is '6'.  
Parameter : The DR main count is '1'.  
Function : Do a send-only JTAG IR/DR scan.  
Parameter : The route to JTAG shift state is 'shortest transition'.  
Parameter : The JTAG shift state is 'shift-ir'.  
Parameter : The JTAG destination state is 'pause-ir'.  
Parameter : The bit length of the command is '6'.  
Parameter : The send data value is '0x00000007'.  
Parameter : The actual receive data is 'discarded'.  
Function : Do a send-only JTAG IR/DR scan.  
Parameter : The route to JTAG shift state is 'shortest transition'.  
Parameter : The JTAG shift state is 'shift-dr'.  
Parameter : The JTAG destination state is 'pause-dr'.  
Parameter : The bit length of the command is '8'.  
Parameter : The send data value is '0x00000089'.  
Parameter : The actual receive data is 'discarded'.  
Function : Do a send-only JTAG IR/DR scan.  
Parameter : The route to JTAG shift state is 'shortest transition'.  
Parameter : The JTAG shift state is 'shift-ir'.  
Parameter : The JTAG destination state is 'pause-ir'.  
Parameter : The bit length of the command is '6'.  
Parameter : The send data value is '0x00000002'.  
Parameter : The actual receive data is 'discarded'.  
Function : Embed the port address in next command.  
Parameter : The port address field is '0x0f000000'.  
Parameter : The port address value is '3'.  
208  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
Function : Do a send-only JTAG IR/DR scan.  
Parameter : The route to JTAG shift state is 'shortest transition'.  
Parameter : The JTAG shift state is 'shift-dr'.  
Parameter : The JTAG destination state is 'pause-dr'.  
Parameter : The bit length of the command is '32'.  
Parameter : The send data value is '0xa2002108'.  
Parameter : The actual receive data is 'discarded'.  
Function : Do a send-only all-ones JTAG IR/DR scan.  
Parameter : The JTAG shift state is 'shift-ir'.  
Parameter : The JTAG destination state is 'run-test/idle'.  
Parameter : The bit length of the command is '6'.  
Parameter : The send data value is 'all-ones'.  
Parameter : The actual receive data is 'discarded'.  
Function : Wait for a minimum number of TCLK pulses.  
Parameter : The count of TCLK pulses is '10'.  
Function : Update the JTAG preamble and post-amble counts.  
Parameter : The IR pre-amble count is '0'.  
Parameter : The IR post-amble count is '6'.  
Parameter : The DR pre-amble count is '0'.  
Parameter : The DR post-amble count is '1'.  
Parameter : The IR main count is '4'.  
Parameter : The DR main count is '1'.  
The initial scan chain contains only the TAP router module. The following steps must be completed in  
order to add ETB TAP to the scan chain.  
ARM926EJ-S/ETM  
TDI  
Router  
TDO  
CLK  
TMS  
Steps  
ETB  
ARM926EJ-S/ETM  
Router  
Figure 5-72. Adding ETB to the scan chain  
Function : Do a send-only JTAG IR/DR scan.  
Parameter : The route to JTAG shift state is 'shortest transition'.  
Parameter : The JTAG shift state is 'shift-ir'.  
Parameter : The JTAG destination state is 'pause-ir'.  
Parameter : The bit length of the command is '6'.  
Parameter : The send data value is '0x00000007'.  
Parameter : The actual receive data is 'discarded'.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
209  
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
Function : Do a send-only JTAG IR/DR scan.  
Parameter : The route to JTAG shift state is 'shortest transition'.  
Parameter : The JTAG shift state is 'shift-dr'.  
Parameter : The JTAG destination state is 'pause-dr'.  
Parameter : The bit length of the command is '8'.  
Parameter : The send data value is '0x00000089'.  
Parameter : The actual receive data is 'discarded'.  
Function : Do a send-only JTAG IR/DR scan.  
Parameter : The route to JTAG shift state is 'shortest transition'.  
Parameter : The JTAG shift state is 'shift-ir'.  
Parameter : The JTAG destination state is 'pause-ir'.  
Parameter : The bit length of the command is '6'.  
Parameter : The send data value is '0x00000002'.  
Parameter : The actual receive data is 'discarded'.  
Function : Embed the port address in next command.  
Parameter : The port address field is '0x0f000000'.  
Parameter : The port address value is '3'.  
Function : Do a send-only JTAG IR/DR scan.  
Parameter : The route to JTAG shift state is 'shortest transition'.  
Parameter : The JTAG shift state is 'shift-dr'.  
Parameter : The JTAG destination state is 'pause-dr'.  
Parameter : The bit length of the command is '32'.  
Parameter : The send data value is '0xa3302108'.  
Parameter : The actual receive data is 'discarded'.  
Function : Do a send-only all-ones JTAG IR/DR scan.  
Parameter : The JTAG shift state is 'shift-ir'.  
Parameter : The JTAG destination state is 'run-test/idle'.  
Parameter : The bit length of the command is '6'.  
Parameter : The send data value is 'all-ones'.  
Parameter : The actual receive data is 'discarded'.  
Function : Wait for a minimum number of TCLK pulses.  
Parameter : The count of TCLK pulses is '10'.  
Function : Update the JTAG preamble and post-amble counts.  
Parameter : The IR pre-amble count is '0'.  
Parameter : The IR post-amble count is '6 + 4'.  
Parameter : The DR pre-amble count is '0'.  
Parameter : The DR post-amble count is '1 + 1'.  
Parameter : The IR main count is '4'.  
Parameter : The DR main count is '1'.  
5.31.4 JTAG 1149.1 Boundary Scan Considerations  
To use boundary scan, the following sequence should be followed:  
Execute a valid reset sequence and exit reset  
Wait at least 6000 OSCIN clock cycles  
Enter boundary scan mode using the JTAG pins  
No specific value is required on the EMU[0] pin for boundary scan testing. If TRST is not driven by the  
boundary scan tool or tester, TRST should be externally pulled high during boundary scan testing.  
210  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
5.32 IEEE 1149.1 JTAG  
The JTAG (1) interface is used for BSDL testing and emulation of the device.  
The device requires that both TRST and RESET be asserted upon power up to be properly initialized.  
While RESET initializes the device, TRST initializes the device's emulation logic. Both resets are required  
for proper operation.  
While both TRST and RESET need to be asserted upon power up, only RESET needs to be released for  
the device to boot properly. TRST may be asserted indefinitely for normal operation, keeping the JTAG  
port interface and device's emulation logic in the reset state.  
TRST only needs to be released when it is necessary to use a JTAG controller to debug the device or  
exercise the device's boundary scan functionality. Note: TRST is synchronous and must be clocked by  
TCK; otherwise, the boundary scan logic may not respond as expected after TRST is asserted.  
RESET must be released only in order for boundary-scan JTAG to read the variant field of IDCODE  
correctly. Other boundary-scan instructions work correctly independent of current state of RESET.  
For maximum reliability, the device includes an internal pulldown (IPD) on the TRST pin to ensure that  
TRST will always be asserted upon power up and the device's internal emulation logic will always be  
properly initialized.  
JTAG controllers from Texas Instruments actively drive TRST high. However, some third-party JTAG  
controllers may not drive TRST high but expect the use of a pullup resistor on TRST.  
When using this type of JTAG controller, assert TRST to initialize the device after powerup and externally  
drive TRST high before attempting any emulation or boundary scan operations.  
5.32.1 JTAG Peripheral Register Description(s) – JTAG ID Register (DEVIDR0)  
Table 5-116. DEVIDR0 Register  
BYTE ADDRESS  
ACRONYM  
REGISTER DESCRIPTION  
JTAG Identification Register  
COMMENTS  
Read-only. Provides 32-bit  
JTAG ID of the device.  
0x01C1 4018  
DEVIDR0  
(1) IEEE Standard 1149.1-1990 Standard-Test-Access Port and Boundary Scan Architecture.  
The JTAG ID register is a read-only register that identifies to the customer the JTAG/Device ID. For the  
device, the JTAG ID register resides at address location 0x01C1 4018. The register hex value for each  
silicon revision is:  
0x0B7D F02F for silicon revision 1.0  
0x8B7D F02F for silicon revision 1.1  
0x9B7D F02F for silicon revisions 3.0, 2.1, and 2.0  
For the actual register bit names and their associated bit field descriptions, see Figure 5-73 and Table 5-  
117.  
31-28  
VARIANT (4-Bit)  
R-xxxx  
27-12  
11-1  
0
PART NUMBER (16-Bit)  
R-1011 0111 1101 1111  
MANUFACTURER (11-Bit)  
R-0000 0010 111  
LSB  
R-1  
LEGEND: R = Read, W = Write, n = value at reset  
Figure 5-73. JTAG ID (DEVIDR0) Register Description - Register Value  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
211  
 
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
Table 5-117. JTAG ID Register Selection Bit Descriptions  
BIT  
31:28  
27:12  
11-1  
0
NAME  
VARIANT  
DESCRIPTION  
Variant (4-Bit) value  
PART NUMBER  
Part Number (16-Bit) value  
MANUFACTURER Manufacturer (11-Bit) value  
LSB LSB. This bit is read as a "1".  
5.32.2 JTAG Test-Port Electrical Data/Timing  
Table 5-118. Timing Requirements for JTAG Test Port (see Figure 5-74)  
No.  
1
PARAMETER  
MIN  
MAX  
UNIT  
ns  
tc(TCK)  
Cycle time, TCK  
40  
16  
16  
40  
16  
16  
4
2
tw(TCKH)  
Pulse duration, TCK high  
Pulse duration, TCK low  
Cycle time, RTCK  
ns  
3
tw(TCKL)  
ns  
4
tc(RTCK)  
ns  
5
tw(RTCKH)  
tw(RTCKL)  
tsu(TDIV-RTCKH)  
th(RTCKH-TDIV)  
Pulse duration, RTCK high  
ns  
6
Pulse duration, RTCK low  
ns  
7
Setup time, TDI/TMS/TRST valid before RTCK high  
Hold time, TDI/TMS/TRST valid after RTCK high  
ns  
8
4
ns  
Table 5-119. Switching Characteristics Over Recommended Operating Conditions for JTAG Test Port  
(see Figure 5-74)  
No.  
PARAMETER  
Delay time, RTCK low to TDO valid  
MIN  
MAX  
UNIT  
9
td(RTCKL-TDOV)  
15  
ns  
1
2
3
TCK  
RTCK  
TDO  
4
5
6
9
8
7
TDI/TMS/TRST  
Figure 5-74. JTAG Test-Port Timing  
212  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
 
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
5.33 Real Time Clock (RTC)  
The RTC provides a time reference to an application running on the device. The current date and time is  
tracked in a set of counter registers that update once per second. The time can be represented in 12-hour  
or 24-hour mode. The calendar and time registers are buffered during reads and writes so that updates do  
not interfere with the accuracy of the time and date.  
Alarms are available to interrupt the CPU at a particular time, or at periodic time intervals, such as once  
per minute or once per day. In addition, the RTC can interrupt the CPU every time the calendar and time  
registers are updated, or at programmable periodic intervals.  
The real-time clock (RTC) provides the following features:  
100-year calendar (xx00 to xx99)  
Counts seconds, minutes, hours, day of the week, date, month, and year with leap year compensation  
Binary-coded-decimal (BCD) representation of time, calendar, and alarm  
12-hour clock mode (with AM and PM) or 24-hour clock mode  
Alarm interrupt  
Periodic interrupt  
Single interrupt to the CPU  
Supports external 32.768-kHz crystal or external clock source of the same frequency  
Separate isolated power supply  
Figure 5-75 shows a block diagram of the RTC.  
Oscillator  
Compensation  
Week  
Days  
Counter  
32 kHz  
RTC_XI  
XTAL  
Hours  
Days  
Years  
Seconds  
Minutes  
Months  
RTC_XO  
Oscillator  
Alarm  
Interrupts  
Alarm  
Periodic  
Interrupts  
Timer  
Figure 5-75. Real-Time Clock Block Diagram  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
213  
 
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
5.33.1 Clock Source  
The clock reference for the RTC is an external 32.768-kHz crystal or an external clock source of the same  
frequency. The RTC also has a separate power supply that is isolated from the rest of the system. When  
the CPU and other peripherals are without power, the RTC can remain powered to preserve the current  
time and calendar information.  
The source for the RTC reference clock may be provided by a crystal or by an external clock source. The  
RTC has an internal oscillator buffer to support direct operation with a crystal. The crystal is connected  
between pins RTC_XI and RTC_XO. RTC_XI is the input to the on-chip oscillator and RTC_XO is the  
output from the oscillator back to the crystal. A crystal with 70k-ohm max ESR is recommended. Typical  
load capacitance values are 10-20 pF, where the load capacitance is the series combination of C1 and  
C2.  
An external 32.768-kHz clock source may be used instead of a crystal. In such a case, the clock source is  
connected to RTC_XI, and RTC_XO is left unconnected.  
If the RTC is not used, the RTC_XI pin should be static held high or low and RTC_XO should be left  
unconnected.  
RTC  
Power  
Source  
Real Time Clock  
RTC_CVDD  
C2  
RTC_XI  
XTAL  
32.768  
kHz  
Real  
Time  
Clock  
(RTC)  
Module  
RTC_XO  
32K  
OSC  
C1  
RTC_VSS  
Isolated RTC  
Power Domain  
Figure 5-76. Clock Source  
214  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
Copyright © 2008–2013, Texas Instruments Incorporated  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
5.33.2 Real-Time Clock Registers  
Table 5-120 lists the memory-mapped registers for the RTC.  
Table 5-120. Real-Time Clock (RTC) Registers  
BYTE ADDRESS  
0x01C2 3000  
0x01C2 3004  
0x01C2 3008  
0x01C2 300C  
0x01C2 3010  
0x01C2 3014  
0x01C2 3018  
0x01C2 3020  
0x01C2 3024  
0x01C2 3028  
0x01C2 302C  
0x01C2 3030  
0x01C2 3034  
0x01C2 3040  
0x01C2 3044  
0x01C2 3048  
0x01C2 304C  
0x01C2 3050  
0x01C2 3054  
0x01C2 3060  
0x01C2 3064  
0x01C2 3068  
0x01C2 306C  
0x01C2 3070  
ACRONYM  
SECOND  
MINUTE  
REGISTER DESCRIPTION  
Seconds Register  
Minutes Register  
HOUR  
Hours Register  
DAY  
Day of the Month Register  
Month Register  
MONTH  
YEAR  
Year Register  
DOTW  
Day of the Week Register  
Alarm Seconds Register  
Alarm Minutes Register  
Alarm Hours Register  
ALARMSECOND  
ALARMMINUTE  
ALARMHOUR  
ALARMDAY  
ALARMMONTH  
ALARMYEAR  
CTRL  
Alarm Days Register  
Alarm Months Register  
Alarm Years Register  
Control Register  
STATUS  
Status Register  
INTERRUPT  
COMPLSB  
COMPMSB  
OSC  
Interrupt Enable Register  
Compensation (LSB) Register  
Compensation (MSB) Register  
Oscillator Register  
SCRATCH0  
SCRATCH1  
SCRATCH2  
KICK0  
Scratch 0 (General-Purpose) Register  
Scratch 1 (General-Purpose) Register  
Scratch 2 (General-Purpose) Register  
Kick 0 (Write Protect) Register  
Kick 1 (Write Protect) Register  
KICK1  
Copyright © 2008–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
215  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
 
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
6 Device and Documentation Support  
6.1 Device Support  
6.1.1 Development Support  
TI offers an extensive line of development tools for the OMAP-L13x platform, including tools to evaluate  
the performance of the processors, generate code, develop algorithm implementations, and fully integrate  
and debug software and hardware modules. The tool's support documentation is electronically available  
within the Code Composer Studio™ Integrated Development Environment (IDE).  
The following products support development of OMAP-L13x applications:  
Software Development Tools:  
Code Composer Studio™ Integrated Development Environment (IDE): including Editor  
C/C++/Assembly Code Generation, and Debug plus additional development tools  
Scalable, Real-Time Foundation Software (DSP/BIOS™), which provides the basic run-time target  
software needed to support any application.  
Hardware Development Tools:  
Extended Development System (XDS™) Emulator  
For a complete listing of development-support tools for OMAP-L13x, visit the Texas Instruments web  
site on the Worldwide Web at www.ti.com uniform resource locator (URL). For information on pricing  
and availability, contact the nearest TI field sales office or authorized distributor.  
6.1.2 Device and Development-Support Tool Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
DSP devices and support tools. Each DSP commercial family member has one of three prefixes: X, P, or  
NULL (e.g., XOMAPL137). Texas Instruments recommends two of three possible prefix designators for its  
support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development  
from engineering prototypes (X/TMDX) through fully qualified production devices/tools (NULL/TMDS).  
Device development evolutionary flow:  
X
Experimental device that is not necessarily representative of the final device's electrical  
specifications.  
P
Final silicon die that conforms to the device's electrical specifications but has not completed  
quality and reliability verification.  
NULL  
Fully-qualified production device.  
Support tool development evolutionary flow:  
TMDX  
Development-support product that has not yet completed Texas Instruments internal  
qualification testing.  
TMDS  
Fully qualified development-support product.  
X and P devices and TMDX development-support tools are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
NULL devices and TMDS development-support tools have been characterized fully, and the quality and  
reliability of the device have been demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices (X or P) have a greater failure rate than the standard production  
devices. Texas Instruments recommends that these devices not be used in any production system  
because their expected end-use failure rate still is undefined. Only qualified production devices are to be  
used.  
216  
Device and Documentation Support  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
TI nomenclature also includes a suffix with the device family name. This suffix indicates the package type  
(for example, ZKB), the temperature range (for example, "Blank" is the commercial temperature range),  
and the device speed range in megahertz (for example, "Blank" is the default).  
Figure 6-1 provides a legend for reading the complete device name for any OMAPL13x member.  
( )  
( )  
X
OMAPL137  
ZKB  
3
DEVICE SPEED RANGE  
3 = 300 Mhz (Revision A)  
3 = 375 Mhz (Revision B)  
4 = 456 Mhz (Revision B)  
PREFIX  
X = Experimental Device  
P = Prototype Device  
Blank = Production Device  
TEMPERATURE RANGE (JUNCTION)  
DEVICE  
Blank = 0°C to 90°C (Commercial Grade)  
D = –40°C to 90°C (Industrial Grade)  
A = –40°C to 105°C (Extended Grade)  
T = –40°C to 125°C (Automotive Grade)  
OMAPL137  
SILICON REVISION  
Blank = Silicon Revision 1.0  
A = Silicon Revision 1.1  
B = Silicon Revision 2.0  
C = Silicon Revision 2.1  
D = Silicon Revision 3.0  
PACKAGE TYPE  
ZKB = 256 Pin Plastic BGA, with Pb-free  
Soldered Balls [Green]  
Figure 6-1. Device Nomenclature  
6.2 Documentation Support  
The following documents describe the OMAP-L13x Low-power applications processor. Copies of these  
documents are available on the Internet at www.ti.com. Tip: Enter the literature number in the search box  
provided at www.ti.com.  
DSP Reference Guides  
SPRUFE8  
TMS320C674x DSP CPU and Instruction Set Reference Guide. Describes the CPU  
architecture, pipeline, instruction set, and interrupts for the TMS320C674x digital signal  
processors (DSPs). The C674x DSP is an enhancement of the C64x+ and C67x+ DSPs with  
added functionality and an expanded instruction set.  
SPRUFK5  
TMS320C674x DSP Megamodule Reference Guide. Describes the TMS320C674x digital  
signal processor (DSP) megamodule. Included is a discussion on the internal direct memory  
access (IDMA) controller, the interrupt controller, the power-down controller, memory  
protection, bandwidth management, and the memory and cache.  
SPRUH92 OMAP-L1x DSP+ARM Processor Technical Reference Manual. Describes the System-on-  
Chip (SoC) and each peripheral in the device.  
User's Guides  
SPRU186  
SPRU187  
SPRUG82  
TMS320C6000 Assembly Language Tools User's Guide.Describes the assembly  
language tools (assembler, linker, and other tools used to develop assembly language code),  
assembler directives, macros, common object file format, and symbolic debugging directives  
for the TMS320C6000 platform of devices (including the C64x+, C67x+, and C674x  
generations).  
TMS320C6000 Optimizing Compiler User's Guide. Describes the TMS320C6000 C  
compiler and the assembly optimizer. This C compiler accepts ANSI standard C source code  
and produces assembly language source code for the TMS320C6000 platform of devices  
(including the C64x+, C67x+, and C674x generations). The assembly optimizer helps you  
optimize your assembly code.  
TMS320C674x DSP Cache User's Guide. Explains the fundamentals of memory caches  
and describes how the two-level cache-based internal memory architecture in the  
TMS320C674x digital signal processor (DSP) can be efficiently used in DSP applications.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Device and Documentation Support  
217  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
 
OMAP-L137  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
www.ti.com  
Shows how to maintain coherence with external memory, how to use DMA to reduce  
memory latencies, and how to optimize your code to improve cache efficiency. The internal  
memory architecture in the C674x DSP is organized in a two-level hierarchy consisting of a  
dedicated program cache (L1P) and a dedicated data cache (L1D) on the first level.  
Accesses by the CPU to the these first level caches can complete without CPU pipeline  
stalls. If the data requested by the CPU is not contained in cache, it is fetched from the next  
lower memory level, L2 or external memory.  
6.3 Community Resources  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the  
respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views;  
see TI's Terms of Use.  
TI E2E Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and  
help solve problems with fellow engineers.  
TI Embedded Processors Wiki Texas Instruments Embedded Processors Wiki. Established to help  
developers get started with Embedded Processors from Texas Instruments and to foster  
innovation and growth of general knowledge about the hardware and software surrounding  
these devices.  
218  
Device and Documentation Support  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
OMAP-L137  
www.ti.com  
SPRS563F SEPTEMBER 2008REVISED FEBRUARY 2013  
7 Mechanical Packaging and Orderable Information  
This section describes the OMAP-L137 orderable part numbers, packaging options, materials, thermal and  
mechanical parameters.  
This section contains mechanical drawings for the ZKB Plastic Ball Grid Array package .  
7.1 Thermal Data for ZKB  
The following table(s) show the thermal resistance characteristics for the PBGA–ZKB mechanical  
package.  
Table 7-1. Thermal Resistance Characteristics (PBGA Package) [ZKB]  
No.  
°C/W(1)  
°C/W(2)  
AIR FLOW  
(m/s)(3)  
1
2
RΘJC  
RΘJB  
RΘJA  
Junction-to-case  
Junction-to-board  
Junction-to-free air  
12.8  
15.1  
24.5  
21.9  
21.1  
20.4  
19.6  
0.6  
13.5  
19.7  
33.8  
30  
N/A  
N/A  
3
0.00  
0.50  
1.00  
2.00  
4.00  
0.00  
0.50  
1.00  
2.00  
4.00  
0.00  
0.50  
1.00  
2.00  
4.00  
4
5
28.7  
27.4  
26  
RΘJMA  
Junction-to-moving air  
6
7
8
0.8  
9
0.8  
1
10  
11  
12  
13  
14  
15  
16  
17  
PsiJT  
Junction-to-package top  
0.9  
1.2  
1.1  
1.4  
1.3  
1.8  
14.9  
14.4  
14.4  
14.3  
14.1  
19.1  
18.2  
18  
PsiJB  
Junction-to-board  
17.7  
17.4  
(1) These measurements were conducted in a JEDEC defined 2S2P system and will change based on environment as well as application.  
For more information, see these EIA/JEDEC standards – EIA/JESD51-2, Integrated Circuits Thermal Test Method Environment  
Conditions - Natural Convection (Still Air) and JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount  
Packages. Power dissipation of 1W and ambient temp of 70C assumed. PCB with 2oz (70um) top and bottom copper thickness and  
1.5oz (50um) inner copper thickness  
(2) Simulation data, using the same model but with 1oz (35um) top and bottom copper thickness and 0.5oz (18um) inner copper thickness.  
Power dissipation of 1W and ambient temp of 70C assumed.  
(3) m/s = meters per second  
7.2 Packaging Information  
The following packaging information and addendum reflect the most current data available for the  
designated device(s). This data is subject to change without notice and without revision of this document.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Mechanical Packaging and Orderable Information  
Submit Documentation Feedback  
Product Folder Links: OMAP-L137  
219  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2013  
PACKAGING INFORMATION  
Orderable Device  
OMAPL137BZKB3  
OMAPL137BZKB4  
OMAPL137BZKBA3  
OMAPL137BZKBD4  
OMAPL137BZKBT3  
OMAPL137DZKB3  
OMAPL137DZKB4  
OMAPL137DZKBA3  
OMAPL137DZKBD4  
OMAPL137DZKBT3  
XOMAPL137DZKBA3  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
0 to 90  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
OBSOLETE  
BGA  
BGA  
BGA  
BGA  
BGA  
BGA  
BGA  
BGA  
BGA  
BGA  
BGA  
ZKB  
256  
256  
256  
256  
256  
256  
256  
256  
256  
256  
256  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
Call TI  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Call TI  
OMAP  
L137BZKB3  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
ACTIVE  
ZKB  
ZKB  
ZKB  
ZKB  
ZKB  
ZKB  
ZKB  
ZKB  
ZKB  
ZKB  
Green (RoHS  
& no Sb/Br)  
0 to 90  
OMAP  
L137BZKB4  
Green (RoHS  
& no Sb/Br)  
-40 to 105  
-40 to 90  
-40 to 125  
OMAP  
L137BZKBA3  
Green (RoHS  
& no Sb/Br)  
OMAP  
L137BZKBD4  
Green (RoHS  
& no Sb/Br)  
OMAPL137BZKBT3  
90  
1
Green (RoHS  
& no Sb/Br)  
OMAP  
L137DZKB3  
ACTIVE  
Green (RoHS  
& no Sb/Br)  
OMAP  
L137DZKB4  
ACTIVE  
90  
90  
90  
1
Green (RoHS  
& no Sb/Br)  
OMAP  
L137DZKBA3  
ACTIVE  
TBD  
OMAP  
L137DZKBD4  
ACTIVE  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
SNAGCU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
OMAPL137DZKBT3  
ACTIVE  
Green (RoHS  
& no Sb/Br)  
XOMAP  
L137DZKBA3  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2013  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish  
value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

OMAPL137DZKB4

OMAP-L137 Low-Power Applications Processor
TI

OMAPL137DZKBA3

OMAP-L137 Low-Power Applications Processor
TI

OMAPL137DZKBD4

OMAP-L137 Low-Power Applications Processor
TI

OMAPL137DZKBT3

OMAP-L137 Low-Power Applications Processor
TI

OMAPL137ZKB3

Low-Power Applications Processor
TI

OMAPL138AZCE3

OMAP-L138 Low-Power Applications Processor
TI

OMAPL138AZWT3

OMAP-L138 Low-Power Applications Processor
TI

OMAPL138B

OMAPL138B C6-Integra™ DSPARM® Processor
TI

OMAPL138B-EP

OMAPL138B C6-Integra™ DSPARM® Processor
TI

OMAPL138BGWTMEP

增强型产品低功耗 C674x 浮点 DSP + ARM9 处理器 - 345MHz | GWT | 361 | -55 to 125
TI

OMAPL138BZCE3

OMAP-L138 C6-Integra DSP+ARM Processor
TI

OMAPL138BZCE4

OMAP-L138 C6-Integra DSP+ARM Processor
TI