LSF0204DYZPR [TI]

适用于漏极开路和推挽应用的 4 位双向多电压电平转换器 | YZP | 12 | -40 to 125;
LSF0204DYZPR
型号: LSF0204DYZPR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于漏极开路和推挽应用的 4 位双向多电压电平转换器 | YZP | 12 | -40 to 125

转换器 电平转换器
文件: 总35页 (文件大小:2056K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LSF0204, LSF0204D  
ZHCSD68H JULY 2014 REVISED APRIL 2021  
LSF0204x 适用于漏极开路和推挽应用4 位双向多电压电平转换器  
1 特性  
3 说明  
• 无需方向端子即可提供双向电压转换  
• 在电容负载不超30pF 的情况下支持最高  
100MHz 的上行转换和大100MHz 的下行转换,  
50pF 电容负载下支持最40MHz 的上行/下行  
转换  
• 支Ioff、局部断电模式参阅特性说明)  
• 可实现以下电压之间的双向电压电平转换  
0.8V 1.8/2.5/3.3/5V  
LSF 系列包含双向电压电平转换器该转换器可在  
0.8V 4.5V (Vref_A) 1.8V 5.5V (Vref_B) 电压  
范围内运行。该范围支持在 0.8V 5.0V 之间进行双  
向电压转换无需在漏极开路或推挽应用中使用方向端  
子。对于采用 15pF 电容器和 165Ω 上拉电阻器的漏  
极开路系统LSF 系列支持传输速度大于 100MHz 的  
电平转换应用。  
An Bn 端口为低电平时此开关处于接通状态,  
而且 An Bn 端口之间存在低电阻连接。开关的低  
Ron 可实现具有超小传播延迟和信号失真的连接。A 端  
B 端的电压将限制为 Vref_A且可上拉至 Vref_A  
5V 之间的任何电压水平。利用此功能可在无需方  
向控制的情况下在用户选择的较高和较低电压之间实  
现无缝转换。  
1.2V 1.8/2.5/3.3/5V  
1.8V 2.5/3.3/5V  
2.5V 3.3/5V  
3.3V 5V  
• 低待机电流  
• 支TTL 5V I/O 端口  
Ron 可实现较少的信号失真  
• 实EN = 低电平的高阻I/O 端子  
• 采用直通引脚排列来简PCB 布线  
• 闩锁性能超100mAJESD17 规范  
• –40°C 125°C 工作温度范围  
ESD 性能测试符JESD 22 标准  
器件信息(1)  
封装尺寸标称值)  
器件型号  
封装  
TSSOP (14)  
UQFN (12)  
VQFN (14)  
DSBGA (12)  
5.00mm × 4.40mm  
2.00mm × 1.70mm  
3.50mm × 3.50mm  
1.90mm × 1.40mm  
LSF0204x  
2000V 人体放电模型A114-BII )  
200V 机器放电模(A115-A)  
1000V 充电器件模(C101)  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
2 应用  
Vref_B  
Vref_A  
GPIOMDIOPMBusSMBusSDIO、  
UARTI2C 和电信基础设施中的其他接口  
LSF0204  
EN  
• 工业类  
• 汽车类  
• 个人计算  
A1  
A2  
A3  
A4  
B1  
SW  
SW  
SW  
SW  
B2  
B3  
B4  
GND  
简化原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSCP5  
 
 
 
 
LSF0204, LSF0204D  
ZHCSD68H JULY 2014 REVISED APRIL 2021  
www.ti.com.cn  
Table of Contents  
8.1 Load Circuit AC Waveform for Outputs.....................10  
9 Detailed Description......................................................11  
9.1 Overview................................................................... 11  
9.2 Functional Block Diagram......................................... 11  
9.3 Feature Description...................................................12  
9.4 Device Functional Modes..........................................12  
10 Application and Implementation................................13  
10.1 Application Information........................................... 13  
10.2 Typical Applications................................................ 13  
11 Power Supply Recommendations..............................19  
12 Layout...........................................................................19  
12.1 Layout Guidelines................................................... 19  
12.2 Layout Example...................................................... 19  
13 Device and Documentation Support..........................21  
13.1 接收文档更新通知................................................... 21  
13.2 支持资源..................................................................21  
13.3 Trademarks.............................................................21  
13.4 Electrostatic Discharge Caution..............................21  
13.5 术语表..................................................................... 21  
14 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 说明.........................................................................4  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 6  
7.1 Absolute Maximum Ratings........................................ 6  
7.2 ESD Ratings............................................................... 6  
7.3 Recommended Operating Conditions.........................6  
7.4 Thermal Information....................................................6  
7.5 Electrical Characteristics.............................................7  
7.6 Switching Characteristics: AC Performance  
(Translating Down, 3.3 V to 1.8 V)................................ 7  
7.7 Switching Characteristics: AC Performance  
(Translating Down, 3.3 V to 1.2 V)................................ 8  
7.8 Switching Characteristics: AC Performance  
(Translating Up, 1.8 V to 3.3 V).....................................8  
7.9 Switching Characteristics: AC Performance  
(Translating Up, 1.2 V to 1.8 V).....................................8  
7.10 Typical Characteristics..............................................8  
8 Parameter Measurement Information............................9  
Information.................................................................... 21  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision G (November 2019) to Revision H (April 2021)  
Page  
• 更新了整个文档的表、图和交叉参考的编号格式................................................................................................ 1  
Updated the Bidirectional Translation section to include inclusive terminology................................................14  
Changes from Revision F (January 2019) to Revision G (November 2019)  
Page  
Changed Vref_A/B/EN max voltage to 5.5 V in the Recommended Operating Conditions table............................6  
Changes from Revision E (December 2018) to Revision F (January 2019)  
Page  
Changed location of YZP-package indicator dot to A3 position. ........................................................................4  
Added YZP package to Thermal Information table.............................................................................................6  
Changes from Revision D (December 2015) to Revision E (December 2018)  
Page  
Changed location of YZP-package A1-pin indicator dot. View is looking through the device, as in an X-ray. ....  
4
Changes from Revision C (August 2015) to Revision D (December 2015)  
Page  
Added Type Column to Pin Functions table........................................................................................................4  
Added Junction Temperatures to Thermal Information table..............................................................................6  
Changes from Revision B (April 2015) to Revision C (August 2015)  
Page  
• 删除了“特性”中的“低于最大传播延1.5ns”项目符号............................................................................... 1  
• 更新了“特性”中的“支100MHz 以上的高速转换”项目符号......................................................................1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: LSF0204 LSF0204D  
 
LSF0204, LSF0204D  
ZHCSD68H JULY 2014 REVISED APRIL 2021  
www.ti.com.cn  
Changes from Revision A (December 2014) to Revision B (April 2015)  
Page  
• 向器件添加YZP 封装......................................................................................................................................1  
Changes from Revision * (November 2014) to Revision A (December 2014) Page  
• 从首页“产品预发布”更改为完整数据表...........................................................................................................1  
• 将3 中的文本从“传输速度大100Mbps”更改为“传输速度大100MHz............................................1  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LSF0204 LSF0204D  
LSF0204, LSF0204D  
ZHCSD68H JULY 2014 REVISED APRIL 2021  
www.ti.com.cn  
5 说明)  
每个通道的电源电压 (Vpu#) 可以用上拉电阻器单独进行设置。例如CH1 可用于上行转换模式 (1.2V 3.3V),  
CH2 可用于下行转换模(2.5V 1.8V)。  
EN 为高电平时转换器开关打开并且 An I/O 分别连接至 Bn I/O从而实现端口间的双向数据流。当 EN 为  
低电平时转换器开关关闭端口之间呈高阻抗状态。EN 输入电路被设计成由 Vref_A 供电。EN 必须为低电  
从而确保上电或断电期间的高阻抗状态。  
器件比较表  
EN  
An  
Bn  
器件型号  
说明  
三态输出模式启用  
低电平有效Vref_A 为基  
)  
将所有数据引脚置于三态模式高阻  
)  
LSF0204D  
H
将所有数据引脚置于三态模式高阻态)  
LSF0204D  
LSF0204  
L
输入或输出  
输入或输出  
输入或输出  
输入或输出  
H
三态输出模式启用  
高电平有效Vref_A 为基  
)  
将所有数据引脚置于三态模式高阻  
)  
LSF0204  
L
将所有数据引脚置于三态模式高阻态)  
6 Pin Configuration and Functions  
Vref_B  
Vref_A  
Vref_A  
1
2
14 Vref_B  
13 B1  
1
14  
A1  
A2  
A1  
A2  
A3  
A4  
NC  
B1  
B2  
B3  
13  
12  
11  
10  
9
2
3
4
5
6
3
4
5
12  
11  
10  
B2  
B3  
B4  
NC  
EN  
A3  
A4  
9
8
NC  
6
7
B4  
GND  
NC  
8
7
6-1. PW Package,  
14-Pin TSSOP  
(Top View)  
GND  
EN  
6-2. RGY Package,  
14-Pin VQFN  
(Transparent Top View)  
EN  
Vref_A  
A1  
1
2
3
11  
10  
9
Vref_B  
B1  
12  
A2  
A3  
A4  
B2  
4
5
8
7
B3  
B4  
6
GND  
6-4. YZP Package,  
12-Pin DSBGA  
(Transparent Top View)  
6-3. RUT Package,  
12-Pin UQFN  
(Transparent Top View)  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LSF0204 LSF0204D  
 
 
 
LSF0204, LSF0204D  
ZHCSD68H JULY 2014 REVISED APRIL 2021  
www.ti.com.cn  
NAME  
6-1. Pin Functions  
PIN  
NO.  
RUT  
TYPE(1)  
DESCRIPTION  
PW, RGY  
YZP  
B2  
Vref_A  
A1  
1
2
3
4
5
6
7
1
2
3
4
5
Reference supply voltage; see Application and Implementation section  
A3  
I/O  
I/O  
I/O  
I/O  
Input/output 1.  
A2  
B3  
Input/output 2.  
A3  
C3  
D3  
Input/output 3.  
A4  
Input/output 4.  
NC  
GND  
No connection. Not internally connected.  
Ground  
6
D2  
Switch enable input; LSF0204: EN is high-active; LSF0204D: EN is  
low-active  
EN  
8
12  
C2  
I
NC  
B4  
9
No connection. Not internally connected.  
7
D1  
C1  
B1  
A1  
A2  
10  
11  
12  
13  
14  
I/O  
I/O  
I/O  
I/O  
Input/output 4.  
B3  
8
Input/output 3.  
B2  
9
Input/output 2.  
B1  
10  
11  
Input/output 1.  
Vref_B  
Reference supply voltage; see Application and Implementation section  
(1) I = input, O = output  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LSF0204 LSF0204D  
 
LSF0204, LSF0204D  
ZHCSD68H JULY 2014 REVISED APRIL 2021  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted) (1)  
MIN  
0.5  
MAX  
UNIT  
V
VI  
Input voltage (2)  
7
7
VI/O Input/output voltage (2)  
Continuous channel current  
V
0.5  
128  
50  
150  
150  
mA  
mA  
°C  
IIK  
TJ  
Input clamp current  
Junction temperature  
VI < 0  
Tstg Storage temperature  
°C  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) The input and input/output negative-voltage ratings may be exceeded if the input and input/output clamp-current ratings are observed.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
0
MAX  
5.5  
UNIT  
V
VI/O  
Input/output voltage  
Vref_A/B/EN  
IPASS  
TA  
Reference voltage  
0
5.5  
V
Pass transistor current  
Operating free-air temperature  
64  
mA  
°C  
125  
40  
7.4 Thermal Information  
LSF0204  
THERMAL METRIC(1)  
RGY (VQFN)  
14 PINS  
83.2  
RUT (UQFN)  
12 PINS  
195.8  
PW (TSSOP) YZP (DSBGA)  
UNIT  
14 PINS  
12 BALLS  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
157.9  
83.7  
°C  
°C  
Rθ  
98.2  
98.7  
82.3  
0.6  
JC(top)  
RθJB  
ψJT  
Junction-to-board thermal resistance  
59.2  
17.4  
59.4  
122.6  
6.2  
100.0  
22.9  
99.0  
23.7  
0.4  
°C  
°C  
°C  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
122.6  
23.7  
ψJB  
Rθ  
Junction-to-case (bottom) thermal resistance  
38.7  
N/A  
N/A  
N/A  
°C  
JC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: LSF0204 LSF0204D  
 
 
 
 
 
 
 
 
 
 
 
LSF0204, LSF0204D  
ZHCSD68H JULY 2014 REVISED APRIL 2021  
www.ti.com.cn  
7.5 Electrical Characteristics  
over recommended operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX  
1.2  
5.0  
UNIT  
V
VIK  
IIH  
II = -18 mA, VEN = 0  
VI = 5 V, VEN = 0  
µA  
Leakage from  
Vref_B to Vref_A  
ICCBA  
Vref_B = 3.3 V, Vref_A = 1.8 V, VEN = Vref_A IO = 0, VI = 3.3 V or GND  
Vref_B = 3.3 V, Vref_A = 1.8 V, VEN = Vref_A IO = 0, VI = 3.3 V or GND  
3.5  
µA  
Total Current  
through GND  
(4)  
ICCA + ICCB  
0.2  
µA  
µA  
µA  
IIN  
Ioff  
Control pin current Vref_B = 5.5 V, Vref_A = 4.5 V, VEN = 0 to Vref_A IO = 0  
±1  
±1  
Power Off  
Vref_B = Vref_A = 0 V, VEN = GND IO = 0, VI = 5 V or GND  
Leakage Current  
CI(ref_A/B/EN)  
Cio(off)  
VI = 3 V or 0  
7
5.0  
pF  
pF  
pF  
VO = 3 V or 0, VEN = 0  
VO = 3 V or 0, VEN = Vref_A  
6.0  
13  
Cio(on)  
10.5  
High-level input  
Vref_A = 1.5 V to 4.5 V  
voltage  
(3)  
V
0.7×Vref_A  
0.8×Vref_A  
V
V
V
V
IH (EN pin)  
Low-level input  
Vref_A = 1.5 V to 4.5 V  
voltage  
VIL (EN pin)  
VIH (EN pin)  
VIL (EN pin)  
0.3×Vref_A  
0.3×Vref_A  
High-level input  
Vref_A= 1.0 V to 1.5 V  
voltage  
Low-level input  
Vref_A = 1.0 V to 1.5 V  
voltage  
Input transition rise  
or fall rate for EN  
pin  
10  
ns/V  
t/v (EN pin)  
Vref_A = VEN = 3.3 V; Vref_B = 5 V  
VI = 0, IO = 64 mA  
3
4
Ω
Ω
Vref_A = VEN = 1.8 V; Vref_B = 5 V  
Vref_A = VEN = 1.0 V; Vref_B = 5 V  
VI = 0, IO = 32 mA  
9
Vref_A = VEN = 1.8 V; Vref_B = 5 V  
4
(2)  
ron  
VI = 0, IO = 32 mA , Vref_A = VEN = 2.5 V; Vref_B = 5 V  
VI = 1.8 V, IO = 15 mA, Vref_A = VEN = 3.3 V; Vref_B = 5 V  
VI = 1.0 V, IO = 10 mA, Vref_A = VEN = 1.8 V; Vref_B = 3.3 V  
VI = 0 V, IO = 10 mA, Vref_A = VEN = 1.0 V; Vref_B = 3.3 V  
VI = 0 V, IO = 10 mA, Vref_A = VEN = 1.0 V; Vref_B = 1.8 V  
10  
5
Ω
Ω
Ω
Ω
Ω
8
6
6
(1) All typical values are at TA = 25°C.  
(2) Measured by the voltage drop between the A and B terminals at the indicated current through the switch. On-state resistance is  
determined by the lowest voltage of the two (A or B) terminals.  
(3) Enable pin test conditions are for the LSF0204. The enable pin test conditions for LSF0204D are oppositely set.  
(4) The actual supply current for LSF0204 is ICCA + ICCB; the leakage from Vref_B to Vref_A can be measured on Vref_A and Vref_B pin  
7.6 Switching Characteristics: AC Performance (Translating Down, 3.3 V to 1.8 V)  
over recommended operating free-air temperature range, Vrev-A = 1.8 V, Vrev-B = 3.3 V, VEN = 1.8 V, Vpu_1 = 3.3 V,  
Vpu_2 = 1.8 V, RL = NA, VIH = 3.3 V, VIL = 0 VM = 1.15 V (unless otherwise noted)  
CL = 50 pF  
CL = 30 pF  
TYP  
0.5  
CL = 15 pF  
PARAMETER  
FROM (INPUT) TO (OUTPUT)  
UNIT  
TYP  
0.7  
0.9  
13  
MAX  
5.49  
4.9  
MAX  
5.29  
4.7  
TYP  
0.3  
0.5  
11  
MAX  
5.19  
4.5  
tPLH  
tPHL  
tPLZ  
tPZL  
fMAX  
ns  
ns  
0.7  
A or B  
B or A  
18  
12  
16.5  
40  
15  
ns  
33  
45  
30  
23  
37  
ns  
50  
100  
100  
MHz  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LSF0204 LSF0204D  
 
 
 
 
 
 
LSF0204, LSF0204D  
ZHCSD68H JULY 2014 REVISED APRIL 2021  
www.ti.com.cn  
7.7 Switching Characteristics: AC Performance (Translating Down, 3.3 V to 1.2 V)  
over recommended operating free-air temperature range Vrev-A = 1.2 V, Vrev-B = 3.3 V, VEN = 1.2 V, Vpu_1 = 3.3 V,  
Vpu_2 = 1.2 V, RL = NA, VIH = 3.3 V, VIL = 0 VM = 0.85 V (unless otherwise noted)  
CL = 50 pF  
CL = 30 pF  
CL = 15 pF  
PARAMETER  
FROM (INPUT) TO (OUTPUT)  
UNIT  
TYP  
0.8  
0.9  
50  
MAX  
4.1  
TYP  
MAX  
3.9  
TYP  
MAX  
3.8  
tPLH  
tPHL  
fMAX  
0.5  
0.3  
ns  
ns  
A or B  
B or A  
4.7  
0.7  
4.5  
0.6  
4.3  
100  
100  
MHz  
7.8 Switching Characteristics: AC Performance (Translating Up, 1.8 V to 3.3 V)  
over recommended operating free-air temperature range Vrev-A = 1.8 V, Vrev-B = 3.3 V, VEN = 1.8 V, Vpu_1 = 3.3 V, Vpu_2 =  
1.8 V, RL = 500 Ω, VIH = 1.8 V,VIL = 0 VM = 0.9 V (unless otherwise noted)  
CL = 50 pF  
CL = 30 pF  
CL = 15 pF  
PARAMETER  
FROM (INPUT) TO (OUTPUT)  
UNIT  
TYP  
0.6  
1.3  
13  
MAX  
5.7  
6.7  
18  
TYP  
0.4  
1
MAX  
5.3  
TYP  
0.2  
0.7  
11  
MAX  
5.13  
5.3  
tPLH  
tPHL  
tPLZ  
tPZL  
fMAX  
ns  
ns  
6.4  
A or B  
B or A  
12  
16.5  
40  
15  
ns  
33  
45  
30  
23  
37  
ns  
50  
100  
100  
MHz  
7.9 Switching Characteristics: AC Performance (Translating Up, 1.2 V to 1.8 V)  
over recommended operating free-air temperature range, Vrev-A = 1.2 V, Vrev-B = 1.8 V, VEN = 1.2 V, Vpu_1 = 1.8 V,  
Vpu_2 = 1.2 V, RL = 500 Ω, VIH = 1.2 V, VIL = 0 VM = 0.6 V (unless otherwise noted)  
CL = 50 pF  
CL = 30 pF  
CL = 15 pF  
PARAMETER  
FROM (INPUT) TO (OUTPUT)  
UNIT  
TYP  
MAX  
7.25  
7.03  
TYP  
MAX  
7.05  
6.5  
TYP  
0.2  
1
MAX  
6.85  
5.4  
tPLH  
tPHL  
fMAX  
0.65  
0.4  
ns  
ns  
A or B  
B or A  
1.6  
1.3  
50  
100  
100  
MHz  
7.10 Typical Characteristics  
4
Input  
Output  
3.5  
3
2.5  
2
1.5  
1
0.5  
0
-0.5  
0
5
10  
Time (ns)  
15  
20  
7-1. Signal Integrity (1.8 V to 3.3 V Translation Up at 50 MHz)  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: LSF0204 LSF0204D  
 
 
 
 
LSF0204, LSF0204D  
ZHCSD68H JULY 2014 REVISED APRIL 2021  
www.ti.com.cn  
8 Parameter Measurement Information  
V
T
USAGE  
SWITCH  
S1  
Translating up  
R
L
Translating down  
S2  
S1  
Open  
S2  
From Output  
Under Test  
3.3 V  
Input  
V
V
M
M
M
C
L
V
IL  
(see Note A)  
5 V  
Output  
V
M
V
LOAD CIRCUIT  
V
OL  
TRANSLATING UP  
5 V  
Input  
V
V
V
M
M
V
IL  
2 V  
Output  
V
M
M
V
OL  
TRANSLATING DOWN  
NOTES: A. C includes probe and jig capacitance.  
L
B. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, Z = 50 Ω, t 2 ns, t ≤ 2 ns.  
C. The outputs are measured one at a time, with one transition per measurement.  
O
r
f
8-1. Load Circuit for Outputs  
Vref_B  
S1  
Open  
500 Ω  
From Output  
Under Test  
15 pF  
TEST  
S1  
Vref_B  
tPZL/tPLZ  
8-2. Load Circuit for Enable/Disable Time Measurement  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LSF0204 LSF0204D  
 
LSF0204, LSF0204D  
ZHCSD68H JULY 2014 REVISED APRIL 2021  
www.ti.com.cn  
8.1 Load Circuit AC Waveform for Outputs  
tr 2.0 ns  
tf 2.0 ns  
VCCA  
90%  
50%  
Input  
(An, Bn)  
10%  
GND  
VOH  
VOL  
Output  
(Bn, An)  
tpLH  
tpHL  
8-3. tPLH, tPHL  
tr 2.0 ns  
tf 2.0 ns  
VCCA  
90%  
50%  
Output Enabled  
Control OE, OE  
10%  
GND  
VOH  
tpLZ  
tpZL  
Output (An or Bn)  
Low to off to Low  
50%  
10%  
Outputs  
enabled  
Outputs  
disabled  
Outputs  
enabled  
8-4. tPLZ, tPZL  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LSF0204 LSF0204D  
 
LSF0204, LSF0204D  
ZHCSD68H JULY 2014 REVISED APRIL 2021  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The LSF Family may be used in level translation applications for interfacing devices or systems operating at  
different interface voltages with one another. The LSF Family is ideal for use in applications where an open-drain  
driver is connected to the data I/Os. LSF can achieve 100 MHz with the appropriate pull-up resistors and layout.  
The LSF Family may also be used in applications where a push-pull driver is connected to the data I/Os.  
9.2 Functional Block Diagram  
LSF0204  
200 KΩ  
Vref_B  
Vref_A  
Level Converter  
EN  
A1  
A2  
A3  
A4  
B1  
B2  
B3  
B4  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LSF0204 LSF0204D  
 
 
 
LSF0204, LSF0204D  
ZHCSD68H JULY 2014 REVISED APRIL 2021  
www.ti.com.cn  
9.3 Feature Description  
9.3.1 Support High Speed Translation, Greater than 100 MHz  
Allows the LSF family to support more consumer or telecom interfaces (MDIO or SDIO).  
9.3.2 Bidirectional Voltage Translation Without DIR Terminal  
Minimizes system effort to develop voltage translation for bidirectional interface (PMBus, I2C, or SMbus).  
9.3.3 5-V Tolerance on IO Port and 125°C Support  
The LSF family, with 5-V tolerance and 125°C support, is flexible and compliant with TTL levels in industrial and  
telecom applications.  
9.3.4 Channel Specific Translation  
The LSF family is able to set up different voltage translation levels on each channel.  
9.3.5 Ioff, Partial Power Down Mode  
When Vref_A, Vref_B = 0, all of data pins and EN pin are Hi-Z.  
EN logic circuit is supplied by Vref_A, once Vref_A power up first and all of data pins are unknown state until Vref_B  
and EN ready. No power sequence is required to enable LSF0204 and operate function normally.  
9.4 Device Functional Modes  
9-1 lists the device functional modes of the LSF0204x family of devices.  
9-1. Function Table  
INPUT EN(1) TERMINAL  
FUNCTION  
An = Bn  
Hi-Z  
H
L
(1) EN is controlled by Vref_A logic levels.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: LSF0204 LSF0204D  
 
 
 
 
 
LSF0204, LSF0204D  
ZHCSD68H JULY 2014 REVISED APRIL 2021  
www.ti.com.cn  
10 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
10.1 Application Information  
LSF performs voltage translation for open-drain or push-pull interface. 10-1 provides some consumer/telecom  
interfaces as reference in regards to the different channel numbers that are supported by the LSF family.  
10-1. Voltage Translator for Consumer/Telecom Interface  
PART NAME  
LSF0101  
LSF0102  
LSF0204  
LSF0108  
CH#  
INTERFACE  
1
2
4
8
GPIO  
GPIO, MDIO, SMBus, PMBus, I2C  
GPIO, SPI. MDIO, SMBus, PMBus, I2C, UART, SVID  
GPIO, MDIO, SDIO, SVID, UART, SMBus, PMBus, I2C, SPI  
10.2 Typical Applications  
10.2.1 I2C PMBus, SMBus, GPIO, Application  
Vpu_1 = 3.3 V  
Vpu_2 = 1.8 V  
Vrev_A = 1.8 V  
Vrev_B = 3.3 V  
1.8V  
enable signal  
ON  
LSF0204  
Off  
Rpu  
Rpu  
EN  
B1  
Rpu  
Rpu  
A1  
Vcc  
Vcc  
SW  
SW  
SW  
SW  
SDA  
SCL  
SDA  
A2  
A3  
A4  
B2  
B3  
B4  
SCL  
GND  
10-1. Bidirectional Translation to Multiple Voltage Levels  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LSF0204 LSF0204D  
 
 
 
 
 
LSF0204, LSF0204D  
ZHCSD68H JULY 2014 REVISED APRIL 2021  
www.ti.com.cn  
10.2.1.1 Design Requirements  
10.2.1.1.1 Enable, Disable, and Reference Voltage Guidelines  
The LSF family has an EN input that is used to disable the device by setting EN LOW, which places all I/Os in  
the high-impedance state. Since LSF family is switch-type voltage translator, the power consumption is very low.  
It is recommended to always enable LSF family for bidirectional application (I2C, SMBus, PMBus, or MDIO).  
10-2. Application Operating Condition  
SYMBOL PARAMETER  
MIN  
TYP  
MAX  
4.5  
UNIT  
Vref_A  
Vref_B  
Reference voltage (A)  
0.8  
V
V
V
V
Reference voltage (B)  
Vref_A + 0.8  
5.5  
(1)  
VI(EN)  
Vpu  
Input voltage on EN terminal  
Pull-up supply voltage  
0
0
Vref_A  
Vref_B  
(1) Refer VIH and VIL for VI(EN)  
Also Vref_B is recommended to be at 1.0 V higher than Vref_A for best signal integrity.  
The LSF Family is able to set different voltage translation level on each channel.  
备注  
Vref_A must be set as lowest voltage level.  
10.2.1.2 Detailed Design Procedure  
10.2.1.2.1 Bidirectional Translation  
The controller output driver may be push-pull or open-drain (pull-up resistors may be required) and the  
peripheral device output can be push-pull or open-drain (pull-up resistors are required to pull the Bn outputs to  
Vpu).  
备注  
However, if either output is push-pull, data must be unidirectional or the outputs must be 3-state and  
be controlled by some direction-control mechanism to prevent HIGH-to-LOW contentions in either  
direction. If both outputs are open-drain, no direction control is needed.  
In 10-1, the reference supply voltage (Vref_A) is connected to the processor core power supply voltage.  
When Vref_B is connected through to a 3.3 V Vpu power supply, and Vref_A is set 1.0V. The output of A3 and  
B4 has a maximum output voltage equal to Vref_A, and the bidirectional interface (Ch1/2, MDIO) has a  
maximum output voltage equal to Vpu.  
10.2.1.2.1.1 Pull-Up Resistor Sizing  
The pull-up resistor value needs to limit the current through the pass transistor when it is in the ON state to about  
15 mA. This ensures a pass voltage of 260 mV to 350 mV. If the current through the pass transistor is higher  
than 15 mA, the pass voltage also is higher in the ON state. To set the current through each pass transistor at 15  
mA, to calculate the pull-up resistor value use 方程1.  
Rpu = (Vpu 0.35 V) / 0.015 A  
(1)  
10-3 summarizes resistor values, reference voltages, and currents at 15 mA, 10 mA, and 3 mA. The resistor  
value shown in the +10% column (or a larger value) should be used to ensure that the pass voltage of the  
transistor is 350 mV or less. The external driver must be able to sink the total current from the resistors on both  
sides of the LSF family device at 0.175 V, although the 15 mA applies only to current flowing through the LSF  
family device.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LSF0204 LSF0204D  
 
 
 
 
 
 
LSF0204, LSF0204D  
ZHCSD68H JULY 2014 REVISED APRIL 2021  
www.ti.com.cn  
10-3. Pullup Resistor Values  
PULLUP RESISTOR VALUE (Ω)  
15 mA  
NOMINAL  
310  
10 mA  
+10%(1)  
341  
3 mA  
NOMINAL  
465  
VDPU  
+10%(1)  
512  
NOMINAL  
1550  
983  
+10%(1)  
1705  
1082  
788  
5 V  
3.3 V  
2.5 V  
1.8 V  
1.5 V  
1.2 V  
197  
217  
295  
325  
143  
158  
215  
237  
717  
97  
106  
145  
160  
483  
532  
77  
85  
115  
127  
383  
422  
57  
63  
85  
94  
283  
312  
(1) +10% to compensate for VDD range and resistor tolerance  
10.2.1.2.2 LS Family Bandwidth  
The maximum frequency of the LSF family is dependent on the application. The device may operate at speeds  
of >100 MHz gave the correct conditions. The maximum frequency is dependent upon the loading of the  
application. The LSF family behaves like a standard switch where the bandwidth of the device is dictated by the  
on resistance and on capacitance of the device.  
10-2 shows a bandwidth measurement of the LSF family using a two-port network analyzer.  
0
1  
2  
3  
4  
5  
6  
7  
8  
9  
0.1  
1
10 100  
Frequency (MHz)  
1000  
10-2. 3-dB Bandwidth  
The 3-dB point of the LSF family is 600 MHz; however, this measurement is an analog type of measurement.  
For digital applications, the signal should not degrade up to the fifth harmonic of the digital signal. The frequency  
bandwidth should be at least five times the maximum digital clock rate. This component of the signal is important  
in determining the overall shape of the digital signal. In the case of the LSF family, a digital clock frequency of  
greater than 100 MHz may be achieved.  
The LSF family does not provide any drive capability. Therefore higher frequency applications will require higher  
drive strength from the host side. No pullup resistor is needed on the host side (3.3 V) if the LSF family is being  
driven by standard CMOS totem pole output driver. Best practice is to minimize the trace length from the LSF  
family on the sink side (1.8 V) to minimize signal degradation.  
All fast edges have an infinite spectrum of frequency components; however, there is an inflection (or knee) in the  
frequency spectrum of fast edges where frequency components higher than fknee are insignificant in determining  
the shape of the signal.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LSF0204 LSF0204D  
 
 
 
LSF0204, LSF0204D  
ZHCSD68H JULY 2014 REVISED APRIL 2021  
www.ti.com.cn  
To calculate the maximum practical frequency component, or the knee frequency (fknee), use the following  
equations:  
fknee = 0.5/RT (1080%)  
fknee = 0.4/RT (2080%)  
(2)  
(3)  
For signals with rise time characteristics based on 10- to 90-percent thresholds, fknee is equal to 0.5 divided by  
the rise time of the signal. For signals with rise time characteristics based on 20% to 80% thresholds, which is  
very common in many of today's device specifications, fknee is equal to 0.4 divided by the rise time of the signal.  
Some guidelines to follow that will help maximize the performance of the device:  
Keep trace length to a minimum by placing the LSF family close to the I2C output of the processor.  
The trace length should be less than half the time of flight to reduce ringing and line reflections or non-  
monotonic behavior in the switching region.  
To reduce overshoots, a pullup resistor can be added on the 1.8 V side; be aware that a slower fall time is to  
be expected.  
10.2.1.3 Application Curve  
4
Input  
Output  
3
2
±
0
±±  
0
50 ±00 ±50 200 250 300 350 400 450 500  
Time (ns)  
10-3. Captured Waveform From Above I2C Set-Up (1.8 V to 3.3 V at 2.5 MHz)  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: LSF0204 LSF0204D  
LSF0204, LSF0204D  
ZHCSD68H JULY 2014 REVISED APRIL 2021  
www.ti.com.cn  
10.2.2 MDIO Application  
Vpu_1 = 3.3 V  
Vpu_2 = 1.0 V  
Vrev_A = 1.0 V  
Vrev_B = 3.3 V  
1.0V  
enable signal  
ON  
LSF0204  
Off  
Rpu  
Rpu  
EN  
B1  
Rpu  
Rpu  
Vcc  
A1  
A2  
A3  
A4  
Vcc  
SW  
SW  
SW  
SW  
MDC  
MDC  
B2  
B3  
B4  
MDIO  
MDIO  
GND  
10-4. Typical Application Circuit (MDIO/Bidirectional Interface)  
10.2.2.1 Design Requirements  
Refer to Design Requirements.  
10.2.2.2 Detailed Design Procedure  
Refer to Detailed Design Procedure  
10.2.2.3 Application Curve  
Input (3.3V)  
Output (1.0V)  
10-5. Captured Waveform From Above MDIO Setup  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LSF0204 LSF0204D  
LSF0204, LSF0204D  
ZHCSD68H JULY 2014 REVISED APRIL 2021  
www.ti.com.cn  
10.2.3 Multiple Voltage Translation in Single Device, Application  
Vpu_1 = 3.3 V  
Vrev_A = 1.8 V  
Vrev_B = 3.3 V  
Vpu_2 = 1.8 V  
1.8V  
enable signal  
ON  
LSF0204  
Off  
Rpu  
Rpu  
EN  
B1  
Rpu Rpu  
Rpu  
A1  
Vcc  
Vcc  
SW  
MDC  
MDC  
A2  
A3  
A4  
B2  
B3  
B4  
Vpu = 1.0 V  
MDIO  
SW  
SW  
SW  
MDIO  
Vcc  
GPIO  
GPIO  
GND  
10.2.3.1 Design Requirements  
Refer to Design Requirements.  
10.2.3.2 Detailed Design Procedure  
Refer to Detailed Design Procedure  
10.2.3.3 Application Curve  
3.5  
3
Input  
Output  
2.5  
2
1.5  
1
0.5  
0
-0.5  
0
Time (ns)  
10-6. Translation Down (3.3 V to 1.8 V) at 150 MHz  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: LSF0204 LSF0204D  
LSF0204, LSF0204D  
ZHCSD68H JULY 2014 REVISED APRIL 2021  
www.ti.com.cn  
11 Power Supply Recommendations  
There are no power sequence requirements for the LSF Family. Refer to 10.2.1.1.1 for enabling and  
reference voltage guidelines.  
12 Layout  
12.1 Layout Guidelines  
The signal integrity is highly related with pull-up resistor and PCB capacitance condition because LSF Family is  
switch-type level translator  
Short signal trace as possible to reduce capacitance and minimize stub from pull-up resistor.  
Place LSF close to high voltage side.  
Select the appropriate pull-up resistor that applies to translation levels and driving capability of transmitter.  
12.2 Layout Example  
LSF0102  
EN  
GND  
8
7
6
5
1
2
3
4
Short Signal Trace as possible  
Vref_B  
Vref_A  
A1  
A2  
B1  
B2  
Minimize Stub as possible  
12-1. Short Trace Layout  
TP1  
SDIO Connector  
(3.3V IO)  
SD Controller  
(1.8V IO)  
LSF0108  
SDIO level translator  
Device PCB  
TP2  
12-2. Device Placement  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LSF0204 LSF0204D  
 
 
 
 
LSF0204, LSF0204D  
ZHCSD68H JULY 2014 REVISED APRIL 2021  
www.ti.com.cn  
3.5E+0  
3E+0  
2.5E+0  
2E+0  
1.5E+0  
1E+0  
5E-1  
3.5  
3
Intput  
Output  
Output  
Input  
2.5  
2
1.5  
1
0.5  
0
0
-5E-1  
0
-0.5  
0
Time (ns)  
Time (ns)  
12-3. Waveform From TP1 (Pullup Resistor: 160-  
Ωand 50-pF Capacitance 3.3 to 1.8 V at 100 MHz)  
12-4. Waveform From TP2 (Pullup Resistor: 160-  
Ωand 50-pF Capacitance 1.8 to 3.3 V at 100 MHz)  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: LSF0204 LSF0204D  
LSF0204, LSF0204D  
ZHCSD68H JULY 2014 REVISED APRIL 2021  
www.ti.com.cn  
13 Device and Documentation Support  
13.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
13.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
13.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
13.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
13.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LSF0204 LSF0204D  
 
 
 
 
 
 
 
LSF0204, LSF0204D  
ZHCSD68H JULY 2014 REVISED APRIL 2021  
www.ti.com.cn  
PACKAGE OUTLINE  
LSF0204/LSF0204D  
YZP0012-C01  
DSBGA - 0.5 mm max height  
SCALE 8.000  
DIE SIZE BALL GRID ARRAY  
A
B
E
BALL A3  
INDEX  
AREA  
D
C
0.5 MAX  
SEATING PLANE  
0.05 C  
BALL TYP  
0.19  
0.15  
1
TYP  
SYMM  
D
C
B
A
SYMM  
1.5  
TYP  
D: Max = 1.972 mm, Min = 1.912 mm  
E: Max = 1.472 mm, Min = 1.412 mm  
0.5  
TYP  
1
2
3
0.25  
0.21  
12X  
0.015  
0.5 TYP  
C A B  
4224761/A 01/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: LSF0204 LSF0204D  
LSF0204, LSF0204D  
ZHCSD68H JULY 2014 REVISED APRIL 2021  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
LSF0204/LSF0204D  
YZP0012-C01  
DSBGA - 0.5 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.5) TYP  
12X ( 0.225)  
A
B
(0.5) TYP  
SYMM  
C
D
1
2
3
SYMM  
LAND PATTERN EXAMPLE  
SCALE:30X  
0.05 MAX  
0.05 MIN  
(
0.225)  
METAL  
METAL  
UNDER  
MASK  
(
0.225)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4224761/A 01/2019  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SBVA017 (www.ti.com/lit/sbva017).  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: LSF0204 LSF0204D  
LSF0204, LSF0204D  
ZHCSD68H JULY 2014 REVISED APRIL 2021  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
LSF0204/LSF0204D  
YZP0012-C01  
DSBGA - 0.5 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.5) TYP  
(R0.05) TYP  
12X ( 0.25)  
A
B
(0.5)  
TYP  
SYMM  
METAL  
TYP  
C
D
2
SYMM  
3
1
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4224761/A 01/2019  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: LSF0204 LSF0204D  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LSF0204DPWR  
LSF0204DRGYR  
LSF0204DRUTR  
LSF0204DYZPR  
LSF0204PWR  
TSSOP  
VQFN  
PW  
RGY  
RUT  
YZP  
PW  
14  
14  
12  
12  
14  
14  
12  
12  
2000  
3000  
3000  
3000  
2000  
3000  
3000  
3000  
330.0  
330.0  
180.0  
180.0  
330.0  
330.0  
180.0  
180.0  
12.4  
12.4  
9.5  
6.9  
3.75  
1.9  
5.6  
3.75  
2.3  
1.6  
8.0  
8.0  
4.0  
4.0  
8.0  
8.0  
4.0  
4.0  
12.0  
12.0  
8.0  
Q1  
Q2  
Q1  
Q2  
Q1  
Q2  
Q1  
Q2  
1.15  
0.75  
0.69  
1.6  
UQFN  
DSBGA  
TSSOP  
VQFN  
8.4  
1.63  
6.9  
2.08  
5.6  
8.0  
12.4  
12.4  
9.5  
12.0  
12.0  
8.0  
LSF0204RGYR  
LSF0204RUTR  
LSF0204YZPR  
RGY  
RUT  
YZP  
3.75  
1.9  
3.75  
2.3  
1.15  
0.75  
0.69  
UQFN  
DSBGA  
8.4  
1.63  
2.08  
8.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LSF0204DPWR  
LSF0204DRGYR  
LSF0204DRUTR  
LSF0204DYZPR  
LSF0204PWR  
TSSOP  
VQFN  
PW  
RGY  
RUT  
YZP  
PW  
14  
14  
12  
12  
14  
14  
12  
12  
2000  
3000  
3000  
3000  
2000  
3000  
3000  
3000  
364.0  
346.0  
184.0  
182.0  
364.0  
346.0  
184.0  
182.0  
364.0  
346.0  
184.0  
182.0  
364.0  
346.0  
184.0  
182.0  
27.0  
33.0  
19.0  
20.0  
27.0  
33.0  
19.0  
20.0  
UQFN  
DSBGA  
TSSOP  
VQFN  
LSF0204RGYR  
LSF0204RUTR  
LSF0204YZPR  
RGY  
RUT  
YZP  
UQFN  
DSBGA  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RUT0012A  
UQFN - 0.55 mm max height  
SCALE 6.800  
PLASTIC QUAD FLATPACK - NO LEAD  
1.8  
1.6  
A
B
0.6  
0.4  
PIN 1 INDEX AREA  
0.25  
(0.15)  
0.15  
2.1  
1.9  
PIN 1 ID  
OPTIONAL TERMINAL & PIN 1 ID  
C
0.55 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
SYMM  
6
(0.15) TYP  
10X 0.4  
5
7
2X  
SYMM  
1.6  
11  
1
0.25  
0.15  
12  
12X  
PIN 1 ID  
(OPTIONAL)  
0.6  
0.4  
12X  
0.1  
C B A  
C
0.05  
4220310/A 11/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RUT0012A  
UQFN - 0.55 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
12  
12X (0.7)  
(R0.05) TYP  
11  
1
12X (0.2)  
SYMM  
(1.7)  
8X (0.4)  
7
5
6
(1.4)  
LAND PATTERN EXAMPLE  
SCALE:30X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4220310/A 11/2016  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RUT0012A  
UQFN - 0.55 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
12  
12X (0.7)  
(R0.05) TYP  
11  
1
12X (0.2)  
SYMM  
(1.7)  
8X (0.4)  
7
5
6
(1.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE: 30X  
4220310/A 11/2016  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

LSF0204GU12

4-bit bidirectional multi-voltage level translator; open-drain; push-pullProduction
NEXPERIA

LSF0204GU12-Q100

4-bit bidirectional multi-voltage level translator; open-drain; push-pullProduction
NEXPERIA

LSF0204PW

4-bit bidirectional multi-voltage level translator; open-drain; push-pullProduction
NEXPERIA

LSF0204PW-Q100

4-bit bidirectional multi-voltage level translator; open-drain; push-pullProduction
NEXPERIA

LSF0204PWR

适用于漏极开路和推挽应用的 4 位双向多电压电平转换器 | PW | 14 | -40 to 125
TI

LSF0204QPWRQ1

适用于开漏或推挽接口的汽车类 4 位双向多电压电平转换器 | PW | 14 | -40 to 125
TI

LSF0204RGYR

适用于漏极开路和推挽应用的 4 位双向多电压电平转换器 | RGY | 14 | -40 to 125
TI

LSF0204RUTR

适用于漏极开路和推挽应用的 4 位双向多电压电平转换器 | RUT | 12 | -40 to 125
TI

LSF0204YZPR

适用于漏极开路和推挽应用的 4 位双向多电压电平转换器 | YZP | 12 | -40 to 125
TI

LSF11G

Rectifier Diode, 1 Element, 1A, 50V V(RRM), Silicon,
SURGE

LSF13G

Rectifier Diode, 1 Element, 1A, 150V V(RRM), Silicon,
SURGE

LSF14G

Rectifier Diode, 1 Element, 1A, 200V V(RRM), Silicon,
SURGE