INA210_15 [TI]

INA21x Voltage Output, Low- or High-Side Measurement, Bidirectional, Zero-Drift Series, Current-Shunt Monitors;
INA210_15
型号: INA210_15
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

INA21x Voltage Output, Low- or High-Side Measurement, Bidirectional, Zero-Drift Series, Current-Shunt Monitors

文件: 总37页 (文件大小:1302K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
INA210, INA211, INA212, INA213, INA214, INA215  
SBOS437G MAY 2008REVISED JULY 2014  
INA21x Voltage Output, Low- or High-Side Measurement, Bidirectional,  
Zero-Drift Series, Current-Shunt Monitors  
1 Features  
3 Description  
The INA210, INA211, INA212, INA213, INA214, and  
INA215 are voltage-output, current-shunt monitors  
that can sense drops across shunts at common-mode  
voltages from –0.3 V to 26 V, independent of the  
supply voltage. Five fixed gains are available: 50 V/V,  
75 V/V, 100 V/V, 200 V/V, 500 V/V, or 1000 V/V. The  
low offset of the zero-drift architecture enables  
current sensing with maximum drops across the  
shunt as low as 10-mV full-scale.  
1
Wide Common-Mode Range: –0.3 V to 26 V  
Offset Voltage: ±35 μV (Max, INA210)  
(Enables Shunt Drops of 10-mV Full-Scale)  
Accuracy:  
±1% Gain Error (Max over Temperature)  
0.5-μV/°C Offset Drift (Max)  
10-ppm/°C Gain Drift (Max)  
Choice of Gains:  
These devices operate from a single 2.7-V to 26-V  
power supply, drawing a maximum of 100 μA of  
supply current. All versions are specified over the  
extended operating temperature range (–40°C to  
125°C), and offered in an SC70 package. The  
INA210, INA213, and INA214 are also offered in a  
thin UQFN package.  
INA210: 200 V/V  
INA211: 500 V/V  
INA212: 1000 V/V  
INA213: 50 V/V  
INA214: 100 V/V  
INA215: 75 V/V  
Device Information(1)  
Quiescent Current: 100 μA (max)  
SC70 Package: All Models  
PART NUMBER  
INA210  
PACKAGE  
BODY SIZE (NOM)  
2.00 mm × 1.25 mm  
1.80 mm × 1.40 mm  
2.00 mm × 1.25 mm  
2.00 mm × 1.25 mm  
2.00 mm × 1.25 mm  
1.80 mm × 1.40 mm  
2.00 mm × 1.25 mm  
1.80 mm × 1.40 mm  
2.00 mm × 1.25 mm  
SC70 (6)  
Thin UQFN Package: INA210, INA213, INA214  
UQFN (10)  
SC70 (6)  
SC70 (6)  
SC70 (6)  
UQFN (10)  
SC70 (6)  
UQFN (10)  
SC70 (6)  
INA211  
INA212  
2 Applications  
Notebook Computers  
Cell Phones  
INA213  
Telecom Equipment  
Power Management  
Battery Chargers  
Welding Equipment  
INA214  
INA215  
(1) For all available packages, see the orderable addendum at  
the end of the datasheet.  
Simplified Schematic  
RSHUNT  
Supply  
Load  
Reference  
Voltage  
Output  
INA21x  
OUT  
REF  
R1  
R3  
IN-  
GND  
2.7 V to 26 V  
IN+  
V+  
PRODUCT  
GAIN  
R3 and R4  
R1 and R2  
R2  
R4  
INA210  
INA211  
INA212  
INA213  
INA214  
INA215  
200  
500  
1000  
50  
5 kW  
2 kW  
1 kW  
1 MW  
1 MW  
1 MW  
1 MW  
1 MW  
1 MW  
CBYPASS  
0.01 mF  
to  
SC70  
20 kW  
10 kW  
13.3 kW  
0.1 mF  
100  
75  
VOUT = (ILOAD ´ RSHUNT) Gain + VREF  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
 
 
 
INA210, INA211, INA212, INA213, INA214, INA215  
SBOS437G MAY 2008REVISED JULY 2014  
www.ti.com  
Table of Contents  
8.3 Feature Description................................................. 13  
8.4 Device Functional Modes........................................ 14  
Application and Implementation ........................ 20  
9.1 Application Information............................................ 20  
9.2 Typical Applications ................................................ 20  
1
2
3
4
5
6
7
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Device Options....................................................... 4  
Pin Configurations and Functions....................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 Handling Ratings....................................................... 5  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 6  
7.5 Electrical Characteristics........................................... 6  
7.6 Typical Characteristics.............................................. 8  
Detailed Description ............................................ 12  
8.1 Overview ................................................................. 12  
8.2 Functional Block Diagram ....................................... 12  
9
10 Power Supply Recommendations ..................... 23  
11 Layout................................................................... 23  
11.1 Layout Guidelines ................................................. 23  
11.2 Layout Example .................................................... 23  
12 Device and Documentation Support ................. 24  
12.1 Documentation Support ........................................ 24  
12.2 Related Links ........................................................ 24  
12.3 Trademarks........................................................... 24  
12.4 Electrostatic Discharge Caution............................ 24  
12.5 Glossary................................................................ 24  
8
13 Mechanical, Packaging, and Orderable  
Information ........................................................... 24  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision F (June 2014) to Revision G  
Page  
Changed Simplified Schematic: added equation below gain table......................................................................................... 1  
Changed V(ESD) HBM specifications for version A in Handling Ratings table ........................................................................ 5  
Changes from Revision E (June 2013) to Revision F  
Page  
Changed format to meet latest data sheet standards; added Pin Functions, Recommended Operating Conditions,  
and Thermal Information tables, Overview, Functional Block Diagram, Application Information, Power Supply  
Recommendations, and Layout sections, and moved existing sections ................................................................................ 1  
Added INA215 to document .................................................................................................................................................. 1  
Added INA215 sub-bullet to fourth Features bullet ............................................................................................................... 1  
Added INA215 to simplified schematic table ......................................................................................................................... 1  
Changed title of Device Options table ................................................................................................................................... 4  
Added Thermal Information table .......................................................................................................................................... 5  
Added INA215 to Figure 7...................................................................................................................................................... 8  
Added INA215 to Figure 15.................................................................................................................................................... 9  
Added INA215 to Figure 25.................................................................................................................................................. 16  
Changes from Revision D (November 2012) to Revision E  
Page  
Deleted Package Marking column from Package/Ordering Information table........................................................................ 4  
Changes from Revision C (August 2012) to Revision D  
Page  
Changed Frequency Response, Bandwidth parameter in Electrical Characteristics table .................................................... 5  
2
Submit Documentation Feedback  
Copyright © 2008–2014, Texas Instruments Incorporated  
Product Folder Links: INA210 INA211 INA212 INA213 INA214 INA215  
 
INA210, INA211, INA212, INA213, INA214, INA215  
www.ti.com  
SBOS437G MAY 2008REVISED JULY 2014  
Changes from Revision B (June 2009) to Revision C  
Page  
Changed Package/Ordering table to show both silicon versions A and B ............................................................................. 4  
Added silicon version B ESD ratings to Abs Max table.......................................................................................................... 5  
Added silicon version B row to Input, Common-Mode Input Range parameter in Electrical Characteristics table................ 5  
Corrected typo in Figure 9 ..................................................................................................................................................... 8  
Updated Figure 12 ................................................................................................................................................................. 8  
Changed Input Filtering section............................................................................................................................................ 14  
Added Improving Transient Robustness section.................................................................................................................. 19  
Changes from Revision A (June 2008) to Revision B  
Page  
Added RSW package to device photo.................................................................................................................................... 1  
Added UQFN package to Features list................................................................................................................................... 1  
Updated front page graphic.................................................................................................................................................... 1  
Added RSW ordering information to Package/Ordering Information table............................................................................. 4  
Added RSW package pin out drawing.................................................................................................................................... 4  
Added footnote 3 to Electrical Characteristics table............................................................................................................... 5  
Added UQFN package information to Temperature Range section of Electrical Characteristics table ................................. 5  
Changed Figure 2 to reflect operating temperature range ..................................................................................................... 8  
Changed Figure 4 to reflect operating temperature range ..................................................................................................... 8  
Changed Figure 6 to reflect operating temperature range ..................................................................................................... 8  
Changed Figure 13 to reflect operating temperature range ................................................................................................... 9  
Changed Figure 14 to reflect operating temperature range ................................................................................................... 9  
Added RSW description to the Basic Connections section.................................................................................................. 13  
Changed 60μV to 100μV in last sentence of the Selecting RS section ............................................................................... 13  
Changes from Original (May 2008) to Revision A  
Page  
Changed availability of INA211 and INA212 to currently available in Package/Ordering Information table .......................... 4  
Deleted first footnote of Electrical Characteristics table......................................................................................................... 5  
Changed Figure 7 .................................................................................................................................................................. 8  
Changed Figure 15 ................................................................................................................................................................ 9  
Copyright © 2008–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: INA210 INA211 INA212 INA213 INA214 INA215  
INA210, INA211, INA212, INA213, INA214, INA215  
SBOS437G MAY 2008REVISED JULY 2014  
www.ti.com  
5 Device Options  
PACKAGE  
PRODUCT  
GAIN (V/V)  
PACKAGE  
SC70-6  
DESIGNATOR  
200  
200  
200  
200  
500  
500  
1000  
1000  
50  
DCK  
INA210A  
Thin UQFN-10  
SC70-6  
RSW  
DCK  
INA210B  
Thin UQFN-10  
SC70-6  
RSW  
DCK  
INA211A  
INA211B  
INA212A  
INA212B  
SC70-6  
DCK  
SC70-6  
DCK  
SC70-6  
DCK  
SC70-6  
DCK  
INA213A  
INA213B  
INA214A  
50  
Thin UQFN-10  
SC70-6  
RSW  
DCK  
50  
50  
Thin UQFN-10  
SC70-6  
RSW  
DCK  
100  
100  
100  
100  
75  
Thin UQFN-10  
SC70-6  
RSW  
DCK  
INA214B  
INA215A  
Thin UQFN-10  
SC70-6  
RSW  
DCK  
6 Pin Configurations and Functions  
DCK Package  
SC70-6  
(Top View)  
RSW Package  
Thin UQFN-10  
(Top View)  
NC(1) V+  
REF  
GND  
V+  
1
2
3
6
5
4
OUT  
IN-  
7
6
REF  
GND  
OUT  
8
9
5
IN-  
IN+  
4
3
IN-  
10  
IN+  
1
2
NC(1) IN+  
(1) NC denotes no internal connection. These pins can be left floating or connected to any voltage between V– and V+.  
4
Submit Documentation Feedback  
Copyright © 2008–2014, Texas Instruments Incorporated  
Product Folder Links: INA210 INA211 INA212 INA213 INA214 INA215  
INA210, INA211, INA212, INA213, INA214, INA215  
www.ti.com  
SBOS437G MAY 2008REVISED JULY 2014  
Pin Functions  
PIN  
NO.  
I/O  
DESCRIPTION  
NAME  
DCK  
RSW  
GND  
IN–  
2
9
Analog  
Ground  
Analog  
input  
5
4, 5  
Connect to load side of shunt resistor.  
Analog  
input  
IN+  
NC  
4
6
2, 3  
1, 7  
10  
Connect to supply side of shunt resistor  
Not internally connected. Leave floating or connect to ground.  
Output voltage  
Analog  
output  
OUT  
Analog  
input  
REF  
V+  
1
3
8
6
Reference voltage, 0 V to V+  
Power supply, 2.7 V to 26 V  
Analog  
7 Specifications  
7.1 Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
V
Supply voltage, VS  
26  
26  
Differential (VIN+) – (VIN–  
)
–26  
V
(2)  
Analog inputs, VIN+, VIN–  
(3)  
Common-mode  
GND – 0.3  
GND – 0.3  
GND – 0.3  
26  
V
REF input  
Output(3)  
Input current into any terminal(3)  
(VS) + 0.3  
(VS) + 0.3  
5
V
V
mA  
°C  
°C  
Operating temperature  
–55  
150  
Junction temperature  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) VIN+ and VIN– are the voltages at the IN+ and IN– terminals, respectively.  
(3) Input voltage at any terminal may exceed the voltage shown if the current at that terminal is limited to 5 mA.  
7.2 Handling Ratings  
MIN  
–65  
MAX  
150  
UNIT  
Tstg  
Storage temperature range  
°C  
Human body model (HBM) ESD stress voltage(1)  
Charged-device model (CDM) ESD stress voltage(2)  
Machine model (MM) ESD stress voltage  
Human body model (HBM) ESD stress voltage(1)  
Charged-device model (CDM) ESD stress voltage(2)  
Machine model (MM) ESD stress voltage  
–2000  
–1000  
–200  
–1500  
–1000  
–100  
2000  
1000  
200  
Electrostatic discharge  
(version A)  
V(ESD)  
V
V
1500  
1000  
100  
Electrostatic discharge  
(version B)  
V(ESD)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2008–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: INA210 INA211 INA212 INA213 INA214 INA215  
INA210, INA211, INA212, INA213, INA214, INA215  
SBOS437G MAY 2008REVISED JULY 2014  
www.ti.com  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
12  
MAX  
UNIT  
V
VCM  
VS  
Common-mode input voltage  
Operating supply voltage  
5
V
TA  
Operating free-air temperature  
–40  
125  
°C  
7.4 Thermal Information  
INA210-INA215  
THERMAL METRIC(1)  
DCK (SC70)  
6 PINS  
227.3  
79.5  
RSW (UQFN)  
10 PINS  
107.3  
56.5  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
RθJC(top)  
RθJB  
72.1  
18.7  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
3.6  
1.1  
ψJB  
70.4  
18.7  
RθJC(bot)  
n/a  
n/a  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
7.5 Electrical Characteristics  
At TA = 25°C, VSENSE = VIN+ – VIN–  
.
INA210, INA213, INA214, and INA215: VS = 5 V, VIN+ = 12 V, and VREF = VS / 2, unless otherwise noted.  
INA211 and INA212: VS = 12 V, VIN+ = 12 V, and VREF = VS / 2, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT  
Version A, TA = –40°C to 125°C  
Version B, TA = –40°C to 125°C  
–0.3  
–0.1  
26  
26  
V
V
VCM  
Common-mode input range  
INA210, INA211,  
INA212, INA214,  
INA215  
VIN+ = 0 V to 26 V, VSENSE = 0 mV,  
TA = –40°C to 125°C  
105  
100  
140  
dB  
Common-mode  
rejection ratio  
CMRR  
VIN+ = 0 V to 26 V, VSENSE = 0 mV,  
TA = –40°C to 125°C  
INA213  
120  
dB  
INA210, INA211,  
INA212  
VSENSE = 0 mV  
±0.55  
±35  
μV  
VO  
Offset voltage, RTI(1)  
RTI vs temperature  
INA213  
VSENSE = 0 mV  
±5  
±1  
±100  
±60  
0.5  
μV  
μV  
INA214, INA215  
VSENSE = 0 mV  
dVOS/dT  
PSRR  
VSENSE = 0 mV, TA = –40°C to 125°C  
0.1  
μV/°C  
VS = 2.7 V to 18 V, VIN+ = 18 V,  
VSENSE = 0 mV  
RTI vs power supply ratio  
±0.1  
±10  
35  
μV/V  
IIB  
Input bias current  
Input offset current  
VSENSE = 0 mV  
VSENSE = 0 mV  
15  
28  
μA  
μA  
IIO  
±0.02  
OUTPUT  
INA210  
200  
500  
1000  
50  
V/V  
V/V  
V/V  
V/V  
V/V  
V/V  
INA211  
INA212  
INA213  
INA214  
INA215  
G
Gain  
100  
75  
VSENSE = –5 mV to 5 mV,  
TA = –40°C to 125°C  
EG  
Gain error  
±0.02%  
±1%  
10  
Gain error vs temperature  
Nonlinearity error  
TA = –40°C to 125°C  
3
±0.01%  
1
ppm/°C  
nF  
VSENSE = –5 mV to 5 mV  
No sustained oscillation  
Maximum capacitive load  
(1) RTI = referred-to-input.  
Submit Documentation Feedback  
Product Folder Links: INA210 INA211 INA212 INA213 INA214 INA215  
6
Copyright © 2008–2014, Texas Instruments Incorporated  
INA210, INA211, INA212, INA213, INA214, INA215  
www.ti.com  
SBOS437G MAY 2008REVISED JULY 2014  
Electrical Characteristics (continued)  
At TA = 25°C, VSENSE = VIN+ – VIN–  
.
INA210, INA213, INA214, and INA215: VS = 5 V, VIN+ = 12 V, and VREF = VS / 2, unless otherwise noted.  
INA211 and INA212: VS = 12 V, VIN+ = 12 V, and VREF = VS / 2, unless otherwise noted.  
PARAMETER  
VOLTAGE OUTPUT(2)  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
RL = 10 kto GND, TA = –40°C to  
125°C  
Swing to V+ power-supply rail  
Swing to GND  
(V+) – 0.05  
(V+) – 0.2  
V
V
RL = 10 kto GND, TA = –40°C to  
125°C  
(VGND) + 0.005 (VGND) + 0.05  
FREQUENCY RESPONSE  
CLOAD = 10 pF, INA210  
CLOAD = 10 pF, INA211  
CLOAD = 10 pF, INA212  
CLOAD = 10 pF, INA213  
CLOAD = 10 pF, INA214  
CLOAD = 10 pF, INA215  
14  
7
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
V/μs  
4
BW  
SR  
Bandwidth  
Slew rate  
80  
30  
40  
0.4  
NOISE, RTI(1)  
Voltage noise density  
POWER SUPPLY  
25  
nV/Hz  
VS  
IQ  
Operating voltage range  
TA = –40°C to 125°C  
VSENSE = 0 mV  
2.7  
26  
V
Quiescent current  
65  
100  
115  
μA  
μA  
IQ over temperature  
TA = –40°C to 125°C  
TEMPERATURE RANGE  
Specified range  
–40  
–55  
125  
150  
°C  
°C  
Operating range  
SC70  
250  
80  
°C/W  
°C/W  
θJA  
Thermal resistance  
Thin UQFN  
(2) See Typical Characteristic curve, Output Voltage Swing vs Output Current (Figure 10).  
Copyright © 2008–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: INA210 INA211 INA212 INA213 INA214 INA215  
INA210, INA211, INA212, INA213, INA214, INA215  
SBOS437G MAY 2008REVISED JULY 2014  
www.ti.com  
7.6 Typical Characteristics  
The INA210 is used for typical characteristics at TA = 25°C, VS = 5 V, VIN+ = 12 V, and VREF = VS / 2, unless otherwise noted.  
100  
80  
60  
40  
20  
0
-20  
-40  
-60  
-80  
-100  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Offset Voltage (mV)  
Temperature (°C)  
Figure 2. Offset Voltage vs Temperature  
Figure 1. Input Offset Voltage Production Distribution  
5
4
3
2
1
0
-1  
-2  
-3  
-4  
-5  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (°C)  
Common-Mode Rejection Ratio (mV/V)  
Figure 4. Common-Mode Rejection Ratio vs Temperature  
Figure 3. Common-Mode Rejection Production Distribution  
1.0  
20 Typical Units Shown  
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (°C)  
Gain Error (%)  
Figure 6. Gain Error vs Temperature  
Figure 5. Gain Error Production Distribution  
8
Submit Documentation Feedback  
Copyright © 2008–2014, Texas Instruments Incorporated  
Product Folder Links: INA210 INA211 INA212 INA213 INA214 INA215  
INA210, INA211, INA212, INA213, INA214, INA215  
www.ti.com  
SBOS437G MAY 2008REVISED JULY 2014  
Typical Characteristics (continued)  
The INA210 is used for typical characteristics at TA = 25°C, VS = 5 V, VIN+ = 12 V, and VREF = VS / 2, unless otherwise noted.  
70  
60  
50  
40  
30  
20  
10  
0
160  
140  
120  
100  
80  
INA211  
INA212  
INA213  
INA210  
INA215  
INA214  
60  
VS = +5V + 250mV Sine Disturbance  
VCM = 0V  
40  
VCM = 0V  
20  
VDIF = Shorted  
VDIF = 15mVPP Sine  
VREF = 2.5V  
0
-10  
1
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
Figure 7. Gain vs Frequency  
Figure 8. Power-Supply Rejection Ratio vs Frequency  
160  
140  
120  
100  
80  
V+  
(V+) - 0.5  
VS = 5V to 26V  
(V+) - 1  
(V+) - 1.5  
(V+) - 2  
VS = 2.7V  
to 26V  
(V+) - 2.5  
(V+) - 3  
VS = 2.7V  
GND + 3  
GND + 2.5  
GND + 2  
GND + 1.5  
GND + 1  
GND + 0.5  
GND  
60  
VS = +5V  
40  
TA = -40C  
VCM = 1V Sine  
VDIF = Shorted  
VREF = 2.5V  
TA = +25C  
20  
VS = 2.7V to 26V  
TA = +125C  
0
1
10  
100  
1k  
10k  
100k  
1M  
0
5
10  
15  
20  
25  
30  
35  
40  
Frequency (Hz)  
Output Current (mA)  
Figure 9. Common-Mode Rejection Ratio vs Frequency  
Figure 10. Output Voltage Swing vs Output Current  
30  
50  
25  
20  
15  
10  
5
IB+, IB-, VREF = 0V  
and  
40  
IB+, IB-, VREF = 0V  
IB-, VREF = 2.5V  
30  
20  
IB+, IB-, VREF = 2.5V  
10  
IB+, VREF = 2.5V  
0
0
-10  
-5  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
Common-Mode Voltage (V)  
Common-Mode Voltage (V)  
Figure 12. Input Bias Current vs Common-Mode Voltage  
with Supply Voltage = 0 V (Shutdown)  
Figure 11. Input Bias Current vs Common-Mode Voltage  
with Supply Voltage = 5 V  
Copyright © 2008–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: INA210 INA211 INA212 INA213 INA214 INA215  
INA210, INA211, INA212, INA213, INA214, INA215  
SBOS437G MAY 2008REVISED JULY 2014  
www.ti.com  
Typical Characteristics (continued)  
The INA210 is used for typical characteristics at TA = 25°C, VS = 5 V, VIN+ = 12 V, and VREF = VS / 2, unless otherwise noted.  
35  
30  
25  
20  
15  
10  
5
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (°C)  
Temperature (°C)  
Figure 13. Input Bias Current vs Temperature  
Figure 14. Quiescent Current vs Temperature  
100  
10  
1
INA212  
INA215  
INA213  
INA214  
INA210  
INA211  
VS = ±2.5V  
VCM = 0V  
VDIF = 0V  
VREF = 0V  
VS = ±2.5V  
VREF = 0V  
VIN-, VIN+ = 0V  
Time (1s/div)  
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
Figure 15. Input-Referred Voltage Noise vs Frequency  
Figure 16. 0.1-Hz to 10-Hz Voltage Noise (Referred-To-Input)  
Common Voltage Step  
2VPP Output Signal  
0V  
10mVPP Input Signal  
Output Voltage  
0V  
Time (50ms/div)  
Time (100ms/div)  
Figure 18. Common-Mode Voltage Transient Response  
Figure 17. Step Response (10-mVPP Input Step)  
10  
Submit Documentation Feedback  
Copyright © 2008–2014, Texas Instruments Incorporated  
Product Folder Links: INA210 INA211 INA212 INA213 INA214 INA215  
INA210, INA211, INA212, INA213, INA214, INA215  
www.ti.com  
SBOS437G MAY 2008REVISED JULY 2014  
Typical Characteristics (continued)  
The INA210 is used for typical characteristics at TA = 25°C, VS = 5 V, VIN+ = 12 V, and VREF = VS / 2, unless otherwise noted.  
Inverting Input Overload  
Noninverting Input Overload  
Output  
Output  
0V  
0V  
VS = 5V, VCM = 12V, VREF = 2.5V  
VS = 5V, VCM = 12V, VREF = 2.5V  
Time (250ms/div)  
Time (250ms/div)  
Figure 19. Inverting Differential Input Overload  
Figure 20. Noninverting Differential Input Overload  
Supply Voltage  
Supply Voltage  
Output Voltage  
Output Voltage  
0V  
VS = 5V, 1kHz Step with VDIFF = 0V, VREF = 2.5V  
VS = 5V, 1kHz Step with VDIFF = 0V, VREF = 2.5V  
0V  
Time (100ms/div)  
Time (100ms/div)  
Figure 21. Start-Up Response  
Figure 22. Brownout Recovery  
Copyright © 2008–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: INA210 INA211 INA212 INA213 INA214 INA215  
INA210, INA211, INA212, INA213, INA214, INA215  
SBOS437G MAY 2008REVISED JULY 2014  
www.ti.com  
8 Detailed Description  
8.1 Overview  
The INA210-INA215 are 26-V, common-mode, zero-drift topology, current-sensing amplifiers that can be used in  
both low-side and high-side configurations. These specially-designed, current-sensing amplifiers are able to  
accurately measure voltages developed across current-sensing resistors on common-mode voltages that far  
exceed the supply voltage powering the device. Current can be measured on input voltage rails as high as 26 V  
while the device can be powered from supply voltages as low as 2.7 V.  
The zero-drift topology enables high-precision measurements with maximum input offset voltages as low as  
35 µV with a maximum temperature contribution of 0.5 µV/°C over the full temperature range of –40°C to 125°C.  
8.2 Functional Block Diagram  
V+  
IN-  
-
OUT  
IN+  
+
REF  
GND  
12  
Submit Documentation Feedback  
Copyright © 2008–2014, Texas Instruments Incorporated  
Product Folder Links: INA210 INA211 INA212 INA213 INA214 INA215  
INA210, INA211, INA212, INA213, INA214, INA215  
www.ti.com  
SBOS437G MAY 2008REVISED JULY 2014  
8.3 Feature Description  
8.3.1 Basic Connections  
Figure 23 shows the basic connections of the INA210-INA215. The input pins, IN+ and IN–, should be connected  
as closely as possible to the shunt resistor to minimize any resistance in series with the shunt resistor.  
RSHUNT  
Power  
Supply  
Load  
5V Supply  
CBYPASS  
0.1µF  
V+  
IN-  
-
OUT  
Micro-  
controller  
ADC  
+
IN+  
REF  
GND  
Figure 23. Typical Application  
Power-supply bypass capacitors are required for stability. Applications with noisy or high-impedance power  
supplies may require additional decoupling capacitors to reject power-supply noise. Connect bypass capacitors  
close to the device pins.  
On the RSW package options, two pins are provided for each input. These pins should be tied together (that is,  
tie IN+ to IN+ and tie IN– to IN–).  
8.3.2 Selecting RS  
The zero-drift offset performance of the INA210-INA215 offers several benefits. Most often, the primary  
advantage of the low offset characteristic enables lower full-scale drops across the shunt. For example, non-  
zero-drift current shunt monitors typically require a full-scale range of 100 mV.  
The INA210-INA215 series gives equivalent accuracy at a full-scale range on the order of 10 mV. This accuracy  
reduces shunt dissipation by an order of magnitude with many additional benefits.  
Alternatively, there are applications that must measure current over a wide dynamic range that can take  
advantage of the low offset on the low end of the measurement. Most often, these applications can use the lower  
gains of the INA213, INA214 or INA215 to accommodate larger shunt drops on the upper end of the scale. For  
instance, an INA213 operating on a 3.3-V supply could easily handle a full-scale shunt drop of 60 mV, with only  
100 μV of offset.  
Copyright © 2008–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: INA210 INA211 INA212 INA213 INA214 INA215  
 
INA210, INA211, INA212, INA213, INA214, INA215  
SBOS437G MAY 2008REVISED JULY 2014  
www.ti.com  
8.4 Device Functional Modes  
8.4.1 Input Filtering  
An obvious and straightforward filtering location is at the device output. However, this location negates the  
advantage of the low output impedance of the internal buffer. The only other filtering option is at the device input  
pins. This location, though, does require consideration of the ±30% tolerance of the internal resistances.  
Figure 24 shows a filter placed at the inputs pins.  
V+  
VCM  
RS < 10W  
RINT  
VOUT  
RSHUNT  
Bias  
CF  
RS < 10W  
VREF  
RINT  
Load  
Figure 24. Filter at Input Pins  
The addition of external series resistance, however, creates an additional error in the measurement so the value  
of these series resistors should be kept to 10Ω or less if possible to reduce impact to accuracy. The internal bias  
network shown in Figure 24 present at the input pins creates a mismatch in input bias currents when a  
differential voltage is applied between the input pins. If additional external series filter resistors are added to the  
circuit, the mismatch in bias currents results in a mismatch of voltage drops across the filter resistors. This  
mismatch creates a differential error voltage that subtracts from the voltage developed at the shunt resistor. This  
error results in a voltage at the device input pins that is different than the voltage developed across the shunt  
resistor. Without the additional series resistance, the mismatch in input bias currents has little effect on device  
operation. The amount of error these external filter resistor add to the measurement can be calculated using  
Equation 2 where the gain error factor is calculated using Equation 1.  
The amount of variance in the differential voltage present at the device input relative to the voltage developed at  
the shunt resistor is based both on the external series resistance value as well as the internal input resistors, R3  
and R4 (or RINT as shown in Figure 24). The reduction of the shunt voltage reaching the device input pins  
appears as a gain error when comparing the output voltage relative to the voltage across the shunt resistor. A  
factor can be calculated to determine the amount of gain error that is introduced by the addition of external series  
resistance. The equation used to calculate the expected deviation from the shunt voltage to what is seen at the  
device input pins is given in Equation 1:  
(1250 ´ RINT  
)
Gain Error Factor =  
(1250 ´ RS) + (1250 ´ RINT) + (RS ´ RINT  
)
where:  
RINT is the internal input resistor (R3 and R4), and  
RS is the external series resistance.  
(1)  
14  
Submit Documentation Feedback  
Copyright © 2008–2014, Texas Instruments Incorporated  
Product Folder Links: INA210 INA211 INA212 INA213 INA214 INA215  
 
 
 
INA210, INA211, INA212, INA213, INA214, INA215  
www.ti.com  
SBOS437G MAY 2008REVISED JULY 2014  
Device Functional Modes (continued)  
With the adjustment factor equation including the device internal input resistance, this factor varies with each  
gain version, as shown in Table 1. Each individual device gain error factor is shown in Table 2.  
Table 1. Input Resistance  
PRODUCT  
INA210  
INA211  
INA212  
INA213  
INA214  
INA215  
GAIN  
200  
500  
1000  
50  
RINT (kΩ)  
5
2
1
20  
10  
13.3  
100  
75  
Table 2. Device Gain Error Factor  
PRODUCT  
SIMPLIFIED GAIN ERROR FACTOR  
1000  
INA210  
RS + 1000  
10,000  
INA211  
INA212  
INA213  
INA214  
INA215  
(13 ´ RS) + 10,000  
5000  
(9 ´ RS) + 5000  
20,000  
(17 ´ RS) + 20,000  
10,000  
(9 ´ RS) + 10,000  
8,000  
x
(7 RS) + 8,000  
The gain error that can be expected from the addition of the external series resistors can then be calculated  
based on Equation 2:  
Gain Error (%) = 100 - (100 ´ Gain Error Factor)  
(2)  
For example, using an INA212 and the corresponding gain error equation from Table 2, a series resistance of  
10 Ω results in a gain error factor of 0.982. The corresponding gain error is then calculated using Equation 2,  
resulting in a gain error of approximately 1.77% solely because of the external 10-Ω series resistors. Using an  
INA213 with the same 10-Ω series resistor results in a gain error factor of 0.991 and a gain error of 0.84% again  
solely because of these external resistors.  
Copyright © 2008–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: INA210 INA211 INA212 INA213 INA214 INA215  
 
 
 
INA210, INA211, INA212, INA213, INA214, INA215  
SBOS437G MAY 2008REVISED JULY 2014  
www.ti.com  
8.4.2 Shutting Down the INA210-INA215 Series  
While the INA210-INA215 series does not have a shutdown pin, its low power consumption allows powering from  
the output of a logic gate or transistor switch that can turn on and turn off the INA210-INA215 power-supply  
quiescent current.  
However, in current shunt monitoring applications. there is also a concern for how much current is drained from  
the shunt circuit in shutdown conditions. Evaluating this current drain involves considering the simplified  
schematic of the INA210-INA215 in shutdown mode shown in Figure 25.  
RSHUNT  
Supply  
Load  
Reference  
Voltage  
INA21x  
Output  
OUT  
REF  
R3  
1 MW  
IN-  
GND  
Shutdown  
Control  
IN+  
V+  
PRODUCT  
R3 and R4  
R4  
1 MW  
INA210  
INA211  
INA212  
INA213  
INA214  
INA215  
5 kW  
2 kW  
1 kW  
CBYPASS  
20 kW  
10 kW  
13.3 kW  
NOTE: 1-MΩ paths from shunt inputs to reference and INA21x outputs.  
Figure 25. Basic Circuit for Shutting Down the INA210-INA215 with a Grounded Reference  
Note that there is typically slightly more than 1-Mimpedance (from the combination of 1-Mfeedback and  
5-kinput resistors) from each input of the INA210-INA215 to the OUT pin and to the REF pin. The amount of  
current flowing through these pins depends on the respective ultimate connection. For example, if the REF pin is  
grounded, the calculation of the effect of the 1-Mimpedance from the shunt to ground is straightforward.  
However, if the reference or op amp is powered while the INA210-INA215 is shut down, the calculation is direct;  
instead of assuming 1 Mto ground, however, assume 1 Mto the reference voltage. If the reference or op  
amp is also shut down, some knowledge of the reference or op amp output impedance under shutdown  
conditions is required. For instance, if the reference source behaves as an open circuit when is not powered, little  
or no current flows through the 1-Mpath.  
Regarding the 1-Mpath to the output pin, the output stage of a disabled INA210-INA215 does constitute a  
good path to ground; consequently, this current is directly proportional to a shunt common-mode voltage  
impressed across a 1-Mresistor.  
As a final note, when the device is powered up, there is an additional, nearly constant, and well-matched 25 μA  
that flows in each of the inputs as long as the shunt common-mode voltage is 3 V or higher. Below 2-V common-  
mode, the only current effects are the result of the 1-Mresistors.  
16  
Submit Documentation Feedback  
Copyright © 2008–2014, Texas Instruments Incorporated  
Product Folder Links: INA210 INA211 INA212 INA213 INA214 INA215  
 
INA210, INA211, INA212, INA213, INA214, INA215  
www.ti.com  
SBOS437G MAY 2008REVISED JULY 2014  
8.4.3 REF Input Impedance Effects  
As with any difference amplifier, the INA210-INA215 series common-mode rejection ratio is affected by any  
impedance present at the REF input. This concern is not a problem when the REF pin is connected directly to  
most references or power supplies. When using resistive dividers from the power supply or a reference voltage,  
the REF pin should be buffered by an op amp.  
In systems where the INA210-INA215 output can be sensed differentially, such as by a differential input analog-  
to-digital converter (ADC) or by using two separate ADC inputs, the effects of external impedance on the REF  
input can be cancelled. Figure 26 depicts a method of taking the output from the INA210-INA215 by using the  
REF pin as a reference.  
RSHUNT  
Load  
Supply  
ADC  
INA21x  
Output  
OUT  
REF  
R1  
R3  
IN-  
GND  
+2.7V to +26V  
IN+  
V+  
R2  
R4  
CBYPASS  
0.01mF  
to  
0.1mF  
Figure 26. Sensing the INA210-INA215 to Cancel the Effects of Impedance on the REF Input  
8.4.4 Using The INA210-INA215 with Common-Mode Transients Above 26 V  
With a small amount of additional circuitry, the INA210-INA215 series can be used in circuits subject to transients  
higher than 26 V, such as automotive applications. Use only zener diode or zener-type transient absorbers  
(sometimes referred to as Transzorbs)—any other type of transient absorber has an unacceptable time delay.  
Start by adding a pair of resistors as a working impedance for the zener; see Figure 27. Keeping these resistors  
as small as possible is preferable, most often around 10 . Larger values can be used with an effect on gain that  
is discussed in the Input Filtering section. Because this circuit is limiting only short-term transients, many  
applications are satisfied with a 10-resistor along with conventional zener diodes of the lowest power rating  
that can be found. This combination uses the least amount of board space. These diodes can be found in  
packages as small as SOT-523 or SOD-523.  
Copyright © 2008–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: INA210 INA211 INA212 INA213 INA214 INA215  
 
INA210, INA211, INA212, INA213, INA214, INA215  
SBOS437G MAY 2008REVISED JULY 2014  
www.ti.com  
RSHUNT  
Supply  
Load  
RPROTECT  
10W  
RPROTECT  
10W  
Reference  
Voltage  
Output  
INA21x  
OUT  
REF  
R3  
1MW  
IN-  
GND  
V+  
IN+  
Shutdown  
Control  
1MW  
R4  
CBYPASS  
Figure 27. INA210-INA215 Transient Protection using Dual Zener Diodes  
In the event that low-power zeners do not have sufficient transient absorption capability and a higher power  
transzorb must be used, the most package-efficient solution then involves using a single transzorb and back-to-  
back diodes between the device inputs. The most space-efficient solutions are dual series-connected diodes in a  
single SOT-523 or SOD-523 package. This method is shown in Figure 28. In either of these examples, the total  
board area required by the INA210-INA215 with all protective components is less than that of an SO-8 package,  
and only slightly greater than that of an MSOP-8 package.  
RSHUNT  
Supply  
Load  
RPROTECT  
10W  
RPROTECT  
10W  
Reference  
Voltage  
Output  
INA21x  
OUT  
REF  
R3  
1MW  
1MW  
IN-  
GND  
V+  
IN+  
Shutdown  
Control  
R4  
CBYPASS  
Figure 28. INA210-INA215 Transient Protection using a Single Transzorb and Input Clamps  
18  
Submit Documentation Feedback  
Copyright © 2008–2014, Texas Instruments Incorporated  
Product Folder Links: INA210 INA211 INA212 INA213 INA214 INA215  
 
INA210, INA211, INA212, INA213, INA214, INA215  
www.ti.com  
SBOS437G MAY 2008REVISED JULY 2014  
8.4.5 Improving Transient Robustness  
Applications involving large input transients with excessive dV/dt above 2 kV per microsecond present at the  
device input pins may cause damage to the internal ESD structures on version A devices. This potential damage  
is a result of the internal latching of the ESD structure to ground when this transient occurs at the input. With  
significant current available in most current-sensing applications, the large current flowing through the input  
transient-triggered, ground-shorted ESD structure quickly results in damage to the silicon. External filtering can  
be used to attenuate the transient signal prior to reaching the inputs to avoid the latching condition. Care must be  
taken to ensure that external series input resistance does not significantly impact gain error accuracy. For  
accuracy purposes, these resistances should be kept under 10 Ω if possible. Ferrite beads are recommended for  
this filter because of their inherently low dc ohmic value. Ferrite beads with less than 10 Ω of resistance at dc  
and over 600 Ω of resistance at 100 MHz to 200 MHz are recommended. The recommended capacitor values for  
this filter are between 0.01 µF and 0.1 µF to ensure adequate attenuation in the high-frequency region. This  
protection scheme is shown in Figure 29.  
Shunt  
Reference  
Voltage  
Load  
Supply  
Output  
Device  
OUT  
REF  
1MW  
R3  
R4  
IN-  
GND  
-
MMZ1608B601C  
IN+  
V+  
+2.7V to +26V  
1MW  
0.01mF  
to 0.1mF  
0.01mF  
to 0.1mF  
Figure 29. Transient Protection  
To minimize the cost of adding these external components to protect the device in applications where large  
transient signals may be present, version B devices are now available with new ESD structures that are not  
susceptible to this latching condition. Version B devices are incapable of sustaining these damage causing  
latched conditions so they do not have the same sensitivity to the transients that the version A devices have,  
thus making the version B devices a better fit for these applications.  
Copyright © 2008–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: INA210 INA211 INA212 INA213 INA214 INA215  
 
INA210, INA211, INA212, INA213, INA214, INA215  
SBOS437G MAY 2008REVISED JULY 2014  
www.ti.com  
9 Application and Implementation  
9.1 Application Information  
The INA210-INA215 measure the voltage developed across a current-sensing resistor when current passes  
through it. The ability to drive the reference pin to adjust the functionality of the output signal offers multiple  
configurations, as discussed throughout this section.  
9.2 Typical Applications  
9.2.1 Unidirectional Operation  
Load  
5V Supply  
CBYPASS  
0.1µF  
V+  
IN-  
-
Output  
OUT  
REF  
+
IN+  
GND  
Figure 30. Unidirectional Application Schematic  
9.2.1.1 Design Requirements  
The device can be configured to monitor current flowing in one direction (unidirectional) or in both directions  
(bidirectional) depending on how the REF pin is configured. The most common case is unidirectional where the  
output is set to ground when no current is flowing by connecting the REF pin to ground, as shown in Figure 30.  
When the input signal increases, the output voltage at the OUT pin increases.  
9.2.1.2 Detailed Design Procedure  
The linear range of the output stage is limited in how close the output voltage can approach ground under zero  
input conditions. In unidirectional applications where measuring very low input currents is desirable, bias the REF  
pin to a convenient value above 50 mV to get the output into the linear range of the device. To limit common-  
mode rejection errors, TI recommends buffering the reference voltage connected to the REF pin.  
A less frequently-used output biasing method is to connect the REF pin to the supply voltage, V+. This method  
results in the output voltage saturating at 200 mV below the supply voltage when no differential input signal is  
present. This method is similar to the output saturated low condition with no input signal when the REF pin is  
connected to ground. The output voltage in this configuration only responds to negative currents that develop  
negative differential input voltage relative to the device IN– pin. Under these conditions, when the differential  
input signal increases negatively, the output voltage moves downward from the saturated supply voltage. The  
voltage applied to the REF pin must not exceed the device supply voltage.  
20  
Submit Documentation Feedback  
Copyright © 2008–2014, Texas Instruments Incorporated  
Product Folder Links: INA210 INA211 INA212 INA213 INA214 INA215  
 
INA210, INA211, INA212, INA213, INA214, INA215  
www.ti.com  
SBOS437G MAY 2008REVISED JULY 2014  
Typical Applications (continued)  
9.2.1.3 Application Curve  
An example output response of a unidirectional configuration is shown in Figure 31. With the REF pin connected  
directly to ground, the output voltage is biased to this zero output level. The output rises above the reference  
voltage for positive differential input signals but cannot fall below the reference voltage for negative differential  
input signals because of the grounded reference voltage.  
0V  
Output  
VREF  
Time(500 µs /div)  
C001  
Figure 31. Unidirectional Application Output Response  
Copyright © 2008–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: INA210 INA211 INA212 INA213 INA214 INA215  
 
INA210, INA211, INA212, INA213, INA214, INA215  
SBOS437G MAY 2008REVISED JULY 2014  
www.ti.com  
Typical Applications (continued)  
9.2.2 Bidirectional Operation  
Load  
5V Supply  
V+  
CBYPASS  
0.1µF  
IN-  
Reference  
Voltage  
-
Output  
OUT  
+
+
IN+  
REF  
-
GND  
Figure 32. Bidirectional Application Schematic  
9.2.2.1 Design Requirements  
The device is a bidirectional, current-sense amplifier capable of measuring currents through a resistive shunt in  
two directions. This bidirectional monitoring is common in applications that include charging and discharging  
operations where the current flow-through resistor can change directions.  
9.2.2.2 Detailed Design Procedure  
The ability to measure this current flowing in both directions is enabled by applying a voltage to the REF pin, as  
shown in Figure 32. The voltage applied to REF (VREF) sets the output state that corresponds to the zero-input  
level state. The output then responds by increasing above VREF for positive differential signals (relative to the IN–  
pin) and responds by decreasing below VREF for negative differential signals. This reference voltage applied to  
the REF pin can be set anywhere between 0 V to V+. For bidirectional applications, VREF is typically set at mid-  
scale for equal signal range in both current directions. In some cases, however, VREF is set at a voltage other  
than mid-scale when the bidirectional current and corresponding output signal do not need to be symmetrical.  
9.2.2.3 Application Curve  
An example output response of a bidirectional configuration is shown in Figure 33. With the REF pin connected  
to a reference voltage, 2.5 V in this case, the output voltage is biased upwards by this reference level. The  
output rises above the reference voltage for positive differential input signals and falls below the reference  
voltage for negative differential input signals.  
VOUT  
VREF  
0V  
Time (500 µs/div)  
C002  
Figure 33. Bidirectional Application Output Response  
22  
Submit Documentation Feedback  
Copyright © 2008–2014, Texas Instruments Incorporated  
Product Folder Links: INA210 INA211 INA212 INA213 INA214 INA215  
 
 
INA210, INA211, INA212, INA213, INA214, INA215  
www.ti.com  
SBOS437G MAY 2008REVISED JULY 2014  
10 Power Supply Recommendations  
The input circuitry of the INA210-INA215 can accurately measure beyond its power-supply voltage, V+. For  
example, the V+ power supply can be 5 V, whereas the load power-supply voltage can be as high as 26 V.  
However, the output voltage range of the OUT pin is limited by the voltages on the power-supply pin. Note also  
that the INA210-INA215 can withstand the full input signal range up to 26 V at the input pins, regardless of  
whether the device has power applied or not.  
11 Layout  
11.1 Layout Guidelines  
Connect the input pins to the sensing resistor using a Kelvin or 4-wire connection. This connection technique  
ensures that only the current-sensing resistor impedance is detected between the input pins. Poor routing of  
the current-sensing resistor commonly results in additional resistance present between the input pins. Given  
the very low ohmic value of the current resistor, any additional high-current carrying impedance can cause  
significant measurement errors.  
The power-supply bypass capacitor should be placed as closely as possible to the supply and ground pins.  
The recommended value of this bypass capacitor is 0.1 μF. Additional decoupling capacitance can be added  
to compensate for noisy or high-impedance power supplies.  
11.2 Layout Example  
Output Signal  
Trace  
VIA to Power or  
Ground Plane  
VIA to Ground  
Plane  
Supply  
Voltage  
Supply Bypass  
Capacitor  
Figure 34. Recommended Layout  
Copyright © 2008–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: INA210 INA211 INA212 INA213 INA214 INA215  
INA210, INA211, INA212, INA213, INA214, INA215  
SBOS437G MAY 2008REVISED JULY 2014  
www.ti.com  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation see the following:  
INA210-215EVM User's Guide, SBOU065  
12.2 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to sample or buy.  
Table 3. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
SAMPLE & BUY  
INA210  
INA211  
INA212  
INA213  
INA214  
INA215  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
12.3 Trademarks  
All trademarks are the property of their respective owners.  
12.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
24  
Submit Documentation Feedback  
Copyright © 2008–2014, Texas Instruments Incorporated  
Product Folder Links: INA210 INA211 INA212 INA213 INA214 INA215  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Jul-2014  
PACKAGING INFORMATION  
Orderable Device  
INA210AIDCKR  
INA210AIDCKRG4  
INA210AIDCKT  
INA210AIDCKTG4  
INA210AIRSWR  
INA210AIRSWT  
INA210BIDCKR  
INA210BIDCKT  
INA210BIRSWR  
INA210BIRSWT  
INA211AIDCKR  
INA211AIDCKRG4  
INA211AIDCKT  
INA211AIDCKTG4  
INA211BIDCKR  
INA211BIDCKT  
INA212AIDCKR  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
ACTIVE  
SC70  
SC70  
SC70  
SC70  
UQFN  
UQFN  
SC70  
SC70  
UQFN  
UQFN  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
DCK  
6
6
3000  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
CET  
CET  
CET  
CET  
KNJ  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DCK  
DCK  
DCK  
RSW  
RSW  
DCK  
DCK  
RSW  
RSW  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
3000  
250  
Green (RoHS  
& no Sb/Br)  
6
Green (RoHS  
& no Sb/Br)  
6
250  
Green (RoHS  
& no Sb/Br)  
10  
10  
6
3000  
250  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
(KNJ ~ NSJ)  
SED  
3000  
250  
Green (RoHS  
& no Sb/Br)  
6
Green (RoHS  
& no Sb/Br)  
SED  
10  
10  
6
3000  
250  
Green (RoHS  
& no Sb/Br)  
SHQ  
SHQ  
CEU  
Green (RoHS  
& no Sb/Br)  
3000  
3000  
250  
Green (RoHS  
& no Sb/Br)  
6
Green (RoHS  
& no Sb/Br)  
CEU  
6
Green (RoHS  
& no Sb/Br)  
CEU  
6
250  
Green (RoHS  
& no Sb/Br)  
CEU  
6
3000  
250  
Green (RoHS  
& no Sb/Br)  
SEE  
6
Green (RoHS  
& no Sb/Br)  
SEE  
6
3000  
Green (RoHS  
& no Sb/Br)  
CEV  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Jul-2014  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
INA212AIDCKRG4  
INA212AIDCKT  
INA212AIDCKTG4  
INA212BIDCKR  
INA212BIDCKT  
INA213AIDCKR  
INA213AIDCKRG4  
INA213AIDCKT  
INA213AIDCKTG4  
INA213AIRSWR  
INA213AIRSWT  
INA213BIDCKR  
INA213BIDCKT  
INA213BIRSWR  
INA213BIRSWT  
INA214AIDCKR  
INA214AIDCKRG4  
INA214AIDCKT  
ACTIVE  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
UQFN  
UQFN  
SC70  
SC70  
UQFN  
UQFN  
SC70  
SC70  
SC70  
DCK  
6
6
3000  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
CEV  
CEV  
CEV  
SEC  
SEC  
CFT  
CFT  
CFT  
CFT  
KPJ  
KPJ  
SEF  
SEF  
SHT  
SHT  
CFV  
CFV  
CFV  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
RSW  
RSW  
DCK  
DCK  
RSW  
RSW  
DCK  
DCK  
DCK  
250  
250  
Green (RoHS  
& no Sb/Br)  
6
Green (RoHS  
& no Sb/Br)  
6
3000  
250  
Green (RoHS  
& no Sb/Br)  
6
Green (RoHS  
& no Sb/Br)  
6
3000  
3000  
250  
Green (RoHS  
& no Sb/Br)  
6
Green (RoHS  
& no Sb/Br)  
6
Green (RoHS  
& no Sb/Br)  
6
250  
Green (RoHS  
& no Sb/Br)  
10  
10  
6
3000  
250  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
3000  
250  
Green (RoHS  
& no Sb/Br)  
6
Green (RoHS  
& no Sb/Br)  
10  
10  
6
3000  
250  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
3000  
3000  
250  
Green (RoHS  
& no Sb/Br)  
6
Green (RoHS  
& no Sb/Br)  
6
Green (RoHS  
& no Sb/Br)  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Jul-2014  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
INA214AIDCKTG4  
INA214AIRSWR  
INA214AIRSWT  
INA214BIDCKR  
INA214BIDCKT  
INA214BIRSWR  
INA214BIRSWT  
INA215AIDCKR  
INA215AIDCKT  
ACTIVE  
SC70  
UQFN  
UQFN  
SC70  
SC70  
UQFN  
UQFN  
SC70  
SC70  
DCK  
6
10  
10  
6
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
CFV  
KRJ  
KRJ  
SEA  
SEA  
SHU  
SHU  
SME  
SME  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
RSW  
RSW  
DCK  
DCK  
RSW  
RSW  
DCK  
DCK  
3000  
250  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
3000  
250  
Green (RoHS  
& no Sb/Br)  
6
Green (RoHS  
& no Sb/Br)  
10  
10  
6
3000  
250  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
3000  
250  
Green (RoHS  
& no Sb/Br)  
6
Green (RoHS  
& no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Jul-2014  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish  
value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF INA212, INA214 :  
Automotive: INA212-Q1, INA214-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 4  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Nov-2015  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
INA210AIDCKR  
INA210AIDCKR  
INA210AIDCKT  
INA210AIDCKT  
INA210AIRSWR  
INA210AIRSWT  
INA210BIDCKR  
INA210BIDCKT  
INA210BIRSWR  
INA210BIRSWT  
INA211AIDCKR  
INA211AIDCKT  
INA211AIDCKT  
INA211BIDCKR  
INA211BIDCKT  
INA212AIDCKR  
INA212BIDCKR  
INA212BIDCKT  
SC70  
SC70  
SC70  
SC70  
UQFN  
UQFN  
SC70  
SC70  
UQFN  
UQFN  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
DCK  
DCK  
DCK  
DCK  
RSW  
RSW  
DCK  
DCK  
RSW  
RSW  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
6
6
3000  
3000  
250  
179.0  
178.0  
179.0  
178.0  
179.0  
179.0  
178.0  
178.0  
179.0  
179.0  
180.0  
180.0  
179.0  
178.0  
178.0  
180.0  
178.0  
178.0  
8.4  
9.0  
8.4  
9.0  
8.4  
8.4  
9.0  
9.0  
8.4  
8.4  
8.4  
8.4  
8.4  
9.0  
9.0  
8.4  
9.0  
9.0  
2.2  
2.4  
2.2  
2.4  
1.7  
1.7  
2.4  
2.4  
1.7  
1.7  
2.47  
2.47  
2.2  
2.4  
2.4  
2.47  
2.4  
2.4  
2.5  
2.5  
2.5  
2.5  
2.1  
2.1  
2.5  
2.5  
2.1  
2.1  
2.3  
2.3  
2.5  
2.5  
2.5  
2.3  
2.5  
2.5  
1.2  
1.2  
1.2  
1.2  
0.7  
0.7  
1.2  
1.2  
0.7  
0.7  
1.25  
1.25  
1.2  
1.2  
1.2  
1.25  
1.2  
1.2  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q1  
Q1  
Q3  
Q3  
Q1  
Q1  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
6
6
250  
10  
10  
6
3000  
250  
3000  
250  
6
10  
10  
6
3000  
250  
3000  
250  
6
6
250  
6
3000  
250  
6
6
3000  
3000  
250  
6
6
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Nov-2015  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
INA213AIDCKR  
INA213AIDCKR  
INA213AIDCKT  
INA213AIDCKT  
INA213AIRSWR  
INA213AIRSWT  
INA213BIDCKR  
INA213BIDCKT  
INA213BIRSWR  
INA213BIRSWT  
INA214AIDCKR  
INA214AIDCKR  
INA214AIDCKT  
INA214AIDCKT  
INA214AIRSWR  
INA214AIRSWT  
INA214BIDCKR  
INA214BIDCKT  
INA214BIRSWR  
INA214BIRSWT  
INA215AIDCKR  
INA215AIDCKT  
SC70  
SC70  
SC70  
SC70  
UQFN  
UQFN  
SC70  
SC70  
UQFN  
UQFN  
SC70  
SC70  
SC70  
SC70  
UQFN  
UQFN  
SC70  
SC70  
UQFN  
UQFN  
SC70  
SC70  
DCK  
DCK  
DCK  
DCK  
RSW  
RSW  
DCK  
DCK  
RSW  
RSW  
DCK  
DCK  
DCK  
DCK  
RSW  
RSW  
DCK  
DCK  
RSW  
RSW  
DCK  
DCK  
6
6
3000  
3000  
250  
179.0  
178.0  
178.0  
179.0  
179.0  
179.0  
178.0  
178.0  
179.0  
179.0  
178.0  
179.0  
179.0  
178.0  
179.0  
179.0  
178.0  
178.0  
179.0  
179.0  
178.0  
178.0  
8.4  
9.0  
9.0  
8.4  
8.4  
8.4  
9.0  
9.0  
8.4  
8.4  
9.0  
8.4  
8.4  
9.0  
8.4  
8.4  
9.0  
9.0  
8.4  
8.4  
8.4  
9.0  
2.2  
2.4  
2.4  
2.2  
1.7  
1.7  
2.4  
2.4  
1.7  
1.7  
2.4  
2.2  
2.2  
2.4  
1.7  
1.7  
2.4  
2.4  
1.7  
1.7  
2.4  
2.4  
2.5  
2.5  
2.5  
2.5  
2.1  
2.1  
2.5  
2.5  
2.1  
2.1  
2.5  
2.5  
2.5  
2.5  
2.1  
2.1  
2.5  
2.5  
2.1  
2.1  
2.5  
2.5  
1.2  
1.2  
1.2  
1.2  
0.7  
0.7  
1.2  
1.2  
0.7  
0.7  
1.2  
1.2  
1.2  
1.2  
0.7  
0.7  
1.2  
1.2  
0.7  
0.7  
1.2  
1.2  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q1  
Q1  
Q3  
Q3  
Q1  
Q1  
Q3  
Q3  
Q3  
Q3  
Q1  
Q1  
Q3  
Q3  
Q1  
Q1  
Q3  
Q3  
6
6
250  
10  
10  
6
3000  
250  
3000  
250  
6
10  
10  
6
3000  
250  
3000  
3000  
250  
6
6
6
250  
10  
10  
6
3000  
250  
3000  
250  
6
10  
10  
6
3000  
250  
3000  
250  
6
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Nov-2015  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
INA210AIDCKR  
INA210AIDCKR  
INA210AIDCKT  
INA210AIDCKT  
INA210AIRSWR  
INA210AIRSWT  
INA210BIDCKR  
INA210BIDCKT  
INA210BIRSWR  
INA210BIRSWT  
INA211AIDCKR  
INA211AIDCKT  
INA211AIDCKT  
INA211BIDCKR  
INA211BIDCKT  
INA212AIDCKR  
INA212BIDCKR  
INA212BIDCKT  
INA213AIDCKR  
INA213AIDCKR  
SC70  
SC70  
SC70  
SC70  
UQFN  
UQFN  
SC70  
SC70  
UQFN  
UQFN  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
DCK  
DCK  
DCK  
DCK  
RSW  
RSW  
DCK  
DCK  
RSW  
RSW  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
6
6
3000  
3000  
250  
195.0  
180.0  
195.0  
180.0  
203.0  
203.0  
180.0  
180.0  
203.0  
203.0  
223.0  
223.0  
195.0  
180.0  
180.0  
223.0  
180.0  
180.0  
195.0  
180.0  
200.0  
180.0  
200.0  
180.0  
203.0  
203.0  
180.0  
180.0  
203.0  
203.0  
270.0  
270.0  
200.0  
180.0  
180.0  
270.0  
180.0  
180.0  
200.0  
180.0  
45.0  
18.0  
45.0  
18.0  
35.0  
35.0  
18.0  
18.0  
35.0  
35.0  
35.0  
35.0  
45.0  
18.0  
18.0  
35.0  
18.0  
18.0  
45.0  
18.0  
6
6
250  
10  
10  
6
3000  
250  
3000  
250  
6
10  
10  
6
3000  
250  
3000  
250  
6
6
250  
6
3000  
250  
6
6
3000  
3000  
250  
6
6
6
3000  
3000  
6
Pack Materials-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Nov-2015  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
INA213AIDCKT  
INA213AIDCKT  
INA213AIRSWR  
INA213AIRSWT  
INA213BIDCKR  
INA213BIDCKT  
INA213BIRSWR  
INA213BIRSWT  
INA214AIDCKR  
INA214AIDCKR  
INA214AIDCKT  
INA214AIDCKT  
INA214AIRSWR  
INA214AIRSWT  
INA214BIDCKR  
INA214BIDCKT  
INA214BIRSWR  
INA214BIRSWT  
INA215AIDCKR  
INA215AIDCKT  
SC70  
SC70  
UQFN  
UQFN  
SC70  
SC70  
UQFN  
UQFN  
SC70  
SC70  
SC70  
SC70  
UQFN  
UQFN  
SC70  
SC70  
UQFN  
UQFN  
SC70  
SC70  
DCK  
DCK  
RSW  
RSW  
DCK  
DCK  
RSW  
RSW  
DCK  
DCK  
DCK  
DCK  
RSW  
RSW  
DCK  
DCK  
RSW  
RSW  
DCK  
DCK  
6
6
250  
250  
180.0  
195.0  
203.0  
203.0  
180.0  
180.0  
203.0  
203.0  
180.0  
195.0  
195.0  
180.0  
203.0  
203.0  
180.0  
180.0  
203.0  
203.0  
340.0  
340.0  
180.0  
200.0  
203.0  
203.0  
180.0  
180.0  
203.0  
203.0  
180.0  
200.0  
200.0  
180.0  
203.0  
203.0  
180.0  
180.0  
203.0  
203.0  
340.0  
340.0  
18.0  
45.0  
35.0  
35.0  
18.0  
18.0  
35.0  
35.0  
18.0  
45.0  
45.0  
18.0  
35.0  
35.0  
18.0  
18.0  
35.0  
35.0  
38.0  
38.0  
10  
10  
6
3000  
250  
3000  
250  
6
10  
10  
6
3000  
250  
3000  
3000  
250  
6
6
6
250  
10  
10  
6
3000  
250  
3000  
250  
6
10  
10  
6
3000  
250  
3000  
250  
6
Pack Materials-Page 4  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2015, Texas Instruments Incorporated  

相关型号:

INA211

Voltage Output, High or Low Side Measurement, Bi-Directional Zer┆-Drift Series CURRENT SHUNT MONITOR
TI

INA211-Q1

AEC-Q100、26V、双向、高精度电流感应放大器
TI

INA211A

Voltage Output, High or Low Side Measurement, Bi-Directional Zerø-Drift Series CURRENT-SHUNT MONITOR
TI

INA211AIDCKR

Voltage Output, High or Low Side Measurement, Bi-Directional Zero-Drift Series CURRENT SHUNT MONITOR
TI

INA211AIDCKT

Voltage Output, High or Low Side Measurement, Bi-Directional Zero-Drift Series CURRENT SHUNT MONITOR
TI

INA211B

Voltage Output, High or Low Side Measurement, Bi-Directional Zerø-Drift Series CURRENT-SHUNT MONITOR
TI

INA211BIDCKR

26V、双向、高精度电流感应放大器 | DCK | 6 | -40 to 125
TI

INA211BIDCKT

26V、双向、高精度电流感应放大器 | DCK | 6 | -40 to 125
TI

INA211BIRSWR

26V、双向、高精度电流感应放大器 | RSW | 10 | -40 to 125
TI

INA211BIRSWT

26V、双向、高精度电流感应放大器 | RSW | 10 | -40 to 125
TI

INA211BQDCKRQ1

AEC-Q100、26V、双向、高精度电流感应放大器 | DCK | 6 | -40 to 125
TI

INA211CIDCKR

26V、双向、高精度电流感应放大器 | DCK | 6 | -40 to 125
TI