DS90UH947TRGCRQ1 [TI]

支持 HDCP 的 1080p oLDI 双路 FPD-Link III 串行器 | RGC | 64 | -40 to 105;
DS90UH947TRGCRQ1
型号: DS90UH947TRGCRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

支持 HDCP 的 1080p oLDI 双路 FPD-Link III 串行器 | RGC | 64 | -40 to 105

光电二极管
文件: 总90页 (文件大小:2081K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DS90UH947-Q1  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
HDCP DS90UH947-Q1 1080p OpenLDI FPD-Link III 串行器  
1 特性  
3 说明  
1
符合面向汽车应用的 AEC-Q100 标准  
器件温度等级 2–40°C +105°CTA  
DS90UH947-Q1 是一款 OpenLDI FPD-Link III 桥  
接器件,与 FPD-Link IIIDS90UH940-  
Q1/DS90UH948-Q1解串器配合使用,可通过经济高效  
50Ω 单端同轴电缆或 100Ω 差分屏蔽双绞线 (STP)  
电缆提供单通道或双通道高速串行流。它对 OpenLDI  
输入进行串行化处理,支持高达 WUXGA 1080p60  
的视频分辨率(24 位色深)。  
支持高达 170 MHz 的时钟频率,可实现 WUXGA  
(1920x1200) 1080p60 分辨率和 24 位色深  
单路和双路 FPD-Link III 输出  
单链路:高达 96MHz 的像素时钟  
双链路:高达 170MHz 的像素时钟  
单通道和双通道 OpenLDI (LVDS) 接收器  
可配置的 18 RGB 24 RGB  
FPD-Link III 接口支持通过同一条差分链路进行视频和  
音频数据传输以及全双工控制(包括 I2C SPI 通  
信)。通过两个差分对实现视频数据和控制的整合可减  
小互连线尺寸和重量,并简化系统设计。通过使用低压  
差分信令、数据换序和随机生成更大限度地减少了电磁  
干扰 (EMI)。在向后兼容模式下,该器件在单一差分链  
路上最高可支持 WXGA 720p 分辨率(24 位色  
深)。  
具有片上密钥存储的集成型 HDCP v1.4 密码引擎  
高速反向通道,支持高达 2Mbps GPIO  
具有自动温度和老化补偿功能,支持长达 15 米的  
电缆  
具有 1Mbps 快速模式增强版的 I2C(主/从)  
SPI 直通接口  
向后兼容 DS90UH926Q-Q1 DS90UH928Q-Q1  
FPD-Link III 解串器  
DS90UH947-Q1 支持通过外部 I2S 接口接收多通道音  
频。该器件接收的音频数据会被加密并通过 FPD-Link  
III 接口发送出去,之后再由解串器重新生成。  
2 应用  
汽车信息娱乐:  
器件信息(1)  
车载信息娱乐 (IVI) 主机和人机交互界面 (HMI)  
模块  
器件型号  
封装  
VQFN (64)  
封装尺寸(标称值)  
DS90UH947-Q1  
9.00mm x 9.00mm  
后座娱乐系统  
数字仪表组  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
安全和监控摄像头  
应用 图  
VDDIO  
1.8V or 3.3V  
VDDIO  
1.8V  
1.2V  
1.8V  
1.1V  
3.3V  
FPD-Link  
(OpenLDI)  
FPD-Link  
(OpenLDI)  
FPD-Link III  
2 lanes @3Gbps / per  
Lane  
CLK+/-  
D0+/-  
CLK+/-  
D0+/-  
RIN0+  
RIN0-  
DOUT0+  
DOUT0-  
D1+/-  
D2+/-  
D3+/-  
D1+/-  
D2+/-  
D3+/-  
LVDS  
Display  
1080p60  
or Graphic  
Processor  
DOUT1+  
DOUT1-  
RIN1+  
RIN1-  
Graphics  
Processor  
DS90UH947-Q1  
Serializer  
DS90UH948-Q1  
Deserializer  
CLK2+/-  
D4+/-  
D5+/-  
D4+/-  
D5+/-  
I2C  
IDx  
I2C  
IDx  
D6+/-  
D7+/-  
D6+/-  
D7+/-  
D_GPIO  
(SPI)  
D_GPIO  
(SPI)  
HDCP œ High-Bandwidth Digital Content Protection  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNLS455  
 
 
 
DS90UH947-Q1  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
www.ti.com.cn  
目录  
7.3 Feature Description................................................. 15  
7.4 Device Functional Modes........................................ 33  
7.5 Programming........................................................... 35  
7.6 Register Maps......................................................... 38  
Application and Implementation ........................ 73  
8.1 Applications Information.......................................... 73  
8.2 Typical Applications ................................................ 73  
Power Supply Recommendations...................... 78  
9.1 Power-Up Requirements and PDB Pin................... 78  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 6  
6.1 Absolute Maximum Ratings ..................................... 6  
6.2 ESD Ratings.............................................................. 6  
6.3 Recommended Operating Conditions....................... 6  
6.4 Thermal Information.................................................. 7  
6.5 DC Electrical Characteristics .................................... 7  
6.6 AC Electrical Characteristics..................................... 9  
6.7 DC and AC Serial Control Bus Characteristics....... 10  
6.8 Recommended Timing for the Serial Control Bus .. 10  
6.9 Timing Diagrams..................................................... 11  
6.10 Typical Characteristics.......................................... 14  
Detailed Description ............................................ 15  
7.1 Overview ................................................................. 15  
7.2 Functional Block Diagram ....................................... 15  
8
9
10 Layout................................................................... 79  
10.1 Layout Guidelines ................................................. 79  
10.2 Layout Example .................................................... 80  
11 器件和文档支持 ..................................................... 81  
11.1 文档支持 ............................................................... 81  
11.2 ....................................................................... 81  
11.3 静电放电警告......................................................... 81  
11.4 术语表 ................................................................... 81  
12 机械、封装和可订购信息....................................... 81  
7
4 修订历史记录  
Changes from Original (November 2014) to Revision A  
Page  
Added TCLH1/2 and TCHL1/2 parameters to the Recommended Operating Conditions table..................................................... 6  
Change ITJIT specification from min to max and added test conditions to the AC Electrical Characteristics table ................ 9  
Removed tPLD Max specification in the AC Electrical Characteristics table............................................................................ 9  
Added additional HSCC information to the SPI Mode Configuration section....................................................................... 22  
Changed register information about GPIO0 modes x00 and x10 ........................................................................................ 42  
Changed register information about GPIO1 modes x00 and x10 ........................................................................................ 43  
Added registers 0x40, 0x41, 0x42........................................................................................................................................ 52  
Changed register 0x4F[7] information .................................................................................................................................. 53  
Changed register 0x4F[5] information .................................................................................................................................. 53  
Added page 0x10 registers................................................................................................................................................... 72  
Added information to Power-Up Requirements and PDB Pin section.................................................................................. 78  
2
Copyright © 2014–2019, Texas Instruments Incorporated  
 
DS90UH947-Q1  
www.ti.com.cn  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
5 Pin Configuration and Functions  
RGC Package  
64-Pin VQFN  
Top View  
32  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
INTB  
VDDOA11  
D0-  
MODE_SEL1  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
PDB  
RES1  
RES0  
D0+  
VDDHS11  
DOUT0+  
DOUT0-  
VDDS11  
VDD18  
D1-  
D1+  
D2-  
DS90UH947-Q1  
D2+  
CLK-  
Top view  
DOUT1+  
DOUT1-  
VDDHS11  
CLK+  
D3-  
D3+  
VDDOP11  
VDD18  
LFOLDI  
VDDOA11  
LF  
DAP = GND  
IDx  
MODE_SEL0  
VDDP11  
Pin Functions  
PIN  
I/O, TYPE  
DESCRIPTION  
NAME  
NO.  
LVDS INPUT PINS  
D7-  
D6-  
D5-  
D4-  
D3-  
D2-  
D1-  
D0-  
7
5
3
I, LVDS  
Inverting LVDS Data Inputs  
Each pair requires external 100-Ω differential termination for standard LVDS levels  
1
59  
55  
53  
51  
D7+  
D6+  
D5+  
D4+  
D3+  
D2+  
D1+  
D0+  
8
6
4
I, LVDS  
True LVDS Data Inputs  
Each pair requires external 100-Ω differential termination for standard LVDS levels  
2
60  
56  
54  
52  
CLK-  
57  
I, LVDS  
Inverting LVDS Clock Input  
Each pair requires external 100-Ω differential termination for standard LVDS levels  
Copyright © 2014–2019, Texas Instruments Incorporated  
3
DS90UH947-Q1  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O, TYPE  
DESCRIPTION  
NAME  
NO.  
CLK+  
58  
I, LVDS  
Analog  
True LVDS Clock Input  
Each pair requires external 100-Ω differential termination for standard LVDS levels  
LFOLDI  
63  
OpenLDI Loop Filter  
Connect to a 10-nF capacitor to GND  
FPD-LINK III SERIAL PINS  
DOUT0-  
DOUT0+  
DOUT1-  
DOUT1+  
LF  
26  
27  
22  
23  
20  
I/O  
I/O  
FPD-Link III Inverting Output 0  
The output must be coupled with a 33-nF capacitor  
FPD-Link III True Output 0  
The output must be coupled with a 33-nF capacitor  
I/O  
FPD-Link III Inverting Output 1  
The output must be coupled with a 33-nF capacitor  
I/O  
FPD-Link III True Output 1  
The output must be coupled with a 33-nF capacitor  
Analog  
FPD-Link III Loop Filter  
Connect to a 10-nF capacitor to GND  
CONTROL PINS  
SDA  
48  
47  
13  
IO, Open-Drain I2C Data Input / Output Interface  
Open-drain. Must have an external pullup resistor to 1.8 V or 3.3 V. DO NOT FLOAT.  
Recommended pullup: 4.7 kΩ.  
SCL  
IO, Open-Drain I2C Clock Input / Output Interface  
Open-drain. Must have an external pullup resistor to 1.8 V or 3.3 V. DO NOT FLOAT.  
Recommended pullup: 4.7 kΩ.  
I2CSEL  
I, LVCMOS  
I, Analog  
I2C Voltage Level Strap Option  
Tie to VDDIO with a 10-kΩ resistor for 1.8-V I2C operation.  
Leave floating for 3.3-V I2C operation.  
This pin is read as an input at power up.  
IDx  
19  
I2C Address Select  
External pullup to VDD18 is required under all conditions. DO NOT FLOAT.  
Connect to external pullup and pulldown resistors to create a voltage divider.  
MODE_SEL0  
MODE_SEL1  
PDB  
18  
32  
31  
49  
Analog  
Analog  
Mode Select 0 Input. Refer to Table 7.  
Mode Select 1 Input. Refer to Table 8.  
Power-Down Mode Input Pin  
I, LVCMOS  
INTB  
O, Open-Drain Remote interrupt  
INTB = H, Normal Operation  
INTB = L, Interrupt Request  
Recommended pullup: 4.7 kΩ to VDDIO. DO NOT FLOAT.  
REM_INTB  
10  
O, LVCMOS LVCMOS Output  
REM_INTB will directly mirror the status of the INTB_IN signal from the remote device. No  
separate serializer register read will be required to reset and change the status of this pin.  
SPI PINS  
MOSI  
46  
45  
44  
43  
IO, LVCMOS SPI Master Output Slave Input  
Only available in Dual Link Mode. Shared with D_GPIO0  
MISO  
SPLK  
SS  
IO, LVCMOS SPI Master Input Slave Output  
Only available in Dual Link Mode. Shared with D_GPIO1  
IO, LVCMOS SPI Clock  
Only available in Dual Link Mode. Shared with D_GPIO2  
IO, LVCMOS SPI Slave Select  
Only available in Dual Link Mode. Shared with D_GPIO3  
HIGH-SPEED GPIO PINS  
D_GPIO0  
D_GPIO1  
D_GPIO2  
46  
45  
44  
IO, LVCMOS High-Speed GPIO0  
Only available in Dual Link Mode. Shared with MOSI  
IO, LVCMOS High-Speed GPIO1  
Only available in Dual Link Mode. Shared with MISO  
IO, LVCMOS High-Speed GPIO2  
Only available in Dual Link Mode. Shared with SPLK  
4
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH947-Q1  
www.ti.com.cn  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
Pin Functions (continued)  
PIN  
I/O, TYPE  
DESCRIPTION  
NAME  
NO.  
D_GPIO3  
43  
IO, LVCMOS High-Speed GPIO3  
Only available in Dual Link Mode. Shared with SS  
GPIO PINS  
GPIO0  
14  
15  
38  
IO, LVCMOS General-Purpose Input/Output 0  
IO, LVCMOS General-Purpose Input/Output 1  
GPIO1  
GPIO2  
IO, LVCMOS General-Purpose Input/Output 2  
Shared with I2S_DC  
GPIO3  
39  
IO, LVCMOS General-Purpose Input/Output 3  
Shared with I2S_DD  
REGISTER-ONLY GPIO PINS  
GPIO5_REG  
GPIO6_REG  
GPIO7_REG  
GPIO8_REG  
37  
36  
34  
35  
IO, LVCMOS General-Purpose Input/Output 5  
Local register control only. Shared with I2S_DB  
IO, LVCMOS General-Purpose Input/Output 6  
Local register control only. Shared with I2S_DA  
IO, LVCMOS General-Purpose Input/Output 7  
Local register control only. Shared with I2S_WC  
IO, LVCMOS General-Purpose Input/Output 8  
Local register control only. Shared with I2S_CLK  
SLAVE MODE LOCAL I2S CHANNEL PINS  
I2S_WC  
I2S_CLK  
I2S_DA  
I2S_DB  
I2S_DC  
I2S_DD  
34  
35  
36  
37  
38  
39  
I, LVCMOS  
I, LVCMOS  
I, LVCMOS  
I, LVCMOS  
I, LVCMOS  
I, LVCMOS  
Slave Mode I2S Word Clock Input. Shared with GPIO7_REG  
Slave Mode I2S Clock Input. Shared with GPIO8_REG  
Slave Mode I2S Data Input. Shared with GPIO6_REG  
Slave Mode I2S Data Input. Shared with GPIO5_REG  
Slave Mode I2S Data Input. Shared with GPIO2  
Slave Mode I2S Data Input. Shared with GPIO3  
POWER AND GROUND PINS  
VDD18  
24  
62  
Power  
Power  
1.8-V (±5%) supply. Refer to Figure 35 or Figure 36.  
1.1-V (±5%) supply. Refer to Figure 35 or Figure 36.  
VDDOA11  
50  
64  
VDDA11  
12  
Power  
Power  
1.1-V (±5%) supply. Refer to Figure 35 or Figure 36.  
1.1-V (±5%) supply. Refer to Figure 35 or Figure 36.  
VDDHS11  
21  
28  
VDDL11  
9
Power  
1.1-V (±5%) supply. Refer to Figure 35 or Figure 36.  
42  
VDDOP11  
VDDP11  
VDDS11  
VDDIO  
61  
17  
25  
Power  
Power  
Power  
Power  
1.1-V (±5%) supply. Refer to Figure 35 or Figure 36.  
1.1-V (±5%) supply. Refer to Figure 35 or Figure 36.  
1.1-V (±5%) supply. Refer to Figure 35 or Figure 36.  
1.8-V (±5%) LVCMOS I/O Power. Refer to Figure 35 or Figure 36.  
16  
33  
GND  
Thermal  
Pad  
Ground.  
OTHER PINS  
RES0  
RES2  
RES3  
29  
40  
41  
Reserved. Tie to GND.  
RES1  
NC  
30  
11  
Reserved. Connect with 50Ω to GND.  
No connect. Leave floating Do not connect to VDD or GND.  
Copyright © 2014–2019, Texas Instruments Incorporated  
5
DS90UH947-Q1  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
(1)(2)(2)  
See  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
0.3  
MAX  
1.7  
UNIT  
VDD11  
VDD18  
VDDIO  
Supply Voltage  
V
V
V
V
Supply Voltage  
2.5  
Supply Voltage  
2.5  
OpenLDI Inputs  
2.75  
LVCMOS I/O Voltage  
1.8-V Tolerant I/O  
3.3-V Tolerant I/O  
FPD-Link III Output Voltage  
Junction Temperature  
Storage Temperature  
VDDIO + 0.3  
2.5  
V
V
4.0  
V
1.7  
V
150  
°C  
°C  
Tstg  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) For soldering specifications, see product folder at www.ti.com and Absolute Maximum Ratings for Soldering (SNOA549).  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
HBM ESD Classification Level 2  
±2000  
Charged device model (CDM), per AEC Q100-011  
CDM ESD Classification Level C5  
±750  
±15000  
±8000  
±15000  
±8000  
Air Discharge (DOUT0+, DOUT0-  
DOUT1+, DOUT1-  
,
,
)
(IEC 61000-4-2)  
V(ESD)  
Electrostatic discharge  
V
RD = 330 Ω, CS = 150 pF  
Contact Discharge (DOUT0+  
,
DOUT0-, DOUT1+, DOUT1-  
)
Air Discharge (DOUT0+, DOUT0-  
DOUT1+, DOUT1-  
(ISO10605)  
RD = 330 Ω, CS = 150 pF  
RD = 2 kΩ, CS = 150 pF or 330 pF  
)
Contact Discharge (DOUT0+  
DOUT0-, DOUT1+, DOUT1-  
,
)
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
MIN  
1.045  
1.71  
NOM  
1.1  
1.8  
1.8  
1.8  
3.3  
25  
MAX  
UNIT  
V
VDD11  
VDD18  
VDDIO  
Supply Voltage  
1.155  
1.89  
1.89  
1.89  
3.465  
105  
Supply Voltage  
V
LVCMOS Supply Voltage  
VDDI2C, 1.8-V Operation  
VDDI2C, 3.3-V Operation  
Operating Free Air Temperature  
1.71  
V
1.71  
V
3.135  
40  
V
TA  
°C  
TCLH1  
Allowable ending ambient temperature for continuous PLL lock when ambient  
temperature is rising under the following condition:  
40°C starting ambient temperature (TS) < 0°C.(1)  
TS  
TS  
80  
°C  
°C  
TCLH2  
Allowable ending ambient temperature for continuous PLL lock when ambient  
temperature is rising under the following condition:  
0°C starting ambient temperature (TS) 105°C.(1)  
105  
(1) The input and output PLLs are calibrated at the ambient start up temperature (TS) when the device is powered on or when reset using  
the PDB pin. The PLLs will stay locked up to the specified ending temperature. A more detailed description can be found in “Handling  
System Temperature Ramps on the DS90Ux949, DS90Ux929 and DS90Ux947”.  
6
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH947-Q1  
www.ti.com.cn  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
Recommended Operating Conditions (continued)  
MIN  
NOM  
MAX  
UNIT  
TCHL1  
Allowable ending ambient temperature for continuous PLL lock when ambient  
temperature is rising under the following condition:  
45°C < starting ambient temperature (TS) 105°C.(1)  
25  
TS  
TS  
°C  
°C  
TCHL2  
Allowable ending ambient temperature for continuous PLL lock when ambient  
temperature is rising under the following condition:  
T
S 20  
20°C starting ambient temperature (TS) 45°C.(1)  
OpenLDI Clock Frequency (Single Link)  
OpenLDI Clock Frequency (Dual Link)  
25  
50  
170  
170  
MHz  
MHz  
6.4 Thermal Information  
DS90UH947-Q1  
THERMAL METRIC(1)  
VQFN  
64 PINS  
25.8  
11.4  
5.1  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
5.1  
RθJC(bot)  
0.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report (SPRA953).  
6.5 DC Electrical Characteristics  
over recommended operating supply and temperature ranges (unless otherwise noted)  
PARAMETER  
1.8-V LVCMOS I/O  
TEST CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
MAX  
UNIT  
High Level Input  
Voltage  
PDB,  
I2CSEL,D_GPIO0/  
MOSI,  
D_GPIO1/MISO,  
D_GPIO2/SPLK,  
D_GPIO3/SS,  
I2S_DC/GPIO2,  
I2S_DD/GPIO3,  
I2S_DB/GPIO5_RE  
G,  
VIH  
VIL  
0.65 × VDDIO  
0
V
V
Low Level Input  
Voltage  
0.35 × VDDIO  
IIN  
Input Current  
VIN = 0 V or 1.89 V  
10  
10  
μA  
I2S_DA/GPIO6_RE  
G,  
I2S_CLK/GPIO8_R  
EG,  
I2S_WC/GPIO7_R  
EG  
High Level Output  
Voltage  
VOH  
VOL  
IOS  
IOH = 4 mA  
0.7 × VDDIO  
GND  
VDDIO  
V
V
Low Level Output  
Voltage  
IOL = 4 mA  
0.3 × VDDIO  
Same as above  
Output Short-Circuit  
Current  
VOUT = 0 V  
-30  
mA  
μA  
TRI-STATE™ Output  
Current  
IOZ  
VOUT = 0 V or VDDIO, PDB = L  
10  
10  
OpenLDI INPUTS  
Differential Input  
Voltage  
|VID  
|
D[7:0], CLK  
D[7:0]  
100  
0
600  
2.4  
mV  
V
Common-Mode  
Voltage  
VCM  
Copyright © 2014–2019, Texas Instruments Incorporated  
7
DS90UH947-Q1  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
www.ti.com.cn  
DC Electrical Characteristics (continued)  
over recommended operating supply and temperature ranges (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
PDB = H  
PIN/FREQ.  
MIN  
TYP  
MAX  
10  
UNIT  
IIN  
Input Current  
–10  
µA  
8
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH947-Q1  
www.ti.com.cn  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
DC Electrical Characteristics (continued)  
over recommended operating supply and temperature ranges (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
MAX  
UNIT  
FPD-LINK III DIFFERENTIAL DRIVER  
Output Differential  
Voltage  
VODp-p  
900  
1200  
mVp-p  
mV  
mV  
mV  
mA  
Output Voltage  
ΔVOD  
1
50  
50  
60  
Unbalance  
Output Differential  
VOS  
550  
Offset Voltage  
DOUT[1:0]+,  
DOUT[1:0]-  
Offset Voltage  
ΔVOS  
1
Unbalance  
Output Short Circuit  
Current  
IOS  
RT  
FPD-Link III Outputs = 0 V  
Single-ended  
-20  
50  
Termination  
Resistance  
40  
SUPPLY CURRENT  
IDD11  
IDD18  
335  
469  
75  
mA  
mA  
Supply Current,  
Normal Operation  
Checkerboard Pattern  
Checkerboard Pattern  
PDB = L  
50  
Total  
Power  
Total Power, Normal  
Operation  
459  
684  
mW  
IDDZ  
5
5
15  
15  
mA  
mA  
Supply Current,  
Power Down Mode  
IDDZ18  
6.6 AC Electrical Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
MAX  
UNIT  
GPIO FREQUENCY(1)  
Single-Lane, CLK = 25 MHz -  
96 MHz  
GPIO[3:0],  
D_GPIO[3:0]  
0.25 × CLK  
Forward Channel GPIO  
Frequency  
Rb,FC  
MHz  
Dual-Lane, CLK/2 = 25 MHz -  
85 MHz  
0.125 ×  
CLK  
Single-Lane, CLK = 25 MHz -  
96 MHz  
GPIO[3:0],  
D_GPIO[3:0]  
>2 / CLK  
GPIO Pulse Width,  
Forward Channel  
tGPIO,FC  
s
Dual-Lane, CLK/2 = 25 MHz -  
85 MHz  
>2 / (CLK/2)  
OpenLDI INPUTS  
Input Total Jitter  
Tolerance  
FPD-LINK III OUTPUT  
Low Voltage Differential  
(3)  
Jitter frequency CLK/40  
CLK±,  
D[7:0]±  
0.2 UIOLDI  
(2)  
ITJIT  
tLHT  
Low-to-High Transition  
Time  
80  
ps  
Low Voltage Differential  
High-to-Low Transition  
Time  
tHLT  
80  
ps  
ns  
Output Active to OFF  
Delay  
tXZD  
PDB = L  
100  
tPLD  
tSD  
Lock Time (OpenLDI Rx)  
Delay — Latency  
5
ms  
T(4)  
CLK±  
294  
(1) Back channel rates are available on the companion deserializer datasheet.  
(2) Includes data to clock skew, pulse position variation.  
(3) One bit period of the OpenLDI input.  
(4) Video pixel clock period when device in dual pixel OpenLDI input and dual FPD-Link III output modes.  
Copyright © 2014–2019, Texas Instruments Incorporated  
9
DS90UH947-Q1  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
www.ti.com.cn  
AC Electrical Characteristics (continued)  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
Random Pattern  
PIN/FREQ.  
MIN  
TYP  
MAX  
UNIT  
Single-Lane:  
High pass  
filter CLK/20  
Output Total  
Jitter(Figure 6 )  
(5)  
tDJIT  
0.3  
UIFPD3  
Dual-lane:  
High pass  
filter CLK/40  
Jitter Transfer Function  
(-3-dB Bandwidth)  
λSTXBW  
δSTX  
1
MHz  
dB  
Jitter Transfer Function  
Peaking  
0.1  
(5) One bit period of the serializer output.  
6.7 DC and AC Serial Control Bus Characteristics  
over VDDI2C supply and temperature ranges unless otherwise specified. VDDI2C can be 1.8V (±5%) or 3.3V (±5%) (refer to  
I2CSEL pin description for 1.8-V or 3.3-V operation).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
0.7 ×  
VDDI2C  
SDA and SCL, VDDI2C = 1.8 V  
V
VIH,I2C  
Input High Level, I2C  
0.7 ×  
VDDI2C  
SDA and SCL, VDDI2C = 3.3 V  
SDA and SCL, VDDI2C = 1.8 V  
V
0.3 ×  
V
VDDI2C  
VIL,I2C  
Input Low Level Voltage, I2C  
0.3 ×  
V
SDA and SCL, VDDI2C = 3.3 V  
VDDI2C  
VHY  
Input Hysteresis, I2C  
Output Low Level, I2C  
SDA and SCL, VDDI2C = 1.8 V or 3.3 V  
>50  
mV  
SDA and SCL, VDDI2C = 1.8-V, Fast-Mode, 3-mA Sink  
Current  
0.2 ×  
V
GND  
VDDI2C  
VOL,I2C  
SDA and SCL, VDDI2C = 3.3-V, 3-mA Sink Current  
SDA and SCL, VDDI2C = 0 V  
GND  
-10  
0.4  
+10  
10  
V
µA  
µA  
pF  
IIN,I2C  
Input Current, I2C  
SDA and SCL, VDDI2C = VDD18 or VDD33  
SDA and SCL  
-10  
CIN,I2C  
Input Capacitance, I2C  
5
6.8 Recommended Timing for the Serial Control Bus  
over I2C supply and temperature ranges unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
MIN  
>0  
TYP  
MAX  
UNIT  
Standard-Mode  
Fast-Mode  
100 kHz  
400 kHz  
fSCL  
SCL Clock Frequency  
>0  
Fast-Mode Plus  
Standard-Mode  
Fast-Mode  
>0  
1
MHz  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
4.7  
1.3  
0.5  
4.0  
0.6  
0.26  
4.0  
0.6  
0.26  
tLOW  
SCL Low Period  
SCL High Period  
Fast-Mode Plus  
Standard-Mode  
Fast-Mode  
tHIGH  
Fast-Mode Plus  
Standard-Mode  
Fast-Mode  
Hold time for a start or a  
repeated start condition  
tHD;STA  
Fast-Mode Plus  
10  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH947-Q1  
www.ti.com.cn  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
Recommended Timing for the Serial Control Bus (continued)  
over I2C supply and temperature ranges unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
MIN  
4.7  
TYP  
MAX  
UNIT  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Standard-Mode  
Fast-Mode  
Set Up time for a start or a  
repeated start condition  
tSU;STA  
tHD;DAT  
tSU;DAT  
tSU;STO  
tBUF  
0.6  
0.26  
0
Fast-Mode Plus  
Standard-Mode  
Fast-Mode  
Data Hold Time  
0
Fast-Mode Plus  
Standard-Mode  
Fast-Mode  
0
250  
100  
50  
Data Set Up Time  
Fast-Mode Plus  
Standard-Mode  
Fast-Mode  
4.0  
0.6  
0.26  
4.7  
1.3  
0.5  
Set Up Time for STOP  
Condition  
Fast-Mode Plus  
Standard-Mode  
Fast-Mode  
Bus Free Time  
Between STOP and START  
Fast-Mode Plus  
Standard-Mode  
Fast-Mode  
1000  
tr  
SCL and SDA Rise Time,  
300  
120  
300  
300  
120  
50  
Fast-Mode Plus  
Standard-Mode  
Fast-Mode  
tf  
SCL and SDA Fall Time,  
Input Filter  
Fast-Mode Plus  
Fast-Mode  
tSP  
Fast-Mode Plus  
50  
6.9 Timing Diagrams  
DOUT+  
DOUT-  
100 nF  
Differential probe  
SCOPE  
BW û 4GHz  
CLK±  
D[7:0]±  
Input Impedance û 100 kW  
ú 0.5 pf  
100W  
D
C
L
BW û 3.5 GHz  
100 nF  
D
OUT  
-
V
OD/2  
Single Ended  
V
OD/2  
D
+
OUT  
V
OS  
ö
0V  
V
OD  
(D  
+) - (D  
OUT  
-)  
OUT  
0V  
Differential  
Figure 1. Serializer VOD Output  
Copyright © 2014–2019, Texas Instruments Incorporated  
11  
DS90UH947-Q1  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
www.ti.com.cn  
Timing Diagrams (continued)  
80%  
20%  
(DOUT+) - (DOUT-)  
0V  
VOD  
t
t
HLT  
LHT  
Figure 2. Output Transition Times  
Previous Cycle  
Next Cycle  
CLK  
(Differential)  
1 UI  
1 UI  
1 UI  
1 UI  
1 UI  
1 UI  
1 UI  
1 UI  
1 UI  
D[7:0]  
(Differential)  
tRSP(min)  
Figure 3. OpenLDI Input Clock and Data Jitter  
VDD  
VDDIO  
PDB  
CLK (Diff.)  
t
PLD  
DOUT  
(Diff.)  
Driver On  
Driver OFF, V  
OD  
= 0V  
Figure 4. Serializer Lock Time  
N-1  
N
N+1  
N+2  
D[7:0]  
CLK  
t
SD  
STOP START  
STOP  
BIT  
START  
BIT  
STOP  
BIT  
START  
STOP  
BIT  
START STOP  
BIT BIT  
SYMBOL N  
BIT BIT  
BIT  
SYMBOL N-4  
SYMBOL N-3  
SYMBOL N-2  
SYMBOL N-1  
0
1
2
0
1
2
0
1
2
0
1
2
0
1
2
DOUT  
Figure 5. Latency Delay  
12  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH947-Q1  
www.ti.com.cn  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
Timing Diagrams (continued)  
t
t
DJIT  
DJIT  
DOUT  
(Diff.)  
EYE OPENING  
0V  
t
(1 UI)  
BIT  
Figure 6. Serializer Output Jitter  
CLK  
D3  
D2  
D1  
D0  
Cycle N  
Cycle N+1  
Figure 7. Single OpenLDI Checkerboard Data Pattern  
SDA  
SCL  
t
BUF  
t
f
t
t
HD;STA  
t
r
LOW  
t
t
SP  
t
f
r
t
t
HD;STA  
SU;STA  
t
SU;STO  
t
HIGH  
t
t
SU;DAT  
HD;DAT  
STOP START  
START  
REPEATED  
START  
Figure 8. Serial Control Bus Timing Diagram  
T
t
LC  
t
HC  
V
IH  
I2S_CLK  
V
IL  
t
t
hr  
sr  
I2S_WC  
I2S_D[A,B,C,D]  
Figure 9. I2S Timing Diagram  
Copyright © 2014–2019, Texas Instruments Incorporated  
13  
DS90UH947-Q1  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
www.ti.com.cn  
6.10 Typical Characteristics  
Figure 10. Serializer Output at 2.975 Gbps (85-MHz  
OpenLDI Clock)  
Figure 11. Serializer Output at 3.36 Gbps (96-MHz OpenLDI  
Clock)  
14  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH947-Q1  
www.ti.com.cn  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
7 Detailed Description  
7.1 Overview  
The DS90UH947-Q1 converts a single or dual FPD-Link (Open LDI) interface (up to 8 LVDS lanes + 1 clock) to  
an FPD-Link III interface. This device transmits a 35-bit symbol over a single serial pair operating up to 3.36Gbps  
line rate, or two serial pairs operating up to 2.975Gbps line rate. The serial stream contains an embedded clock,  
video control signals, RGB video data, and audio data. The payload is DC-balanced to enhance signal quality  
and support AC coupling.  
The DS90UH947-Q1 serializer is intended for use with a DS90UH926Q-Q1, DS90UH928Q-Q1, DS90UH940-Q1,  
DS90UH948-Q1 deserializer.  
The DS90UH947-Q1 serializer and companion deserializer incorporate an I2C compatible interface. The I2C  
compatible interface allows programming of serializer or deserializer devices from a local host controller. In  
addition, the devices incorporate a bidirectional control channel (BCC) that allows communication between  
serializer/deserializer as well as remote I2C slave devices.  
The bidirectional control channel (BCC) is implemented via embedded signaling in the high-speed forward  
channel (serializer to deserializer) combined with lower speed signaling in the reverse channel (deserializer to  
serializer). Through this interface, the BCC provides a mechanism to bridge I2C transactions across the serial  
link from one I2C bus to another. The implementation allows for arbitration with other I2C compatible masters at  
either side of the serial link.  
7.2 Functional Block Diagram  
Single/Dual  
Control  
FPD3 TX  
Analog  
FPD-Link III TX  
Digital  
FPD-Link III  
FPD-Link III  
Open-LDI  
Open-LDI  
OLDI  
Interface  
PAT  
GEN  
FPD3  
Output  
Select  
Open LDI  
Analog  
HDCP  
FPD-Link III TX  
Digital  
FPD3 TX  
Analog  
Audio  
Config  
Regs  
Clocks  
DFT  
I2C  
Interface  
I2S  
I2C  
7.3 Feature Description  
7.3.1 High-Speed Forward Channel Data Transfer  
The High-Speed Forward Channel is composed of 35 bits of data containing RGB data, sync signals, I2C,  
GPIOs, and I2S audio transmitted from serializer to deserializer. Figure 12 shows the serial stream per clock  
cycle. This data payload is optimized for signal transmission over an AC coupled link. Data is randomized,  
balanced and scrambled.  
C0  
C1  
Figure 12. FPD-Link III Serial Stream  
Copyright © 2014–2019, Texas Instruments Incorporated  
15  
 
DS90UH947-Q1  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
www.ti.com.cn  
Feature Description (continued)  
The device supports OpenLDI clocks in the range of 25 MHz to 96 MHz over one lane, or 50 MHz to 170 MHz  
over two lanes. The FPD-Link III serial stream rate is 3.36 Gbps maximum (875 Mbps minimum) , or 2.975 Gbps  
maximum per lane (875 Mbps minimum) when transmitting over both lanes.  
7.3.2 Back Channel Data Transfer  
The Backward Channel provides bidirectional communication between the display and host processor. The  
information is carried from the deserializer to the serializer as serial frames. The back channel control data is  
transferred over both serial links along with the high-speed forward data, DC balance coding and embedded  
clock information. This architecture provides a backward path across the serial link together with a high-speed  
forward channel. The back channel contains the I2C, CRC and 4 bits of standard GPIO information with 5, 10, or  
20 Mbps line rate (configured by the compatible deserializer).  
7.3.3 FPD-Link III Port Register Access  
The DS90UH947-Q1 contains two downstream ports, therefore some registers must be duplicated to allow  
control and monitoring of the two ports. To facilitate this, a TX_PORT_SEL register controls access to the two  
sets of registers. Registers that are shared between ports (not duplicated) will be available independent of the  
settings in the TX_PORT_SEL register.  
Setting the TX_PORT0_SEL or TX_PORT1_SEL bit will allow a read of the register for the selected port. If both  
bits are set, port1 registers will be returned. Writes will occur to ports for which the select bit is set, allowing  
simultaneous writes to both ports if both select bits are set.  
Setting the PORT1_I2C_EN bit will enable a second I2C slave address, allowing access to the second port  
registers through the second I2C address. If this bit is set, the TX_PORT0_SEL and TX_PORT1_SEL bits will be  
ignored.  
7.3.4 OpenLDI Input Frame and Color Bit Mapping Select  
The DS90UH947-Q1 can be configured to accept 24-bit color (8-bit RGB) with 2 different mapping schemes,  
shown in Figure 13 and Figure 14. Each frame corresponds to a single pixel clock (PCLK) cycle. The LVDS clock  
input to CLK± follows a 4:3 duty cycle scheme, with each 28-bit pixel frame starting with two LVDS bit clock  
periods high, three low, and ending with two high. The mapping scheme is controlled by MAPSEL strap option or  
by Register (Table 10).  
16  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH947-Q1  
www.ti.com.cn  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
Feature Description (continued)  
CLK +/-  
(Differential)  
Previous cycle  
Current cycle  
GO0  
BO1  
RO5  
BO0  
RO4  
GO5  
RO3  
GO4  
RO2  
GO3  
RO1  
GO2  
RO0  
GO1  
D0 +/-  
D1 +/-  
D2 +/-  
DE  
--  
VS  
HS  
BO5  
GO7  
BO4  
GO6  
BO3  
RO7  
BO2  
RO6  
BO7  
BO6  
D3 +/-  
D4 +/-  
GE0  
BE1  
RE5  
BE0  
RE4  
GE5  
RE3  
GE4  
RE2  
GE3  
RE1  
GE2  
RE0  
GE1  
D5 +/-  
D6 +/-  
DE  
--  
VS  
HS  
BE5  
GE7  
BE4  
GE6  
BE3  
RE7  
BE2  
RE6  
BE7  
BE6  
D7 +/-  
Figure 13. 24-Bit Color Dual Pixel Mapping: MSBs on D3/D7 (OpenLDI Mapping)  
Copyright © 2014–2019, Texas Instruments Incorporated  
17  
DS90UH947-Q1  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
www.ti.com.cn  
Feature Description (continued)  
CLK +/-  
(Differential)  
Previous cycle  
Current cycle  
GO2  
BO3  
RO7  
BO2  
RO6  
GO7  
RO5  
RO4  
GO5  
RO3  
GO4  
RO2  
D0 +/-  
GO6  
GO3  
BO4  
RO0  
D1 +/-  
D2 +/-  
DE  
--  
VS  
HS  
BO7  
GO1  
BO6  
GO0  
BO5  
RO1  
BO1  
BO0  
D3 +/-  
D4 +/-  
GE2  
BE3  
RE7  
BE2  
RE6  
GE7  
RE5  
GE6  
RE4  
GE5  
RE3  
GE4  
RE2  
GE3  
D5 +/-  
D6 +/-  
DE  
--  
VS  
HS  
BE7  
GE1  
BE6  
GE0  
BE5  
RE1  
BE4  
RE0  
BE1  
BE0  
D7 +/-  
Figure 14. 24-Bit Color Dual Pixel Mapping: LSBs on D3/D7 (SPWG Mapping)  
CLK +/-  
(Differential)  
Previous cycle  
Current cycle  
GO0  
BO1  
RO5  
BO0  
RO4  
GO5  
RO3  
RO2  
GO3  
RO1  
GO2  
RO0  
D0 +/-  
GO4  
GO1  
BO2  
RO6  
D1 +/-  
D2 +/-  
DE  
--  
VS  
HS  
BO5  
GO7  
BO4  
GO6  
BO3  
RO7  
BO7  
BO6  
D3 +/-  
D4~D7 +/-  
Figure 15. 24-Bit Color Single Pixel Mapping: MSBs on D3 (OpenLDI Mapping)  
18  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH947-Q1  
www.ti.com.cn  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
Feature Description (continued)  
CLK +/-  
(Differential)  
Previous cycle  
Current cycle  
GO2  
BO3  
RO7  
BO2  
RO6  
GO7  
RO5  
GO6  
RO4  
GO5  
RO3  
GO4  
RO2  
GO3  
D0 +/-  
D1 +/-  
D2 +/-  
DE  
--  
VS  
HS  
BO7  
GO1  
BO6  
GO0  
BO5  
RO1  
BO4  
RO0  
BO1  
BO0  
D3 +/-  
D4~D7 +/-  
Figure 16. 24-Bit Color Single Pixel Mapping: LSBs on D3 (SPWG Mapping)  
7.3.5 Video Control Signals  
The video control signal bits embedded in the high-speed FPD-Link LVDS are subject to certain limitations  
relative to the video pixel clock period (PCLK). By default, the DS90UH947-Q1 applies a minimum pulse width  
filter on these signals to help eliminate spurious transitions.  
Normal Mode Control Signals (VS, HS, DE) have the following restrictions:  
Horizontal Sync (HS): The video control signal pulse width must be 3 PCLKs or longer when the Control  
Signal Filter (register bit 0x03[4]) is enabled (default). Disabling the Control Signal Filter removes this  
restriction (minimum is 1 PCLK). See Table 10. HS can have at most two transitions per 130 PCLKs.  
Vertical Sync (VS): The video control signal pulse is limited to 1 transition per 130 PCLKs. Thus, the minimum  
pulse width is 130 PCLKs.  
Data Enable Input (DE): The video control signal pulse width must be 3 PCLKs or longer when the Control  
Signal Filter (register bit 0x03[4]) is enabled (default). Disabling the Control Signal Filter removes this  
restriction (minimum is 1 PCLK). See Table 10. DE can have at most two transitions per 130 PCLKs.  
7.3.6 Power Down (PDB)  
The Serializer has a PDB input pin to ENABLE or POWER DOWN the device. This pin may be controlled by an  
external device, or through VDDIO, where VDDIO = 1.71 V to 1.89 V. To save power, disable the link when the  
display is not needed (PDB = LOW). Ensure that this pin is not driven HIGH before all power supplies have  
reached final levels. When PDB is driven low, ensure that the pin is driven to 0V for at least 3ms before releasing  
or driving high. In the case where PDB is pulled up to VDDIO directly, a 10-kpull-up resistor and a >10µF  
capacitor to ground are required (See Power-Up Requirements and PDB Pin).  
Toggling PDB low will POWER DOWN the device and RESET all control registers to default. During this time,  
PDB must be held low for a minimum of 3ms before going high again.  
7.3.7 Serial Link Fault Detect  
The DS90UH947-Q1 can detect fault conditions in the FPD-Link III interconnect. If a fault condition occurs, the  
Link Detect Status is 0 (cable is not detected) on bit 0 of address 0x0C (Table 10). The DS90UH947-Q1 will  
detect any of the following conditions:  
1. Cable open  
2. “+” to “-” short  
Copyright © 2014–2019, Texas Instruments Incorporated  
19  
DS90UH947-Q1  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
www.ti.com.cn  
Feature Description (continued)  
3. ”+” to GND short  
4. ”-” to GND short  
5. ”+” to battery short  
6. ”-” to battery short  
7. Cable is linked incorrectly (DOUT+/DOUT- connections reversed)  
Note: The device will detect any of the above conditions, but does not report specifically which one has occurred.  
7.3.8 Interrupt Pin (INTB)  
The INTB pin is an active low interrupt output pin that acts as an interrupt for various local and remote interrupt  
conditions (see registers 0xC6 and 0xC7 of Register Maps). For the remote interrupt condition, the INTB pin  
works in conjunction with the INTB_IN pin on the deserializer. This interrupt signal, when configured, will  
propagate from the deserializer to the serializer.  
1. On the Serializer, set register 0xC6[5] = 1 and 0xC6[0] = 1  
2. Deserializer INTB_IN pin is set LOW by some downstream device.  
3. Serializer pulls INTB pin LOW. The signal is active LOW, so a LOW indicates an interrupt condition.  
4. External controller detects INTB = LOW; to determine interrupt source, read HDCP_ISR register.  
5. A read to HDCP_ISR will clear the interrupt at the Serializer, releasing INTB.  
6. The external controller typically must then access the remote device to determine downstream interrupt  
source and clear the interrupt driving the Deserializer INTB_IN. This would be when the downstream device  
releases the INTB_IN pin on the Deserializer. The system is now ready to return to step (2) at next falling  
edge of INTB_IN.  
7.3.9 Remote Interrupt Pin (REM_INTB)  
REM_INTB will mirror the status of INTB_IN pin on the deserializer and does not need to be cleared. If the  
serializer is not linked to the deserializer, REM_INTB will be high.  
7.3.10 General-Purpose I/O  
7.3.10.1 GPIO[3:0] Configuration  
In normal operation, GPIO[3:0] may be used as general-purpose IOs in either forward channel (outputs) or back  
channel (inputs) mode. GPIO modes may be configured from the registers. See Table 1 for GPIO enable and  
configuration.  
Table 1. GPIO Enable and Configuration  
DESCRIPTION  
DEVICE  
Serializer  
FORWARD CHANNEL  
0x0F[3:0] = 0x3  
0x1F[3:0] = 0x5  
0x0E[7:4] = 0x3  
0x1E[7:4] = 0x5  
0x0E[3:0] = 0x3  
0x1E[3:0] = 0x5  
0x0D[3:0] = 0x3  
0x1D[3:0] = 0x5  
BACK CHANNEL  
0x0F[3:0] = 0x5  
0x1F[3:0] = 0x3  
0x0E[7:4] = 0x5  
0x1E[7:4] = 0x3  
0x0E[3:0] = 0x5  
0x1E[3:0] = 0x3  
0x0D[3:0] = 0x5  
0x1D[3:0] = 0x3  
GPIO3  
Deserializer  
Serializer  
GPIO2  
GPIO1  
GPIO0  
Deserializer  
Serializer  
Deserializer  
Serializer  
Deserializer  
7.3.10.2 Back Channel Configuration  
The D_GPIO[3:0] pins can be configured to obtain different sampling rates depending on the mode as well as  
back channel frequency. These different modes are controlled by a compatible deserializer. Consult the  
appropriate deserializer datasheet for details on how to configure the back channel frequency. See Table 2 for  
details about D_GPIOs in various modes.  
20  
Copyright © 2014–2019, Texas Instruments Incorporated  
 
DS90UH947-Q1  
www.ti.com.cn  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
Table 2. Back Channel D_GPIO Effective Frequency  
D_GPIO Effective Frequency(1) (kHz)  
5 Mbps BC(2) 10 Mbps BC(3) 20 Mbps BC(4)  
HSCC_MODE  
(on DES)  
NUMBER OF  
D_GPIOs  
SAMPLES  
PER FRAMe  
D_GPIOs  
ALLOWED  
MODE  
000  
011  
010  
001  
Normal  
Fast  
4
4
2
1
1
6
33  
66  
400  
666  
1000  
133  
800  
D_GPIO[3:0]  
D_GPIO[3:0]  
D_GPIO[1:0]  
D_GPIO0  
200  
333  
500  
Fast  
10  
15  
1333  
2000  
Fast  
(1) The effective frequency assumes the worst case back channel frequency (-20%) and a 4X sampling rate.  
(2) 5 Mbps corresponds to BC FREQ SELECT = 0 & BC_HS_CTL = 0 on deserializer.  
(3) 10 Mbps corresponds to BC FREQ SELECT = 1 & BC_HS_CTL = 0 on deserializer.  
(4) 20 Mbps corresponds to BC FREQ SELECT = X & BC_HS_CTL = 1 on deserializer.  
7.3.10.3 GPIO_REG[8:5] Configuration  
GPIO_REG[8:5] are register-only GPIOs and may be programmed as outputs or read as inputs through local  
register bits only. Where applicable, these bits are shared with I2S pins and will override I2S input if enabled into  
GPIO_REG mode. See Table 3 for GPIO enable and configuration.  
Note: Local GPIO value may be configured and read either through local register access, or remote register  
access through the Bidirectional Control Channel. Configuration and state of these pins are not transported from  
serializer to deserializer as is the case for GPIO[3:0].  
Table 3. GPIO_REG and GPIO Local Enable and Configuration  
DESCRIPTION  
REGISTER CONFIGURATION  
0x11[7:4] = 0x01  
0x11[7:4] = 0x09  
0x11[7:4] = 0x03  
0x11[3:0] = 0x1  
0x11[3:0] = 0x9  
0x11[3:0] = 0x3  
0x10[7:4] = 0x1  
0x10[7:4] = 0x9  
0x10[7:4] = 0x3  
0x10[3:0] = 0x1  
0x10[3:0] = 0x9  
0x10[3:0] = 0x3  
0x0F[3:0] = 0x1  
0x0F[3:0] = 0x9  
0x0F[3:0] = 0x3  
0x0E[7:4] = 0x1  
0x0E[7:4] = 0x9  
0x0E[7:4] = 0x3  
0x0E[3:0] = 0x1  
0x0E[3:0] = 0x9  
0x0E[3:0] = 0x3  
0x0D[3:0] = 0x1  
0x0D[3:0] = 0x9  
0x0D[3:0] = 0x3  
FUNCTION  
Output, L  
GPIO_REG8  
Output, H  
Input, Read: 0x1D[0]  
Output, L  
GPIO_REG7  
GPIO_REG6  
GPIO_REG5  
GPIO3  
Output, H  
Input, Read: 0x1C[7]  
Output, L  
Output, H  
Input, Read: 0x1C[6]  
Output, L  
Output, H  
Input, Read: 0x1C[5]  
Output, L  
Output, H  
Input, Read: 0x1C[3]  
Output, L  
GPIO2  
Output, H  
Input, Read: 0x1C[2]  
Output, L  
GPIO1  
Output, H  
Input, Read: 0x1C[1]  
Output, L  
GPIO0  
Output, H  
Input, Read: 0x1C[0]  
Copyright © 2014–2019, Texas Instruments Incorporated  
21  
 
DS90UH947-Q1  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
www.ti.com.cn  
7.3.11 SPI Communication  
The SPI Control Channel utilizes the secondary link in a 2-lane FPD-Link III implementation. Two possible  
modes are available, Forward Channel and Reverse Channel modes. In Forward Channel mode, the SPI Master  
is located at the Serializer, such that the direction of sending SPI data is in the same direction as the video data.  
In Reverse Channel mode, the SPI Master is located at the Deserializer, such that the direction of sending SPI  
data is in the opposite direction as the video data.  
The SPI Control Channel can operate in a high-speed mode when writing data, but must operate at lower  
frequencies when reading data. During SPI reads, data is clocked from the slave to the master on the SPI clock  
falling edge. Thus, the SPI read must operate with a clock period that is greater than the round trip data latency.  
On the other hand, for SPI writes, data can be sent at much higher frequencies where the MISO pin can be  
ignored by the master.  
SPI data rates are not symmetrical for the two modes of operation. Data over the forward channel can be sent  
much faster than data over the reverse channel.  
NOTE  
SPI cannot be used to access Serializer / Deserializer registers.  
7.3.11.1 SPI Mode Configuration  
SPI is configured over I2C using the High-Speed Control Channel Configuration (HSCC_CONTROL) register  
0x43 on the deserializer. HSCC_MODE (0x43[2:0]) must be configured for either High-Speed, Forward Channel  
SPI mode (110) or High-Speed, Reverse Channel SPI mode (111).  
The High-Speed Control Channel should be enabled only after Rx lock has been established.  
7.3.11.2 Forward Channel SPI Operation  
In Forward Channel SPI operation, the SPI master located at the Serializer generates the SPI Clock (SPLK),  
Master Out / Slave In data (MOSI), and active low Slave Select (SS). The Serializer oversamples the SPI  
signals directly using the video pixel clock. The three sampled values for SPLK, MOSI, and SS are each sent on  
data bits in the forward channel frame. At the Deserializer, the SPI signals are regenerated using the pixel  
clock. In order to preserve setup and hold time, the Deserializer will hold MOSI data while the SPLK signal is  
high. In addition, it delays SPLK by one pixel clock relative to the MOSI data, increasing setup by one pixel  
clock.  
SERIALIZER  
SS  
SPLK  
MOSI  
D0  
D1  
D2  
D3  
DN  
SS  
DESERIALIZER  
SPLK  
D0  
D1  
D2  
D3  
DN  
MOSI  
Figure 17. Forward Channel SPI Write  
22  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH947-Q1  
www.ti.com.cn  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
SERIALIZER  
SS  
SPLK  
MOSI  
MISO  
D0  
D1  
RD0  
RD1  
SS  
DESERIALIZER  
SPLK  
D0  
MOSI  
MISO  
RD0  
RD1  
Figure 18. Forward Channel SPI Read  
7.3.11.3 Reverse Channel SPI Operation  
In Reverse Channel SPI operation, the Deserializer samples the Slave Select (SS), SPI clock (SCLK) into the  
internal oscillator clock domain. In addition, upon detection of the active SPI clock edge, the Deserializer  
samples the SPI data (MOSI). The SPI data samples are stored in a buffer to be passed to the Serializer over  
the back channel. The Deserializer sends SPI information in a back channel frame to the Serializer. In each  
back channel frame, the Deserializer sends an indication of the Slave Select value. The Slave Select should be  
inactive (high) for at least one back-channel frame period to ensure propagation to the Serializer.  
Because data is delivered in separate back channel frames and buffered, the data may be regenerated in  
bursts. The following figure shows an example of the SPI data regeneration when the data arrives in three back  
channel frames. The first frame delivered the SS active indication, the second frame delivered the first three  
data bits, and the third frame delivers the additional data bits.  
Copyright © 2014–2019, Texas Instruments Incorporated  
23  
DS90UH947-Q1  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
www.ti.com.cn  
DESERIALIZER  
SS  
SPLK  
MOSI  
D0  
D1  
D2  
D3  
DN  
SS  
SPLK  
SERIALIZER  
D0  
D1  
D2  
D3  
DN  
MOSI  
Figure 19. Reverse Channel SPI Write  
For Reverse Channel SPI reads, the SPI master must wait for a round-trip response before generating the  
sampling edge of the SPI clock. This is similar to operation in Forward channel mode. Note that at most one  
data/clock sample will be sent per back channel frame.  
DESERIALIZER  
SS  
SPLK  
MOSI  
MISO  
D0  
D1  
RD0  
RD1  
SS  
SERIALIZER  
SPLK  
D0  
MOSI  
MISO  
RD0  
RD1  
Figure 20. Reverse Channel SPI Read  
24  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH947-Q1  
www.ti.com.cn  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
For both Reverse Channel SPI writes and reads, the SPI_SS signal should be deasserted for at least one back  
channel frame period.  
Table 4. SPI SS Deassertion Requirement  
BACK CHANNEL FREQUENCY  
DEASSERTION REQUIREMENT  
5 Mbps  
10 Mbps  
20 Mbps  
7.5 µs  
3.75 µs  
1.875 µs  
7.3.12 Backward Compatibility  
This FPD-Link III serializer is backward compatible to the DS90UH926Q-Q1 and DS90UH928Q-Q1 for OpenLDI  
clock frequencies ranging from 25 MHz to 85 MHz. Backward compatibility does not need to be enabled. When  
paired with a backward compatible device, the serializer will auto-detect to 1-lane FPD-Link III on the primary  
channel (DOUT0±).  
7.3.13 Audio Modes  
7.3.13.1 I2S Audio Interface  
The DS90UH947-Q1 serializer features six I2S input pins that, when paired with a compatible deserializer,  
supports 7.1 High-Definition (HD) Surround Sound audio applications. The bit clock (I2S_CLK) supports  
frequencies between 1MHz and the lesser of CLK/2 or 13 MHz. Four I2S data inputs transport two channels of  
I2S-formatted digital audio each, with each channel delineated by the word select (I2S_WC) input. Refer to  
Figure 21 and Figure 22 for I2S connection diagram and timing information.  
Serializer  
Bit Clock  
Word Select  
Data  
I2S_CLK  
I2S_WC  
I2S_Dx  
I2S  
Transmitter  
4
Figure 21. I2S Connection Diagram  
I2S_WC  
I2S_CLK  
MSB  
LSB MSB  
LSB  
I2S_Dx  
Figure 22. I2S Frame Timing Diagram  
Table 5 covers several common I2S sample rates:  
Table 5. Audio Interface Frequencies  
SAMPLE RATE (kHz)  
I2S DATA WORD SIZE (bits)  
I2S CLK (MHz)  
1.024  
32  
44.1  
48  
16  
16  
16  
16  
16  
24  
24  
1.411  
1.536  
96  
3.072  
192  
32  
6.144  
1.536  
44.1  
2.117  
Copyright © 2014–2019, Texas Instruments Incorporated  
25  
 
 
 
DS90UH947-Q1  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
www.ti.com.cn  
Table 5. Audio Interface Frequencies (continued)  
SAMPLE RATE (kHz)  
I2S DATA WORD SIZE (bits)  
I2S CLK (MHz)  
2.304  
48  
96  
24  
24  
24  
32  
32  
32  
32  
32  
4.608  
192  
32  
9.216  
2.048  
44.1  
48  
2.822  
3.072  
96  
6.144  
192  
12.288  
7.3.13.1.1 I2S Transport Modes  
By default, audio is packetized and transmitted during video blanking periods in dedicated Data Island Transport  
frames. Data Island frames may be disabled from control registers if Forward Channel Frame Transport of I2S  
data is desired. In this mode, only I2S_DA is transmitted to a DS90UH928Q-Q1,DS90UH940-Q1, or  
DS90UH948-Q1 deserializer. If connected to a DS90UH926Q-Q1 deserializer, I2S_DA and I2S_DB are  
transmitted. Surround Sound Mode, which transmits all four I2S data inputs (I2S_D[A..D]), may only be operated  
in Data Island Transport mode. This mode is only available when connected to a DS90UH928Q-Q1,DS90UH940-  
Q1, or DS90UH948-Q1 deserializer.  
7.3.13.1.2 I2S Repeater  
I2S audio may be fanned-out and propagated in the repeater application. By default, data is propagated via Data  
Island Transport during the video blanking periods. If frame transport is desired, then the I2S pins should be  
connected from the deserializer to all serializers. Activating surround sound at the top-level deserializer  
automatically configures downstream serializers and deserializers for surround sound transport utilizing Data  
Island Transport. If 4-channel operation utilizing I2S_DA and I2S_DB only is desired, this mode must be explicitly  
set in each serializer and deserializer control register throughout the repeater tree (Table 10).  
7.3.13.2 TDM Audio Interface  
In addition to the I2S audio interface, the DS90UH947-Q1 serializer also supports TDM format. Since a number  
of specifications for TDM format are in common use, the DS90UH947-Q1 offers flexible support for word length,  
bit clock, number of channels to be multiplexed, etc. For example, let’s assume that word clock signal (I2S_WC)  
period = 256 × bit clock (I2S_CLK) time period. In this case, the DS90UH947-Q1 can multiplex 4 channels with  
maximum word length of 64 bits each, or 8 channels with maximum word length of 32 bits each. Figure 23  
illustrates the multiplexing of 8 channels with 24 bit word length, in a format similar to I2S.  
t1/fS (256 BCKs at Single Rate, 128 BCKs at Dual Rate)t  
I2S_WC  
I2S_CLK  
Ch 1  
Ch 2  
Ch 3  
Ch 4  
Ch 5  
Ch 6  
Ch 7  
Ch 8  
t32 BCKst  
t32 BCKst  
t32 BCKst  
t32 BCKst  
t32 BCKst  
t32 BCKst  
t32 BCKst  
t32 BCKst  
I2S Mode  
DIN1  
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
(Single)  
Figure 23. TDM Format  
7.3.14 HDCP Repeater  
The supported Repeater application provides a mechanism to extend transmission over multiple links to multiple  
display devices.  
26  
Copyright © 2014–2019, Texas Instruments Incorporated  
 
DS90UH947-Q1  
www.ti.com.cn  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
7.3.14.1 HDCP  
The HDCP Cipher function is implemented in the deserializer per HDCP v1.4 specification. The DS90UH947-Q1  
provides HDCP encryption of audiovisual content when connected to an HDCP video source. HDCP  
authentication and shared key generation is performed using the HDCP Control Channel, which is embedded in  
the forward and backward channels of the serial link. On-chip Non-Volatile Memory (NVM) is used to store the  
HDCP keys. The confidential HDCP keys are loaded by TI during the manufacturing process and are not  
accessible external to the device.  
7.3.14.2 HDCP Repeater  
The supported HDCP Repeater application provides a mechanism to extend HDCP transmission over multiple  
links to multiple display devices. It authenticates all HDCP devices in the system and distributes protected  
content to the HDCP Receivers using the encryption mechanisms provided in the HDCP specification.  
7.3.14.2.1 Repeater Configuration  
In the HDCP repeater application, this document refers to the DS90UH947-Q1 as the HDCP Transmitter (TX),  
and refers to the DS90UH948-Q1 as the HDCP Receiver (RX). Figure 24 shows the maximum configuration  
supported for HDCP Repeater implementations. Two levels of HDCP Repeaters are supported with a maximum  
of three HDCP Transmitters per HDCP Receiver.  
1:3 Repeater  
1:3 Repeater  
Display  
Display  
RX  
RX  
TX  
TX  
TX  
RX  
TX  
TX  
TX  
Source  
TX  
RX  
Display  
RX  
1:3 Repeater  
Display  
Display  
RX  
RX  
TX  
TX  
TX  
RX  
Display  
RX  
1:3 Repeater  
Display  
Display  
RX  
RX  
TX  
TX  
TX  
RX  
Display  
RX  
Figure 24. HDCP Maximum Repeater Application  
In a repeater application, the I2C interface at each TX and RX is configured to transparently pass I2C  
communications upstream or downstream to any I2C device within the system. This includes a mechanism for  
assigning alternate IDs (Slave Aliases) to downstream devices in the case of duplicate addresses.  
Copyright © 2014–2019, Texas Instruments Incorporated  
27  
 
DS90UH947-Q1  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
www.ti.com.cn  
To support HDCP Repeater operation, the RX includes the ability to control the downstream authentication  
process, assemble the KSV list for downstream HDCP Receivers, and pass the KSV list to the upstream HDCP  
Transmitter. An I2C master within the RX communicates with the I2C slave within the TX. The TX handles  
authenticating with a downstream HDCP Receiver and makes status available through the I2C interface. The RX  
monitors the transmit port status for each TX and reads downstream KSV and KSV list values from the TX.  
In addition to the I2C interface used to control the authentication process, the HDCP Repeater implementation  
includes two other interfaces. The FPD-Link LVDS interface outputs the unencrypted video data. In addition to  
providing the video data, the LVDS interface communicates control information and packetized audio data. All  
audio and video data is decrypted at the output of the HDCP Receiver and is re-encrypted by the HDCP  
Transmitter. Figure 25 provides more detailed block diagram of a 1:2 HDCP repeater configuration.  
If the repeater node includes a local output to a display, White Balancing and Hi-FRC dithering functions should  
not be used as they will block encrypted I2S audio and HDCP authentication.  
HDCP Transmitter  
TX  
downstream  
Receiver  
or  
Repeater  
I2C  
Slave  
I2C  
I2C  
Master  
upstream  
Transmitter  
FPD-Link  
I2S Audio  
HDCP Transmitter  
TX  
HDCP Receiver  
(RX)  
downstream  
Receiver  
or  
I2C  
Slave  
Repeater  
FPD-Link III interfaces  
Figure 25. HDCP 1:2 Repeater Configuration  
7.3.14.2.2 Repeater Connections  
The HDCP Repeater requires the following connections between the HDCP Receiver and each HDCP  
Transmitter Figure 26.  
1. Video Data – Connect all FPD-Link data and clock pairs. Single pixel OpenLDI (D[3:0]) or Dual pixel  
OpenLDI (D[7:0]) are both possible, provided the Deserializer and all Serializers are configured in the same  
mode.  
2. I2C – Connect SCL and SDA signals.  
3. Audio (optional) – Connect I2S_CLK, I2S_WC, and I2S_Dx signals. Audio is normally transported on the  
OpenLDI interface.  
4. IDx pin – Each Transmitter and Receiver must have an unique I2C address.  
5. MODE_SEL pins — All Transmitters and Receivers must be set into Repeater Mode. OpenLDI settings  
(single pixel vs. dual pixel) must also match.  
6. Interrupt pin – Connect DS90UH948-Q1 INTB_IN pin to the DS90UH947-Q1 INTB pin. The signal must be  
pulled up to VDDIO with a 10kΩ resistor.  
28  
Copyright © 2014–2019, Texas Instruments Incorporated  
 
DS90UH947-Q1  
www.ti.com.cn  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
Deserializer  
Serializer  
D[7:0]+  
D[7:0]+  
D[7:0]-  
CLK+  
CLK-  
D[7:0]-  
CLK1+  
CLK1-  
VDD18  
VDD33  
MODE_SEL1  
MODE_SEL0  
I2S_CLK  
I2S_WC  
I2S_Dx  
I2S_CLK  
I2S_WC  
I2S_Dx  
Optional  
VDDIO  
VDD33  
VDD18  
IDx  
IDx  
INTB  
INTB_IN  
VDD33  
SDA  
SCL  
SDA  
SCL  
Figure 26. HDCP Repeater Connection Diagram  
7.3.14.2.2.1 Repeater Fan-Out Electrical Requirements  
Repeater applications requiring fan-out from one DS90UH948-Q1 Deserializer to up to three DS90UH947-Q1  
Serializers requires special considerations for routing and termination of the FPD-Link differential traces.  
Figure 27 details the requirements that must be met for each signal pair:  
L3 < 60 mm  
TX  
RX  
R1=100  
R2=100 ꢀ  
TX  
L1 < 75 mm  
L2 < 60 mm  
TX  
L3 < 60 mm  
Figure 27. FPD-Link Fan-Out Electrical Requirements  
Copyright © 2014–2019, Texas Instruments Incorporated  
29  
 
DS90UH947-Q1  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
www.ti.com.cn  
7.3.14.2.2.2 HDCP I2S Audio Encryption  
Depending on the quality and specifications of the audiovisual source, HDCP encryption of digital audio may be  
required. When HDCP is active, packetized Data Island Transport audio is also encrypted along with the video  
data per HDCP v1.4. I2S audio transmitted in Forward Channel Frame Transport mode is not encrypted. System  
designers should consult the specific HDCP specifications to determine if encryption of digital audio is required  
by the specific application audiovisual source.  
7.3.15 Built-In Self Test (BIST)  
An optional At-Speed Built-In Self Test (BIST) feature supports testing of the high-speed serial link and back  
channel without external data connections. This is useful in the prototype stage, equipment production, in-system  
test, and system diagnostics.  
7.3.15.1 BIST Configuration and Status  
The BIST mode is enabled at the deserializer by pin (BISTEN) or BIST configuration register. The test may  
select either an external OpenLDI clock or the internal Oscillator clock (OSC) frequency. In the absence of  
OpenLDI clock, the user can select the internal OSC frequency at the deserializer through the BISTC pin or BIST  
configuration register.  
When BIST is activated at the deserializer, a BIST enable signal is sent to the serializer through the Back  
Channel. The serializer outputs a test pattern and drives the link at speed. The deserializer detects the test  
pattern and monitors it for errors. The deserializer PASS output pin toggles to flag each frame received  
containing one or more errors. The serializer also tracks errors indicated by the CRC fields in each back channel  
frame.  
The BIST status can be monitored real time on the deserializer PASS pin, with each detected error resulting in a  
half pixel clock period toggled LOW. After BIST is deactivated, the result of the last test is held on the PASS  
output until reset (new BIST test or Power Down). A high on PASS indicates NO ERRORS were detected. A Low  
on PASS indicates one or more errors were detected. The duration of the test is controlled by the pulse width  
applied to the deserializer BISTEN pin. LOCK is valid throughout the entire duration of BIST.  
See Figure 28 for the BIST mode flow diagram.  
Step 1: The Serializer is paired with another FPD-Link III Deserializer, BIST Mode is enabled via the BISTEN pin  
or through register on the Deserializer. Right after BIST is enabled, part of the BIST sequence requires bit  
0x04[5] be toggled locally on the Serializer (set 0x04[5]=1, then set 0x04[5]=0). The desired clock source is  
selected through the deserializer BISTC pin, or through register on the Deserializer.  
Step 2: An all-zeros pattern is balanced, scrambled, randomized, and sent through the FPD-Link III interface to  
the deserializer. Once the serializer and the deserializer are in BIST mode and the deserializer acquires Lock,  
the PASS pin of the deserializer goes high and BIST starts checking the data stream. If an error in the payload (1  
to 35) is detected, the PASS pin will switch low for one half of the clock period. During the BIST test, the PASS  
output can be monitored and counted to determine the payload error rate.  
Step 3: To Stop the BIST mode, the deserializer BISTEN pin is set Low. The deserializer stops checking the  
data. The final test result is held on the PASS pin. If the test ran error free, the PASS output will remain HIGH. If  
there one or more errors were detected, the PASS output will output constant LOW. The PASS output state is  
held until a new BIST is run, the device is RESET, or the device is powered down. The BIST duration is user  
controlled by the duration of the BISTEN signal.  
Step 4: The link returns to normal operation after the deserializer BISTEN pin is low. Figure 29 shows the  
waveform diagram of a typical BIST test for two cases. Case 1 is error free, and Case 2 shows one with multiple  
errors. In most cases it is difficult to generate errors due to the robustness of the link (differential data  
transmission etc.), thus they may be introduced by greatly extending the cable length, faulting the interconnect  
medium, or reducing signal condition enhancements (Rx Equalization).  
30  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH947-Q1  
www.ti.com.cn  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
Normal  
Step 1: DES in BIST  
BIST  
Wait  
Step 2: Wait, SER in BIST  
BIST  
start  
Step 3: DES in Normal  
Mode - check PASS  
BIST  
stop  
Step 4: DES/SER in Normal  
Figure 28. BIST Mode Flow Diagram  
7.3.15.2 Forward Channel and Back Channel Error Checking  
While in BIST mode, the serializer stops sampling the FPD-Link input pins and switches over to an internal all  
zeroes pattern. The internal all-zeroes pattern goes through scrambler, DC-balancing, etc. and is transmitted  
over the serial link to the deserializer. The deserializer, on locking to the serial stream, compares the recovered  
serial stream with all-zeroes and records any errors in status registers. Errors are also dynamically reported on  
the PASS pin of the deserializer.  
The back-channel data is checked for CRC errors once the serializer locks onto the back-channel serial stream,  
as indicated by link detect status (register bit 0x0C[0] - Table 10). CRC errors are recorded in an 8-bit register in  
the deserializer. The register is cleared when the serializer enters BIST mode. As soon as the serializer enters  
BIST mode, the functional mode CRC register starts recording any back channel CRC errors. The BIST mode  
CRC error register is active in BIST mode only and keeps a record of the last BIST run until cleared or the  
serializer enters BIST mode again.  
BISTEN  
(DES)  
TxCLKOUT±  
TxOUT[3:0]±  
DATA  
(internal)  
PASS  
Prior Result  
Prior Result  
PASS  
FAIL  
X = bit error(s)  
X
DATA  
(internal)  
X
X
PASS  
BIST  
Result  
Held  
Normal  
PRBS  
Normal  
BIST Test  
BIST Duration  
Figure 29. BIST Waveforms, in Conjunction With Deserializer Signals  
7.3.16 Internal Pattern Generation  
The DS90UH947-Q1 serializer provides an internal pattern generation feature. It allows basic testing and  
debugging of an integrated panel. The test patterns are simple and repetitive and allow for a quick visual  
verification of panel operation. As long as the device is not in power down mode, the test pattern will be  
displayed even if no input is applied. If no clock is received, the test pattern can be configured to use a  
programmed oscillator frequency. For detailed information, refer to AN-2198 Exploring Int Test Patt Gen Feat of  
720p FPD-Link III Devices (SNLA132).  
Copyright © 2014–2019, Texas Instruments Incorporated  
31  
DS90UH947-Q1  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
www.ti.com.cn  
7.3.16.1 Pattern Options  
The DS90UH947-Q1 serializer pattern generator is capable of generating 17 default patterns for use in basic  
testing and debugging of panels. Each can be inverted using register bits (Table 10), shown below:  
1. White/Black (default/inverted)  
2. Black/White  
3. Red/Cyan  
4. Green/Magenta  
5. Blue/Yellow  
6. Horizontally Scaled Black to White/White to Black  
7. Horizontally Scaled Black to Red/Cyan to White  
8. Horizontally Scaled Black to Green/Magenta to White  
9. Horizontally Scaled Black to Blue/Yellow to White  
10. Vertically Scaled Black to White/White to Black  
11. Vertically Scaled Black to Red/Cyan to White  
12. Vertically Scaled Black to Green/Magenta to White  
13. Vertically Scaled Black to Blue/Yellow to White  
14. Custom Color (or its inversion) configured in PGRS  
15. Black-White/White-Black Checkerboard (or custom checkerboard color, configured in PGCTL)  
16. YCBR/RBCY VCOM pattern, orientation is configurable from PGCTL  
17. Color Bars (White, Yellow, Cyan, Green, Magenta, Red, Blue, Black) – Note: not included in the auto-  
scrolling feature  
Additionally, the Pattern Generator incorporates one user-configurable full-screen 24-bit color, which is controlled  
by the PGRS, PGGS, and PGBS registers. This is pattern #14. One of the pattern options is statically selected in  
the PGCTL register when Auto-Scrolling is disabled. The PGTSC and PGTSO1-8 registers control the pattern  
selection and order when Auto-Scrolling is enabled.  
7.3.16.2 Color Modes  
By default, the Pattern Generator operates in 24-bit color mode, where all bits of the Red, Green, and Blue  
outputs are enabled. 18-bit color mode can be activated from the configuration registers (Table 10). In 18-bit  
mode, the 6 most significant bits (bits 7-2) of the Red, Green, and Blue outputs are enabled; the 2 least  
significant bits will be 0.  
7.3.16.3 Video Timing Modes  
The Pattern Generator has two video timing modes – external and internal. In external timing mode, the Pattern  
Generator detects the video frame timing present on the DE and VS inputs. If Vertical Sync signaling is not  
present on VS, the Pattern Generator determines Vertical Blank by detecting when the number of inactive pixel  
clocks (DE = 0) exceeds twice the detected active line length. In internal timing mode, the Pattern Generator  
uses custom video timing as configured in the control registers. The internal timing generation may also be  
driven by an external clock. By default, external timing mode is enabled. Internal timing or Internal timing with  
External Clock are enabled by the control registers (Table 10).  
7.3.16.4 External Timing  
In external timing mode, the Pattern Generator passes the incoming DE, HS, and VS signals unmodified to the  
video control outputs after a two pixel clock delay. It extracts the active frame dimensions from the incoming  
signals in order to properly scale the brightness patterns. If the incoming video stream does not use the VS  
signal, the Pattern Generator determines the Vertical Blank time by detecting a long period of pixel clocks without  
DE asserted.  
7.3.16.5 Pattern Inversion  
The Pattern Generator also incorporates a global inversion control, located in the PGCFG register, which causes  
the output pattern to be bitwise-inverted. For example, the full screen Red pattern becomes full-screen cyan, and  
the Vertically Scaled Black to Green pattern becomes Vertically Scaled White to Magenta.  
32  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH947-Q1  
www.ti.com.cn  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
7.3.16.6 Auto Scrolling  
The Pattern Generator supports an Auto-Scrolling mode, in which the output pattern cycles through a list of  
enabled pattern types. A sequence of up to 16 patterns may be defined in the registers. The patterns may  
appear in any order in the sequence and may also appear more than once.  
7.3.16.7 Additional Features  
Additional pattern generator features can be accessed through the Pattern Generator Indirect Register Map. It  
consists of the Pattern Generator Indirect Address (PGIA reg_0x66 — Table 10) and the Pattern Generator  
Indirect Data (PGID reg_0x67 — Table 10). See AN-2198 Exploring Int Test Patt Gen Feat of 720p FPD-Link III  
Devices (SNLA132).  
7.4 Device Functional Modes  
7.4.1 Mode Select Configuration Settings (MODE_SEL[1:0])  
Configuration of the device may be done via the MODE_SEL[1:0] input pins, or via the configuration register bits.  
A pull-up resistor and a pull-down resistor of suggested values may be used to set the voltage ratio of the  
MODE_SEL[1:0] inputs. See Table 7 and Table 8. These values will be latched into register location during  
power-up:  
Table 6. MODE_SEL[1:0] Settings  
MODE  
SETTING  
FUNCTION  
0
1
0
1
0
1
0
1
Single-pixel OpenLDI interface.  
Dual-pixel OpenLDI interface.  
Disable repeater mode.  
Enable repeater mode.  
OpenLDI bit mapping.  
OLDI_DUAL: OpenLDI Interface  
REPEATER: Configure  
Repeater  
MAPSEL: OpenLDI Bit Mapping  
COAX: Cable Type  
SPWG bit mapping.  
Enable FPD-Link III for twisted pair cabling.  
Enable FPD-Link III for coaxial cabling.  
1.8V  
R
3
VR4  
MODE_SEL0  
MODE_SEL1  
1.8V  
R
4
Serializer  
R5  
VR6  
R
6
Figure 30. MODE_SEL[1:0] Connection Diagram  
Table 7. Configuration Select (MODE_SEL0)  
RATIO  
VR4/VDD18  
TARGET VR4  
(V)  
SUGGESTED  
SUGGESTED  
RESISTOR PULL-  
UP R3 k(1% tol)  
RESISTOR PULL-  
DOWN R4 k(1%  
tol)  
#
OLDI_DUAL  
REPEATER  
1
0
0
OPEN  
Any value less than  
100  
0
0
2
5
6
0.213  
0.560  
0.676  
0.383  
1.008  
1.216  
115  
82.5  
51.1  
30.9  
105  
107  
0
1
1
1
0
1
Copyright © 2014–2019, Texas Instruments Incorporated  
33  
 
DS90UH947-Q1  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
www.ti.com.cn  
COAX  
Table 8. Configuration Select (MODE_SEL1)  
RATIO  
VR6/VDD18  
TARGET VR6  
(V)  
SUGGESTED  
RESISTOR PULL-  
DOWN R6 k(1%  
tol)  
SUGGESTED  
RESISTOR PULL-  
UP R5 k(1% tol)  
#
MAPSEL  
1
0
0
OPEN  
Any value less than  
100  
0
0
2
3
4
5
6
7
8
0.213  
0.328  
0.444  
0.560  
0.676  
0.792  
1
0.383  
0.591  
0.799  
1.008  
1.216  
1.425  
1.8  
115  
107  
113  
82.5  
51.1  
30.9  
30.9  
52.3  
90.9  
105  
0
0
0
1
1
1
1
0
1
1
0
0
1
1
107  
118  
Any value less than  
100  
OPEN  
The strapped values can be viewed and/or modified in the following locations:  
OLDI_DUAL : Latched into OLDI_IN_MODE (0x4F[6], inverted from strap value).  
REPEATER : Latched into TX_RPTR (0xC2[5]).  
MAPSEL : Latched into OLDI_MAPSEL (0x4F[7]).  
COAX : Latched into DUAL_CTL1[7], COAX_MODE (0x5B[7]).  
7.4.2 FPD-Link III Modes of Operation  
The FPD-Link III transmit logic supports several modes of operation, dependent on the downstream receiver as  
well as the video being delivered. The following modes are supported:  
7.4.2.1 Single Link Operation  
Single Link mode transmits the video over a single FPD-Link III to a single receiver. Single link mode supports  
frequencies up to 96MHz for 24-bit video when paired with the DS90UH940-Q1/DS90UH948-Q1. This mode is  
compatible with the DS90UH926Q-Q1/DS90UH928Q-Q1 when operating below 85MHz.  
In Forced Single mode (set via DUAL_CTL1 register), the secondary TX Phy and back channel are disabled.  
7.4.2.2 Dual Link Operation  
In Dual Link mode, the FPD-Link III TX splits a single video stream and sends alternating pixels on two  
downstream links. If HDCP is enabled, a single HDCP connection is created for the video that is sent on the two  
links. The receiver must be a DS90UH948-Q1 or DS90UH940-Q1, capable of receiving the dual-stream video.  
Dual link mode is capable of supporting an OpenLDI clock frequency of up to 170MHz, with each FPD-Link III TX  
port running at one-half the frequency. This allows support for full 1080p video. The secondary FPD-Link III link  
could be used for high-speed control.  
Dual Link mode may be automatically configured when connected to a DS90UH948-Q1/DS90UH940-Q1, if the  
video meets minimum frequency requirements. Dual Link mode may also be forced using the DUAL_CTL1  
register.  
7.4.2.3 Replicate Mode  
In this mode, the FPD-Link III TX operates as a 1:2 HDCP Repeater. A second HDCP core is implemented to  
support HDCP authentication and encryption to independent HDCP-capable receivers. The same video (up to  
85MHz, 24-bit color) is delivered to each receiver.  
Replicate mode may be automatically configured when connected to two independent Deserializers.  
7.4.2.4 Auto-Detection of FPD-Link III Modes  
The DS90UH947-Q1 automatically detects the capabilities of downstream links and can resolve whether a single  
device, dual-capable device, or multiple single link devices are connected.  
34  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH947-Q1  
www.ti.com.cn  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
In addition to the downstream device capabilities, the DS90UH947-Q1 will be able to detect the OpenLDI pixel  
clock frequency to select the proper operating mode.  
If the DS90UH947-Q1 detects two independent devices, it will operate in Replicate mode, sending the single  
channel video on both connections. If the device detects a device on the secondary link, but not the first, it can  
send the video only on the second link.  
Auto-detection can be disabled to allow forced modes of operation using the Dual Link Control Register  
(DUAL_CTL1).  
7.5 Programming  
7.5.1 Serial Control Bus  
This serializer may also be configured by the use of a I2C compatible serial control bus. Multiple devices may  
share the serial control bus (up to 8 device addresses supported). The device address is set via a resistor divider  
(R1 and R2 — see Figure 31 below) connected to the IDx pin.  
VDD18  
VDDI2C  
R1  
R2  
VR2  
IDx  
4.7k  
4.7k  
HOST  
SER  
SCL  
SDA  
SCL  
SDA  
To other  
Devices  
Figure 31. Serial Control Bus Connection  
The serial control bus consists of two signals, SCL and SDA. SCL is a Serial Bus Clock Input. SDA is the Serial  
Bus Data Input / Output signal. Both SCL and SDA signals require an external pull-up resistor to VDD18 or VDD33  
.
For most applications, a 4.7-kpull-up resistor is recommended. However, the pull-up resistor value may be  
adjusted for capacitive loading and data rate requirements. The signals are either pulled High, or driven Low.  
The IDx pin configures the control interface to one of 8 possible device addresses. A pull-up resistor and a pull-  
down resistor may be used to set the appropriate voltage on the IDx input pin See Table 10 below.  
Table 9. Serial Control Bus Addresses For IDx  
SUGGESTED  
RESISTOR R1 kΩ  
(1% tol)  
SUGGESTED  
RESISTOR R2 kΩ  
(1% tol)  
RATIO  
VR2 / VDD18  
IDEAL VR2  
(V)  
#
7-BIT ADDRESS  
8-BIT ADDRESS  
1
0
0
Any value less than  
100  
40.2  
0x0C  
0x18  
2
3
4
5
6
7
8
0.212  
0.327  
0.442  
0.557  
0.673  
0.789  
1
0.381  
0.589  
0.795  
1.002  
1.212  
1.421  
1.8  
133  
147  
115  
90.9  
66.5  
21.5  
35.7  
71.5  
90.9  
115  
0x0E  
0x10  
0x12  
0x14  
0x16  
0x18  
0x1A  
0x1C  
0x20  
0x24  
0x28  
0x2C  
0x30  
0x34  
137  
80.6  
OPEN  
Any value less than  
100  
Copyright © 2014–2019, Texas Instruments Incorporated  
35  
 
DS90UH947-Q1  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
www.ti.com.cn  
The Serial Bus protocol is controlled by START, START-Repeated, and STOP phases. A START occurs when  
SCL transitions Low while SDA is High. A STOP occurs when SDA transitions High while SCL is also HIGH. See  
Figure 32  
SDA  
SCL  
S
P
START condition, or  
STOP condition  
START repeat condition  
Figure 32. Start And Stop Conditions  
To communicate with an I2C slave, the host controller (master) sends the slave address and listens for a  
response from the slave. This response is referred to as an acknowledge bit (ACK). If a slave on the bus is  
addressed correctly, it Acknowledges (ACKs) the master by driving the SDA bus low. If the address doesn't  
match a device's slave address, it Not-acknowledges (NACKs) the master by letting SDA be pulled High. ACKs  
also occur on the bus when data is being transmitted. When the master is writing data, the slave ACKs after  
every data byte is successfully received. When the master is reading data, the master ACKs after every data  
byte is received to let the slave know it wants to receive another data byte. When the master wants to stop  
reading, it NACKs after the last data byte and creates a stop condition on the bus. All communication on the bus  
begins with either a Start condition or a Repeated Start condition. All communication on the bus ends with a Stop  
condition. A READ is shown in Figure 25 and a WRITE is shown in Figure 26.  
Register Address  
Slave Address  
Slave Address  
Data  
a
c
k
a
c
k
a
c
k
a
c
k
A
2
A
1
A
0
A
2
A
1
A
0
0
S
Sr  
1
P
Figure 33. Serial Control Bus — Read  
Register Address  
Slave Address  
Data  
a
c
k
a
c
k
a
c
k
A
2
A
1
A
0
0
S
P
Figure 34. Serial Control Bus — Write  
The I2C Master located at the serializer must support I2C clock stretching. For more information on I2C interface  
requirements and throughput considerations, refer to the I2C Communication Over FPD-Link III with Bidirectional  
Control Channel application note (SNLA131).  
7.5.2 Multi-Master Arbitration Support  
The Bidirectional Control Channel in the FPD-Link III devices implements I2C compatible bus arbitration in the  
proxy I2C master implementation. When sending a data bit, each I2C master senses the value on the SDA line. If  
the master is sending a logic 1 but senses a logic 0, the master has lost arbitration. It will stop driving SDA,  
retrying the transaction when the bus becomes idle. Thus, multiple I2C masters may be implemented in the  
system.  
If the system does require master-slave operation in both directions across the BCC, some method of  
communication must be used to ensure only one direction of operation occurs at any time. The communication  
method could include using available read/write registers in the deserializer to allow masters to communicate  
with each other to pass control between the two masters. An example would be to use register 0x18 or 0x19 in  
the deserializer as a mailbox register to pass control of the channel from one master to another.  
36  
Copyright © 2014–2019, Texas Instruments Incorporated  
 
DS90UH947-Q1  
www.ti.com.cn  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
7.5.3 I2C Restrictions on Multi-Master Operation  
The I2C specification does not provide for arbitration between masters under certain conditions. The system  
should make sure the following conditions cannot occur to prevent undefined conditions on the I2C bus:  
One master generates a repeated Start while another master is sending a data bit.  
One master generates a Stop while another master is sending a data bit.  
One master generates a repeated Start while another master sends a Stop.  
Note that these restrictions mainly apply to accessing the same register offsets within a specific I2C slave.  
7.5.4 Multi-Master Access to Device Registers for Newer FPD-Link III Devices  
When using the latest generation of FPD-Link III devices, DS90UH947-Q1 or DS90UH940-Q1/DS90UH948-Q1  
registers may be accessed simultaneously from both local and remote I2C masters. These devices have internal  
logic to properly arbitrate between sources to allow proper read and write access without risk of corruption.  
Access to remote I2C slaves would still be allowed in only one direction at a time .  
7.5.5 Multi-Master Access to Device Registers for Older FPD-Link III Devices  
When using older FPD-Link III devices, simultaneous access to serializer or deserializer registers from both local  
and remote I2C masters may cause incorrect operation, thus restrictions should be imposed on accessing of  
serializer and deserializer registers. The likelihood of an error occurrence is relatively small, but it is possible for  
collision on reads and writes to occur, resulting in an errored read or write.  
Two basic options are recommended. The first is to allow device register access only from one controller. This  
would allow only the Host controller to access the serializer registers (local) and the deserializer registers  
(remote). A controller at the deserializer would not be allowed to access the deserializer or serializer registers.  
The second basic option is to allow local register access only with no access to remote serializer or deserializer  
registers. The Host controller would be allowed to access the serializer registers while a controller at the  
deserializer could access those register only. Access to remote I2C slaves would still be allowed in one direction .  
In a very limited case, remote and local access could be allowed to the deserializer registers at the same time.  
Register access is guaranteed to work correctly if both local and remote masters are accessing the same  
deserializer register. This allows a simple method of passing control of the Bidirectional Control Channel from  
one master to another.  
7.5.6 Restrictions on Control Channel Direction for Multi-Master Operation  
Only one direction should be active at any time across the Bidirectional Control Channel. If both directions are  
required, some method of transferring control between I2C masters should be implemented.  
Copyright © 2014–2019, Texas Instruments Incorporated  
37  
DS90UH947-Q1  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
www.ti.com.cn  
7.6 Register Maps  
Table 10. Serial Control Bus Registers  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
TYPE  
DEFAULT  
(hex)  
REGISTER NAME  
BIT(S)  
FUNCTION  
DESCRIPTION  
0
0x00  
I2C Device ID  
7:1  
RW  
IDx  
Device ID  
7-bit address of Serializer.  
Defaults to address configured by the IDx strap pin.  
If PORT1_I2C_EN is set, this value defaults to the IDx strap value + 1  
for Port1.  
Port0/Port1  
ID Setting  
If PORT1_SEL is set, this field refers to Port1 operation.  
0
RW  
I2C ID setting.  
0: Device I2C address is from IDx pin (default).  
1: Device I2C address is from 0x00[7:1].  
1
0x01  
Reset  
7:2  
1
0x00  
Reserved.  
RW  
RW  
Digital RESET1 Reset the entire digital block including registers. This bit is self-  
clearing.  
0: Normal operation (default).  
1: Reset.  
0
Digital RESET0 Reset the entire digital block except registers. This bit is self-clearing.  
0: Normal operation (default).  
1: Reset.  
Registers which are loaded by pin strap will be restored to their  
original strap value when this bit is set. These registers show 'Strap'  
as their default value in this table.  
Registers 0x18, 0x19, 0x1A, and 0x48-0x55 are also restored to their  
default value when this bit is set.  
38  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH947-Q1  
www.ti.com.cn  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
Table 10. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
TYPE  
DEFAULT  
(hex)  
REGISTER NAME  
BIT(S)  
FUNCTION  
DESCRIPTION  
3
0x03  
General Configuration  
7
RW  
0xD2  
Back channel  
CRC Checker  
Enable  
Enable/disable back channel CRC Checker.  
0: Disable.  
1: Enable (default).  
6
5
Reserved.  
RW  
I2C Remote  
Write Auto  
Acknowledge  
Port0/Port1  
Automatically acknowledge I2C remote writes. When enabled, I2C  
writes to the Deserializer (or any remote I2C Slave, if I2C PASS ALL  
is enabled) are immediately acknowledged without waiting for the  
Deserializer to acknowledge the write. This allows higher throughput  
on the I2C bus. Note: this mode will prevent any NACK from a remote  
device from reaching the I2C master.  
0: Disable (default).  
1: Enable.  
If PORT1_SEL is set, this field refers to Port1 operation.  
4
3
RW  
RW  
Filter Enable  
HS, VS, DE two-clock filter. When enabled, pulses less than two full  
PCLK cycles on the DE, HS, and VS inputs will be rejected.  
0: Filtering disable.  
1: Filtering enable (default).  
I2C Pass-  
through  
Port0/Port1  
I2C pass-through mode. Read/Write transactions matching any entry  
in the Slave Alias registers will be passed through to the remote  
Deserializer.  
0: Pass-through disabled (default).  
1: Pass-through enabled.  
If PORT1_SEL is set, this field refers to Port1 operation.  
2
1
Reserved.  
RW  
RW  
RW  
PCLK Auto  
Switch over to internal oscillator in the absence of PCLK.  
0: Disable auto-switch.  
1: Enable auto-switch (default).  
0
7
Reserved.  
4
0x04  
Mode Select  
0x80  
Failsafe State  
Input failsafe state.  
0: Failsafe to High.  
1: Failsafe to Low (default).  
6
5
Reserved.  
CRC Error Reset Clear back channel CRC Error counters. This bit is NOT self-clearing.  
0: Normal operation (default).  
1: Clear counters.  
4
Reserved.  
Reserved.  
3:0  
Copyright © 2014–2019, Texas Instruments Incorporated  
39  
DS90UH947-Q1  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
www.ti.com.cn  
Table 10. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
TYPE  
DEFAULT  
(hex)  
REGISTER NAME  
BIT(S)  
FUNCTION  
DESCRIPTION  
5
0x05  
I2C Control  
7:5  
4:3  
0x00  
Reserved.  
RW  
SDA Output  
Delay  
Configures output delay on the SDA output. Setting this value will  
increase output delay in units of 40ns.  
Nominal output delay values for SCL to SDA are:  
00: 240ns (default).  
01: 280ns.  
10: 320ns.  
11: 360ns.  
2
RW  
Local Write  
Disable  
Disable remote writes to local registers. Setting this bit to 1 will  
prevent remote writes to local device registers from across the control  
channel. This prevents writes to the Serializer registers from an I2C  
master attached to the Deserializer. Setting this bit does not affect  
remote access to I2C slaves at the Serializer.  
0: Enable (default).  
1: Disable.  
1
0
RW  
RW  
I2C Bus Timer  
Speedup  
Speed up I2C bus Watchdog Timer.  
0: Watchdog Timer expires after approximately 1s (default).  
1: Watchdog Timer expires after approximately 50µs.  
I2C Bus Timer  
Disable  
Disable I2C bus Watchdog Timer. The I2C Watchdog Timer may be  
used to detect when the I2C bus is free or hung up following an invalid  
termination of a transaction. If SDA is high and no signaling occurs for  
approximately 1s, the I2C bus will be assumed to be free. If SDA is  
low and no signaling occurs, the device will attempt to clear the bus by  
driving 9 clocks on SCL.  
0: Enable (default).  
1: Disable.  
6
0x06  
DES ID  
7:1  
RW  
RW  
0x00  
DES Device ID  
Port0/Port1  
7-bit I2C address of the remote Deserializer. A value of 0 in this field  
disables I2C access to the remote Deserializer. This field is  
automatically configured by the Bidirectional Control Channel once RX  
Lock has been detected. Software may overwrite this value, but  
should also assert the FREEZE DEVICE ID bit to prevent overwriting  
by the Bidirectional Control Channel.  
If PORT1_SEL is set, this field refers to Port1 operation.  
0
Freeze Device  
ID  
Port0/Port1  
Freeze Deserializer Device ID.  
1: Prevents auto-loading of the Deserializer Device ID by the  
Bidirectional Control Channel. The ID will be frozen at the value  
written.  
0: Allows auto-loading of the Deserializer Device ID from the  
Bidirectional Control Channel.  
If PORT1_SEL is set, this field refers to Port1 operation.  
40  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH947-Q1  
www.ti.com.cn  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
Table 10. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
TYPE  
DEFAULT  
(hex)  
REGISTER NAME  
BIT(S)  
FUNCTION  
DESCRIPTION  
7
0x07  
Slave ID[0]  
7:1  
RW  
0x00  
Slave ID 0  
Port0/Port1  
7-bit I2C address of the remote Slave 0 attached to the remote  
Deserializer. If an I2C transaction is addressed to Slave Alias ID 0, the  
transaction will be remapped to this address before passing the  
transaction across the Bidirectional Control Channel to the  
Deserializer. A value of 0 in this field disables access to the remote  
Slave 0.  
If PORT1_SEL is set, this field refers to Port1 operation.  
0
Reserved.  
8
0x08  
Slave Alias[0]  
CRC Errors  
7:1  
RW  
0x00  
Slave Alias ID 0 7-bit Slave Alias ID of the remote Slave 0 attached to the remote  
Port0/Port1  
Deserializer. The transaction will be remapped to the address  
specified in the Slave ID 0 register. A value of 0 in this field disables  
access to the remote Slave 0.  
If PORT1_SEL is set, this field refers to Port1 operation.  
0
Reserved.  
10  
11  
12  
0x0A  
0x0B  
0x0C  
7:0  
R
R
0x00  
0x00  
0x00  
CRC Error LSB  
Port0/Port1  
Number of back channel CRC errors – 8 least significant bits. Cleared  
by 0x04[5].  
If PORT1_SEL is set, this field refers to Port1 operation.  
7:0  
CRC Error MSB Number of back channel CRC errors – 8 most significant bits. Cleared  
Port0/Port1  
by 0x04[5].  
If PORT1_SEL is set, this field refers to Port1 operation.  
General Status  
7:4  
3
Reserved.  
R
BIST CRC Error Back channel CRC error(s) during BIST communication with  
Port0/Port1  
Deserializer. This bit is cleared upon loss of link, restart of BIST, or  
assertion of CRC Error Reset bit in 0x04[5].  
0: No CRC errors detected during BIST.  
1: CRC error(s) detected during BIST.  
If PORT1_SEL is set, this field refers to Port1 operation.  
2
1
0
R
R
R
PCLK Detect  
Pixel clock status:  
0: Valid PCLK not detected at OpenLDI input.  
1: Valid PCLK detected at OpenLDI input.  
When the OpenLDI input is suddenly removed, this bit will remain  
asserted until and invalid (out of range) clock is applied.  
DES Error  
Port0/Port1  
CRC error(s) during normal communication with Deserializer. This bit  
is cleared upon loss of link or assertion of 0x04[5].  
0: No CRC errors detected.  
1: CRC error(s) detected.  
If PORT1_SEL is set, this field refers to Port1 operation.  
LINK Detect  
Port0/Port1  
LINK detect status:  
0: Cable link not detected.  
1: Cable link detected.  
If PORT1_SEL is set, this field refers to Port1 operation.  
Copyright © 2014–2019, Texas Instruments Incorporated  
41  
DS90UH947-Q1  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
www.ti.com.cn  
Table 10. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
TYPE  
DEFAULT  
(hex)  
REGISTER NAME  
BIT(S)  
FUNCTION  
DESCRIPTION  
13  
0x0D  
GPIO0 Configuration  
(If PORT1_SEL is set,  
this register controls  
the D_GPIO0 pin)  
7:4  
R
0x00  
Revision ID  
Revision ID:  
0010: Production device.  
3
RW  
GPIO0 Output  
Value  
Local GPIO Output Value. This value is output on the GPIO pin when  
the GPIO function is enabled, the local GPIO direction is set to output,  
and remote GPIO control is disabled.  
0: Output LOW (default).  
1: Output HIGH.  
2:0  
RW  
GPIO0 Mode  
Determines operating mode for the GPIO pin:  
x00: Functional input mode.  
x10: TRI-STATE.  
001: GPIO mode, output.  
011: GPIO mode, input.  
101: Remote-hold mode. The GPIO pin will be an output, and the  
value is received from the remote Deserializer. In remote-hold mode,  
data is maintained on link loss.  
111: Remote-default mode. The GPIO pin will be an output, and the  
value is received from the remote Deserializer. In remote-default  
mode, GPIO's Output Value bit is output on link loss.  
42  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH947-Q1  
www.ti.com.cn  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
Table 10. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
TYPE  
DEFAULT  
(hex)  
REGISTER NAME  
BIT(S)  
FUNCTION  
DESCRIPTION  
14  
0x0E  
GPIO1 and GPIO2  
Configuration  
(If PORT1_SEL is set,  
this register controls  
the D_GPIO1 and  
D_GPIO2 pins)  
7
RW  
0x00  
GPIO2 Output  
Value  
Local GPIO Output Value. This value is output on the GPIO pin when  
the GPIO function is enabled, the local GPIO direction is set to output,  
and remote GPIO control is disabled.  
0: Output LOW (default).  
1: Output HIGH.  
6:4  
RW  
GPIO2 Mode  
Determines operating mode for the GPIO pin:  
x00: Functional input mode.  
x10: TRI-STATE.  
001: GPIO mode, output.  
011: GPIO mode, input.  
101: Remote-hold mode. The GPIO pin will be an output, and the  
value is received from the remote Deserializer. In remote-hold mode,  
data is maintained on link loss.  
111: Remote-default mode. The GPIO pin will be an output, and the  
value is received from the remote Deserializer. In remote-default  
mode, GPIO's Output Value bit is output on link loss.  
3
RW  
RW  
GPIO1 Output  
Value  
Local GPIO Output Value. This value is output on the GPIO pin when  
the GPIO function is enabled, the local GPIO direction is set to output,  
and remote GPIO control is disabled.  
0: Output LOW (default).  
1: Output HIGH.  
2:0  
GPIO1 Mode  
Determines operating mode for the GPIO pin:  
x00: Functional input mode.  
x10: TRI-STATE.  
001: GPIO mode, output.  
011: GPIO mode, input.  
101: Remote-hold mode. The GPIO pin will be an output, and the  
value is received from the remote Deserializer. In remote-hold mode,  
data is maintained on link loss.  
111: Remote-default mode. The GPIO pin will be an output, and the  
value is received from the remote Deserializer. In remote-default  
mode, GPIO's Output Value bit is output on link loss.  
Copyright © 2014–2019, Texas Instruments Incorporated  
43  
DS90UH947-Q1  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
www.ti.com.cn  
Table 10. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
TYPE  
DEFAULT  
(hex)  
REGISTER NAME  
BIT(S)  
FUNCTION  
DESCRIPTION  
15  
0x0F  
GPIO3 Configuration  
(If PORT1_SEL is set,  
this register controls  
the D_GPIO3 pin)  
7:4  
3
0x00  
Reserved.  
RW  
RW  
GPIO3 Output  
Value  
Local GPIO Output Value. This value is output on the GPIO pin when  
the GPIO function is enabled, the local GPIO direction is set to output,  
and remote GPIO control is disabled.  
0: Output LOW (default).  
1: Output HIGH.  
2:0  
GPIO3 Mode  
Determines operating mode for the GPIO pin:  
x00: Functional input mode.  
x10: TRI-STATE.  
001: GPIO mode, output.  
011: GPIO mode, input.  
101: Remote-hold mode. The GPIO pin will be an output, and the  
value is received from the remote Deserializer. In remote-hold mode,  
data is maintained on link loss.  
111: Remote-default mode. The GPIO pin will be an output, and the  
value is received from the remote Deserializer. In remote-default  
mode, GPIO's Output Value bit is output on link loss.  
16  
0x10  
GPIO5_REG and  
GPIO6_REG  
7
RW  
0x00  
GPIO6_REG  
Output Value  
Local GPIO Output Value. This value is output on the GPIO pin when  
the GPIO function is enabled and the local GPIO direction is set to  
Configuration  
output.  
0: Output LOW (default).  
1: Output HIGH.  
6
Reserved.  
5:4  
RW  
RW  
GPIO6_REG  
Mode  
Determines operating mode for the GPIO pin:  
00: Functional input mode.  
10: TRI-STATE.  
01: GPIO mode, output.  
11: GPIO mode; input.  
3
GPIO5_REG  
Output Value  
Local GPIO Output Value. This value is output on the GPIO pin when  
the GPIO function is enabled and the local GPIO direction is set to  
output.  
0: Output LOW (default).  
1: Output HIGH.  
2
Reserved.  
1:0  
RW  
GPIO5_REG  
Mode  
Determines operating mode for the GPIO pin:  
00: Functional input mode.  
10: TRI-STATE.  
01: GPIO mode, output.  
11: GPIO mode; input.  
44  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH947-Q1  
www.ti.com.cn  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
Table 10. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
TYPE  
DEFAULT  
(hex)  
REGISTER NAME  
BIT(S)  
FUNCTION  
DESCRIPTION  
17  
0x11  
GPIO7_REG and  
GPIO8_REG  
7
RW  
0x00  
GPIO8_REG  
Output Value  
Local GPIO Output Value. This value is output on the GPIO pin when  
the GPIO function is enabled and the local GPIO direction is set to  
Configuration  
output.  
0: Output LOW (default).  
1: Output HIGH.  
6
Reserved.  
5:4  
RW  
RW  
GPIO8_REG  
Mode  
Determines operating mode for the GPIO pin:  
00: Functional input mode.  
10: TRI-STATE.  
01: GPIO mode, output.  
11: GPIO mode; input.  
3
GPIO7_REG  
Output Value  
Local GPIO Output Value. This value is output on the GPIO pin when  
the GPIO function is enabled and the local GPIO direction is set to  
output.  
0: Output LOW (default).  
1: Output HIGH.  
2
Reserved.  
1:0  
RW  
GPIO7_REG  
Mode  
Determines operating mode for the GPIO pin:  
00: Functional input mode.  
10: TRI-STATE.  
01: GPIO mode, output.  
11: GPIO mode; input.  
Copyright © 2014–2019, Texas Instruments Incorporated  
45  
DS90UH947-Q1  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
www.ti.com.cn  
Table 10. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
TYPE  
DEFAULT  
(hex)  
REGISTER NAME  
BIT(S)  
FUNCTION  
DESCRIPTION  
18  
0x12  
Data Path Control  
7
6
0x00  
Reserved.  
RW  
PASS RGB  
Setting this bit causes RGB data to be sent independent of DE in UH  
devices, which can be used to allow UH devices to interoperate with  
UB devices. However, setting this bit prevents HDCP operation and  
blocks packetized audio. This bit does not need to be set in UB  
devices.  
1: Pass RGB independent of DE.  
0: Normal operation.  
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
DE Polarity  
This bit indicates the polarity of the DE (Data Enable) signal.  
1: DE is inverted (active low, idle high).  
0: DE is positive (active high, idle low).  
I2S Repeater  
Regen  
Regenerate I2S data from Repeater I2S pins.  
0: Repeater pass through I2S from video pins (default).  
1: Repeater regenerate I2S from I2S pins.  
I2S CHANNEL B 1: Set I2S Channel B Enable from reg_12[0].  
ENABLE  
OVERRIDE  
0: I2S Channel B Disabled.  
Video Select  
Selects 18-bit or 24-bit video.  
1: Select 18-bit video mode.  
0: Select 24-bit video mode.  
I2S Transport  
Select  
Select I2S transport mode:  
0: Enable I2S Data Island transport (default).  
1: Enable I2S Data Forward Channel Frame transport.  
I2S CHANNEL B I2S Channel B Enable.  
ENABLE  
1: Enable I2S Channel B on B1 input.  
0: I2S Channel B disabled.  
Note that in a repeater, this bit may be overridden by the in-band I2S  
mode detection.  
19  
0x13  
General-Purpose  
Control  
7
R
R
R
R
0x88  
MODE_SEL1  
Done  
Indicates MODE_SEL1 value has stabilized and has been latched.  
6:4  
3
MODE_SEL1  
Decode  
Returns the 3-bit decode of the MODE_SEL1 pin.  
MODE_SEL0  
Done  
Indicates MODE_SEL0 value has stabilized and has been latched.  
Returns the 3-bit decode of the MODE_SEL0 pin.  
2:0  
MODE_SEL0  
Decode  
46  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH947-Q1  
www.ti.com.cn  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
Table 10. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
TYPE  
DEFAULT  
(hex)  
REGISTER NAME  
BIT(S)  
FUNCTION  
DESCRIPTION  
20  
0x14  
BIST Control  
7:3  
2:1  
0x00  
Reserved.  
RW  
OSC Clock  
Source  
Allows choosing different OSC clock frequencies for forward channel  
frame.  
OSC Clock Frequency in Functional Mode when PCLK is not present  
and 0x03[2]=1.  
00: 50MHz Oscillator.  
01: 50 MHz Oscillator.  
10: 100 MHz Oscillator.  
11: 25 MHz Oscillator.  
Clock Source in BIST mode i.e. when 0x14[0]=1.  
00: External Pixel Clock.  
01: 50 MHz Oscillator.  
10: 100 MHz Oscillator.  
11: 25 MHz Oscillator.  
0
R
BIST Enable  
BIST control:  
0: Disabled (default).  
1: Enabled.  
21  
0x15  
I2C Voltage Select  
7:0  
RW  
0x01  
I2C Voltage  
Select  
Selects 1.8 or 3.3V for the I2C_SDA and I2C_SCL pins. This register  
is loaded from the I2C_VSEL strap option from the I2CSEL pin at  
power-up. At power-up, a logic LOW will select 3.3V operation, while a  
logic HIGH (pull-up resistor attached) will select 1.8V signaling.  
Issuing either of the digital resets via register 0x01 will cause the  
I2C_VSEL value to be reset to 3.3V operation.  
Reads of this register return the status of the I2C_VSEL control:  
0: Select 1.8V signaling.  
1: Select 3.3V signaling.  
This bit may be overwritten via register access or via eFuse program  
by writing an 8-bit value to this register:  
Write 0xb5 to set I2C_VSEL.  
Write 0xb6 to clear I2C_VSEL.  
22  
0x16  
BCC Watchdog  
Control  
7:1  
0
RW  
RW  
0xFE  
Timer Value  
The watchdog timer allows termination of a control channel  
transaction if it fails to complete within a programmed amount of time.  
This field sets the Bidirectional Control Channel Watchdog Timeout  
value in units of 2 milliseconds. This field should not be set to 0.  
Timer Control  
Disable Bidirectional Control Channel (BCC) Watchdog Timer:  
0: Enable BCC Watchdog Timer operation (default).  
1: Disable BCC Watchdog Timer operation.  
Copyright © 2014–2019, Texas Instruments Incorporated  
47  
DS90UH947-Q1  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
www.ti.com.cn  
Table 10. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
TYPE  
DEFAULT  
(hex)  
REGISTER NAME  
BIT(S)  
FUNCTION  
DESCRIPTION  
23  
0x17  
I2C Control  
7
RW  
0x1E  
I2C Pass All  
0: Enable Forward Control Channel pass-through only of I2C  
accesses to I2C Slave IDs matching either the remote Deserializer  
Slave ID or the remote Slave ID (default).  
1: Enable Forward Control Channel pass-through of all I2C accesses  
to I2C Slave IDs that do not match the Serializer I2C Slave ID.  
6:4  
RW  
SDA Hold Time  
Internal SDA hold time:  
Configures the amount of internal hold time provided for the SDA input  
relative to the SCL input. Units are 40 nanoseconds.  
3:0  
7:0  
RW  
RW  
I2C Filter Depth Configures the maximum width of glitch pulses on the SCL and SDA  
inputs that will be rejected. Units are 5 nanoseconds.  
24  
25  
0x18  
0x19  
SCL High Time  
0xA1  
0xA5  
SCL HIGH Time I2C Master SCL High Time:  
This field configures the high pulse width of the SCL output when the  
Serializer is the Master on the local I2C bus. Units are 40 ns for the  
nominal oscillator clock frequency. The default value is set to provide  
a minimum 5us SCL high time with the internal oscillator clock running  
at 26.25MHz rather than the nominal 25MHz. Delay includes 5  
additional oscillator clock periods.  
Min_delay = 38.0952ns * (TX_SCL_HIGH + 5).  
SCL Low Time  
7:0  
RW  
SCL LOW Time I2C SCL Low Time:  
This field configures the low pulse width of the SCL output when the  
Serializer is the Master on the local I2C bus. This value is also used  
as the SDA setup time by the I2C Slave for providing data prior to  
releasing SCL during accesses over the Bidirectional Control Channel.  
Units are 40 ns for the nominal oscillator clock frequency. The default  
value is set to provide a minimum 5us SCL low time with the internal  
oscillator clock running at 26.25MHz rather than the nominal 25MHz.  
Delay includes 5 additional clock periods.  
Min_delay = 38.0952ns * (TX_SCL_LOW + 5).  
26  
0x1A  
Data Path Control 2  
7
RW  
0x00  
0x00  
BLOCK_REPEA Block automatic I2S mode configuration in repeater.  
TER_I2S_MODE 0: I2S mode (2-channel, 4-channel, or surround) is detected from the  
in-band audio signaling in a repeater.  
1: Disable automatic detection of I2S mode.  
6:2  
1
Reserved.  
RW  
RW  
MODE_28B  
Enable 28-bit Serializer Mode.  
0: 24-bit high-speed data + 3 low-speed control (DE, HS, VS).  
1: 28-bit high-speed data mode.  
0
I2S Surround  
Enable 5.1- or 7.1-channel I2S audio transport:  
0: 2-channel or 4-channel I2S audio is enabled as configured in  
register 0x12 bits 3 and 0 (default).  
1: 5.1- or 7.1-channel audio is enabled.  
Note that I2S Data Island Transport is the only option for surround  
audio. Also note that in a repeater, this bit may be overridden by the  
in-band I2S mode detection.  
48  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH947-Q1  
www.ti.com.cn  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
Table 10. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
TYPE  
DEFAULT  
(hex)  
REGISTER NAME  
BIT(S)  
FUNCTION  
DESCRIPTION  
27  
0x1B  
BIST BC Error Count  
7:0  
R
0x00  
BIST BC Error  
Port0/Port1  
BIST back channel CRC error counter.  
This register stores the back channel CRC error count during BIST  
Mode (saturates at 255 errors). Clears when a new BIST is initiated or  
by 0x04[5].  
If PORT1_SEL is set, this register indicates Port1 operation.  
28  
0x1C  
GPIO Pin Status 1  
7
6
5
R
R
R
0x00  
GPIO7_REG Pin GPIO7_REG input pin status.  
Status  
Note: status valid only if pin is set to GPI (input) mode.  
GPIO6_REG Pin GPIO6_REG input pin status.  
Status  
Note: status valid only if pin is set to GPI (input) mode.  
GPIO5_REG Pin GPIO5_REG input pin status.  
Status  
Note: status valid only if pin is set to GPI (input) mode.  
4
3
Reserved.  
R
R
R
R
GPIO3 Pin  
Status  
D_GPIO3 Pin  
Status  
GPIO3 input pin status.  
Note: status valid only if pin is set to GPI (input) mode.  
If PORT1_SEL is set, this register indicates D_GPIO3 operation.  
2
1
0
GPIO2 Pin  
Status  
D_GPIO2 Pin  
Status  
GPIO2 input pin status.  
Note: status valid only if pin is set to GPI (input) mode.  
If PORT1_SEL is set, this register indicates D_GPIO2 operation.  
GPIO1 Pin  
Status  
D_GPIO1 Pin  
Status  
GPIO1 input pin status.  
Note: status valid only if pin is set to GPI (input) mode.  
If PORT1_SEL is set, this register indicates D_GPIO1 operation.  
GPIO0 Pin  
Status  
D_GPIO0 Pin  
Status  
GPIO0 input pin status.  
Note: status valid only if pin is set to GPI (input) mode.  
If PORT1_SEL is set, this register indicates D_GPIO0 operation.  
29  
0x1D  
GPIO Pin Status 2  
7:1  
0
0x00  
Reserved  
R
GPIO8_REG Pin GPIO8_REG input pin status.  
Status Note: status valid only if pin is set to GPI (input) mode.  
Copyright © 2014–2019, Texas Instruments Incorporated  
49  
DS90UH947-Q1  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
www.ti.com.cn  
Table 10. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
TYPE  
DEFAULT  
(hex)  
REGISTER NAME  
BIT(S)  
FUNCTION  
DESCRIPTION  
30  
0x1E  
Port Select  
7:3  
2
0x01  
Reserved.  
RW  
RW  
PORT1_I2C_EN Port1 I2C Enable: Enables secondary I2C address. The second I2C  
address provides access to port1 registers as well as registers that  
are shared between ports 0 and 1. The second I2C address value will  
be set to DeviceID + 1 (7-bit format). The PORT1_I2C_EN bit must  
also be set to allow accessing remote devices over the second link  
when the device is in Replicate mode.  
1
PORT1_SEL  
Selects Port 1 for Register Access from primary I2C Address. For  
writes, Port 1 registers and shared registers will both be written. For  
reads, Port 1 registers and shared registers will be read. This bit must  
be cleared to read Port 0 registers.  
If this bit is set, GPIO[3:0] registers control operation for D_GPIO[3:0]  
registers.  
This bit is ignored if PORT1_I2C_EN is set.  
0
RW  
RW  
PORT0_SEL  
Selects Port 0 for Register Access from primary I2C Address. For  
writes, Port 0 registers and shared registers will both be written. For  
reads, Port 0 registers and shared registers will be read. Note that if  
PORT1_SEL is also set, then Port 1 registers will be read.  
This bit is ignored if PORT1_I2C_EN is set.  
31  
0x1F  
Frequency Counter  
7:0  
0x00  
Frequency Count Frequency Counter control: A write to this register will enable a  
frequency counter to count the number of pixel clock during a  
specified time interval. The time interval is equal to the value written  
multiplied by the oscillator clock period (nominally 40ns). A read of the  
register returns the number of pixel clock edges seen during the  
enabled interval. The frequency counter will freeze at 0xff if it reaches  
the maximum value. The frequency counter will provide a rough  
estimate of the pixel clock period. If the pixel clock frequency is  
known, the frequency counter may be used to determine the actual  
oscillator clock frequency.  
50  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH947-Q1  
www.ti.com.cn  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
Table 10. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
TYPE  
DEFAULT  
(hex)  
REGISTER NAME  
BIT(S)  
FUNCTION  
DESCRIPTION  
32  
0x20  
Deserializer  
Capabilities  
7
RW  
0x00  
FREEZE DES  
CAP  
Port0/Port1  
Freeze Deserializer Capabilities. Prevent auto-loading of the  
Deserializer Capabilities by the Bidirectional Control Channel. The  
Capabilities will be frozen at the values written in registers 0x20 and  
0x21.  
6
5
Reserved.  
RW  
RW  
RW  
Send_Freq  
Port0/Port1  
Send Frequency Training Pattern.  
4
3
0x00  
Send_EQ  
Port0/Port1  
Send Equalization Training Pattern.  
Dual Link  
Capable  
Dual link capabilities. Indicates if the Deserializer is capable of dual  
link operation.  
Port0/Port1  
2
1
RW  
RW  
Dual Channel  
Port0/Port1  
In a dual-link device, indicates if this is the primary or secondary  
channel.  
0: Primary channel (channel 0).  
1: Secondary channel (channel 1).  
VID_24B_HD_A Deserializer supports 24-bit video concurrently with HD audio. This  
UD  
Port0/Port1  
field is automatically configured by the Bidirectional Control Channel  
once RX Lock has been detected. Software may overwrite this value,  
but must also set the FREEZE DES CAP bit to prevent overwriting by  
the Bidirectional Control Channel.  
0
RW  
RW  
DES_CAP_FC_ Deserializer supports GPIO in the Forward Channel Frame. This field  
GPIO  
Port0/Port1  
is automatically configured by the Bidirectional Control Channel once  
RX Lock has been detected. Software may overwrite this value, but  
must also set the FREEZE DES CAP bit to prevent overwriting by the  
Bidirectional Control Channel.  
38  
0x26  
Link Detect Control  
7:2  
1:0  
Reserved.  
0x00  
LINK DETECT  
TIMER  
Bidirectional Control Channel Link Detect Timer. This field configures  
the link detection timeout period. If the timer expires without valid  
communication over the reverse channel, link detect will be  
deasserted.  
00: 325 microseconds.  
01: 162 microseconds.  
10: 650 microseconds.  
11: 1.3 milliseconds.  
Copyright © 2014–2019, Texas Instruments Incorporated  
51  
DS90UH947-Q1  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
www.ti.com.cn  
Table 10. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
TYPE  
DEFAULT  
(hex)  
REGISTER NAME  
BIT(S)  
FUNCTION  
DESCRIPTION  
64  
0x40  
ANA_IA_CNTL  
7:5  
4:2  
0x00  
Reserved.  
RW  
ANA_IA_SEL  
Analog register select  
Selects target for register access  
000b: Disabled  
001b - 011b: Reserved  
100b: OLDI Registers  
101b: FPD3 TX Registers  
11xb: Reserved  
1
0
RW  
RW  
ANA_AUTO_INC Analog Register Auto Increment  
0: Disable auto-increment mode  
1: Enable auto-increment mode. Upon completion of a read or write,  
the register address will automatically be incremented by 1.  
ANA_IA_READ  
Start Analog Register Read  
0: Write analog register  
1: Read analog register  
65  
66  
0x41  
0x42  
ANA_IA_ADDR  
ANA_IA_DATA  
7:0  
7:0  
RW  
RW  
0x00  
0x00  
ANA_IA_ADDR  
ANA_IA_DATA  
Analog register offset  
This register contains the 8-bit register offset for the indirect access.  
Analog register data  
Writing this register will cause an indirect write of the ANA_IA_DATA  
value to the selected analog block register. Reading this register will  
return the value of the selected analog block register.  
72  
0x48  
APB_CTL  
7:5  
4:3  
Reserved.  
RW  
0x00  
APB_SELECT  
APB Select: Selects target for register access:  
00 : Reserved.  
01 : Reserved.  
10 : Configuration Data (read only).  
11 : Die ID (read only).  
2
1
RW  
RW  
APB_AUTO_INC APB Auto Increment:  
Enables auto-increment mode. Upon completion of an APB read or  
write, the APB address will automatically be incremented by 0x1.  
APB_READ  
Start APB Read:  
Setting this bit to a 1 will begin an APB read. Read data will be  
available in the APB_DATA0 register. The APB_ADR0 register should  
be programmed prior to setting this bit. This bit will be cleared when  
the read is complete.  
0
RW  
APB_ENABLE  
APB Interface Enable:  
Set to a 1 to enable the APB interface. The APB_SELECT bits  
indicate what device is selected.  
73  
75  
0x49  
0x4B  
APB_ADR0  
7:0  
7:0  
RW  
RW  
0x00  
0x00  
APB_ADR0  
APB address byte 0 (LSB).  
APB_DATA0  
APB_DATA0  
Byte 0 (LSB) of the APB Interface Data.  
52  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH947-Q1  
www.ti.com.cn  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
Table 10. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
TYPE  
DEFAULT  
(hex)  
REGISTER NAME  
BIT(S)  
FUNCTION  
DESCRIPTION  
79  
0x4F  
BRIDGE_CTL  
7
RW  
Strap  
OLDI_MAPSEL  
OpenLDI Bit Map Select.  
Determines data mapping on the OpenLDI interface.  
0: SPWG mapping.  
1: OpenLDI mapping.  
OLDI_MAPSEL is initially loaded from the MODE_SEL1 pin strap  
options.  
6
5
RW  
Strap  
OLDI_IN_MODE OpenLDI Receiver Input Mode.  
Determines operating mode of OpenLDI Receive Interface.  
0: Dual-pixel mode.  
1: Single-pixel mode.  
OLDI_IN_MODE is initially loaded from the MODE_SEL0 pin strap  
options.  
RW  
RW  
0x00  
0x00  
OLDI_IN_SWAP OLDI Receive input swap:  
Swaps OLDI input ports. If OLDI_IN_MODE is set to 1 (single), then  
the secondary port is used. If OLDI_IN_MODE is set to 0 (dual), then  
the ports are swapped.  
4:2  
1
Reserved.  
CFG_INIT  
Initialize Configuration from Non-Volatile Memory:  
Causes a reload of the configuration data from the non-volatile  
memory. This bit will be cleared when the initialization is complete.  
0
7:6  
5
Reserved.  
Reserved.  
80  
0x50  
BRIDGE_STS  
R
R
0x00  
HDCP_INT  
INIT_DONE  
HDCP Interrupt Status: Indicates an HDCP Transmitter Interrupt is  
pending. HDCP Transmit interrupts are serviced through the HDCP  
Interrupt Control and Status registers.  
4
Initialization Done: Initialization sequence has completed. This step  
will complete after configuration complete (CFG_DONE).  
3
2
Reserved.  
R
R
0x00  
0x01  
CFG_DONE  
Configuration Complete: Indicates automatic configuration has  
completed. This step will complete prior to initialization complete  
(INIT_DONE).  
1
0
CFG_CKSUM  
Configuration checksum status: Indicates result of Configuration  
checksum during initialization. The device verifies the 2’s complement  
checksum in the last 128 bytes of the EEPROM. A value of 1 indicates  
the checksum passed.  
Reserved.  
Copyright © 2014–2019, Texas Instruments Incorporated  
53  
DS90UH947-Q1  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
www.ti.com.cn  
Table 10. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
TYPE  
DEFAULT  
(hex)  
REGISTER NAME  
BIT(S)  
FUNCTION  
AUDIO_TDM  
AUDIO_MODE  
DESCRIPTION  
84  
0x54  
BRIDGE_CFG  
7:3  
2
Reserved.  
RW  
RW  
0x00  
0x01  
Enable TDM Audio: Setting this bit to a 1 will enable TDM audio for  
the I2S audio. Parallel I2S data on the I2S pins will be serialized onto  
a single I2S_DA signal for sending over the serial link.  
1
Audio Mode: Selects source for audio to be sent over the FPD-Link III  
downstream link.  
0 :Disabled.  
1 : I2S audio from I2S pins.  
0
7
Reserved.  
84  
87  
0x55  
0x57  
AUDIO_CFG  
RW  
RW  
0x00  
0x00  
TDM_2_PARALL EnableTDM to parallel I2S audio conversion: When this bit is set, the  
EL  
TDM to parallel I2S conversion is enabled. TDM audio data on the  
I2S_DA pin will be split onto four I2S data signals.  
6:0  
7:4  
3
Reserved.  
Reserved.  
TDM_CONFIG  
TDM_FS_MODE TDM Frame Sync Mode: Sets active level for the Frame Sync for the  
TDM audio. The Frame Sync signal provides an active pulse to  
indicate the first sample data on the TDM data signal.  
0 : Active high Frame Sync.  
1 : Active low Frame Sync (similar to I2S word select).  
This bit is used for both the output of the I2S to TDM conversion and  
the input of the TDM to I2S conversion.  
2
RW  
RW  
0x00  
0x02  
TDM_DELAY  
TDM Data Delay: Controls data delay for TDM audio samples from the  
active Frame Sync edge.  
0 : Data is not delayed from Frame Sync (data is left justified).  
1 : Data is delayed 1 bit from Frame Sync.  
This bit is used for both the output of the I2S to TDM conversion and  
the input of the TDM to I2S conversion.  
1:0  
TDM_FS_WIDT TDM Frame Sync Width: Indicates width of TDM Frame Sync pulse for  
H
I2S to TDM conversion.  
00 : FS is 50/50 duty cycle.  
01 : FS is one slot/channel wide.  
1x : FS is 1 clock pulse wide.  
54  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH947-Q1  
www.ti.com.cn  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
Table 10. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
TYPE  
DEFAULT  
(hex)  
REGISTER NAME  
BIT(S)  
FUNCTION  
DESCRIPTION  
90  
0x5A  
DUAL_STS  
7
R
0x00  
FPD3_LINK_RD FPD-Link III Ready: This bit indicates that the FPD-Link III has  
Y
detected a valid downstream connection and determined capabilities  
for the downstream link.  
6
R
FPD3_TX_STS  
FPD-Link III transmit status:  
This bit indicates that the FPD-Link III transmitter is active and the  
receiver is LOCKED to the transmit clock. It is only asserted once a  
valid input has been detected, and the FPD-Link III transmit  
connection has entered the correct mode (Single vs. Dual mode).  
5:4  
R
FPD3_PORT_S FPD-Link III Port Status: If FPD3_TX_STS is set to a 1, this field  
TS  
indicates the port mode status as follows:  
00: Dual FPD-Link III Transmitter mode.  
01: Single FPD-Link III Transmit on port 0.  
10: Single FPD-Link III Transmit on port 1.  
11: Replicate FPD-Link III Transmit on both ports.  
3
2
R
R
OLDI_CLK_DET OpenLDI clock detect indication from the OpenLDI PLL controller.  
OLDI_PLL_LOC OpenLDI PLL lock status:  
K
Indicates the OpenLDI PLL has locked to the incoming OpenLDI  
clock.  
1
0
R
R
NO_OLDI_CLK  
No OpenLDI clock detected:  
This bit indicates the Frequency Detect Circuit did not detect an  
OpenLDI clock greater than the value specified in the FREQ_LOW  
register.  
FREQ_STABLE OLDI Frequency is stable:  
Indicates the Frequency Detection circuit has detected a stable OLDI  
clock frequency.  
Copyright © 2014–2019, Texas Instruments Incorporated  
55  
DS90UH947-Q1  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
www.ti.com.cn  
Table 10. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
TYPE  
DEFAULT  
(hex)  
REGISTER NAME  
BIT(S)  
FUNCTION  
DESCRIPTION  
91  
0x5B  
DUAL_CTL1  
7
RW  
Strap  
FPD3_COAX_M FPD-Link III Coax Mode: Enables configuration for the FPD-Link III  
ODE  
Interface cabling type:  
0 : Twisted Pair.  
1 : Coax.  
This bit is loaded from the MODE_SEL1 pin at power-up.  
6
RW  
0x20  
DUAL_SWAP  
Dual Swap Control:  
Indicates current status of the Dual Swap control. If automatic  
correction of Dual Swap is disabled via the DISABLE_DUAL_SWAP  
control, this bit may be modified by software.  
5
4
RW  
RW  
RST_PLL_FREQ Reset FPD-Link III PLL on Frequency Change: When set to a 1,  
frequency changes detected by the Frequency Detect circuit will result  
in a reset of the FPD3 PLL.  
FREQ_DET_PLL Frequency Detect Select PLL Clock. Determines the clock source for  
the Frequency detection circuit:  
0 : OpenLDI clock (prior to PLL).  
1: OpenLDI PLL clock.  
3
2
1
0
RW  
RW  
RW  
RW  
DUAL_ALIGN_D Dual Align on DE: In dual-link mode, if this bit is set to a 1, the  
E
odd/even data will be sent on the primary/secondary links  
respectively, based on the assertion of DE. If this bit is set to a 0, data  
will be sent on alternating links without regard to odd/even pixel  
position.  
DISABLE_DUAL Disable Dual Mode: During Auto-detect operation, setting this bit to a  
1 will disable Dual FPD-Link III operation.  
0: Normal Auto-detect operation.  
1: Only Single or Replicate operation supported.  
This bit will have no effect if FORCE_LINK is set.  
FORCE_DUAL  
FORCE_LINK  
Force dual mode:  
When FORCE_LINK bit is set, the value on this bit controls single  
versus dual operation:  
0: Single FPD-Link III Transmitter mode.  
1: Dual FPD-Link III Transmitter mode.  
Force Link Mode: Forces link to dual or single mode, based on the  
FORCE_DUAL control setting. If this bit is 0, mode setting will be  
automatically set based on downstream device capabilities as well as  
the incoming data frequency.  
1 : Forced Single or Dual FPD-Link III mode.  
0 : Auto-Detect FPD-Link III mode.  
56  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH947-Q1  
www.ti.com.cn  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
Table 10. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
TYPE  
DEFAULT  
(hex)  
REGISTER NAME  
BIT(S)  
FUNCTION  
DESCRIPTION  
92  
0x5C  
DUAL_CTL2  
7
RW  
0x00  
DISABLE_DUAL Disable Dual Swap: Prevents automatic correction of swapped Dual  
_SWAP  
link connection. Setting this bit allows writes to the DUAL_SWAP  
control in the DUAL_CTL1 register.  
6
5
RW  
RW  
FORCE_LINK_R Force Link Ready.  
DY  
Forces link ready indication, bypassing back channel link detection.  
FORCE_CLK_D Force Clock Detect.  
ET  
Forces the OpenLDI clock detect circuit to indicate presence of a valid  
input clock. This bypasses the clock detect circuit, allowing operation  
with an input clock that does not meet frequency or stability  
requirements.  
4:3  
2:0  
RW  
RW  
FREQ_STBL_T Frequency Stability Threshold: The Frequency detect circuit can be  
HR  
used to detect a stable clock frequency. The Stability Threshold  
determines the amount of time required for the clock frequency to stay  
within the FREQ_HYST range to be considered stable:  
00 : 160us.  
01 : 640us.  
10 : 1.28ms.  
11 : 2.55ms.  
0x02  
FREQ_HYST  
Frequency Detect Hysteresis: The Frequency detect hysteresis setting  
allows ignoring minor fluctuations in frequency. A new frequency  
measurement will be captured only if the measured frequency differs  
from the current measured frequency by more than the FREQ_HYST  
setting. The FREQ_HYST setting is in MHz.  
93  
0x5D  
FREQ_LOW  
7
6
Reserved.  
RW  
RW  
0x00  
0x06  
OLDI_RST_MO OLDI Phy Reset Mode:  
DE 0 : Reset OLDI Phy on change in mode or frequency.  
1 : Don't reset OLDI Phy on change in mode or frequency.  
5:0  
FREQ_LO_THR Frequency Low Threshold: Sets the low threshold for the OLDI Clock  
frequency detect circuit in MHz. This value is used to determine if the  
OLDI clock frequency is too low for proper operation.  
94  
95  
0x5E  
0x5F  
FREQ_HIGH  
7
Reserved.  
6:0  
RW  
R
44  
FREQ_HI_THR  
OLDI_FREQ  
Frequency High Threshold: Sets the high threshold for the OLDI Clock  
frequency detect circuit in MHz.  
OpenLDI Frequency  
7:0  
0x00  
OLDI Pixel Frequency:  
Returns the value of the OLDI pixel Frequency of the video data. This  
register indicates the pixel rate for the incoming data. If the OLDI  
interface is in single-pixel mode, the pixel frequency is the same as  
the OLDI frequency. If the OLDI interface is in dual-pixel mode, the  
pixel frequency is 2x the OLDI frequency. A value of 0 indicates the  
OLDI receiver is not detecting a valid signal.  
When the OpenLDI input is suddenly removed, this register will retain  
its value.  
Copyright © 2014–2019, Texas Instruments Incorporated  
57  
DS90UH947-Q1  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
www.ti.com.cn  
Table 10. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
TYPE  
DEFAULT  
(hex)  
REGISTER NAME  
BIT(S)  
FUNCTION  
SPI_HOLD  
DESCRIPTION  
96  
0x60  
SPI_TIMING1  
7:4  
RW  
0x02  
SPI Data Hold from SPI clock: These bits set the minimum hold time  
for SPI data following the SPI clock sampling edge. In addition, this  
also sets the minimum active pulse width for the SPI output clock.  
Hold = (SPI_HOLD + 1) * 40ns.  
For example, default setting of 2 will result in 120ns data hold time.  
3:0  
RW  
0x02  
SPI_SETUP  
SPI Data Setup to SPI Clock: These bits set the minimum setup time  
for SPI data to the SPI clock active edge. In addition, this also sets the  
minimum inactive width for the SPI output clock.  
Setup = (SPI_SETUP + 1) * 40ns.  
For example, default setting of 2 will result in 120ns data setup time.  
97  
98  
0x61  
0x62  
SPI_TIMING2  
SPI_CONFIG  
7:4  
3:0  
Reserved.  
RW  
R
0x00  
0x00  
SPI_SS_SETUP SPI Slave Select Setup: This field controls the delay from assertion of  
the Slave Select low to initial data timing. Delays are in units of 40ns.  
Delay = (SPI_SS_SETUP + 1) * 40ns.  
7
SPI_MSTR_OVE SPI Master Overflow Detection: This flag is set if the SPI Master  
R
detects an overflow condition. This occurs if the SPI Master is unable  
to regenerate the remote SPI data at a fast enough rate to keep up  
with data arriving from the remote Deserializer. If this condition occurs,  
it suggests the SPI_SETUP and SPI_HOLD times should be set to  
smaller values. This flag is cleared by setting the SPI_CLR_OVER bit  
in this register.  
6:3  
2
Reserved.  
RW  
R
0x00  
0x00  
SPI_CLR_OVER Clear SPI Master Overflow Flag: Setting this bit to 1 will clear the SPI  
Master Overflow Detection flag (SPI_MSTR_OVER). This bit is not  
self-clearing and must be set back to 0.  
1
SPI_CPHA  
SPI Clock Phase setting: Determines which phase of the SPI clock is  
used for sampling data.  
0: Data sampled on leading (first) clock edge.  
1: Data sampled on trailing (second) clock edge.  
This bit is read-only, with a value of 0. The DS90UH947-Q1 does not  
support CPHA of 1.  
0
RW  
0x00  
SPI_CPOL  
SPI Clock Polarity setting: Determines the base (inactive) value of the  
SPI clock.  
0: base value of the clock is 0.  
1: base value of the clock is 1.  
This bit affects both capture and propagation of SPI signals.  
58  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH947-Q1  
www.ti.com.cn  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
Table 10. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
TYPE  
DEFAULT  
(hex)  
REGISTER NAME  
BIT(S)  
FUNCTION  
DESCRIPTION  
100  
0x64  
Pattern Generator  
Control  
7:4  
RW  
0x10  
Pattern  
Fixed Pattern Select  
Generator Select Selects the pattern to output when in Fixed Pattern Mode. Scaled  
patterns are evenly distributed across the horizontal or vertical active  
regions. This field is ignored when Auto-Scrolling Mode is enabled.  
xxxx: normal/inverted.  
0000: Checkerboard.  
0001: White/Black (default).  
0010: Black/White.  
0011: Red/Cyan.  
0100: Green/Magenta.  
0101: Blue/Yellow.  
0110: Horizontal Black-White/White-Black.  
0111: Horizontal Black-Red/White-Cyan.  
1000: Horizontal Black-Green/White-Magenta.  
1001: Horizontal Black-Blue/White-Yellow.  
1010: Vertical Black-White/White-Black.  
1011: Vertical Black-Red/White-Cyan.  
1100: Vertical Black-Green/White-Magenta.  
1101: Vertical Black-Blue/White-Yellow.  
1110: Custom color (or its inversion) configured in PGRS, PGGS,  
PGBS registers.  
1111: VCOM.  
See TI App Note AN-2198.  
3
2
Reserved.  
RW  
Color Bars  
Pattern  
Enable color bars:  
0: Color Bars disabled (default).  
1: Color Bars enabled.  
Overrides the selection from reg_0x64[7:4].  
1
0
RW  
RW  
VCOM Pattern  
Reverse  
Reverse order of color bands in VCOM pattern:  
0: Color sequence from top left is (YCBR) (default).  
1: Color sequence from top left is (RBCY).  
Pattern  
Pattern Generator enable:  
Generator  
Enable  
0: Disable Pattern Generator (default).  
1: Enable Pattern Generator.  
Copyright © 2014–2019, Texas Instruments Incorporated  
59  
DS90UH947-Q1  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
www.ti.com.cn  
Table 10. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
TYPE  
DEFAULT  
(hex)  
REGISTER NAME  
BIT(S)  
FUNCTION  
DESCRIPTION  
101  
0x65  
Pattern Generator  
Configuration  
7
6
0x00  
Reserved.  
RW  
Checkerboard  
Scale  
Scale Checkered Patterns:  
0: Normal operation (each square is 1x1 pixel) (default).  
1: Scale checkered patterns (VCOM and checkerboard) by 8 (each  
square is 8x8 pixels).  
Setting this bit gives better visibility of the checkered patterns.  
5
4
RW  
RW  
Custom  
Checkerboard  
Use Custom Checkerboard Color:  
0: Use white and black in the Checkerboard pattern (default).  
1: Use the Custom Color and black in the Checkerboard pattern.  
PG 18–bit Mode 18-bit Mode Select:  
0: Enable 24-bit pattern generation. Scaled patterns use 256 levels of  
brightness (default).  
1: Enable 18-bit color pattern generation. Scaled patterns will have 64  
levels of brightness and the R, G, and B outputs use the six most  
significant color bits.  
3
2
RW  
RW  
External Clock  
Timing Select  
Select External Clock Source:  
0: Selects the internal divided clock when using internal timing  
(default).  
1: Selects the external pixel clock when using internal timing.  
This bit has no effect in external timing mode (PATGEN_TSEL = 0).  
Timing Select Control:  
0: The Pattern Generator uses external video timing from the pixel  
clock, Data Enable, Horizontal Sync, and Vertical Sync signals  
(default).  
1: The Pattern Generator creates its own video timing as configured in  
the Pattern Generator Total Frame Size, Active Frame Size.  
Horizontal Sync Width, Vertical Sync Width, Horizontal Back Porch,  
Vertical Back Porch, and Sync Configuration registers.  
See TI App Note AN-2198.  
1
0
RW  
RW  
Color Invert  
Auto Scroll  
Enable Inverted Color Patterns:  
0: Do not invert the color output (default).  
1: Invert the color output.  
See TI App Note AN-2198.  
Auto Scroll Enable:  
0: The Pattern Generator retains the current pattern (default).  
1: The Pattern Generator will automatically move to the next enabled  
pattern after the number of frames specified in the Pattern Generator  
Frame Time (PGFT) register.  
See TI App Note AN-2198.  
102  
0x66  
PGIA  
7:0  
RW  
0x00  
PG Indirect  
Address  
This 8-bit field sets the indirect address for accesses to indirectly-  
mapped registers. It should be written prior to reading or writing the  
Pattern Generator Indirect Data register.  
See TI App Note AN-2198  
60  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH947-Q1  
www.ti.com.cn  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
Table 10. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
TYPE  
DEFAULT  
(hex)  
REGISTER NAME  
PGID  
BIT(S)  
FUNCTION  
DESCRIPTION  
103  
0x67  
7:0  
RW  
0x00  
PG Indirect Data When writing to indirect registers, this register contains the data to be  
written. When reading from indirect registers, this register contains the  
read back value.  
See TI App Note AN-2198  
112  
0x70  
Slave ID[1]  
Slave ID[2]  
Slave ID[3]  
Slave ID[4]  
7:1  
RW  
0x00  
Slave ID 1  
Port0/Port1  
7-bit I2C address of the remote Slave 1 attached to the remote  
Deserializer. If an I2C transaction is addressed to Slave Alias ID 1, the  
transaction will be remapped to this address before passing the  
transaction across the Bidirectional Control Channel to the  
Deserializer. A value of 0 in this field disables access to the remote  
Slave 1.  
If Port1_SEL is set, this register controls Port1 operation.  
0
Reserved.  
113  
114  
115  
0x71  
0x72  
0x73  
7:1  
RW  
RW  
RW  
0x00  
0x00  
0x00  
Slave ID 2  
Port0/Port1  
7-bit I2C address of the remote Slave 2 attached to the remote  
Deserializer. If an I2C transaction is addressed to Slave Alias ID 2, the  
transaction will be remapped to this address before passing the  
transaction across the Bidirectional Control Channel to the  
Deserializer. A value of 0 in this field disables access to the remote  
Slave 2.  
If Port1_SEL is set, this register controls Port1 operation.  
0
Reserved.  
7:1  
Slave ID 3  
Port0/Port1  
7-bit I2C address of the remote Slave 3 attached to the remote  
Deserializer. If an I2C transaction is addressed to Slave Alias ID 3, the  
transaction will be remapped to this address before passing the  
transaction across the Bidirectional Control Channel to the  
Deserializer. A value of 0 in this field disables access to the remote  
Slave 3.  
If Port1_SEL is set, this register controls Port1 operation.  
0
Reserved.  
7:1  
Slave ID 4  
Port0/Port1  
7-bit I2C address of the remote Slave 4 attached to the remote  
Deserializer. If an I2C transaction is addressed to Slave Alias ID 4, the  
transaction will be remapped to this address before passing the  
transaction across the Bidirectional Control Channel to the  
Deserializer. A value of 0 in this field disables access to the remote  
Slave 4.  
If Port1_SEL is set, this register controls Port1 operation.  
0
Reserved.  
Copyright © 2014–2019, Texas Instruments Incorporated  
61  
DS90UH947-Q1  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
www.ti.com.cn  
Table 10. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
TYPE  
DEFAULT  
(hex)  
REGISTER NAME  
BIT(S)  
FUNCTION  
DESCRIPTION  
116  
117  
118  
0x74  
0x75  
0x76  
Slave ID[5]  
7:1  
RW  
RW  
RW  
0x00  
0x00  
0x00  
Slave ID 5  
Port0/Port1  
7-bit I2C address of the remote Slave 5 attached to the remote  
Deserializer. If an I2C transaction is addressed to Slave Alias ID 5, the  
transaction will be remapped to this address before passing the  
transaction across the Bidirectional Control Channel to the  
Deserializer. A value of 0 in this field disables access to the remote  
Slave 5.  
If Port1_SEL is set, this register controls Port1 operation.  
0
Reserved.  
Slave ID[6]  
7:1  
Slave ID 6  
Port0/Port1  
7-bit I2C address of the remote Slave 6 attached to the remote  
Deserializer. If an I2C transaction is addressed to Slave Alias ID 6, the  
transaction will be remapped to this address before passing the  
transaction across the Bidirectional Control Channel to the  
Deserializer. A value of 0 in this field disables access to the remote  
Slave 6.  
If Port1_SEL is set, this register controls Port1 operation.  
0
Reserved.  
Slave ID[7]  
7:1  
Slave ID 7  
Port0/Port1  
7-bit I2C address of the remote Slave 7 attached to the remote  
Deserializer. If an I2C transaction is addressed to Slave Alias ID 7, the  
transaction will be remapped to this address before passing the  
transaction across the Bidirectional Control Channel to the  
Deserializer. A value of 0 in this field disables access to the remote  
Slave 7.  
If Port1_SEL is set, this register controls Port1 operation.  
0
Reserved.  
119  
120  
121  
0x77  
0x78  
0x79  
Slave Alias[1]  
Slave Alias[2]  
Slave Alias[3]  
7:1  
RW  
RW  
RW  
0x00  
0x00  
0x00  
Slave Alias ID 1 7-bit Slave Alias ID of the remote Slave 1 attached to the remote  
Port0/Port1  
Deserializer. The transaction will be remapped to the address  
specified in the Slave ID 1 register. A value of 0 in this field disables  
access to the remote Slave 1.  
If Port1_SEL is set, this register controls Port1 operation.  
0
Reserved.  
7:1  
Slave Alias ID 2 7-bit Slave Alias ID of the remote Slave 2 attached to the remote  
Port0/Port1  
Deserializer. The transaction will be remapped to the address  
specified in the Slave ID 2 register. A value of 0 in this field disables  
access to the remote Slave 2.  
If Port1_SEL is set, this register controls Port1 operation.  
0
Reserved.  
7:1  
Slave Alias ID 3 7-bit Slave Alias ID of the remote Slave 3 attached to the remote  
Port0/Port1  
Deserializer. The transaction will be remapped to the address  
specified in the Slave ID 3 register. A value of 0 in this field disables  
access to the remote Slave 3.  
If Port1_SEL is set, this register controls Port1 operation.  
0
Reserved.  
62  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH947-Q1  
www.ti.com.cn  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
Table 10. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
TYPE  
DEFAULT  
(hex)  
REGISTER NAME  
BIT(S)  
FUNCTION  
DESCRIPTION  
122  
123  
124  
125  
0x7A  
0x7B  
0x7C  
0x7D  
Slave Alias[4]  
7:1  
RW  
RW  
RW  
RW  
0x00  
0x00  
0x00  
0x00  
Slave Alias ID 4 7-bit Slave Alias ID of the remote Slave 4 attached to the remote  
Port0/Port1  
Deserializer. The transaction will be remapped to the address  
specified in the Slave ID 4 register. A value of 0 in this field disables  
access to the remote Slave 4.  
If Port1_SEL is set, this register controls Port1 operation.  
0
Reserved.  
Slave Alias[5]  
Slave Alias[6]  
Slave Alias[7]  
7:1  
Slave Alias ID 5 7-bit Slave Alias ID of the remote Slave 5 attached to the remote  
Port0/Port1  
Deserializer. The transaction will be remapped to the address  
specified in the Slave ID 5 register. A value of 0 in this field disables  
access to the remote Slave 5.  
If Port1_SEL is set, this register controls Port1 operation.  
0
Reserved.  
7:1  
Slave Alias ID 6 7-bit Slave Alias ID of the remote Slave 6 attached to the remote  
Port0/Port1  
Deserializer. The transaction will be remapped to the address  
specified in the Slave ID 6 register. A value of 0 in this field disables  
access to the remote Slave 6.  
If Port1_SEL is set, this register controls Port1 operation.  
0
Reserved.  
7:1  
Slave Alias ID 7 7-bit Slave Alias ID of the remote Slave 7 attached to the remote  
Port0/Port1  
Deserializer. The transaction will be remapped to the address  
specified in the Slave ID 7 register. A value of 0 in this field disables  
access to the remote Slave 7.  
If Port1_SEL is set, this register controls Port1 operation.  
0
Reserved.  
128  
129  
130  
131  
132  
144  
145  
146  
147  
148  
0x80  
0x81  
0x82  
0x83  
0x84  
0x90  
0x91  
0x92  
0x93  
0x94  
RX_BKSV0  
RX_BKSV1  
RX_BKSV2  
RX_BKSV3  
RX_BKSV4  
TX_KSV0  
TX_KSV1  
TX_KSV2  
TX_KSV3  
TX_KSV4  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
R
R
R
R
R
R
R
R
R
R
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
BKSV0  
BKSV0: Value of byte0 of the Receiver KSV.  
BKSV1: Value of byte1 of the Receiver KSV.  
BKSV2: Value of byte2 of the Receiver KSV.  
BKSV3: Value of byte3 of the Receiver KSV.  
BKSV4: Value of byte4 of the Receiver KSV.  
TX_KSV0: Value of byte0 of the Transmitter KSV.  
TX_KSV1: Value of byte1 of the Transmitter KSV.  
TX_KSV2: Value of byte2 of the Transmitter KSV.  
TX_KSV3: Value of byte3 of the Transmitter KSV.  
TX_KSV4: Value of byte4 of the Transmitter KSV.  
BKSV1  
BKSV2  
BKSV3  
BKSV4  
TX_KSV0  
TX_KSV1  
TX_KSV2  
TX_KSV3  
TX_KSV4  
Copyright © 2014–2019, Texas Instruments Incorporated  
63  
DS90UH947-Q1  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
www.ti.com.cn  
Table 10. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
TYPE  
DEFAULT  
(hex)  
REGISTER NAME  
BIT(S)  
FUNCTION  
DESCRIPTION  
160  
0xA0  
RX_BCAPS  
7
6
Reserved.  
R
0x00  
Repeater  
Repeater: Indicates if the attached Receiver supports downstream  
connections. This bit is valid once the Bksv is ready as indicated by  
the BKSV_RDY bit in the HDCP.  
5
4
R
R
0x00  
0x01  
KSV_FIFO_RDY KSV FIFO Ready: Indicates the receiver has built the list of attached  
KSVs and computed the verification value V’.  
FAST_I2C  
Fast I2C: The HDCP Receiver supports fast I2C. Since the I2C is  
embedded in the serial data, this bit is not relevant.  
3:2  
1
R
R
Reserved.  
0x01  
FEATURES_1_1 1.1_Features: The HDCP Receiver supports the Enhanced Encryption  
Status Signaling (EESS), Advance Cipher, and Enhanced Link  
Verification options.  
0
7
R
R
0x01  
0x00  
FAST_REAUTH Fast Reauthentication: The HDCP Receiver is capable of receiving  
(unencrypted) video signal during the session re-authentication.  
161  
0xA1  
RX_BSTATUS0  
MAX_DEVS_EX Maximum Devices Exceeded: Indicates a topology error was detected.  
CEEDED  
Indicates the number of downstream devices has exceeded the depth  
of the Repeater's KSV FIFO.  
6:0  
R
R
DEVICE_COUN Device Count: Total number of attached downstream device. For a  
T
Repeater, this will indicate the number of downstream devices, not  
including the Repeater. For an HDCP Receiver that is not also a  
Repeater, this field will be 0.  
162  
163  
0xA2  
0xA3  
RX_BSTATUS1  
7:4  
3
Reserved.  
0x00  
0x00  
MAX_CASC_EX Maximum Cascade Exceeded: Indicates a topology error was  
CEEDED  
detected. Indicates that more than seven levels of repeaters have  
been cascad-ed together.  
2:0  
7:0  
R
R
Cascade Depth  
KSV_FIFO  
Cascade Depth: Indicates the number of attached levels of devices for  
the Repeater.  
KSV_FIFO  
KSV FIFO: Each read of the KSV FIFO returns one byte of the KSV  
FIFO list composed by the downstream Receiver.  
64  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH947-Q1  
www.ti.com.cn  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
Table 10. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
TYPE  
DEFAULT  
(hex)  
REGISTER NAME  
BIT(S)  
FUNCTION  
DESCRIPTION  
192  
0xC0  
HDCP_DBG  
7
6
0x00  
Reserved.  
HDCP_I2C_TO_ HDCP I2C Timeout Disable: Setting this bit to a 1 will disable the bus  
RW  
RW  
DIS  
timeout function in the HDCP I2C master. When enabled, the bus  
timeout function allows the I2C master to assume the bus is free if no  
signaling occurs for more than 1 second.  
5
4
Reserved.  
DIS_RI_SYNC  
Disable Ri Synchronization check: Ri is normally checked both before  
and after the start of frame 128. The check at frame 127 ensures  
synchronization between the two. Setting this bit to a 1 will disable the  
check at frame 127.  
3
2
RW  
RW  
RGB_CHKSUM_ Enable RBG video line checksum: Enables sending of ones-  
EN  
complement checksum for each 8-bit RBG data channel following end  
of each video data line.  
FC_TESTMODE Frame Counter Testmode: Speeds up frame counter used for Pj and  
Ri verification. When set to a 1, Pj is computed every 2 frames and Ri  
is computed every 16 frames. When set to a 0, Pj is computed every  
16 frames and Ri is computed every 128 frames.  
1
0
RW  
RW  
TMR_SPEEDUP Timer Speedup: Speed up HDCP authentication timers.  
HDCP_I2C_FAS HDCP I2C Fast Mode Enable:  
T
Setting this bit to a 1 will enable the HDCP I2C Master in the HDCP  
Receiver to operation with Fast mode timing. If set to a 0, the I2C  
Master will operation with Standard mode timing. This bit is mirrored in  
the IND_STS register.  
Copyright © 2014–2019, Texas Instruments Incorporated  
65  
DS90UH947-Q1  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
www.ti.com.cn  
Table 10. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
TYPE  
DEFAULT  
(hex)  
REGISTER NAME  
BIT(S)  
FUNCTION  
ENH_LV  
DESCRIPTION  
194  
0xC2  
HDCP_CFG  
7
RW  
0x80  
Enable Enhanced Link Verification: Enables enhanced link verification.  
Allows checking of the encryption Pj value on every 16th frame.  
1 = Enhanced Link Verification enabled.  
0 = Enhanced Link Verification disabled.  
6
5
RW  
HDCP_EESS  
TX_RPTR  
Enable Enhanced Encryption Status Signaling: Enables Enhanced  
Encryption Status Signaling (EESS) instead of the Original Encryption  
Status Signaling (OESS).  
1 = EESS mode enabled.  
0 = OESS mode enabled.  
RW  
RW  
Transmit Repeater Enable: Enables the transmitter to act as a  
repeater. In this mode, the HDCP Transmitter incorporates the  
additional authentication steps required of an HDCP Repeater.  
1 = Transmit Repeater mode enabled.  
0 = Transmit Repeater mode disabled.  
4:3  
ENC_MODE  
Encryption Control Mode: Determines mode for controlling whether  
encryption is required for video frames.  
00 = Enc_Authenticated.  
01 = Enc_Reg_Control.  
10 = Enc_Always.  
11 = Enc_InBand_Control (per frame).  
If the Repeater strap option is set at power-up, Enc_InBand_Control  
(ENC_MODE == 11) will be se-lected. Otherwise, the default will be  
Enc_Authenticated mode (ENC_MODE == 00).  
2
RW  
WAIT_100MS  
RX_DET_SEL  
Enable 100MS Wait: The HDCP 1.3 specification allows for a 100Ms  
wait to allow the HDCP Receiver to compute the initial encryption  
values. The FPD-LinkIII implementation guarantees that the Receiver  
will complete the computations before the HDCP Transmitter. Thus  
the timer is unnecessary. To enable the 100ms timer, set this bit to a  
1.  
1
0
RW  
RW  
RX Detect Select: Controls assertion of the Receiver Detect Interrupt.  
If set to 0, the Receiver Detect Interrupt will be asserted on detection  
of an FPD-Link III Receiver. If set to 1, the Receiver Detect Interrupt  
will also require a receive lock indication from the receiver.  
HDCP_AVMUTE Enable AVMUTE: Setting this bit to a 1 will initiate AVMUTE  
operation. The transmitter will ignore encryption status controls while  
in this state. If this bit is set to a 0, normal operation will resume. This  
bit may only be set if the HDCP_EESS bit is also set.  
66  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH947-Q1  
www.ti.com.cn  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
Table 10. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
TYPE  
DEFAULT  
(hex)  
REGISTER NAME  
BIT(S)  
FUNCTION  
DESCRIPTION  
195  
0xC3  
HDCP_CTL  
7
RW  
0x00  
0x00  
HDCP_RST  
HDCP Reset : Setting this bit will reset the HDCP transmitter and dis-  
able HDCP authentication. This bit is self-clearing.  
6
5
Reserved.  
RW  
RW  
KSV_LIST_VALI KSV List Valid : The controller sets this bit after validating the  
D
Repeater’s KSV List against the Key revocation list. This allows  
completion of the Authentication process. This bit is self-clearing.  
4
KSV_VALID  
KSV Valid : The controller sets this bit after validating the Receiver’s  
KSV against the Key revocation list. This allows continuation of the  
Authentication process. This bit will be cleared upon assertion of the  
KSV_RDY flag in the HDCP_STS register. Setting this bit to a 0 will  
have no effect.  
3
2
RW  
RW  
HDCP_ENC_DI HDCP Encrypt Disable : Disables HDCP encryption. Setting this bit to  
S
a 1 will cause video data to be sent without encryption. Authen-tication  
status will be maintained. This bit is self-clearing.  
HDCP_ENC_EN HDCP Encrypt Enable : Enables HDCP encryption. When set, if the  
device is authenticated, encrypted data will be sent. If device is not  
authenticated, a blue screen will be sent. Encryption should always be  
enabled when video data requiring content protection is being  
supplied to the transmitter. When this bit is not set, video data will be  
sent without encryption. Note that when CFG_ENC_MODE is set to  
Enc_Always, this bit will be read only with a value of 1.  
1
0
RW  
RW  
HDCP_DIS  
HDCP_EN  
HDCP Disable: Disables HDCP authentication. Setting this bit to a 1  
will disable the HDCP authentication. This bit is self-clearing.  
HDCP Enable/Restart: Enables HDCP authentication. If HDCP is  
already en-abled, setting this bit to a 1 will restart authentication.  
Setting this bit to a 0 will have no effect. A register read will return the  
current HDCP enabled status.  
Copyright © 2014–2019, Texas Instruments Incorporated  
67  
DS90UH947-Q1  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
www.ti.com.cn  
Table 10. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
TYPE  
DEFAULT  
(hex)  
REGISTER NAME  
BIT(S)  
FUNCTION  
DESCRIPTION  
196  
0xC4  
HDCP_STS  
7
R
0x00  
I2C_ERR_DET  
HDCP I2C Error Detected: This bit indicates an error was detected on  
the embedded communications channel with the HDCP Receiver.  
Setting of this bit might indicate that a problem exists on the link  
between the HDCP Transmitter and HDCP Receiver. This bit will be  
cleared on read.  
6
R
RX_INT  
RX Interrupt : Status of the RX Interrupt signal. The signal is received  
from the attached HDCP Receiver and is the status on the INTB_IN  
pin of the HDCP Receiver. The signal is active low, so a 0 indicates  
an interrupt condition.  
5
4
R
R
RX_LOCK_DET Receiver Lock Detect : This bit indicates that the downstream  
Receiver has indicated Receive Lock to incoming serial data.  
DOWN_HPD  
Downstream Hot Plug Detect: This bit indicates a downstream  
repeater has reported a Hot Plug event, indicating addition of a new  
receiver. This bit will be cleared on read.  
3
2
R
R
RX_DETECT  
Receiver Detect : This bit indicates that a downstream Receiver has  
been detected.  
KSV_LIST_RDY HDCP Repeater KSV List Ready : This bit indicates that the Receiver  
KSV list has been read and is available in the KSV_FIFO registers.  
The device will wait for the controller to set the KSV_LIST_VALID bit  
in the HDCP_CTL register before continuing. This bit will be cleared  
once the controller sets the KSV_LIST_VALID bit.  
1
0
R
R
KSV_RDY  
HDCP Receiver KSV Ready : This bit indicates that the Receiver KSV  
has been read and is available in the HDCP_BKSV registers. If the  
de-vice is not a Repeater, it will wait for the controller to set the  
KSV_VALID bit in the HDCP_CTL register before continuing. This bit  
will be cleared once the controller sets the KSV_VALID bit.  
AUTHED  
HDCP Authenticated: Indicates the HDCP authentication has  
completed successfully. The controller may now send video data re-  
quiring content protection. This bit will be cleared if authentication is  
lost or if the controller restarts authen-tication.  
68  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH947-Q1  
www.ti.com.cn  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
Table 10. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
TYPE  
DEFAULT  
(hex)  
REGISTER NAME  
ICR  
BIT(S)  
FUNCTION  
DESCRIPTION  
198  
0xC6  
7
RW  
0x00  
IE_IND_ACC  
Interrupt on Indirect Access Complete: Enables interrupt on  
completion of Indirect Register Access.  
6
5
RW  
IE_RXDET_INT Interrupt on Receiver Detect: Enables interrupt on detection of a  
downstream Receiver. If HDCP_CFG:RX_DET_SEL is set to a 1, the  
interrupt will wait for Receiver Lock Detect.  
RW  
IE_RX_INT  
Interrupt on Receiver interrupt: Enables interrupt on indication from  
the HDCP Receiver. Allows propagation of interrupts from  
downstream devices.  
4
3
2
RW  
RW  
RW  
0x00  
IE_LIST_RDY  
IE_KSV_RDY  
IE_AUTH_FAIL  
Interrupt on KSV List Ready: Enables interrupt on KSV List Ready.  
Interrupt on KSV Ready: Enables interrupt on KSV Ready.  
Interrupt on Authentication Failure: Enables interrupt on authentication  
failure or loss of authentication.  
1
0
7
6
RW  
RW  
R
IE_AUTH_PASS Interrupt on Authentication Pass: Enables interrupt on successful  
completion of authentication.  
INT_EN  
Global Interrupt Enable: Enables interrupt on the interrupt signal to the  
controller.  
199  
0xC7  
ISR  
0x00  
0x00  
IS_IND_ACC  
Interrupt on Indirect Access Complete: Indirect Register Access has  
completed.  
R
IS_RXDET_INT Interrupt on Receiver Detect interrupt: A downstream receiver has  
been detected. If HDCP_CFG:RX_DET_SEL is set to a 1, the interrupt  
will wait for Receiver Lock Detect.  
5
4
3
2
1
0
R
R
R
R
R
R
IS_RX_INT  
Interrupt on Receiver interrupt: Receiver has indicated an interrupt  
request from down-stream device.  
IS_LIST_RDY  
IS_KSV_RDY  
IS_AUTH_FAIL  
Interrupt on KSV List Ready: The KSV list is ready for reading by the  
controller.  
Interrupt on KSV Ready: The Receiver KSV is ready for reading by  
the controller.  
Interrupt on Authentication Failure: Authentication failure or loss of  
authentication has occurred.  
IS_AUTH_PASS Interrupt on Authentication Pass: Authentication has completed  
successfully.  
INT  
Global Interrupt: Set if any enabled interrupt is indicated.  
Copyright © 2014–2019, Texas Instruments Incorporated  
69  
DS90UH947-Q1  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
www.ti.com.cn  
Table 10. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
TYPE  
DEFAULT  
(hex)  
REGISTER NAME  
BIT(S)  
FUNCTION  
DESCRIPTION  
200  
0xC8  
NVM_CTL  
7
R
0x00  
NVM_PASS  
NVM Verify pass: This bit indicates the completion status of the NVM  
verification process. This bit is valid only when NVM_DONE is  
asserted.  
0: NVM Verify failed.  
1: NVM Verify passed.  
6
R
NVM_DONE  
NVM_VFY  
NVM Verify done: This bit indicates that the NVM Verifcation has  
completed.  
5
4:3  
2
RW  
R
Reserved.  
Reserved.  
RW  
0x00  
NVM Verify: Setting this bit will enable a verification of the NVM con-  
tents. This is done by reading all NVM keys, computing a SHA-1 hash  
value, and verifying against the SHA-1 hash stored in NVM. This bit  
will be cleared upon com-pletion of the NVM Verification.  
1
0
RW  
RW  
RW  
Reserved.  
Reserved.  
206  
208  
0xCE  
0xD0  
BLUE_SCREEN  
IND_STS  
7:0  
0xFF  
0x00  
BLUE_SCREEN Blue Screen Data Value: Provides the 8-bit data value sent on the  
_VAL  
Blue channel when the HDCP Transmitter is sending a blue screen.  
7
RW  
IA_RST  
Indirect Access Reset: Setting this bit to a 1 will reset the I2C Master  
in the HDCP Receiver. As this may leave the I2C bus in an  
indeterminate state, it should only be done if the Indirect Access  
mechanism is not able to complete due to an error on the destination  
I2C bus.  
6
5
RW  
RW  
I2C_TO_SPEED I2C Timer Speedup: For diagnostic purposes allow speedup of of the  
1 second idle timer to 50us. Texas Instruments use only, should be  
marked as Reserved in datasheet.  
I2C_TO_DIS  
I2C Timeout Disable: Setting this bit to a 1 will disable the bus timeout  
function in the I2C master. When enabled, the bus timeout function  
allows the I2C master to assume the bus is free if no signaling occurs  
for more than 1 second.  
4
RW  
I2C_FAST  
I2C Fast mode Enable: Setting this bit to a 1 will enable the I2C  
Master in the HDCP Receiver to operation with Fast mode timing. If  
set to a 0, the I2C Master will operation with Standard mode timing.  
3:2  
1
Reserved.  
R
R
0x00  
IA_ACK  
Indirect Access Acknowledge: The acknowledge bit indicates that a  
valid acknowledge was received upon completion of the I2C read or  
write to the slave. A value of 0 indicates the read/write did not  
complete successfully.  
0
IA_DONE  
Indirect Access Done: Set to a 1 to indicate completion of Indirect  
Register Access. This bit will be cleared or read or by start of a new  
Indirect Register Access.  
70  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH947-Q1  
www.ti.com.cn  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
Table 10. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
TYPE  
DEFAULT  
(hex)  
REGISTER NAME  
BIT(S)  
FUNCTION  
IA_SADDR  
DESCRIPTION  
209  
0xD1  
IND_SAR  
7:1  
RW  
0x00  
Indirect Access Slave Address: This field should be programmed with  
the slave address for the I2C slave to be accessed.  
0
RW  
IA_RW  
Indirect Access Read/Write:  
1 = Read.  
0 = Write.  
210  
211  
0xD2  
0xD3  
IND_OAR  
7:0  
7:0  
RW  
RW  
0x00  
0x00  
IA_OFFSET  
IA_DATA  
Indirect Access Offset: This field should be programmed with the  
register address for the I2C indirect access.  
IND_DATA  
Indirect Access Data: For an indirect write, this field should be written  
with the write data. For an indirect read, this field will contain the result  
of a successful read.  
224  
226  
227  
228  
230  
231  
240  
241  
242  
243  
244  
245  
0xE0  
0xE2  
0xE3  
0xE4  
0xE6  
0xE7  
0xF0  
0xF1  
0xF2  
0xF3  
0xF4  
0xF5  
HDCP_DBG_ALIAS  
HDCP_CFG_ALIAS  
HDCP_CTL_ALIAS  
HDCP_STS_ALIAS  
HDCP_ICR_ALIAS  
HDCP_ISR_ALIAS  
TX ID  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
R
R
R
R
R
R
R
R
R
R
R
R
HDCP_DBG  
HDCP_CFG  
HDCP_CTL  
HDCP_STS  
HDCP_ICR  
HDCP_ISR  
ID0  
Read-only alias of HDCP_DBG register.  
Read-only alias of HDCP_CFG register.  
Read-only alias of HDCP_CTL register.  
Read-only alias of HDCP_STS register.  
Read-only alias of HDCP_ICR register.  
Read-only alias of HDCP_ISR register.  
First byte ID code: "_".  
0x5F  
0x55  
0x48  
0x39  
0x34  
0x37  
ID1  
Second byte of ID code: "U".  
ID2  
Third byte of ID code: "H".  
ID3  
Fourth byte of ID code: "9".  
ID4  
Fifth byte of ID code: "4".  
ID5  
Sixth byte of ID code: “7”.  
Copyright © 2014–2019, Texas Instruments Incorporated  
71  
DS90UH947-Q1  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
www.ti.com.cn  
NOTE  
Registers 0x40, 0x41, and 0x42 of the Serial Control Bus Registers are used to access  
the Page 0x10 registers.  
Table 11. Page 0x10 Registers  
REGISTE  
R
TYPE  
ADD  
(dec)  
ADD  
(hex)  
REGISTER  
NAME  
DEFAULT  
(hex)  
BIT(S)  
FUNCTION  
DESCRIPTION  
71  
0x47 OVERRIDE  
7
RW  
0x00  
REG_OV_C Override bit for reset divider  
LK_DIV_RS  
TN  
6
5
Reserved, when writing to this register always write  
0b to this bit.  
RW  
REG_OV_P Enable PLL lock override bit  
LL_LOCK  
4:0  
Reserved, when writing to this register always write  
00000b to these bits.  
73  
0x49 STATE_MACHI  
NE_OVERRIDE  
7:5  
4
0x00  
Reserved  
RW  
RW  
REG_OV_S Enable State Machine override bit  
TATE  
0: Normal operation (default)  
1: Enable override  
3:0  
REG_STAT 0000b: Reset  
0001b - 0101b: Reserved  
E
0110: PFD_CLOSE_LOOP_TIMER  
0111b - 1111b: Reserved  
72  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH947-Q1  
www.ti.com.cn  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Applications Information  
The DS90UH947-Q1, in conjunction with the DS90UH940-Q1/DS90UH948-Q1 deserializer, is intended to  
interface between a host (graphics processor) and a display, supporting 24-bit color depth (RGB888) and high  
definition (1080p) digital video format. It can receive an 8-bit RGB stream with a pixel clock rate up to 170 MHz  
together with four I2S audio streams when paired with the DS90UH940-Q1/DS90UH948-Q1 deserializer.  
8.2 Typical Applications  
Bypass capacitors should be placed near the power supply pins. A capacitor and resistor are placed on the PDB  
pin to delay the enabling of the device until power is stable. See below for typical STP and coax connection  
diagrams.  
Copyright © 2014–2019, Texas Instruments Incorporated  
73  
DS90UH947-Q1  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
www.ti.com.cn  
Typical Applications (continued)  
VDD18  
(Filtered 1.8V)  
1.8V  
VDD18  
VDD18  
VDDOA11  
VDDOA11  
VDDOP11  
1.1V  
FB3  
0.01µF  
- 0.1µF  
0.01µF  
- 0.1µF  
FB1  
0.1µF 1µF 10µF  
10µF 1µF 0.1µF  
0.01µF  
- 0.1µF  
0.01µF  
- 0.1µF  
0.01µF  
- 0.1µF  
VDDIO  
VDDIO  
VDDL11  
VDDL11  
1µF  
1µF  
0.1µF  
0.1µF  
VDDHS11  
VDDHS11  
VDDS11  
VDDA11  
VDDP11  
0.01µF  
- 0.1µF  
FB4  
0.1µF 1µF 10µF  
1.1V  
0.01µF  
- 0.1µF  
0.01µF  
- 0.1µF  
FB2  
10µF 1µF 0.1µF  
0.01µF  
- 0.1µF  
0.01µF  
- 0.1µF  
0.01µF  
- 0.1µF  
D0+  
D0-  
0.01µF  
- 0.1µF  
100  
C1  
C2  
DOUT0+  
DOUT0-  
D1+  
D1-  
100ꢀ  
100ꢀ  
100ꢀ  
FPD-Link III  
C3  
C4  
D2+  
D2-  
DOUT1+  
DOUT1-  
LF  
CLK+  
CLK-  
10nF  
R1  
VDD18  
(Filtered 1.8V)  
D3+  
D3-  
IDx  
OpenLDI  
100ꢀ  
R2 0.1µF  
R3  
R4  
D4+  
D4-  
MODE_SEL0  
MODE_SEL1  
100ꢀ  
100ꢀ  
100ꢀ  
0.1µF  
R5  
D5+  
D5-  
D6+  
D6-  
R6  
0.1µF  
MOSI  
MISO  
SPLK  
SS  
D7+  
D7-  
SPI  
100ꢀ  
VDDI2C  
1.8V  
I2C  
1.8V  
LFOLDI  
PDB  
10nF  
4.7k 4.7k 4.7k  
10k  
SDA  
SCL  
Controller (Optional)  
>10µF  
INTB  
Interrupt  
I2S_WC  
I2S_CLK  
I2S_DA  
I2S_DB  
I2S_DC  
I2S_DD  
RES0  
RES1  
RES2  
I2S Audio  
50  
RES3  
NOTE:  
float  
NC  
FB1,FB5: DCR<=0.3Ohm; Z=1Kohm@100MHz  
FB2-FB4: DCR<=25mOhm; Z=120ohm@100MHz  
C1-C4 = 0.1µF (50 WV; 0402) with DS90UH926/928  
C1-C4 = 0.033µF (50 WV; 0402) with DS90UH940/948  
R1 and R2 (see IDx Resistor Values Table)  
DAP  
DS90UH947-Q1  
R3 œ R6 (see MODE_SEL Resistor Values Table)  
VDDI2C = Pull up voltage of I2C bus. Refer to I2CSEL pin  
description for 1.8V or 3.3V operation.  
Figure 35. Typical Application Connection -- STP  
74  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH947-Q1  
www.ti.com.cn  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
Typical Applications (continued)  
VDD18  
(Filtered 1.8V)  
1.8V  
VDD18  
VDD18  
VDDOA11  
1.1V  
0.01µF  
- 0.1µF  
0.01µF  
- 0.1µF  
FB1  
FB3  
0.1µF 1µF 10µF  
10µF 1µF 0.1µF  
VDDOA11  
VDDOP11  
0.01µF  
- 0.1µF  
0.01µF  
- 0.1µF  
0.01µF  
- 0.1µF  
VDDIO  
VDDIO  
VDDL11  
VDDL11  
1µF  
1µF  
0.1µF  
0.1µF  
VDDHS11  
VDDHS11  
VDDS11  
VDDA11  
VDDP11  
0.01µF  
- 0.1µF  
FB4  
0.1µF 1µF 10µF  
1.1V  
0.01µF  
- 0.1µF  
0.01µF  
- 0.1µF  
FB2  
10µF 1µF 0.1µF  
0.01µF  
- 0.1µF  
0.01µF  
- 0.1µF  
0.01µF  
- 0.1µF  
D0+  
D0-  
0.01µF  
- 0.1µF  
100  
C1  
C2  
DOUT0+  
DOUT0-  
D1+  
D1-  
100ꢀ  
100ꢀ  
100ꢀ  
50  
50  
FPD-Link III  
C3  
C4  
D2+  
D2-  
DOUT1+  
DOUT1-  
LF  
CLK+  
CLK-  
10nF  
R1  
VDD18  
(Filtered 1.8V)  
D3+  
D3-  
IDx  
OpenLDI  
100ꢀ  
R2 0.1µF  
R3  
R4  
D4+  
D4-  
MODE_SEL0  
MODE_SEL1  
100ꢀ  
100ꢀ  
100ꢀ  
0.1µF  
R5  
R6  
D5+  
D5-  
D6+  
D6-  
0.1µF  
MOSI  
MISO  
SPLK  
SS  
D7+  
D7-  
SPI  
100ꢀ  
VDDI2C  
1.8V  
I2C  
1.8V  
LFOLDI  
PDB  
10nF  
4.7k 4.7k 4.7k  
10k  
SDA  
SCL  
Controller (Optional)  
>10µF  
INTB  
Interrupt  
I2S_WC  
I2S_CLK  
I2S_DA  
I2S_DB  
I2S_DC  
I2S_DD  
RES0  
RES1  
RES2  
I2S Audio  
50  
RES3  
NOTE:  
float  
NC  
FB1,FB5: DCR<=0.3Ohm; Z=1Kohm@100MHz  
FB2-FB4: DCR<=25mOhm; Z=120ohm@100MHz  
C1,C3 = 0.033µF (50 WV; 0402)  
DAP  
C2,C4 = 0.015µF (50 WV; 0402)  
R1 and R2 (see IDx Resistor Values Table)  
R3 œ R6 (see MODE_SEL Resistor Values Table)  
VDDI2C = Pull up voltage of I2C bus. Refer to I2CSEL pin  
DS90UH947-Q1  
description for 1.8V or 3.3V operation.  
Figure 36. Typical Application Connection -- Coax  
Copyright © 2014–2019, Texas Instruments Incorporated  
75  
DS90UH947-Q1  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
www.ti.com.cn  
Typical Applications (continued)  
VDDIO  
1.8V or 3.3V  
VDDIO  
1.8V  
1.2V  
1.8V  
1.1V  
3.3V  
FPD-Link  
(OpenLDI)  
FPD-Link  
(OpenLDI)  
FPD-Link III  
2 lanes @3Gbps / per  
Lane  
CLK+/-  
D0+/-  
CLK+/-  
D0+/-  
RIN0+  
RIN0-  
DOUT0+  
DOUT0-  
D1+/-  
D2+/-  
D3+/-  
D1+/-  
D2+/-  
D3+/-  
LVDS  
Display  
1080p60  
or Graphic  
Processor  
DOUT1+  
DOUT1-  
RIN1+  
RIN1-  
Graphics  
Processor  
DS90UH947-Q1  
Serializer  
DS90UH948-Q1  
Deserializer  
CLK2+/-  
D4+/-  
D5+/-  
D4+/-  
D5+/-  
I2C  
IDx  
I2C  
IDx  
D6+/-  
D7+/-  
D6+/-  
D7+/-  
D_GPIO  
(SPI)  
D_GPIO  
(SPI)  
HDCP œ High-Bandwidth Digital Content Protection  
Figure 37. Typical System Diagram  
8.2.1 Design Requirements  
The SER/DES supports only AC-coupled interconnects through an integrated DC-balanced decoding scheme.  
External AC coupling capacitors must be placed in series in the FPD-Link III signal path as illustrated in  
Figure 38.  
Table 12. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
VDDIO  
1.8 V  
AC Coupling Capacitor for DOUT0± and DOUT1± with 92x  
deserializers  
100 nF  
33 nF  
AC Coupling Capacitor for DOUT0± and DOUT1± with 94x  
deserializers  
For applications utilizing single-ended 50Ω coaxial cable, the unused data pins (DOUT0-, DOUT1-) should utilize  
a 15nF capacitor and should be terminated with a 50Ω resistor.  
D
+
OUT  
R
IN  
+
SER  
DES  
R
IN  
-
D
-
OUT  
Figure 38. AC-Coupled Connection (STP)  
D
+
OUT  
R
IN  
+
SER  
DES  
R
IN  
-
D
-
OUT  
50Q  
50Q  
Figure 39. AC-Coupled Connection (Coaxial)  
For high-speed FPD–Link III transmissions, the smallest available package should be used for the AC coupling  
capacitor. This will help minimize degradation of signal quality due to package parasitics.  
76  
Copyright © 2014–2019, Texas Instruments Incorporated  
 
DS90UH947-Q1  
www.ti.com.cn  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
8.2.2 Detailed Design Procedure  
8.2.2.1 High-Speed Interconnect Guidelines  
See AN-1108 Channel-Link PCB and Interconnect Design-In Guidelines (SNLA008) and Transmission Line  
RAPIDESIGNER Operation and Applications Guide (SNLA035) for full details.  
Use 100-Ω coupled differential pairs  
Use the S/2S/3S rule in spacings  
S = space between the pair  
2S = space between pairs  
3S = space to LVCMOS signal  
Minimize the number of Vias  
Use differential connectors when operating above 500Mbps line speed  
Maintain balance of the traces  
Minimize skew within the pair  
Terminate as close to the TX outputs and RX inputs as possible  
Additional general guidance can be found in the LVDS Owner’s Manual - available in PDF format from the Texas  
Instruments web site at: LVDS Owner's Manual (SNLA187).  
8.2.3 Application Curves  
8.2.3.1 Application Performance Plots  
Figure 40 corresponds to 1080p60 video application with 2-lane FPD-Link III output. Figure 41 corresponds to  
3.36-Gbps single-lane output from 96-MHz input OpenLDI clock.  
Figure 40. 1080p60 Video at 2.6-Gbps Serial Line Rate  
(One of Two Lanes)  
Figure 41. Serializer Output at 3.36 Gbps (96-MHz OpenLDI  
Clock)  
Copyright © 2014–2019, Texas Instruments Incorporated  
77  
 
DS90UH947-Q1  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
www.ti.com.cn  
9 Power Supply Recommendations  
This device provides separate power and ground pins for different portions of the circuit. This is done to isolate  
switching noise effects between different sections of the circuit. Separate planes on the PCB are typically not  
required. The Pin Functions table provides guidance on which circuit blocks are connected to which power pins.  
In some cases, an external filter many be used to provide clean power to sensitive circuits such as PLLs.  
9.1 Power-Up Requirements and PDB Pin  
The power supply ramp should be faster than 1.5 ms with a monotonic rise. A large capacitor on the PDB pin is  
needed to ensure PDB arrives after all the supply pins have settled to the recommended operating voltage.  
When PDB pin is pulled up to VDDIO, a 10-kpull-up and a >10-μF capacitor to GND are required to delay the  
PDB input signal rise. All inputs must not be driven until all power supplies have reached steady state.  
The recommended power up sequence is as follows:  
VDD18  
VDD11  
Wait until all supplies have settled  
Activate PDB  
Apply OpenLDI input  
After power up write the following to the device:  
Reg0x40=0x10 // select OLDI register  
Reg0x41=0x49 // force PLL controller in PPM reset state  
Reg0x42=0x16  
Reg0x41=0x47 // force PLL LOCK Low  
Reg0x42=0x20  
Reg0x42=0xA0 // reset PLL divider  
Reg0x42=0x20  
Reg0x42=0x00 // release PLL LOCK control  
Reg0x41=0x49 // release PLL state control  
Reg0x42=0x00  
1.8 V  
...  
VDDIO/  
trVDDIO > 200ms  
VDD18(2)  
10%  
1.1V  
...  
...  
200ms < trVDD11 < 1.5ms  
VDD11  
10%  
VDDIO  
t0 > 0s  
PDB(1)  
OLDI(3)  
t1 > 0s  
t2 > 30ms  
OLDI clock  
+/-0.5% variation  
...  
...  
1.8V  
...  
IDx,  
MODE_SEL0/1,  
SCL, SDA  
10%  
t3 > 0s  
...  
GPIO[3:0], D_GPIO[3:0], GPIO[8:5]_REG: VDDIO or GND OK.  
(1)  
TI recommends to assert PDB = HIGH with a microcontroller rather than an RC filter network to help ensure proper sequencing of PDB pin after settling of power supplies.  
(2)  
(3)  
If VDDIO is applied before VDD18, VDDIO will bias to ~0.750mV  
Electrical Characteristics of the LVDS should follow TIA/EIA-644-A and OpenLDI specification  
Figure 42. Recommended Power Sequencing  
78  
Copyright © 2014–2019, Texas Instruments Incorporated  
DS90UH947-Q1  
www.ti.com.cn  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
10 Layout  
10.1 Layout Guidelines  
Circuit board layout and stack-up for the LVDS serializer and deserializer devices should be designed to provide  
low-noise power to the device. Good layout practice will also separate high frequency or high-level inputs and  
outputs to minimize unwanted stray noise, feedback and interference. Power system performance may be greatly  
improved by using thin dielectrics (2 to 4 mil) for power / ground sandwiches. This arrangement utilizes the plane  
capacitance for the PCB power system and has low-inductance, which has proven effectiveness especially at  
high frequencies, and makes the value and placement of external bypass capacitors less critical. External bypass  
capacitors should include both RF ceramic and tantalum electrolytic types. RF capacitors may use values in the  
range of 0.01 μF to 10 μF. Tantalum capacitors may be in the 2.2-μF to 10-μF range. The voltage rating of the  
tantalum capacitors should be at least 5X the power supply voltage being used.  
MLCC surface mount capacitors are recommended due to their smaller parasitic properties. When using multiple  
capacitors per supply pin, locate the smaller value closer to the pin. A large bulk capacitor is recommended at  
the point of power entry. This is typically in the 50μF to 100μF range and will smooth low frequency switching  
noise. It is recommended to connect power and ground pins directly to the power and ground planes with bypass  
capacitors connected to the plane with via on both ends of the capacitor. Connecting power or ground pins to an  
external bypass capacitor will increase the inductance of the path. A small body size X7R chip capacitor, such as  
0603 or 0805, is recommended for external bypass. A small body sized capacitor has less inductance. The user  
must pay attention to the resonance frequency of these external bypass capacitors, usually in the range of 20  
MHz to 30 MHz. To provide effective bypassing, multiple capacitors are often used to achieve low impedance  
between the supply rails over the frequency of interest. At high frequency, it is also a common practice to use  
two vias from power and ground pins to the planes, reducing the impedance at high frequency.  
Some devices provide separate power and ground pins for different portions of the circuit. This is done to isolate  
switching noise effects between different sections of the circuit. Separate planes on the PCB are typically not  
required. Pin Description tables typically provide guidance on which circuit blocks are connected to which power  
pin pairs. In some cases, an external filter many be used to provide clean power to sensitive circuits such as  
PLLs. For DS90UH947-Q1, only one common ground plane is required to connect all device related ground pins.  
Use at least a four layer board with a power and ground plane. Locate LVCMOS signals away from the LVDS  
lines to prevent coupling from the LVCMOS lines to the LVDS lines. Closely coupled differential lines of 100 Ω  
are typically recommended for LVDS interconnect. The closely coupled lines help to ensure that coupled noise  
will appear as common mode and thus is rejected by the receivers. The tightly coupled lines will also radiate  
less.  
At least 9 thermal vias are necessary from the device center DAP to the ground plane. They connect the device  
ground to the PCB ground plane, as well as conduct heat from the exposed pad of the package to the PCB  
ground plane. More information on the LLP style package, including PCB design and manufacturing  
requirements, is provided in the AN-1187 Leadless Leadframe Package (LLP) (SNOA401).  
Copyright © 2014–2019, Texas Instruments Incorporated  
79  
DS90UH947-Q1  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
www.ti.com.cn  
10.2 Layout Example  
Figure 43 is derived from a layout design of the DS90UH947-Q1. This graphic is used to demonstrate proper  
high-speed routing when designing in the Serializer.  
Figure 43. DS90UH947-Q1 Serializer Layout Example  
80  
版权 © 2014–2019, Texas Instruments Incorporated  
 
DS90UH947-Q1  
www.ti.com.cn  
ZHCSD37A NOVEMBER 2014REVISED MARCH 2019  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
请参阅如下相关文档:  
《焊接的绝对最大额定值》(SNOA549)  
《半导体和 IC 封装热指标》(SPRA953)  
AN-1108 通道链路 PCB 和互连设计指南》(SNLA008)  
《传输线路 RAPIDESIGNER 操作和 应用 指南》(SNLA035)  
AN-1187 无引线框架封装 (LLP)(SNOA401)  
LVDS 用户手册》(SNLA187)  
《通过具有双向控制通道的 FPD-Link III 进行 I2C 通信》(SNLA131)  
《使用 DS90Ux92x FPD-Link III 器件的 I2S 音频接口》 (SNLA221)  
AN-2198 探索 720p FPD-Link III 器件的内部测试图案生成特性》(SNLA132)  
11.2 商标  
TRI-STATE is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.4 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2014–2019, Texas Instruments Incorporated  
81  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DS90UH947TRGCRQ1  
DS90UH947TRGCTQ1  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RGC  
RGC  
64  
64  
2000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 105  
-40 to 105  
UH947Q  
UH947Q  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
7-Nov-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DS90UH947TRGCRQ1  
DS90UH947TRGCTQ1  
VQFN  
VQFN  
RGC  
RGC  
64  
64  
2000  
250  
330.0  
178.0  
16.4  
16.4  
9.3  
9.3  
9.3  
9.3  
1.3  
1.3  
12.0  
12.0  
16.0  
16.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
7-Nov-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DS90UH947TRGCRQ1  
DS90UH947TRGCTQ1  
VQFN  
VQFN  
RGC  
RGC  
64  
64  
2000  
250  
356.0  
208.0  
356.0  
191.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RGC 64  
9 x 9, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224597/A  
www.ti.com  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RGC0064K  
PLASTIC QUAD FLAT PACK- NO LEAD  
A
9.1  
8.9  
B
9.1  
8.9  
PIN 1 INDEX AREA  
1.00  
0.80  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
7.5  
5.75±0.1  
(0.2) TYP  
32  
17  
60X 0.5  
16  
33  
SYMM  
65  
7.5  
1
48  
0.30  
64X  
PIN 1 ID  
(OPTIONAL)  
64  
0.18  
49  
SYMM  
0.5  
0.3  
0.1  
C A B  
C
64X  
0.05  
4224668/B 08/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RGC0064K  
PLASTIC QUAD FLAT PACK- NO LEAD  
2X (8.8)  
2X (7.5)  
(
5.75)  
64X (0.6)  
49  
64  
64X (0.24)  
1
48  
60X (0.5)  
2X  
(1.36)  
SYMM  
65  
2X  
2X  
(7.5) (8.8)  
(Ø0.2) VIA  
TYP  
2X  
(1.265)  
(R0.05)  
TYP  
16  
33  
17  
32  
2X (1.36)  
2X (1.265)  
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 8X  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
0.07 MIN  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4224668/B 08/2020  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271)  
.
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RGC0064K  
PLASTIC QUAD FLAT PACK- NO LEAD  
2X (8.8)  
2X (7.5)  
16X ( 1.16)  
64X (0.6)  
49  
64  
64X (0.24)  
1
48  
60X (0.5)  
65  
2X  
(0.68)  
SYMM  
2X  
2X  
(7.5) (8.8)  
METAL  
TYP  
2X  
(1.36)  
(R0.05)  
TYP  
16  
33  
17  
32  
2X (0.68)  
2X (1.36)  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
65% PRINTED COVERAGE BY AREA  
SCALE: 8X  
4224668/B 08/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

DS90UH947TRGCTQ1

支持 HDCP 的 1080p oLDI 双路 FPD-Link III 串行器 | RGC | 64 | -40 to 105
TI

DS90UH948-Q1

支持 HDCP 的 1080p oLDI 双路 FPD-Link III 解串器
TI

DS90UH948TNKDRQ1

支持 HDCP 的 1080p oLDI 双路 FPD-Link III 解串器 | NKD | 64 | -40 to 105
TI

DS90UH948TNKDTQ1

支持 HDCP 的 1080p oLDI 双路 FPD-Link III 解串器 | NKD | 64 | -40 to 105
TI

DS90UH949-Q1

支持 HDCP 的 2K DSI 转 FPD-Link III 串行器
TI

DS90UH949A-Q1

支持 HDCP 的 2K DSI 转 FPD-Link III 串行器
TI

DS90UH949ATRGCRQ1

支持 HDCP 的 2K DSI 转 FPD-Link III 串行器 | RGC | 64 | -40 to 105
TI

DS90UH949ATRGCTQ1

支持 HDCP 的 2K DSI 转 FPD-Link III 串行器 | RGC | 64 | -40 to 105
TI

DS90UH949TRGCRQ1

支持 HDCP 的 2K DSI 转 FPD-Link III 串行器 | RGC | 64 | -40 to 105
TI

DS90UH949TRGCTQ1

支持 HDCP 的 2K DSI 转 FPD-Link III 串行器 | RGC | 64 | -40 to 105
TI

DS90UR124

5-43 MHz DC-Balanced 24-Bit LVDS Serializer and Deserializer
NSC

DS90UR124

5MHz 至 43MHz 直流平衡 24 位 FPD-Link II 解串器
TI