MMBT3904TT1G [TI]

Using the PWR091EVM Dual-Output DC/DC Analog With PMBus Interface; 使用PWR091EVM双输出DC / DC模拟带有PMBus接口
MMBT3904TT1G
型号: MMBT3904TT1G
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Using the PWR091EVM Dual-Output DC/DC Analog With PMBus Interface
使用PWR091EVM双输出DC / DC模拟带有PMBus接口

文件: 总49页 (文件大小:3463K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Using the PWR091EVM Dual-Output DC/DC  
Analog With PMBus Interface  
User's Guide  
Literature Number: SLVU638  
January 2012  
Contents  
1
Description ......................................................................................................................... 7  
1.1  
Typical Applications ..................................................................................................... 7  
Features .................................................................................................................. 7  
1.2  
2
3
4
Electrical Performance Specifications ................................................................................... 8  
Schematic .......................................................................................................................... 9  
Test Setup ........................................................................................................................ 10  
4.1  
4.2  
4.3  
4.4  
4.5  
Test and Configuration Software .................................................................................... 10  
Test Equipment ........................................................................................................ 10  
Recommended Test Setup ........................................................................................... 11  
USB Interface Adapter and Cable ................................................................................... 12  
List of Test Points ...................................................................................................... 12  
5
6
EVM Configuration Using the Fusion GUI ............................................................................. 14  
Configuration Procedure .............................................................................................. 14  
Test Procedure .................................................................................................................. 15  
5.1  
6.1  
6.2  
6.3  
6.4  
Line/Load Regulation and Efficiency Measurement Procedure .................................................. 15  
Control Loop Gain and Phase Measurement Procedure ......................................................... 15  
Efficiency ................................................................................................................ 16  
Equipment Shutdown .................................................................................................. 16  
7
Performance Data and Typical Characteristic Curves ............................................................ 16  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
Efficiency ................................................................................................................ 17  
Load Regulation ........................................................................................................ 18  
Bode Plot ................................................................................................................ 19  
Transient Response ................................................................................................... 20  
Output Ripple ........................................................................................................... 22  
HDRV and Switch Node Voltage .................................................................................... 24  
Turnon Waveform ...................................................................................................... 25  
8
EVM Assembly Drawing and PCB Layout ............................................................................. 26  
Bill of Materials ................................................................................................................. 33  
Screen Shots .................................................................................................................... 34  
10.1 Fusion GUI Screen Shots ............................................................................................. 34  
9
10  
3
SLVU638January 2012  
Table of Contents  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
www.ti.com  
List of Figures  
PWR091EVM Schematic ..................................................................................................  
1
9
2
PWR091EVM Recommended Test Setup ............................................................................. 11  
Texas Instruments USB-to-GPIO Adapter and Connections ........................................................ 12  
Tip and Barrel Measurement............................................................................................. 12  
Efficiency of 1.2-V Output vs Line and Load........................................................................... 17  
Efficiency of 3.3-V Output vs Line and Load........................................................................... 17  
Load Regulation of 1.2-V Output ........................................................................................ 18  
Load Regulation of 3.3-V Output ........................................................................................ 18  
Bode Plot of 1.2-V Output at 10-A Load................................................................................ 19  
Bode Plot of 3.3-V Output at 10-A Load................................................................................ 19  
Transient Response of 1.2-V Output at 8 Vin, Transient is 5 A to 11 A to 5 A.................................... 20  
Transient Response of 1.2-V Output at 12 Vin, Transient is 5 A to 11 A to 5 A .................................. 20  
Transient Response of 3.3-V Output at 8 Vin, Transient is 5 A to 9 A to 5 A ..................................... 21  
Transient Response of 3.3-V Output at 12 Vin, Transient is 5 A to 9 A to 5 A.................................... 21  
Output Ripple and SW Node of 1.2-V Output at 8 Vin, 20-A Output .............................................. 22  
Output Ripple and SW Node of 1.2-V Output at 12 Vin, 20-A Output.............................................. 22  
Output Ripple and SW Node of 3.3-V Output at 8 Vin, 15-A Output ............................................... 23  
Output Ripple and SW Node of 3.3-V Output at 12 Vin, 15-A Output.............................................. 23  
HDRV and SW Node of 1.2-V Output at 8 Vin, 20-A Output ........................................................ 24  
HDRV and SW Node of 1.2-V Output at 12 Vin, 20-A Output....................................................... 24  
HDRV and SW Node of 3.3-V Output at 8-Vin, 15-A Output ........................................................ 24  
HDRV and SW Node of 3.3-V Output at 12 Vin, 15-A Output....................................................... 25  
Turnon Waveform of 1.2-V Output at 8-V, 12-V and 14-V Input, 20-A Output .................................... 25  
Turnon Waveform of 1.2-V Output With 0.5-V Prebias, at 8-V, 12-V and 14-V Input, 0-A Output ............. 25  
Turnon Waveform of 3.3-V Output at 8-V, 12-V, and 14-V Input, 15-A Output ................................... 26  
Turnon Waveform of 3.3-V Output With 2-V Prebias, at 8-V, 12-V, and 14-V Input, 0-A Output............... 26  
PWR091EVM Top Layer Assembly Drawing (Top View) ............................................................ 27  
PWR091EVM Bottom Assembly Drawing (Bottom View) ............................................................ 28  
PWR091EVM Top Copper (Top View) ................................................................................. 29  
PWR091EVM Internal Layer 1 (Top View)............................................................................. 30  
PWR091EVM Internal Layer 2 (Top View)............................................................................. 31  
PWR091EVM Bottom Copper (Bottom View) ......................................................................... 32  
First Window at Fusion Launch.......................................................................................... 34  
Scan Finds Device Successfully......................................................................................... 34  
Software Launch Continued.............................................................................................. 34  
Software Launch Continued.............................................................................................. 35  
First Screen After Successful Launch: Configure- Limits & On/Off ................................................. 35  
Configure- Other........................................................................................................... 36  
Configure- All............................................................................................................... 36  
Configure- Limits and On/Off- On/Off Config Pop-up................................................................. 37  
Configure- Limits and On/Off- On/Off Config Pop-up................................................................. 37  
Configure- Other- Iout Cal Gain Change ............................................................................... 38  
Configure- All Config- On/Off Config Pop-up .......................................................................... 38  
Configure- Store User Defaults.......................................................................................... 39  
Change Screens to Other Vout Rail .................................................................................... 39  
Change View Screen to Monitor Screen ............................................................................... 40  
Monitor Screen............................................................................................................. 41  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
4
List of Figures  
SLVU638January 2012  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
www.ti.com  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
System Dashboard ........................................................................................................ 41  
Display Change on Power Up ........................................................................................... 42  
Faults Cleared ............................................................................................................. 42  
Status Screen .............................................................................................................. 43  
Import Project / Import Configuration File .............................................................................. 43  
Store Config To Memory ................................................................................................. 44  
Data Logging............................................................................................................... 44  
Data Logging Details...................................................................................................... 45  
Data Log .................................................................................................................... 45  
Data Log File............................................................................................................... 46  
PMBus Logging............................................................................................................ 46  
PMBus Log Details........................................................................................................ 47  
PMBus Log ................................................................................................................. 47  
PMBus Log File............................................................................................................ 48  
5
SLVU638January 2012  
List of Figures  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
www.ti.com  
List of Tables  
1
2
3
4
5
6
PWR091EVM-001 Electrical Performance Specifications .............................................................  
8
The Functions of Each Test Points ..................................................................................... 13  
Key Factory Configuration Parameters................................................................................. 14  
List of Test Points for Loop Response Measurements ............................................................... 15  
List of Test Points for Efficiency Measurements ...................................................................... 16  
PWR091 Bill of Materials ................................................................................................ 33  
6
List of Tables  
SLVU638January 2012  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
User's Guide  
SLVU638January 2012  
Using the PWR091EVM Dual-Output DC/DC Analog With  
PMBus Interface  
The PWR091EVM evaluation module uses the TPS40422. The TPS40422 is a dual-channel, synchronous  
buck controller that operates from a nominal 4.5-V to 20-V supply. This controller is an analog PWM  
controller that allows programming and monitoring via the PMBus interface. It can be used as a dual,  
independent output or a dual-phase output controller.  
1
Description  
The PWR091EVM is designed as a dual-output converter. It uses a nominal 12-V bus to produce a  
regulated 1.2-V output at up to 20 A of load current, and a regulated 3.3-V output at up to 15 A of load  
current. The PWR091EVM demonstrates the TPS40422 in a typical low-voltage application while providing  
a number of test points to evaluate the performance of the TPS40422.  
1.1 Typical Applications  
Smart power systems  
Power supply modules  
Communications equipment  
Computing equipment  
1.2 Features  
Regulated 1.2-V output up to 20-Adc, steady-state output current  
Regulated 3.3-V output up to 15-Adc, steady-state output current  
Both outputs are marginable and trimmable via the PMBus interface.  
Programmable: UVLO, Soft Start, and Enable via the PMBus interface  
Programmable overcurrent warning and fault limits and programmable response to faults via the  
PMBus interface  
Programmable overvoltage warning and fault limit and programmable response to faults via the  
PMBus interface  
Programmable high- and low-output margin voltages with a maximum range of +10%, 20% of  
nominal output voltage  
Convenient test points for probing critical waveforms  
7
SLVU638January 2012  
Using the PWR091EVM Dual-Output DC/DC Analog With PMBus Interface  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Electrical Performance Specifications  
www.ti.com  
2
Electrical Performance Specifications  
Table 1. PWR091EVM-001 Electrical Performance Specifications  
PARAMETER  
INPUT CHARACTERISTICS  
Voltage range  
TEST CONDITIONS  
MIN  
TYP  
MAX UNITS  
VIN  
8
12  
10  
14  
15  
V
A
Maximum input current  
No load input current  
VIN = 8 V, IO1 = 20 A, IO2 = 15 A  
VIN = 14 V, IO1 = 0 A, IO2 = 0 A  
100  
mA  
OUTPUT CHARACTERISTICS  
VOUT1 Output voltage  
VOUT2 Output voltage  
Output current = 10 A  
1.2  
3.3  
V
V
A
A
Output current = 10 A  
IOUT1  
IOUT2  
Output load current  
Output load current  
IOUT_min to IOUT_max  
0
0
20  
15  
IOUT_min to IOUT_max  
Line regulation: Input voltage = 8 V to 14 V  
0.5%  
0.%5  
Output voltage regulation  
Load regulation: Output current = 0 A to IOUT_max, both  
outputs  
VOUT1 Output voltage ripple  
VOUT2 Output voltage ripple  
VOUT1 Output overcurrent  
VOUT2 Output overcurrent  
SYSTEMS CHARACTERISTICS  
Switching frequency  
VIN = 12 V, IOUT = 20 A  
VIN = 12 V, IOUT = 15 A  
30  
30  
25  
20  
mVpp  
mVpp  
A
A
FSW  
460  
92%  
95%  
90%  
93%  
25  
kHz  
VOUT1 Peak efficiency  
VIN = 8 V, IO1 = 10 A, VOUT2 disabled, FSW = 300 kHz  
VIN = 8 V, IO2 = 8.5 A, VOUT1 disabled, FSW = 300 kHz  
VIN = 8 V, IO1 = 10 A, VOUT2 disabled, FSW = 300 kHz  
VIN = 8 V, IO2 = 8.5 A, VOUT1 disabled, FSW = 300 kHz  
Toper  
VOUT2 Peak efficiency  
VOUT1 Full-load efficiency  
VOUT2 Full-load efficiency  
Operating temperature  
ºC  
8
Using the PWR091EVM Dual-Output DC/DC Analog With PMBus Interface  
SLVU638January 2012  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
 
www.ti.com  
Schematic  
3
Schematic  
Figure 1. PWR091EVM Schematic  
9
SLVU638January 2012  
Using the PWR091EVM Dual-Output DC/DC Analog With PMBus Interface  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Test Setup  
www.ti.com  
4
Test Setup  
4.1 Test and Configuration Software  
To change any of the default configuration parameters on the EVM, it is necessary to obtain the TI Fusion  
Digital Power Designer software.  
4.1.1  
4.1.2  
Description  
The Fusion Digital Power Designer is the graphical user interface (GUI) used to configure and monitor the  
Texas Instruments TPS40422 power controller on this evaluation module. The application uses the  
PMBus protocol to communicate with the controller over serial bus by way of a TI USB adapter (see  
Figure 3).  
Features  
Some of the tasks you can perform with the GUI include:  
Turn on or off the power supply output, either through the hardware control line or the PMBus  
operation command.  
Monitor real-time data. Items such as input voltage, output voltage, output current, temperature, and  
warnings and faults are continuously monitored and displayed by the GUI.  
Configure common operating characteristics such as VOUT trim and margin, UVLO, soft-start time,  
warning and fault thresholds, fault response, and ON/OFF.  
This software is available for download at http://www.ti.com/tool/fusion_digital_power_designer  
4.2 Test Equipment  
Voltage Source: The input voltage source VIN must be a 0-V to 14-V variable dc source capable of  
supplying 15 Adc. Connect VIN to J5 as shown in Figure 2.  
Multimeters: It is recommended to use three separate multimeters as shown in Figure 2. One meter to  
measure Vin, one to measure Vout1 and the third to measure Vout2.  
Output Load: Two variable electronic loads are recommended for the test setup as shown in Figure 2.  
Load 1 must be capable of 25 A at voltages as low as 0.9 V. Load 2 must be capable of 20 A at voltages  
as low as 3 V.  
Oscilloscope: An oscilloscope is recommended for measuring output noise and ripple. Output ripple must  
be measured using a Tip-and-Barrel method or better as shown in Figure 4.The scope must be adjusted  
to 20-MHz bandwidth, ac coupling at 50 mV/division, and must be set to 1-µs/division.  
Fan: During prolonged operation at high loads, it may be necessary to provide forced air cooling with a  
small fan aimed at the EVM. The temperature of the devices on the EVM must be maintained at less than  
105°C.  
USB-to-GPIO Interface Adapter: A communications adapter is required between the EVM and the host  
computer. This EVM was designed to use the Texas Instruments USB-to-GPIO Adapter (see Figure 3).  
This adapter can be purchased at http://www.ti.com/tool/usb-to-gpio.  
Recommended Wire Gauge: It is recommended that the voltage drop in the load wires does not exceed  
0.2 V total in order to keep the voltage at the load above 1 V. See the following table for recommended  
wire gauge and length to achieve a voltage drop of no more than 0.2 V at a 20-A load.  
Ohms per Foot  
Load Wires Combined Length  
(Ft)  
Each Wire Length  
(Ft)  
AWG Gauge  
(Ω)  
12  
14  
16  
18  
1.59E-3  
2.53E-3  
4.02E-3  
6.39E-3  
6.30  
3.96  
2.49  
1.57  
3.15  
1.98  
1.25  
0.78  
10  
Using the PWR091EVM Dual-Output DC/DC Analog With PMBus Interface  
SLVU638January 2012  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
www.ti.com  
Test Setup  
As an example, if AWG 12 wire is used, no more than 3.15 feet of wire must be used between the EVM  
and the load.  
4.3 Recommended Test Setup  
Figure 2. PWR091EVM Recommended Test Setup  
11  
SLVU638January 2012  
Using the PWR091EVM Dual-Output DC/DC Analog With PMBus Interface  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
 
 
Test Setup  
www.ti.com  
4.4 USB Interface Adapter and Cable  
Figure 3. Texas Instruments USB-to-GPIO Adapter and Connections  
Figure 4. Tip and Barrel Measurement  
4.5 List of Test Points  
12  
Using the PWR091EVM Dual-Output DC/DC Analog With PMBus Interface  
SLVU638January 2012  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
 
www.ti.com  
Test Setup  
Table 2. The Functions of Each Test Points  
Test Point  
TP1  
Type  
T-H Loop  
T-H Loop  
T-H Loop  
T-H Loop  
T-H Loop  
T-H Loop  
T-H Loop  
T-H Loop  
T-H Loop  
T-H Loop  
T-H Loop  
T-H Loop  
T-H Loop  
T-H Loop  
T-H Loop  
SMT  
Name  
PGOOD2  
VIN  
Description  
Power Good signal for Vout 2.  
General input voltage measurement.  
Tip and barrel point for Vout 1.  
Tip and barrel point for Vout 1 return.  
General input voltage measurement.  
Tip and barrel point for Vout 2.  
Return for PGOOD signals.  
TP2  
TP3  
VOUT1  
PGND  
TP6  
TP7  
PGND  
TP11  
TP13  
TP14  
TP15  
TP16  
TP18  
TP19  
TP20  
TP21  
TP22  
TP4  
VOUT2  
AGND  
PGND  
Tip and barrel point for Vout 2 return.  
Power Good signal for Vout 1.  
Point to inject BP External.  
PGOOD1  
BPEXT  
PREBIAS2 Point to inject Prebias for output 2.  
PREBIAS1 Point to inject Prebias for output 1.  
PGND  
PGND  
PGND  
AGND  
INPUT1  
OUTPUT1  
VOUT2  
INPUT2  
SYNC  
Return for Prebias 2.  
Return for Prebias 1.  
Return for BP External.  
Return for SYNC signal.  
TP8  
SMT  
Input for control loop measurements for Vout 1.  
Output of Vout 1 for control loop measurements.  
Output of Vout 2 for control loop measurements.  
Input for control loop measurements for Vout 2.  
Point to inject SYNC signal.  
TP9  
SMT  
TP10  
TP12  
TP17  
TP5  
SMT  
SMT  
SMT  
Copper Dot  
Copper Dot  
Copper Dot  
Copper Dot  
Copper Dot  
Copper Dot  
VIN  
Vin+ measurement point for efficiency of Vout 1.  
Vin- measurement point for efficiency of Vout 1.  
Vin+ measurement point for efficiency of Vout 2.  
Vin- measurement point for efficiency of Vout 2.  
Vout+ measurement point for efficiency of Vout 2.  
Vout+ measurement point for efficiency of Vout 1.  
TP23  
TP24  
TP25  
TP26  
TP27  
PGND  
VIN  
PGND  
VOUT2  
VOUT1  
13  
SLVU638January 2012  
Submit Documentation Feedback  
Using the PWR091EVM Dual-Output DC/DC Analog With PMBus Interface  
Copyright © 2012, Texas Instruments Incorporated  
EVM Configuration Using the Fusion GUI  
www.ti.com  
5
EVM Configuration Using the Fusion GUI  
The TPS40422 on this EVM leaves the factory pre-configured. See Table 3 for a short list of key factory  
configuration parameters as obtained from the configuration file.  
Table 3. Key Factory Configuration Parameters  
Address Hex  
Address Dec  
Part ID  
0x1B  
27  
TPS40422  
General  
Cmd ID With Phase  
VIN_OFF  
Cmd Code Hex  
0x36  
Encoded Hex  
0xF014  
Decoded  
5.00 V  
Numeric  
Comments  
5
7
Turn OFF voltage  
Turn ON voltage  
VIN_ON  
0x35  
0xF01C  
7.00 V  
Vout 1  
0x8821  
0xE000  
0xF83C  
0x3C  
Comments  
IOUT_CAL_GAIN  
0x38  
0x39  
0x46  
0x47  
0x4A  
0xD4  
1.0071 mΩ  
0.0000 A  
1.0071  
DCR of output inductor  
Current offset for GUI readout  
OC fault level  
IOUT_CAL_OFFSET  
0
IOUT_OC_FAULT_LIMIT  
IOUT_OC_FAULT_RESPONSE  
IOUT_OC_WARN_LIMIT  
MFR_04 (VREF_TRIM)  
30.0 A  
30  
Restart Continuously  
25.0 A  
Response to OC fault  
OC warning level  
Trim voltage  
0xF832  
0x0000  
25  
0
0.000 V  
Control signal and OPERATION command  
not required  
ON_OFF_CONFIG  
OPERATION  
0x02  
0x01  
0x02  
0x00  
Mode: Always Converting  
Unit: Immediate Off; Margin:  
None  
Response to turn OFF trigger  
OT_FAULT_LIMIT  
OT_WARN_LIMIT  
TON_RISE  
0x4F  
0x51  
0x61  
0x007D  
0x0064  
0xE02B  
125 C  
100 C  
125  
100  
OT fault level  
OT warn level  
Soft-start time  
2.6875 ms  
2.6875  
Vout 2  
0x8821  
0xE000  
0xF832  
0x3C  
Comments  
IOUT_CAL_GAIN  
0x38  
0x39  
0x46  
0x47  
0x4A  
0xD4  
1.0071 mΩ  
0.0000 A  
1.0071  
DCR of output inductor  
Current offset for GUI readout  
OC fault level  
IOUT_CAL_OFFSET  
0
IOUT_OC_FAULT_LIMIT  
IOUT_OC_FAULT_RESPONSE  
IOUT_OC_WARN_LIMIT  
MFR_04 (VREF_TRIM)  
25.0 A  
25  
Restart Continuously  
20.0 A  
Response to OC fault  
OC warning level  
Trim voltage  
0xF828  
0x0000  
20  
0
0.000 V  
Control signal and OPERATION command  
not required  
ON_OFF_CONFIG  
OPERATION  
0x02  
0x01  
0x02  
0x00  
Mode: Always Converting  
Unit: Immediate Off; Margin:  
None  
Response to turn OFF trigger  
OT_FAULT_LIMIT  
OT_WARN_LIMIT  
TON_RISE  
0x4F  
0x51  
0x61  
0x007D  
0x0064  
0xE02B  
125 C  
100 C  
125  
100  
OT fault level  
OT warn level  
Soft-start time  
2.6875 ms  
2.6875  
If it is desired to configure the EVM to settings other than the factory settings shown in Table 3, the TI  
Fusion Digital Power Designer software can be used for reconfiguration. It is necessary to have input  
voltage applied to the EVM prior to launching the software so that the TPS40422 may respond to the GUI  
and the GUI can recognize the TPS40422. The default configuration for the EVM is to start converting at  
an input voltage of 7 V; therefore, to avoid any converter activity during configuration, an input voltage less  
than 7 V must be applied. An input voltage of 5 V is recommended.  
5.1 Configuration Procedure  
1. Adjust the input supply to provide 5 Vdc, current limited to 1 A.  
2. Apply the input voltage to the EVM. See Figure 2 and Figure 3 for connections and test setup.  
3. Launch the Fusion GUI software. See the screen shots in Section 10 for more information.  
4. Configure the EVM operating parameters as desired.  
14  
Using the PWR091EVM Dual-Output DC/DC Analog With PMBus Interface  
SLVU638January 2012  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
 
www.ti.com  
Test Procedure  
NOTE: The IOUT_CAL_GAIN parameter is used by the TPS40422 in the calculation of output  
current level, and this number is the dc resistance of the output inductor. Although this  
number can be reconfigured, a number entry that does not match the actual DCR of the  
inductor on the EVM will result in current reporting inaccuracy. This also affects OC Fault  
and OC Warn performance.  
The TON_RISE parameter may affect proper start-up if the rise time and output capacitance  
bank result in a current that exceeds the OC Fault level. The start-up surge current in the  
output capacitance bank is added to the load current, so the sum of these two currents must  
be less than the OC Fault level for proper start-up.  
6
Test Procedure  
6.1 Line/Load Regulation and Efficiency Measurement Procedure  
1. Set up the EVM as described in Section 4.3 and Figure 2.  
2. Ensure that both electronic loads are set to draw 0 Adc.  
3. Increase Vin from 0 V to 12 V using DMM1 to measure input voltage.  
4. Use DMM2 to measure output voltage Vout1.  
5. Vary the load from 0 Adc to 20 Adc. Vout1 must remain in regulation as defined in Table 1.  
6. Vary Vin from 8 V to 14 V. Vout1 must remain in regulation as defined in Table 1.  
7. Decrease the load to 0 A.  
8. Use DMM3 to measure output voltage Vout2.  
9. Vary the load from 0 Adc to 15 Adc. Vout1 must remain in regulation as defined in Table 1.  
10. Vary Vin from 8 V to 14 V. Vout2 must remain in regulation as defined in Table 1.  
11. Decrease the load to 0 A.  
12. Decrease Vin to 0 V.  
6.2 Control Loop Gain and Phase Measurement Procedure  
The PWR091EVM includes a 49.9-Ω series resistor in the feedback loop for both Vout1 and Vout2. These  
resistors are used for loop response analysis and are accessible at the test points TP8 and TP9 for Vout1,  
and TP10 and TP12 for Vout2. Those test points must be used during loop response measurements as  
the injection points for the loop perturbation. See the short descriptions listed in Table 4.  
Table 4. List of Test Points for Loop Response Measurements  
Test Point  
Node Name Description  
Comment  
Input to feedback divider of  
Vout1  
The amplitude of the perturbation at this node must be limited to  
less than 100 mV.  
TP8  
INPUT1  
OUTPUT1  
INPUT2  
Bode plot data can be measured by a network analyzer as  
TP9/TP8.  
TP9  
TP12  
TP10  
Resulting output of Vout1  
Input to feedback divider of  
Vout2  
The amplitude of the perturbation at this node must be limited to  
less than 100mV.  
Bode plot data can be measured by a network analyzer as  
TP10/TP12.  
VOUT2  
Resulting output of Vout2  
Measure only one output at a time with the following procedure:  
1. Set up the EVM as described in Section 4.3 and Figure 2.  
2. For Vout1, connect the network analyzers isolation transformer from TP8 to TP9.  
3. Connect the input signal measurement probe to TP8. Connect output signal measurement probe to  
TP9.  
4. Connect the ground leads of both probe channels to TP4.  
5. On the network analyzer, measure the Bode plot data as TP9/TP8 (Out/In). The frequency sweep must  
15  
SLVU638January 2012  
Using the PWR091EVM Dual-Output DC/DC Analog With PMBus Interface  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
 
Performance Data and Typical Characteristic Curves  
www.ti.com  
be limited to less than the switching frequency divided by 2 (Fsw/2).  
6. For Vout2, connect the network analyzers isolation transformer from TP12 to TP10.  
7. Connect the input signal measurement probe to TP12. Connect output signal measurement probe to  
TP10.  
8. Connect the ground leads of both probe channels to TP4.  
9. On the network analyzer, measure the Bode plot data as TP10/TP12 (Out/In). The frequency sweep  
must be limited to less than the switching frequency divided by 2 (Fsw/2).  
10. Disconnect the isolation transformer from the Bode plot test points before making other  
measurements, because the signal injection into the feedback loop may interfere with the accuracy of  
other measurements.  
6.3 Efficiency  
To measure the efficiency of the power train on the EVM, it is important to measure the voltages at the  
correct location. This is necessary because otherwise the measurements will include losses in efficiency  
that are not related to the power train itself. Losses incurred by the voltage drop in the copper traces and  
in the input and output connectors are not related to the efficiency of the power train, and they must not be  
included in efficiency measurements.  
When measuring the efficiency of Vout1, Vout2 must be disabled by the user via the Fusion GUI.  
Likewise, when measuring the efficiency of Vout2, Vout1 must be disabled by the user. See the list in  
Table 5 for the proper locations to measure efficiency.  
Table 5. List of Test Points for Efficiency Measurements  
Test Point  
TP5  
Node Name  
VIN  
Description  
Comment  
Measurement point for VIN +VE  
Measurement point for VIN VE  
Measurement point for VOUT1 +VE  
Measurement point for VOUT1 VE  
Measurement point for VIN +VE  
Measurement point for VIN VE  
Measurement point for VOUT2 +VE  
Measurement point for VOUT2 VE  
Copper dot at high-side FET drain  
Copper dot at low-side FET source  
Copper dot at output inductor, dc side  
Copper dot at low-side FET source  
Copper dot at high-side FET drain  
Copper dot at low-side FET source  
Copper dot at output inductor, dc side  
Copper dot at low-side FET source  
TP23  
TP27  
TP23  
TP24  
TP25  
TP26  
TP25  
PGND  
VOUT1  
PGND  
VIN  
PGND  
VOUT2  
PGND  
Input current can be measured at any point in the input wires, and output current can be measured  
anywhere in the output wires of the output being measured. Using these measurement points result in  
efficiency measurements that do not include losses due to the connectors and PCB traces.  
6.4 Equipment Shutdown  
1. Reduce the load current on both outputs to 0 A.  
2. Reduce input voltage to 0 V.  
3. Shut down the external fan if in use.  
4. Shut down equipment.  
7
Performance Data and Typical Characteristic Curves  
Figure 5 through Figure 25 present typical performance curves for the PWR091EVM.  
16  
Using the PWR091EVM Dual-Output DC/DC Analog With PMBus Interface  
SLVU638January 2012  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
 
www.ti.com  
Performance Data and Typical Characteristic Curves  
7.1 Efficiency  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
V
F
= 1.2 V,  
O
= 300 kHz  
SW  
V = 14 V  
I
V = 12 V  
I
V = 8 V  
I
72  
70  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
I
- Output Current - A  
O
Figure 5. Efficiency of 1.2-V Output vs Line and Load  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
V
F
= 3.3 V,  
V = 14 V  
O
I
V = 12 V  
V = 8 V  
I
I
= 300 kHz  
SW  
72  
70  
0
1
2
3
4
5
6
7
- Output Current - A  
8
9
10 11 12 13 14 15  
I
O
Figure 6. Efficiency of 3.3-V Output vs Line and Load  
17  
SLVU638January 2012  
Using the PWR091EVM Dual-Output DC/DC Analog With PMBus Interface  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Performance Data and Typical Characteristic Curves  
7.2 Load Regulation  
1.2016  
www.ti.com  
1.2015  
V = 8 V  
I
1.2014  
1.2013  
1.2012  
1.2011  
1.2010  
1.2009  
1.2008  
1.2007  
1.2006  
V = 14 V  
I
V = 12 V  
I
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
I
- Output Current - A  
O
Figure 7. Load Regulation of 1.2-V Output  
3.330  
3.329  
3.328  
3.327  
3.326  
3.325  
3.324  
3.323  
3.322  
V = 14 V  
I
V = 12 V  
I
V = 8 V  
I
0
1
2
3
4
5
6
7
- Output Current - A  
8
9
10 11 12 13 14 15  
I
O
Figure 8. Load Regulation of 3.3-V Output  
18  
Using the PWR091EVM Dual-Output DC/DC Analog With PMBus Interface  
SLVU638January 2012  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
www.ti.com  
Performance Data and Typical Characteristic Curves  
7.3 Bode Plot  
70  
60  
50  
40  
30  
20  
10  
0
140  
120  
100  
80  
8 V Phase  
12 V Phase  
14 V Phase  
60  
40  
8 V Gain  
12 V Gain  
14 V Gain  
20  
0
-10  
-20  
-20  
-30  
-40  
-60  
100  
1k  
10k  
100k  
f - Frequency - Hz  
Figure 9. Bode Plot of 1.2-V Output at 10-A Load  
70  
60  
50  
40  
30  
20  
10  
0
140  
8 V Phase  
120  
100  
80  
12 V Phase  
14 V Phase  
60  
8 V Gain  
12 V Gain  
14 V Gain  
40  
20  
0
-10  
-20  
-40  
-20  
-30  
-60  
100k  
100  
1k  
10k  
f - Frequency - Hz  
Figure 10. Bode Plot of 3.3-V Output at 10-A Load  
19  
SLVU638January 2012  
Using the PWR091EVM Dual-Output DC/DC Analog With PMBus Interface  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Performance Data and Typical Characteristic Curves  
www.ti.com  
7.4 Transient Response  
Ch1 = Vout1 at 50mV/division, Ch2 = Iout1 at 5A/division  
Figure 11. Transient Response of 1.2-V Output at 8 Vin, Transient is 5 A to 11 A to 5 A  
Ch1 = Vout1 at 50mV/division, Ch2 = Iout1 at 5A/division  
Figure 12. Transient Response of 1.2-V Output at 12 Vin, Transient is 5 A to 11 A to 5 A  
20  
Using the PWR091EVM Dual-Output DC/DC Analog With PMBus Interface  
SLVU638January 2012  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
www.ti.com  
Performance Data and Typical Characteristic Curves  
Ch1 = Vout2 at 20mV/division, Ch2 = Iout2 at 5A/division  
Figure 13. Transient Response of 3.3-V Output at 8 Vin, Transient is 5 A to 9 A to 5 A  
Ch1 = Vout2 at 20mV/division, Ch2 = Iout2 at 5A/division  
Figure 14. Transient Response of 3.3-V Output at 12 Vin, Transient is 5 A to 9 A to 5 A  
21  
SLVU638January 2012  
Submit Documentation Feedback  
Using the PWR091EVM Dual-Output DC/DC Analog With PMBus Interface  
Copyright © 2012, Texas Instruments Incorporated  
Performance Data and Typical Characteristic Curves  
www.ti.com  
7.5 Output Ripple  
Ch1 = Vout1 at 20mV/division, Ch2 = SW Node at 10V/division  
Figure 15. Output Ripple and SW Node of 1.2-V Output at 8 Vin, 20-A Output  
Ch1 = Vout1 at 20mV/division, Ch2 = SW Node at 10V/division  
Figure 16. Output Ripple and SW Node of 1.2-V Output at 12 Vin, 20-A Output  
22  
Using the PWR091EVM Dual-Output DC/DC Analog With PMBus Interface  
SLVU638January 2012  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
www.ti.com  
Performance Data and Typical Characteristic Curves  
Ch1 = Vout2 at 20mV/division, Ch2 = SW Node at 10V/division  
Figure 17. Output Ripple and SW Node of 3.3-V Output at 8 Vin, 15-A Output  
Ch1 = Vout2 at 20mV/division, Ch2 = SW Node at 10V/division  
Figure 18. Output Ripple and SW Node of 3.3-V Output at 12 Vin, 15-A Output  
23  
SLVU638January 2012  
Submit Documentation Feedback  
Using the PWR091EVM Dual-Output DC/DC Analog With PMBus Interface  
Copyright © 2012, Texas Instruments Incorporated  
Performance Data and Typical Characteristic Curves  
www.ti.com  
7.6 HDRV and Switch Node Voltage  
Ch1 = SW Node at 5 V/division, Ch2 = HDRV at 5 V/division  
Figure 19. HDRV and SW Node of 1.2-V Output at 8 Vin, 20-A Output  
Ch1 = SW Node at 5 V/division, Ch2 = HDRV at 10 V/division  
Figure 20. HDRV and SW Node of 1.2-V Output at 12 Vin, 20-A Output  
Ch1 = SW Node at 5 V/division, Ch2 = HDRV at 5 V/division  
Figure 21. HDRV and SW Node of 3.3-V Output at 8-Vin, 15-A Output  
24  
Using the PWR091EVM Dual-Output DC/DC Analog With PMBus Interface  
SLVU638January 2012  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
www.ti.com  
Performance Data and Typical Characteristic Curves  
Ch1 = SW Node at 5 V/division, Ch2 = HDRV at 10 V/division  
Figure 22. HDRV and SW Node of 3.3-V Output at 12 Vin, 15-A Output  
7.7 Turnon Waveform  
Ch1 = Vout1 at 200 mV/division, Ch2 = Iout1 at 5 A/division, Ch3 = Vin at 5 V/division Ch2 (Iout) Inverted to better  
display V and I.  
Figure 23. Turnon Waveform of 1.2-V Output at 8-V, 12-V and 14-V Input, 20-A Output  
Ch1 = Vout1 at 200 mV/division, Ch3 = Vin at 5 V/division  
Figure 24. Turnon Waveform of 1.2-V Output With 0.5-V Prebias, at 8-V, 12-V and 14-V Input, 0-A Output  
25  
SLVU638January 2012  
Using the PWR091EVM Dual-Output DC/DC Analog With PMBus Interface  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
EVM Assembly Drawing and PCB Layout  
www.ti.com  
Ch1 = Vout2 at 500 mV/division, Ch2 = Iout2 at 5 A/division, Ch3 = Vin at 5 V/division Ch2 (Iout) Inverted to better  
display V and I.  
Figure 25. Turnon Waveform of 3.3-V Output at 8-V, 12-V, and 14-V Input, 15-A Output  
Ch1 = Vout1 at 500 mV/division, Ch3 = Vin at 5 V/division  
Figure 26. Turnon Waveform of 3.3-V Output With 2-V Prebias, at 8-V, 12-V, and 14-V Input, 0-A Output  
8
EVM Assembly Drawing and PCB Layout  
Figure 27 through Figure 32 show the design of the PWR091EVM printed-circuit board (PCB).  
26  
Using the PWR091EVM Dual-Output DC/DC Analog With PMBus Interface  
SLVU638January 2012  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
www.ti.com  
EVM Assembly Drawing and PCB Layout  
Figure 27. PWR091EVM Top Layer Assembly Drawing (Top View)  
27  
SLVU638January 2012  
Using the PWR091EVM Dual-Output DC/DC Analog With PMBus Interface  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
EVM Assembly Drawing and PCB Layout  
www.ti.com  
Figure 28. PWR091EVM Bottom Assembly Drawing (Bottom View)  
28  
Using the PWR091EVM Dual-Output DC/DC Analog With PMBus Interface  
SLVU638January 2012  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
www.ti.com  
EVM Assembly Drawing and PCB Layout  
Figure 29. PWR091EVM Top Copper (Top View)  
29  
SLVU638January 2012  
Using the PWR091EVM Dual-Output DC/DC Analog With PMBus Interface  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
EVM Assembly Drawing and PCB Layout  
www.ti.com  
Figure 30. PWR091EVM Internal Layer 1 (Top View)  
30  
Using the PWR091EVM Dual-Output DC/DC Analog With PMBus Interface  
SLVU638January 2012  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
www.ti.com  
EVM Assembly Drawing and PCB Layout  
Figure 31. PWR091EVM Internal Layer 2 (Top View)  
31  
SLVU638January 2012  
Using the PWR091EVM Dual-Output DC/DC Analog With PMBus Interface  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
EVM Assembly Drawing and PCB Layout  
www.ti.com  
Figure 32. PWR091EVM Bottom Copper (Bottom View)  
32  
Using the PWR091EVM Dual-Output DC/DC Analog With PMBus Interface  
SLVU638January 2012  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
www.ti.com  
Bill of Materials  
9
Bill of Materials  
The EVM components list according to the schematic shown in .  
Table 6. PWR091 Bill of Materials  
Qty Reference Designator  
Description  
Manufacturer  
STD  
Part Number  
2
3
3
2
2
2
6
4
2
9
6
2
4
4
2
2
1
2
2
1
1
2
0
3
2
11  
C23 C27  
C1 C5 C9  
C10-12  
0.47uF, Ceramic, 16V, X5R, 10%, 0402  
STD  
0.1uF, Ceramic, 50V, X7R, 10%, 0603  
STD  
STD  
1.0uF, Ceramic, 25V, X7R, 10%, 0603  
STD  
STD  
C21 C25  
C24 C33  
C26 C22  
C31-32 C30 C34-35 C37  
C19-20 C42-43  
C38-39  
1.2nF, Ceramic, 50V, X7R, 10%, 0603  
STD  
STD  
470pF, Ceramic, 50V, X7R, 10%, 0603  
STD  
STD  
120pF, Ceramic, 50V, NP0, 5%, 0603  
STD  
STD  
1000pF, Ceramic, 50V, X7R, 10%, 0603  
STD  
STD  
22uF, Ceramic, 6.3V, X5R, 20%, 0805  
STD  
STD  
0.1uF, Ceramic, 6.3V, X5R, 20%, 0805  
STD  
STD  
C2-4 C6-8 C36 C40-41  
C18 C15 C44-47  
C28-29  
22uF, Ceramic, 25V, X5R, 20%, 1210  
STD  
STD  
100uF, Ceramic, 6.3V, X5R, 20%, 1210  
STD  
STD  
330uF, Electrolytic, Aluminum, 25V, 200mohm, 270mArms, 0.406 x 0.406  
330uF, Polymer Cap, 330uF, 6.3V, 0.015 Ohms, 20%, 7343(D)  
33457, Lug, Solderless, #10 - #10-12 AWG, Copper/Tin, Uninsulated, 0.375 x1.00"  
MBRS340, Diode, Schottky, 3A, 40V, SMC  
PEC02SAAN, Header, Male 2-pin, 100mil spacing,, 0.100" x 2  
AWHW10G, Header, Male 2x5-pin, 100mil spacing, 0.100" x 5 X 2  
820nH, Inductor, SMT, 27A, Shielded, 20%, 0.9mOhm, 0.512" x 0.571"  
5.1, Resistor, Chip, 1/10W, 1%, 0603  
Panasonic  
Kemet  
Std  
EEE-TK1E331UP  
C13-14 C16-17  
J4 J6-8  
T520D337M006ATE015  
CX35-36-CY  
MBRS340  
PEC02SAAN  
AWHW10G-0202-T-R  
744355182  
STD  
D1-2  
Fairchild  
Sullins  
Assmann  
Wurth  
STD  
J1-2  
J3  
L1-2  
R1 R4  
R3  
0, Resistor, Chip, 1/10W, 1%, 0603  
STD  
STD  
R2  
0, Resistor, Chip, 1/10W, 5%, 0603  
STD  
STD  
R5-6  
2.0k, Resistor, Chip, 1/10W, 1%, 0603  
STD  
STD  
R7 R16 R21-23 R34  
R12 R13 R38  
R8-9  
Open, Resistor, Chip, 1/10W, 1%, 0603  
STD  
STD  
47.5k, Resistor, Chip, 1/10W, 1%, 0603  
STD  
STD  
36.5k, Resistor, Chip, 1/10W, 1%, 0603  
STD  
STD  
R17 R18 R20 R24-26 R28-30 R33  
R36  
10, Resistor, Chip, 1/10W, 1%, 0603  
STD  
STD  
1
3
2
1
3
2
1
1
2
2
1
R10  
40.2k, Resistor, Chip, 1/10W, 1%, 0603  
STD  
STD  
STD  
STD  
STD  
STD  
OST  
TI  
STD  
R11 R27 R31  
R15 R32  
R35  
49.9, Resistor, Chip, 1/10W, 1%, 0603  
STD  
20k, Resistor, Chip, 1/10W, 1%, 0603  
STD  
10.5k, Resistor, Chip, 1/10W, 1%, 0603  
STD  
R19 R37 R40  
R14 R39  
J5  
10.0k, Resistor, Chip, 1/10W, 1%, 0603  
STD  
4.75k, Resistor, Chip, 1/10W, 1%, 0603  
STD  
ED120/2DS, Terminal Block, 2-pin, 15-A, 5.1mm, 0.40" x 0.35"  
TPS40422RHA, IC, PMBUS synchronous buck controller, QFN-40  
CSD87350Q5D, MOSFET, Dual N-Chan, 30-V, 30-A, QFN-8 POWER  
MMBT3904, Bipolar, NPN, 40V, 200mA, 200mW, SC-75  
PCB, FR-4, 0.062, 2oz Copper all layers., 4.00" x 4.00"  
ED120/2DS  
TPS40422RHA  
CSD87350Q5D  
MMBT3904TT1G  
STD  
U1  
Q1-2  
TI  
Q3-4  
On Semi  
STD  
PCB  
33  
SLVU638January 2012  
Using the PWR091EVM Dual-Output DC/DC Analog With PMBus Interface  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Screen Shots  
www.ti.com  
10  
Screen Shots  
10.1 Fusion GUI Screen Shots  
Figure 33. First Window at Fusion Launch  
Device Found  
Figure 34. Scan Finds Device Successfully  
Figure 35. Software Launch Continued  
34  
Using the PWR091EVM Dual-Output DC/DC Analog With PMBus Interface  
SLVU638January 2012  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
www.ti.com  
Screen Shots  
Figure 36. Software Launch Continued  
Use this screen to configure (Figure 37):  
OC Fault and OC Warn  
OT Fault and OT Warn  
Power Good Limits  
Fault response  
UVLO  
On/Off Config  
Soft Start time  
Margin voltage  
Figure 37. First Screen After Successful Launch: Configure- Limits & On/Off  
Use this screen to configure (Figure 38) :  
Vref Trim  
35  
SLVU638January 2012  
Using the PWR091EVM Dual-Output DC/DC Analog With PMBus Interface  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
 
Screen Shots  
www.ti.com  
Iout Cal Gain (DCR of output choke)  
Figure 38. Configure- Other  
Use this screen to configure all of the configurable parameters (Figure 39). The screen also shows other  
details like hexadecimal (hex) encoding.  
Figure 39. Configure- All  
Changing the On/Off Config prompts a pop-up window with details of the options Figure 40).  
36  
Using the PWR091EVM Dual-Output DC/DC Analog With PMBus Interface  
SLVU638January 2012  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
 
www.ti.com  
Screen Shots  
Figure 40. Configure- Limits and On/Off- On/Off Config Pop-up  
After a change is selected, orange U icon is displayed to offer Undo Change option. Change is not  
retained until either Write to Hardware or Store User Defaults is selected. When Write to Hardware is  
selected, change is committed to volatile memory and defaults back to previous setting on input power  
cycle. When Store User Defaults is selected, change is committed to nonvolatile memory and becomes  
the new default (Figure 41).  
Figure 41. Configure- Limits and On/Off- On/Off Config Pop-up  
37  
SLVU638January 2012  
Submit Documentation Feedback  
Using the PWR091EVM Dual-Output DC/DC Analog With PMBus Interface  
Copyright © 2012, Texas Instruments Incorporated  
 
Screen Shots  
www.ti.com  
The Iout Cal Gain can be typed in or scrolled to a new value. The range for Iout Cal Gain is 0.244 mΩ to  
15.5 mΩ and the resolution step is 30.5 µΩ. If a value is typed in that is between the available discrete  
steps, the typed-in value does not change but the nearest discrete step is retained. The actual step is  
displayed on relaunch of the Fusion GUI (Figure 42).  
Figure 42. Configure- Other- Iout Cal Gain Change  
On/Off Config can also be configured from the All Config screen, and the same process applies  
(Figure 43).  
Figure 43. Configure- All Config- On/Off Config Pop-up  
38  
Using the PWR091EVM Dual-Output DC/DC Analog With PMBus Interface  
SLVU638January 2012  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
 
 
www.ti.com  
Screen Shots  
After making changes to one or more configurable parameters, the changes can be committed to  
nonvolatile memory by selecting Store User Defaults. This action prompts a confirm selection pop-up, and  
if confirmed, the changes are committed to nonvolatile memory (Figure 44).  
Figure 44. Configure- Store User Defaults  
A scroll-down menu in the upper right corner can be selected to change the view screens to one output  
rail or the other(Figure 45).  
Figure 45. Change Screens to Other Vout Rail  
39  
SLVU638January 2012  
Using the PWR091EVM Dual-Output DC/DC Analog With PMBus Interface  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
 
 
Screen Shots  
www.ti.com  
In the lower left corner, the different view screens can be changed. The view screens can be changed  
between Configure, Monitor and Status as needed (Figure 46).  
Figure 46. Change View Screen to Monitor Screen  
When the Monitor screen is selected (Figure 47), the screen changes to display real-time data of the  
parameters that are measured by the controller. This screen provides access to:  
Graphs of Vout, Iout, Temperature, and Pout. As shown, Pout display is turned off.  
Start/Stop Polling which turns on or off the real-time display of data.  
Quick access to On/Off config  
Control pin activation, and OPERATION command. As shown, because the device is configured for  
Always Converting, these radio buttons are either grayed-out or have no effect.  
Margin control.  
PMBus log which displays activity on the PMBus.  
Tips & Hints which displays additional information when the cursor is hovered over configurable  
parameters.  
As shown, when the EVM is still off due to UVLO, no output voltage or current is displayed.  
At first GUI launch, Faults may occur due to communications during power up. These faults can be  
cleared once the device is enabled.  
40  
Using the PWR091EVM Dual-Output DC/DC Analog With PMBus Interface  
SLVU638January 2012  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
 
www.ti.com  
Screen Shots  
Figure 47. Monitor Screen  
Selecting System Dashboard from mid-left screen adds a new window which displays system-level  
information (Figure 48).  
Figure 48. System Dashboard  
41  
SLVU638January 2012  
Submit Documentation Feedback  
Using the PWR091EVM Dual-Output DC/DC Analog With PMBus Interface  
Copyright © 2012, Texas Instruments Incorporated  
 
Screen Shots  
www.ti.com  
When the EVM starts converting power, the Vout graph changes scale to display both the zero and Vout  
level. Only one rail can be displayed on the graphs at any time, but the other rail voltage, current, power,  
and temperature are displayed in the upper left window. Once the EVM is converting and clear of any  
faults, selecting Clear Faults clears any prior fault flags (Figure 49).  
Figure 49. Display Change on Power Up  
Selecting Clear Faults clears any prior fault flags. Scrolling time window of Vout still shows the turnon  
event (Figure 50).  
Figure 50. Faults Cleared  
42  
Using the PWR091EVM Dual-Output DC/DC Analog With PMBus Interface  
SLVU638January 2012  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
 
 
www.ti.com  
Screen Shots  
Selecting Status from lower left corner shows the status of the controller (Figure 51).  
Figure 51. Status Screen  
Selecting the pull-down menu File- Import Project from the upper left menu bar can be used to configure  
all parameters in the device at once with a desired configuration, or even revert back to a known-good  
configuration. This action results in a browse-type sequence where the desired config file can be located  
and loaded (Figure 52).  
Figure 52. Import Project / Import Configuration File  
43  
SLVU638January 2012  
Submit Documentation Feedback  
Using the PWR091EVM Dual-Output DC/DC Analog With PMBus Interface  
Copyright © 2012, Texas Instruments Incorporated  
 
 
Screen Shots  
www.ti.com  
Selecting Store User Configuration to Flash Memory from the Device pull-down menu has the same  
functionality as the Store User Defaults button from within the Configure screen. It results in committing  
the current configuration to nonvolatile memory (Figure 53).  
Figure 53. Store Config To Memory  
Selecting Data Logging (Figure 54) from the Tools drop-down menu enables the logging of common  
operating values such as Vout, Iout, and Temperature for both output rails. The user is prompted to select  
a location for the file to be stored as well as the type of file. See next screen (Figure 55).  
Figure 54. Data Logging  
44  
Using the PWR091EVM Dual-Output DC/DC Analog With PMBus Interface  
SLVU638January 2012  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
 
 
www.ti.com  
Screen Shots  
Select the storage location for the file and the type of file. As shown (Figure 55), the file will be a CSV file  
to be stored in the directory path shown. Logging begins when the Start Data Logging button is selected,  
and stops when it is reselected (as Stop Data Logging).  
Figure 55. Data Logging Details  
Data is stored in a CSV file, with date-stamp name (Figure 56).  
Figure 56. Data Log  
Common contents of the data log. As shown (Figure 57), the UUT had been disabled, and both rails were  
off .  
45  
SLVU638January 2012  
Using the PWR091EVM Dual-Output DC/DC Analog With PMBus Interface  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
 
 
Screen Shots  
www.ti.com  
Figure 57. Data Log File  
Selecting PMBus Logging (Figure 58) from the Tools drop-down menu enables the logging of all PMBus  
activity. This includes communications traffic for each polling loop between the GUI and the device. It also  
includes common operating values such as Vout, Iout, and Temperature for both output rails. The user is  
prompted to select a location for the file to be stored. See next screen (Figure 59).  
Figure 58. PMBus Logging  
46  
Using the PWR091EVM Dual-Output DC/DC Analog With PMBus Interface  
SLVU638January 2012  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
 
www.ti.com  
Screen Shots  
Select the storage location for the file and the type of file. As shown (Figure 59), the file is a CSV file to be  
stored in the directory path shown. Logging begins when the Start Logging button is selected, and stops  
when it is reselected (as Stop Logging). This file can rapidly grow in size, so caution is advised when  
using this function.  
Figure 59. PMBus Log Details  
Data is stored in a CSV file, with date-stamp name (Figure 60).  
Figure 60. PMBus Log  
Common contents of the PMBus log. As shown (Figure 61), the UUT had been disabled, and both rails  
were off.  
47  
SLVU638January 2012  
Using the PWR091EVM Dual-Output DC/DC Analog With PMBus Interface  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
 
 
Screen Shots  
www.ti.com  
Figure 61. PMBus Log File  
48  
Using the PWR091EVM Dual-Output DC/DC Analog With PMBus Interface  
SLVU638January 2012  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
Evaluation Board/Kit Important Notice  
Texas Instruments (TI) provides the enclosed product(s) under the following conditions:  
This evaluation board/kit is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION  
PURPOSES ONLY and is not considered by TI to be a finished end-product fit for general consumer use. Persons handling the  
product(s) must have electronics training and observe good engineering practice standards. As such, the goods being provided are  
not intended to be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations,  
including product safety and environmental measures typically found in end products that incorporate such semiconductor  
components or circuit boards. This evaluation board/kit does not fall within the scope of the European Union directives regarding  
electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and therefore may not meet the  
technical requirements of these directives or other related directives.  
Should this evaluation board/kit not meet the specifications indicated in the Users Guide, the board/kit may be returned within 30  
days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY  
SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING  
ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.  
The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all  
claims arising from the handling or use of the goods. Due to the open construction of the product, it is the users responsibility to  
take any and all appropriate precautions with regard to electrostatic discharge.  
EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER  
FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.  
TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive.  
TI assumes no liability for applications assistance, customer product design, software performance, or infringement of  
patents or services described herein.  
Please read the Users Guide and, specifically, the Warnings and Restrictions notice in the Users Guide prior to handling the  
product. This notice contains important safety information about temperatures and voltages. For additional information on TIs  
environmental and/or safety programs, please contact the TI application engineer or visit www.ti.com/esh.  
No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or  
combination in which such TI products or services might be or are used.  
FCC Warning  
This evaluation board/kit is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION  
PURPOSES ONLY and is not considered by TI to be a finished end-product fit for general consumer use. It generates, uses, and  
can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15  
of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this  
equipment in other environments may cause interference with radio communications, in which case the user at his own expense  
will be required to take whatever measures may be required to correct this interference.  
EVM Warnings and Restrictions  
It is important to operate this EVM within the input voltage range of 8 V to 14 V and the output voltage range of 1.2 V to 3.3 V .  
Exceeding the specified input range may cause unexpected operation and/or irreversible damage to the EVM. If there are  
questions concerning the input range, please contact a TI field representative prior to connecting the input power.  
Applying loads outside of the specified output range may result in unintended operation and/or possible permanent damage to the  
EVM. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load  
specification, please contact a TI field representative.  
During normal operation, some circuit components may have case temperatures greater than 60° C. The EVM is designed to  
operate properly with certain components above 60° C as long as the input and output ranges are maintained. These components  
include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors. These types of  
devices can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near  
these devices during operation, please be aware that these devices may be very warm to the touch.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2012, Texas Instruments Incorporated  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TIs terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TIs standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Audio  
Applications  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Medical  
Logic  
Security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
www.ti.com/video  
OMAP Mobile Processors www.ti.com/omap  
Wireless Connectivity www.ti.com/wirelessconnectivity  
TI E2E Community Home Page  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2012, Texas Instruments Incorporated  

相关型号:

MMBT3904TT1_07

General Purpose Transistors
ONSEMI

MMBT3904T_1

NPN SMALL SIGNAL SURFACE MOUNT TRANSISTOR
DIODES

MMBT3904T_11

150mW NPN General Purpose Amplifier
MCC

MMBT3904T_15

NPN TRANSISTOR
WINNERJOIN

MMBT3904T_2

NPN SMALL SIGNAL SURFACE MOUNT TRANSISTOR
DIODES

MMBT3904W

General Purpose Transistor NPN Silicon
WEITRON

MMBT3904W

NPN GENERAL PURPOSE SWITCHING TRANSISTOR
PANJIT

MMBT3904W

NPN Silicon Epitaxial Planar Transistor
SEMTECH

MMBT3904W

General Purpose Transistor
KEXIN

MMBT3904W

General Purpose Transistor
SECOS

MMBT3904W

Pb?Free package is available
TYSEMI

MMBT3904WG

General Purpose Transistor
ZOWIE