LMZM33604RLXR [TI]

3.5V 至 36V 输入、1V 至 20V 输出、4A 电源模块 | RLX | 41 | -40 to 105;
LMZM33604RLXR
型号: LMZM33604RLXR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

3.5V 至 36V 输入、1V 至 20V 输出、4A 电源模块 | RLX | 41 | -40 to 105

开关 输出元件 电源电路
文件: 总44页 (文件大小:1843K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LMZM33604  
ZHCSIY5A OCTOBER 2018REVISED MAY 2019  
LMZM33604 3.5V 36V 输入、1V 20V 输出、4A 电源模块  
1 特性  
3 说明  
较小的总体解决方案尺寸:< 250mm2  
LMZM33604 电源模块是一款易于使用的集成式电源解  
决方案,它在一个低厚度的封装内整合了一个带有功率  
MOSFET 4A 直流/直流转换器、一个屏蔽式电感器  
和多个无源器件。此电源解决方案仅需四个外部组件,  
并且省去了设计流程中的环路补偿和电感器元件选择过  
程。  
1
所需的外部组件数低至 4 个  
16mm × 10mm × 4mm QFN 封装  
支持 5V12V24V28V 输入电压轨  
1V 20V 的输出电压范围  
引脚与 6A LMZM33606 兼容  
符合 EN55011 辐射发射标准  
可配置为负输出电压  
该器件采用 16mm × 10mm × 4mm41 引脚 QFN 封  
装,可轻松焊接到印刷电路板上,并可实现紧凑的低厚  
度负载点设计。LMZM33604 的全套功能包括电源正常  
指示、可调节软启动、跟踪、同步、可编程 UVLO、  
预偏置启动、可选自动或 FPWM 模式以及过流和过热  
保护。可针对反相应用将 LMZM33604 配置为负输出  
电压。  
设计灵活性 的 可调节功能  
开关频率(350kHz 2.2MHz)  
可与外部时钟保持同步  
可选自动模式或 FPWM 模式  
自动:提升轻负载下的效率  
FPWM:在整个负载上具有固定频率  
器件信息  
可调软启动和跟踪输入  
器件型号  
封装  
QFN (41)  
封装尺寸(标称值)  
通过精密使能功能对系统 UVLO 进行编程  
LMZM33604  
16.00mm × 10.00mm  
保护 功能  
断续模式电流限制  
空白  
过热保护  
最小解决方案尺寸  
电源正常输出  
可在恶劣环境中运行  
85°C 且无气流的情况下具有高达 50W 的输  
出功率  
工作结温范围:–40°C +125°C  
工作环境温度范围:–40°C +105°C  
通过了 Mil-STD-883D 冲击和振动测试  
2 应用  
工业、医疗和测试设备  
通用宽输入电压调节  
反相输出 应用  
空白  
典型效率(自动模式)  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
简化电路原理图  
PGOOD  
VIN  
VIN  
EN  
VOUT  
VOUT  
CIN  
LMZM33604  
RFBT  
SYNC/  
MODE  
COUT  
SS/TRK  
RT  
VOUT = 5 V  
FB  
fSW = 500 kHz  
AGND  
PGND  
VIN = 12 V  
VIN = 24 V  
RFBB  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
Output Current (A)  
DFPE  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNVSB57  
 
 
LMZM33604  
ZHCSIY5A OCTOBER 2018REVISED MAY 2019  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 6  
6.4 Thermal Information.................................................. 6  
6.5 Electrical Characteristics........................................... 7  
6.6 Switching Characteristics.......................................... 8  
6.7 Typical Characteristics (VIN = 12 V).......................... 9  
6.8 Typical Characteristics (VIN = 24 V)........................ 11  
6.9 Typical Characteristics (VIN = 36 V)........................ 13  
Detailed Description ............................................ 15  
7.1 Overview ................................................................. 15  
7.2 Functional Block Diagram ....................................... 15  
7.3 Feature Description................................................. 16  
7.4 Device Functional Modes........................................ 26  
8
9
Application and Implementation ........................ 27  
8.1 Application Information............................................ 27  
8.2 Typical Application .................................................. 27  
Power Supply Recommendations...................... 29  
10 Layout................................................................... 29  
10.1 Layout Guidelines ................................................. 29  
10.2 Layout Examples................................................... 30  
10.3 Theta JA vs PCB Area.......................................... 31  
10.4 Package Specifications......................................... 31  
10.5 EMI........................................................................ 32  
11 器件和文档支持 ..................................................... 34  
11.1 器件支持................................................................ 34  
11.2 接收文档更新通知 ................................................. 34  
11.3 社区资源................................................................ 34  
11.4 ....................................................................... 34  
11.5 静电放电警告......................................................... 34  
11.6 Glossary................................................................ 34  
12 机械、封装和可订购信息....................................... 35  
12.1 Tape and Reel Information ................................... 39  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (October 2018) to Revision A  
Page  
已添加 information on internal LDO and BIAS_SEL............................................................................................................. 22  
2
Copyright © 2018–2019, Texas Instruments Incorporated  
 
LMZM33604  
www.ti.com.cn  
ZHCSIY5A OCTOBER 2018REVISED MAY 2019  
5 Pin Configuration and Functions  
RLX Package  
41-Pin QFN  
Top View  
31  
30  
29  
1
2
28  
27  
SW  
SW  
VOUT  
VOUT  
32  
34  
36  
SW  
PGND  
VOUT  
SW  
SW  
3
26  
25  
24  
VOUT  
VOUT  
4
5
33  
35  
37  
SW  
PGND  
VOUT  
SW  
VOUT  
23  
SW  
6
7
38  
39  
PGND  
VIN  
PGND  
VIN  
DNC  
PGND  
40  
41  
22  
PGND  
VCC  
8
9
PGND  
AGND  
21  
BIAS_SEL  
PGND  
10  
11  
EN  
20  
19  
SYNC/MODE  
12 13 14 15  
16  
17 18  
Copyright © 2018–2019, Texas Instruments Incorporated  
3
LMZM33604  
ZHCSIY5A OCTOBER 2018REVISED MAY 2019  
www.ti.com.cn  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
Analog ground. Zero voltage reference for internal references and logic. These pins are not  
connected to one another internal to the device and must be connected to one another externally.  
Do not connect these pins to PGND; the AGND to PGND connection is made internal to the device.  
See the Layout section of the datasheet for a recommended layout.  
AGND  
16, 21  
G
I
Optional BIAS LDO supply input. An internal 470 nF capacitor is placed between this pin and  
PGND. Do not float; tie to PGND if not used. Tie to VOUT if 3.3 V VOUT 18 V, or tie to an  
external 3.3-V or 5-V rail if available to improve efficiency.  
BIAS_SEL  
10  
Do not connect. This pin is connected to internal circuitry. Do not connect this pin to AGND, PGND,  
or any other voltage. This pin must be soldered to an isolated pad..  
DNC  
EN  
7
I
Precision enable input to regulator. Do not float. High = ON, Low = OFF. Can be tied to VIN.  
Precision enable input allows adjustable system UVLO using external resistor divider.  
20  
Feedback input. Connect the center point of the feedback resistor divider to this pin. Connect the  
upper resistor (RFBT) of the feedback divider to VOUT at the desired point of regulation. Connect the  
lower resistor (RFBB) of the feedback divider to AGND.  
FB  
15  
14  
I
NC  
Not internally connected.  
Power ground. This is the return current path for the power stage of the device. Connect these pins  
to the low side of the input source, load, and bypass capacitors associated with VIN and VOUT  
using power ground planes on the PCB. Not all pins are connected to PGND internal to the device;  
connections must be made externally. Connect pad 40 and 41 to the ground planes using multiple  
vias for good thermal performance.  
8, 11, 23, 30,  
34, 35, 38,  
40, 41  
PGND  
G
Open drain output for power-good flag. Internal to the device, a 100-kΩ pullup resistor is placed  
between this pin and the PGOOD_PU pin.  
PGOOD  
PGOOD_PU  
RT  
17  
18  
12  
O
I
Power-good pullup supply. Connect to logic rail or other DC voltage no higher than 20 V.  
An external timing resistor connected between this pin and AGND adjusts the switching frequency  
of the device. If floating, the default switching frequency is 500 kHz. Do not short to ground.  
I
Soft start / tracking control pin. Leave this pin floating to use the 5-ms internal soft-start ramp.To  
increase the internal soft start ramp time, simply connect a capacitor between this pin and AGND.  
This pin sources 2-μA of current to charge this external capacitor. Connect to external voltage ramp  
for tracking. Do not connect to ground.  
SS/TRK  
SW  
13  
I
O
I
1, 2, 3, 4, 5,  
6, 31, 32, 33  
Switch node. Connect these pins to a small copper island under the device for thermal relief. Do not  
place any external components on these pins or tie them to a pin of another function.  
Synchronization input and Mode setting pin. Do not float; tie to AGND or logic high if not used.  
Connect to an external clock to synchronize (see Synchronization (SYNC/MODE)). Connect to  
AGND to select Auto mode or connect to logic high to select FPWM mode. (see Mode Select (Auto  
or FPWM)).  
SYNC/MODE  
19  
Output of internal bias supply. Used to supply internal control circuits and drivers. Do not place any  
external component on this pin or tie it to a pin of another function.  
VCC  
VIN  
9
O
I
22, 39  
Input supply voltage. Connect external input capacitors between these pins and PGND.  
24, 25, 26,  
27, 28, 29,  
36, 37  
Output voltage. These pins are connected to the output of the internal inductor. Connect these pins  
to the output load and connect external bypass capacitors between these pins and PGND.  
VOUT  
O
4
Copyright © 2018–2019, Texas Instruments Incorporated  
LMZM33604  
www.ti.com.cn  
ZHCSIY5A OCTOBER 2018REVISED MAY 2019  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating ambient temperature range (unless otherwise noted)(1)  
MIN  
-0.3  
-0.3  
-0.3  
-0.1  
-0.3  
MAX  
UNIT  
V
VIN to PGND  
42  
EN to AGND  
VIN + 0.3  
V
FB, RT, SS/TRK to AGND  
5
20  
V
Input voltage  
PGOOD to AGND  
V
SYNC/MODE to AGND  
BIAS_SEL to AGND  
AGND to PGND  
5.5  
V
-0.3 Lower of (VIN+0.3) and 20  
V
-0.3  
-0.3  
-0.3  
-3.5  
-0.3  
-40  
0.3  
V
VOUT to PGND  
VIN  
V
SW to PGND  
VIN + 0.3  
V
Output voltage  
Temperature  
SW to PGND (<10 ns transients)  
VCC to PGND  
42  
5
V
V
(2)  
Maximum junction temperature, TJ  
Storage temperature, Tstg  
125  
150  
240  
1
°C  
°C  
°C  
-55  
Peak Reflow Case Temperature  
Maximum Number of Reflows Allowed  
Mil-STD-883D, Method 2002.3, 1 msec, 1/2 sine,  
mounted  
Mechanical shock  
500  
20  
G
G
Mechanical vibration  
Mil-STD-883D, Method 2007.2, 20 to 2000 Hz  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under the  
recommended operating conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The ambient temperature is the air temperature of the surrounding environment. The junction temperature is the temperature of the  
internal power IC when the device is powered. Operating below the maximum ambient temperature, as shown in the safe operating area  
(SOA) curves in the typical characteristics sections, ensures that the maximum junction temperature of any component inside the  
module is never exceeded.  
6.2 ESD Ratings  
VALUE  
±1500  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2018–2019, Texas Instruments Incorporated  
5
LMZM33604  
ZHCSIY5A OCTOBER 2018REVISED MAY 2019  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
Over operating ambient temperature range (unless otherwise noted)  
MIN  
3.5(1)  
1
MAX  
UNIT  
V
Input voltage, VIN  
36  
Output voltage, VOUT  
EN voltage, VEN  
20  
V
0
VIN  
V
PGOOD pullup voltage, VPGOOD  
PGOOD sink current  
BIAS_SEL  
0
18  
V
0
5
mA  
V
3.3  
0
Lower of VIN and 18  
Output current, IOUT  
4
1200  
105  
A
Switching frequency, FSW  
Operating ambient temperature, TA  
Input Capacitance, CIN  
Output Capacitance, COUT  
350  
–40  
20(2)  
min(3)  
kHz  
°C  
µF  
µF  
700  
(1) For output voltages 5 V, the recommended minimum VIN is 3.5 V or (VOUT + 1 V), whichever is greater. For output voltages > 5 V,  
the recommended minimum VIN is (1.1 × VOUT). See Voltage Dropout for more information.  
(2) A minimum of 20 µF ceramic input capacitance is required for proper operation. An additional 100 µF of bulk capacitance is  
recommended for applications with transient load requirements. (see Input Capacitor Selection ).  
(3) The minimum amount of required output capacitance varies depending on the output voltage (see Output Capacitor Selection ).  
6.4 Thermal Information  
LMZM33604  
THERMAL METRIC(1)  
RLX(B2QFN)  
UNIT  
41 PINS  
13.9  
1.2  
(2)  
RθJA  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C  
(3)  
Junction-to-top characterization parameter  
(4)  
ψJB  
Junction-to-board characterization parameter  
Thermal Shutdown Temperature  
6.2  
160  
TSHDN  
Thermal Shutdown Hysteresis  
25  
°C  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
(2) The junction-to-ambient thermal resistance, RθJA, applies to devices soldered directly to a 75 mm x 75 mm double-sided PCB with 2 oz.  
copper and natural convection cooling. Additional airflow reduces RθJA  
.
(3) The junction-to-top board characterization parameter, ψJT, estimates the junction temperature, TJ, of a device in a real system, using a  
procedure described in JESD51-2A (section 6 and 7). TJ = ψJT × Pdis + TT; where Pdis is the power dissipated in the device and TT is  
the temperature of the top of the device.  
(4) The junction-to-board characterization parameter, ψJB, estimates the junction temperature, TJ, of a device in a real system, using a  
procedure described in JESD51-2A (sections 6 and 7). TJ = ψJB × Pdis + TB; where Pdis is the power dissipated in the device and TB is  
the temperature of the board 1mm from the device.  
6
Copyright © 2018–2019, Texas Instruments Incorporated  
LMZM33604  
www.ti.com.cn  
ZHCSIY5A OCTOBER 2018REVISED MAY 2019  
6.5 Electrical Characteristics  
Limits apply over TA = –40°C to +105°C, VIN = 24 V, VOUT = 5 V, IOUT = IOUT maximum, fsw = 500 kHz, FPWM mode (unless  
otherwise noted); CIN1 = 3x 10 µF, 50-V, 1210 ceramic; CIN2 = 2x 4.7 µF, 50-V, 1210 ceramic; COUT = 6x 22 µF, 25-V, 1210  
ceramic. Minimum and maximum limits are specified through production test or by design. Typical values represent the most  
likely parametric norm and are provided for reference only.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT VOLTAGE (VIN  
)
Input voltage range  
VIN turn on  
Over IOUT range, VOUT = 2.5 V, fSW = 350 kHz  
VIN increasing, VOUT = 2.5 V, IOUT = 0 A  
VIN decreasing, VOUT = 2.5 V, IOUT = 0 A  
VIN = 12 V, VEN = 0 V, IOUT = 0 A  
3.5(1)  
36  
V
V
VIN  
3.12  
2.62  
0.8  
VIN turn off  
V
ISHDN  
Shutdown supply current  
10  
µA  
INTERNAL LDO (VCC, BIAS_SEL)  
PWM operation  
PFM operation  
3.27  
3.1  
V
V
VCC  
Internal VCC voltage  
BIAS_SEL quiescent  
current (non-switching)  
VIN = 12 V, VFB = 1.5 V, VEN = 2 V, VBIAS_SEL  
3.3 V  
=
IBIAS_SEL  
21  
50  
µA  
FEEDBACK  
–40°C TJ = TA 125°C, IOUT = 0 A, Over VIN  
range, VOUT = 2.5 V, fSW = 350 kHz  
Feedback voltage(2)  
Load regulation  
0.987  
1.006  
1.017  
V
VFB  
Over IOUT range, TA = 25 °C  
0.1%  
0.2  
IFB  
Feedback leakage current VFB = 1 V  
65  
4
nA  
CURRENT  
Output current  
Natural convection, TA = 25 °C  
0
A
A
IOUT  
Overcurrent threshold  
9
PERFORMANCE  
ƞ
Efficiency  
IOUT = 3 A, TA = 25 °C  
SS pin open  
91%  
SOFT START  
TSS  
Internal soft start time  
5
2
ms  
µA  
VIN = 12 V, VFB = 1.5 V, VEN = 2 V, VSS/TRK  
0.5 V  
=
ISSC  
Soft-start charge current  
1.8  
2.2  
ENABLE (EN)  
VEN-H  
EN rising threshold  
1.14  
1.2  
-100  
1.4  
1.25  
200  
V
VEN-HYS  
IEN  
EN hysteresis voltage  
EN Input leakage current  
mV  
nA  
VIN = 12 V, VFB = 1.5 V, VEN = 2 V  
POWER GOOD (PGOOD)  
Overvoltage  
106%  
86%  
110%  
90%  
113%  
93%  
0.3  
PGOOD thresholds  
VPGOOD  
Undervoltage  
PGOOD low voltage  
0.5-mA pullup, VEN = 0 V  
V
V
Minimum VIN for valid  
PGOOD  
VINPG  
50-μA pullup, VEN = 0 V, TJ = TA = 25°C  
1.3  
2
(1) For output voltages 5 V, the recommended minimum VIN is 3.5 V or (VOUT + 1 V), whichever is greater. For output voltages > 5 V,  
the recommended minimum VIN is (1.1 × VOUT). See Voltage Dropout for more information.  
(2) The overall output voltage tolerance will be affected by the tolerance of the external RFBT and RFBB resistors.  
Copyright © 2018–2019, Texas Instruments Incorporated  
7
LMZM33604  
ZHCSIY5A OCTOBER 2018REVISED MAY 2019  
www.ti.com.cn  
6.6 Switching Characteristics  
Limits apply over TA = –40°C to +105°C, VIN = 24 V, VOUT = 5 V, FPWM mode (unless otherwise noted);  
Minimum and maximum limits are specified through production test or by design. Typical values represent the most likely  
parametric norm, and are provided for reference only.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
FREQUENCY (RT) and SYNCHRONIZATION (SYNC)  
Default switching frequency  
RT pin = open, IOUT = 0 A  
IOUT = 0 A  
440  
350  
500  
560  
2200  
2
kHz  
kHz  
V
fSW  
Switching frequency range  
High Threshold  
VSYNC  
Low Threshold  
0.4  
V
TS-MIN  
Minimum SYNC ON/OFF time  
80  
ns  
8
版权 © 2018–2019, Texas Instruments Incorporated  
LMZM33604  
www.ti.com.cn  
ZHCSIY5A OCTOBER 2018REVISED MAY 2019  
6.7 Typical Characteristics (VIN = 12 V)  
The typical characteristic data has been developed from actual products tested at 25°C. This data is considered typical for the  
device.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
VOUT, fSW  
5.0V, 500kHz  
3.3V, 500kHz  
2.5V, 400kHz  
1.8V, 400kHz  
1.2V, 400kHz  
VOUT, fSW  
5.0V, 500kHz  
3.3V, 500kHz  
2.5V, 400kHz  
1.8V, 400kHz  
1.2V, 400kHz  
0
1
2
3
4
0
1
2
3
4
Output Current (A)  
Output Current (A)  
D011  
D012  
D016  
D013  
D014  
D015  
FPWM Mode  
Linear Scale  
1. Efficiency vs Output Current  
Auto Mode  
Linear Scale  
2. Efficiency vs Output Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
VOUT, fSW  
5.0V, 500kHz  
3.3V, 500kHz  
2.5V, 400kHz  
1.8V, 400kHz  
1.2V, 400kHz  
VOUT, fSW  
5.0V, 500kHz  
3.3V, 500kHz  
2.5V, 400kHz  
1.8V, 400kHz  
1.2V, 400kHz  
0
0
0.001  
0.01  
0.1  
1
4
0.001  
0.01  
0.1  
1
4
Output Current (A)  
Output Current (A)  
FPWM Mode  
Log Scale  
Auto Mode  
Log Scale  
3. Efficiency vs Output Current  
4. Efficiency vs Output Current  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
VOUT, fSW  
5.0V, 500kHz  
3.3V, 500kHz  
2.5V, 400kHz  
1.8V, 400kHz  
1.2V, 400kHz  
VOUT, fSW  
5.0V, 500kHz  
3.3V, 500kHz  
2.5V, 400kHz  
1.8V, 400kHz  
1.2V, 400kHz  
0
0
0
0
1
2
3
4
1
2
3
4
Output Current (A)  
Output Current (A)  
FPWM Mode  
COUT = 4 × 47 µF ceramic  
5. Voltage Ripple vs Output Current  
Auto Mode  
COUT = 4 × 47 µF ceramic  
6. Voltage Ripple vs Output Current  
版权 © 2018–2019, Texas Instruments Incorporated  
9
LMZM33604  
ZHCSIY5A OCTOBER 2018REVISED MAY 2019  
www.ti.com.cn  
Typical Characteristics (VIN = 12 V) (接下页)  
The typical characteristic data has been developed from actual products tested at 25°C. This data is considered typical for the  
device.  
2.5  
115  
105  
95  
VOUT, fSW  
5.0V, 500kHz  
3.3V, 500kHz  
2.5V, 400kHz  
1.8V, 400kHz  
1.2V, 400kHz  
2
85  
1.5  
1
75  
65  
55  
45  
0.5  
0
Airflow  
100LFM  
Nat Conv  
35  
25  
0
1
2
3
4
0
1
2
3
4
Output Current (A)  
Output Current (A)  
D017  
D020  
VOUT = 1.8 V  
fSW = 400 kHz  
PCB = 75 mm × 75 mm, 4-layer, 2 oz. copper  
7. Power Dissipation vs Output Current  
8. Safe Operating Area  
115  
105  
95  
115  
105  
95  
85  
85  
75  
75  
65  
65  
55  
55  
45  
45  
Airflow  
Airflow  
200LFM  
100LFM  
Nat Conv  
200LFM  
100LFM  
Nat Conv  
35  
35  
25  
25  
0
1
2
3
4
0
1
2
3
4
Output Current (A)  
Output Current (A)  
D019  
D018  
VOUT = 3.3 V  
fSW = 500 kHz  
VOUT = 5 V  
fSW = 500 kHz  
PCB = 75 mm × 75 mm, 4-layer, 2 oz. copper  
PCB = 75 mm × 75 mm, 4-layer, 2 oz. copper  
9. Safe Operating Area  
10. Safe Operating Area  
10  
版权 © 2018–2019, Texas Instruments Incorporated  
LMZM33604  
www.ti.com.cn  
ZHCSIY5A OCTOBER 2018REVISED MAY 2019  
6.8 Typical Characteristics (VIN = 24 V)  
The typical characteristic data has been developed from actual products tested at 25°C. This data is considered typical for the  
device.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
VOUT, fSW  
18V, 1MHz  
15V, 800kHz  
12V, 800kHz  
5V, 500kHz  
3.3V, 500kHz  
VOUT, fSW  
18V, 1MHz  
15V, 800kHz  
12V, 800kHz  
5V, 500kHz  
3.3V, 500kHz  
0
1
2
3
4
0
1
2
3
4
Output Current (A)  
Output Current (A)  
D001  
D002  
D006  
D003  
D004  
D005  
FPWM Mode  
Linear Scale  
Auto Mode  
Linear Scale  
11. Efficiency vs Output Current  
12. Efficiency vs Output Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
VOUT, fSW  
18V, 1MHz  
15V, 800kHz  
12V, 800kHz  
5V, 500kHz  
3.3V, 500kHz  
VOUT, fSW  
18V, 1MHz  
15V, 800kHz  
12V, 800kHz  
5V, 500kHz  
3.3V, 500kHz  
0
0
0.001  
0.01  
0.1  
1
4
0.001  
0.01  
0.1  
1
4
Output Current (A)  
Output Current (A)  
FPWM Mode  
Log Scale  
Auto Mode  
Log Scale  
13. Efficiency vs Output Current  
14. Efficiency vs Output Current  
80  
70  
60  
50  
40  
30  
20  
10  
80  
70  
60  
50  
40  
30  
20  
10  
VOUT, fSW  
18V, 1MHz  
15V, 800kHz  
12V, 800kHz  
5.0V, 500kHz  
3.3V, 500kHz  
VOUT, fSW  
18V, 1MHz  
15V, 800kHz  
12V, 800kHz  
5.0V, 500kHz  
3.3V, 500kHz  
0
0
0
0
1
2
3
4
1
2
3
4
Output Current (A)  
Output Current (A)  
FPWM Mode  
COUT = 4 × 47 µF ceramic  
15. Output Voltage Ripple  
Auto Mode  
COUT = 4 × 47 µF ceramic  
16. Output Voltage Ripple  
版权 © 2018–2019, Texas Instruments Incorporated  
11  
LMZM33604  
ZHCSIY5A OCTOBER 2018REVISED MAY 2019  
www.ti.com.cn  
Typical Characteristics (VIN = 24 V) (接下页)  
The typical characteristic data has been developed from actual products tested at 25°C. This data is considered typical for the  
device.  
5
4
3
2
1
0
115  
105  
95  
VOUT, fSW  
18V, 1MHz  
15V, 800kHz  
12V, 800kHz  
5.0V, 500kHz  
3.3V, 500kHz  
85  
75  
65  
55  
45  
Airflow  
400LFM  
200LFM  
100LFM  
Nat conv  
35  
25  
0
1
2
3
4
0
1
2
3
4
Output Current (A)  
Output Current (A)  
D007  
D010  
VOUT = 3.3 V  
fSW = 500 kHz  
PCB = 75 mm × 75 mm, 4-layer, 2 oz. copper  
17. Power Dissipation  
18. Safe Operating Area  
115  
105  
95  
115  
105  
95  
85  
85  
75  
75  
65  
65  
55  
55  
45  
45  
Airflow  
Airflow  
400LFM  
200LFM  
100LFM  
Nat conv  
400LFM  
200LFM  
100LFM  
Nat conv  
35  
35  
25  
25  
0
1
2
3
4
0
1
2
3
4
Output Current (A)  
Output Current (A)  
D009  
D008  
VOUT = 5 V  
fSW = 500 kHz  
VOUT = 12 V  
fSW = 800 kHz  
PCB = 75 mm × 75 mm, 4-layer, 2 oz. copper  
PCB = 75 mm × 75 mm, 4-layer, 2 oz. copper  
19. Safe Operating Area  
20. Safe Operating Area  
12  
版权 © 2018–2019, Texas Instruments Incorporated  
LMZM33604  
www.ti.com.cn  
ZHCSIY5A OCTOBER 2018REVISED MAY 2019  
6.9 Typical Characteristics (VIN = 36 V)  
The typical characteristic data has been developed from actual products tested at 25°C. This data is considered typical for the  
device.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
VOUT, fSW  
20V, 1MHz  
18V, 1MHz  
15V, 800kHz  
12V, 800kHz  
5V, 500kHz  
VOUT, fSW  
20V, 1MHz  
18V, 1MHz  
15V, 800kHz  
12V, 800kHz  
5V, 500kHz  
0
1
2
3
4
4
4
0
1
2
3
4
4
4
Output Current (A)  
Output Current (A)  
D025  
D026  
D030  
D027  
D028  
D029  
FPWM Mode  
Linear Scale  
21. Efficiency vs Output Current  
Auto Mode  
Linear Scale  
22. Efficiency vs Output Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
VOUT, fSW  
20V, 1MHz  
18V, 1MHz  
15V, 800kHz  
12V, 800kHz  
5V, 500kHz  
VOUT, fSW  
20V, 1MHz  
18V, 1MHz  
15V, 800kHz  
12V, 800kHz  
5V, 500kHz  
0
0
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
Output Current (A)  
Output Current (A)  
FPWM Mode  
Log Scale  
Auto Mode  
Log Scale  
23. Efficiency vs Output Current  
24. Efficiency vs Output Current  
40  
40  
VOUT, fSW  
20V, 1MHz  
18V, 1MHz  
15V, 800kHz  
12V, 800kHz  
5V, 500kHz  
VOUT, fSW  
20V, 1MHz  
18V, 1MHz  
15V, 800kHz  
12V, 800kHz  
5V, 500kHz  
30  
20  
10  
30  
20  
10  
0
0
0
0
1
2
3
1
2
3
Output Current (A)  
Output Current (A)  
FPWM Mode  
COUT = 4 × 47 µF ceramic  
25. Output Voltage Ripple  
Auto Mode  
COUT = 4 × 47 µF ceramic  
26. Output Voltage Ripple  
版权 © 2018–2019, Texas Instruments Incorporated  
13  
LMZM33604  
ZHCSIY5A OCTOBER 2018REVISED MAY 2019  
www.ti.com.cn  
Typical Characteristics (VIN = 36 V) (接下页)  
The typical characteristic data has been developed from actual products tested at 25°C. This data is considered typical for the  
device.  
6
5
4
3
2
1
0
115  
105  
95  
VOUT, fSW  
20V, 1MHz  
18V, 1MHz  
15V, 800kHz  
12V, 800kHz  
5V, 500kHz  
85  
75  
65  
55  
45  
Airflow  
400LFM  
200LFM  
100LFM  
Nat conv  
35  
25  
0
1
2
3
4
0
1
2
3
4
Output Current (A)  
Output Current (A)  
D031  
D032  
VOUT = 5 V  
fSW = 500 kHz  
PCB = 75 mm × 75 mm, 4-layer, 2 oz. copper  
27. Power Dissipation  
28. Safe Operating Area  
115  
105  
95  
115  
105  
95  
85  
85  
75  
75  
65  
65  
55  
55  
45  
45  
Airflow  
Airflow  
400LFM  
200LFM  
100LFM  
Nat conv  
400LFM  
200LFM  
100LFM  
Nat conv  
35  
35  
25  
25  
0
1
2
3
4
0
1
2
3
4
Output Current (A)  
Output Current (A)  
D033  
D034  
VOUT = 12 V  
fSW = 800 kHz  
VOUT = 20 V  
fSW = 1 MHz  
PCB = 75 mm × 75 mm, 4-layer, 2 oz. copper  
PCB = 75 mm × 75 mm, 4-layer, 2 oz. copper  
29. Safe Operating Area  
30. Safe Operating Area  
14  
版权 © 2018–2019, Texas Instruments Incorporated  
LMZM33604  
www.ti.com.cn  
ZHCSIY5A OCTOBER 2018REVISED MAY 2019  
7 Detailed Description  
7.1 Overview  
The LMZM33604 is a full-featured 36-V input, 4-A, synchronous step-down converter with controller, MOSFETs,  
shielded inductor, and control circuitry integrated into a low-profile, overmolded package. The device integration  
enables small designs, while providing the ability to adjust key parameters to meet specific design requirements.  
The LMZM33604 provides an output voltage range of 1 V to 20 V. An external resistor divider is used to adjust  
the output voltage to the desired value. The switching frequency can also be adjusted, by either an external  
resistor or a sync signal, which allows the LMZM33604 to optimize efficiency for a wide variety of input and  
output voltage conditions. The device provides accurate voltage regulation over a wide load range by using a  
precision internal voltage reference. The EN pin can be pulled low to put the device into standby mode to reduce  
input quiescent current. The system undervoltage lockout can be adjusted using a resistor divider on the EN pin.  
A power-good signal is provided to indicate when the output is within its nominal voltage range. Thermal  
shutdown and current limit features protect the device during an overload condition. A 41-pin, QFN package that  
includes exposed bottom pads provides a thermally enhanced solution for space-constrained applications.  
7.2 Functional Block Diagram  
Thermal  
Shutdown  
Precision  
Enable  
EN  
Shutdown  
Logic  
VCC  
OCP  
2µA  
Soft  
Start  
LDO  
BIAS_SEL  
PGND  
VIN  
SS/TRK  
FB  
UVLO  
+
+
VREF  
+
Comp  
SW  
SYNC/MODE  
RT  
MODE  
Power  
Stage  
and  
Control  
Logic  
Oscillator  
6.8µH  
VOUT  
PGOOD_PU  
100 kO  
PGOOD  
AGND  
PGOOD  
Logic  
PGND  
Copyright © 2018, Texas Instruments Incorporated  
版权 © 2018–2019, Texas Instruments Incorporated  
15  
LMZM33604  
ZHCSIY5A OCTOBER 2018REVISED MAY 2019  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Adjusting the Output Voltage  
A resistor divider connected to the FB pin (pin 15) programs the output voltage of the LMZM33604. The output  
voltage adjustment range is from 1 V to 20 V. 31 shows the feedback resistor connection for setting the output  
voltage. The recommended value of RFBB is 10 kΩ. The value for RFBT can be calculated using 公式 1.  
1 lists the standard external RFBT values for several standard output voltages along with the recommended  
switching frequency (FSW) and the frequency setting resistor (RRT) for each of the output voltages listed. (See  
Voltage Dropout for the allowable output voltage as a function of input voltage.)  
space  
(k)  
= 10 x VOUT - VFB  
RFBT  
( )  
where  
VFB (typical) = 1.006 V  
(1)  
VOUT  
RFBT  
FB  
RFBB  
10 k  
AGND  
31. Setting the Output Voltage  
1. Standard Component Values  
VOUT (V)  
1.2  
1.8  
2.5  
3.3  
5
RFBT (k)(1)  
1.96  
fSW (kHz)  
400  
RRT (kΩ)  
100  
7.87  
400  
100  
15.0  
400  
100  
22.6  
500  
78.7 or open  
78.7 or open  
78.7 or open  
47.5  
40.2  
500  
7.5  
12  
64.9  
500  
110  
800  
15  
140  
800  
47.5  
18  
169  
1000  
1000  
38.3  
20  
191  
38.3  
(1) RFBB = 10 kΩ.  
16  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
LMZM33604  
www.ti.com.cn  
ZHCSIY5A OCTOBER 2018REVISED MAY 2019  
7.3.2 Input Capacitor Selection  
The LMZM33604 requires a minimum of 20 µF of ceramic type input capacitance. Use only high-quality ceramic  
type X5R or X7R capacitors with sufficient voltage rating. TI recommends an additional 33 µF of non-ceramic  
capacitance for applications with transient load requirements. The voltage rating of input capacitors must be  
greater than the maximum input voltage. To compensate for the derating of ceramic capacitors, TI recommends  
a voltage rating of twice the maximum input voltage or placing multiple capacitors in parallel. At worst case, when  
operating at 50% duty cycle and maximum load, the combined ripple current rating of the input capacitors must  
be at least 2 ARMS. 2 includes a preferred list of capacitors by vendor.  
2. Recommended Input Capacitors(1)  
CAPACITOR CHARACTERISTICS  
(2)  
(3)  
VENDOR  
SERIES  
PART NUMBER  
CAPACITANCE  
(µF)  
ESR  
WORKING VOLTAGE (V)  
(m)  
TDK  
X5R  
X7R  
X7R  
ZA  
C3225X5R1H106K  
50  
50  
63  
50  
63  
10  
10  
3
Murata  
GRM32ER71H106K  
GRM32ER71J106K  
EEHZA1H101P  
2
Murata  
10  
2
Panasonic  
Panasonic  
100  
56  
28  
30  
ZA  
EEHZA1J560P  
(1) Consult capacitor suppliers regarding availability, material composition, RoHS and lead-free status, and manufacturing process  
requirements for any capacitors identified in this table.  
(2) Specified capacitance values.  
(3) Maximum ESR at 100 kHz, 25°C.  
7.3.3 Output Capacitor Selection  
The minimum amount of required output capacitance for the LMZM33604 varies depending on the output  
voltage. 3 lists the minimum output capacitance for several output voltage ranges. The required output  
capacitance must be comprised of all ceramic capacitors.  
When adding additional output capacitance, ceramic capacitors or a combination of ceramic and polymer-type  
capacitors can be used. The required capacitance above the minimum is determined by actual transient  
deviation requirements. See 4 for a preferred list of output capacitors by vendor.  
3. Minimum Required Output Capacitance  
(1)  
VOUT RANGE (V)  
MINIMUM REQUIRED COUT  
CAPACITANCE VALUE  
MIN  
MAX  
1
VOLTAGE RATING  
1
400 µF  
300 µF  
200 µF  
150 µF  
100 µF  
100 µF  
50 µF  
> 1  
1.8  
2.5  
3.3  
5
> 1.8  
> 2.5  
> 3.3  
> 5.0  
> 12  
6.3 V  
12  
20  
16 V  
25 V  
(1) The minimum required output capacitance must be made up of ceramic type capacitors. Additional capacitance above the minimum can  
be either ceramic or low-ESR polymer type.  
版权 © 2018–2019, Texas Instruments Incorporated  
17  
 
 
LMZM33604  
ZHCSIY5A OCTOBER 2018REVISED MAY 2019  
www.ti.com.cn  
4. Recommended Output Capacitors(1)  
CAPACITOR CHARACTERISTICS  
VENDOR  
SERIES  
PART NUMBER  
VOLTAGE (V)  
CAPACITANCE (µF)(2)  
ESR (m)(3)  
TDK  
X5R  
X5R  
C3225X5R1C106K  
16  
16  
16  
16  
25  
25  
10  
16  
25  
6.3  
6.3  
10  
16  
6.3  
6.3  
10  
10  
2
2
2
2
2
2
2
2
2
2
2
2
2
9
12  
Murata  
TDK  
GRM32ER61C106K  
C3225X5R1C226M  
GRM32ER61C226K  
GRM31CC81E226K  
GRM32ER71E226M  
C3225X5R1A476M  
GRM32ER61C476K  
GRM31CR61E476M  
C3225X5R0J107M  
GRM32ER60J107M  
GRM32ER61A107M  
C1210C107M4PAC7800  
6TPF220M9L  
X5R  
22  
Murata  
Murata  
Murata  
TDK  
X5R  
22  
X6S  
22  
X7R  
22  
X5R  
47  
Murata  
Murata  
TDK  
X5R  
47  
X5R  
47  
X5R  
100  
100  
100  
100  
220  
220  
Murata  
Murata  
Kemet  
Panasonic  
Panasonic  
X5R  
X5R  
X5R  
POSCAP  
POSCAP  
6TPE220ML  
(1) Consult capacitor suppliers regarding availability, material composition, RoHS and lead-free status, and manufacturing process  
requirements for any capacitors identified in this table.  
(2) Specified capacitance values.  
(3) Maximum ESR at 100 kHz, 25°C.  
7.3.4 Transient Response  
5 shows the voltage deviation for several transient conditions.  
5. Output Voltage Transient Response  
CIN = 2× 10 µF, 50-V Ceramic, 33 µF, 50-V Polymer Electrolytic  
VOUT (V)  
COUT  
VOLTAGE (1) DEVIATION (mV)  
300 µF  
500 µF  
150 µF  
400 µF  
100 µF  
250 µF  
100 µF  
200 µF  
40  
30  
1.8  
45  
3.3  
5
40  
55  
45  
175  
150  
12  
(1) 50% load step at 1 A/µs.  
18  
版权 © 2018–2019, Texas Instruments Incorporated  
 
LMZM33604  
www.ti.com.cn  
ZHCSIY5A OCTOBER 2018REVISED MAY 2019  
7.3.5 Feed-Forward Capacitor  
The LMZM33604 is internally compensated to be stable over the operating range of the device. However,  
depending on the output voltage and amount of output capacitance, a feed-forward capacitor, CFF, may be added  
for optimum performance. The feed-forward capacitor should be placed in parallel with the top resistor divider,  
RFBT as shown in 32. The value for CFF can be calculated using 公式 2. For output voltages < 1.2 V, CFF is  
ineffective and is not recommended.  
VOUT x COUT  
(pF)  
= 4.3 x  
CFF  
RFBT  
where  
COUT is in µF  
RFBT is in kΩ  
(2)  
VOUT  
RFBT  
CFF  
FB  
RFBB  
10 k  
AGND  
32. Feed-Forward Capacitor  
版权 © 2018–2019, Texas Instruments Incorporated  
19  
 
 
LMZM33604  
ZHCSIY5A OCTOBER 2018REVISED MAY 2019  
www.ti.com.cn  
7.3.6 Switching Frequency (RT)  
The recommended switching frequency range of the LMZM33604 is 350 kHz to 1.2 MHz. 6 shows the  
allowable output voltage range for several switching frequency settings for three common input voltages. Under  
some operating conditions, the device can operate at higher switching frequencies (up to 2.2 MHz), however, this  
will reduce efficiency and thermal performance. The switching frequency can easily be set by connecting a  
resistor (RRT) between the RT pin and AGND. Additionally, the RT pin can be left floating, and the LMZM33604  
operates at 500 kHz default switching frequency. Use 公式 3 to calculate the RRT value for a desired frequency  
or simply select from 6.  
The switching frequency must be selected based on the output voltage setting of the device. See 6 for RRT  
values and the allowable output voltage range for a given switching frequency at several common input voltages.  
For the most efficient solution, always select the lowest allowable frequency.  
1
(kO)  
=
R
RT  
fSW (kHz) × (2.675 × 10-5) t 0.0007  
(3)  
6. Switching Frequency vs Output Voltage  
VIN = 5 V (±10%)  
VOUT RANGE (V)  
VIN = 12 V (±10%)  
VOUT RANGE (V)  
VIN = 24 V (±10%)  
VOUT RANGE (V)  
SWITCHING  
FREQUENCY (kHz)  
RRT RESISTOR (kΩ)  
MIN  
MAX  
MIN  
1
MAX  
8.2  
8.8  
9.9  
9.9  
9.7  
9.6  
9.3  
9.1  
8.1  
7.7  
7.5  
7.2  
MIN  
1
MAX  
8.4  
350  
400  
115  
100  
1
4
1
1
4
1
1
9.9  
500  
78.7 or open  
64.9  
4
1
1.1  
1.3  
1.5  
1.7  
2.1  
2.5  
3.2  
3.9  
4.4  
4.8  
13.9  
15.6  
16.9  
18  
600  
1
4
1
700  
54.9  
1
3.5  
3.4  
3.4  
3.3  
2.9  
2.7  
2.5  
2.4  
1
800  
47.5  
1
1
1000  
1200  
1500  
1800  
2000  
2200  
38.3  
1
1.1  
1.3  
1.8  
2.1  
2.5  
2.7  
20  
31.6  
1
19.1  
18.1  
17.2  
16.5  
15.9  
25.5  
1
21.0  
1.1  
1.2  
1.3  
19.1  
17.4  
7.3.7 Synchronization (SYNC/MODE)  
The LMZM33604 switching frequency can also be synchronized to an external clock from 350 kHz to 2.2 MHz.  
Before the external clock is present, the device switches at the frequency programmed by the RRT resistor.  
Select RRT to set the frequency to be the same as the external synchronization frequency. Once the external  
clock is present, the device transitions to SYNC mode within 1 ms (typical) and overrides the RT mode. If the  
external clock is removed, the device continues to switch at the SYNC frequency for 10 µs (typ) before returning  
to the switching frequency set by the RT resistor, resulting in minimal disturbance to the output voltage during the  
transitions.  
Recommendations for the external clock include a high level no lower than 2 V, low level no higher than 0.4 V,  
duty cycle between 10% and 90%, and both positive and negative pulse width no shorter than 80 ns.  
When synchronizing to an external clock, the device operation mode is FPWM. If synchronization is not needed,  
connect this pin to AGND or logic high to select either Auto mode or FPWM mode. Do not leave this pin open.  
The synchronization frequency must be selected based on the output voltages of the devices being  
synchronized. 6 and show the allowable frequencies for a given range of output voltages. For the most  
efficient solution, always select the lowest allowable frequency.  
20  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
LMZM33604  
www.ti.com.cn  
ZHCSIY5A OCTOBER 2018REVISED MAY 2019  
7.3.8 Output Enable (EN)  
The voltage on the EN pin provides electrical ON/OFF control of the device. Once the EN pin voltage exceeds  
the threshold voltage, the device starts operation. If the EN pin voltage is pulled below the threshold voltage, the  
regulator stops switching and enters low quiescent current state.  
The EN pin cannot be open circuit or floating. The simplest way to enable the operation of the LMZM33604 is to  
connect the EN pin to VIN directly as shown in 33. This allows self-start-up of the LMZM33604 when VIN  
reaches the turn-on threshold.  
If an application requires controlling the EN pin, an external logic signal can be used to drive EN pin as shown in  
34. Applications using an open drain/collector device to interface with this pin require a pullup resistor to a  
voltage above the enable threshold.  
VIN  
VIN  
EN  
EN  
PGND  
PGND  
33. Enabling the Device  
34. Typical Enable Control  
7.3.9 Programmable System UVLO (EN)  
Many applications benefit from employing an enable divider to establish a customized system UVLO. This can be  
used for sequencing, to satify a system timing requirement, or to reduce the occurrence of deep discharge of a  
battery power source. 35 shows how to use a resistor divider to set a system UVLO level. An external logic  
output can also be used to drive the EN pin for system sequencing.  
VIN  
VIN  
RENT  
EN  
RENB  
PGND  
35. System UVLO  
7 lists recommended resistor values for RENT and RENB to adjust the system UVLO voltage. TI recommends to  
set the system UVLO turn-on threshold to approximately 80% to 85% of the minimum expected input voltage.  
7. Resistor Values for Setting System UVLO  
UVLO (V)  
RENT (kΩ)  
RENB (kΩ)  
6.5  
100  
22.6  
10  
15  
20  
25  
100  
13.7  
100  
8.66  
100  
6.34  
100  
4.99  
版权 © 2018–2019, Texas Instruments Incorporated  
21  
 
 
 
LMZM33604  
ZHCSIY5A OCTOBER 2018REVISED MAY 2019  
www.ti.com.cn  
7.3.10 Internal LDO and BIAS_SEL  
The LMZM33604 integrates an internal LDO, generating a typical VCC voltage (3.27 V) for control circuitry and  
MOSFET drivers. The LDO generates VCC voltage from VIN unless a sufficient bias voltage, VBIAS, is applied to  
BIAS_SEL pin. The BIAS_SEL input provides an option to supply the LDO with a lower voltage than VIN to  
reduce the LDO power loss. The smaller the difference between the input applied to the LDO, VIN_LDO, and the  
LDO output voltage, VCC, the more efficiently the device will perform. The amount of current supplied through the  
LDO will change based on operating conditions. 36 demonstrates the typical LDO current, ILDO, for common  
input voltages over the recommended switching frequency range.  
30  
25  
20  
15  
10  
5
36 VIN  
24 VIN  
12 VIN  
0
300  
400  
500  
600  
700  
800  
900  
1000 1100 1200 1300  
Switching Frequency (kHz)  
LMZM  
VOUT = 5 V  
36. LDO Current vs Switching Frequency  
The amount of power loss in the LDO can be calculated by 公式 4.  
PLOSS_LDO ILDO x (VIN_LDO - VCC  
)
=
(4)  
For example, when the device is operating at VIN = 24 V, VOUT = 5 V, fsw = 500 kHz, BIAS_SEL = PGND, the ILDO  
is typical 11 mA, therefore, the PLOSS_LDO = 11 mA × (24 V – 3.27 V) = 228.03 mW. For the same operating  
conditions with BIAS_SEL = 5 V, the power loss is equal to 11 mA × (5 V – 3.27 V) = 19.03 mW. The benefits of  
applying a bias voltage to reduce power loss are most notable in applications when VIN » VCC or when the device  
is operating at a higher switching frequency. The power savings can be calculated by 公式 5.  
x (VIN œ VBIAS_SEL  
)
Power Savings ILDO  
=
(5)  
37 and 38 show efficiency plots of the LMZM33604 operating with different source voltages applied to the  
BIAS_SEL pin. 39 demonstrates the power dissipation of the device with various source voltages at  
BIAS_SEL pin. The plots include BIAS_SEL tied to a 3.3 V external bias, 5 V external bias, VOUT (5 V) and no  
bias voltage applied. The efficiency improvements are more significant when the device is operating at light loads  
because the LDO loss is a higher percentage of the total loss.  
22  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
LMZM33604  
www.ti.com.cn  
ZHCSIY5A OCTOBER 2018REVISED MAY 2019  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
3.3V External Bias  
5.0V External Bias  
VOUT Bias (5V)  
No Bias  
3.3V External Bias  
5.0V External Bias  
VOUT Bias (5V)  
No Bias  
30  
0
0
1
2
3
4
0.001  
0.01  
0.1  
1
4
Output Current (A)  
Output Current (A)  
LMZM  
LMZM  
VIN = 24 V  
fSW = 500 kHz  
FPWM Mode  
VIN = 24 V  
fSW = 500 kHz  
FPWM Mode  
37. Efficiency Comparison with BIAS_SEL vs Output  
38. Efficiency Comparison with BIAS_SEL vs Output  
Current  
Current  
3
No Bias  
VOUT Bias (5V)  
5.0V External Bias  
3.3V External Bias  
2
1
0
0
1
2
3
4
Output Current (A)  
LMZM  
VIN = 24 V  
fSW = 500 kHz  
FPWM Mode  
39. Power Dissipation Comparison with BIAS_SEL  
版权 © 2018–2019, Texas Instruments Incorporated  
23  
LMZM33604  
ZHCSIY5A OCTOBER 2018REVISED MAY 2019  
www.ti.com.cn  
7.3.11 Power Good (PGOOD) and Power Good Pullup (PGOOD_PU)  
The LMZM33604 has a built-in power-good signal (PGOOD) that indicates whether the output voltage is within its  
regulation range. The PGOOD pin is an open-drain output that requires a pullup resistor to a nominal voltage  
source of 15 V or less. The maximum recommended PGOOD sink current is 5 mA. A typical pullup resistor value  
is between 10 kΩ and 100 kΩ.  
Once the output voltage rises above 90% (typical) of the set voltage, the PGOOD pin rises to the pullup voltage  
level. The PGOOD pin is pulled low when the output voltage drops lower than 90% (typical) or rises higher than  
110% (typ) of the nominal set voltage.  
Internal to the device, a 100-kΩ pullup resistor is placed between the PGOOD pin and the PGOOD_PU pin.  
Applying a pullup voltage directly to the PGOOD_PU pin, eliminates the need for an external pullup resistor.  
7.3.12 Mode Select (Auto or FPWM)  
The LMZM33604 has configurable Auto mode or FPWM mode options. To select Auto mode, connect the  
SYNC/MODE pin (pin 19) to AGND, or a logic signal lower than 0.3 V. To select FPWM mode, connect the  
SYNC/MODE pin to a bias voltage or logic signal greater than 0.6 V. When synchronizing to an external clock,  
the device inherently operates in FPWM mode.  
In Auto mode, the device operates in discontinuous conduction mode (DCM) at light loads. In DCM, the inductor  
current stops flowing when it reaches 0 A. Additionally, at very light loads, the switching frequency reduces (PFM  
operation) to regulate the required load current, thus improving efficiency by reducing switching losses. At  
heavier loads, when the inductor current valley is above 0 A, the device operates in continuous conduction mode  
(CCM), where the switching frequency is fixed and set by the RT pin.  
In forced PWM (FPWM) mode, the device operates in CCM (at a fixed frequency) regardless of load. In this  
mode, inductor current can go negative. At light loads, the efficiency in FPWM mode is lower than in Auto mode,  
due to higher conduction losses and higher switching losses. The fact that the switching frequency is fixed over  
the entire load range is beneficial in noise sensitive applications.  
7.3.13 Soft Start and Voltage Tracking  
The soft-start and tracking features control the output voltage ramp during start-up. The soft-start feature reduces  
inrush current during start-up and improves system performance and reliability. If the SS/TRK pin is floating, the  
LMZM33604 starts up following the fixed, 5-ms internal soft-start ramp. Use CSS to extend soft-start time when  
there are a large amount of output capacitors, or the output voltage is high, or the output is heavily loaded during  
start-up.  
If longer soft-start time is desired, an external capacitor can be added from SS/TRK pin to AGND. There is a  
2 µA (typical) internal current source, ISSC, to charge the external capacitor. For a desired soft-start time tSS  
,
capacitance of CSS can be found by 公式 6.  
CSS = ISSC × tSS  
where  
CSS = soft-start capacitor value (F)  
ISSC = soft-start charging current (A)  
tSS = desired soft-start time(s)  
(6)  
LMZM33604 can track an external voltage ramp applied to the SS/TRK pin, if the ramp is slower than the internal  
soft-start ramp. The external ramp final voltage after start-up must be greater than 1.5 V to avoid noise interfering  
with the reference voltage. 40 shows how to use resistor divider to set VOUT to follow an external ramp.  
EXT  
RAMP  
RTRT  
SS/TRK  
RTRB  
PGND  
40. Soft-Start Tracking External Ramp  
24  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
LMZM33604  
www.ti.com.cn  
ZHCSIY5A OCTOBER 2018REVISED MAY 2019  
7.3.14 Voltage Dropout  
Voltage dropout is the minimum difference between the input voltage and output voltage that is required to  
maintain output voltage regulation while providing the rated output current.  
To ensure the LMZM33604 maintains output voltage regulation at the recommended switching frequency, over  
the operating temperature range, the following requirements apply:  
For output voltages 5 V, the minimum VIN is 3.5 V or (VOUT + 1 V), whichever is greater.  
For output voltages > 5 V, the minimum VIN is (1.1 × VOUT).  
space  
However, if fixed switching frequency operation is not required, the LMZM33604 operates in a frequency  
foldback mode when the dropout voltage is less than the recommendations above. Frequency foldback reduces  
the switching frequency to allow the output voltage to maintain regulation as input voltage decreases. 41  
through 44 show typical dropout voltage and frequency foldback curves for 5 V and 12 V outputs at TA  
=
25°C. (As ambient temperature increases, dropout voltage and frequency foldback occur at higher input  
voltages.)  
5.4  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
Iout  
0.1 A  
2.0 A  
4.0 A  
Iout  
0.1 A  
2.0 A  
4.0 A  
4.0  
4.2  
4.4  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
5.8  
6.0  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
5.8  
6.0  
6.2  
6.4  
Input Voltage (V)  
Input Voltage (V)  
D021  
D022  
VOUT = 5 V  
fSW = 500 kHz  
41. Voltage Dropout  
VOUT = 5 V  
fSW = 500 kHz  
42. Frequency Foldback  
12.4  
12.2  
12.0  
11.8  
11.6  
11.4  
11.2  
11.0  
10.8  
10.6  
10.4  
10.2  
10.0  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
Iout  
Iout  
0.1 A  
2.0 A  
4.0 A  
0.1 A  
2.0 A  
4.0 A  
11.0  
11.2  
11.4  
11.6  
11.8  
Input Voltage (V)  
12.0  
12.2  
12.4  
12.6  
12.8  
13.0  
D023  
11.8  
12.0  
12.2  
12.4  
12.6  
Input Voltage (V)  
12.8  
13.0  
13.2  
13.4  
13.6  
D024  
VOUT = 12 V  
fSW = 800 kHz  
43. Voltage Dropout  
VOUT = 12 V  
fSW = 800 kHz  
44. Frequency Foldback  
版权 © 2018–2019, Texas Instruments Incorporated  
25  
 
 
LMZM33604  
ZHCSIY5A OCTOBER 2018REVISED MAY 2019  
www.ti.com.cn  
7.3.15 Overcurrent Protection (OCP)  
The LMZM33604 is protected from overcurrent conditions. Hiccup mode is activated if a fault condition persists to  
prevent overheating. In hiccup mode, the regulator is shut down and kept off for 10 ms (typical) before the  
LMZM33604 tries to start again. If an overcurrent or short-circuit fault condition still exists, hiccup repeats until  
the fault condition is removed. Hiccup mode reduces power dissipation under severe overcurrent conditions and  
prevents overheating and potential damage to the device. Once the fault is removed, the module automatically  
recovers and returns to normal operation.  
7.3.16 Thermal Shutdown  
The internal thermal shutdown circuitry forces the device to stop switching if the junction temperature exceeds  
160°C (typical). The device reinitiates the power-up sequence when the junction temperature drops below 135°C  
(typical).  
7.4 Device Functional Modes  
7.4.1 Active Mode  
The LMZM33604 is in active mode when VIN is above the turnon threshold and the EN pin voltage is above the  
EN high threshold. The simplest way to enable the LMZM33604 is to connect the EN pin to VIN. This allows self  
start-up of the LMZM33604 when the input voltage is in the operation range of 3.5 V to 36 V.  
7.4.2 Auto Mode  
In Auto mode, the LMZM33604 operates in discontinuous conduction mode (DCM) at light loads. In DCM, the  
inductor current stops flowing when it reaches 0 A. Additionally, at very light loads, the switching frequency  
reduces (PFM operation) to regulate the required load current, thus improving efficiency by reducing switching  
losses. At heavier loads, when the inductor current valley is above 0 A, the device operates in continuous  
conduction mode (CCM), where the switching frequency is fixed and set by the RT pin.  
7.4.3 FPWM Mode  
In forced PWM (FPWM) mode, the LMZM33604 operates in CCM (at a fixed frequency) regardless of load. In  
this mode, inductor current can go negative. At light loads, the efficiency in FPWM mode is lower than in Auto  
mode, due to higher conduction losses and higher switching losses.  
7.4.4 Shutdown Mode  
The EN pin provides electrical ON and OFF control for the LMZM33604. When the EN pin voltage is below the  
EN low threshold, the device is in shutdown mode. In shutdown mode the standby current is 0.8 μA typical. If VIN  
falls below the turn-off threshold, the output of the regulator is turned off.  
26  
版权 © 2018–2019, Texas Instruments Incorporated  
LMZM33604  
www.ti.com.cn  
ZHCSIY5A OCTOBER 2018REVISED MAY 2019  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The LMZM33604 is a synchronous step-down DC-DC power module. It is used to convert a higher DC voltage to  
a lower DC voltage with a maximum output current of 4 A. The following design procedure can be used to select  
components for the LMZM33604. Alternately, the WEBENCH® software may be used to generate complete  
designs. When generating a design, the WEBENCH® software utilizes an iterative design procedure and  
accesses comprehensive databases of components. See www.ti.com for more details.  
8.2 Typical Application  
The LMZM33604 only requires a few external components to convert from a wide input-voltage-supply range to a  
wide range of output voltages. 45 shows a typical LMZM33604 schematic.  
VIN = 24 V  
VIN  
EN  
PGOOD  
VOUT  
VOUT = 5 V  
10 µF  
50 V  
10 µF  
50 V  
LMZM33604  
40.2 kO  
RT  
100 pF  
SS/TRK  
100 µF  
6.3 V  
100 µF  
6.3 V  
FB  
SYNC/MODE  
BIAS_SEL  
AGND  
10 kO  
PGND  
45. LMZM33604 Typical Schematic  
8.2.1 Design Requirements  
For this design example, use the parameters listed in 8 as the input parameters and follow the design  
procedures in Detailed Design Procedure.  
8. Design Example Parameters  
DESIGN PARAMETER  
Input voltage VIN  
VALUE  
24 V typical  
5 V  
Output voltage VOUT  
Output current rating  
Operating frequency  
4 A  
500 kHz  
版权 © 2018–2019, Texas Instruments Incorporated  
27  
 
 
LMZM33604  
ZHCSIY5A OCTOBER 2018REVISED MAY 2019  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
8.2.2.1 Output Voltage Setpoint  
The output voltage of the LMZM33604 device is externally adjustable using a resistor divider. The recommended  
value of RFBB is 10 kΩ. The value for RFBT can be selected from 1 or calculated using the 公式 7:  
(k)  
= 10 x VOUT - VFB  
RFBT  
( )  
(7)  
For the desired output voltage of 5 V, the formula yields a value of 40 kΩ. Choose the closest available value of  
40.2 kΩ for RFBT  
.
8.2.2.2 Setting the Switching Frequency  
The recommended switching frequency for a 5-V application is 500 kHz. To set the switching frequency to  
500 kHz, the RT pin can be left open to operate at the default 500-kHz switching frequency.  
8.2.2.3 Input Capacitors  
The LMZM33604 requires a minimum input capacitance of 20-µF ceramic type. High-quality ceramic type X5R or  
X7R capacitors with sufficient voltage rating are recommended. The voltage rating of input capacitors must be  
greater than the maximum input voltage.  
For this design, 2x 10-µF, 50-V ceramic capacitors are selected.  
8.2.2.4 Output Capacitor Selection  
The LMZM33604 requires a minimum amount of output capacitance for proper operation. The minimum amount  
of required output varies depending on the output voltage. See 3 for the required output capacitance.  
For this design example, 2 × 100-µF, 6.3-V ceramic capacitors are used.  
8.2.2.5 Feed-Forward Capacitor (CFF)  
For typical applications, an external feed-forward capacitor, CFF is not required. Applications requiring optimum  
transient performance can benefit from placing a CFF capacitor in parallel with the top resistor divider, RFBT. The  
value for CFF can be calculated using 公式 2. The recommended CFF value for 5-V application is 100 pF.  
8.2.2.6 Application Curves  
VIN = 24 V  
VOUT = 5 V  
IOUT = 4 A  
VIN = 24 V  
VOUT = 5 V  
IOUT = 1 A to 3 A  
Slew rate: 1 A/µs  
COUT = 200 µF  
46. Start-up Waveforms  
47. Transient Response  
28  
版权 © 2018–2019, Texas Instruments Incorporated  
 
LMZM33604  
www.ti.com.cn  
ZHCSIY5A OCTOBER 2018REVISED MAY 2019  
9 Power Supply Recommendations  
The LMZM33604 is designed to operate from an input voltage supply range between 3.5 V and 36 V. This input  
supply must be able to withstand maximum input current and maintain a stable voltage. The resistance of the  
input supply rail must be low enough that an input current transient does not cause a high enough drop at the  
LMZM33604 supply voltage that can cause a turn-off and system reset.  
If the input supply is located more than a few inches from the LMZM33604 additional bulk capacitance may be  
required in addition to the ceramic bypass capacitors. The typical amount of bulk capacitance is a 100-µF  
electrolytic capacitor.  
10 Layout  
The performance of any switching power supply depends as much upon the layout of the PCB as the component  
selection. Use the following guidelines to design a PCB with the best power conversion performance, optimal  
thermal performance, and minimal generation of unwanted EMI.  
10.1 Layout Guidelines  
To achieve optimal electrical and thermal performance, an optimized PCB layout is required. 48 thru 51,  
shows a typical PCB layout. Some considerations for an optimized layout are:  
Use large copper areas for power planes (VIN, VOUT, and PGND) to minimize conduction loss and thermal  
stress.  
Connect all PGND pins together using copper plane or thick copper traces.  
Connect the SW pins together using a small copper island under the device for thermal relief.  
Place ceramic input and output capacitors close to the device pins to minimize high frequency noise.  
Locate additional output capacitors between the ceramic capacitor and the load.  
Keep AGND and PGND separate from one another. AGND and PGND are connected internal to the device.  
Place RFBT, RFBB, RRT, and CFF as close as possible to their respective pins.  
Use multiple vias to connect the power planes to internal layers.  
版权 © 2018–2019, Texas Instruments Incorporated  
29  
LMZM33604  
ZHCSIY5A OCTOBER 2018REVISED MAY 2019  
www.ti.com.cn  
10.2 Layout Examples  
48. Typical Top-Layer Layout  
49. Typical Layer-2 Layout  
50. Typical Layer 3 Layout  
51. Typical Bottom-Layer Layout  
30  
版权 © 2018–2019, Texas Instruments Incorporated  
LMZM33604  
www.ti.com.cn  
ZHCSIY5A OCTOBER 2018REVISED MAY 2019  
10.3 Theta JA vs PCB Area  
The amount of PCB copper effects the thermal performance of the device. 52 shows the effects of copper  
area on the junction-to-ambient thermal resistance (RθJA) of the LMZM33604. The junction-to-ambient thermal  
resistance is plotted for a 4-layer PCB and a 6-layer PCB with PCB area from 16 cm2 to 100 cm2.  
To determine the required copper area for an application:  
1. Determine the maximum power dissipation of the device in the application by referencing the power  
dissipation graphs in the Typical Characteristics section.  
2. Calculate the maximum θJA using 公式 8 and the maximum ambient temperature of the application.  
(125˘C œ TA(max)  
)
JA  
=
(˘C/W)  
PD(max)  
(8)  
3. Reference 52 to determine the minimum required PCB area for the application conditions.  
20  
4-layer PCB  
6-layer PCB  
18  
16  
14  
12  
10  
15  
30  
45  
60  
75  
90  
105  
PCB Area (cm²)  
D027  
52. θJA vs PCB Area  
10.4 Package Specifications  
9. Package Specifications Table  
LMZM33604  
VALUE  
UNIT  
Weight  
2.0  
grams  
Flammability  
Meets UL 94 V-O  
MTBF Calculated Reliability  
Per Bellcore TR-332, 50% stress, TA = 40°C, ground benign  
85.5  
MHrs  
版权 © 2018–2019, Texas Instruments Incorporated  
31  
 
 
LMZM33604  
ZHCSIY5A OCTOBER 2018REVISED MAY 2019  
www.ti.com.cn  
10.5 EMI  
The LMZM33604 is compliant with EN55011 radiated emissions. 53, 54, and 55 show typical examples  
of radiated emissions plots for the LMZM33604. The graphs include the plots of the antenna in the horizontal and  
vertical positions.  
10.5.1 EMI Plots  
EMI plots were measured using the standard LMZM33604EVM with no input filter.  
53. Radiated Emissions 12-V Input, 1.2-V Output, 4-A Load  
54. Radiated Emissions 12-V Input, 3.3-V Output, 4-A Load  
32  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
LMZM33604  
www.ti.com.cn  
ZHCSIY5A OCTOBER 2018REVISED MAY 2019  
EMI (接下页)  
55. Radiated Emissions 24-V Input, 5-V Output, 4-A Load  
版权 © 2018–2019, Texas Instruments Incorporated  
33  
LMZM33604  
ZHCSIY5A OCTOBER 2018REVISED MAY 2019  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
34  
版权 © 2018–2019, Texas Instruments Incorporated  
LMZM33604  
www.ti.com.cn  
ZHCSIY5A OCTOBER 2018REVISED MAY 2019  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2018–2019, Texas Instruments Incorporated  
35  
LMZM33604  
ZHCSIY5A OCTOBER 2018REVISED MAY 2019  
www.ti.com.cn  
36  
版权 © 2018–2019, Texas Instruments Incorporated  
LMZM33604  
www.ti.com.cn  
ZHCSIY5A OCTOBER 2018REVISED MAY 2019  
版权 © 2018–2019, Texas Instruments Incorporated  
37  
LMZM33604  
ZHCSIY5A OCTOBER 2018REVISED MAY 2019  
www.ti.com.cn  
38  
版权 © 2018–2019, Texas Instruments Incorporated  
LMZM33604  
www.ti.com.cn  
ZHCSIY5A OCTOBER 2018REVISED MAY 2019  
12.1 Tape and Reel Information  
REEL DIMENSIONS  
TAPE DIMENSIONS  
P1  
K0  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
Reel  
Diameter  
(mm)  
Reel  
Width W1  
(mm)  
Package  
Type  
Package  
Drawing  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
Quadrant  
Device  
Pins  
SPQ  
LMZM33604RLXR  
B2QFN  
RLX  
41  
500  
330.0  
32.4  
10.45  
16.45  
4.4  
16.0  
32.0  
Q1  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Device  
Package Type  
Package Drawing Pins  
RLX 41  
SPQ  
500  
Length (mm) Width (mm)  
383.0 353.0  
Height (mm)  
LMZM33604RLXR  
B2QFN  
58.0  
版权 © 2018–2019, Texas Instruments Incorporated  
39  
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Jul-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMZM33604RLXR  
ACTIVE  
B3QFN  
RLX  
41  
500  
RoHS Exempt  
& Green  
NIPDAU  
Level-3-240C-168 HR  
-40 to 105  
LMZM33604  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
RLX0041A  
B3QFN - 4.1 mm max height  
S
C
A
L
E
1
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
A
10.15  
9.85  
B
PIN 1  
INDEX AREA  
16.15  
15.85  
0.08 C  
C
4.1 MAX  
SEATING PLANE  
0.05  
0.00  
2X 6.4  
2X 3.55  
2X 0.335  
16X 0.8  
(0.27) TYP  
2X 1.92 0.05  
2X 1.75 0.05  
11  
19  
(0.23) TYP  
4X 1.17 0.05  
2X 1.1 0.05  
41  
40  
2.32  
4X 1  
2X 1 0.05  
39  
2.2  
2X 1.2  
2.79  
38  
37  
1.6  
PKG  
2X 13.6  
33  
2.4  
3.2  
35  
34  
6X 1.44 0.05  
36  
32  
28  
1
26X 0.8  
PIN 1 ID  
31  
0.6  
27X  
0.45  
0.35  
0.1  
52X  
0.4  
6X 1 0.05  
2X 2.4  
C A B  
0.05  
PKG  
4223882/A 10/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pads must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RLX0041A  
B3QFN - 4.1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
METAL UNDER  
SOLDER MASK  
4X (1.4)  
SOLDER MASK  
OPENING  
4X (0.43)  
31  
4X (7.96)  
(7.85)  
1
28  
4X (1.17)  
6X (6.5)  
3X (5.6)  
32  
34  
36  
26X (0.8)  
6X (5.5)  
6X (4.5)  
6X (3.5)  
6X (2.5)  
3X (2.4)  
37  
33  
35  
6X (1.44)  
6X (1.5)  
2X (1.2)  
6X (1)  
6X (0.5)  
0.000 PKG  
2X (1.1)  
(0.27) TYP  
3X (0.5)  
3X (1.5)  
4X (0.825)  
(1.2)  
(1.6)  
38  
2X (1)  
(2)  
40  
4X (2.375)  
3X (2.5)  
(2.79)  
4X (1)  
3X (3.45)  
(3.8)  
3X (4.15)  
3X (3.5)  
39  
3X (4.5)  
41  
2X (1.92)  
(5.11)  
3X (5.5)  
2X (1.75)  
11  
52X (0.4)  
4X (7.185)  
19  
27X (0.7)  
(7.85)  
(
0.2) TYP  
VIA  
16X (0.8)  
0.05 MIN  
TYP  
LAND PATTERN EXAMPLE  
SOLDER MASK DEFINED  
SCALE: 8X  
4223882/A 10/2017  
NOTES: (continued)  
4. This package designed to be soldered to a thermal pads on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RLX0041A  
B3QFN - 4.1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X (1.4)  
4X (0.43)  
4X (1.06)  
(0.27) TYP  
31  
(7.85)  
28  
1
32  
34  
36  
26X (0.8)  
(5.6)  
SOLDER MASK  
OPENING  
TYP  
37  
33  
35  
6X (1.3)  
(2.4)  
METAL UNDER  
SOLDER MASK  
TYP  
6X  
(0.95)  
0.000 PKG  
2X (1.04)  
2X (1.2)  
38  
(1.6)  
40  
(2.79)  
(5.11)  
4X (1)  
39  
(3.8)  
41  
2X 0.95  
1.72  
2X (1.56)  
11  
27X (0.7)  
19  
(7.85)  
52X (0.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
PRINTED SOLDER COVERAGE BY AREA  
PADS 1,11,19,28,38 & 39: 90%; PADS 32-37: 86%; PADS 40 & 41: 80%  
SCALE: 8X  
4223882/A 10/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

LMZM33606

3.5V 至 36V 输入、1V 至 20V 输出、6A 电源模块
TI

LMZM33606RLXR

3.5V 至 36V 输入、1V 至 20V 输出、6A 电源模块 | RLX | 41 | -40 to 105
TI

LN

Series Round Type
ETC

LN-104.000MHZ

Oscillator, 104MHz Min, 350MHz Max, 104MHz Nom,
DIODES

LN-1A11

INFRARED EMITTING DIODE
ETC

LN-45-15

45W Single Output LED Power Supply
MEANWELL

LN01-12B05

AC/DC converter
MORNSUN

LN01-12B05_15

AC/DC converter
MORNSUN

LN01-12B12

AC/DC converter
MORNSUN

LN01-12B24

AC/DC converter
MORNSUN

LN01201C

Minibright LED Series
PANASONIC