DS90CR285SLCX [TI]

QUAD LINE DRIVER, PBGA64, 0.80 MM PITCH, FBGA-64;
DS90CR285SLCX
型号: DS90CR285SLCX
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

QUAD LINE DRIVER, PBGA64, 0.80 MM PITCH, FBGA-64

驱动 接口集成电路 驱动器
文件: 总20页 (文件大小:364K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
National Semiconductor is now part of  
Texas Instruments.  
Search http://www.ti.com/ for the latest technical  
information and details on our current products and services.  
November 2000  
DS90CR285/DS90CR286  
+3.3V Rising Edge Data Strobe LVDS 28-Bit Channel  
Link-66 MHz  
General Description  
Features  
n Single +3.3V supply  
The DS90CR285 transmitter converts 28 bits of LVCMOS/  
LVTTL data into four LVDS (Low Voltage Differential Signal-  
ing) data streams. A phase-locked transmit clock is transmit-  
ted in parallel with the data streams over a fifth LVDS link.  
Every cycle of the transmit clock 28 bits of input data are  
sampled and transmitted. The DS90CR286 receiver con-  
verts the LVDS data streams back into 28 bits of LVCMOS/  
LVTTL data. At a transmit clock frequency of 66 MHz, 28 bits  
of TTL data are transmitted at a rate of 462 Mbps per LVDS  
data channel. Using a 66 MHz clock, the data throughput is  
1.848 Gbit/s (231 Mbytes/s).  
<
n Chipset (Tx + Rx) power consumption 250 mW (typ)  
n Power-down mode ( 0.5 mW total)  
<
n Up to 231 Megabytes/sec bandwidth  
n Up to 1.848 Gbps data throughput  
n Narrow bus reduces cable size  
n 290 mV swing LVDS devices for low EMI  
n +1V common mode range (around +1.2V)  
n PLL requires no external components  
n Both devices are offered in a Low profile 56-lead  
TSSOP package  
n DS90CR285SLC is offered in a 64 ball, 0.8mm fine pitch  
ball grid array (FBGA) package for use with the  
DS90CR286ASLC  
n Rising edge data strobe  
n Compatible with TIA/EIA-644 LVDS standard  
The multiplexing of the data lines provides a substantial  
cable reduction. Long distance parallel single-ended buses  
typically require a ground wire per active signal (and have  
very limited noise rejection capability). Thus, for a 28-bit wide  
data and one clock, up to 58 conductors are required. With  
the Channel Link chipset as few as 11 conductors (4 data  
pairs, 1 clock pair and a minimum of one ground) are  
needed. This provides a 80% reduction in required cable  
width, which provides a system cost savings, reduces con-  
nector physical size and cost, and reduces shielding require-  
ments due to the cables’ smaller form factor.  
>
n ESD Rating 7 kV  
n Operating Temperature: −40˚C to +85˚C  
The 28 LVCMOS/LVTTL inputs can support a variety of  
signal combinations. For example, seven 4-bit nibbles or  
three 9-bit (byte + parity) and 1 control.  
Block Diagrams  
DS90CR285  
DS90CR286  
DS012910-1  
DS012910-27  
Order Number DS90CR285MTD or DS90CR285SLC  
See NS Package Number MTD56 or SLC64A  
Order Number DS90CR286MTD  
See NS Package Number MTD56  
TRI-STATE® is a registered trademark of National Semiconductor Corporation.  
© 2000 National Semiconductor Corporation  
DS012910  
www.national.com  
Pin Diagrams for TSSOP Packages  
DS90CR285  
DS90CR286  
DS012910-21  
DS012910-22  
Typical Application  
DS012910-23  
www.national.com  
2
@
Absolute Maximum Ratings (Note 1)  
If Military/Aerospace specified devices are required,  
please contact the National Semiconductor Sales Office/  
Distributors for availability and specifications.  
Maximum Package Power Dissipation +25˚C  
DS90CR285MTD  
DS90CR285SLC  
DS90CR286MTD  
Package Derating:  
1.63 W  
2.0 W  
1.61 W  
Supply Voltage (VCC  
)
−0.3V to +4V  
−0.3V to (VCC + 0.3V)  
−0.3V to (VCC + 0.3V)  
DS90CR285MTD  
DS90CR285SLC  
DS90CR286MTD  
ESD Rating  
12.5 mW/˚C above +25˚C  
10.2 mW/˚C above +25˚C  
12.4 mW/˚C above +25˚C  
CMOS/TTL Input Voltage  
CMOS/TTL Output Voltage  
LVDS Receiver Input  
Voltage  
−0.3V to (VCC + 0.3V)  
−0.3V to (VCC + 0.3V)  
LVDS Driver Output Voltage  
LVDS Output Short Circuit  
Duration  
>
7 kV  
(HBM, 1.5 k, 100 pF)  
Recommended Operating  
Conditions  
Continuous  
+150˚C  
Junction Temperature  
Storage Temperature  
Lead Temperature  
−65˚C to +150˚C  
Min  
Nom  
Max  
Units  
Supply Voltage (VCC  
Operating Free Air  
Temperature (TA)  
)
3.0  
3.3  
3.6  
V
(Soldering, 4 sec.)  
+260˚C  
+220˚C  
Solder Reflow Temperature  
(20 sec for FBGA)  
−40  
+25  
+85  
2.4  
˚C  
V
Receiver Input Range  
0
Supply Noise Voltage (VCC  
)
100 mVPP  
Electrical Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified  
Symbol Parameter Conditions  
LVCMOS/LVTTL DC SPECIFICATIONS  
Min  
Typ  
Max  
Units  
VIH  
VIL  
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
Low Level Output Voltage  
Input Clamp Voltage  
2.0  
GND  
2.7  
VCC  
0.8  
V
V
VOH  
VOL  
VCL  
IIN  
IOH = −0.4 mA  
3.3  
V
IOL = 2 mA  
0.06  
0.3  
V
ICL = −18 mA  
−0.79  
−1.5  
V
±
±
10  
Input Current  
VIN = VCC, GND, 2.5V or 0.4V  
VOUT = 0V  
5.1  
µA  
mA  
IOS  
Output Short Circuit Current  
−60  
−120  
LVDS DRIVER DC SPECIFICATIONS  
VOD  
Differential Output Voltage  
RL = 100Ω  
250  
290  
450  
35  
mV  
mV  
VOD  
Change in VOD between  
Complimentary Output States  
VOS  
Offset Voltage (Note 4)  
1.125  
1.25  
−3.5  
1.375  
35  
V
VOS  
Change in VOS between  
Complimentary Output States  
mV  
IOS  
IOZ  
Output Short Circuit Current  
Output TRI-STATE® Current  
VOUT = 0V, RL = 100Ω  
PWR DWN = 0V,  
−5  
mA  
µA  
±
±
10  
1
VOUT = 0V or VCC  
LVDS RECEIVER DC SPECIFICATIONS  
VTH  
VTL  
IIN  
Differential Input High Threshold  
Differential Input Low Threshold  
Input Current  
VCM = +1.2V  
+100  
mV  
mV  
µA  
−100  
±
±
VIN = +2.4V, VCC = 3.6V  
VIN = 0V, VCC = 3.6V  
10  
10  
µA  
3
www.national.com  
Electrical Characteristics (Continued)  
Over recommended operating supply and temperature ranges unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Typ  
31  
Max  
45  
Units  
mA  
TRANSMITTER SUPPLY CURRENT  
ICCTW  
Transmitter Supply Current  
Worst Case (with Loads)  
RL = 100,  
CL = 5 pF,  
Worst Case  
Pattern  
(Figures 1, 2),  
TA = −10˚C to  
+70˚C  
f = 32.5 MHz  
f = 37.5 MHz  
f = 66 MHz  
f = 40 MHz  
32  
50  
mA  
37  
55  
mA  
RL = 100,  
CL = 5 pF,  
Worst Case  
Pattern  
(Figures 1, 2),  
TA = −40˚C to  
+85˚C  
38  
51  
mA  
f = 66 MHz  
42  
10  
55  
55  
mA  
µA  
ICCTZ  
Transmitter Supply Current  
Power Down  
PWR DWN = Low  
Driver Outputs in TRI-STATE  
under Powerdown Mode  
RECEIVER SUPPLY CURRENT  
ICCRW Receiver Supply Current Worst  
CL = 8 pF,  
Worst Case  
Pattern  
(Figures 1, 3),  
TA = −10˚C to  
+70˚C  
f = 32.5 MHz  
49  
53  
78  
55  
65  
70  
mA  
mA  
mA  
mA  
Case  
f = 37.5 MHz  
f = 66 MHz  
f = 40 MHz  
105  
82  
CL = 8 pF,  
Worst Case  
Pattern  
(Figures 1, 3),  
TA = −40˚C to  
+85˚C  
f = 66 MHz  
78  
10  
105  
55  
mA  
µA  
ICCRZ  
Receiver Supply Current Power  
Down  
PWR DWN = Low  
Receiver Outputs Stay Low during  
Powerdown Mode  
Note 1: “Absolute Maximum Ratings” are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device  
should be operated at these limits. The tables of “Electrical Characteristics” specify conditions for device operation.  
Note 2: Typical values are given for V  
= 3.3V and T = +25˚C.  
A
CC  
Note 3: Current into device pins is defined as positive. Current out of device pins is defined as negative. Voltages are referenced to ground unless otherwise  
specified (except V and V ).  
OD  
OD  
Note 4: V  
previously referred as V  
.
CM  
OS  
Transmitter Switching Characteristics  
Over recommended operating supply and −40˚C to +85˚C ranges unless otherwise specified  
Symbol  
LLHT  
Parameter  
Min  
Typ  
0.5  
0.5  
Max  
1.5  
1.5  
5
Units  
ns  
LVDS Low-to-High Transition Time (Figure 2)  
LVDS High-to-Low Transition Time (Figure 2)  
TxCLK IN Transition Time (Figure 4)  
LHLT  
ns  
TCIT  
ns  
TCCS  
TPPos0  
TxOUT Channel-to-Channel Skew (Figure 5)  
250  
0
ps  
Transmitter Output Pulse Position for  
Bit0 (Note 7) (Figure 16)  
f = 40 MHz  
−0.4  
3.1  
0.4  
4.0  
7.6  
ns  
TPPos1  
TPPos2  
Transmitter Output Pulse Position for  
Bit1  
3.3  
6.8  
ns  
ns  
Transmitter Output Pulse Position for  
Bit2  
6.5  
www.national.com  
4
Transmitter Switching Characteristics (Continued)  
Over recommended operating supply and −40˚C to +85˚C ranges unless otherwise specified  
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
TPPos3  
Transmitter Output Pulse Position for  
Bit3  
10.2  
10.4  
11.0  
ns  
TPPos4  
TPPos5  
TPPos6  
TPPos0  
TPPos1  
TPPos2  
TPPos3  
TPPos4  
TPPos5  
TPPos6  
Transmitter Output Pulse Position for  
Bit4  
13.7  
17.3  
21.0  
−0.4  
1.8  
13.9  
17.6  
21.2  
0
14.6  
18.2  
21.8  
0.3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Transmitter Output Pulse Position for  
Bit5  
Transmitter Output Pulse Position for  
Bit6  
Transmitter Output Pulse Position for  
Bit0 (Note 6) (Figure 16)  
f = 66 MHz  
Transmitter Output Pulse Position for  
Bit1  
2.2  
2.5  
Transmitter Output Pulse Position for  
Bit2  
4.0  
4.4  
4.7  
Transmitter Output Pulse Position for  
Bit3  
6.2  
6.6  
6.9  
Transmitter Output Pulse Position for  
Bit4  
8.4  
8.8  
9.1  
Transmitter Output Pulse Position for  
Bit5  
10.6  
12.8  
11.0  
13.2  
11.3  
13.5  
Transmitter Output Pulse Position for  
Bit6  
TCIP  
TCIH  
TCIL  
TxCLK IN Period (Figure 6 )  
15  
0.35T  
0.35T  
2.5  
T
50  
ns  
ns  
ns  
ns  
ns  
ns  
TxCLK IN High Time (Figure 6)  
TxCLK IN Low Time (Figure 6)  
TxIN Setup to TxCLK IN (Figure 6)  
TxIN Hold to TxCLK IN (Figure 6)  
0.5T  
0.5T  
0.65T  
0.65T  
TSTC  
THTC  
TCCD  
0
@
TxCLK IN to TxCLK OUT Delay 25˚C,VCC=3.3V  
3
3.7  
5.5  
(Figure 8)  
TPLLS  
TPDD  
Transmitter Phase Lock Loop Set (Figure 10)  
Transmitter Powerdown Delay (Figure 14)  
10  
ms  
ns  
100  
Receiver Switching Characteristics  
Over recommended operating supply and −40˚C to +85˚C ranges unless otherwise specified  
Symbol  
CLHT  
Parameter  
CMOS/TTL Low-to-High Transition Time (Figure 3)  
CMOS/TTL High-to-Low Transition Time (Figure 3)  
Receiver Input Strobe Position for Bit 0 (Note 7)(Figure 17)  
Receiver Input Strobe Position for Bit 1  
Min  
Typ  
2.2  
Max  
Units  
ns  
5.0  
5.0  
CHLT  
2.2  
ns  
RSPos0  
RSPos1  
RSPos2  
RSPos3  
RSPos4  
RSPos5  
RSPos6  
f = 40 MHz  
1.0  
4.5  
1.4  
2.15  
5.8  
ns  
5.0  
ns  
Receiver Input Strobe Position for Bit 2  
8.1  
8.5  
9.15  
12.6  
16.3  
19.9  
23.6  
ns  
Receiver Input Strobe Position for Bit 3  
11.6  
15.1  
18.8  
22.5  
11.9  
15.6  
19.2  
22.9  
ns  
Receiver Input Strobe Position for Bit 4  
ns  
Receiver Input Strobe Position for Bit 5  
ns  
Receiver Input Strobe Position for Bit 6  
ns  
5
www.national.com  
Receiver Switching Characteristics (Continued)  
Over recommended operating supply and −40˚C to +85˚C ranges unless otherwise specified  
Symbol  
RSPos0  
RSPos1  
RSPos2  
RSPos3  
RSPos4  
RSPos5  
RSPos6  
RSKM  
Parameter  
Receiver Input Strobe Position for Bit 0 (Note 6)(Figure 17)  
Receiver Input Strobe Position for Bit 1  
Receiver Input Strobe Position for Bit 2  
Receiver Input Strobe Position for Bit 3  
Receiver Input Strobe Position for Bit 4  
Receiver Input Strobe Position for Bit 5  
Receiver Input Strobe Position for Bit 6  
RxIN Skew Margin (Note 5) (Figure 18)  
Min  
0.7  
2.9  
5.1  
7.3  
9.5  
11.7  
13.9  
490  
400  
15  
Typ  
1.1  
Max  
1.4  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ps  
ps  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
µs  
f = 66 MHz  
3.3  
3.6  
5.5  
5.8  
7.7  
8.0  
9.9  
10.2  
12.4  
14.6  
12.1  
14.3  
f = 40 MHz  
f = 66 MHz  
RCOP  
RCOH  
RxCLK OUT Period (Figure 7)  
T
50  
RxCLK OUT High Time (Figure 7)  
f = 40 MHz  
f = 66 MHz  
f = 40 MHz  
f = 66 MHz  
f = 40 MHz  
f = 66 MHz  
f = 40 MHz  
f = 66 MHz  
f = 40 MHz  
f = 66 MHz  
6.0  
4.0  
10.0  
6.0  
6.5  
2.5  
6.0  
2.5  
4.0  
5.0  
10.0  
6.1  
RCOL  
RSRC  
RHRC  
RCCD  
RxCLK OUT Low Time (Figure 7)  
13.0  
7.8  
RxOUT Setup to RxCLK OUT (Figure 7)  
RxOUT Hold to RxCLK OUT (Figure 7)  
RxCLK IN to RxCLK OUT Delay (Figure 9)  
14.0  
8.0  
8.0  
4.0  
6.7  
8.0  
9.0  
10  
1
6.6  
RPLLS  
RPDD  
Receiver Phase Lock Loop Set (Figure 11)  
Receiver Powerdown Delay (Figure 15)  
Note 5: Receiver Skew Margin is defined as the valid data sampling region at the receiver inputs. This margin takes into account the transmitter pulse positions (min  
and max) and the receiver input setup and hold time (internal data sampling window). This margin allows LVDS interconnect skew, inter-symbol interference (both  
dependent on type/length of cable), and clock jitter less than 250 ps).  
Note 6: The min. and max. limits are based on the worst bit by applying a −400ps/+300ps shift from ideal position.  
Note 7: The min. and max. are based on the actual bit position of each of the 7 bits within the LVDS data stream across PVT.  
AC Timing Diagrams  
DS012910-2  
FIGURE 1. “Worst Case” Test Pattern  
DS012910-3  
DS012910-4  
FIGURE 2. DS90CR285 (Transmitter) LVDS Output Load and Transition Times  
www.national.com  
6
AC Timing Diagrams (Continued)  
DS012910-5  
DS012910-6  
FIGURE 3. DS90CR286 (Receiver) CMOS/TTL Output Load and Transition Times  
DS012910-7  
FIGURE 4. DS90CR285 (Transmitter) Input Clock Transition Time  
DS012910-8  
Note 8: Measurements at V  
= 0V  
DIFF  
Note 9: TCCS measured between earliest and latest LVDS edges.  
Note 10: TxCLK Differential Low High Edge  
FIGURE 5. DS90CR285 (Transmitter) Channel-to-Channel Skew  
DS012910-9  
FIGURE 6. DS90CR285 (Transmitter) Setup/Hold and High/Low Times  
7
www.national.com  
AC Timing Diagrams (Continued)  
DS012910-10  
FIGURE 7. DS90CR286 (Receiver) Setup/Hold and High/Low Times  
DS012910-11  
FIGURE 8. DS90CR285 (Transmitter) Clock In to Clock Out Delay  
DS012910-12  
FIGURE 9. DS90CR286 (Receiver) Clock In to Clock Out Delay  
DS012910-13  
FIGURE 10. DS90CR285 (Transmitter) Phase Lock Loop Set Time  
www.national.com  
8
AC Timing Diagrams (Continued)  
DS012910-14  
FIGURE 11. DS90CR286 (Receiver) Phase Lock Loop Set Time  
DS012910-15  
FIGURE 12. Seven Bits of LVDS in Once Clock Cycle  
DS012910-16  
FIGURE 13. 28 ParalIeI TTL Data Inputs Mapped to LVDS Outputs  
9
www.national.com  
AC Timing Diagrams (Continued)  
DS012910-17  
FIGURE 14. Transmitter Powerdown DeIay  
DS012910-18  
FIGURE 15. Receiver Powerdown Delay  
DS012910-19  
FIGURE 16. Transmitter LVDS Output Pulse Position Measurement  
www.national.com  
10  
AC Timing Diagrams (Continued)  
DS012910-28  
FIGURE 17. Receiver LVDS Input Strobe Position  
11  
www.national.com  
AC Timing Diagrams (Continued)  
DS012910-20  
C — Setup and Hold Time (Internal data sampling window) defined by Rspos (receiver input strobe position) min and max  
Tppos — Transmitter output pulse position (min and max)  
RSKM Cable Skew (type, length) + Source Clock Jitter (cycle to cycle)(Note 11) + ISI (Inter-symbol interference)(Note 12)  
Cable Skew — typically 10 ps–40 ps per foot, media dependent  
Note 11: Cycle-to-cycle jitter is less than 250 ps  
Note 12: ISI is dependent on interconnect length; may be zero  
FIGURE 18. Receiver LVDS Input Skew Margin  
Pin Descriptions  
DS90CR285 MTD56 (TSSOP) Package Pin Description —  
Channel Link Transmitter  
Pin Name  
TxIN  
I/O  
I
No.  
28  
4
Description  
TTL level input.  
TxOUT+  
O
O
I
Positive LVDS differential data output.  
Negative LVDS differential data output.  
TxOUT−  
4
TxCLK IN  
1
TTL IeveI clock input. The rising edge acts as data strobe. Pin name TxCLK IN.  
Positive LVDS differential clock output.  
TxCLK OUT+  
TxCLK OUT−  
PWR DWN  
O
O
I
1
1
Negative LVDS differential clock output.  
1
TTL level input. Assertion (low input) TRI-STATES the outputs, ensuring low current at  
power down.  
VCC  
I
I
I
I
I
I
4
5
1
2
1
3
Power supply pins for TTL inputs.  
Ground pins for TTL inputs.  
Power supply pin for PLL.  
GND  
PLL VCC  
PLL GND  
LVDS VCC  
LVDS GND  
Ground pins for PLL.  
Power supply pin for LVDS outputs.  
Ground pins for LVDS outputs.  
DS90CR285 SLC64A (FBGA) Package Pin Summary —  
Channel Link Transmitter  
Pin Name  
TxIN  
I/O  
I
No.  
28  
4
Description  
TTL level input.  
TxOUT+  
O
O
I
Positive LVDS differential data output.  
Negative LVDS differential data output.  
TxOUT−  
4
TxCLKIN  
1
TTL IeveI clock input. The rising edge acts as data strobe. Pin name TxCLK IN.  
Positive LVDS differential clock output.  
TxCLK OUT+  
TxCLK OUT−  
PWR DWN  
O
O
I
1
1
Negative LVDS differential clock output.  
1
TTL level input. Assertion (low input) TRI-STATES the outputs, ensuring low current at  
power down.  
VCC  
I
4
Power supply pins for TTL inputs.  
www.national.com  
12  
Pin Descriptions (Continued)  
DS90CR285 SLC64A (FBGA) Package Pin Summary —  
Channel Link Transmitter (Continued)  
Pin Name  
I/O  
No.  
Description  
GND  
I
I
I
I
I
5
Ground pins for TTL inputs.  
Power supply pin for PLL.  
Ground pins for PLL.  
PLL VCC  
PLL GND  
LVDS VCC  
LVDS GND  
NC  
1
2
2
Power supply pin for LVDS outputs.  
Ground pins for LVDS outputs.  
Pins not connected.  
4
6
DS90CR285 SLC64A (FBGA) Package Pin Description —  
Channel Link Transmitter  
By Pin  
Pin Name  
TxIN27  
By Pin Type  
Pin  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
E1  
E2  
Type  
I
Pin  
D3  
E4  
E8  
G1  
G6  
B3  
B4  
B7  
D5  
C6  
D6  
D7  
C8  
B2  
B1  
D2  
C1  
D1  
F1  
E2  
E3  
G2  
H1  
G3  
H3  
F4  
G4  
H4  
H5  
E5  
F5  
H6  
H7  
H8  
Pin Name  
GND  
Type  
G
G
G
G
G
G
G
G
G
G
G
I
TxOUT0-  
TxOUT0+  
LVDS VCC  
LVDS VCC  
TxCLKOUT-  
TxCLKOUT+  
TxOUT3+  
TxIN1  
O
O
P
GND  
GND  
GND  
P
GND  
O
O
O
I
LVDS GND  
LVDS GND  
LVDS GND  
LVDS GND  
PLL GND  
PLL GND  
PWR DWN  
TxCLKIN  
TxIN0  
TxIN0  
I
LVDS GND  
LVDS GND  
TxOUT2-  
TxOUT3-  
LVDS GND  
NC  
G
G
O
O
G
I
I
TxIN1  
I
TxIN2  
I
TxIN3  
I
TxIN3  
I
NC  
TxIN4  
I
NC  
TxIN5  
I
TxOUT1-  
TxOUT2+  
PLL GND  
PLL VCC  
TxCLKIN  
TxIN4  
O
O
G
P
I
TxIN6  
I
TxIN7  
I
TxIN8  
I
TxIN9  
I
TxIN10  
TxIN11  
TxIN12  
TxIN13  
TxIN14  
TxIN15  
TxIN16  
TxIN17  
TxIN18  
TxIN19  
TxIN20  
I
I
I
TxIN2  
I
I
GND  
G
O
G
G
I
I
TxOUT1+  
LVDS GND  
PLL GND  
PWD DWN  
TxIN26  
I
I
I
I
I
I
VCC  
P
I
I
TxIN6  
I
13  
www.national.com  
Pin Descriptions (Continued)  
DS90CR285 SLC64A (FBGA) Package Pin Description —  
Channel Link Transmitter (Continued)  
By Pin  
By Pin Type  
TxIN21  
TxIN22  
TxIN23  
TxIN24  
TxIN25  
TxIN26  
TxIN27  
TxCLKOUT-  
TxCLKOUT+  
TxOUT0-  
TxOUT0+  
TxOUT1-  
TxOUT1+  
TxOUT2-  
TxOUT2+  
TxOUT3-  
TxOUT3+  
LVDS VCC  
LVDS VCC  
PLL VCC  
VCC  
E3  
E4  
E5  
E6  
E7  
E8  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
TxIN7  
GND  
I
G
I
G7  
F7  
G8  
E7  
F8  
D8  
A1  
A6  
A7  
A2  
A3  
C4  
D4  
B5  
C5  
B6  
A8  
A4  
A5  
C7  
E1  
E6  
G5  
H2  
B8  
C2  
C3  
F2  
F3  
F6  
I
I
TxIN16  
VCC  
I
P
I
I
TxIN24  
GND  
I
G
I
I
TxIN5  
NC  
I
O
O
O
O
O
O
O
O
O
O
P
P
P
P
P
P
P
NC  
TxIN12  
TxIN17  
NC  
I
I
TxIN22  
TxIN25  
GND  
I
I
G
I
TxIN8  
TxIN10  
TxIN13  
VCC  
I
I
P
G
I
GND  
TxIN21  
TxIN23  
TxIN9  
VCC  
I
VCC  
I
VCC  
P
I
VCC  
TxIN11  
TxIN14  
TxIN15  
TxIN18  
TxIN19  
TxIN20  
NC  
I
NC  
I
NC  
I
NC  
I
NC  
I
NC  
G : Ground  
I : Input  
O : Output  
P : Power  
NC : No Connect  
DS90CR286 MTD56 (TSSOP) Package Pin Description —  
Channel Link Receiver  
Pin Name  
RxIN+  
I/O  
No.  
4
Description  
I
I
Positive LVDS differential data inputs.  
Negative LVDS differential data inputs.  
TTL level data outputs.  
RxIN−  
4
RxOUT  
O
I
28  
1
RxCLK IN+  
RxCLK IN−  
RxCLK OUT  
PWR DWN  
VCC  
Positive LVDS differential clock input.  
Negative LVDS differential clock input.  
I
1
O
I
1
TTL level clock output. The rising edge acts as data strobe. Pin name RxCLK OUT.  
TTL level input.When asserted (low input) the receiver outputs are low.  
Power supply pins for TTL outputs.  
1
I
4
www.national.com  
14  
Pin Descriptions (Continued)  
DS90CR286 MTD56 (TSSOP) Package Pin Description —  
Channel Link Receiver (Continued)  
Pin Name  
I/O  
No.  
Description  
GND  
I
I
I
I
I
5
Ground pins for TTL outputs.  
Power supply for PLL.  
PLL VCC  
1
PLL GND  
LVDS VCC  
LVDS GND  
2
Ground pin for PLL.  
1
Power supply pin for LVDS inputs.  
Ground pins for LVDS inputs.  
3
regardless of the cable type. This overall shield results in  
improved transmission parameters such as faster attainable  
speeds, longer distances between transmitter and receiver  
and reduced problems associated with EMS or EMI.  
Applications Information  
The Channel Link devices are intended to be used in a wide  
variety of data transmission applications. Depending upon  
the application the interconnecting media may vary. For  
example, for lower data rate (clock rate) and shorter cable  
The high-speed transport of LVDS signals has been demon-  
strated on several types of cables with excellent results.  
However, the best overall performance has been seen when  
using Twin-Coax cable. Twin-Coax has very low cable skew  
and EMI due to its construction and double shielding. All of  
the design considerations discussed here and listed in the  
supplemental application notes provide the subsystem com-  
munications designer with many useful guidelines. It is rec-  
ommended that the designer assess the tradeoffs of each  
application thoroughly to arrive at a reliable and economical  
cable solution.  
<
lengths ( 2m), the media electrical performance is less  
critical. For higher speed/long distance applications the me-  
dia’s performance becomes more critical. Certain cable con-  
structions provide tighter skew (matched electrical length  
between the conductors and pairs). Twin-coax for example,  
has been demonstrated at distances as great as 5 meters  
and with the maximum data transfer of 1.848 Gbit/s. Addi-  
tional applications information can be found in the following  
National Interface Application Notes:  
AN = ####  
AN-1041  
AN-1108  
Topic  
BOARD LAYOUT: To obtain the maximum benefit from the  
noise and EMI reductions of LVDS, attention should be paid  
to the layout of differential lines. Lines of a differential pair  
should always be adjacent to eliminate noise interference  
from other signals and take full advantage of the noise  
canceling of the differential signals. The board designer  
should also try to maintain equal length on signal traces for  
a given differential pair. As with any high speed design, the  
impedance discontinuities should be limited (reduce the  
numbers of vias and no 90 degree angles on traces). Any  
discontinuities which do occur on one signal line should be  
mirrored in the other line of the differential pair. Care should  
be taken to ensure that the differential trace impedance  
match the differential impedance of the selected physical  
media (this impedance should also match the value of the  
termination resistor that is connected across the differential  
pair at the receiver’s input). Finally, the location of the  
CHANNEL LINK TxOUT/RxIN pins should be as close as  
possible to the board edge so as to eliminate excessive pcb  
runs. All of these considerations will limit reflections and  
crosstalk which adversely effect high frequency performance  
and EMI.  
Introduction to Channel Link  
Channel Link PCB and Interconnect  
Design-In Guidelines  
AN-806  
AN-905  
Transmission Line Theory  
Transmission Line Calculations and  
Differential Impedance  
AN-916  
Cable Information  
CABLES: A cable interface between the transmitter and  
receiver needs to support the differential LVDS pairs. The  
21-bit CHANNEL LINK chipset (DS90CR215/216) requires  
four pairs of signal wires and the 28-bit CHANNEL LINK  
chipset (DS90CR285/286) requires five pairs of signal wires.  
The ideal cable/connector interface would have a constant  
100differential impedance throughout the path. It is also  
recommended that cable skew remain below 150 ps ( 66  
MHz clock rate) to maintain a sufficient data sampling win-  
dow at the receiver.  
In addition to the four or five cable pairs that carry data and  
clock, it is recommended to provide at least one additional  
conductor (or pair) which connects ground between the  
transmitter and receiver. This low impedance ground pro-  
vides a common mode return path for the two devices. Some  
of the more commonly used cable types for point-to-point  
applications include flat ribbon, flex, twisted pair and Twin-  
Coax. All are available in a variety of configurations and  
options. Flat ribbon cable, flex and twisted pair generally  
perform well in short point-to-point applications while Twin-  
Coax is good for short and long applications. When using  
ribbon cable, it is recommended to place a ground line  
between each differential pair to act as a barrier to noise  
coupling between adjacent pairs. For Twin-Coax cable ap-  
plications, it is recommended to utilize a shield on each  
cable pair. All extended point-to-point applications should  
also employ an overall shield surrounding all cable pairs  
UNUSED INPUTS: All unused inputs at the TxIN inputs of  
the transmitter must be tied to ground. All unused outputs at  
the RxOUT outputs of the receiver must then be left floating.  
INPUTS: The TxIN and control inputs are compatible with  
LVCMOS and LVTTL levels. These pins are not 5V tolerant.  
TERMINATION: Use of current mode drivers requires a  
terminating resistor across the receiver inputs. The CHAN-  
NEL LINK chipset will normally require a single 100resistor  
between the true and complement lines on each differential  
pair of the receiver input. The actual value of the termination  
resistor should be selected to match the differential mode  
characteristic impedance (90to 120typical) of the cable.  
Figure 19 shows an example. No additional pull-up or pull-  
down resistors are necessary as with some other differential  
15  
www.national.com  
parallel-connected decoupling capacitors (Multi-Layered Ce-  
ramic type in surface mount form factor) between each VCC  
and the ground plane(s) are recommended. The three ca-  
pacitor values are 0.1 µF, 0.01µF and 0.001 µF. An example  
is shown in Figure 20. The designer should employ wide  
traces for power and ground and ensure each capacitor has  
its own via to the ground plane. If board space is limiting the  
number of bypass capacitors, the PLL VCC should receive  
the most filtering/bypassing. Next would be the LVDS VCC  
pins and finally the logic VCC pins.  
Applications Information (Continued)  
technologies such as PECL. Surface mount resistors are  
recommended to avoid the additional inductance that ac-  
companies leaded resistors. These resistors should be  
placed as close as possible to the receiver input pins to  
reduce stubs and effectively terminate the differential lines.  
DECOUPLING CAPACITORS: Bypassing capacitors are  
needed to reduce the impact of switching noise which could  
limit performance. For  
a
conservative approach three  
DS012910-24  
FIGURE 19. LVDS Serialized Link Termination  
low jitter LVDS clock. These measures provide more margin  
for channel-to-channel skew and interconnect skew as a part  
of the overall jitter/skew budget.  
COMMON MODE vs. DIFFERENTIAL MODE NOISE MAR-  
GIN: The typical signal swing for LVDS is 300 mV centered  
at +1.2V. The CHANNEL LINK receiver supports a 100 mV  
threshold therefore providing approximately 200 mV of dif-  
ferential noise margin. Common mode protection is of more  
importance to the system’s operation due to the differential  
data transmission. LVDS supports an input voltage range of  
±
Ground to +2.4V. This allows for a 1.0V shifting of the  
center point due to ground potential differences and common  
mode noise.  
DS012910-25  
FIGURE 20. CHANNEL LINK  
Decoupling Configuration  
POWER SEQUENCING AND POWERDOWN MODE: Out-  
puts of the CNANNEL LINK transmitter remain in TRI-  
STATE® until the power supply reaches 2V. Clock and data  
outputs will begin to toggle 10 ms after VCC has reached 3V  
and the Powerdown pin is above 1.5V. Either device may be  
placed into a powerdown mode at any time by asserting the  
Powerdown pin (active low). Total power dissipation for each  
device will decrease to 5 µW (typical).  
CLOCK JITTER: The CHANNEL LINK devices employ a  
PLL to generate and recover the clock transmitted across the  
LVDS interface. The width of each bit in the serialized LVDS  
data stream is one-seventh the clock period. For example, a  
66 MHz clock has a period of 15 ns which results in a data bit  
width of 2.16 ns. Differential skew (t within one differential  
pair), interconnect skew (t of one differential pair to an-  
other) and clock jitter will all reduce the available window for  
sampling the LVDS serial data streams. Care must be taken  
to ensure that the clock input to the transmitter be a clean  
low noise signal. Individual bypassing of each VCC to ground  
will minimize the noise passed on to the PLL, thus creating a  
The CHANNEL LINK chipset is designed to protect itself  
from accidental loss of power to either the transmitter or  
receiver. If power to the transmit board is lost, the receiver  
clocks (input and output) stop. The data outputs (RxOUT)  
retain the states they were in when the clocks stopped.  
When the receiver board loses power, the receiver inputs are  
shorted to V  
through an internal diode. Current is limited  
CC  
(5 mA per input) by the fixed current mode drivers, thus  
avoiding the potential for latchup when powering the device.  
www.national.com  
16  
Applications Information (Continued)  
DS012910-26  
FIGURE 21. Single-Ended and Differential Waveforms  
17  
www.national.com  
Physical Dimensions inches (millimeters) unless otherwise noted  
Order Number DS90CR285MTD or DS90CR286MTD  
NS Package Number MTD56  
64 ball, 0.8mm fine pitch ball grid array (FBGA) package  
Dimensions shown in millimeters only  
Order Number DS90CR285SLC  
NS Package Number SLC64A  
www.national.com  
18  
Notes  
LIFE SUPPORT POLICY  
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL  
COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant  
into the body, or (b) support or sustain life, and  
whose failure to perform when properly used in  
accordance with instructions for use provided in the  
labeling, can be reasonably expected to result in a  
significant injury to the user.  
2. A critical component is any component of a life  
support device or system whose failure to perform  
can be reasonably expected to cause the failure of  
the life support device or system, or to affect its  
safety or effectiveness.  
National Semiconductor  
Corporation  
Americas  
Tel: 1-800-272-9959  
Fax: 1-800-737-7018  
Email: support@nsc.com  
National Semiconductor  
Europe  
National Semiconductor  
Asia Pacific Customer  
Response Group  
Tel: 65-2544466  
Fax: 65-2504466  
National Semiconductor  
Japan Ltd.  
Tel: 81-3-5639-7560  
Fax: 81-3-5639-7507  
Fax: +49 (0) 180-530 85 86  
Email: europe.support@nsc.com  
Deutsch Tel: +49 (0) 69 9508 6208  
English Tel: +44 (0) 870 24 0 2171  
Français Tel: +33 (0) 1 41 91 8790  
Email: ap.support@nsc.com  
www.national.com  
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.  

相关型号:

DS90CR286

+3.3V Rising Edge Data Strobe LVDS 28-Bit Channel Link-66 MHz
NSC

DS90CR286A

+3.3V Rising Edge Data Strobe LVDS Receiver 28-Bit Channel LinkΑ66 MHz, +3.3V Rising Edge Strobe LVDS Receiver 21-Bit Channel LinkΑ66 MHz
NSC

DS90CR286A

+3.3V 上升沿数据选通 LVDS 28 位 Channel Link 接收器 - 66MHz
TI

DS90CR286A-Q1

+3.3V 上升沿数据选通 LVDS 28 位汽车类 Channel Link 接收器 - 66MHz
TI

DS90CR286AMTD

+3.3V Rising Edge Data Strobe LVDS Receiver 28-Bit Channel LinkΑ66 MHz, +3.3V Rising Edge Strobe LVDS Receiver 21-Bit Channel LinkΑ66 MHz
NSC

DS90CR286AMTD

+3.3V 上升沿数据选通 LVDS 28 位 Channel Link 接收器 - 66MHz | DGG | 56 | -40 to 85
TI

DS90CR286AMTD/NOPB

+3.3V 上升沿数据选通 LVDS 28 位 Channel Link 接收器 - 66MHz | DGG | 56 | -40 to 85
TI

DS90CR286AMTDX

Video Link Interface
ETC

DS90CR286AMTDX/NOPB

+3.3V Rising Edge Data Strobe LVDS Receiver 28-Bit Channel Link - 66 MHz 56-TSSOP -40 to 85
TI

DS90CR286AQ

+3.3V Rising Edge Data Strobe LVDS Receiver 28-Bit Channel Link-66 MHz, +3.3V Rising Edge Strobe LVDS Receiver 21-Bit Channel Link-66 MHz
NSC

DS90CR286AQMT

+3.3V Rising Edge Data Strobe LVDS Receiver 28-Bit Channel Link-66 MHz, +3.3V Rising Edge Strobe LVDS Receiver 21-Bit Channel Link-66 MHz
NSC

DS90CR286AQMT/NOPB

+3.3V 上升沿数据选通 LVDS 28 位汽车类 Channel Link 接收器 - 66MHz | DGG | 56 | -40 to 85
TI