INA211A [TI]

Voltage Output, High or Low Side Measurement, Bi-Directional Zerø-Drift Series CURRENT-SHUNT MONITOR; 电压输出,高或低侧测量,双向ZERA漂移系列电流分流监控器
INA211A
型号: INA211A
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Voltage Output, High or Low Side Measurement, Bi-Directional Zerø-Drift Series CURRENT-SHUNT MONITOR
电压输出,高或低侧测量,双向ZERA漂移系列电流分流监控器

监控 监视器
文件: 总30页 (文件大小:1272K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
QFN  
Package  
SC70  
Package  
INA210, INA211  
INA212, INA213  
INA214  
www.ti.com  
SBOS437D MAY 2008REVISED NOVEMBER 2012  
Voltage Output, High or Low Side Measurement,  
Bi-Directional Zerø-Drift Series  
CURRENT-SHUNT MONITOR  
Check for Samples: INA210, INA211, INA212, INA213, INA214  
1
FEATURES  
APPLICATIONS  
2
WIDE COMMON-MODE RANGE: –0.3V to 26V  
NOTEBOOK COMPUTERS  
CELL PHONES  
OFFSET VOLTAGE: ±35μV (Max, INA210)  
(Enables shunt drops of 10mV full-scale)  
TELECOM EQUIPMENT  
POWER MANAGEMENT  
BATTERY CHARGERS  
WELDING EQUIPMENT  
ACCURACY:  
±1% Gain Error (Max over temperature)  
0.5μV/°C Offset Drift (Max)  
10ppm/°C Gain Drift (Max)  
DESCRIPTION  
CHOICE OF GAINS:  
The INA210, INA211, INA212, INA213, and INA214  
are voltage output current shunt monitors that can  
sense drops across shunts at common-mode  
voltages from –0.3V to 26V, independent of the  
supply voltage. Five fixed gains are available: 50V/V,  
100V/V, 200V/V, 500V/V, or 1000V/V. The low offset  
of the Zerø-Drift architecture enables current sensing  
with maximum drops across the shunt as low as  
10mV full-scale.  
INA210: 200V/V  
INA211: 500V/V  
INA212: 1000V/V  
INA213: 50V/V  
INA214: 100V/V  
QUIESCENT CURRENT: 100μA (max)  
SC70 PACKAGE: All Models  
THIN QFN PACKAGE: INA210, INA213, INA214  
These devices operate from a single +2.7V to +26V  
power supply, drawing a maximum of 100μA of  
supply current. All versions are specified over the  
extended operating temperature range (–40°C to  
+125°C), and offered in an SC70 package. The  
INA210, INA213, and INA214 are also offered in a  
thin QFN package.  
RSHUNT  
Supply  
Load  
Reference  
Voltage  
Output  
INA21x  
OUT  
REF  
R1  
R3  
IN-  
GND  
+2.7V to +26V  
IN+  
V+  
PRODUCT  
GAIN  
R3 and R4  
R1 and R2  
R2  
R4  
INA210  
INA211  
INA212  
INA213  
INA214  
200  
500  
1000  
50  
5kW  
2kW  
1MW  
1MW  
1MW  
1MW  
1MW  
CBYPASS  
0.01mF  
to  
SC70  
1kW  
20kW  
10kW  
0.1mF  
100  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
All trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2008–2012, Texas Instruments Incorporated  
 
 
 
INA210, INA211  
INA212, INA213  
INA214  
SBOS437D MAY 2008REVISED NOVEMBER 2012  
www.ti.com  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
PACKAGE/ORDERING INFORMATION(1)  
PACKAGE  
DESIGNATOR  
PACKAGE  
MARKING  
PRODUCT  
GAIN  
200V/V  
200V/V  
200V/V  
200V/V  
500V/V  
500V/V  
1000V/V  
1000V/V  
50V/V  
PACKAGE  
SC70-6  
DCK  
RSW  
DCK  
RSW  
DCK  
DCK  
DCK  
DCK  
DCK  
RSW  
DCK  
RSW  
DCK  
RSW  
DCK  
RSW  
CET  
KNJ  
SED  
SHQ  
CEU  
SEC  
CEV  
SEC  
CFT  
KPJ  
SEF  
SHT  
CFV  
KRJ  
SEA  
SHU  
INA210A  
Thin QFN-10  
SC70-6  
INA210B  
Thin QFN-10  
SC70-6  
INA211A  
INA211B  
INA212A  
INA212B  
SC70-6  
SC70-6  
SC70-6  
SC70-6  
INA213A  
INA213B  
INA214A  
INA214B  
50V/V  
Thin QFN-10  
SC70-6  
50V/V  
50V/V  
Thin QFN-10  
SC70-6  
100V/V  
100V/V  
100V/V  
100V/V  
Thin QFN-10  
SC70-6  
Thin QFN-10  
(1) For the most current package and ordering information, see the Package Option Addendum located at the end of this data sheet, or  
refer to our web site at www.ti.com.  
ABSOLUTE MAXIMUM RATINGS(1)  
Over operating free-air temperature range, unless otherwise noted.  
INA210, INA211,  
INA212, INA213, INA214  
UNIT  
V
Supply Voltage  
Analog Inputs,  
+26  
Differential (VIN+)–(VIN–  
)
–26 to +26  
V
(2)  
(3)  
VIN+, VIN–  
Common-Mode  
GND–0.3 to +26  
V
REF Input  
Output(3)  
GND–0.3 to (V+) + 0.3  
V
GND–0.3 to (V+) + 0.3  
V
Input Current into Any Pin(3)  
Operating Temperature  
Storage Temperature  
5
–55 to +150  
–65 to +150  
+150  
mA  
°C  
°C  
°C  
V
Junction Temperature  
Human Body Model (HBM)  
Charged-Device Model (CDM)  
Machine Model (MM)  
4000  
ESD Ratings  
(version A):  
1000  
V
200  
V
Human Body Model (HBM)  
Charged-Device Model (CDM)  
Machine Model (MM)  
1500  
V
ESD Ratings  
(version B):  
1000  
V
100  
V
(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may  
degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond  
those specified is not implied.  
(2) VIN+ and VIN– are the voltages at the IN+ and IN– pins, respectively.  
(3) Input voltage at any pin may exceed the voltage shown if the current at that pin is limited to 5mA.  
2
Submit Documentation Feedback  
Copyright © 2008–2012, Texas Instruments Incorporated  
Product Folder Links: INA210 INA211 INA212 INA213 INA214  
 
 
 
INA210, INA211  
INA212, INA213  
INA214  
www.ti.com  
SBOS437D MAY 2008REVISED NOVEMBER 2012  
ELECTRICAL CHARACTERISTICS  
Boldface limits apply over the specified temperature range, TA = –40°C to +125°C.  
At TA = +25°C, VSENSE = VIN+ – VIN–  
.
INA210, INA213, and INA214: VS = +5V, VIN+ = 12V, and VREF = VS/2, unless otherwise noted.  
INA211 and INA212: VS = +12V, VIN+ = 12V, and VREF = VS/2, unless otherwise noted.  
INA210, INA211,  
INA212, INA213, INA214  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT  
Version A  
Version B  
–0.3  
–0.1  
26  
26  
V
V
Common-Mode Input Range  
Common-Mode Rejection  
VCM  
CMR  
VIN+ = 0V to +26V, VSENSE = 0mV  
INA210, INA211, INA212,  
INA214  
105  
100  
140  
120  
dB  
dB  
INA213  
Offset Voltage, RTI(1)  
INA210, INA211, INA212  
INA213  
VOS  
VSENSE = 0mV  
±0.55  
±5  
±35  
±100  
±60  
0.5  
μV  
μV  
INA214  
±1  
μV  
vs Temperature  
dVOS/dT  
0.1  
μV/°C  
VS = +2.7V to +18V, VIN+ = +18V,  
VSENSE = 0mV  
vs Power Supply  
PSR  
±0.1  
±10  
35  
μV/V  
Input Bias Current  
Input Offset Current  
OUTPUT  
IB  
VSENSE = 0mV  
VSENSE = 0mV  
15  
28  
μA  
μA  
IOS  
±0.02  
Gain, INA210  
G
200  
500  
1000  
50  
V/V  
V/V  
V/V  
V/V  
V/V  
%
INA211  
INA212  
INA213  
INA214  
100  
±0.02  
3
Gain Error  
VSENSE = –5mV to 5mV  
±1  
10  
vs Temperature  
Nonlinearity Error  
Maximum Capacitive Load  
VOLTAGE OUTPUT(2)  
Swing to V+ Power-Supply Rail  
Swing to GND  
FREQUENCY RESPONSE  
ppm/°C  
%
VSENSE = –5mV to 5mV  
No sustained oscillation  
RL = 10kto GND  
±0.01  
1
nF  
(V+)–0.05  
(V+)–0.2  
V
V
(VGND)+0.005  
(VGND)+0.05  
CLOAD = 10pF, INA210  
CLOAD = 10pF, INA211  
CLOAD = 10pF, INA212  
CLOAD = 10pF, INA213  
CLOAD = 10pF, INA214  
14  
7
kHz  
kHz  
kHz  
kHz  
kHz  
V/μs  
Bandwidth  
GBW  
SR  
4
80  
30  
0.4  
Slew Rate  
NOISE, RTI(1)  
Voltage Noise Density  
25  
nV/Hz  
(1) RTI = referred-to-input.  
(2) See Typical Characteristic curve, Output Voltage Swing vs Output Current (Figure 10).  
Copyright © 2008–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: INA210 INA211 INA212 INA213 INA214  
 
 
 
INA210, INA211  
INA212, INA213  
INA214  
SBOS437D MAY 2008REVISED NOVEMBER 2012  
www.ti.com  
ELECTRICAL CHARACTERISTICS (continued)  
Boldface limits apply over the specified temperature range, TA = –40°C to +125°C.  
At TA = +25°C, VSENSE = VIN+ – VIN–  
.
INA210, INA213, and INA214: VS = +5V, VIN+ = 12V, and VREF = VS/2, unless otherwise noted.  
INA211 and INA212: VS = +12V, VIN+ = 12V, and VREF = VS/2, unless otherwise noted.  
INA210, INA211,  
INA212, INA213, INA214  
PARAMETER  
CONDITIONS  
MIN  
+2.7  
TYP  
MAX  
UNIT  
POWER SUPPLY  
Operating Voltage Range  
Quiescent Current  
Over Temperature  
TEMPERATURE RANGE  
Specified Range  
Operating Range  
Thermal Resistance  
SC70  
VS  
+26  
100  
115  
V
IQ  
VSENSE = 0mV  
65  
μA  
μA  
–40  
–55  
+125  
+150  
°C  
°C  
θ JA  
250  
80  
°C/W  
°C/W  
Thin QFN  
PIN CONFIGURATIONS  
DCK PACKAGE  
SC70-6  
(TOP VIEW)  
REF  
GND  
V+  
1
2
3
6
5
4
OUT  
IN-  
IN+  
RSW PACKAGE  
THIN QFN-10  
(TOP VIEW)  
NC(1) V+  
7
6
8
9
5
4
3
REF  
IN-  
IN-  
IN+  
GND  
OUT  
10  
1
2
NC(1) IN+  
(1) NC denotes no internal connection. Pin can be left floating or connected to any voltage between V– and V+.  
4
Submit Documentation Feedback  
Copyright © 2008–2012, Texas Instruments Incorporated  
Product Folder Links: INA210 INA211 INA212 INA213 INA214  
 
INA210, INA211  
INA212, INA213  
INA214  
www.ti.com  
SBOS437D MAY 2008REVISED NOVEMBER 2012  
TYPICAL CHARACTERISTICS  
The INA210 is used for typical characteristics at TA = +25°C, VS = +5V, VIN+ = 12V, and VREF = VS/2, unless otherwise noted.  
INPUT OFFSET VOLTAGE  
PRODUCTION DISTRIBUTION  
OFFSET VOLTAGE  
vs TEMPERATURE  
100  
80  
60  
40  
20  
0
-20  
-40  
-60  
-80  
-100  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (°C)  
Offset Voltage (mV)  
Figure 1.  
Figure 2.  
COMMON-MODE REJECTION  
PRODUCTION DISTRIBUTION  
COMMON-MODE REJECTION RATIO  
vs TEMPERATURE  
5
4
3
2
1
0
-1  
-2  
-3  
-4  
-5  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (°C)  
Common-Mode Rejection Ratio (mV/V)  
Figure 3.  
Figure 4.  
GAIN ERROR  
GAIN ERROR  
PRODUCTION DISTRIBUTION  
vs TEMPERATURE  
1.0  
0.8  
20 Typical Units Shown  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (°C)  
Gain Error (%)  
Figure 5.  
Figure 6.  
Copyright © 2008–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: INA210 INA211 INA212 INA213 INA214  
 
 
 
 
INA210, INA211  
INA212, INA213  
INA214  
SBOS437D MAY 2008REVISED NOVEMBER 2012  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
The INA210 is used for typical characteristics at TA = +25°C, VS = +5V, VIN+ = 12V, and VREF = VS/2, unless otherwise noted.  
GAIN  
vs FREQUENCY  
POWER-SUPPLY REJECTION RATIO  
vs FREQUENCY  
70  
60  
50  
40  
30  
20  
10  
0
160  
140  
120  
100  
80  
INA211  
INA212  
INA213  
INA214  
INA210  
60  
VS = +5V + 250mV Sine Disturbance  
VCM = 0V  
40  
VCM = 0V  
20  
VDIF = Shorted  
VDIF = 15mVPP Sine  
VREF = 2.5V  
0
-10  
10  
100 1k  
10k  
100k  
1M  
10M  
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
Figure 7.  
Figure 8.  
COMMON-MODE REJECTION RATIO  
vs FREQUENCY  
OUTPUT VOLTAGE SWING  
vs OUTPUT CURRENT  
160  
140  
120  
100  
80  
V+  
(V+) - 0.5  
(V+) - 1  
VS = 5V to 26V  
(V+) - 1.5  
(V+) - 2  
VS = 2.7V  
to 26V  
(V+) - 2.5  
(V+) - 3  
VS = 2.7V  
GND + 3  
GND + 2.5  
GND + 2  
GND + 1.5  
GND + 1  
GND + 0.5  
GND  
60  
VS = +5V  
40  
TA = -40C  
VCM = 1V Sine  
VDIF = Shorted  
VREF = 2.5V  
TA = +25C  
20  
VS = 2.7V to 26V  
TA = +125C  
0
1
10  
100  
1k  
10k  
100k  
1M  
0
5
10  
15  
20  
25  
30  
35  
40  
Frequency (Hz)  
Output Current (mA)  
Figure 9.  
Figure 10.  
INPUT BIAS CURRENT vs COMMON-MODE VOLTAGE  
INPUT BIAS CURRENT vs COMMON-MODE VOLTAGE  
with SUPPLY VOLTAGE = +5V  
with SUPPLY VOLTAGE = 0V (Shutdown)  
30  
50  
25  
20  
15  
10  
5
IB+, IB-, VREF = 0V  
and  
40  
IB+, IB-, VREF = 0V  
IB-, VREF = 2.5V  
30  
20  
IB+, IB-, VREF = 2.5V  
10  
IB+, VREF = 2.5V  
0
0
-10  
-5  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
Common-Mode Voltage (V)  
Common-Mode Voltage (V)  
Figure 11.  
Figure 12.  
6
Submit Documentation Feedback  
Copyright © 2008–2012, Texas Instruments Incorporated  
Product Folder Links: INA210 INA211 INA212 INA213 INA214  
 
 
 
 
 
INA210, INA211  
INA212, INA213  
INA214  
www.ti.com  
SBOS437D MAY 2008REVISED NOVEMBER 2012  
TYPICAL CHARACTERISTICS (continued)  
The INA210 is used for typical characteristics at TA = +25°C, VS = +5V, VIN+ = 12V, and VREF = VS/2, unless otherwise noted.  
INPUT BIAS CURRENT  
vs TEMPERATURE  
QUIESCENT CURRENT  
vs TEMPERATURE  
35  
30  
25  
20  
15  
10  
5
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (°C)  
Temperature (°C)  
Figure 13.  
Figure 14.  
INPUT-REFERRED VOLTAGE NOISE  
vs FREQUENCY  
0.1Hz to 10Hz VOLTAGE NOISE  
(Referred-to-Input)  
100  
10  
1
INA212  
INA213  
INA214  
INA210  
INA211  
VS = ±2.5V  
VCM = 0V  
VDIF = 0V  
VREF = 0V  
VS = ±2.5V  
VREF = 0V  
VIN-, VIN+ = 0V  
Time (1s/div)  
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Figure 15.  
Figure 16.  
STEP RESPONSE  
(10mVPP Input Step)  
COMMON-MODE VOLTAGE  
TRANSIENT RESPONSE  
Common Voltage Step  
2VPP Output Signal  
0V  
0V  
10mVPP Input Signal  
Output Voltage  
Time (50ms/div)  
Time (100ms/div)  
Figure 17.  
Figure 18.  
Copyright © 2008–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: INA210 INA211 INA212 INA213 INA214  
 
 
INA210, INA211  
INA212, INA213  
INA214  
SBOS437D MAY 2008REVISED NOVEMBER 2012  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
The INA210 is used for typical characteristics at TA = +25°C, VS = +5V, VIN+ = 12V, and VREF = VS/2, unless otherwise noted.  
INVERTING DIFFERENTIAL INPUT OVERLOAD  
NONINVERTING DIFFERENTIAL INPUT OVERLOAD  
Inverting Input Overload  
Noninverting Input Overload  
Output  
Output  
0V  
0V  
VS = 5V, VCM = 12V, VREF = 2.5V  
VS = 5V, VCM = 12V, VREF = 2.5V  
Time (250ms/div)  
Time (250ms/div)  
Figure 19.  
Figure 20.  
START-UP RESPONSE  
BROWNOUT RECOVERY  
Supply Voltage  
Supply Voltage  
Output Voltage  
Output Voltage  
0V  
VS = 5V, 1kHz Step with VDIFF = 0V, VREF = 2.5V  
VS = 5V, 1kHz Step with VDIFF = 0V, VREF = 2.5V  
0V  
Time (100ms/div)  
Time (100ms/div)  
Figure 21.  
Figure 22.  
8
Submit Documentation Feedback  
Copyright © 2008–2012, Texas Instruments Incorporated  
Product Folder Links: INA210 INA211 INA212 INA213 INA214  
INA210, INA211  
INA212, INA213  
INA214  
www.ti.com  
SBOS437D MAY 2008REVISED NOVEMBER 2012  
APPLICATION INFORMATION  
BASIC CONNECTIONS  
Figure 23 shows the basic connections of the INA210-INA214. The input pins, IN+ and IN–, should be connected  
as closely as possible to the shunt resistor to minimize any resistance in series with the shunt resistance.  
RSHUNT  
Supply  
Load  
Reference  
Voltage  
INA21x  
Output  
OUT  
REF  
R1  
R3  
IN-  
GND  
+2.7V to +26V  
IN+  
V+  
R2  
R4  
CBYPASS  
0.01mF  
to  
0.1mF  
Figure 23. Typical Application  
Power-supply bypass capacitors are required for stability. Applications with noisy or high impedance power  
supplies may require additional decoupling capacitors to reject power-supply noise. Connect bypass capacitors  
close to the device pins.  
On the RSW package, two pins are provided for each input. These pins should be tied together (that is, tie IN+ to  
IN+ and tie IN– to IN–).  
POWER SUPPLY  
The input circuitry of the INA210-INA214 can accurately measure beyond its power-supply voltage, V+. For  
example, the V+ power supply can be 5V, whereas the load power supply voltage can be as high as +26V.  
However, the output voltage range of the OUT terminal is limited by the voltages on the power-supply pin. Note  
also that the INA210-INA214 can withstand the full –0.3V to +26V in the input pins, regardless of whether the  
device has power applied or not.  
SELECTING RS  
The zero-drift offset performance of the INA210-INA214 offers several benefits. Most often, the primary  
advantage of the low offset characteristic enables lower full-scale drops across the shunt. For example, non-  
zero-drift current shunt monitors typically require a full-scale range of 100mV.  
The INA210-INA214 series gives equivalent accuracy at a full-scale range on the order of 10mV. This accuracy  
reduces shunt dissipation by an order of magnitude with many additional benefits.  
Alternatively, there are applications that must measure current over a wide dynamic range that can take  
advantage of the low offset on the low end of the measurement. Most often, these applications can use the lower  
gain INA213 or INA214 to accommodate larger shunt drops on the upper end of the scale. For instance, an  
INA213 operating on a 3.3V supply could easily handle a full-scale shunt drop of 60mV, with only 100μV of  
offset.  
Copyright © 2008–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: INA210 INA211 INA212 INA213 INA214  
 
 
 
INA210, INA211  
INA212, INA213  
INA214  
SBOS437D MAY 2008REVISED NOVEMBER 2012  
www.ti.com  
UNIDIRECTIONAL OPERATION  
Unidirectional operation allows the INA210-INA214 to measure currents through a resistive shunt in one  
direction. The most frequent case of unidirectional operation sets the output at ground by connecting the REF pin  
to ground. In unidirectional applications where the highest possible accuracy is desirable at very low inputs, bias  
the REF pin to a convenient value above 50mV to get the device output swing into the linear range for zero  
inputs.  
A less frequent case of unipolar output biasing is to bias the output by connecting the REF pin to the supply; in  
this case, the quiescent output for zero input is at quiescent supply. This configuration would only respond to  
negative currents (inverted voltage polarity at the device input).  
BIDIRECTIONAL OPERATION  
Bidirectional operation allows the INA210-INA214 to measure currents through a resistive shunt in two directions.  
In this case, the output can be set anywhere within the limits of what the reference inputs allow (that is, between  
0V to V+). Typically, it is set at half-scale for equal range in both directions. In some cases, however, it is set at a  
voltage other than half-scale when the bidirectional current is nonsymmetrical.  
The quiescent output voltage is set by applying voltage to the reference input. Under zero differential input  
conditions the output assumes the same voltage as is applied to the reference input.  
INPUT FILTERING  
An obvious and straightforward filtering location is at the device output. However, this location negates the  
advantage of the low output impedance of the internal buffer. The only other filtering option is at the device input  
pins. This location, though, does require consideration of the ±30% tolerance of the internal resistances.  
Figure 24 shows a filter placed at the inputs pins.  
V+  
VCM  
RS < 10W  
RINT  
VOUT  
RSHUNT  
Bias  
CF  
RS < 10W  
VREF  
RINT  
Load  
Figure 24. Filter at Input Pins  
The addition of external series resistance, however, creates an additional error in the measurement so the value  
of these series resistors should be kept to 10Ω or less if possible to reduce impact to accuracy.. The internal bias  
network shown in Figure 24 present at the input pins creates a mismatch in input bias currents when a  
differential voltage is applied between the input pins. If additional external series filter resistors are added to the  
circuit, the mismatch in bias currents results in a mismatch of voltage drops across the filter resistors. This  
mismatch creates a differential error voltage that subtracts from the voltage developed at the shunt resistor. This  
error results in a voltage at the device input pins that is different than the voltage developed across the shunt  
resistor. Without the additional series resistance, the mismatch in input bias currents has little effect on device  
operation. The amount of error these external filter resistor add to the measurement can be calculated using  
Equation 2 where the gain error factor is calculated using Equation 1.  
10  
Submit Documentation Feedback  
Copyright © 2008–2012, Texas Instruments Incorporated  
Product Folder Links: INA210 INA211 INA212 INA213 INA214  
 
 
INA210, INA211  
INA212, INA213  
INA214  
www.ti.com  
SBOS437D MAY 2008REVISED NOVEMBER 2012  
The amount of variance in the differential voltage present at the device input relative to the voltage developed at  
the shunt resistor is based both on the external series resistance value as well as the internal input resistors, R3  
and R4 (or RINT as shown in Figure 24). The reduction of the shunt voltage reaching the device input pins  
appears as a gain error when comparing the output voltage relative to the voltage across the shunt resistor. A  
factor can be calculated to determine the amount of gain error that is introduced by the addition of external series  
resistance. The equation used to calculate the expected deviation from the shunt voltage to what is seen at the  
device input pins is given in Equation 1:  
(1250 ´ RINT  
)
Gain Error Factor =  
(1250 ´ RS) + (1250 ´ RINT) + (RS ´ RINT  
)
where:  
RINT is the internal input resistor (R3 and R4), and  
RS is the external series resistance.  
(1)  
With the adjustment factor equation including the device internal input resistance, this factor varies with each  
gain version, as shown in Table 1. Each individual device gain error factor is shown in Table 2.  
Table 1. Input Resistance  
PRODUCT  
INA210  
INA211  
INA212  
INA213  
INA214  
GAIN  
200  
500  
1000  
50  
RINT (kΩ)  
5
2
1
20  
10  
100  
Table 2. Device Gain Error Factor  
PRODUCT  
SIMPLIFIED GAIN ERROR FACTOR  
1000  
INA210  
RS + 1000  
10,000  
INA211  
INA212  
INA213  
INA214  
(13 ´ RS) + 10,000  
5000  
(9 ´ RS) + 5000  
20,000  
(17 ´ RS) + 20,000  
10,000  
(9 ´ RS) + 10,000  
The gain error that can be expected from the addition of the external series resistors can then be calculated  
based on Equation 2:  
Gain Error (%) = 100 - (100 ´ Gain Error Factor)  
(2)  
For example, using an INA212 and the corresponding gain error equation from Table 2, a series resistance of  
10Ω results in a gain error factor of 0.982. The corresponding gain error is then calculated using Equation 2,  
resulting in a gain error of approximately 1.77% solely because of the external 10Ω series resistors. Using an  
INA213 with the same 10Ω series resistor results in a gain error factor of 0.991 and a gain error of 0.84% again  
solely because of these external resistors.  
Copyright © 2008–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: INA210 INA211 INA212 INA213 INA214  
 
 
 
 
INA210, INA211  
INA212, INA213  
INA214  
SBOS437D MAY 2008REVISED NOVEMBER 2012  
www.ti.com  
SHUTTING DOWN THE INA210-INA214 SERIES  
While the INA210-INA214 series does not have a shutdown pin, its low power consumption allows powering from  
the output of a logic gate or transistor switch that can turn on and turn off the INA210-INA214 power-supply  
quiescent current.  
However, in current shunt monitoring applications. there is also a concern for how much current is drained from  
the shunt circuit in shutdown conditions. Evaluating this current drain involves considering the simplified  
schematic of the INA210-INA214 in shutdown mode shown in Figure 25.  
RSHUNT  
Supply  
Load  
Reference  
Voltage  
INA21x  
Output  
OUT  
REF  
R3  
1MW  
1MW  
IN-  
GND  
Shutdown  
Control  
IN+  
V+  
PRODUCT  
R3 and R4  
R4  
INA210  
INA211  
INA212  
INA213  
INA214  
5kW  
2kW  
CBYPASS  
1kW  
20kW  
10kW  
NOTE: 1MW paths from shunt inputs to reference and INA21x outputs.  
Figure 25. Basic Circuit for Shutting Down INA210-INA214 with Grounded Reference  
Note that there is typically slightly more than 1Mimpedance (from the combination of 1Mfeedback and 5kΩ  
input resistors) from each input of the INA210-INA214 to the OUT pin and to the REF pin. The amount of current  
flowing through these pins depends on the respective ultimate connection. For example, if the REF pin is  
grounded, the calculation of the effect of the 1Mimpedance from the shunt to ground is straightforward.  
However, if the reference or op amp is powered while the INA210-INA214 is shut down, the calculation is direct;  
instead of assuming 1Mto ground, however, assume 1Mto the reference voltage. If the reference or op amp  
is also shut down, some knowledge of the reference or op amp output impedance under shutdown conditions is  
required. For instance, if the reference source behaves as an open circuit when it is unpowered, little or no  
current flows through the 1Mpath.  
Regarding the 1Mpath to the output pin, the output stage of a disabled INA210-INA214 does constitute a good  
path to ground; consequently, this current is directly proportional to a shunt common-mode voltage impressed  
across a 1Mresistor.  
As a final note, when the device is powered up, there is an additional, nearly constant, and well-matched 25μA  
that flows in each of the inputs as long as the shunt common-mode voltage is 3V or higher. Below 2V common-  
mode, the only current effects are the result of the 1Mresistors.  
12  
Submit Documentation Feedback  
Copyright © 2008–2012, Texas Instruments Incorporated  
Product Folder Links: INA210 INA211 INA212 INA213 INA214  
 
INA210, INA211  
INA212, INA213  
INA214  
www.ti.com  
SBOS437D MAY 2008REVISED NOVEMBER 2012  
REF INPUT IMPEDANCE EFFECTS  
As with any difference amplifier, the INA210-INA214 series common-mode rejection ratio is affected by any  
impedance present at the REF input. This concern is not a problem when the REF pin is connected directly to  
most references or power supplies. When using resistive dividers from the power supply or a reference voltage,  
the REF pin should be buffered by an op amp.  
In systems where the INA210-INA214 output can be sensed differentially, such as by a differential input analog-  
to-digital converter (ADC) or by using two separate ADC inputs, the effects of external impedance on the REF  
input can be cancelled. Figure 26 depicts a method of taking the output from the INA210-INA214 by using the  
REF pin as a reference.  
RSHUNT  
Load  
Supply  
ADC  
INA21x  
Output  
OUT  
REF  
R1  
R3  
IN-  
GND  
+2.7V to +26V  
IN+  
V+  
R2  
R4  
CBYPASS  
0.01mF  
to  
0.1mF  
Figure 26. Sensing INA210-INA214 to Cancel Effects of Impedance on the REF Input  
Copyright © 2008–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: INA210 INA211 INA212 INA213 INA214  
 
INA210, INA211  
INA212, INA213  
INA214  
SBOS437D MAY 2008REVISED NOVEMBER 2012  
www.ti.com  
USING THE INA210 WITH COMMON-MODE TRANSIENTS ABOVE 26V  
With a small amount of additional circuitry, the INA210-INA214 series can be used in circuits subject to transients  
higher than 26V, such as automotive applications. Use only zener diode or zener-type transient absorbers  
(sometimes referred to as Transzorbs)— any other type of transient absorber has an unacceptable time delay.  
Start by adding a pair of resistors as shown in Figure 27 as a working impedance for the zener. It is desirable to  
keep these resistors as small as possible, most often around 10. Larger values can be used with an effect on  
gain that is discussed in the section on input filtering. Because this circuit is limiting only short-term transients,  
many applications are satisfied with a 10resistor along with conventional zener diodes of the lowest power  
rating that can be found. This combination uses the least amount of board space. These diodes can be found in  
packages as small as SOT-523 or SOD-523.  
RSHUNT  
Supply  
Load  
RPROTECT  
10W  
RPROTECT  
10W  
Reference  
Voltage  
Output  
INA21x  
OUT  
REF  
R3  
1MW  
1MW  
IN-  
GND  
V+  
IN+  
Shutdown  
Control  
R4  
CBYPASS  
Figure 27. INA210-INA214 Transient Protection Using Dual Zener Diodes  
14  
Submit Documentation Feedback  
Copyright © 2008–2012, Texas Instruments Incorporated  
Product Folder Links: INA210 INA211 INA212 INA213 INA214  
 
INA210, INA211  
INA212, INA213  
INA214  
www.ti.com  
SBOS437D MAY 2008REVISED NOVEMBER 2012  
In the event that low-power zeners do not have sufficient transient absorption capability and a higher power  
transzorb must be used, the most package-efficient solution then involves using a single transzorb and back-to-  
back diodes between the device inputs. The most space-efficient solutions are dual series-connected diodes in a  
single SOT-523 or SOD-523 package. This method is shown in Figure 28. In either of these examples, the total  
board area required by the INA210-INA214 with all protective components is less than that of an SO-8 package,  
and only slightly greater than that of an MSOP-8 package.  
RSHUNT  
Supply  
Load  
RPROTECT  
10W  
RPROTECT  
10W  
Reference  
Voltage  
Output  
INA21x  
OUT  
REF  
R3  
1MW  
1MW  
IN-  
GND  
V+  
IN+  
Shutdown  
Control  
R4  
CBYPASS  
Figure 28. INA210-INA214 Transient Protection Using a Single Transzorb and Input Clamps  
Copyright © 2008–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: INA210 INA211 INA212 INA213 INA214  
 
INA210, INA211  
INA212, INA213  
INA214  
SBOS437D MAY 2008REVISED NOVEMBER 2012  
www.ti.com  
IMPROVING TRANSIENT ROBUSTNESS  
Applications involving large input transients with excessive dV/dt above 2kV per microsecond present at the  
device input pins may cause damage to the internal ESD structures on version A devices. This potential damage  
is a result of the internal latching of the ESD structure to ground when this transient occurs at the input. With  
significant current available in most current-sensing applications, the large current flowing through the input  
transient-triggered, ground-shorted ESD structure quickly results in damage to the silicon. External filtering can  
be used to attenuate the transient signal prior to reaching the inputs to avoid the latching condition. Care must be  
taken to ensure that external series input resistance does not significantly impact gain error accuracy. For  
accuracy purposes, these resistances should be kept under 10Ω if possible. Ferrite beads are recommended for  
this filter because of their inherently low dc ohmic value. Ferrite beads with less than 10Ω of resistance at dc and  
over 600Ω of resistance at 100MHz to 200MHz are recommended. The recommended capacitor values for this  
filter are between 0.01µF and 0.1µF to ensure adequate attenuation in the high-frequency region. This protection  
scheme is shown in Figure 29.  
Shunt  
Reference  
Voltage  
Load  
Supply  
Output  
Device  
OUT  
REF  
1MW  
R3  
R4  
IN-  
GND  
-
MMZ1608B601C  
IN+  
V+  
+2.7V to +26V  
1MW  
0.01mF  
to 0.1mF  
0.01mF  
to 0.1mF  
Figure 29. Transient Protection  
To minimize the cost of adding these external components to protect the device in applications where large  
transient signals may be present, version B devices are now available with new ESD structures that are not  
susceptible to this latching condition. Version B devices are incapable of sustaining these damage causing  
latched conditions so they do not have the same sensitivity to the transients that the version A devices have,  
thus making the version B devices a better fit for these applications.  
16  
Submit Documentation Feedback  
Copyright © 2008–2012, Texas Instruments Incorporated  
Product Folder Links: INA210 INA211 INA212 INA213 INA214  
 
 
INA210, INA211  
INA212, INA213  
INA214  
www.ti.com  
SBOS437D MAY 2008REVISED NOVEMBER 2012  
REVISION HISTORY  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision C (August 2012) to Revision D  
Page  
Changed Frequency Response, Bandwidth parameter in Electrical Characteristics table .................................................. 3  
Changes from Revision B (June 2009) to Revision C  
Page  
Changed Package/Ordering table to show both silicon versions A and B ........................................................................... 2  
Added silicon version B ESD ratings to Abs Max table ........................................................................................................ 2  
Added silicon version B row to Input, Common-Mode Input Range parameter in Electrical Characteristics table .............. 3  
Corrected typo in Figure 9 .................................................................................................................................................... 6  
Updated Figure 12 ................................................................................................................................................................ 6  
Changed Input Filtering section .......................................................................................................................................... 10  
Added Improving Transient Robustness section ................................................................................................................ 16  
Changes from Revision A (June 2008) to Revision B  
Page  
Added RSW package to device photo .................................................................................................................................. 1  
Added QFN package to Features list ................................................................................................................................... 1  
Updated front page graphic .................................................................................................................................................. 1  
Added RSW ordering information to Package/Ordering Information table ........................................................................... 2  
Added footnote 3 to Electrical Characteristics table ............................................................................................................. 3  
Added QFN package information to Temperature Range section of Electrical Characteristics table .................................. 3  
Added RSW package pin out drawing .................................................................................................................................. 4  
Changed Figure 2 to reflect operating temperature range ................................................................................................... 5  
Changed Figure 4 to reflect operating temperature range ................................................................................................... 5  
Changed Figure 6 to reflect operating temperature range ................................................................................................... 5  
Changed Figure 13 to reflect operating temperature range ................................................................................................. 7  
Changed Figure 14 to reflect operating temperature range ................................................................................................. 7  
Added RSW description to the Basic Connections section .................................................................................................. 9  
Changed 60μV to 100μV in last sentence of the Selecting RS section ............................................................................... 9  
Changes from Original (May 2008) to Revision A  
Page  
Changed availability of INA211 and INA212 to currently available in Package/Ordering Information table ........................ 2  
Deleted first footnote of Electrical Characteristics table ....................................................................................................... 3  
Changed Figure 7 ................................................................................................................................................................. 5  
Changed Figure 15 ............................................................................................................................................................... 7  
Copyright © 2008–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: INA210 INA211 INA212 INA213 INA214  
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-Mar-2013  
PACKAGING INFORMATION  
Orderable Device  
INA210AIDCKR  
INA210AIDCKRG4  
INA210AIDCKT  
INA210AIDCKTG4  
INA210AIRSWR  
INA210AIRSWT  
INA210BIDCKR  
INA210BIDCKT  
INA211AIDCKR  
INA211AIDCKRG4  
INA211AIDCKT  
INA211AIDCKTG4  
INA211BIDCKR  
INA211BIDCKT  
INA212AIDCKR  
INA212AIDCKRG4  
INA212AIDCKT  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
ACTIVE  
SC70  
SC70  
SC70  
SC70  
UQFN  
UQFN  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
DCK  
6
6
3000  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
CET  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DCK  
DCK  
DCK  
RSW  
RSW  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
3000  
250  
Green (RoHS  
& no Sb/Br)  
CET  
6
Green (RoHS  
& no Sb/Br)  
CET  
6
250  
Green (RoHS  
& no Sb/Br)  
CET  
10  
10  
6
3000  
250  
Green (RoHS  
& no Sb/Br)  
KNJ  
Green (RoHS  
& no Sb/Br)  
(KNJ ~ NSJ)  
SED  
3000  
250  
Green (RoHS  
& no Sb/Br)  
6
Green (RoHS  
& no Sb/Br)  
SED  
6
3000  
3000  
250  
Green (RoHS  
& no Sb/Br)  
CEU  
CEU  
CEU  
CEU  
SEE  
6
Green (RoHS  
& no Sb/Br)  
6
Green (RoHS  
& no Sb/Br)  
6
250  
Green (RoHS  
& no Sb/Br)  
6
3000  
250  
Green (RoHS  
& no Sb/Br)  
6
Green (RoHS  
& no Sb/Br)  
SEE  
6
3000  
3000  
250  
Green (RoHS  
& no Sb/Br)  
CEV  
6
Green (RoHS  
& no Sb/Br)  
CEV  
6
Green (RoHS  
& no Sb/Br)  
CEV  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-Mar-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
INA212AIDCKTG4  
INA212BIDCKR  
INA212BIDCKT  
INA213AIDCKR  
INA213AIDCKRG4  
INA213AIDCKT  
INA213AIDCKTG4  
INA213AIRSWR  
INA213AIRSWT  
INA213BIDCKR  
INA213BIDCKT  
INA214AIDCKR  
INA214AIDCKRG4  
INA214AIDCKT  
INA214AIDCKTG4  
INA214AIRSWR  
INA214AIRSWT  
INA214BIDCKR  
ACTIVE  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
UQFN  
UQFN  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
UQFN  
UQFN  
SC70  
DCK  
6
6
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
CEV  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
RSW  
RSW  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
RSW  
RSW  
DCK  
3000  
250  
Green (RoHS  
& no Sb/Br)  
SEC  
SEC  
CFT  
CFT  
CFT  
CFT  
KPJ  
KPJ  
SEF  
SEF  
CFV  
CFV  
CFV  
CFV  
KRJ  
KRJ  
SEA  
6
Green (RoHS  
& no Sb/Br)  
6
3000  
3000  
250  
Green (RoHS  
& no Sb/Br)  
6
Green (RoHS  
& no Sb/Br)  
6
Green (RoHS  
& no Sb/Br)  
6
250  
Green (RoHS  
& no Sb/Br)  
10  
10  
6
3000  
250  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
3000  
250  
Green (RoHS  
& no Sb/Br)  
6
Green (RoHS  
& no Sb/Br)  
6
3000  
3000  
250  
Green (RoHS  
& no Sb/Br)  
6
Green (RoHS  
& no Sb/Br)  
6
Green (RoHS  
& no Sb/Br)  
6
250  
Green (RoHS  
& no Sb/Br)  
10  
10  
6
3000  
250  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
3000  
Green (RoHS  
& no Sb/Br)  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-Mar-2013  
Orderable Device  
INA214BIDCKT  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
ACTIVE  
SC70  
DCK  
6
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
SEA  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4)  
Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF INA214 :  
Automotive: INA214-Q1  
NOTE: Qualified Version Definitions:  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-Mar-2013  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 4  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
21-Feb-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
INA210AIDCKR  
INA210AIDCKR  
INA210AIDCKR  
INA210AIDCKT  
INA210AIDCKT  
INA210AIDCKT  
INA210AIRSWR  
INA210AIRSWT  
INA210BIDCKR  
INA210BIDCKT  
INA211AIDCKR  
INA211AIDCKR  
INA211AIDCKT  
INA211AIDCKT  
INA211BIDCKR  
INA211BIDCKT  
INA212AIDCKR  
INA212AIDCKT  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
UQFN  
UQFN  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
RSW  
RSW  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
6
6
3000  
3000  
3000  
250  
179.0  
180.0  
178.0  
179.0  
180.0  
178.0  
179.0  
179.0  
178.0  
178.0  
179.0  
180.0  
178.0  
179.0  
178.0  
178.0  
180.0  
180.0  
8.4  
8.4  
9.0  
8.4  
8.4  
9.0  
8.4  
8.4  
9.0  
9.0  
8.4  
8.4  
9.0  
8.4  
9.0  
9.0  
8.4  
8.4  
2.2  
2.25  
2.4  
2.5  
2.4  
2.5  
2.5  
2.4  
2.5  
2.1  
2.1  
2.5  
2.5  
2.5  
2.4  
2.5  
2.5  
2.5  
2.5  
2.4  
2.4  
1.2  
1.22  
1.2  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q1  
Q1  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
6
6
2.2  
1.2  
6
250  
2.25  
2.4  
1.22  
1.2  
6
250  
10  
10  
6
3000  
250  
1.7  
0.7  
1.7  
0.7  
3000  
250  
2.4  
1.2  
6
2.4  
1.2  
6
3000  
3000  
250  
2.2  
1.2  
6
2.25  
2.4  
1.22  
1.2  
6
6
250  
2.2  
1.2  
6
3000  
250  
2.4  
1.2  
6
2.4  
1.2  
6
3000  
250  
2.25  
2.25  
1.22  
1.22  
6
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
21-Feb-2013  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
INA212AIDCKT  
INA212AIDCKT  
INA212BIDCKR  
INA212BIDCKT  
INA213AIDCKR  
INA213AIDCKR  
INA213AIDCKT  
INA213AIDCKT  
INA213AIDCKT  
INA213AIRSWR  
INA213AIRSWT  
INA213BIDCKR  
INA213BIDCKT  
INA214AIDCKR  
INA214AIDCKR  
INA214AIDCKT  
INA214AIDCKT  
INA214AIRSWR  
INA214AIRSWT  
INA214BIDCKR  
INA214BIDCKT  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
UQFN  
UQFN  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
UQFN  
UQFN  
SC70  
SC70  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
RSW  
RSW  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
RSW  
RSW  
DCK  
DCK  
6
6
250  
250  
179.0  
178.0  
178.0  
178.0  
178.0  
179.0  
180.0  
178.0  
179.0  
179.0  
179.0  
178.0  
178.0  
178.0  
179.0  
179.0  
178.0  
179.0  
179.0  
178.0  
178.0  
8.4  
9.0  
9.0  
9.0  
9.0  
8.4  
8.4  
9.0  
8.4  
8.4  
8.4  
9.0  
9.0  
9.0  
8.4  
8.4  
9.0  
8.4  
8.4  
9.0  
9.0  
2.2  
2.4  
2.4  
2.4  
2.4  
2.2  
2.25  
2.4  
2.2  
1.7  
1.7  
2.4  
2.4  
2.4  
2.2  
2.2  
2.4  
1.7  
1.7  
2.4  
2.4  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.4  
2.5  
2.5  
2.1  
2.1  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.1  
2.1  
2.5  
2.5  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.22  
1.2  
1.2  
0.7  
0.7  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
0.7  
0.7  
1.2  
1.2  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q1  
Q1  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q1  
Q1  
Q3  
Q3  
6
3000  
250  
6
6
3000  
3000  
250  
6
6
6
250  
6
250  
10  
10  
6
3000  
250  
3000  
250  
6
6
3000  
3000  
250  
6
6
6
250  
10  
10  
6
3000  
250  
3000  
250  
6
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
21-Feb-2013  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
INA210AIDCKR  
INA210AIDCKR  
INA210AIDCKR  
INA210AIDCKT  
INA210AIDCKT  
INA210AIDCKT  
INA210AIRSWR  
INA210AIRSWT  
INA210BIDCKR  
INA210BIDCKT  
INA211AIDCKR  
INA211AIDCKR  
INA211AIDCKT  
INA211AIDCKT  
INA211BIDCKR  
INA211BIDCKT  
INA212AIDCKR  
INA212AIDCKT  
INA212AIDCKT  
INA212AIDCKT  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
UQFN  
UQFN  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
RSW  
RSW  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
6
6
3000  
3000  
3000  
250  
195.0  
202.0  
180.0  
195.0  
202.0  
180.0  
203.0  
203.0  
180.0  
180.0  
195.0  
202.0  
180.0  
195.0  
180.0  
180.0  
202.0  
202.0  
195.0  
180.0  
200.0  
201.0  
180.0  
200.0  
201.0  
180.0  
203.0  
203.0  
180.0  
180.0  
200.0  
201.0  
180.0  
200.0  
180.0  
180.0  
201.0  
201.0  
200.0  
180.0  
45.0  
28.0  
18.0  
45.0  
28.0  
18.0  
35.0  
35.0  
18.0  
18.0  
45.0  
28.0  
18.0  
45.0  
18.0  
18.0  
28.0  
28.0  
45.0  
18.0  
6
6
6
250  
6
250  
10  
10  
6
3000  
250  
3000  
250  
6
6
3000  
3000  
250  
6
6
6
250  
6
3000  
250  
6
6
3000  
250  
6
6
250  
6
250  
Pack Materials-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
21-Feb-2013  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
INA212BIDCKR  
INA212BIDCKT  
INA213AIDCKR  
INA213AIDCKR  
INA213AIDCKT  
INA213AIDCKT  
INA213AIDCKT  
INA213AIRSWR  
INA213AIRSWT  
INA213BIDCKR  
INA213BIDCKT  
INA214AIDCKR  
INA214AIDCKR  
INA214AIDCKT  
INA214AIDCKT  
INA214AIRSWR  
INA214AIRSWT  
INA214BIDCKR  
INA214BIDCKT  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
UQFN  
UQFN  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
UQFN  
UQFN  
SC70  
SC70  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
RSW  
RSW  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
RSW  
RSW  
DCK  
DCK  
6
6
3000  
250  
180.0  
180.0  
180.0  
195.0  
202.0  
180.0  
195.0  
203.0  
203.0  
180.0  
180.0  
180.0  
195.0  
195.0  
180.0  
203.0  
203.0  
180.0  
180.0  
180.0  
180.0  
180.0  
200.0  
201.0  
180.0  
200.0  
203.0  
203.0  
180.0  
180.0  
180.0  
200.0  
200.0  
180.0  
203.0  
203.0  
180.0  
180.0  
18.0  
18.0  
18.0  
45.0  
28.0  
18.0  
45.0  
35.0  
35.0  
18.0  
18.0  
18.0  
45.0  
45.0  
18.0  
35.0  
35.0  
18.0  
18.0  
6
3000  
3000  
250  
6
6
6
250  
6
250  
10  
10  
6
3000  
250  
3000  
250  
6
6
3000  
3000  
250  
6
6
6
250  
10  
10  
6
3000  
250  
3000  
250  
6
Pack Materials-Page 4  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

INA211AIDCKR

Voltage Output, High or Low Side Measurement, Bi-Directional Zero-Drift Series CURRENT SHUNT MONITOR
TI

INA211AIDCKT

Voltage Output, High or Low Side Measurement, Bi-Directional Zero-Drift Series CURRENT SHUNT MONITOR
TI

INA211B

Voltage Output, High or Low Side Measurement, Bi-Directional Zerø-Drift Series CURRENT-SHUNT MONITOR
TI

INA211BIDCKR

26V、双向、高精度电流感应放大器 | DCK | 6 | -40 to 125
TI

INA211BIDCKT

26V、双向、高精度电流感应放大器 | DCK | 6 | -40 to 125
TI

INA211BIRSWR

26V、双向、高精度电流感应放大器 | RSW | 10 | -40 to 125
TI

INA211BIRSWT

26V、双向、高精度电流感应放大器 | RSW | 10 | -40 to 125
TI

INA211BQDCKRQ1

AEC-Q100、26V、双向、高精度电流感应放大器 | DCK | 6 | -40 to 125
TI

INA211CIDCKR

26V、双向、高精度电流感应放大器 | DCK | 6 | -40 to 125
TI

INA211CIDCKT

26V、双向、高精度电流感应放大器 | DCK | 6 | -40 to 125
TI

INA211CIRSWR

26V、双向、高精度电流感应放大器 | RSW | 10 | -40 to 125
TI

INA211CIRSWT

26V、双向、高精度电流感应放大器 | RSW | 10 | -40 to 125
TI