LSF0204-Q1 [TI]

适用于开漏或推挽接口的汽车类 4 位双向多电压电平转换器;
LSF0204-Q1
型号: LSF0204-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于开漏或推挽接口的汽车类 4 位双向多电压电平转换器

转换器 电平转换器
文件: 总26页 (文件大小:1334K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LSF0204-Q1  
ZHCSID1B JUNE 2018 REVISED APRIL 2021  
通过汽车认证LSF0204-Q1 4 位自动双向多电压电平转换器  
An Bn 端口为低电平时此开关处于接通状态,  
并且在 An Bn 端口之间存在一个低电阻连接。此开  
关具有低导通电阻可以在最短传播延迟和最小信号失  
真情况下建立连接。A B 上的电压将低于  
Vref_A且可上拉Vref_A 5.5V 之间的任何电平  
1 特性  
• 符合面向汽车应用AEC-Q100 标准  
– 温度等140°C TA 125°C  
– 器HBM ESD 分类等2  
CDM ESD 分类等C6  
您可以使用上拉电阻器单独设置每个通道的电源电压  
(VPUn)例如CH1 用于上行转换模式 (1.2V ↔  
3.3V)CH2 可用于下行转换模(2.5V 1.8V)。  
• 可在无方向引脚的情况下提供自动双向电压转换  
• 支持开漏或推挽应用I2CI2SSPIUART、  
JTAGMDIOSDIO GPIO  
EN 为高电平时转换器开关打开并且 An I/O 分  
别连接至 Bn I/O从而实现端口间的双向数据流。当  
EN 为低电平时转换器开关关闭端口之间呈高阻抗  
状态。EN 输入电路被设计成Vref_A 供电。EN 必须  
为低电平从而确保上电或断电期间的高阻抗状态。  
• 在电容负载不超30pF 的情况下支持最高  
100MHz 的上行转换和大100MHz 的下行转换,  
50pF 电容负载下支持最40MHz 的上行/下行  
转换  
• 支Ioff 局部断电模式请参7.3)  
• 可实现以下电压之间的双向电压电平转换  
0.95V 1.82.53.35.5V  
1.2V 1.82.53.35.5V  
器件信息(1)  
封装尺寸标称值)  
器件型号  
封装  
LSF0204QPWRQ1  
TSSOP (14)  
5.00mm x 4.40mm  
1.8V 2.53.35.5V  
2.5V 3.35.5V  
3.3V 5.5V  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
I/O 端口可耐5V 电压  
LSF0204-Q1  
200 KΩ  
Vref_B  
Ron 可实现更佳的信号完整性  
• 采用直通引脚排列来简PCB 布线  
• 闩锁性能超100mAJESD17 规范  
Vref_A  
Level Converter  
EN  
2 应用  
I2SJTAGSPISDIOUARTI2CMDIO、  
PMBusSMBus 和其他接口  
• 信息娱乐系统音响主机  
• 图形群集  
ADAS 融合  
ADAS 前置摄像头  
A1  
A2  
A3  
A4  
B1  
B2  
B3  
B4  
HEV 电池管理系统  
简化版原理图  
3 说明  
LSF0204-Q1 是一款通过汽车认证的四通道自动双向电  
压转换器可在 0.8V 4.5V (Vref_A) 1.8V 至  
5.5V (Vref_B) 电压范围内运行。该范围支持在 0.8 至  
5V 之间进行双向电压转换而无须使用方向引脚。  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSEM4  
 
 
 
 
LSF0204-Q1  
ZHCSID1B JUNE 2018 REVISED APRIL 2021  
www.ti.com.cn  
Table of Contents  
7.1 Overview................................................................... 11  
7.2 Functional Block Diagram......................................... 11  
7.3 Feature Description...................................................12  
7.4 Device Functional Modes..........................................12  
8 Application and Implementation..................................13  
8.1 Application Information............................................. 13  
8.2 Typical Applications.................................................. 13  
9 Power Supply Recommendations................................17  
10 Layout...........................................................................17  
10.1 Layout Guidelines................................................... 17  
10.2 Layout Example...................................................... 17  
11 Device and Documentation Support..........................18  
11.1 Documentation Support.......................................... 18  
11.2 接收文档更新通知................................................... 18  
11.3 支持资源..................................................................18  
11.4 Trademarks............................................................. 18  
11.5 静电放电警告...........................................................18  
11.6 术语表..................................................................... 18  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................5  
6.6 Switching Characteristics: AC Performance  
(Translating Down, 3.3 V to 1.8 V)................................ 6  
6.7 Switching Characteristics: AC Performance  
(Translating Down, 3.3 V to 1.2 V)................................ 6  
6.8 Switching Characteristics: AC Performance  
(Translating Up, 1.8 V to 3.3 V).....................................7  
6.9 Switching Characteristics: AC Performance  
(Translating Up, 1.2 V to 1.8 V).....................................7  
6.10 Typical Characteristics..............................................8  
7 Detailed Description......................................................11  
Information.................................................................... 18  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (September 2018) to Revision B (April 2021)  
Page  
• 更新了整个文档的表、图和交叉参考的编号格式................................................................................................ 1  
Updated the Bidrectional Translation section to include inclusive terminology.................................................14  
Changes from Revision * (June 2018) to Revision A (September 2018)  
Page  
• 将产品状态从“预告信息”更改为“量产数据”................................................................................................ 1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
 
LSF0204-Q1  
ZHCSID1B JUNE 2018 REVISED APRIL 2021  
www.ti.com.cn  
5 Pin Configuration and Functions  
VREF_A  
A1  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
VREF_B  
B1  
A2  
B2  
A3  
B3  
A4  
B4  
NC  
NC  
GND  
8
EN  
Not to scale  
5-1. PW Package  
14-Pin TSSOP  
Top View  
5-1. Pin Functions 2  
PIN  
I/O  
DESCRIPTION  
NAME  
VREF_A  
A1  
NO.  
1
Reference supply voltage; see 8 section  
Input/output 1.  
2
I/O  
I/O  
I/O  
I/O  
A2  
3
Input/output 2.  
A3  
4
Input/output 3.  
A4  
5
Input/output 4.  
NC  
6
No connection. Not internally connected.  
Ground  
I
GND  
EN  
7
8
Translation enable input, EN is active-high  
No connection. Not internally connected.  
Input/output 4.  
NC  
9
B4  
10  
11  
12  
13  
14  
I/O  
I/O  
I/O  
I/O  
B3  
Input/output 3.  
B2  
Input/output 2.  
B1  
Input/output 1.  
VREF_B  
Reference supply voltage; see 8 section  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
 
LSF0204-Q1  
ZHCSID1B JUNE 2018 REVISED APRIL 2021  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted) (1)  
MIN  
0.5  
MAX  
UNIT  
V
(2)  
Input voltage, VI  
7
7
(2)  
Input and output voltage, VI/O  
V
0.5  
Continuous channel current  
Input clamp current, IIK  
128  
50  
150  
150  
mA  
mA  
°C  
VI < 0  
Junction temperature, TJ  
Storage temperature, Tstg  
°C  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) The input and input/output negative-voltage ratings may be exceeded if the input and input/output clamp-current ratings are observed.  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-001  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
0
MAX  
UNIT  
V
VI/O  
Input/output voltage  
5.5  
5.5  
64  
Vref_A/B/EN  
IPASS  
TA  
Reference voltage  
0
V
Pass transistor current  
Operating free-air temperature  
mA  
°C  
125  
40  
6.4 Thermal Information  
LSF0204-Q1  
PW (TSSOP)  
14 PINS  
157.9  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C  
°C  
°C  
°C  
°C  
°C  
RθJC(top)  
RθJB  
82.3  
100.0  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
22.9  
ψJT  
99.0  
ψJB  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, refer to the Semiconductor and IC Package Thermal Metrics  
application report.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
 
 
 
 
 
 
 
 
 
LSF0204-Q1  
ZHCSID1B JUNE 2018 REVISED APRIL 2021  
www.ti.com.cn  
6.5 Electrical Characteristics  
over recommended operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX  
UNIT  
Input clamp  
voltage  
VIK  
II = -18 mA, VEN = 0  
VI = 5 V, VEN = 0  
V
1.2  
I/O input high  
leakage  
IIH  
5.0  
3.5  
µA  
µA  
Leakage from  
Vref_B to Vref_A  
Vref_B = 3.3 V, Vref_A = 1.8 V, VEN = Vref_A IO = 0, VI = 3.3 V or  
GND  
ICCBA  
Total Current  
through GND  
Vref_B = 3.3 V, Vref_A = 1.8 V, VEN = Vref_A IO = 0, VI = 3.3 V or  
GND  
(3)  
ICCA + ICCB  
IIN  
0.2  
µA  
µA  
µA  
pF  
pF  
Control pin current Vref_B = 5.5 V, Vref_A = 4.5 V, VEN = 0 to Vref_A IO = 0  
±1  
±1  
Power Off  
Ioff  
Vref_B = Vref_A = 0 V, VEN = GND IO = 0, VI = 5 V or GND  
Leakage Current  
CI(ref_A/B/EN)  
Cio(off)  
Input capacitance VI = 3 V or 0  
7
I/O pin off-state  
VO = 3 V or 0, VEN = 0  
capacitance  
5.0  
6.0  
13  
I/O pin on-state  
Cio(on)  
VO = 3 V or 0, VEN = Vref_A  
capacitance  
10.5  
pF  
V
High-level input  
Vref_A = 1.5 V to 4.5 V  
voltage  
VIH (EN pin)  
VIL (EN pin)  
VIH (EN pin)  
VIL (EN pin)  
0.7×Vref_A  
0.8×Vref_A  
Low-level input  
Vref_A = 1.5 V to 4.5 V  
voltage  
0.3×Vref_A  
0.3×Vref_A  
V
High-level input  
Vref_A= 1.0 V to 1.5 V  
voltage  
V
Low-level input  
Vref_A = 1.0 V to 1.5 V  
voltage  
V
Input transition rise  
or fall rate for EN  
pin  
10  
ns/V  
t/v (EN pin)  
Vref_A = VEN = 3.3 V; Vref_B = 5 V  
VI = 0, IO = 64 mA  
3
4
Ω
Ω
Vref_A = VEN = 1.8 V; Vref_B = 5 V  
Vref_A = VEN = 1.0 V; Vref_B = 5 V  
VI = 0, IO = 32 mA  
9
Vref_A = VEN = 1.8 V; Vref_B = 5 V  
4
On-state  
resistance  
(2)  
ron  
VI = 0, IO = 32 mA , Vref_A = VEN = 2.5 V; Vref_B = 5 V  
10  
5
Ω
Ω
Ω
Ω
Ω
VI = 1.8 V, IO = 15 mA, Vref_A = VEN = 3.3 V; Vref_B = 5 V  
VI = 1.0 V, IO = 10 mA, Vref_A = VEN = 1.8 V; Vref_B = 3.3 V  
VI = 0 V, IO = 10 mA, Vref_A = VEN = 1.0 V; Vref_B = 3.3 V  
VI = 0 V, IO = 10 mA, Vref_A = VEN = 1.0 V; Vref_B = 1.8 V  
8
6
6
(1) All typical values are at TA = 25°C.  
(2) Measured by the voltage drop between the A and B terminals at the indicated current through the switch. On-state resistance is  
determined by the lowest voltage of the two (A or B) terminals.  
(3) The actual supply current for LSF0204 is ICCA + ICCB; the leakage from Vref_B to Vref_A can be measured on Vref_A and Vref_B pin  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
 
 
 
 
LSF0204-Q1  
ZHCSID1B JUNE 2018 REVISED APRIL 2021  
www.ti.com.cn  
6.6 Switching Characteristics: AC Performance (Translating Down, 3.3 V to 1.8 V)  
over recommended operating free-air temperature range, Vrev-A = 1.8 V, Vrev-B = 3.3 V, VEN = 1.8 V, Vpu_1 = 3.3 V,  
Vpu_2 = 1.8 V, RL = NA, VIH = 3.3 V, VIL = 0 VM = 1.15 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
0.7  
0.5  
0.3  
0.9  
0.7  
0.5  
13  
MAX  
5.49  
5.29  
5.19  
4.9  
4.7  
4.5  
18  
UNIT  
CL = 50 pF  
Propagation delay time  
(low-to-high output)  
tPLH  
tPHL  
tPLZ  
tPZL  
fMAX  
(Input) A or B-to-B or A (Output)  
(Input) A or B-to-B or A (Output)  
(Input) A or B-to-B or A (Output)  
(Input) A or B-to-B or A (Output)  
(Input) A or B-to-B or A (Output)  
CL = 30 pF  
CL = 15 pF  
CL = 50 pF  
CL = 30 pF  
CL = 15 pF  
CL = 50 pF  
CL = 30 pF  
CL = 15 pF  
CL = 50 pF  
CL = 30 pF  
CL = 15 pF  
CL = 50 pF  
CL = 30 pF  
CL = 15 pF  
ns  
Propagation delay time  
(high-to-low output)  
ns  
ns  
Disable time  
(from low level)  
12  
16.5  
15  
11  
33  
45  
Disable time  
30  
40  
ns  
23  
37  
50  
Maximum time  
100  
100  
MHz  
6.7 Switching Characteristics: AC Performance (Translating Down, 3.3 V to 1.2 V)  
over recommended operating free-air temperature range Vrev-A = 1.2 V, Vrev-B = 3.3 V, VEN = 1.2 V, Vpu_1 = 3.3 V,  
Vpu_2 = 1.2 V, RL = NA, VIH = 3.3V, VIL = 0 VM = 0.85 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
0.8  
0.5  
0.3  
0.9  
0.7  
0.6  
50  
MAX  
4.1  
3.9  
3.8  
4.7  
4.5  
4.3  
UNIT  
CL = 50 pF  
Propagation delay time  
(low-to-high output)  
tPLH  
(Input) A or B-to-B or A (Output)  
(Input) A or B-to-B or A (Output)  
(Input) A or B-to-B or A (Output)  
CL = 30 pF  
CL = 15 pF  
CL = 50 pF  
CL = 30 pF  
CL = 15 pF  
CL = 50 pF  
CL = 30 pF  
CL = 15 pF  
ns  
Propagation delay time  
(high-to-low output)  
tPHL  
ns  
fMAX Maximum time  
100  
100  
MHz  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
 
 
LSF0204-Q1  
ZHCSID1B JUNE 2018 REVISED APRIL 2021  
www.ti.com.cn  
6.8 Switching Characteristics: AC Performance (Translating Up, 1.8 V to 3.3 V)  
over recommended operating free-air temperature range Vrev-A = 1.8 V, Vrev-B = 3.3 V, VEN = 1.8 V, Vpu_1 = 3.3 V,  
Vpu_2 = 1.8V, RL = 500 Ω, VIH = 1.8V,VIL = 0 VM = 0.9V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
0.6  
0.4  
0.2  
1.3  
1
MAX  
5.7  
UNIT  
CL = 50 pF  
Propagation delay time  
(low-to-high output)  
tPLH  
tPHL  
tPLZ  
tPZL  
fMAX  
(Input) A or B-to-B or A (Output)  
(Input) A or B-to-B or A (Output)  
(Input) A or B-to-B or A (Output)  
(Input) A or B-to-B or A (Output)  
(Input) A or B-to-B or A (Output)  
CL = 30 pF  
CL = 15 pF  
CL = 50 pF  
CL = 30 pF  
CL = 15 pF  
CL = 50 pF  
CL = 30 pF  
CL = 15 pF  
CL = 50 pF  
CL = 30 pF  
CL = 15 pF  
CL = 50 pF  
CL = 30 pF  
CL = 15 pF  
5.3  
5.13  
6.7  
6.4  
5.3  
18  
ns  
Propagation delay time  
(high-to-low output)  
ns  
ns  
0.7  
13  
Disable time  
(from low level)  
12  
16.5  
15  
11  
33  
45  
Disable time  
30  
40  
ns  
23  
37  
50  
Maximum time  
100  
100  
MHz  
6.9 Switching Characteristics: AC Performance (Translating Up, 1.2 V to 1.8 V)  
over recommended operating free-air temperature range, Vrev-A = 1.2 V, Vrev-B = 1.8 V, VEN = 1.2 V, Vpu_1 = 1.8 V,  
Vpu_2 = 1.2 V, RL = 500 Ω, VIH = 1.2V, VIL = 0 VM = 0.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
0.65  
0.4  
0.2  
1.6  
1.3  
1
MAX  
7.25  
UNIT  
CL = 50 pF  
Propagation delay time  
(low-to-high output)  
tPLH  
tPHL  
fMAX  
(Input) A or B-to-B or A (Output)  
(Input) A or B-to-B or A (Output)  
(Input) A or B-to-B or A (Output)  
CL = 30 pF  
CL = 15 pF  
CL = 50 pF  
CL = 30 pF  
CL = 15 pF  
CL = 50 pF  
CL = 30 pF  
CL = 15 pF  
7.05  
6.85  
7.03  
6.5  
ns  
Propagation delay time  
(high-to-low output)  
ns  
5.4  
50  
Maximum time  
100  
100  
MHz  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
 
 
LSF0204-Q1  
ZHCSID1B JUNE 2018 REVISED APRIL 2021  
www.ti.com.cn  
6.10 Typical Characteristics  
4
Input  
Output  
3.5  
3
2.5  
2
1.5  
1
0.5  
0
-0.5  
0
5
10  
15  
20  
Time (ns)  
6-1. Signal Integrity (1.8 V to 3.3 V Translation Up at 50 MHz)  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
 
LSF0204-Q1  
ZHCSID1B JUNE 2018 REVISED APRIL 2021  
www.ti.com.cn  
Parameter Measurement Information  
The outputs are measured one at a time, with one transition per measurement. All input pulses are supplied by  
generators that have the following characteristics:  
PRR 10 MHz  
ZO = 50 Ω  
Tr 2 ns  
Tf 2 ns  
V
T
R
L
S1  
Open  
S2  
From Output  
Under Test  
(1)  
L
C
A. CL includes probe and jig capacitance.  
7-1. Load Circuit for Outputs  
USAGE  
SWITCH  
S1  
Translating up  
Translating down  
S2  
3.3 V  
Input  
V
V
M
M
M
V
IL  
5 V  
Output  
V
M
V
V
OL  
TRANSLATING UP  
5 V  
Input  
V
V
V
M
M
V
IL  
2 V  
Output  
V
M
M
V
OL  
7-2. Translating Down  
Vref_B  
S1  
Open  
500 Ω  
From Output  
Under Test  
15 pF  
TEST  
S1  
Vref_B  
tPZL/tPLZ  
7-3. Load Circuit for Enable/Disable Time Measurement  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
LSF0204-Q1  
ZHCSID1B JUNE 2018 REVISED APRIL 2021  
www.ti.com.cn  
7.1 Load Circuit AC Waveform for Outputs  
tr 2.0 ns  
tf 2.0 ns  
VCCA  
90%  
50%  
Input  
(An, Bn)  
10%  
GND  
VOH  
VOL  
Output  
(Bn, An)  
tpLH  
tpHL  
7-4. tPLH, tPHL  
tr 2.0 ns  
tf 2.0 ns  
VCCA  
90%  
50%  
Output Enabled  
Control OE, OE  
10%  
GND  
VOH  
tpLZ  
tpZL  
Output (An or Bn)  
Low to off to Low  
50%  
10%  
Outputs  
enabled  
Outputs  
disabled  
Outputs  
enabled  
7-5. tPLZ, tPZL  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
LSF0204-Q1  
ZHCSID1B JUNE 2018 REVISED APRIL 2021  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The LSF0204-Q1 may be used in level translation applications for interfacing devices or systems operating at  
different interface voltages. The LSF0204-Q1 is ideal for use in applications where an open-drain driver is  
connected to the data I/Os. LSF0204-Q1 can achieve 100 MHz data rate with the appropriate pull-up resistors  
and layout design. The LSF0204-Q1 can also be used in applications where a push-pull driver is connected to  
the data I/Os.  
7.2 Functional Block Diagram  
LSF0204-Q1  
200 KΩ  
Vref_B  
Vref_A  
Level Converter  
EN  
A1  
A2  
A3  
A4  
B1  
B2  
B3  
B4  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
 
 
 
LSF0204-Q1  
ZHCSID1B JUNE 2018 REVISED APRIL 2021  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Auto-Bidirectional Voltage Translation Without DIR Pin Terminal  
The LSF0204-Q1 device is an auto bidirectional voltage level translator that operates from 0.95 V to 4.5 V on  
Vref_A and 1.8 V to 5.5 V on Vref_B. This allows bidirectional voltage translation between 0.95 V and 5.5 V  
without the need for a direction pin in open-drain or push-pull applications.  
7.3.2 Support Multiple High Speed Translation Interfaces  
The LSF0204-Q1 device is able to perform voltage translation for open-drain interfaces such as I2C, MDIO,  
SMBUS, and PMBUS or push-pull interfaces such as I2S, SPI, UART, SDIO, and GPIO. The LSF0204-Q1  
device supports level translation applications with transmission speeds greater than 100 MHz using a 200-Ω  
pullup resistor with a 15-pF capacitive load. See the Down Translation with the LSF family and Up Translation  
with the LSF family videos.  
7.3.3 5-V Tolerance on IO Port and 125°C Support  
The LSF0204-Q1, provides up to 5-V over-voltage tolerance on each of its IO channels. The device operating  
ambient temperature from 40°C to 125°C is critical in supporting automotive applications.  
7.3.4 Channel Specific Translation  
The LSF0204-Q1 can work as multi-voltage level translator using specific pullup voltage (Vpu) on each IO  
channel. Watch the Multi-Voltage Translation with the LSF Family video.  
7.3.5 Ioff, Partial Power Down Mode  
When Vref_A or Vref_B = 0, all the data IO pins are in high impedance.  
EN logic circuit is referenced to Vref_A supply. No power sequence is required to enable and operate LSF0204-  
Q1.  
7.4 Device Functional Modes  
7-1 lists the device functional modes of the LSF0204-Q1 device.  
7-1. Function Table  
INPUT EN(1) TERMINAL  
FUNCTION  
An = Bn  
Hi-Z  
H
L
(1) EN is controlled by Vref_A logic levels.  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
 
 
 
 
LSF0204-Q1  
ZHCSID1B JUNE 2018 REVISED APRIL 2021  
www.ti.com.cn  
8 Application and Implementation  
Note  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
LSF0204-Q1 performs voltage translation for open-drain or push-pull interface. 8-1 provides examples of  
interfaces as reference in regards to the different channel numbers that are supported by the LSF0204-Q1.  
8-1. Voltage Translator by Interface  
CHANNEL  
NUMBER  
PART NAME  
INTERFACE  
Open Drain : I2C, MDIO, SMBus, PMBus, GPIO  
Push Pull: GPIO, SPI, I2S, UART, JTAG, SD  
LSF0204-Q1  
4
8.2 Typical Applications  
8.2.1 I2C, PMBus, SMBus, GPIO Application  
Vpu_1 = 3.3 V  
Vpu_2 = 1.8 V  
Vrev_A = 1.8 V  
Vrev_B = 3.3 V  
1.8V  
enable signal  
ON  
LSF0204-Q1  
Off  
Rpu  
Rpu  
EN  
B1  
Rpu  
Rpu  
A1  
Vcc  
Vcc  
SW  
SW  
SW  
SW  
SDA  
SCL  
SDA  
A2  
A3  
A4  
B2  
B3  
B4  
SCL  
GND  
8-1. Bidirectional Translation to Multiple Voltage Levels  
8.2.1.1 Design Requirements  
8.2.1.1.1 Enable, Disable, and Reference Voltage Guidelines  
The LSF0204-Q1 has an EN input that is used to disable the device by setting EN LOW, which places all I/Os in  
the high-impedance state. Since LSF0204-Q1 is switch-type voltage translator, the power consumption is very  
low. It is recommended to always enable LSF0204-Q1 for bidirectional application (I2C, SMBus, PMBus, or  
MDIO).  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
 
 
 
 
 
 
LSF0204-Q1  
ZHCSID1B JUNE 2018 REVISED APRIL 2021  
www.ti.com.cn  
8-2. Application Operating Condition  
SYMBOL  
Vref_A  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Reference voltage (A)  
0.8  
4.5  
5.5  
V
V
V
V
Vref_B  
Reference voltage (B)  
Vref_A + 0.8  
(1)  
VI(EN)  
Input voltage on EN terminal  
Pull-up supply voltage  
0
0
Vref_A  
Vref_B  
Vpu  
(1) Refer VIH and VIL for VI(EN)  
Vref_B is recommended to be 1.0 V higher than Vref_A for best signal integrity.  
The LSF0204-Q1 device enables multi-voltage translation by using the desired pull up voltage on each of the  
channels.  
Note  
Vref_A must be set as lowest voltage level while using the device in multi-voltage translation  
application.  
8.2.1.2 Detailed Design Procedure  
8.2.1.2.1 Bidirectional Translation  
The controller output driver may be push-pull (pull-up resistors may be required) or open-drain (pull-up resistors  
required) and the peripheral device output can be push-pull or open-drain (pull-up resistors are required to pull  
the Bn outputs to Vpu).  
Note  
However, if either output is push-pull, data must be unidirectional or the outputs must be 3-state and  
be controlled by some direction-control mechanism to prevent HIGH-to-LOW contentions in either  
direction. If both outputs are open-drain, no direction control is needed.  
In 8-1, the reference supply voltage (Vref_A) is connected to the processor core power supply voltage. When  
Vref_B is connected through to a 3.3 V Vpu power supply, and Vref_A is set 1.0 V. The output of A3 and B4 has  
a maximum output voltage equal to Vref_A, and the bidirectional interface (Ch1/2, MDIO) has a maximum output  
voltage equal to Vpu.  
8.2.1.2.1.1 Pull-Up Resistor Sizing  
The pull-up resistor value needs to limit the current through the pass transistor when it is in the ON state to about  
15 mA. This ensures a pass voltage of 260 mV to 350 mV. If the current through the pass transistor is higher  
than 15 mA, the pass voltage also is higher in the ON state. To set the current through each pass transistor at 15  
mA, to calculate the pull-up resistor value use 方程1.  
Rpu = (Vpu 0.35 V) / 0.015 A  
(1)  
8-3 summarizes resistor values, reference voltages, and currents at 15 mA, 10 mA, and 3 mA. The resistor  
value shown in the +10% column (or a larger value) should be used to ensure that the pass voltage of the  
transistor is 350 mV or less. The external driver must be able to sink the total current from the resistors on both  
sides of the LSF0204-Q1 device at 0.175 V, although the 15 mA applies only to current flowing through the  
LSF0204-Q1 device.  
The LSF0204-Q1 does not provide any drive capability. Therefore higher frequency applications will require  
higher drive strength from the host side. No pullup resistor is needed on the host side (3.3 V) if the LSF0204-Q1  
is being driven by standard CMOS totem pole output driver. Best practice is to minimize the trace length from the  
LSF0204-Q1 on the sink side (1.8 V) to minimize signal degradation.  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
 
 
 
 
 
LSF0204-Q1  
ZHCSID1B JUNE 2018 REVISED APRIL 2021  
www.ti.com.cn  
8-3. Pull-Up Resistor Values  
PULLUP RESISTOR VALUE (Ω)  
15 mA  
10mA  
NOMINAL  
3 mA  
VDPU  
NOMINAL  
310  
+10%(1)  
341  
217  
158  
106  
85  
+10%(1)  
512  
NOMINAL  
1550  
983  
+10%(1)  
1705  
1082  
788  
5 V  
465  
295  
215  
145  
115  
85  
3.3 V  
2.5 V  
1.8 V  
1.5 V  
1.2 V  
197  
325  
143  
237  
717  
97  
160  
483  
532  
77  
127  
383  
422  
57  
63  
94  
283  
312  
(1) +10% to compensate for VDD range and resistor tolerance.  
8.2.1.3 Application Curve  
4
Input  
Output  
3
2
±
0
±±  
0
50 ±00 ±50 200 250 300 350 400 450 500  
Time (ns)  
8-2. Captured Waveform From Above I2C Set-Up (1.8 V to 3.3 V at 2.5 MHz)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
 
 
LSF0204-Q1  
ZHCSID1B JUNE 2018 REVISED APRIL 2021  
www.ti.com.cn  
8.2.2 MDIO Application  
Vpu_1 = 3.3 V  
Vpu_2 = 1.0 V  
Vrev_A = 1.0 V  
Vrev_B = 3.3 V  
1.0V  
enable signal  
ON  
LSF0204-Q1  
Off  
Rpu  
Rpu  
EN  
B1  
Rpu  
Rpu  
Vcc  
A1  
A2  
A3  
A4  
Vcc  
SW  
SW  
SW  
SW  
MDC  
MDC  
B2  
B3  
B4  
MDIO  
MDIO  
GND  
8-3. Typical Application Circuit (MDIO/Bidirectional Interface)  
8.2.2.1 Design Requirements  
See the Design Requirements.  
8.2.2.2 Detailed Design Procedure  
See the Detailed Design Procedure.  
8.2.3 Multiple Voltage Translation in Single Device, Application  
Vpu_1 = 3.3 V  
Vrev_A = 1.8 V  
Vrev_B = 3.3 V  
Vpu_2 = 1.8 V  
1.8V  
enable signal  
ON  
LSF0204-Q1  
Off  
Rpu  
Rpu  
EN  
B1  
Rpu Rpu  
Rpu  
A1  
Vcc  
Vcc  
SW  
MDC  
MDC  
A2  
A3  
A4  
B2  
B3  
B4  
Vpu = 1.0 V  
MDIO  
SW  
SW  
SW  
MDIO  
Vcc  
GPIO  
GPIO  
GND  
8-4. Bidirectional Translation to Multiple voltage levels  
8.2.3.1 Design Requirements  
See the Design Requirements.  
8.2.3.2 Detailed Design Procedure  
See the Detailed Design Procedure.  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
LSF0204-Q1  
ZHCSID1B JUNE 2018 REVISED APRIL 2021  
www.ti.com.cn  
9 Power Supply Recommendations  
There are no power sequence requirements for the LSF0204-Q1. See 8-2 for recommended operating  
voltages for all supply and input pins.  
10 Layout  
10.1 Layout Guidelines  
The signal integrity of the switch-type based LSF0204-Q1 level translator is dependent on the pull-up resistor  
and the PCB board parasitic capacitance. Consider the following recommendations when designing with the  
LSF0204-Q1:  
Minimize the trace length to reduce the parasitic capacitance  
The trace length should be less than half the time of flight to reduce ringing and line reflections or non-  
monotonic behavior in the switching region  
Minimize stubs on the signal path  
Place the LSF0204-Q1 device near the high voltage side  
10.2 Layout Example  
Short signal trace  
VREF_A  
1
14  
13  
VREF_B  
B1  
A1  
2
A2  
A3  
3
4
5
6
7
12  
11  
B2  
B3  
A4  
10  
9
B4  
NC  
NC  
EN  
Minimize stub  
GND  
8
Not to scale  
10-1. Short Trace Layout  
TP1  
SDIO Connector  
(3.3V IO)  
SD Controller  
(1.8V IO)  
LSF0204-Q1  
SDIO level translator  
Device PCB  
TP2  
10-2. Device Placement  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
 
 
 
 
LSF0204-Q1  
ZHCSID1B JUNE 2018 REVISED APRIL 2021  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, TI Logic Minute: Introduction Voltage Level Translation with the LSF Family video  
Texas Instruments, Voltage-Level Translation with the LSF Family application report  
Texas Instruments, Biasing requirements for TXS, TXB, LSF Translators application report  
Texas Instruments, Factors affecting Vol for TXS and LSF translation devices application report  
11.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
 
 
 
 
 
 
 
 
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
20-Apr-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LSF0204QPWRQ1  
ACTIVE  
TSSOP  
PW  
14  
2000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
-40 to 125  
LSF204Q  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF LSF0204-Q1 :  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
20-Apr-2021  
Catalog : LSF0204  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LSF0204QPWRQ1  
TSSOP  
PW  
14  
2000  
330.0  
12.4  
6.9  
5.6  
1.6  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
TSSOP PW 14  
SPQ  
Length (mm) Width (mm) Height (mm)  
356.0 356.0 35.0  
LSF0204QPWRQ1  
2000  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

LSF0204D

适用于漏极开路和推挽应用的 4 位双向多电压电平转换器
TI

LSF0204DPWR

适用于漏极开路和推挽应用的 4 位双向多电压电平转换器 | PW | 14 | -40 to 125
TI

LSF0204DRGYR

适用于漏极开路和推挽应用的 4 位双向多电压电平转换器 | RGY | 14 | -40 to 125
TI

LSF0204DRUTR

适用于漏极开路和推挽应用的 4 位双向多电压电平转换器 | RUT | 12 | -40 to 125
TI

LSF0204DYZPR

适用于漏极开路和推挽应用的 4 位双向多电压电平转换器 | YZP | 12 | -40 to 125
TI

LSF0204GU12

4-bit bidirectional multi-voltage level translator; open-drain; push-pullProduction
NEXPERIA

LSF0204GU12-Q100

4-bit bidirectional multi-voltage level translator; open-drain; push-pullProduction
NEXPERIA

LSF0204PW

4-bit bidirectional multi-voltage level translator; open-drain; push-pullProduction
NEXPERIA

LSF0204PW-Q100

4-bit bidirectional multi-voltage level translator; open-drain; push-pullProduction
NEXPERIA

LSF0204PWR

适用于漏极开路和推挽应用的 4 位双向多电压电平转换器 | PW | 14 | -40 to 125
TI

LSF0204QPWRQ1

适用于开漏或推挽接口的汽车类 4 位双向多电压电平转换器 | PW | 14 | -40 to 125
TI

LSF0204RGYR

适用于漏极开路和推挽应用的 4 位双向多电压电平转换器 | RGY | 14 | -40 to 125
TI