LMZM33603 [TI]

采用紧凑型 7x9x4mm QFN 封装的 4V 至 36V、3A 降压直流/直流电源模块;
LMZM33603
型号: LMZM33603
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用紧凑型 7x9x4mm QFN 封装的 4V 至 36V、3A 降压直流/直流电源模块

电源电路
文件: 总38页 (文件大小:1885K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LMZM33603  
ZHCSHM1C SEPTEMBER 2017REVISED MARCH 2018  
采用 QFN 封装的 LMZM33603 4V 36V 输入、3A 降压直流/直流电源模  
1 特性  
3 说明  
1
完全集成的电源解决方案  
LMZM33603 电源模块是一款易于使用的集成式电源解  
决方案,它将 3A 降压直流/直流转换器与电源  
只需 4 个外部组件  
最小解决方案尺寸 < 100mm2  
MOSFET、屏蔽式电感器和无源器件整合到低厚度封  
装内。此电源解决方案仅需四个外部组件,并且省去了  
设计流程中的环路补偿和磁性元件选择过程。  
9mm × 7mm × 4mm QFN 封装  
所有引脚均分布在封装外围,操作方便  
引脚与 2A LMZM33602 兼容  
该器件采用 9mm × 7mm × 4mm 18 引脚 QFN 封装,  
可轻松焊接到印刷电路板上,并可实现紧凑的低厚度负  
载点设计。全套功能(包括正常电源、可编程  
UVLO、预偏置启动、过流和过热保护)使得  
输入电压范围:4V 36V  
输出电压范围:  
3A 时,1V 13.5V  
2A 时,1V 18V  
LMZM33603 成为给各种 应用供电的绝佳器件。  
效率高达 95%  
器件信息  
可调开关频率  
200kHz 1.2MHz)  
器件型号  
LMZM33603  
封装  
QFN (18)  
封装尺寸(标称值)  
9.00mm × 7.00mm  
支持与外部时钟同步  
电源正常输出  
空白  
空白  
空白  
符合 EN55011 B 类辐射 EMI 标准  
工作 IC 结温范围:-40°C +125°C  
工作环境温度范围:-40°C +105°C  
使用 LMZM33603 并借助 WEBENCH® 电源设计器  
创建定制设计方案  
2 应用  
工厂和楼宇自动化  
智能电网与能源  
工业领域  
安全操作区域  
医疗领域  
115  
105  
95  
85  
75  
65  
55  
45  
35  
25  
国防  
反相输出 应用  
简化电路原理图  
PGOOD  
VOUT  
VIN  
VIN  
EN/SYNC  
VOUT  
CIN  
RFBT  
VIN = 24V  
LMZM33603  
COUT  
VOUT = 3.3V, fsw = 300kHz  
VOUT = 5.0V, fsw = 450kHz  
VOUT = 12V, fsw = 900kHz  
RT  
FB  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
PGND  
RRT  
Output Current (A)  
RFBB  
SOA  
Copyright © 2017, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNVSAO6  
 
 
 
LMZM33603  
ZHCSHM1C SEPTEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 Switching Characteristics.......................................... 6  
6.7 Typical Characteristics (VIN = 5 V)............................ 7  
6.8 Typical Characteristics (VIN = 12 V).......................... 8  
6.9 Typical Characteristics (VIN = 24 V).......................... 9  
Detailed Description ............................................ 10  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ....................................... 10  
7.3 Feature Description................................................. 11  
7.4 Device Functional Modes........................................ 21  
8
9
Application and Implementation ........................ 22  
8.1 Application Information............................................ 22  
8.2 Typical Application .................................................. 22  
Power Supply Recommendations...................... 25  
10 Layout................................................................... 26  
10.1 Layout Guidelines ................................................. 26  
10.2 Layout Examples................................................... 26  
10.3 Theta JA vs PCB Area.......................................... 27  
10.4 EMI........................................................................ 27  
10.5 Package Specifications......................................... 29  
11 器件和文档支持 ..................................................... 30  
11.1 器件支持................................................................ 30  
11.2 相关文档 ............................................................... 30  
11.3 接收文档更新通知 ................................................. 30  
11.4 社区资源................................................................ 30  
11.5 ....................................................................... 30  
11.6 静电放电警告......................................................... 30  
11.7 术语表 ................................................................... 30  
12 机械、封装和可订购信息....................................... 31  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (February 2018) to Revision C  
Page  
已添加 WEBENCH 链接 ......................................................................................................................................................... 1  
Changed the MAX output current to 3 A in the Recommended Operating Conditions table................................................. 4  
已添加 EMI sub-section ....................................................................................................................................................... 27  
Changes from Revision A (February 2018) to Revision B  
Page  
第一版生产数据产品说明书..................................................................................................................................................... 1  
Changes from Original (September 2017) to Revision A  
Page  
已添加 添加了新应用:反相输出 应用;微调了文本内容 ....................................................................................................... 1  
已添加 sentence re: inverting buck-boost topology to Application Information ................................................................... 22  
2
Copyright © 2017–2018, Texas Instruments Incorporated  
 
LMZM33603  
www.ti.com.cn  
ZHCSHM1C SEPTEMBER 2017REVISED MARCH 2018  
5 Pin Configuration and Functions  
RLR Package  
18-Pin QFN  
Top View  
AGND  
1
PGND  
15  
18  
17 16  
EN/SYNC  
RT  
2
3
PGND  
DNC  
14  
13  
VIN  
4
12  
DNC  
PGND  
5
11  
SW  
VOUT  
VOUT  
6
8
9
SW  
7
10  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NO.  
NAME  
Analog ground. Zero voltage reference for internal references and logic. Do not connect this pin to  
PGND; the connection is made internal to the device. See the Layout section of the datasheet for a  
recommended layout.  
1
AGND  
G
EN - Enable input to regulator. High = On, Low = Off. Can be connected to VIN. Do not float. This  
pin can be used to set the input under voltage lockout with two resistors. See the Programmable  
Undervoltage Lockout (UVLO) section.  
2
EN/SYNC  
I
SYNC - The internal oscillator can be synchronized to an external clock via AC-coupling. See the  
Synchronization (SYNC) section for details.  
An external timing resistor connected between this pin and AGND adjusts the switching frequency of  
the device. If left open, the default switching frequency is 400 kHz.  
3
4
RT  
I
I
VIN  
Input supply voltage. Connect external input capacitors between this pin and PGND.  
Power ground. This is the return current path for the power stage of the device. Connect pin 5 to the  
input source, the load, and to the bypass capacitors associated with VIN and VOUT using power  
ground planes on the PCB. Pins 14 and 15 are not connected to PGND internal to the device  
and must be connected to PGND at pad 18. Connect pad 18 to the power ground planes using  
multiple vias for good thermal performance. See the Layout section of the datasheet for a  
recommended layout.  
5, 14, 15, 18 PGND  
G
Output voltage. These pins are connected to the internal output inductor. Connect these pins to the  
output load and connect external bypass capacitors between these pins and PGND.  
6, 7, 8  
VOUT  
SW  
O
O
Switch node. Connect these pins to a small copper island under the device for thermal relief. Do not  
place any external component on these pins or tie them to a pin of another function.  
9, 10, 11  
12, 13  
Do not connect. Each pin must be soldered to an isolated pad. These pins connect to internal  
circuitry. Do not connect these pins to one another, AGND, PGND, or any other voltage.  
DNC  
Feedback input. Connect the center point of the feedback resistor divider to this pin. Connect the  
upper resistor (RFBT) of the feedback divider to VOUT at the desired point of regulation. Connect the  
lower resistor (RFBB) of the feedback divider to AGND.  
16  
17  
FB  
I
Open drain output for power-good flag. Use a 10-kΩ to 100-kΩ pullup resistor to logic rail or other  
DC voltage no higher than 12 V.  
PGOOD  
O
Copyright © 2017–2018, Texas Instruments Incorporated  
3
LMZM33603  
ZHCSHM1C SEPTEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating ambient temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–5.5  
–0.3  
–0.3  
–1  
MAX  
42  
UNIT  
V
VIN  
EN/SYNC  
Input voltage  
VIN + 0.3  
15  
V
PGOOD  
V
FB, RT  
SW  
4.5  
V
VIN + 0.3  
42  
V
Output voltage  
SW (< 10-ns transients)  
–5  
V
VOUT  
–0.3  
VIN  
V
Sink current  
PGOOD  
3
mA  
G
Mechanical shock  
Mechanical vibration  
Mil-STD-883D, Method 2002.3, 1 msec, 1/2 sine, mounted  
500  
20  
Mil-STD-883D, Method 2007.2, 20 to 2000 Hz  
G
(2)  
Operating IC junction temperature, TJ  
–40  
–40  
–40  
125  
105  
150  
°C  
°C  
°C  
(2)  
Operating ambient temperature, TA  
Storage temperature, Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The ambient temperature is the air temperature of the surrounding environment. The junction temperature is the temperature of the  
internal power IC when the device is powered. Operating below the maximum ambient temperature, as shown in the safe operating area  
(SOA) curves in the typical characteristics sections, ensures that the maximum junction temperature of any component inside the  
module is never exceeded.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2500  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±750  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
Over operating ambient temperature range (unless otherwise noted)  
MIN  
4(1)  
MAX  
36  
UNIT  
V
Input voltage, VIN  
Output voltage, VOUT  
1
18  
V
EN/SYNC voltage  
–5  
VIN  
12  
V
PGOOD pullup voltage, VPGOOD  
Output current, IOUT  
–0.3  
0
V
3
A
Operating ambient temperature, TA  
–40  
105  
°C  
(1) For output voltages 5 V, the recommended minimum VIN is 4 V or (VOUT + 1.5 V), whichever is greater. For output voltages > 5 V, the  
recommended minimum VIN is (1.3 × VOUT). See Voltage Dropout for information on voltage dropout.  
4
Copyright © 2017–2018, Texas Instruments Incorporated  
LMZM33603  
www.ti.com.cn  
ZHCSHM1C SEPTEMBER 2017REVISED MARCH 2018  
6.4 Thermal Information  
LMZM33603  
THERMAL METRIC(1)  
RLR (QFN)  
18 PINS  
18.9  
UNIT  
(2)  
RθJA  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
(3)  
Junction-to-top characterization parameter  
2.0  
(4)  
ψJB  
Junction-to-board characterization parameter  
6.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
(2) The junction-to-ambient thermal resistance, RθJA, applies to devices soldered directly to a 63 mm x 63 mm, 4-layer PCB with 2 oz.  
copper and natural convection cooling. Additional airflow reduces RθJA  
.
(3) The junction-to-top board characterization parameter, ψJT, estimates the junction temperature, TJ, of a device in a real system, using a  
procedure described in JESD51-2A (section 6 and 7). TJ = ψJT × Pdis + TT; where Pdis is the power dissipated in the device and TT is  
the temperature of the top of the device.  
(4) The junction-to-board characterization parameter, ψJB, estimates the junction temperature, TJ, of a device in a real system, using a  
procedure described in JESD51-2A (sections 6 and 7). TJ = ψJB × Pdis + TB; where Pdis is the power dissipated in the device and TB is  
the temperature of the board 1mm from the device.  
6.5 Electrical Characteristics  
Over –40°C to +105°C ambient temperature, VIN = 24 V, VOUT = 5 V, IOUT = IOUT maximum, fsw = 450 kHz (unless otherwise  
noted); CIN1 = 2 × 4.7-µF, 50-V, 1210 ceramic; CIN2 = 100-µF, 50-V, electrolytic; COUT = 4 × 22-µF, 25-V, 1210 ceramic.  
Minimum and maximum limits are specified through production test or by design. Typical values represent the most likely  
parametric norm and are provided for reference only.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT VOLTAGE (VIN  
)
VIN  
Input voltage  
Over IOUT range  
4(1)  
3.3  
3
36  
3.9  
3.5  
4
V
V
VIN increasing  
3.6  
3.3  
2
UVLO  
ISHDN  
VIN undervoltage lockout  
Shutdown supply current  
VIN decreasing  
V
VEN = 0 V, VIN = 12 V  
µA  
OUTPUT VOLTAGE (VOUT  
)
Over IOUT range  
1
1
13.5(2)  
18(2)  
V
V
VOUT(ADJ) Output voltage adjust  
IOUT 2 A  
VOUT(Ripple) Output voltage ripple  
20-MHz bandwidth  
10  
mV  
FEEDBACK  
TA = 25°C, IOUT = 0 A  
0.985  
0.98  
1
1
1.015  
1.02  
V
V
Feedback voltage(3)  
VFB  
Over VIN range, –40°C TJ 125°C, IOUT = 0 A  
Over IOUT range, TA = 25°C  
Load regulation  
0.04%  
10  
IFB  
Feedback leakage current VFB = 1 V  
nA  
CURRENT  
Output current  
Natural convection, TA = 25°C  
0
3
A
A
IOUT  
Overcurrent threshold  
4
PERFORMANCE  
VOUT = 12 V, fSW = 900 kHz  
94%  
90%  
87%  
92%  
89%  
87%  
130  
VIN = 24 V,  
IOUT = 1.5 A  
VOUT = 5 V, fSW = 450 kHz  
VOUT = 3.3 V, fSW = 300 kHz  
VOUT = 5 V, fSW = 450 kHz  
ƞ
Efficiency  
VIN = 12 V,  
IOUT = 1.5 A  
VOUT = 3.3 V, fSW = 300 kHz  
VOUT = 2.5 V, fSW = 250 kHz  
25% to 75%  
load step  
1 A/µs slew rate  
Over/undershoot  
Recovery Time  
mV  
µs  
Transient response  
60  
(1) See Voltage Dropout for information on voltage dropout.  
(2) The maximum output voltage varies depending on the output current (see Output Current vs Output Voltage ).  
(3) The overall output voltage tolerance will be affected by the tolerance of the external RFBT and RFBB resistors.  
Copyright © 2017–2018, Texas Instruments Incorporated  
5
LMZM33603  
ZHCSHM1C SEPTEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
Over –40°C to +105°C ambient temperature, VIN = 24 V, VOUT = 5 V, IOUT = IOUT maximum, fsw = 450 kHz (unless otherwise  
noted); CIN1 = 2 × 4.7-µF, 50-V, 1210 ceramic; CIN2 = 100-µF, 50-V, electrolytic; COUT = 4 × 22-µF, 25-V, 1210 ceramic.  
Minimum and maximum limits are specified through production test or by design. Typical values represent the most likely  
parametric norm and are provided for reference only.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SOFT START  
TSS  
Internal soft start time  
6
ms  
THERMAL  
Shutdown temperature  
170  
15  
°C  
°C  
TSHDN  
Thermal shutdown  
Hysteresis  
10  
ENABLE (EN)  
VEN-H  
EN rising threshold  
1.4  
1.55  
0.4  
10  
1.7  
V
V
VEN-HYS  
EN hysteresis voltage  
VIN = 4 V to 36 V, VEN = 2 V  
VIN = 4 V to 36 V, VEN = 36 V  
100  
1
nA  
µA  
IEN  
EN Input leakage current  
POWER GOOD (PGOOD)  
VOUT rising (good)  
VOUT rising (fault)  
92%  
94%  
107%  
1.5%  
96.5%  
110%  
VPGOOD  
PGOOD thresholds  
104%  
VOUT falling hysteresis  
Minimum VIN for valid  
PGOOD  
50-μA pullup, VEN = 0 V, TA = 25°C  
1.5  
0.4  
V
V
PGOOD low voltage  
0.5-mA pullup, VEN = 0 V  
CAPACITANCE  
Ceramic type  
9.4(4)  
min(5)  
µF  
µF  
CIN  
External input capacitance  
Non-ceramic type  
47(4)  
External output  
capacitance  
COUT  
max(6)  
µF  
(4) A minimum of 9.4 µF (2 × 4.7 µF) ceramic input capacitance is required for proper operation. An additional 47 µF of bulk capacitance is  
recommended for applications with transient load requirements. See the Input Capacitors section of the datasheet for further guidance.  
(5) The minimum amount of required output capacitance varies depending on the output voltage (see Output Capacitor Selection ). A  
minimum amount of ceramic output capacitance is required. Locate the capacitance close to the device. Adding additional ceramic or  
non-ceramic capacitance close to the load improves the response of the regulator to load transients.  
(6) The maximum allowable output capacitance varies depending on the output voltage (see Output Capacitor Selection ).  
6.6 Switching Characteristics  
Over operating ambient temperature range (unless otherwise noted)  
Minimum and maximum limits are specified through production test or by design. Typical values represent the most likely  
parametric norm, and are provided for reference only.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
FREQUENCY (RT) and SYNCHRONIZATION (EN/SYNC)  
Default switching frequency  
RT pin = open  
340  
200  
400  
460  
kHz  
kHz  
fSW  
Switching frequency range  
1200  
Peak-to-peak amplitude of SYNC clock AC  
signal (measured at SYNC pin)  
VSYNC  
2.8  
5.5  
V
TS-MIN  
Minimum SYNC ON/OFF time  
100  
ns  
6
版权 © 2017–2018, Texas Instruments Incorporated  
LMZM33603  
www.ti.com.cn  
ZHCSHM1C SEPTEMBER 2017REVISED MARCH 2018  
6.7 Typical Characteristics (VIN = 5 V)  
The typical characteristic data has been developed from actual products tested at 25°C. This data is considered typical for the  
device.  
3.0  
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0.0  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
VOUT, fSW  
3.3 V, 300 kHz  
2.5 V, 250 kHz  
1.0 V, 250 kHz  
VOUT, fSW  
3.3 V, 300 kHz  
2.5 V, 250 kHz  
1.0 V, 250 kHz  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Output Current (A)  
Output Current (A)  
D001  
D005  
1. Efficiency vs Output Current  
2. Power Dissipation vs Output Current  
115  
105  
95  
85  
75  
65  
55  
45  
35  
25  
14  
13  
12  
11  
10  
9
VOUT, fSW  
3.3 V, 300 kHz  
2.5 V, 250 kHz  
1.0 V, 250 kHz  
8
7
Airflow  
400LFM  
200LFM  
100LFM  
Nat conv  
6
5
4
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Output Current (A)  
Output Current (A)  
D009  
D016  
COUT = 4 × 22 µF, 25 V, 1210 ceramic  
VOUT = 2.5 V  
fSW = 250 kHz  
3. Voltage Ripple vs Output Current  
4. Safe Operating Area  
115  
105  
95  
85  
75  
65  
55  
Airflow  
400LFM  
200LFM  
45  
100LFM  
Nat conv  
35  
25  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Output Current (A)  
D013  
VOUT = 3.3 V  
fSW = 300 kHz  
5. Safe Operating Area  
版权 © 2017–2018, Texas Instruments Incorporated  
7
LMZM33603  
ZHCSHM1C SEPTEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
6.8 Typical Characteristics (VIN = 12 V)  
The typical characteristic data has been developed from actual products tested at 25°C. This data is considered typical for the  
device.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
3.0  
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0.0  
VOUT, fSW  
5.0 V, 450 kHz  
3.3 V, 300 kHz  
2.5 V, 250 kHz  
1.0 V, 250 kHz  
VOUT, fSW  
5.0 V, 450 kHz  
3.3 V, 300 kHz  
2.5 V, 250 kHz  
1.0 V, 250 kHz  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Output Current (A)  
Output Current (A)  
D002  
D006  
6. Efficiency vs Output Current  
7. Power Dissipation vs Output Current  
115  
105  
95  
85  
75  
65  
55  
45  
35  
25  
24  
22  
20  
18  
16  
14  
12  
10  
8
VOUT, fSW  
5.0 V, 450 kHz  
3.3 V, 300 kHz  
2.5 V, 250 kHz  
1.0 V, 250 kHz  
Airflow  
400LFM  
200LFM  
100LFM  
Nat conv  
6
4
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Output Current (A)  
Output Current (A)  
D010  
D017  
COUT = 4 × 22 µF, 25 V, 1210 ceramic  
8. Voltage Ripple vs Output Current  
VOUT = 2.5 V  
fSW = 250 kHz  
9. Safe Operating Area  
115  
105  
95  
85  
75  
65  
55  
45  
35  
25  
115  
105  
95  
85  
75  
65  
55  
45  
35  
25  
Airflow  
Airflow  
400LFM  
200LFM  
100LFM  
Nat conv  
400LFM  
200LFM  
100LFM  
Nat conv  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Output Current (A)  
Output Current (A)  
D014  
D004  
VOUT = 3.3 V  
fSW = 300 kHz  
VOUT = 5 V  
fSW = 450 kHz  
10. Safe Operating Area  
11. Safe Operating Area  
8
版权 © 2017–2018, Texas Instruments Incorporated  
LMZM33603  
www.ti.com.cn  
ZHCSHM1C SEPTEMBER 2017REVISED MARCH 2018  
6.9 Typical Characteristics (VIN = 24 V)  
The typical characteristic data has been developed from actual products tested at 25°C. This data is considered typical for the  
device.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
3.3  
3.0  
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0.0  
VOUT, fSW  
12 V, 900 kHz  
5.0 V, 450 kHz  
3.3 V, 300 kHz  
2.5 V, 250 kHz  
VOUT, fSW  
12 V, 900 kHz  
5.0 V, 450 kHz  
3.3 V, 300 kHz  
2.5 V, 250 kHz  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Output Current (A)  
Output Current (A)  
D003  
D007  
12. Efficiency vs Output Current  
13. Power Dissipation vs Output Current  
115  
105  
95  
85  
75  
65  
55  
45  
35  
25  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
VOUT, fSW  
12 V, 900 kHz  
5.0 V, 450 kHz  
3.3 V, 300 kHz  
2.5 V, 250 kHz  
Airflow  
400LFM  
200LFM  
100LFM  
Nat conv  
8
7
6
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Output Current (A)  
Output Current (A)  
D015  
D011  
VOUT = 3.3 V  
fSW = 300 kHz  
COUT = 4 × 22 µF, 25 V, 1210 ceramic  
14. Voltage Ripple vs Output Current  
15. Safe Operating Area  
115  
105  
95  
85  
75  
65  
55  
45  
35  
25  
115  
105  
95  
85  
75  
65  
55  
45  
35  
25  
Airflow  
Airflow  
400LFM  
200LFM  
100LFM  
400LFM  
200LFM  
100LFM  
Nat conv  
Nat conv  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Output Current (A)  
Output Current (A)  
D008  
D012  
VOUT = 5 V  
fSW = 450 kHz  
VOUT = 12 V  
fSW = 900 kHz  
16. Safe Operating Area  
17. Safe Operating Area  
版权 © 2017–2018, Texas Instruments Incorporated  
9
LMZM33603  
ZHCSHM1C SEPTEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The LMZM33603 is a full-featured, 36-V input, 3-A, synchronous, step-down converter with PWM, MOSFETs,  
shielded inductor, and control circuitry integrated into a low-profile, overmolded package. The device integration  
enables small designs, while providing the ability to adjust key parameters to meet specific design requirements.  
The LMZM33603 provides an output voltage range of 1 V to 18 V. An external resistor divider is used to adjust  
the output voltage to the desired value. The switching frequency can also be adjusted, by either an external  
resistor or a sync signal, which allows the LMZM33603 to accommodate a variety of input and output voltage  
conditions as well as optimize efficiency. The device provides accurate voltage regulation over a wide load range  
by using a precision internal voltage reference. Input undervoltage lockout is internally set at 3.6 V (typical), but  
can be adjusted upward using a resistor divider on the EN/SYNC pin of the device. The EN/SYNC pin can also  
be pulled low to put the device into standby mode to reduce input quiescent current. A power-good signal is  
provided to indicate when the output is within its nominal voltage range. Thermal shutdown and current limit  
features protect the device during an overload condition. An 18-pin, QFN package that includes exposed bottom  
pads provides a thermally enhanced solution for space-constrained applications.  
7.2 Functional Block Diagram  
Thermal  
Shutdown  
Precision  
Enable  
EN/SYNC  
Shutdown  
Logic  
Sync  
Detect  
OCP  
Oscillator  
VIN  
UVLO  
RT  
VIN  
PGOOD  
SW  
PGOOD  
Logic  
Power  
Stage  
and  
FB  
6.8µH  
VOUT  
Control  
Logic  
Soft  
Start  
+
+
Comp  
VREF  
AGND  
PGND  
Copyright © 2017, Texas Instruments Incorporated  
10  
版权 © 2017–2018, Texas Instruments Incorporated  
LMZM33603  
www.ti.com.cn  
ZHCSHM1C SEPTEMBER 2017REVISED MARCH 2018  
7.3 Feature Description  
7.3.1 Adjusting the Output Voltage  
A resistor divider connected to the FB pin (pin 16) programs the output voltage of the LMZM33603. The output  
voltage adjustment range is from 1 V to 18 V. (See Output Current vs Output Voltage for the maximum allowable  
output voltage as a function of output current.) 18 shows the feedback resistor connections for setting the  
output voltage. The recommended value of RFBB is 10 kΩ. The value for RFBT can be calculated using 公式 1.  
Depending on the output voltage, a feed-forward capacitor, CFF, may be required for optimum transient  
performance. 1 lists the standard external RFBT and CFF values for several output voltages between 2.5 V and  
18 V. 2 lists the values for output voltages below 2.5 V. Additionally, 1 and 2 include the recommended  
switching frequency (FSW), the frequency setting resistor (RRT), and the minimum and maximum output  
capacitance for each of the output voltages listed.  
For designs with RFBB other than 10 kΩ, adjust CFF and RFBT such that (CFF × RFBT) is unchanged and adjust  
RFBT such that (RFBT / RFBB) is unchanged.  
space  
RFBT = 10 ì V  
-1 kW  
)(  
(
)
OUT  
(1)  
VOUT  
RFBT  
CFF  
FB  
RFBB  
10 k  
AGND  
18. Setting the Output Voltage  
版权 © 2017–2018, Texas Instruments Incorporated  
11  
 
 
LMZM33603  
ZHCSHM1C SEPTEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
Feature Description (接下页)  
1. Required Component Values (VOUT 2.5 V)  
VOUT (V)  
RFBT (k)(1)  
15.0  
CFF (pF)  
220  
fSW (kHz)  
250  
RRT (kΩ)  
162  
COUT(min) (µF)(2)  
COUT(max) (µF)(3)  
2.5  
3.3  
5
150  
88  
66  
54  
40  
36  
22  
22  
20  
16  
400  
300  
200  
160  
130  
110  
80  
23.2  
150  
300  
133  
40.2  
100  
450  
88.7  
71.5  
60.4  
56.2  
44.2  
39.2  
35.7  
33.2  
6
49.9  
68  
550  
7.5  
9
64.9  
47  
650  
80.6  
47  
700  
12  
13.5  
15  
18  
110  
open  
open  
open  
open  
900  
124  
1000  
1100  
1200  
75  
140  
65  
169  
55  
(1) RFBB = 10.0 kΩ.  
(2) For output voltages 2.5 V, the minimum required output capactiance must be comprised of ceramic type and account for DC bias and  
temperature derating.  
(3) The maximum output capactiance must include the required ceramic COUT(min). Additional capacitance, may be ceramic type, low-ESR  
polymer type, or a combination of the two.  
2. Required Component Values (VOUT < 2.5 V)  
VOUT (V)  
RFBT (k)(1)  
CFF (pF)  
FSW (kHz)  
RRT (kΩ)  
COUT  
150-µF ceramic +  
470-µF polymer  
1 to 2.5  
see 公式 1  
open  
250  
162  
(1) RFBB = 10 kΩ. For VOUT = 1 V, RFBB= open and RFBT = 0 Ω.  
7.3.2 Feed-Forward Capacitor, CFF  
The LMZM33603 is internally compensated to be stable over the operating frequency and output voltage range.  
However, depending on the output voltage, an additional feed-forward capacitor may be required. TI  
recommends an external feed-forward capacitor, CFF, be placed in parallel with the top resistor divider, RFBT for  
optimum transient performance. The value for CFF can be calculated using 公式 2.  
1000  
CFF  
=
pF  
(
)
«
÷
8.32  
4p  
ìR  
FBT  
VOUT ìCOUT ◊  
where  
COUT is the value after derating in µF  
RFBT is in kΩ  
(2)  
Refer to the 1 for the recommended CFF value for several output voltages.  
12  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
 
LMZM33603  
www.ti.com.cn  
ZHCSHM1C SEPTEMBER 2017REVISED MARCH 2018  
7.3.3 Output Current vs Output Voltage  
The rated output current of the LMZM33603 depends on the output voltage required for an application. The  
output current derates at output voltages above 13.5 V. The area under the curve in 19 shows the operating  
range of the LMZM33603.  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19  
Output Voltage (V)  
D016  
19. Output Current vs Output Voltage  
7.3.4 Voltage Dropout  
Voltage dropout is the difference between the input voltage and output voltage that is required to maintain output  
voltage regulation while providing the rated output current.  
To ensure the LMZM33603 maintains output voltage regulation at the recommended switching frequency, over  
the operating temperature range, the following requirements apply:  
For output voltages 5 V, the minimum VIN is 4 V or (VOUT + 1.5 V), whichever is greater.  
For output voltages > 5 V, the minimum VIN is (1.3 × VOUT).  
space  
However, if fixed switching frequency operation is not required, the LMZM33603 operates in a frequency  
foldback mode when the dropout voltage is less than the recommendations above. Frequency foldback reduces  
the switching frequency to allow the output voltage to maintain regulation as input voltage decreases. 20  
through 25 show typical dropout voltage and frequency foldback curves for 3.3 V, 5 V, and 12 V outputs at TA  
= 25°C. (Note: As ambient temperature increases, dropout voltage and frequency foldback occur at higher input  
voltage.)  
3.4  
3.3  
3.2  
3.1  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
350  
325  
300  
275  
250  
225  
200  
175  
150  
125  
100  
75  
Iout  
0.5 A  
1.0 A  
2.0 A  
3.0 A  
Iout  
0.5 A  
1.0 A  
2.0 A  
3.0 A  
50  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
4.0  
4.1  
4.2  
4.3  
4.4  
4.5  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
4.0  
4.1  
4.2  
4.3  
4.4  
4.5  
Input Voltage (V)  
Input Voltage (V)  
D017  
D018  
VOUT = 3.3 V  
fSW = 300 kHz  
20. Voltage Dropout  
VOUT = 3.3 V  
fSW = 300 kHz  
21. Frequency Foldback  
版权 © 2017–2018, Texas Instruments Incorporated  
13  
 
 
LMZM33603  
ZHCSHM1C SEPTEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
5.4  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
500  
450  
400  
350  
300  
250  
200  
150  
100  
Iout  
Iout  
0.5 A  
1.0 A  
2.0 A  
3.0 A  
0.5 A  
1.0 A  
2.0 A  
3.0 A  
4.0  
4.2  
4.4  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
5.8  
6.0  
6.2  
6.4  
4.0  
4.3  
4.6  
4.9  
5.2  
5.5  
5.8  
6.1  
6.4  
6.7  
7.0  
Input Voltage (V)  
Input Voltage (V)  
D019  
D020  
VOUT = 5 V  
fSW = 450 kHz  
22. Voltage Dropout  
VOUT = 5 V  
fSW = 450 kHz  
23. Frequency Foldback  
12.4  
12.2  
12.0  
11.8  
11.6  
11.4  
11.2  
11.0  
10.8  
10.6  
10.4  
10.2  
10.0  
9.8  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
Iout  
0.5 A  
1.0 A  
2.0 A  
3.0 A  
Iout  
0.5 A  
1.0 A  
2.0 A  
3.0 A  
11.0 11.2 11.4 11.6 11.8 12.0 12.2 12.4 12.6 12.8 13.0 13.2 13.4  
Input Voltage (V)  
11.0  
11.5  
12.0  
12.5  
13.0  
Input Voltage (V)  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
D022  
D021  
VOUT = 12 V  
fSW = 900 kHz  
VOUT = 12 V  
fSW = 900 kHz  
25. Frequency Foldback  
24. Voltage Dropout  
14  
版权 © 2017–2018, Texas Instruments Incorporated  
LMZM33603  
www.ti.com.cn  
ZHCSHM1C SEPTEMBER 2017REVISED MARCH 2018  
7.3.5 Switching Frequency (RT)  
The switching frequency range of the LMZM33603 is 200 kHz to 1.2 MHz. The switching frequency can easily be  
set by connecting a resistor (RRT) between the RT pin and AGND. Additionally, the RT pin can be left floating  
and the LMZM33603 will operate at 400 kHz default switching frequency. Use 公式 3 to calculate the RRT value  
for a desired frequency or simply select from 3 or 4.  
The switching frequency must be selected based on the output voltage setting of the device. See 3 for RRT  
resistor values and the allowable output voltage range for a given switching frequency for three common input  
voltages. Additionally, if an application requires 2 A or less of output current, use 4 to determine the allowable  
output voltage range for a given switching frequency  
40200  
RRT  
=
- 0.6 kW  
(
)
÷
÷
fSW kHz  
(
)
«
(3)  
3. Switching Frequency vs Output Voltage (IOUT = 3 A)  
VIN = 5 V (±5%)  
VOUT RANGE (V)  
VIN = 12 V (±5%)  
VOUT RANGE (V)  
VIN = 24 V (±5%)  
VOUT RANGE (V)  
SWITCHING  
FREQUENCY  
(kHz)  
RRT RESISTOR  
(kΩ)  
MIN  
1
MAX  
3
MIN  
1
MAX  
5.1  
MIN  
1
MAX  
3.8  
200  
250  
300  
350  
200  
158  
133  
113  
1
3.2  
3.2  
3.1  
1
5.8  
1
5.2  
1
1
6.4  
1
7.1  
1
1
6.9  
1
10.2  
100 or  
(RT pin open)  
400  
1
3.1  
1
7.5  
1
10.9  
450  
500  
88.7  
78.7  
71.5  
66.5  
60.4  
56.2  
52.3  
49.9  
46.4  
44.2  
41.2  
39.2  
37.4  
35.7  
34  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3.1  
3
1
1
7.9  
8.4  
8.8  
9
1.2  
1.3  
1.4  
1.6  
1.7  
1.8  
2.0  
2.1  
2.2  
2.3  
2.5  
2.6  
2.7  
2.9  
3
11.5  
12.2  
12.8  
13.4  
13.5  
13.5  
13.5  
13.5  
13.5  
13.5  
13.5  
13.5  
13.5  
13.5  
13.5  
13.5  
550  
3
1
600  
3
1
650  
2.9  
2.9  
2.9  
2.8  
2.8  
2.8  
2.7  
2.7  
2.7  
2.6  
2.6  
2.6  
1
8.9  
8.9  
8.8  
8.7  
8.6  
8.5  
8.4  
8.4  
8.3  
8.2  
8.1  
8
700  
1
750  
1
800  
1
850  
1.1  
1.2  
1.2  
1.3  
1.4  
1.4  
1.5  
1.6  
900  
950  
1000  
1050  
1100  
1150  
1200  
33.2  
3.1  
版权 © 2017–2018, Texas Instruments Incorporated  
15  
 
 
LMZM33603  
ZHCSHM1C SEPTEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
4. Switching Frequency vs Output Voltage (IOUT 2A)  
VIN = 5 V (±5%)  
VOUT RANGE (V)  
VIN = 12 V (±5%)  
VOUT RANGE (V)  
VIN = 24 V (±5%)  
VOUT RANGE (V)  
SWITCHING  
FREQUENCY  
(kHz)  
RRT  
RESISTOR  
(kΩ)  
MIN  
1
MAX  
3.4  
MIN  
1
MAX  
5.5  
MIN  
1
MAX  
6.2  
200  
250  
300  
350  
200  
158  
133  
113  
1
3.5  
1
6.2  
1
10.6  
10.6  
10.7  
1
3.5  
1
6.8  
1
1
3.5  
1
7.4  
1
100 or  
(RT pin open)  
400  
1
3.5  
1
7.9  
1
11.4  
450  
500  
88.7  
78.7  
71.5  
66.5  
60.4  
56.2  
52.3  
49.9  
46.4  
44.2  
41.2  
39.2  
37.4  
35.7  
34  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3.5  
3.5  
3.4  
3.4  
3.4  
3.3  
3.3  
3.3  
3.2  
3.2  
3.2  
3.1  
3.1  
3.1  
3
1
1
8.4  
8.9  
9.3  
9.5  
9.4  
9.3  
9.2  
9.1  
9.0  
9.0  
8.9  
8.8  
8.7  
8.6  
8.5  
8.5  
1.2  
1.3  
1.4  
1.6  
1.7  
1.8  
2
12.1  
12.8  
13.4  
14.1  
14.6  
15.2  
15.8  
16.3  
16.8  
17.3  
17.8  
18  
550  
1
600  
1
650  
1
700  
1
750  
1
800  
1
2.1  
2.2  
2.3  
2.5  
2.6  
2.7  
2.9  
3
850  
1.1  
1.2  
1.2  
1.3  
1.4  
1.4  
1.5  
1.6  
900  
950  
1000  
1050  
1100  
1150  
1200  
18  
18  
18  
33.2  
3
3.1  
18  
16  
版权 © 2017–2018, Texas Instruments Incorporated  
 
LMZM33603  
www.ti.com.cn  
ZHCSHM1C SEPTEMBER 2017REVISED MARCH 2018  
7.3.6 Synchronization (SYNC)  
The LMZM33603 switching frequency can also be synchronized to an external clock from 200 kHz to 1.2 MHz.  
To implement the synchronization feature, couple an AC signal to the EN/SYNC pin (pin 2) with a peak-to-peak  
amplitude of at least 2.8 V, not to exceed 5.5 V. The minimum SYNC clock ON and OFF time must be longer  
than 100ns. The AC signal must be coupled through a small capacitor (1 nF) as shown in 26. RENT is required  
for this synchronization circuit, but RENB is not required if an external UVLO adjustment is not needed.  
Before the external clock is present, or when a valid clock signal is removed, the device works in RT mode and  
the switching frequency is set by RRT resistor. Select RRT so that it sets the frequency close to the external  
synchronization frequency. When the external clock is present, the SYNC mode overrides the RT mode.  
The synchronization frequency must be selected based on the output voltages of the devices being  
synchronized. 3 and 4 show the allowable frequencies for a given range of output voltages. For the most  
efficient solution, always select the lowest allowable frequency.  
VIN  
VIN  
RENT  
CSYNC  
EN/SYNC  
1 nF  
RENB  
Clock  
Source  
PGND  
26. AC-Coupled SYNC Signal  
7.3.7 Input Capacitors  
The LMZM33603 requires a minimum input capacitance of 9.4 μF (2 × 4.7 μF) of ceramic type. High-quality,  
ceramic type X5R or X7R capacitors with sufficient voltage rating are recommended. TI recommends an  
additional 100 µF of non-ceramic capacitance for applications with transient load requirements. The voltage  
rating of input capacitors must be greater than the maximum input voltage.  
5. Recommended Input Capacitors(1)  
CAPACITOR CHARACTERISTICS  
WORKING  
VOLTAGE  
(V)  
CAPACITANCE(2)  
(µF)  
ESR(3)  
(m)  
VENDOR  
SERIES  
PART NUMBER  
Murata  
X7R  
X5R  
X7R  
X7R  
ZA  
GRM32ER71H475KA88L  
50  
50  
50  
50  
50  
4.7  
10  
2
3
TDK  
C3225X5R1H106K250AB  
GRM32ER71H106KA12  
C3225X7R1H106M250AB  
EEHZA1H101P  
Murata  
TDK  
10  
2
10  
3
Panasonic  
100  
28  
(1) Capacitor Supplier Verification, RoHS, Lead-free and Material Details  
Consult capacitor suppliers regarding availability, material composition, RoHS and lead-free status, and manufacturing process  
requirements for any capacitors identified in 5.  
(2) Standard capacitance values.  
(3) Maximum ESR at 100 kHz, 25°C.  
版权 © 2017–2018, Texas Instruments Incorporated  
17  
 
 
LMZM33603  
ZHCSHM1C SEPTEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
7.3.8 Output Capacitors  
The LMZM33603 minimum and maximum output capacitance listed in 1 and 2 represents the amount of  
effective capacitance. The effects of DC bias and temperature variation must be considered when using ceramic  
capacitance. For ceramic capacitors, the package size, voltage rating, and dielectric material will contribute to  
differences between the standard rated value and the actual effective value of the capacitance.  
When adding additional capacitance, above COUT(min), the capacitance may be ceramic type, low-ESR polymer  
type, or a combination of the two. See 6 for a preferred list of output capacitors by vendor.  
6. Recommended Output Capacitors(1)  
CAPACITOR CHARACTERISTICS  
WORKING  
VOLTAGE  
(V)  
CAPACITANCE(2)  
(µF)  
ESR(3)  
(m)  
VENDOR  
SERIES  
PART NUMBER  
Murata  
X7R  
X5R  
GRM32ER71E226KE15L  
25  
6.3  
16  
22  
2
2
TDK  
C3225X5R0J476K  
GRM32ER61C476K  
C3225X5R0J107M  
GRM32ER60J107M  
GRM32ER61A107M  
C1210C107M4PAC7800  
6TPE100MI  
47  
Murata  
X5R  
47  
3
TDK  
X5R  
6.3  
6.3  
10  
100  
100  
100  
100  
100  
150  
150  
220  
220  
330  
330  
470  
2
Murata  
X5R  
2
Murata  
X5R  
2
Kemet  
X5R  
16  
2
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
POSCAP  
POSCAP  
POSCAP  
POSCAP  
POSCAP  
POSCAP  
POSCAP  
POSCAP  
6.3  
6.3  
10  
18  
15  
15  
9
6TPE150MF  
10TPF150ML  
6TPF220M9L  
6.3  
6.3  
4
6TPE220ML  
12  
12  
9
4TPF330ML  
6TPF330M9L  
6.3  
6.3  
6TPE470MAZU  
35  
(1) Capacitor Supplier Verification, RoHS, Lead-free and Material Details  
Consult capacitor suppliers regarding availability, material composition, RoHS and lead-free status, and manufacturing process  
requirements for any capacitors identified in 5.  
(2) Standard capacitance values.  
(3) Maximum ESR at 100 kHz, 25°C.  
18  
版权 © 2017–2018, Texas Instruments Incorporated  
 
LMZM33603  
www.ti.com.cn  
ZHCSHM1C SEPTEMBER 2017REVISED MARCH 2018  
7.3.9 Output On/Off Enable (EN)  
The voltage on the EN/SYNC pin provides electrical ON/OFF control of the device. Once the EN pin voltage  
exceeds the threshold voltage, the device starts operation. If the EN pin voltage is pulled below the threshold  
voltage, the regulator stops switching and enters low quiescent current state.  
The EN pin cannot be open circuit or floating. The simplest way to enable the operation of the LMZM33603 is to  
connect the EN pin to VIN directly as shown in 27. This allows self-start-up of the LMZM33603 when VIN is  
within the operation range.  
If an application requires controlling the EN pin, an external logic signal can be used to drive EN/SYNC pin as  
shown in 28. Applications using an open drain/collector device to interface with this pin require a pullup  
resistor to a voltage above the enable threshold.  
29 and 30 show typical turn-ON and turn-OFF waveforms using the enable control.  
VIN  
VIN  
EN/SYNC  
EN/SYNC  
PGND  
PGND  
27. Enabling the Device  
28. Typical Enable Control  
29. Enable Turn-ON  
30. Enable Turn-OFF  
7.3.10 Programmable Undervoltage Lockout (UVLO)  
The LMZM33603 implements internal UVLO circuitry on the VIN pin. The device is disabled when the VIN pin  
voltage falls below the internal VIN UVLO threshold. The internal VIN UVLO rising threshold is 3.9 V (maximum)  
with a typical hysteresis of 300 mV.  
If an application requires a higher UVLO threshold, a resistor divider can be placed on the EN/SYNC pin as  
shown in 31. 7 lists recommended resistor values for RENT and RENB to adjust the UVLO voltage.  
To insure proper start-up and reduce input current surges, the UVLO threshold must be set to at least  
(VOUT + 1.5 V) for output voltages 5 V and at least (1.3 × VOUT) for output voltages > 5 V. TI recommends to set  
the UVLO threshold to approximately 80% to 85% of the minimum expected input voltage.  
版权 © 2017–2018, Texas Instruments Incorporated  
19  
 
 
LMZM33603  
ZHCSHM1C SEPTEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
VIN  
VIN  
RENT  
EN/SYNC  
PGND  
RENB  
31. Adjustable UVLO  
7. Resistor Values for Adjusting UVLO  
UVLO (V)  
RENT (kΩ)  
RENB (kΩ)  
6.5  
100  
35.7  
10  
15  
20  
25  
30  
100  
20.5  
100  
12.7  
100  
9.31  
100  
7.32  
100  
6.04  
7.3.11 Power Good (PGOOD)  
The LMZM33603 has a built-in power-good signal (PGOOD) which indicates whether the output voltage is within  
its regulation range. The PGOOD pin is an open-drain output that requires a pullup resistor to a nominal voltage  
source of 12 V or less. The maximum recommended PGOOD sink current is 1 mA. A typical pullup resistor value  
is between 10 kΩ and 100 kΩ.  
Once the output voltage rises above 94% of the set voltage, the PGOOD pin rises to the pullup voltage level.  
The PGOOD pin is pulled low when the output voltage drops lower than 92.5% or rises higher than 107% of the  
nominal set voltage. See 32 for typical power-good thresholds.  
VFB  
107%  
105.5%  
94%  
92.5%  
PGOOD  
High  
Low  
32. Power Good Flag  
20  
版权 © 2017–2018, Texas Instruments Incorporated  
 
LMZM33603  
www.ti.com.cn  
ZHCSHM1C SEPTEMBER 2017REVISED MARCH 2018  
7.3.12 Overcurrent Protection (OCP)  
The LMZM33603 is protected from overcurrent conditions. Hiccup mode is activated if a fault condition persists to  
prevent overheating. In hiccup mode, the regulator is shut down and kept off for 10 ms typical before the  
LMZM33603 tries to start again. If overcurrent or short-circuit fault condition still exist, hiccup repeats until the  
fault condition is removed. Hiccup mode reduces power dissipation under severe overcurrent conditions, and  
prevents overheating and potential damage to the device. Once the fault is removed, the module automatically  
recovers and returns to normal operation as shown in 34.  
33. Overcurrent Limiting  
34. Removal of Overcurrent  
7.3.13 Thermal Shutdown  
The internal thermal shutdown circuitry forces the device to stop switching if the junction temperature exceeds  
170°C typically. The device reinitiates the power-up sequence when the junction temperature drops below 155°C  
typically.  
7.4 Device Functional Modes  
7.4.1 Active Mode  
The LMZM33603 is in active mode when VIN is above the UVLO threshold and the EN/SYNC pin voltage is  
above the EN high threshold. The simplest way to enable the LMZM33603 is to connect the EN/SYNC pin to  
VIN. This allows self start-up of the LMZM33603 when the input voltage is in the operation range: 4 V to 36 V. In  
active mode, the LMZM33603 is in continuous conduction mode (CCM) with fixed switching frequency.  
7.4.2 Shutdown Mode  
The EN/SYNC pin provides electrical ON and OFF control for the LMZM33603. When the EN/SYNC pin voltage  
is below the EN low threshold, the device is in shutdown mode. In shutdown mode the standby current is 2 μA  
typical. The LMZM33603 also employs input UVLO protection. If VIN is below the UVLO level, the output of the  
regulator is turned off.  
版权 © 2017–2018, Texas Instruments Incorporated  
21  
 
LMZM33603  
ZHCSHM1C SEPTEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The LMZM33603 is a synchronous, step-down, DC-DC power module. It is used to convert a higher DC voltage  
to a lower DC voltage with a maximum output current of 3 A. The LMZM33603 can be configured in an inverting  
buck-boost (IBB) topology with the output voltage inverted or negative with respect to ground. For more details,  
see TI Application Report Inverting Application for the LMZM33603. The following design procedure can be used  
to select components for the LMZM33603. Alternately, the WEBENCH® software may be used to generate  
complete designs. When generating a design, the WEBENCH® software utilizes an iterative design procedure  
and accesses comprehensive databases of components. See www.ti.com for more details.  
8.2 Typical Application  
The LMZM33603 only requires a few external components to convert from a wide input-voltage-supply range to a  
wide range of output voltages. 35 shows a basic LMZM33603 schematic with only the minimum required  
components.  
PGOOD  
VIN  
VIN  
VOUT  
EN/SYNC  
VOUT  
CIN  
CFF  
LMZM33603  
RFBT  
COUT  
RT  
FB  
PGND  
RRT  
RFBB  
Copyright © 2017, Texas Instruments Incorporated  
35. LMZM33603 Typical Schematic  
8.2.1 Design Requirements  
For this design example, use the parameters listed in 8 as the input parameters and follow the design  
procedures in Detailed Design Procedure.  
8. Design Example Parameters  
DESIGN PARAMETER  
Input voltage VIN  
VALUE  
24 V typical  
5 V  
Output voltage VOUT  
Output current rating  
Operating frequency  
3 A  
450 kHz  
22  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
LMZM33603  
www.ti.com.cn  
ZHCSHM1C SEPTEMBER 2017REVISED MARCH 2018  
8.2.2 Detailed Design Procedure  
8.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the LMZM33603 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.2.2 Output Voltage Setpoint  
The output voltage of the LMZM33603 device is externally adjustable using a resistor divider. The recommended  
value of RFBB is 10.0 kΩ. The value for RFBT can be selected from 1 or calculated using 公式 4:  
RFBT = 10 ì V  
-1 kW  
)(  
(
)
OUT  
(4)  
For the desired output voltage of 5 V, the formula yields a value of 40 kΩ. Choose the closest available value of  
40.2 kΩ for RFBT  
.
8.2.2.3 Feed-Forward Capacitor (CFF)  
TI recommends placing an external feed-forward capacitor, CFF in parallel with the top resistor divider, RFBT for  
optimum transient performance. The value for CFF can be calculated using 公式 2 or selected from 1. The  
recommended CFF value for 5-V application is 100 pF.  
8.2.2.4 Setting the Switching Frequency  
The recommended switching frequency for a 5-V application is 450 kHz. To set the switching frequency to  
450 kHz, a 88.7-kΩ RRT resistor is required.  
8.2.2.5 Input Capacitors  
The LMZM33603 requires a minimum input capacitance of 10 µF (or 2 × 4.7 μF) ceramic type. High-quality  
ceramic type X5R or X7R capacitors with sufficient voltage rating are recommended. An additional 100 µF of  
non-ceramic capacitance is recommended for applications with transient load requirements. The voltage rating of  
input capacitors must be greater than the maximum input voltage.  
For this design, a 10-µF, 50-V, ceramic capacitor was selected.  
8.2.2.6 Output Capacitor Selection  
The LMZM33603 requires a minimum amount of output capacitance for proper operation. The minimum amount  
of required output varies depending on the output voltage. See 1 for the required output capacitance.  
For this design example, four 22 µF, 25 V ceramic capacitors are used.  
版权 © 2017–2018, Texas Instruments Incorporated  
23  
 
LMZM33603  
ZHCSHM1C SEPTEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
8.2.2.7 Application Curves  
VIN = 24 V  
VOUT = 5 V  
IOUT = 0.75 A to 2.25 A  
Slew rate: 1 A/µs  
VIN = 24 V  
VOUT = 5 V  
COUT = 4 × 22 µF  
COUT = 4 × 22 µF  
36. Transient Response  
37. Enable Turnon  
24  
版权 © 2017–2018, Texas Instruments Incorporated  
LMZM33603  
www.ti.com.cn  
ZHCSHM1C SEPTEMBER 2017REVISED MARCH 2018  
9 Power Supply Recommendations  
The LMZM33603 is designed to operate from an input voltage supply range between 4 V and 36 V. This input  
supply must be well regulated and able to withstand maximum input current and maintain a stable voltage. The  
resistance of the input supply rail must be low enough that an input current transient does not cause a high  
enough drop at the LMZM33603 supply voltage that can cause a false UVLO fault triggering and system reset.  
If the input supply is located more than a few inches from the LMZM33603 additional bulk capacitance may be  
required in addition to the ceramic bypass capacitors. The typical amount of bulk capacitance is a 100-µF  
electrolytic capacitor.  
版权 © 2017–2018, Texas Instruments Incorporated  
25  
LMZM33603  
ZHCSHM1C SEPTEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
10 Layout  
The performance of any switching power supply depends as much upon the layout of the PCB as the component  
selection. The following guidelines will help users design a PCB with the best power conversion performance,  
optimal thermal performance, and minimized generation of unwanted EMI.  
10.1 Layout Guidelines  
To achieve optimal electrical and thermal performance, an optimized PCB layout is required. 38 thru 41,  
shows a typical PCB layout. Some considerations for an optimized layout are:  
Use large copper areas for power planes (VIN, VOUT, and PGND) to minimize conduction loss and thermal  
stress.  
Connect PGND pins 14 and 15 directly to pin 18 using thick copper traces.  
Connect the SW pins together using a small copper island under the device for thermal relief.  
Place ceramic input and output capacitors close to the device pins to minimize high frequency noise.  
Locate additional output capacitors between the ceramic capacitor and the load.  
Keep AGND and PGND separate from one another.  
Place RFBT, RFBB, RRT, and CFF as close as possible to their respective pins.  
Use multiple vias to connect the power planes to internal layers.  
10.2 Layout Examples  
38. Typical Top-Layer Layout  
39. Typical Layer-2 Layout  
40. Typical Layer 3 Layout  
41. Typical Bottom-Layer Layout  
26  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
LMZM33603  
www.ti.com.cn  
ZHCSHM1C SEPTEMBER 2017REVISED MARCH 2018  
10.3 Theta JA vs PCB Area  
The amount of PCB copper effects the thermal performance of the device. 42 shows the effects of copper  
area on the junction-to-ambient thermal resistance (RθJA) of the LMZM33603. The junction-to-ambient thermal  
resistance is plotted for a 2-layer PCB and a 4-layer PCB with PCB area from 16 cm2 to 49 cm2.  
To determine the required copper area for an application:  
1. Determine the maximum power dissipation of the device in the application by referencing the power  
dissipation graphs in the Typical Characteristics section.  
2. Calculate the maximum θJA using 公式 5 and the maximum ambient temperature of the application.  
(125˘C œ TA(max)  
)
JA  
=
(˘C/W)  
PD(max)  
(5)  
3. Reference 42 to determine the minimum required PCB area for the application conditions.  
32  
2-layer PCB  
4-layer PCB  
30  
28  
26  
24  
22  
20  
18  
16  
15  
20  
25  
30  
35  
40  
45  
50  
PCB Area (cm²)  
ThJA  
42. θJA vs PCB Area  
10.4 EMI  
The LMZM33603 is compliant with EN55011 Class B radiated emissions. 43, 44, and 45 show typical  
examples of radiated emissions plots for the LMZM33603. The graphs include the plots of the antenna in the  
horizontal and vertical positions.  
10.4.1 EMI Plots  
EMI plots were measured using the standard LMZM33603EVM with no input filter.  
版权 © 2017–2018, Texas Instruments Incorporated  
27  
 
 
LMZM33603  
ZHCSHM1C SEPTEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
EMI (接下页)  
43. Radiated Emissions 24-V Input, 5-V Output, 3-A Load (EN55011 Class B)  
44. Radiated Emissions 24-V Input, 12-V Output, 3-A Load (EN55011 Class B)  
28  
版权 © 2017–2018, Texas Instruments Incorporated  
LMZM33603  
www.ti.com.cn  
ZHCSHM1C SEPTEMBER 2017REVISED MARCH 2018  
EMI (接下页)  
45. Radiated Emissions 12-V Input, 5-V Output, 3-A Load (EN55011 Class B)  
10.5 Package Specifications  
9. Package Specifications Table  
LMZM33603  
VALUE  
UNIT  
Weight  
0.74  
grams  
Flammability  
Meets UL 94 V-O  
MTBF Calculated Reliability  
Per Bellcore TR-332, 50% stress, TA = 40°C, ground benign  
98.0  
MHrs  
版权 © 2017–2018, Texas Instruments Incorporated  
29  
LMZM33603  
ZHCSHM1C SEPTEMBER 2017REVISED MARCH 2018  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
11.1.2 使用 WEBENCH® 工具创建定制设计  
单击此处,使用 LMZM33603 器件并借助 WEBENCH® 电源设计器创建定制设计方案。  
1. 首先键入输入电压 (VIN)、输出电压 (VOUT) 和输出电流 (IOUT) 要求。  
2. 使用优化器拨盘优化关键参数设计,如效率、封装和成本。  
3. 将生成的设计与德州仪器 (TI) 的其他解决方案进行比较。  
WEBENCH 电源设计器可提供定制原理图以及罗列实时价格和组件供货情况的物料清单。  
在多数情况下,可执行以下操作:  
运行电气仿真,观察重要波形以及电路性能  
运行热性能仿真,了解电路板热性能  
将定制原理图和布局方案导出至常用 CAD 格式  
打印设计方案的 PDF 报告并与同事共享  
有关 WEBENCH 工具的详细信息,请访问 www.ti.com.cn/WEBENCH。  
11.2 相关文档  
请参阅如下相关文档:  
TI 应用报告 LMZM33602/03 反向应用  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.5 商标  
E2E is a trademark of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
30  
版权 © 2017–2018, Texas Instruments Incorporated  
LMZM33603  
www.ti.com.cn  
ZHCSHM1C SEPTEMBER 2017REVISED MARCH 2018  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请参阅左侧的导航栏。  
版权 © 2017–2018, Texas Instruments Incorporated  
31  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Jul-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMZM33603RLRR  
ACTIVE  
B3QFN  
RLR  
18  
500  
RoHS & Green  
NIPDAU  
Level-3-250C-168 HR  
-40 to 105  
LMZM33603  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Jul-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMZM33603RLRR  
B3QFN  
RLR  
18  
500  
330.0  
24.4  
7.35  
9.35  
4.35  
12.0  
24.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Jul-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
B3QFN RLR 18  
SPQ  
Length (mm) Width (mm) Height (mm)  
383.0 353.0 58.0  
LMZM33603RLRR  
500  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RLR0018A  
B3QFN - 4.1 mm max height  
S
C
A
L
E
1
.
3
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
A
7.15  
6.85  
B
PIN 1 INDEX AREA  
9.15  
8.85  
4.1 MAX  
C
SEATING PLANE  
0.05  
0.00  
0.08 C  
2X 5.551  
2X  
(0.2) TYP  
(0.255) TYP  
36X 0.5  
EXPOSED  
THERMAL PAD  
PKG  
8
10  
7
6
11  
2X 3.48 0.05  
2X 0.77 0.05  
2X  
PKG  
7.5  
5
12  
15  
2X 1.6  
0.05  
0.3  
46X  
0.2  
0.1  
C A B  
0.05  
1
18  
0.6  
PIN 1 ID  
(OPTIONAL)  
TYP  
0.4  
2X 1.33  
2X 0.105  
2X 1  
4223378/C 05/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pads must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RLR0018A  
B3QFN - 4.1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
METAL UNDER  
SOLDER MASK  
TYP  
2X (1.6)  
PKG  
(0.5) TYP  
4X (0.595)  
12X (0.7)  
6X  
(0.45)  
SOLDER MASK  
OPENING  
TYP  
18  
(4.35)  
(4.33) TYP  
4X (0.62)  
15  
(3.8)  
1
(3.42) TYP  
2X (3.48)  
(
0.2) VIA  
46X (0.25)  
TYP  
(2.51) TYP  
(1.6) TYP  
12  
0.05 MIN  
TYP  
(0.69) TYP  
5
PKG  
0.000  
(0.175) TYP  
(0.825) TYP  
(0.15) TYP  
11  
(1.6) TYP  
(R0.05) TYP  
6
(2.51) TYP  
(3.42) TYP  
7X (0.25)  
(3.8)  
4X (3.935)  
(4.33) TYP  
10  
7
(4.35)  
8
LAND PATTERN EXAMPLE  
SOLDER MASK DEFINED  
SCALE: 12X  
4223378/C 05/2018  
NOTES: (continued)  
4. This package designed to be soldered to a thermal pads on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RLR0018A  
B3QFN - 4.1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
16X (0.67)  
16X (0.71)  
6X (0.29)  
8X (0.265)  
5X (0.7)  
18  
(4.568)  
(4.35)  
(3.875)  
15  
1
2X (3.75)  
(2.965)  
(2.055)  
46X (0.25)  
EXPOSED METAL  
TYP  
12  
(1.145)  
5
(R0.05) TYP  
0.000 PKG  
(1.145)  
(2.055)  
11  
(0.25) TYP  
6
7
4X (0.585)  
(2.965)  
METAL UNDER  
SOLDER MASK  
TYP  
2X (3.75)  
(3.875)  
4X (3.93)  
10  
(4.35)  
SOLDER MASK EDGE  
TYP  
2X (4.568)  
8
4X (0.61)  
7X (0.7)  
EXPOSED  
METAL  
TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD 8 & 18:  
68% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:12X  
4223378/C 05/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

LMZM33603RLRR

采用紧凑型 7x9x4mm QFN 封装的 4V 至 36V、3A 降压直流/直流电源模块 | RLR | 18 | -40 to 105
TI

LMZM33604

3.5V 至 36V 输入、1V 至 20V 输出、4A 电源模块
TI

LMZM33604RLXR

3.5V 至 36V 输入、1V 至 20V 输出、4A 电源模块 | RLX | 41 | -40 to 105
TI

LMZM33606

3.5V 至 36V 输入、1V 至 20V 输出、6A 电源模块
TI

LMZM33606RLXR

3.5V 至 36V 输入、1V 至 20V 输出、6A 电源模块 | RLX | 41 | -40 to 105
TI

LN

Series Round Type
ETC

LN-104.000MHZ

Oscillator, 104MHz Min, 350MHz Max, 104MHz Nom,
DIODES

LN-1A11

INFRARED EMITTING DIODE
ETC

LN-45-15

45W Single Output LED Power Supply
MEANWELL

LN01-12B05

AC/DC converter
MORNSUN

LN01-12B05_15

AC/DC converter
MORNSUN

LN01-12B12

AC/DC converter
MORNSUN