DS250DF410ABMT [TI]

25Gbps 多速率 4 通道重定时器 | ABM | 101 | -40 to 85;
DS250DF410ABMT
型号: DS250DF410ABMT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

25Gbps 多速率 4 通道重定时器 | ABM | 101 | -40 to 85

接口集成电路
文件: 总100页 (文件大小:2761K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DS250DF410  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
DS250DF410 25Gbps 多速率 4 通道重定时器  
1 特性  
2 应用  
1
具有集成信号调节功能的四通道多速率重定时器  
针对前端口光学模块的抖动消除  
有源电缆组件  
所有通道均可独立锁定在 20.2752 25.8Gbps 的  
范围内(包括 10.3125Gbps12.5Gbps 等子速  
率)  
背板/中板长度延长  
IEEE802.3bj 100GbEInfiniband EDR OIF-  
CEI-25G-LR/MR/SR/VSR 电气接口  
超低延迟:25.78125Gbps 数据速率下的典型延迟  
< 500ps  
SFP28QSFP28CFP2/CFP4CDFP  
单电源,无需低抖动参考时钟,最大限度减少电源  
去耦以降低电路板布线复杂程度并节省物料清单  
(BOM) 成本  
3 说明  
DS250DF410 是一款具有集成信号调节功能的四通道  
多速率重定时器。该器件用于扩展有损且存在串扰的远  
距离高速串行链路的延伸长度并提升稳定性,同时实现  
不高于 10-15 的比特误码率 (BER)。  
集成 2×2 交叉点  
自适应性连续时间线性均衡器 (CTLE)  
自适应判决反馈均衡器 (DFE)  
带有 3 抽头有限冲激响应 (FIR) 滤波器的低抖动发  
射器  
DS250DF410 各通道的串行数据速率均可独立锁定在  
20.2752Gbps 25.8Gbps 的连续范围内或者支持的  
任意子速率(速率的一半和四分之一),包括  
10.3125Gbps 12.5Gbps 等关键数据速率,因此该  
器件支持独立通道前向纠错 (FEC) 直通。  
组合式均衡,在 12.9GHz 频率下支持 35dB 以上的  
通道损耗  
可调节发送幅值:205mVppd 1225mVppd(典  
型值)  
片上眼图张开度监视器 (EOM)PRBS 模式校验器  
/发生器  
器件信息(1)  
器件型号  
封装  
ABM (101)  
封装尺寸(标称值)  
支持 JTAG/AC-JTAG 边界扫描  
DS250DF410  
6.00mm × 6.00mm  
小型 6mm × 6mm BGA 封装,可轻松实现直通布  
线
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
简化原理图  
RX0P  
TX0P  
TX0N  
CDR  
RX  
RX  
TX  
RX0N  
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
RX3P  
RX3N  
TX3P  
TX3N  
2.5V or  
3.3V  
CDR  
TX  
VDD  
SMBus  
Slave mode  
1 kΩ  
To other open-drain  
interrupt pins  
EN_SMB  
INT_N  
SDA(1)  
NC_TEST  
To system  
SMBus  
SDC(1)  
Address straps  
ADDR0  
(pull-up, pull-  
ADDR1  
down, or float)  
25 MHz  
To next device‘s  
CAL_CLK_IN  
CAL_CLK_IN  
READ_EN_N  
CAL_CLK_OUT  
ALL_DONE_N  
SMBus Slave  
mode  
Float for SMBus Slave  
mode, or connect to next  
device‘s READ_EN_N for  
SMBus Master mode  
2.5V  
GND  
VDD  
1F  
(2x)  
0.1F  
(4x)  
(1) SMBus signals need to be pulled up elsewhere in the system.  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNLS456  
 
 
 
 
DS250DF410  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
www.ti.com.cn  
目录  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明 (续.............................................................. 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 8  
7.1 Absolute Maximum Ratings ...................................... 8  
7.2 ESD Ratings.............................................................. 8  
7.3 Recommended Operating Conditions....................... 8  
7.4 Thermal Information.................................................. 9  
7.5 Electrical Characteristics........................................... 9  
8
9
Detailed Description ............................................ 17  
8.1 Overview ................................................................. 17  
8.2 Functional Block Diagram ....................................... 17  
8.3 Feature Description................................................. 18  
8.4 Device Functional Modes........................................ 29  
8.5 Programming........................................................... 30  
8.6 Register Maps......................................................... 32  
Application and Implementation ........................ 76  
9.1 Application Information............................................ 76  
9.2 Typical Applications ............................................... 76  
10 Power Supply Recommendations ..................... 90  
11 Layout................................................................... 90  
11.1 Layout Guidelines ................................................. 90  
11.2 Layout Example .................................................... 90  
12 器件和文档支持 ..................................................... 92  
12.1 文档支持................................................................ 92  
12.2 文档支持................................................................ 92  
12.3 接收文档更新通知 ................................................. 92  
12.4 支持资源................................................................ 92  
12.5 ....................................................................... 92  
12.6 静电放电警告......................................................... 92  
12.7 Glossary................................................................ 92  
13 机械、封装和可订购信息....................................... 92  
7.6 Timing Requirements, Retimer Jitter  
Specifications........................................................... 13  
7.7 Timing Requirements, Retimer Specifications........ 14  
7.8 Timing Requirements, Recommended Calibration  
Clock Specifications................................................. 14  
7.9 Recommended SMBus Switching Characteristics  
(Slave Mode)............................................................ 14  
7.10 Recommended SMBus Switching Characteristics  
(Master Mode).......................................................... 15  
7.11 Recommended JTAG Switching Characteristics .. 15  
7.12 Typical Characteristics ......................................... 16  
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision C (February 2019) to Revision D  
Page  
首次公开发布 .......................................................................................................................................................................... 1  
2
版权 © 2016–2019, Texas Instruments Incorporated  
 
DS250DF410  
www.ti.com.cn  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
5 说明 (续)  
DS250DF410 具备一个单电源,能够最大限度地减少外部组件的数量。这些 特性 可降低 PCB 布线的复杂程度并  
节省 BOM 成本。  
DS250DF230 的高级均衡 特性 包括:一个低抖动 3 抽头发送有限冲激响应 (FIR) 滤波器、一个自适应连续时间线  
性均衡器 (CTLE) 以及一个自适应判决反馈均衡器 (DFE)。支持针对具有多个连接器且存在串扰的有损互连和背板  
进行扩展。集成的时钟和数据恢复 (CDR) 功能可重置抖动预算并对高速串行数据进行重定时, 非常适用于前端口  
光学模块 以重置抖动容许量并重定时高速串行数据。DS250DF410 对每个通道对采用 2x2 交叉点,可为主机同时  
提供通道交叉、扇出和多路复用选项。  
DS250DF410 可通过 SMBus 或外部 EEPROM 进行配置。单个 EEPROM 最多可由 16 个器件使用公共通道格  
式共享。非破坏性片上眼图监视器和 PRBS 发生器/校验器为系统内诊断提供支持。  
Copyright © 2016–2019, Texas Instruments Incorporated  
3
DS250DF410  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
www.ti.com.cn  
6 Pin Configuration and Functions  
ABM Package  
101-Pin FC/CSP  
Top View  
Pin Functions  
PIN  
INTERNAL  
PULL-UP/  
PULL-DOWN  
TYPE  
DESCRIPTION  
NAME  
NO.  
HIGH SPEED DIFFERENTIAL I/Os  
RX0N  
A10  
A11  
A7  
Input  
Input  
Input  
Input  
None  
None  
None  
None  
Inverting and non-inverting differential  
inputs to the equalizer. An on-chip 100-  
termination resistor connects RXP to  
RXN. These inputs need to be AC  
coupled.(1)  
RX0P  
RX1N  
RX1P  
Inverting and non-inverting differential  
inputs to the equalizer. An on-chip 100-Ω  
termination resistor connects RXP to  
RXN. These inputs need to be AC  
coupled.(1)  
A8  
(1) High-speed pins do not have short-circuit protection. High-speed pins should be AC-coupled.  
4
Copyright © 2016–2019, Texas Instruments Incorporated  
 
DS250DF410  
www.ti.com.cn  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
Pin Functions (continued)  
PIN  
INTERNAL  
PULL-UP/  
PULL-DOWN  
TYPE  
DESCRIPTION  
NAME  
NO.  
RX2N  
A4  
Input  
None  
Inverting and non-inverting differential  
inputs to the equalizer. An on-chip 100-Ω  
termination resistor connects RXP to  
RXN. These inputs need to be AC  
coupled.(1)  
RX2P  
RX3N  
RX3P  
A5  
A1  
A2  
Input  
Input  
Input  
None  
None  
None  
Inverting and non-inverting differential  
inputs to the equalizer. An on-chip 100-Ω  
termination resistor connects RXP to  
RXN. These inputs need to be AC  
coupled.(1)  
TX0N  
TX0P  
TX1N  
TX1P  
TX2N  
TX2P  
TX3N  
TX3P  
L10  
L11  
L7  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
None  
None  
None  
None  
None  
None  
None  
None  
Inverting and non-inverting 50-driver  
outputs. Compatible with AC-coupled  
differential inputs. These outputs need to  
be AC coupled.(1)  
Inverting and non-inverting 50-driver  
outputs. Compatible with AC-coupled  
differential inputs. These outputs need to  
be AC coupled.(1)  
L8  
L4  
Inverting and non-inverting 50-driver  
outputs. Compatible with AC-coupled  
differential inputs. These outputs need to  
be AC coupled.(1)  
L5  
L1  
Inverting and non-inverting 50-driver  
outputs. Compatible with AC-coupled  
differential inputs. These outputs need to  
be AC coupled.(1)  
L2  
CALIBRATION CLOCK PINS  
25 MHz (±100 PPM) 2.5-V single-ended  
clock from external oscillator. No stringent  
phase noise or jitter requirements on this  
clock. Used to calibrate VCO frequency  
range.  
Weak pull-up in  
JTAG mode. Weak  
pull-down in  
CAL_CLK_IN/  
JTAG_TDI  
Input, 2.5V  
CMOS  
F1  
functional mode  
In JTAG mode (EN_SMB = 1 kΩ to  
GND), this is JTAG Test Data In (TDI).  
2.5-V buffered replica of calibration clock  
input (pin E1) for connecting multiple  
devices in a daisy-chained fashion.  
In JTAG mode (EN_SMB = 1 kΩ to  
GND), this is JTAG Test Data Out (TDO).  
CAL_CLK_OUT/  
JTAG_TDO  
Output, 2.5V  
CMOS  
F11  
None  
None  
SYSTEM MANAGEMENT BUS (SMBus) PINS  
ADDR0  
D11  
Input, 4-level  
Input, 4-level  
4-level strap pins used to set the SMBus  
address of the device. The pin state is  
read on power-up. The multi-level nature  
of these pins allows for 16 unique device  
addresses. The four strap options include:  
0: 1 kto GND  
R: 20 kto GND  
F: Float  
1: 1 kto VDD  
Weak pull-up in  
JTAG mode  
ADDR1/JTAG_TRS  
D1  
Refer to Device SMBus Address for more  
information.  
In JTAG mode (EN_SMB = 1 kΩ to  
GND), ADDR1 is JTAG Test Reset  
(TRS).  
Copyright © 2016–2019, Texas Instruments Incorporated  
5
DS250DF410  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
INTERNAL  
TYPE  
PULL-UP/  
PULL-DOWN  
DESCRIPTION  
NAME  
NO.  
Four-level 2.5-V input used to select  
between SMBus master mode (float) and  
SMBus slave mode (high). The four  
defined levels are:  
0: 1 kto GND - JTAG mode; certain  
pins take on JTAG functionality  
R: 20 kto GND - RESERVED, TI test  
mode  
EN_SMB  
G1  
Input, 4-level  
None  
F: Float - SMBus Master Mode  
1: 1 kto VDD - SMBus Slave Mode  
SMBus data input / open drain output.  
External 2-kto 5-kpull-up resistor is  
required as per SMBus interface  
I/O, 3.3V  
LVCMOS, Open  
Drain  
SDA  
G11  
H11  
None  
None  
standard. This pin is 3.3V-tolerant.  
SMBus clock input / open drain clock  
output. External 2-kto 5-kpull-up  
resistor is required as per SMBus  
interface standard. This pin is 3.3V-  
tolerant.  
I/O, 3.3V  
LVCMOS, Open  
Drain  
SDC  
SMBus MASTER MODE PINS  
Indicates the completion of a valid  
EEPROM register load operation when in  
SMBus Master Mode (EN_SMB=Float):  
High = External EEPROM load failed or  
incomplete  
Output,  
LVCMOS  
ALL_DONE_N  
E1  
None  
Low = External EEPROM load successful  
and complete  
When in SMBus slave mode  
(EN_SMB=1), this output reflects the  
status of the READ_EN_N input.  
SMBus Master Mode (EN_SMB=Float):  
When asserted low, initiates the SMBus  
master mode EEPROM read function.  
Once EEPROM read is complete  
(indicated by assertion of ALL_DONE_N  
low), this pin can be held low for normal  
device operation.  
SMBus Slave Mode (EN_SMB=1): When  
asserted low, this causes the device to be  
held in reset (SMBus state machine reset  
and register reset). This pin should be  
pulled high or left floating for normal  
operation in SMBus Slave Mode.  
This pin is 3.3V-tolerant.  
Input, 3.3V  
LVCMOS  
READ_EN_N  
E11  
Weak pull-up  
MISCELLANEOUS PINS  
Open-drain 3.3-V tolerant active-low  
interrupt output. This pin is pulled low  
when an interrupt occurs. The events  
which trigger an interrupt are  
programmable through SMBus registers.  
INT_N can be connected in a wired-OR  
fashion with other device's interrupt pin. A  
single pull-up resistor in the 2-kto 5-kΩ  
range is adequate for the entire INT_N  
net.  
Output,  
LVCMOS, Open  
Drain  
INT_N  
H1  
None  
6
Copyright © 2016–2019, Texas Instruments Incorporated  
DS250DF410  
www.ti.com.cn  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
Pin Functions (continued)  
PIN  
INTERNAL  
PULL-UP/  
PULL-DOWN  
TYPE  
DESCRIPTION  
NAME  
NO.  
No pull-up in JTAG Reserved TI test pins. During normal  
TEST0/JTAG_TCK  
D10  
Input, LVCMOS mode. Weak pull-up (non-test-mode) operation, these pins are  
in functional mode. configured as inputs and therefore they  
are not affected by the presence of a  
signal. These pins may be left floating,  
tied to GND, or connected to a 2.5-V  
(max) output.  
TEST1/JTAG_TMS  
D2  
Input, LVCMOS  
Weak pull-up  
In JTAG mode (EN_SMB = 1 kΩ to  
GND), TEST0 is JTAG Test Clock (TCK)  
and TEST1 is JTAG Test Mode Select  
(TMS).  
TEST2  
TEST3  
TEST4  
E10  
E2  
Input, LVCMOS  
Input, LVCMOS  
Input, LVCMOS  
Weak pull-up  
Weak pull-up  
Weak pull-up  
Reserved TI test pins. During normal  
(non-test-mode) operation, these pins are  
configured as inputs and therefore they  
are not affected by the presence of a  
signal. These pins may be left floating,  
tied to GND, or connected to a 2.5-V  
(max) output.  
H10  
TEST5  
H2  
Input, LVCMOS  
Weak pull-up  
POWER  
A3, A6, A9, B1, B2, B3,  
B4, B5, B6, B7, B8, B9,  
B10, B11, C1, C6, C11,  
D6, E3, E5, E7, E9, F3,  
F4, F5, F6, F7, F8, F9,  
Ground reference. The GND pins on this  
device should be connected through a  
low-resistance path to the board GND  
plane.  
GND  
Power  
None  
G2, G3, G5, G7, G9, G10,  
H6, J1, J6, J11, K1, K2,  
K3, K4, K5, K6, K7, K8,  
K9, K10, K11, L3, L6, L9  
Power supply, VDD = 2.5 V ±5%. TI  
recommends connecting at least six de-  
coupling capacitors between the  
DS250DF410’s VDD plane and GND as  
close to the DS250DF410 as possible.  
For example, four 0.1-μF capacitors and  
two 1-μF capacitors directly beneath the  
device or as close to the VDD pins as  
possible. The VDD pins on this device  
should be connected through a low-  
resistance path to the board VDD plane.  
C3, C9, D3, D4, D5, D7,  
D8, D9, H3, H4, H5, H7,  
H8, H9, J3, J9  
VDD  
Power  
None  
Copyright © 2016–2019, Texas Instruments Incorporated  
7
DS250DF410  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
MAX  
UNIT  
V
VDDABSMAX  
VIO2.5V,ABSMAX  
VIO3.3V,ABSMAX  
VINABSMAX  
VOUTABSMAX  
TJABSMAX  
Supply voltage (VDD)  
2.75  
2.75  
4.0  
2.5 V I/O voltage (LVCMOS, CMOS and Analog)  
V
Open Drain Voltage (SDA, SDC, INT_N) and LVCMOS Input Voltage (READ_EN_N)  
Signal input voltage (RXnP, RXnN)  
V
2.75  
2.75  
150  
150  
V
Signal output voltage (TXnP, TXnN)  
Junction temperature  
V
ºC  
ºC  
Tstg  
Storage temperature  
–40  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as ±2 kV  
may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX UNIT  
2.625  
VDD  
Supply voltage, VDD to GND. DC plus AC power should not exceed these limits.  
Supply noise, DC to < 50 Hz, sinusoidal(1)  
Supply noise, 50 Hz to 10 MHz, sinusoidal(1)  
Supply noise, >10 MHz, sinusoidal(1)  
2.375  
V
NVDD  
NVDD  
NVDD  
TrampVDD  
TJ  
250 mVpp  
20 mVpp  
10 mVpp  
μs  
VDD supply ramp time, from 0V to 2.375V  
Operating junction temperature  
150  
-40  
110  
85(2)  
2.625  
3.6  
ºC  
ºC  
V
TA  
Operating ambient temperature  
-40  
VIO2.5V  
VIO3.3V,INT_N  
VIO3.3V  
2.5 V I/O voltage (LVCMOS, CMOS and Analog)  
Open Drain LVCMOS I/O voltage (INT_N)  
Open Drain LVCMOS I/O voltage (SDA, SDC)  
2.375  
V
2.375  
3.6  
V
(1) Steps must be taken to ensure the combined AC plus DC supply noise meets the specified VDD supply voltage limits.  
(2) Steps must be taken to ensure the operating junction temperature range and ambient temperature stay-in-lock range (TEMPLOCK+  
TEMPLOCK-) are met. Refer to Electrical Characteristics for more details concerning TEMPLOCK+ and TEMPLOCK-  
,
.
8
Copyright © 2016–2019, Texas Instruments Incorporated  
 
 
DS250DF410  
www.ti.com.cn  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
7.4 Thermal Information  
DS250DF410  
THERMAL METRIC(1)  
CONDITIONS/ASSUMPTIONS(2)  
FC/CSP (ABM)  
101 PINS  
34.2  
UNIT  
4-Layer JEDEC Board  
10-Layer 8-in x 6-in Board  
20-Layer 8-in x 6-in Board  
30-Layer 8-in x 6-in Board  
4-Layer JEDEC Board  
16.7  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
15.6  
14.6  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
7.8  
°C/W  
°C/W  
4-Layer JEDEC Board  
13.7  
4-Layer JEDEC Board  
0.004  
0.004  
0.004  
0.004  
13.0  
10-Layer 8-in x 6-in Board  
20-Layer 8-in x 6-in Board  
30-Layer 8-in x 6-in Board  
4-Layer JEDEC Board  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
°C/W  
°C/W  
10-Layer 8-in x 6-in Board  
20-Layer 8-in x 6-in Board  
30-Layer 8-in x 6-in Board  
11.7  
ΨJB  
11.5  
11.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
(2) No heat sink or airflow was assumed for these estimations. Depending on the application, a heat sink, faster airflow, and/or reduced  
ambient temperature (<85 C) may be required in order to meet the maximum junction temperature specification per the Recommended  
Operating Conditions.  
7.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
Full-rate  
MIN  
20.2752  
10.1376  
5.0688  
TYP  
MAX  
25.8  
12.9  
6.45  
UNIT  
Gbps  
Gbps  
Gbps  
Rbaud  
Input data rate  
Half-rate  
Quarter-rate  
Single device reading its  
configuration from an EEPROM.  
Common channel configuration. This  
time scales with the number of  
devices reading from the same  
EEPROM.  
tEEPROM  
EEPROM configuration load time  
EEPROM configuration load time  
Power-on reset assertion time  
15(1)  
40(1)  
50  
ms  
ms  
ms  
Single device reading its  
configuration from an EEPROM.  
Unique channel configuration. This  
time scales with the number of  
devices reading from the same  
EEPROM.  
tEEPROM  
Internal power-on reset (PoR)  
stretch between stable power supply  
and de-assertion of internal PoR.  
The SMBus address is latched on  
the completion of the PoR stretch,  
and SMBus accesses are permitted.  
tPOR  
(1) From low assertion of READ_EN_N to low assertion of ALL_DONE_N. Does not include Power-On Reset time.  
Copyright © 2016–2019, Texas Instruments Incorporated  
9
DS250DF410  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
POWER SUPPLY  
TEST CONDITIONS  
MIN  
TYP  
241  
233  
MAX  
UNIT  
mW  
With CTLE, full DFE, Tx FIR,  
Driver, and Crosspoint enabled. Idle  
power consumption not included.  
305  
With CTLE, full DFE, Tx FIR, and  
Driver enabled; Crosspoint disabled.  
Idle power consumption not  
included.  
mW  
With CTLE, partial DFE (taps 1-2  
only), Tx FIR, and Driver enabled;  
Crosspoint and DFE taps 3-5  
disabled. Idle power consumption  
not included.  
220  
mW  
With CTLE, Tx FIR, Driver, and  
Crosspoint enabled; DFE disabled.  
Idle power consumption not  
included.  
211  
365  
290  
430  
mW  
mW  
Power consumption per active  
channel  
Wchannel  
Assuming CDR acquiring lock with  
CTLE, full DFE, Tx FIR, Driver, and  
Crosspoint enabled. Idle power  
consumption not included.  
Assuming CDR acquiring lock with  
CTLE, Tx FIR, Driver, and  
Crosspoint enabled; DFE disabled.  
Idle power consumption not  
included.  
318  
393  
mW  
PRBS checker power consumption  
only(2)  
220  
230  
302  
315  
mW  
mW  
PRBS generator power power  
consumption only(2)  
Total idle power consumption  
Idle/static mode, power supplied, no  
high-speed data present at inputs,  
all channels automatically powered  
down.  
Wstatic_total  
329  
525  
665  
mW  
With CTLE, full DFE, Tx FIR, Driver,  
and Crosspoint enabled.  
518  
505  
mA  
mA  
With CTLE, full DFE, Tx FIR, and  
Driver enabled; Crosspoint disabled.  
Active mode total device supply  
current consumption  
With CTLE, partial DFE (taps 1-2  
only), Tx FIR, and Driver enabled;  
Crosspoint and DFE taps 3-5  
disabled.  
Itotal  
485  
470  
132  
mA  
mA  
mA  
With CTLE, Tx FIR, Driver, and  
Crosspoint enabled. DFE disabled.  
639  
200  
Idle/static mode. Power supplied, no  
Idle mode total device supply current high-speed data present at inputs,  
consumption  
Istatic_total  
all channels automatically powered  
down.  
LVCMOS DC SPECIFICATIONS  
2.5-V LVCMOS pins  
1.75  
1.75  
VDD  
3.6  
V
V
V
V
VIH  
VIL  
Input high-level voltage  
Input low-level voltage  
3.3-V LVCMOS pin (READ_EN_N)  
2.5-V LVCMOS pins  
GND  
GND  
0.7  
3.3-V LVCMOS pin (READ_EN_N)  
0.8  
(2) To ensure optimal performance, it is recommended to not enable more than two PRBS blocks (checker and/or generator) per device.  
10  
Copyright © 2016–2019, Texas Instruments Incorporated  
DS250DF410  
www.ti.com.cn  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
High level (1) input voltage  
4-level pins ADDR0, ADDR1, and  
EN_SMB  
0.95 ×  
VDD  
V
Float level input voltage  
10K to GND input voltage  
Low -evel (0) input voltage  
4-level pins ADDR0, ADDR1, and  
EN_SMB  
0.67 ×  
VDD  
V
V
V
VTH  
4-level pins ADDR0, ADDR1, and  
EN_SMB  
0.33 ×  
VDD  
4-level pins ADDR0, ADDR1, and  
EN_SMB  
0.1  
VOH  
VOL  
IIH  
High-level output voltage  
Low-level output voltage  
Input high leakage current  
Input high leakage current  
IOH = 4 mA  
2
V
V
IOL = –4 mA  
0.4  
70  
65  
Vinput = VDD, Open drain pins  
Vinput = VDD and CAL_CLK_IN pin  
μA  
μA  
IIH  
Vinput = VDD, ADDR[1:0] and  
EN_SMB pins  
IIH  
Input high leakage current  
65  
15  
μA  
IIH  
IIL  
IIL  
Input high leakage current  
Input low leakage current  
Input low leakage current  
Vinput = VDD, READ_EN_N  
Vinput = 0 V, Open drain pins  
Vinput = 0 V, CAL_CLK_IN pins  
μA  
μA  
μA  
-15  
-15  
Vinput = 0 V, ADDR[1:0],  
READ_EN_N, and EN_SMB pins  
IIL  
Input low leakage current  
-115  
μA  
RECEIVER INPUTS (RXnP, RXnN)  
VIDMax  
Maximum input differential voltage  
For normal operation  
1225  
<-18  
<-14  
mVppd  
dB  
Between 50 MHz and 3.69 GHz  
Between 3.69 GHz and 12.9 GHz  
Differential input return loss,  
SDD11(3)  
RLSDD11  
dB  
Differential to common-mode input  
return loss, SDC11(3)  
RLSDC11  
RLSCD11  
RLSCC11  
Between 50 MHz and 12.9 GHz  
Between 50 MHz and 12.9 GHz  
<-23  
<-22  
dB  
dB  
Differential to common-mode input  
return loss, SCD11(3)  
Between 150 MHz and 10 GHz  
Between 10 GHz and 12.9 GHz  
<-11  
<-10  
dB  
dB  
Common-mode input return loss,  
SCC11(3)  
Minimum input peak-to-peak  
amplitude level at device pins  
required to assert signal detect.  
25.78125Gbps with PRBS7 pattern  
and 20dB loss channel  
AC signal detect assert (ON)  
threshold level  
VSDAT  
196  
147  
mVppd  
mVppd  
Maximum input peak-to-peak  
amplitude level at device pins which  
causes signal detect to de-assert.  
25.78125Gbps with PRBS7 pattern  
and 20dB loss channel  
AC signal detect de-assert (OFF)  
threshold level  
VSDDT  
TRANSMITTER OUTPUTS (TXnP, TXnN)  
Measured with c(0)=7 setting  
(Reg_0x3D[6:0]=0x07,  
Reg_0x3E[6:0]=0x40,  
REG_0x3F[6:0]=0x40). Differential  
VOD  
Output differential voltage amplitude measurement using an 8T pattern  
(eight 1s followed by eight 0s) at  
25.78125 Gbps with TXPn and  
525  
mVppd  
TXNn terminated by 50 Ohms to  
GND.  
(3) Measured with an evaluation board which uses microstrip traces and low-loss dielectric with approximately 3 dB insertion loss at 12.9  
GHz between the DS250DF410 and the measurement instrument.  
Copyright © 2016–2019, Texas Instruments Incorporated  
11  
DS250DF410  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Measured with c(0)=31 setting  
(Reg_0x3D[6:0]=0x1F,  
Reg_0x3E[6:0]=0x40,  
REG_0x3F[6:0]=0x40). Differential  
VOD  
Output differential voltage amplitude measurement using an 8T pattern  
(eight 1s followed by eight 0s) at  
25.78125 Gbps with TXPn and  
1225  
mVppd  
TXNn terminated by 50 Ohms to  
GND.  
Differential output amplitude with TX  
disabled  
VODidle  
VODres  
< 11  
< 50  
mVppd  
mVppd  
Difference in VOD between two  
adjacent c(0) settings. Applies to  
VOD in the 525mVppd to  
Output VOD resolution  
1225mVppd range [c(0)>4].  
With respect to signal ground.  
Measured with PRBS9 data pattern.  
Common-mode AC output noise  
Vcm-TX-AC  
6.5  
17  
mV, RMS  
Measured with a 33GHz (-3dB) low-  
pass filter.  
20%-to-80% rise time and 80%-to-  
20% fall time on a clock-like {11111  
00000} data pattern at 25.78125  
tr, tf  
Output transition time  
Gbps. Measured for ~800 mVppd  
output amplitude and no  
ps  
equalization: Reg_0x3D=+13,  
Reg_0x3E=0, REG_0x3F=0  
Between 50 MHz and 5 GHz  
Between 5 GHz and 12.9 GHz  
<-14  
<-13  
dB  
dB  
Differential output return loss,  
SDD22(4)  
RLSDD22  
Common-mode to differential output  
return loss, SCD22(4)  
RLSCD22  
RLSDC22  
Between 50 MHz and 12.9 GHz  
Between 50 MHz and 12.9 GHz  
<-22  
<-22  
dB  
dB  
Differential-to-common-mode output  
return loss, SDC22(4)  
Between 50 MHz and 10 GHz  
Between 10 GHz and 12.9 GHz  
<-9  
dB  
dB  
Common-mode output return loss,  
SCC22(4)  
RLSCC22  
<-12  
SMBus ELECTRICAL CHARACTERISTICS (SLAVE MODE)  
VIH  
VIL  
Input high-level voltage  
Input low-level voltage  
Input pin capacitance  
Low-level output voltage  
SDA and SDC  
SDA and SDC  
1.75  
3.6  
0.8  
V
V
GND  
CIN  
VOL  
15  
pF  
V
SDA or SDC, IOL = 1.25 mA  
0.4  
15  
SDA or SDC, VINPUT = VIN, VDD,  
GND  
IIN  
Input current  
-15  
μA  
TR  
TF  
SDA rise time, read operation  
SDA fall time, read operation  
Pull-up resistor = 1 k, Cb = 50pF  
Pull-up resistor = 1 k, Cb = 50pF  
150  
4.5  
ns  
ns  
(4) Measured with an evaluation board which uses microstrip traces and low-loss dielectric with approximately 3 dB insertion loss at 12.9  
GHz between the DS250DF410 and the measurement instrument.  
12  
Copyright © 2016–2019, Texas Instruments Incorporated  
DS250DF410  
www.ti.com.cn  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
7.6 Timing Requirements, Retimer Jitter Specifications  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Measured at 25.78125 Gbps to a  
probability level of 1E-12 with  
PRBS11 data pattern an evaluation  
board traces de-embedded.  
UIpp @  
1E-12  
JTJ  
Output total jitter (TJ)  
0.17  
Measured at 25.78125 Gbps to a  
probability level of 1E-12 with  
PRBS11 data pattern an evaluation  
board traces de-embedded  
JRJ  
Output random Jitter (RJ)  
Output duty cycle distortion (DCD)  
Jitter peaking  
6
4
mUI RMS  
mUIpp  
dB  
Measured at 25.78125 Gbps to a  
probability level of 1E-12 with  
PRBS11 data pattern an evaluation  
board traces de-embedded  
JDCD  
JPEAK  
JPEAK  
Measured at 10.3125 Gbps with  
PRBS7 data pattern. Peaking  
frequency in the range of 1 to 6  
MHz.  
0.8  
0.4  
Measured at 25.78125 Gbps with  
PRBS7 data pattern. Peaking  
frequency in the range of 1 to 17  
MHz.  
Jitter peaking  
dB  
Data rate of 10.3125Gbps with  
PRBS7 pattern  
BWPLL  
BWPLL  
PLL bandwidth  
PLL bandwidth  
5.3  
5.5  
MHz  
MHz  
Data rate of 25.78125Gbps with  
PRBS7 pattern  
Measured at 25.78125 Gbps with  
SJ frequency = 190 KHz, 30dB  
input channel loss, PRBS31 data  
pattern, 800 mVppd launch  
amplitude, and 0.078 UIpp total  
uncorrelated output jitter in addition  
to the applied SJ. BER < 1E-12.  
JTOL  
JTOL  
JTOL  
Input jitter tolerance  
Input jitter tolerance  
Input jitter tolerance  
9
1
UIpp  
UIpp  
UIpp  
Measured at 25.78125 Gbps with  
SJ frequency = 940 KHz, 30dB  
input channel loss, PRBS31 data  
pattern, 800 mVppd launch  
amplitude, and 0.078 UIpp total  
uncorrelated output jitter in addition  
to the applied SJ. BER < 1E-12.  
Measured at 25.78125 Gbps with  
SJ frequency > 15MHz, 30dB input  
channel loss, PRBS31 data pattern,  
800 mVppd launch amplitude, and  
0.078 UIpp total uncorrelated output  
jitter in addition to the applied SJ.  
BER < 1E-12.  
0.3  
CDR stay-in-lock ambient  
temperature range, negative ramp.  
85 °C starting ambient temperature,  
ramp rate -3 °C/minute, 1.7  
liters/sec airflow, 12 layer PCB.  
TEMPLOCK- Maximum temperature change  
below initial CDR lock acquisition  
temperature.  
115  
125  
°C  
°C  
CDR stay-in-lock ambient  
temperature range, positive ramp.  
TEMPLOCK+ Maximum temperature change  
above initial CDR lock acquisition  
temperature.  
-40 °C starting ambient  
temperature, ramp rate +3  
°C/minute, 1.7 liters/sec airflow, 12  
layer PCB.  
Copyright © 2016–2019, Texas Instruments Incorporated  
13  
 
DS250DF410  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
www.ti.com.cn  
7.7 Timing Requirements, Retimer Specifications  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
No crosspoint; CDR enabled and  
locked.  
3.5UI +  
125ps  
ps  
Input-to-output latency (propagation Crosspoint enabled; CDR enabled  
3.5UI +  
145ps  
tD  
ps  
ps  
delay) through a channel  
and locked.  
No crosspoint; CDR in raw (bypass)  
mode.  
< 145  
Latency difference between  
channels at full-rate. 25.78125 Gbps  
data rate.  
tSK  
Channel-to-channel interpair skew  
CDR lock acquisition time  
< 30  
ps  
Measured at 25.78125 Gbps, Adapt  
Mode = 1 (Reg_0x31[6:5]=0x1),  
EOM timer = 0x5  
tlock  
< 100  
< 100  
ms  
(Reg_0x2A[7:4]=0x5).  
Measured at 10.3125 Gbps, Adapt  
Mode = 1 (Reg_0x31[6:5]=0x1),  
EOM timer = 0x5  
tlock  
CDR lock acquisition time  
ms  
(Reg_0x2A[7:4]=0x5).  
7.8 Timing Requirements, Recommended Calibration Clock Specifications  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
MHz  
PPM  
CLKf  
Calibration clock frequency  
Calibration clock PPM tolerance  
25  
CLKPPM  
-100  
40%  
100  
Recommended/tolerable input duty  
cycle  
CLKIDC  
50%  
60%  
Intrinsic duty cycle distortion of chip  
calibration clock output at the  
CAL_CLK_OUT pin, assuming 50%  
duty cycle on CAL_CLK_IN pin.  
Intrinsic calibration clock duty cycle  
distortion  
CLKODC  
45%  
55%  
Assumes worst-case 60%/40% input  
duty cycle on the first device.  
CAL_CLK_OUT from first devuce  
connects to CAL_CLK_IN of second  
device, and so on until the last  
device.  
Number of devices which can be  
cascaded from CAL_CLK_OUT to  
CAL_CLK_IN  
CLKnum  
20  
N/A  
7.9 Recommended SMBus Switching Characteristics (Slave Mode)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
SDC clock frequency  
Data hold time  
TEST CONDITIONS  
MIN  
TYP  
100  
0.75  
100  
MAX  
UNIT  
kHz  
ns  
fSDC  
10  
400  
tHD-DAT  
tSU-DAT  
Data setup time  
ns  
14  
Copyright © 2016–2019, Texas Instruments Incorporated  
DS250DF410  
www.ti.com.cn  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
7.10 Recommended SMBus Switching Characteristics (Master Mode)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
SDC clock frequency  
SDC low period  
TEST CONDITIONS  
MIN  
260  
TYP  
303  
1.90  
1.40  
0.6  
MAX  
346  
UNIT  
kHz  
μs  
fSDC  
TLOW  
1.66  
1.22  
2.21  
1.63  
THIGH  
THD-STA  
TSU-STA  
THD-DAT  
TSD-DAT  
TSU-STO  
TBUF  
SDC high period  
μs  
Hold time start operation  
Setup time start operation  
Data hold time  
μs  
0.6  
μs  
0.6  
μs  
Data setup time  
0.1  
μs  
Stop condition setup time  
Bus free time between Stop-Start  
SDC rise time  
0.6  
μs  
1.3  
μs  
TR  
Pull-up resistor = 1 kΩ  
Pull-up resistor = 1 kΩ  
300  
300  
ns  
TF  
SDC fall time  
ns  
7.11 Recommended JTAG Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ns  
tTCK  
tSU  
TCK clock period  
100  
TDI, TMS setup time to TCK  
TDI, TMS hold time to TCK  
TCK falling edge to TDO  
50  
50  
50  
ns  
tHD  
ns  
tDLY  
ns  
版权 © 2016–2019, Texas Instruments Incorporated  
15  
DS250DF410  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
www.ti.com.cn  
7.12 Typical Characteristics  
1.6  
1.6  
1.4  
1.2  
1
c(0)=7  
c(0)=7  
c(0)=16  
c(0)=16  
c(0)=31  
1.4  
c(0)=31  
1.2  
1
0.8  
0.6  
0.4  
0.8  
0.6  
0.4  
2.325  
2.395  
2.465  
2.535  
2.605  
2.675  
-40  
-15  
10  
35  
60  
85  
VDD Supply Voltage (V)  
Ambient Temperature (°C)  
C001  
C002  
1. Typical VOD vs Supply Voltage  
2. Typical VOD vs Temperature  
0.25  
0.2  
0.15  
0.1  
0.05  
0
1.4  
1.3  
1.2  
1.1  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
T = 25C, VDD = 2.35V  
T = 25C, VDD = 2.65V  
T = 95C, VDD = 2.35V  
T = 95C, VDD = 2.65V  
T = -40C, VDD = 2.35V  
T = -40C, VDD = 2.65V  
TJ, VDD = 2.35V  
TJ, VDD = 2.65V  
DJ, VDD = 2.35V  
DJ, VDD = 2.65V  
0
5
10  
15  
20  
25  
30  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
Main-Cursor  
Temperature (degrees C)  
C002  
C001  
3. Typical VOD vs FIR Main-Cursor  
4. Typical Output Jitter vs Temperature  
at 25.78125 Gbps  
45  
40  
35  
30  
25  
20  
15  
10  
5
3
2.8  
2.6  
2.4  
2.2  
2
VDD = 2.35V  
VDD = 2.5V  
VDD = 2.65V  
VDD = 2.35V  
VDD = 2.5V  
VDD = 2.65V  
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
0
0.1  
1
10  
100  
0.5  
1
2
4
8
16  
32  
64  
Frequency (MHz)  
Frequency (MHz)  
C003  
C004  
0.1 MHz to 100 MHz  
T = 25°C  
Input Random Jitter = 0.078 UIpp  
0.5 MHz to 100 MHz  
T = 25°C  
Input Random Jitter = 0.078 UIpp  
5. Typical Sinusoidal Input Jitter Tolerance for  
6. Typical Input Jitter Tolerance for  
30-dB Channel at 25.78125 Gbps  
30-dB Channel at 25.78125 Gbps  
16  
版权 © 2016–2019, Texas Instruments Incorporated  
DS250DF410  
www.ti.com.cn  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
8 Detailed Description  
8.1 Overview  
The DS250DF410 is a four-channel multi-rate retimer with integrated signal conditioning. Each of the four  
channels operates independently. Each channel includes a continuous-time linear equalizer (CTLE) and a  
Decision Feedback Equalizer (DFE), which together compensate for the presence of a dispersive transmission  
channel between the source transmitter and the DS250DF410 receiver. The CTLE and DFE are self-adaptive.  
Each channel includes an independent voltage-controlled oscillator (VCO) and phase-locked loop (PLL) which  
produce a clean clock that is frequency-locked to the clock embedded in the input data stream. The high-  
frequency jitter on the incoming data is attenuated by the PLL, producing a clean clock with substantially-reduced  
jitter. This clean clock is used to re-time the incoming data, removing high-frequency jitter from the data stream  
and reproducing the data on the output with significantly-reduced jitter.  
Each channel of the DS250DF410 features an output driver with adjustable differential output voltage and output  
equalization in the form of a three-tap finite impulse response (FIR) filter. The output FIR compensates for  
dispersion in the transmission channel at the output of the DS250DF410.  
Between each group of two adjacent channels (e.g. between channels 0 and 1, 2 and 3) is a full 2x2 cross-point  
switch. This allows multiplexing and de-multiplexing/fanout applications for fail-over redundancy, as well as  
cross-over applications to aid PCB routing.  
Each channel also includes diagnostic features such as a Pseudo Random Bit Sequence (PRBS) pattern  
generator and checker, as well as a non-destructive eye opening monitor (EOM). The EOM can be used to plot  
the post-equalized eye at the input to the decision slicer or simply to read the horizontal eye opening (HEO) and  
vertical eye opening (VEO).  
The DS250DF410 is configurable through a single SMBus port. The DS250DF410 can also act as an SMBus  
master to configure itself from an EEPROM. Up to sixteen DS250DF410 devices can share a single SMBus.  
The sections which follow describe the functionality of various circuits and features within the DS250DF410. For  
more information about how to program or operate these features, consult the DS250DF410 Programming  
Guide.  
8.2 Functional Block Diagram  
One of Four Channels  
To adjacent  
channel  
DFE  
Term  
Raw  
Retimed  
PRBS  
RXnP  
RXnN  
TXnP  
TXnN  
CTLE+VGA  
X-point  
+
Sampler  
TX FIR  
Driver  
PRBS  
Gen  
Signal  
Detect  
Voltage  
Regulator  
Eye  
Monitor  
PRBS  
Checker  
Voltage  
Regulator  
PFD, CDR,  
and Divider  
VCO  
Channel Digital Core  
CAL_CLK_IN  
ADDRn  
Buffer  
CAL_CLK_OUT  
SCL  
SDA  
Power-On  
Reset  
Always-On  
10 MHz  
Shared Digital Core  
READ_EN_N  
EN_SMB  
ALL_DONE_N  
INT_N  
Shared Digital Core  
版权 © 2016–2019, Texas Instruments Incorporated  
17  
DS250DF410  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Device Data Path Operation  
The DS250DF410 data path consists of several key blocks as shown in the functional block diagram. These key  
circuits are:  
Signal Detect  
Continuous Time Linear Equalizer (CTLE)  
Variable Gain Amplifier (VGA)  
Cross-Point Switch  
Decision Feedback Equalizer (DFE)  
Clock and Data Recovery (CDR)  
Calibration Clock  
Differential Driver with FIR Filter  
8.3.2 Signal Detect  
The DS250DF410 receiver contains a signal detect circuit. The signal detect circuit monitors the energy level on  
the receiver inputs and powers on or off the rest of the high-speed data path if a signal is detected or not. By  
default, each channel allows the signal detect circuit to automatically power on or off the rest of the high speed  
data path depending on the presence of an input signal. The signal detect block can be manually controlled in  
the SMBus channel registers. This can be useful if it is desired to manually force channels to be disabled. For  
information on how to manually operate the signal detect circuit refer to the DS250DF410 Programming Guide.  
8.3.3 Continuous Time Linear Equalizer (CTLE)  
The CTLE in the DS250DF410 is a fully-adaptive equalizer. The CTLE adapts according to a Figure of Merit  
(FOM) calculation during the lock acquisition process. The FOM calculation is based upon the horizontal eye  
opening (HEO) and vertical eye opening (VEO). Once the CDR locks and the CTLE adapts, the CTLE boost  
level is frozen until a manual re-adapt command is issued or until the CDR re-enters the lock acquisition state.  
The CTLE can be re-adapted by resetting the CDR.  
The CTLE consists of 4 stages, with each stage having 2-bit boost control. This allows for 256 different boost  
combinations. The CTLE adaption algorithm allows the CTLE to adapt through 16 of these boost combinations.  
These 16 boost combinations comprise the EQ Table in the channel registers. See channel registers 0x40  
through 0x4F. This EQ Table can be reprogrammed to support up to 16 of the 256 boost settings.  
The boost levels can be set between 8 dB and 25 dB (at 12.89 GHz.)  
8.3.4 Variable Gain Amplifier (VGA)  
The DS250DF410 receiver implements a VGA. The VGA assists in the recovery of extremely small signals,  
working in conjunction with the CTLE to equalize and scale amplitude. The VGA has 1-bit control via  
Reg_0x8E[0], and the VGA is in the low-gain state (Reg_0x8E[0]=0) by default. In addition to the VGA, the CTLE  
implements its own gain control via Reg_0x13[5] to adjust the DC amplitude similar to the VGA. For more  
information on how to configure the VGA and EQ gain, refer to the DS250DF410 Programming Guide.  
8.3.5 Cross-Point Switch  
Each group of two adjacent channels in the DS250DF410 has a 2×2 cross-point that may be enabled to  
implement a 2-to-1 mux, a 1-to-2 fanout, or an A-to-B/B-to-A lane cross. A cross-point exists between the  
following channel pairs:  
Channel 0 and Channel 1  
Channel 2 and Channel 3  
18  
版权 © 2016–2019, Texas Instruments Incorporated  
 
 
 
 
DS250DF410  
www.ti.com.cn  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
Feature Description (接下页)  
8.3.6 Decision Feedback Equalizer (DFE)  
A 5-tap DFE can be enabled within the data path of each channel to assist with reducing the effects of crosstalk,  
reflections, or post cursor inter-symbol interference (ISI). The DFE must be manually enabled, regardless of the  
selected adapt mode. Once the DFE has been enabled it can be configured to adapt only during lock acquisition  
or to adapt continuously. The DFE can also be manually configured to specified tap polarities and tap weights.  
However, when the DFE is configured manually the DFE auto-adaption should be disabled. For many  
applications with lower insertion loss (i.e. < 30 dB) lower crosstalk, and/or lower reflections, part or all of the DFE  
can be disabled to reduce power consumption. The DFE can either be fully enabled (taps 1-5), partially enabled  
(taps 1-2 only), or fully disabled (no taps).  
The DFE taps are all feedback taps with 1UI spacing. Each tap has a specified boost weight range and polarity  
bit.  
1. DFE Tap Weights  
DFE PARAMETER  
Tap 1 Weight Range  
Tap 2-5 Weight Range  
Tap Weight Step Size  
DECIMAL (REGISTER VALUE)  
VALUE (mV) (TYP)  
0 - 31  
0 - 15  
NA  
0 – 217  
0 – 105  
7
0: (+) positive; feedback value creates a low-pass filter response, thus providing attenuation to  
correct for negative-sign post-cursor ISI  
Polarity  
1: (-) negative; Feedback value creates a high-pass filter response, thus providing boost to correct  
for positive-sign post-cursor ISI.  
8.3.7 Clock and Data Recovery (CDR)  
The CDR consists of a Phase Locked Loop (PLL), PPM counter, and Input and Output Data Multiplexers (mux)  
allowing for retimed data, un-retimed data, PRBS generator and output muted modes.  
By default, the equalized data is fed into the CDR for clock and data recovery. The recovered data is then output  
to the FIR filter and differential driver together with the recovered clock which has been cleaned of any high-  
frequency jitter outside the bandwidth of the CDR clock recovery loop. The bandwidth of the CDR defaults to 5.5  
MHz (typ) in full-rate (divide-by-1) mode and 5.3 MHz (typ) in sub-rate mode. The CDR bandwidth is adjustable.  
Refer to the DS250DF410 Programming Guide for more information on adjusting the CDR bandwidth. Users can  
configure the CDR data to route the recovered clock and data to the PRBS checker. Users also have the option  
of configuring the output of the CDR to send raw non-retimed data, or data from the pattern generator.  
The CDR requires the following to be properly configured:  
25 MHz calibration clock to run the PPM counter (CAL_CLK_IN).  
Expected data rates must be programmed into the CDR either through the rate table or entered manually with  
the corrected divider settings. Refer to the Programming Guide for more information on configuring the CDR  
for different data rates.  
8.3.8 Calibration Clock  
The calibration clock is not part of the CDR’s PLL and thus is not used for clock and data recovery. The  
calibration clock is connected only to the PPM counter for each CDR. The PPM counter constrains the allowable  
lock ranges of the CDR according to the programmed values in the rate table or the manually entered data rates.  
The host should provide an input calibration clock signal of 25 MHz frequency. Because this clock is not used for  
clock and data recovery, there are no stringent jitter requirements placed on this 25 MHz calibration clock.  
8.3.9 Differential Driver with FIR Filter  
The DS250DF410 output driver has a three-tap finite impulse response (FIR) filter which allows for pre- and post-  
cursor equalization to compensate for a wide variety of output channel media. The filter consists of a weighted  
sum of three consecutive retimed bits as shown in the following diagram. C[0] can take on values in the range [-  
31, +31]. C[-1] and C[+1] can take on values in the range [-15, 15].  
版权 © 2016–2019, Texas Instruments Incorporated  
19  
DS250DF410  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
www.ti.com.cn  
Retimed  
Data  
FIR filter  
output  
x
+
+
1 UI  
Delay  
C[-1]  
Pre-cursor  
x
1 UI  
Delay  
C[0]  
Main-curosr  
x
C[+1]  
Post-cursor  
7. FIR Filter Functional model  
When utilizing the FIR filter, it is important to abide by the following general rules:  
|C[-1]| + |C[0]| + |C[+1]| 31; the FIR tap coefficients absolute sum must be less or equal to 31  
sgn(C[-1]) = sgn(C[+1]) sgn(C[0]), for high-pass filter effect; the sign for the pre-cursor and/or post-cursor  
tap must be different from main-cursor tap to realize boost effect  
sgn(C[-1]) = sgn(C[+1]) = sgn(C[0]), for low-pass filter effect; the sign for the pre-cursor and/or post-cursor tap  
must be equal to the main-cursor tap to realize attenuation effect  
The FIR filter is used to pre-distort the transmitted waveform to compensate for frequency-dependant loss in the  
output channel. The most common way of pre-distorting the signal is to accentuate the transitions and de-  
emphasize the non-transitions. The bit before a transition is accentuated via the pre-cursor tap, and the bit after  
the transition is accentuated via the post-cursor tap. The figures below give a conceptual illustration of how the  
FIR filter affects the output waveform. The following characteristics can be derived from the example waveforms.  
VODpk-pk= v7 - v8  
VODlow-frequency = v2 - v5  
RpredB = 20 * log10 (v3 v2 )  
RpstdB = 20 * log10 (v1 v2 )  
Transmitted  
Bits: 0  
0
1
1
1
1
0
0
0
0
1
0
1
Differential  
Voltage  
v1  
v7  
v2  
v3  
0V  
Time [UI]  
v5  
v6  
v4  
v8  
8. Conceptual FIR Waveform With Post-Cursor Only  
20  
版权 © 2016–2019, Texas Instruments Incorporated  
DS250DF410  
www.ti.com.cn  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
Transmitted  
Bits: 0  
0
1
1
1
1
0
0
0
0
1
0
1
Differential  
Voltage  
v3  
v7  
v1  
v2  
0V  
Time [UI]  
v4  
v5  
v6  
v8  
9. Conceptual FIR Waveform With Pre-Cursor Only  
Transmitted  
Bits: 0  
0
1
1
1
1
0
0
0
0
1
0
1
Differential  
Voltage  
v7  
v1  
v3  
v2  
0V  
Time [UI]  
v5  
v6  
v4  
v8  
10. Conceptual FIR Waveform With Both Pre- and Post-Cursor  
8.3.9.1 Setting the Output VOD, Pre-Cursor, and Post-Cursor Equalization  
The output differential voltage (VOD), pre-cursor, and post-cursor equalization of the driver is controlled by  
manipulating the FIR tap settings. The main cursor tap is the primary knob for amplitude adjustment. The pre-  
and post-cursor FIR tap settings can then be adjusted to provide equalization. To maintain a constant peak-to-  
peak VOD, the user should adjust the main cursor tap value relative to the pre- and post-cursor tap changes so  
as to maintain a constant absolute sum of the FIR tap values. The table below shows various settings for VOD  
settings ranging from 205 mVpp to 1225 mVpp (typical). Note that the output peak-to-peak amplitude is a  
function of the sum of the absolute values of the taps, whereas the low-frequency amplitude is purely a function  
of the main-cursor value.  
版权 © 2016–2019, Texas Instruments Incorporated  
21  
 
DS250DF410  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
www.ti.com.cn  
RPST(dB)  
2. Typical VOD and FIR Values  
FIR SETTINGS  
Peak-to Peak  
RPRE(dB)  
PRE-CURSOR:  
REG_0x3E[6:0]  
MAIN-CURSOR:  
REG_0x3D[6:0]  
POST-CURSOR:  
VOD(V)  
REG_0x3F[6:0]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-1  
-2  
-3  
-4  
0
0
0
0
0.205  
0.260  
0.305  
0.355  
0.395  
0.440  
0.490  
0.525  
0.565  
0.610  
0.650  
0.685  
0.720  
0.760  
0.790  
0.825  
0.860  
0.890  
0.925  
0.960  
0.985  
1.010  
1.040  
1.075  
1.095  
1.125  
1.150  
1.165  
1.190  
1.205  
1.220  
1.225  
0.960  
0.960  
0.960  
0.960  
0.960  
0.960  
0.960  
0.960  
0.960  
0.960  
0.960  
0.960  
0.960  
1.165  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
1.0  
1.6  
2.4  
3.3  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
2.1  
2.5  
3.1  
3.8  
4.7  
5.8  
7.2  
9.0  
11.6  
NA  
NA  
NA  
NA  
1.1  
+1  
+2  
0
+3  
0
+4  
0
+5  
0
+6  
0
+7  
0
+8  
0
+9  
0
+10  
+11  
+12  
+13  
+14  
+15  
+16  
+17  
+18  
+19  
+20  
+21  
+22  
+23  
+24  
+25  
+26  
+27  
+28  
+29  
+30  
+31  
+18  
+17  
+16  
+15  
+14  
+13  
+12  
+11  
+10  
18  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
0
17  
0
16  
0
15  
0
26  
-1  
22  
版权 © 2016–2019, Texas Instruments Incorporated  
DS250DF410  
www.ti.com.cn  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
2. Typical VOD and FIR Values (接下页)  
FIR SETTINGS  
Peak-to Peak  
VOD(V)  
RPRE(dB)  
RPST(dB)  
PRE-CURSOR:  
MAIN-CURSOR:  
REG_0x3D[6:0]  
POST-CURSOR:  
REG_0x3F[6:0]  
REG_0x3E[6:0]  
0
0
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
26  
25  
24  
23  
22  
21  
20  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-10  
-11  
-12  
0
1.165  
1.165  
1.165  
1.165  
1.165  
1.165  
1.165  
1.165  
1.165  
1.165  
1.165  
1.165  
1.165  
1.165  
1.165  
1.165  
1.165  
1.165  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
0.7  
1.2  
1.5  
2.0  
2.6  
3.2  
4.0  
1.3  
1.8  
2.2  
2.7  
3.3  
3.9  
4.7  
5.7  
6.9  
8.4  
10.1  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
0
0
0
0
0
0
0
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
0
0
0
0
0
0
The recommended pre-cursor and post-cursor settings for a given channel will depend on the channel  
characteristics (mainly insertion loss) as well as the equalization capabilities of the downstream receiver. The  
DS250DF410 receiver, with its highly-capable CTLE and DFE, does not require a significant amount of pre- or  
post-cursor. The figures below give general recommendations for pre- and post-cursor for different channel loss  
conditions. The insertion loss (IL) in these plots refers to the total loss between the link partner transmitter and  
the DS250DF410 receiver.  
版权 © 2016–2019, Texas Instruments Incorporated  
23  
DS250DF410  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
www.ti.com.cn  
11. Guideline for Link Partner FIR Settings When IL 15 dB  
12. Guideline for Link Partner FIR Settings When IL 25 dB  
24  
版权 © 2016–2019, Texas Instruments Incorporated  
DS250DF410  
www.ti.com.cn  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
13. Guideline for Link Partner FIR Settings When IL 35 dB  
8.3.9.2 Output Driver Polarity Inversion  
In some applications, it may be necessary to invert the polarity of the data transmitted from the retimer. To invert  
the polarity of the data, read back the FIR polarity settings for the pre, main and post cursor taps and then invert  
these bits.  
8.3.10 Debug Features  
8.3.10.1 Pattern Generator  
Each channel in the DS250DF410 can be configured to generate a 16-bit user-defined data pattern or a pseudo  
random bit sequence (PRBS). The user defined pattern can also be set to automatically invert every other 16-bit  
symbol for DC balancing purposes. The DS250DF410 pattern generator supports the following PRBS  
sequences:  
PRBS – 27 - 1  
PRBS – 29 - 1  
PRBS – 211 - 1  
PRBS – 215 - 1  
PRBS – 223 - 1  
PRBS – 231 - 1  
PRBS – 258 - 1  
PRBS – 263 - 1  
版权 © 2016–2019, Texas Instruments Incorporated  
25  
DS250DF410  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
www.ti.com.cn  
8.3.10.2 Pattern Checker  
The pattern checker can be manually set to look for specific PRBS sequences and polarities or it can be set to  
automatically detect the incoming pattern and polarity. The PRBS checker supports the same set of PRBS  
patterns as the PRBS generator.  
The pattern checker consists of an 11-bit error counter. The pattern checker uses 32- bit words, but every bit in  
the word is checked for error, so the error count represents the count of single bit errors.  
To read out the bit and error counters, the pattern checker must first be frozen. Continuous operation with  
simultaneous read out of the bit and error counters is not supported in this implementation. Once the bit and  
error counter is read, they can be un-frozen to continue counting.  
8.3.10.3 Eye Opening Monitor  
The DS250DF410’s Eye Opening Monitor (EOM) measures the internal data eye at the input of the decision  
slicer and can be used for 2 functions:  
1. Horizontal Eye Opening (HEO) and Vertical Eye Opening (VEO) measurement  
2. Full Eye Diagram Capture  
The HEO measurement is made at the 0V crossing and is read in channel register 0x27. The VEO measurement  
is made at the 0.5 UI mark and is read in channel register 0x28. The HEO and VEO registers can be read from  
channel registers 0x27 and 0x28 at any time while the CDR is locked. The following equations are used to  
convert the contents of channel registers 0x27 and 0x28 into their appropriate units:  
HEO [UI] = Reg_0x27 ÷ 32  
VEO [mV] = Reg_0x28 x 3.125  
A full eye diagram capture can be performed when the CDR is locked. The eye diagram is constructed within a  
64 x 64 array, where each cell in the matrix consists of an 16-bit word representing the total number of hits  
recorded at that particular phase and voltage offset. Users can manually adjust the vertical scaling of the EOM or  
allow the state machine to control the scaling which is the default option. The horizontal scaling controlled by the  
state machine and is always directly proportional to the data rate.  
When a full eye diagram plot is captured, the retimer will shift out four 16-bit words of residual data that should  
be discarded followed by 4096 16-bit words that make up the 64 × 64 eye plot. The first actual word of the eye  
plot from the retimer is for (X, Y) position (0,0), which is the earliest position in time and the most negative  
position in voltage. Each time the eye plot data is read out the voltage position is incremented. Once the voltage  
position has incremented to position 63 (the most positive voltage), the next read will cause the voltage position  
to reset to 0 (the most negative voltage) and the phase position to increment. This process will continue until the  
entire 64 × 64 matrix is read out. 14 below shows the EOM read out sequence overlaid on top of a simple eye  
opening plot. In this plot any hits are shown in green. This type of plot is helpful for quickly visualizing the HEO  
and VEO. Users can apply different algorithms to the output data to plot density or color gradients to the output  
data.  
26  
版权 © 2016–2019, Texas Instruments Incorporated  
DS250DF410  
www.ti.com.cn  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
63  
127  
4095  
63  
0
64  
4032  
63  
Phase Position  
14. EOM Full Eye Capture Readout  
To manually control the EOM vertical range, remove scaling control from the state machine then select the  
desired range:  
Channel Reg 0x2C[6] 0 (see 3).  
3. Eye Opening Monitor Vertical Range Settings  
CH REG 0x11[7:6] VALUE  
EOM VERTICAL RANGE [mV]  
2’b00  
2'b01  
2'b10  
2'b11  
±100  
±200  
±300  
±400  
The EOM operates as an under-sampled circuit. This allows the EOM to be useful in identifying over  
equalization, ringing and other gross signal conditioning issues. However, the EOM cannot be correlated to a bit  
error rate.  
The EOM can be accessed in two ways to read out the entire eye plot:  
Multi-byte reads can be used such that data is repeatedly latched out from channel register 0x25.  
With single byte reads, the MSB are located in register 0x25 and the LSB are located in register 0x26. In this  
mode, the device must be addressed each time a new byte is read.  
To perform a full eye capture with the EOM, follow these steps below within the desired channel register set:  
4. Eye Opening Monitor Full Eye Capture Instructions  
STEP  
REGISTER [bits]  
0x67[5]  
Operation  
Write  
VALUE  
DESCRIPTION  
Disable lock EOM lock monitoring  
Set the desired EOM vertical range  
1
0
0
0x2C[6]  
Write  
2
0x11[7:6]  
Write  
2'b--  
版权 © 2016–2019, Texas Instruments Incorporated  
27  
 
DS250DF410  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
www.ti.com.cn  
4. Eye Opening Monitor Full Eye Capture Instructions (接下页)  
STEP  
REGISTER [bits]  
0x11[5]  
Operation  
Write  
VALUE  
DESCRIPTION  
3
4
0
1
Power on the EOM  
Enable fast EOM  
0x24[7]  
Write  
Begin read out of the 64 x 64 array, discard first 4 words  
Ch reg 0x24[0] is self-clearing.  
0x24[0]  
0x25  
0x26  
5
6
Read  
1
0x25 is the MSB of the 16-bit word  
0x26 is the LSB of the 16-bit word  
0x25  
0x26  
Continue reading information until the 64 x 64 array is  
complete.  
Read  
0x67[5]  
0x2C[6]  
0x11[5]  
0x24[7]  
Write  
Write  
Write  
Write  
1
1
1
0
Return the EOM to its original state. Undo steps 1-4  
7
8.3.11 Interrupt Signals  
The DS250DF410 can be configured to report different events as interrupt signals. These interrupt signals do not  
impact the operation of the device, but merely report that the selected event has occurred. The interrupt bits in  
the register sets are all sticky bits. This means that when an event triggers an interrupt the status bit for that  
interrupt is set to logic HIGH. This interrupt status bit will remain at logic HIGH until the bit has been read. Once  
the bit has been read it will be automatically cleared, which allows for new interrupts to be detected. The  
DS250DF410 will report the occurrence of an interrupt through the INT_N pin. The INT_N pin is an open drain  
output that will pull the line low when an interrupt signal is triggered.  
Note that all available interrupts are disabled by default. Users must activate the various interrupts before they  
can be used.  
The interrupts available in the DS250DF410 are:  
CDR loss of lock  
CDR locked  
Signal detect loss  
Signal detected  
PRBS pattern checker bit error detected  
HEO/VEO threshold violation  
When an interrupt occurs, share register 0x08 reports which channel generated the interrupt request. Users can  
then select the channel(s) that generated the interrupt request and service the interrupt by reading the  
appropriate interrupt status bits in the corresponding channel registers. For more information on reading interrupt  
status, refer to the DS250DF410 Programming Guide.  
8.3.12 JTAG Boundary Scan  
The DS250DF410 supports JTAG and AC-JTAG boundary scan to facilitate in-system manufacturing tests. JTAG  
mode is enabled with the EN_SMB as shown in 5. Refer to the DS250DF410 Product Folder for the boundary  
scan description language (BSDL) file for the DS250DF410.  
5. JTAG Mode pins  
PIN  
INTERNAL PULL-UP /  
PULL-DOWN  
JTAG MODE FUNCTIONALITY  
(EN_SMB = 1 kΩ to GND)  
NAME  
NO.  
F1  
CAL_CLK_IN/JTAG_TDI  
CAL_CLK_OUT/JTAG_TDO  
ADDR1/JTAG_TRS  
Weak pull-up  
None  
JTAG Test Data In (TDI)  
JTAG Test Data Out (TDO)  
JTAG Test Rset (TRS)  
F11  
D1  
Weak pull-up  
None  
TEST0/JTAG_TCK  
D10  
D2  
JTAG Test Clock (TCK)  
TES1/JTAG_TMS  
Weak pull-up  
JTAG Test Mode Select (TMS)  
28  
版权 © 2016–2019, Texas Instruments Incorporated  
 
DS250DF410  
www.ti.com.cn  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
8.4 Device Functional Modes  
8.4.1 Supported Data Rates  
The DS250DF410 supports a wide range of input data rates, including divide-by-2 and divide-by-4 sub-rates. The  
supported data rates are listed in 6. Refer to the DS250DF410 Programming Guide for information on  
configuring the DS250DF410 for different data rates.  
6. Supported Data Rates  
DATA RATE RANGE  
DIVIDER  
CDR MODE  
COMMENT  
MIN  
MAX  
20.6 Gbps  
10.3 Gbps  
> 6.45 Gbps  
5.15 Gbps  
1.25 Gbps  
25.8 Gbps  
12.9 Gbps  
< 10.3 Gbps  
6.45 Gbps  
< 5.15 Gbps  
1
2
Enabled  
Enabled  
Disabled  
Enabled  
Disabled  
N/A  
4
Output jitter will be higher with CDR disabled.  
Output jitter will be higher with CDR disabled.  
N/A  
8.4.2 SMBus Master Mode  
SMBus master mode allows the DS250DF410 to program itself by reading directly from an external EEPROM.  
When using the SMBus master mode, the DS250DF410 will read directly from specific location in the external  
EEPROM. When designing a system for using the external EEPROM, the user needs to follow these specific  
guidelines:  
Maximum EEPROM size is 2048 Bytes  
Minimum EEPROM size for a single DS250DF410 with individual channel configuration is 305 Bytes (3 base  
header bytes + 12 address map bytes + 4 × 72 channel register bytes + 2 share register bytes; bytes are  
defined to be 8-bits)  
Set ENSMB = Float, for SMBus master mode  
The external EEPROM device address byte must be 0xA0  
The external EEPROM device must support 400kHz operation at 2.5-V or 3.3-V supply  
Set the SMBus address of the DS250DF410 by configuring the ADDR0 and ADDR1 pins  
When loading multiple DS250DF410 devices from the same EEPROM, use these guidelines to configure the  
devices:  
Configure the SMBus addresses for each DS250DF410 to be sequential. The first device in the sequence  
must have an address of 0x30  
Daisy chain READ_EN_N and ALL_DONE_N from one device to the next device in the sequence so that they  
do not compete for the EEPROM at the same time.  
If all of the DS250DF410 devices share the same EEPROM channel and share register settings, configure  
the common channel bit in the base header to 1. With common channel configuration enabled, each  
DS250DF410 device will configure all 4 channels with the same settings.  
When loading a single DS250DF410 from an EEPROM, use these guidelines to configure the device:  
Set the common channel bit to 0 to allow for individual channel configuration, or set the common channel bit  
to 1 to load the same configuration settings to all channels.  
When configuring individual channels, a 512, 1024 or 2048 Byte EEPROM must be used.  
If there are more than three DS250DF410 devices on a PCB that require individual channel configuration,  
then each device must have its own EEPROM.  
版权 © 2016–2019, Texas Instruments Incorporated  
29  
 
 
DS250DF410  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
www.ti.com.cn  
8.4.3 Device SMBus Address  
The DS250DF410’s SMBus slave address is strapped at power up using the ADDR[1:0] pins. The pin state is  
read on power up, after the internal power-on reset signal is de-asserted. The ADDR[1:0] pins are four-level  
LVCMOS IOs, which provides for 16 unique SMBus addresses. The four levels are achieved by pin strap options  
as follows:  
0: 1 kto GND  
R: 10 kto GND (20 kΩ also acceptable)  
F: Float  
1: 1 kto VDD  
7. SMBus Address Map  
REQUIRED ADDRESS PIN STRAP VALUE  
8-BIT WRITE ADDRESS [HEX]  
ADDR1  
ADDR0  
0x30  
0x32  
0x34  
0x36  
0x38  
0x3A  
0x3C  
0x3E  
0x40  
0x42  
0x44  
0x46  
0x48  
0x4A  
0x4C  
0x4E  
0
0
0
R
F
1
0
0
R
R
R
R
F
F
F
F
1
0
R
F
1
0
R
F
1
0
1
R
F
1
1
1
8.5 Programming  
8.5.1 Bit Fields in the Register Set  
Many of the registers in the DS250DF410 are divided into bit fields. This allows a single register to serve multiple  
purposes which may be unrelated. Often, configuring the DS250DF410 requires writing a bit field that makes up  
only part of a register value while leaving the remainder of the register value unchanged. The procedure for  
accomplishing this task is to read in the current value of the register to be written, modify only the desired bits in  
this value, and write the modified value back to the register. Of course, if the entire register is to be changed,  
rather than just a bit field within the register, it is not necessary to read in the current value of the register first. In  
all register configuration procedures described in the following sections, this procedure should be kept in mind. In  
some cases, the entire register is to be modified. When only a part of the register is to be changed, however, the  
procedure described above should be used.  
Most register bits can be read or written to. However, some register bits are constrained to specific interface  
instructions.  
Register bits can have the following interface constraints:  
R - Read only  
RW - Read/Write  
RWSC - Read/Write, self-clearing  
30  
版权 © 2016–2019, Texas Instruments Incorporated  
DS250DF410  
www.ti.com.cn  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
Programming (接下页)  
8.5.2 Writing to and Reading from the Global/Shared/Channel Registers  
The DS250DF410 has 3 types of registers:  
1) Global Registers – These registers can be accessed at any time and are used to select individual channel  
registers, the shared registers or to read back the TI ID and version information.  
2) Shared Registers – These registers are used for device-level configuration, status read back or control.  
3) Channel Registers – These registers are used to control and configure specific features for each individual  
channel. All channels have the same channel register set and can be configured independent of each other.  
The global registers can be accessed at any time, regardless of whether the shared or channel register set is  
selected. The DS250DF410 global registers are located on addresses 0xEF-0xFF. The function of the global  
registers falls into the following categories:  
Channel selection and share enabling – Registers 0xFC and 0xFF  
Device and version information – Registers 0xEF-0xF3  
Reserved/unused registers – all other addresses  
Register 0xFC is used to select the channel registers to be written to. To select a channel, write a 1 to its  
corresponding bit in register 0xFC. Note that more than one channel may be written to by setting multiple bits in  
register 0xFC. However, when performing an SMBus read transaction only one channel can be selected at a  
time. If multiple channels are selected in register 0xFC when attempting to perform an SMBus read, the device  
will return 0xFF.  
Register 0xFF bit 1 can be used to perform broadcast register writes to all channels. A single channel read-  
modify broadcast write type commands can be accomplished by setting register 0xFF to 0x03 and selecting a  
single channel in register 0xFC. This type of configuration allows for the reading of a single channel's register  
information and then writing to all channels with the modified value. Register 0xFF bit 0 is used to select the  
shared register page or the channel register page for the channels selected in register 0xFC.  
TI repeaters/retimers have a vendor ID register (0xFE) which will always read back 0x03. In addition, there are  
three device ID registers (0xF0, 0xF1, and 0xF3). These are useful to verify that there is a good SMBus  
connection between the SMBus master and the DS250DF410.  
版权 © 2016–2019, Texas Instruments Incorporated  
31  
DS250DF410  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
www.ti.com.cn  
8.6 Register Maps  
Table 8. Global Registers  
DEFAULT  
ADDRESS  
(HEX)  
BITS  
VALUE  
(HEX)  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
EF  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
0
0
0
0
1
1
1
0
0
0
1
1
0
0
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
R
R
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
SPARE  
SPARE  
SPARE  
SPARE  
R
R
R
CHAN_CONFIG_ID[3]  
CHAN_CONFIG_ID[2]  
CHAN_CONFIG_ID[1]  
CHAN_CONFIG_ID[0]  
VERSION[7]  
TI device ID (Quad count).  
DS250DF810: 0x0C  
DS250DF410: 0x0E  
R
R
R
F0  
F1  
F3  
FB  
FC  
R
Version ID  
R
VERSION[6]  
R
VERSION[5]  
R
VERSION[4]  
R
VERSION[3]  
R
VERSION[2]  
R
VERSION[1]  
R
VERSION[0]  
R
DEVICE_ID[7]  
DEVICE_ID[6]  
DEVICE_ID[5]  
DEVICE_ID[4]  
DEVICE_ID[3]  
DEVICE_ID[2]  
DEVICE_ID[1]  
DEVICE_ID[0]  
CHAN_VERSION[3]  
CHAN_VERSION[2]  
CHAN_VERSION[1]  
CHAN_VERSION[0]  
SHARE_VERSION[3]  
SHARE_VERSION[2]  
SHARE_VERSION[1]  
SHARE_VERSION[0]  
RESERVED  
Full device ID  
R
R
R
R
R
R
R
R
Digital Channel Version  
Digital Share Version  
R
R
R
R
R
R
R
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
EN_CH7  
Select channel 7 (DS250DF810 only)  
Select channel 6 (DS250DF810 only)  
Select channel 5 (DS250DF810 only)  
Select channel 4 (DS250DF810 only)  
EN_CH6  
EN_CH5  
EN_CH4  
32  
Copyright © 2016–2019, Texas Instruments Incorporated  
DS250DF410  
www.ti.com.cn  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
Register Maps (continued)  
Table 8. Global Registers (continued)  
DEFAULT  
ADDRESS  
(HEX)  
BITS  
VALUE  
(HEX)  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
Select channel 3  
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
EN_CH3  
EN_CH2  
EN_CH1  
EN_CH0  
Select channel 2  
Select channel 1  
Select channel 0  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
TI vendor ID  
FD  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
FE  
VENDOR_ID[7]  
VENDOR_ID[6]  
VENDOR_ID[5]  
VENDOR_ID[4]  
VENDOR_ID[3]  
VENDOR_ID[2]  
VENDOR_ID[1]  
VENDOR_ID[0]  
RESERVED  
R
R
R
R
R
R
R
FF  
RW  
RW  
RESERVED  
RESERVED  
RESERVED  
EN_SHARE_Q1  
Select shared registers for quad 1  
(DS250DF810 only)  
5
1
RW  
N
4
3
2
0
0
0
RW  
RW  
RW  
N
N
N
EN_SHARE_Q0  
RESERVED  
Select shared registers for quad 0  
RESERVED  
RESERVED  
RESERVED  
WRITE_ALL_CH  
Allows user to write to all channels as  
if they are the same, but only allows  
read back from the channel specified  
in 0xFC.  
1
0
0
0
RW  
RW  
N
N
Note: EN_CH_SMB must be = 1 or  
else this function is invalid.  
EN_CH_SMB  
1: Enables SMBUS access to the  
channels specified in Reg_0xFC  
0: The shared registers are selected  
Copyright © 2016–2019, Texas Instruments Incorporated  
33  
DS250DF410  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
www.ti.com.cn  
Table 9. Shared Registers  
DEFAULT  
ADDRESS  
(HEX)  
FIELD  
BITS  
VALUE  
(HEX)  
MODE  
EEPROM  
NAME  
DESCRIPTION  
SMBus Address  
00  
7
6
1
R
R
N
N
SMBUS_ADDR[3]  
SMBUS_ADDR[2]  
Strapped 7-bit addres is 0x18 +  
SMBus_Addr[3:0]  
1
5
4
0
0
0
1
0
1
1
0
0
0
1
0
0
0
R
R
N
N
N
N
N
N
N
N
N
N
N
N
N
N
SMBUS_ADDR[1]  
SMBUS_ADDR[0]  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RST_I2C_REGS  
3:0  
7
R
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
01  
R
6
R
5
R
4
R
3
R
2
R
1
R
0
R
02  
03  
04  
7:0  
7:0  
7
RW  
RW  
RW  
1: Reset shared registers. This bit is  
self-clearing.  
6
0
RWSC  
N
0: Normal operation  
RST_I2C_MAS  
1: Reset for SMBus/I2C Master. This  
bit is self-clearing.  
5
4
0
0
RWSC  
RW  
N
N
0: Normal operation  
FRC_EEPRM_RD  
1: Force EEPROM Configuration  
0: Normal operation  
3
2
1
0
1
0
0
1
RW  
RW  
RW  
RW  
Y
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
05  
DISAB_EEPRM_CFG  
1: Disable Master Mode EEPROM  
configuration (if not started; this bit is  
not effective if EEPROM configuration  
is already started)  
7
0
RW  
N
0: Normal operation  
6:5  
4
0
1
RW  
R
N
N
RESERVED  
RESERVED  
EEPROM_READ_DONE  
1: SMBus Master mode EEPROM  
read complete  
0: SMBus Master mode EEPROM  
read not started or not complete  
TEST0_AS_CAL_CLK_IN  
CAL_CLK_INV_DIS  
1: Use TEST0 as the input for the  
25MHz CAL_CLK instead of  
CAL_CLK_IN. This must be configured  
for quad0 only.  
0: Normal operation. Use  
CAL_CLK_IN as the input for the  
25MHz CAL_CLK.  
3
0
RW  
N
1: Disable the inversion of  
CAL_CLK_OUT  
2
0
RW  
Y
0: Normal operation. CAL_CLK_OUT  
is inverted with respect to  
CAL_CLK_IN.  
1
0
0
1
RW  
RW  
Y
Y
RESERVED  
RESERVED  
RESERVED  
RESERVED  
34  
Copyright © 2016–2019, Texas Instruments Incorporated  
DS250DF410  
www.ti.com.cn  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
Table 9. Shared Registers (continued)  
DEFAULT  
VALUE  
(HEX)  
ADDRESS  
(HEX)  
FIELD  
NAME  
BITS  
MODE  
EEPROM  
DESCRIPTION  
06  
08  
7:0  
7
0
0
0
0
0
RW  
R
N
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
INT_Q0C3  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
6
R
5
R
4
R
Interrupt from channel 3. For  
DS250DF810, this applies to the quad  
selected by Reg_0xFF[5:4].  
3
2
1
0
0
0
R
R
R
N
N
N
INT_Q0C2  
INT_Q0C1  
INT_Q0C0  
RESERVED  
Interrupt from channel 2. For  
DS250DF810, this applies to the quad  
selected by Reg_0xFF[5:4].  
Interrupt from channel 1. For  
DS250DF810, this applies to the quad  
selected by Reg_0xFF[5:4].  
Interrupt from channel 0. For  
DS250DF810, this applies to the quad  
selected by Reg_0xFF[5:4].  
0
0
0
R
R
N
Y
0A  
0B  
7:1  
RESERVED  
DIS_REFCLK_OUT  
1: Disable CAL_CLK_OUT (high-Z)  
0
0
RW  
Y
0: Normal operation. Enable  
CAL_CLK_OUT  
7
6
0
0
RW  
R
N
N
RESERVED  
RESERVED  
REFCLK_DET  
1: 25MHz clock detected on  
CAL_CLK_IN  
0: No clock detected on CAL_CLK_IN  
5
4
0
0
RW  
RW  
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
MR_REFCLK_DET_DIS  
0: CAL_CLK_IN detection and status  
reporting enabled (default)  
3
0
RW  
N
1: CAL_CLK_IN detection disabled  
2
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
RW  
RW  
RW  
RW  
R
N
N
N
N
N
N
N
N
N
N
N
N
Y
Y
Y
Y
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
EECFG_CMPLT  
EECFG_FAIL  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
0
0C  
0D  
0E  
7:0  
7:0  
7:2  
1:0  
7:0  
7
RW  
R
0F  
10  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
6
5
4
3
2
1
0
11  
7
11: Not valid  
10: EEPROM load completed  
successfully  
01: EEPROM load failed after 64  
attempts  
6
0
R
N
00: EEPROM load in progress  
Copyright © 2016–2019, Texas Instruments Incorporated  
35  
DS250DF410  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
www.ti.com.cn  
Table 9. Shared Registers (continued)  
DEFAULT  
VALUE  
(HEX)  
ADDRESS  
(HEX)  
FIELD  
NAME  
BITS  
MODE  
EEPROM  
DESCRIPTION  
5
4
3
2
1
0
0
0
0
0
0
0
R
R
R
R
R
R
N
N
N
N
N
N
EECFG_ATMPT[5]  
EECFG_ATMPT[4]  
EECFG_ATMPT[3]  
EECFG_ATMPT[2]  
EECFG_ATMPT[1]  
EECFG_ATMPT[0]  
REG_I2C_FAST  
Number of attempts made to load  
EEPROM image  
12  
1: EEPROM load uses Fast I2C Mode  
(400 kHz)  
7
1
RW  
N
0: EEPROM load uses Standard I2C  
Mode (100 kHz)  
6
5
4
3
2
1
0
0
0
1
0
0
0
1
RW  
RW  
RW  
RW  
RW  
RW  
RW  
N
N
N
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
36  
版权 © 2016–2019, Texas Instruments Incorporated  
DS250DF410  
www.ti.com.cn  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
Table 10. Channel Registers, 0 to 39  
DEFAULT  
VALUE  
(HEX)  
ADDRESS  
(HEX)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
00  
7
6
5
4
3
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
N
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RST_CORE  
1: Reset the 10M core clock domain.  
This is the main clock domain for all  
the state machines  
0: Normal operation  
2
1
0
0
0
0
RW  
RW  
RW  
N
N
N
RST_REGS  
RST_VCO  
1: Reset channel registers to power-up  
defaults.  
0: Normal operation  
1: Resets the CDR S2P clock domain,  
includes PPM counter, EOM counter.  
0: Normal operation  
RST_REFCLK  
1: Resets the 25MHz reference clock  
domain, includes PPM counter. Does  
not work if 25MHz clock is not present.  
0: Normal operation  
01  
7
6
0
0
R
R
N
N
SIGDET  
Raw Signal Detect observation  
POL_INV_DET  
Indicates PRBS checker detected  
polarity inversion in the locked data  
sequence.  
5
4
0
0
R
R
N
N
CDR_LOCK_LOSS_INT  
PRBS_SEQ_DET[3]  
1: Indicates loss of CDR lock after  
having acquired it. Bit clears on read.  
Feature must be enabled with  
Reg_0x31[1]  
Indicates the pattern detected on the  
input serial stream  
0xxx: No detect  
3
2
1
0
0
0
R
R
R
N
N
N
PRBS_SEQ_DET[2]  
PRBS_SEQ_DET[1]  
PRBS_SEQ_DET[0]  
1000: 7 bits PRBS sequence  
1001: 9 bits PRBS sequence  
1010: 11 bits PRBS sequence  
1011: 15 bits PRBS sequence  
1100: 23 bits PRBS sequence  
1101: 31 bits PRBS sequence  
1110: 58 bits PRBS sequence  
1111: 63 bits PRBS sequence  
0
7
0
0
R
R
N
N
SIG_DET_LOSS_INT  
CDR_STATUS[7]  
Loss of signal indicator, set once  
signal is acquired and then lost. Clears  
on read. Feature must be enabled with  
reg_31[0]  
02  
This register is used to read the status  
of internal signal.  
Select what is observable on this bus  
using Reg_0x0C[7:4]  
6
5
4
3
2
1
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
N
N
N
N
N
N
N
CDR_STATUS[6]  
CDR_STATUS[5]  
CDR_STATUS[4]  
CDR_STATUS[3]  
CDR_STATUS[2]  
CDR_STATUS[1]  
CDR_STATUS[0]  
Copyright © 2016–2019, Texas Instruments Incorporated  
37  
DS250DF410  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
www.ti.com.cn  
Table 10. Channel Registers, 0 to 39 (continued)  
DEFAULT  
VALUE  
(HEX)  
ADDRESS  
(HEX)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
03  
04  
05  
06  
07  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
EQ_BST0[1]  
This register can be used to force an  
EQ boost setting if used in conjunction  
with channel Reg_0x2D[3].  
EQ_BST0[0]  
EQ_BST1[1]  
EQ_BST1[0]  
EQ_BST2[1]  
EQ_BST2[0]  
EQ_BST3[1]  
EQ_BST3[0]  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
38  
Copyright © 2016–2019, Texas Instruments Incorporated  
DS250DF410  
www.ti.com.cn  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
Table 10. Channel Registers, 0 to 39 (continued)  
DEFAULT  
VALUE  
(HEX)  
ADDRESS  
(HEX)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
08  
7
6
5
4
3
2
1
0
7
0
1
1
1
0
0
1
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
Y
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
REG_VCO_CAP_OV  
09  
Enable bit to override cap_cnt with  
value in Reg_0x0B[4:0]  
6
0
RW  
Y
REG_SET_CP_LVL_LPF_OV  
Enable bit to override lpf_dac_val with  
value in Reg_0x1F[4:0]  
5
4
0
0
RW  
RW  
Y
Y
REG_BYPASS_PFD_OV  
0: Normal operation.  
REG_EN_FD_PD_VCO_PDIQ_ Enable bit to override en_fd, pd_pd,  
OV  
pd_vco, pd_pdiq with Reg_0x1E[0],  
Reg_0x1E[2], Reg_0x1C[0],  
Reg_0x1C[1]  
3
2
0
0
RW  
RW  
Y
Y
REG_EN_PD_CP_OV  
REG_DIVSEL_OV  
Enable bit to override pd_fd_cp and  
pd_pd_cp with value in Reg_0x1B[1:0]  
Enable bit to override divsel with value  
in Reg_0x18[6:4]  
1
0
7
6
0
0
0
0
RW  
RW  
RW  
RW  
Y
Y
Y
Y
RESERVED  
RESERVED  
RESERVED  
RESERVED  
0A  
RESERVED  
RESERVED  
REG_EN_IDAC_PD_CP_OV_  
Enable bit to override phase detector  
AND_REG_EN_IDAC_FD_CP_ charge pump settings with  
OV  
Reg_0x1C[7:5]  
Enable bit to override frequency  
detector charge pump settings with  
Reg_0x1C[4:2]  
5
0
RW  
Y
REG_DAC_LPF_HIGH_PHASE_ Enable bit to loop filter comparator trip  
OV_  
voltages with Reg_0x16[7:0]  
AND_REG_DAC_LPF_LOW_PH  
ASE_OV  
4
3
0
0
RW  
RW  
Y
N
RESERVED  
RESERVED  
REG_CDR_RESET_OV  
Enable CDR Reset override with  
Reg_0x0A[2]  
2
1
0
0
RW  
RW  
N
N
REG_CDR_RESET_SM  
REG_CDR_LOCK_OV  
CDR Reset override bit  
Enable CDR lock signal override with  
Reg_0x0A[0]  
0
7
6
5
4
3
2
1
0
0
0
1
1
0
0
0
1
1
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
N
Y
Y
Y
Y
Y
Y
Y
Y
REG_CDR_LOCK  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
CDR lock signal override bit  
RESERVED  
0B  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
Copyright © 2016–2019, Texas Instruments Incorporated  
39  
DS250DF410  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
www.ti.com.cn  
Table 10. Channel Registers, 0 to 39 (continued)  
DEFAULT  
VALUE  
(HEX)  
ADDRESS  
(HEX)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
0C  
7
6
5
4
3
2
1
0
7
0
0
0
0
0
0
0
0
1
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
N
N
N
N
N
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
DES_PD  
0D  
1: De-serializer (for PRBS checker) is  
powered down  
0: De-serializer (for PRBS checker) is  
enabled  
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
1
0
0
1
0
0
1
1
0
1
1
0
1
0
0
1
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
N
Y
Y
Y
Y
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
0E  
0F  
10  
40  
Copyright © 2016–2019, Texas Instruments Incorporated  
DS250DF410  
www.ti.com.cn  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
Table 10. Channel Registers, 0 to 39 (continued)  
DEFAULT  
VALUE  
(HEX)  
ADDRESS  
(HEX)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
11  
7
6
0
0
RW  
RW  
Y
Y
EOM_SEL_VRANGE[1]  
EOM_SEL_VRANGE[0]  
Manually set the EOM vertical range,  
used with channel Reg_0x2C[6]:  
00: ±100 mV  
01: ±200 mV  
10: ±300 mV  
11: ±400 mV  
5
1
RW  
Y
EOM_PD  
1: Normal operation. Eye opening  
monitor (EOM) is automatically duty-  
cycled.  
0: EOM is force-enabled  
4
3
0
0
RW  
RW  
N
Y
RESERVED  
RESERVED  
DFE_TAP2_POL  
Bit forces DFE tap 2 polarity  
1: Negative, boosts by the specified  
tap weight  
0: Positive, attenuates by the specified  
tap weight  
2
1
0
7
0
0
0
1
RW  
RW  
RW  
RW  
Y
Y
Y
Y
DFE_TAP3_POL  
DFE_TAP4_POL  
DFE_TAP5_POL  
DFE_TAP1_POL  
Bit forces DFE tap 3 polarity  
1: Negative, boosts by the specified  
tap weight  
0: Positive, attenuates by the specified  
tap weight  
Bit forces DFE tap 4 polarity  
1: Negative, boosts by the specified  
tap weight  
0: Positive, attenuates by the specified  
tap weight  
Bit forces DFE tap 5 polarity  
1: Negative, boosts by the specified  
tap weight  
0: Positive, attenuates by the specified  
tap weight  
12  
Bit forces DFE tap 1 polarity  
1: Negative, boosts by the specified  
tap weight  
0: Positive, attenuates by the specified  
tap weight  
6
5
4
3
2
1
0
0
0
0
0
0
1
1
RW  
RW  
RW  
RW  
RW  
RW  
RW  
N
Y
Y
Y
Y
Y
Y
RESERVED  
RESERVED  
DFE_WT1[4]  
DFE_WT1[3]  
DFE_WT1[2]  
DFE_WT1[1]  
DFE_WT1[0]  
RESERVED  
RESERVED  
These bits force DFE tap 1 weight.  
Manual DFE operation is required for  
this to take effect by setting  
Reg_0x15[7]=1.  
If Reg_0x15[7]=0, the value defined  
here is used as the initial DFE tap 1  
weight during adaptation.  
Copyright © 2016–2019, Texas Instruments Incorporated  
41  
DS250DF410  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
www.ti.com.cn  
Table 10. Channel Registers, 0 to 39 (continued)  
DEFAULT  
VALUE  
(HEX)  
ADDRESS  
(HEX)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
13  
7
1
0
1
RW  
N
EQ_PD_PEAKDETECT  
1: Normal operation. Power down test  
mode.  
0: Test mode.  
6
5
RW  
RW  
Y
Y
EQ_PD_SD  
1: Power down signal detect.  
0: Normal operation. Enable signal  
detect.  
EQ_HI_GAIN  
1: Enable high DC gain mode in the  
equalizer  
0: Enable low DC gain mode in the  
equalizer  
(Refer to the Programming Guide for  
more details)  
4
1
RW  
Y
EQ_EN_DC_OFF  
1: Normal operation.  
0: Disable DC offset compensation.  
3
2
0
0
RW  
RW  
Y
Y
RESERVED  
RESERVED  
EQ_LIMIT_EN  
1: Configures the final stage of the  
equalizer to be a limiting stage.  
0: Normal operation, final stage of the  
equalizer is configured to be a non-  
limiting stage.  
1
0
7
0
0
0
RW  
RW  
RW  
Y
Y
Y
RESERVED  
RESERVED  
RESERVED  
RESERVED  
14  
EQ_SD_PRESET  
1: Forces signal detect HIGH, and  
force enables the channel. Should not  
be set if bit 6 is set.  
0: Normal Operation.  
6
0
RW  
Y
EQ_SD_RESET  
1: Forces signal detect LOW and force  
disables the channel. Should not be  
set if bit 7 is set.  
0: Normal Operation.  
5
4
0
0
RW  
RW  
Y
Y
EQ_REFA_SEL1  
EQ_REFA_SEL0  
Controls the signal detect assert  
levels.  
(Refer to the Programming Guide for  
more details)  
3
2
0
1
RW  
RW  
Y
Y
EQ_REFD_SEL1  
EQ_REFD_SEL0  
Controls the signal detect de-assert  
levels.  
(Refer to the Programming Guide for  
more details)  
1
0
7
0
0
0
RW  
RW  
RW  
N
N
Y
RESERVED  
RESERVED  
RESERVED  
RESERVED  
15  
DFE_FORCE_EN  
1: Enables manual DFE tap settings  
0: Normal operation  
6
5
4
3
0
0
1
0
RW  
RW  
RW  
RW  
N
N
Y
Y
RESERVED  
RESERVED  
RESERVED  
DRV_PD  
RESERVED  
RESERVED  
RESERVED  
1: Powers down the high speed driver  
0: Normal operation  
2
1
0
0
0
0
RW  
RW  
RW  
Y
Y
Y
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
42  
Copyright © 2016–2019, Texas Instruments Incorporated  
DS250DF410  
www.ti.com.cn  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
Table 10. Channel Registers, 0 to 39 (continued)  
DEFAULT  
VALUE  
(HEX)  
ADDRESS  
(HEX)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
16  
17  
18  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
0
1
1
1
1
0
1
0
0
0
1
1
0
1
1
0
0
1
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
Y
Y
Y
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
PDIQ_SEL_DIV[2]  
PDIQ_SEL_DIV[1]  
PDIQ_SEL_DIV[0]  
These bits will force the divider setting  
if 0x09[2] is set.  
000: Divide by 1  
001: Divide by 2  
010: Divide by 4  
011: Divide by 8  
100: Divide by 16  
All other values are reserved.  
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
1
1
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
N
Y
N
N
N
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
19  
1A  
Copyright © 2016–2019, Texas Instruments Incorporated  
43  
DS250DF410  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
www.ti.com.cn  
Table 10. Channel Registers, 0 to 39 (continued)  
DEFAULT  
VALUE  
(HEX)  
ADDRESS  
(HEX)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
1B  
7
6
5
4
3
2
1
0
0
0
0
0
0
1
RW  
RW  
RW  
RW  
RW  
RW  
RW  
N
N
N
N
N
N
Y
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
CP_EN_CP_PD  
1: Normal operation, phase detector  
charge pump enabled  
0
1
RW  
Y
CP_EN_CP_FD  
1: Normal operation, frequency  
detector charge pump enabled  
1C  
1D  
1E  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
N
N
N
N
N
N
N
N
Y
Y
Y
EN_IDAC_PD_CP2  
EN_IDAC_PD_CP1  
EN_IDAC_PD_CP0  
EN_IDAC_FD_CP2  
EN_IDAC_FD_CP1  
EN_IDAC_FD_CP0  
RESERVED  
Phase detector charge pump setting.  
Override bit required for these bits to  
take effect  
Frequency detector charge pump  
setting. Override bit required for these  
bits to take effect  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
PFD_SEL_DATA_PRELCK[2]  
PFD_SEL_DATA_PRELCK[1]  
PFD_SEL_DATA_PRELCK[0]  
Output mode for when the CDR is not  
locked. For these values to take effect,  
Reg_0x09[5] must be set to 0, which is  
the default.  
000: Raw Data  
111: Mute (Default)  
All other values are reserved. (Refer to  
the Programming Guide for more  
details)  
4
3
0
1
RW  
RW  
N
Y
SER_EN  
DFE_PD  
1: Enable serializer (used for PRBS  
Generator)  
0: Normal operation. Disable serializer.  
This bit must be cleared for the DFE to  
be functional in any adapt mode.  
1: (Default) DFE disabled.  
0: DFE enabled  
2
1
0
0
0
1
RW  
RW  
RW  
Y
Y
Y
PFD_PD_PD  
1: Power down PFD phase detector.  
0: Normal operation. Enable PFD  
phase detector.  
EN_PARTIAL_DFE  
PFD_EN_FD  
1: Enable DFE taps 3-5. DFE_PD  
must also be set to 0.  
0: (Default) Disable DFE taps 3-5.  
1: Normal operation. Enable PFD  
frequency detector.  
0: Disable PFD frequency detector.  
44  
Copyright © 2016–2019, Texas Instruments Incorporated  
DS250DF410  
www.ti.com.cn  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
Table 10. Channel Registers, 0 to 39 (continued)  
DEFAULT  
VALUE  
(HEX)  
ADDRESS  
(HEX)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
1F  
7
6
5
4
3
0
0
0
0
1
RW  
RW  
RW  
RW  
RW  
N
N
N
Y
Y
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
MR_LPF_AUTO_ADJST_EN  
1: Normal operation. Allow LPF to tune  
to optimum value during fast-cap  
search routine.  
0: Otherwise LPF value is determined  
by the Reg_0x9D.  
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
RESERVED  
RESERVED  
RESERVED  
DFE_WT5[3]  
DFE_WT5[2]  
DFE_WT5[1]  
DFE_WT5[0]  
DFE_WT4[3]  
DFE_WT4[2]  
DFE_WT4[1]  
DFE_WT4[0]  
DFE_WT3[3]  
DFE_WT3[2]  
DFE_WT3[1]  
DFE_WT3[0]  
DFE_WT2[3]  
DFE_WT2[2]  
DFE_WT2[1]  
DFE_WT2[0]  
EOM_OV  
RESERVED  
RESERVED  
RESERVED  
20  
21  
22  
Bits force DFE tap 5 weight, manual  
DFE operation required to take effect  
by setting 0x15[7]=1.  
Bits force DFE tap 4 weight, manual  
DFE operation required to take effect  
by setting 0x15[7]=1.  
Bits force DFE tap 3 weight, manual  
DFE operation required to take effect  
by setting 0x15[7]=1.  
Bits force DFE tap 2 weight, manual  
DFE operation required to take effect  
by setting 0x15[7]=1.  
1: Override enable for EOM manual  
control  
0: Normal operation  
6
0
RW  
N
EOM_SEL_RATE_OV  
1: Override enable for EOM rate  
selection  
0: Normal operation  
5
4
3
2
1
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
N
N
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
Copyright © 2016–2019, Texas Instruments Incorporated  
45  
DS250DF410  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
www.ti.com.cn  
Table 10. Channel Registers, 0 to 39 (continued)  
DEFAULT  
VALUE  
(HEX)  
ADDRESS  
(HEX)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
23  
7
0
RW  
N
EOM_GET_HEO_VEO_OV  
1: Override enable for manual control  
of the HEO/VEO trigger  
0: Normal operation  
6
1
RW  
Y
DFE_OV  
1: Normal operation; DFE must be  
enabled in Reg_0x1E[3].  
5
4
3
2
1
0
7
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
N
N
N
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
FAST_EOM  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
24  
1: Enables fast EOM for full eye  
capture. In this mode the phase DAC  
and voltage DAC or the EOM are  
automatically incremented through a  
64 x 64 matrix. Values for each point  
are stored in Reg_0x25 and  
Reg_0x26.  
0: Normal operation.  
6
5
0
0
R
R
N
N
DFE_EQ_ERROR_NO_LOCK  
DFE/CTLE SM quit due to loss of lock  
GET_HEO_VEO_ERROR_NO_ get_heo_veo sees no hits at zero  
HITS crossing  
4
0
R
N
GET_HEO_VEO_ERROR_NO_ get_heo_veo cannot see a vertical eye  
OPENING  
opening  
3
2
0
0
RW  
N
N
RESERVED  
DFE_ADAPT  
RESERVED  
RWSC  
1: Manually start DFE adaption (self-  
clearing).  
0: Normal operation.  
1
0
R
N
EOM_GET_HEO_VEO  
1: Manually triggers HEO/VEO  
measurement; feature must be  
enabled with Reg_0x23[7]; the  
HEO/VEO values are read from  
Reg_0x27, Reg_0x28  
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RWSC  
R
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
EOM_START  
1: Starts EOM counter, self-clearing  
MSBs of EOM counter  
25  
EOM_COUNT15  
EOM_COUNT14  
EOM_COUNT13  
EOM_COUNT12  
EOM_COUNT11  
EOM_COUNT10  
EOM_COUNT9  
EOM_COUNT8  
EOM_COUNT7  
EOM_COUNT6  
EOM_COUNT5  
EOM_COUNT4  
EOM_COUNT3  
EOM_COUNT2  
EOM_COUNT1  
EOM_COUNT0  
R
R
R
R
R
R
R
26  
R
LSBs of EOM counter  
R
R
R
R
R
R
R
46  
Copyright © 2016–2019, Texas Instruments Incorporated  
DS250DF410  
www.ti.com.cn  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
Table 10. Channel Registers, 0 to 39 (continued)  
DEFAULT  
VALUE  
(HEX)  
ADDRESS  
(HEX)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
27  
28  
29  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
HEO7  
HEO6  
HEO5  
HEO4  
HEO3  
HEO2  
HEO1  
HEO0  
VEO7  
VEO6  
VEO5  
VEO4  
VEO3  
VEO2  
VEO1  
VEO0  
HEO value, requires CDR to be locked  
for valid measurement  
R
R
R
R
R
R
R
VEO value, requires CDR to be locked  
for valid measurement  
R
R
R
R
R
R
R
RW  
R
RESERVED  
RESERVED  
EOM_VRANGE_SETTING[1]  
EOM_VRANGE_SETTING[0]  
Read the currently set Eye Monitor  
Voltage Range:  
11 - +/-400mV  
R
10 - +/- 300mV  
01 - +/- 200mV  
00 - +/- 100mV"  
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
1
0
1
1
0
1
0
RW  
RW  
RW  
R
N
N
N
N
N
Y
Y
Y
Y
Y
Y
Y
Y
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
VEO[8]  
VEO MSB value  
HEO MSB value  
R
HEO[8]  
2A  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
EOM_TIMER_THR[3]  
EOM_TIMER_THR[2]  
EOM_TIMER_THR[1]  
EOM_TIMER_THR[0]  
VEO_MIN_REQ_HITS[3]  
VEO_MIN_REQ_HITS[2]  
VEO_MIN_REQ_HITS[1]  
VEO_MIN_REQ_HITS[0]  
The value of EOM_TIMER_THR[7:4]  
controls the amount of time the Eye  
Monitor samples each point in the eye.  
(Refer to the Programming Guide for  
more details)  
Whenever the Eye Monitor is used to  
measure HEO and VEO, the data is  
sampled for some number of bits, set  
by Reg_0x2A[7:4]. This register sets  
the number of hits within that sample  
size that is required before the EOM  
will indicate a hit has occurred. This  
filtering only affects the VEO  
measurement.  
Copyright © 2016–2019, Texas Instruments Incorporated  
47  
DS250DF410  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
www.ti.com.cn  
Table 10. Channel Registers, 0 to 39 (continued)  
DEFAULT  
VALUE  
(HEX)  
ADDRESS  
(HEX)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
2B  
7
6
5
4
3
2
1
0
0
0
0
0
1
0
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
N
N
Y
Y
Y
Y
Y
Y
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
EOM_MIN_REQ_HITS[3]  
EOM_MIN_REQ_HITS[2]  
EOM_MIN_REQ_HITS[1]  
EOM_MIN_REQ_HITS[0]  
Whenever the Eye Monitor is used to  
measure HEO and VEO, the data is  
sampled for some number of bits, set  
by Reg_0x2A[7:4]. This register sets  
the number of hits within that sample  
size that is required before the EOM  
will indicate a hit has occurred. This  
filtering only affects the HEO  
measurement.  
2C  
7
6
1
1
RW  
RW  
N
Y
RELOAD_DFE_TAPS  
VEO_SCALE  
Causes DFE taps to load from last  
adapted values  
1: Normal operation. Scale VEO  
based on EOM vrange.  
5
4
1
1
RW  
RW  
Y
Y
DFE_SM_FOM1  
DFE_SM_FOM0  
This register defines the Figure of  
Merit used when adapting the DFE:  
00: not valid  
01: SM uses only HEO  
10: SM uses only VEO  
11: SM uses both HEO and VEO  
Additionally, if Reg_0x6E[6] is set to  
'1', the Alternate FOM is used. This bit  
takes precedence over DFE_SM_FOM  
3
2
1
0
7
6
5
4
3
0
1
1
0
0
0
1
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
Y
DFE_ADAPT_COUNTER[3]  
DFE_ADAPT_COUNTER[2]  
DFE_ADAPT_COUNTER[1]  
DFE_ADAPT_COUNTER[0]  
RESERVED  
DFE look-beyond count.  
2D  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
REG_EQ_BST_OV  
1: Allow override control of the EQ  
setting by writing to Reg_0x03  
0: Normal operation.  
2
1
0
7
6
5
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
R
Y
Y
Y
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
2E  
RESERVED  
RESERVED  
EQ_BST3_BIT2_TO_EQ  
Read-back of eq_BST3[2] driving the  
EQ  
4
3
2
0
0
0
RW  
RW  
RW  
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
PRBS_PATTERN_SEL[2]  
MSB for the PRBS_PATTERN_SEL  
field. Lower bits are found on  
Reg_0x30[1:0]. Refer to the Reg_0x30  
description on this table.  
1
0
0
0
RW  
RW  
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
48  
Copyright © 2016–2019, Texas Instruments Incorporated  
DS250DF410  
www.ti.com.cn  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
Table 10. Channel Registers, 0 to 39 (continued)  
DEFAULT  
VALUE  
(HEX)  
ADDRESS  
(HEX)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
2F  
7
6
5
4
3
0
1
0
1
0
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
RESERVED  
RESERVED  
RATE[2]  
RATE[1]  
RATE[0]  
INDEX_OV  
Configure PPM register and divider for  
a standard data rate.  
(Refer to the Programming Guide for  
more details)  
If this bit is 1, then Reg_0x39 is to be  
used as 4-bit index to the [15:0] array  
of EQ settings. The EQ setting at that  
index is loaded to the EQ boost  
registers going to the analog and is  
used as the starting point for adaption.  
2
1
RW  
Y
EN_PPM_CHECK  
1: (Default) Enable the PPM to be  
used as a qualifier when performing  
Lock Detect  
0: Remove the PPM check as a lock  
qualifier.  
1
0
0
0
RW  
Y
N
RESERVED  
RESERVED  
RWSC  
CTLE_ADAPT  
1: Re-starts CTLE adaptation, self-  
clearing  
30  
7
6
5
0
0
0
RW  
RW  
RW  
N
Y
N
FREEZE_PPM_CNT  
EQ_SEARCH_OV_EN  
EN_PATT_INV  
1: Freeze the PPM counter to allow  
safe read asynchronously  
1: Enables the EQ 'search" bit to be  
forced by Reg_0x13[2]  
1: Enable automatic pattern inversion  
of successive 16 bit words when using  
the "Fixed Pattern" generator option.  
4
3
0
0
RW  
RW  
N
N
RELOAD_PRBS_CHKR  
PRBS_EN_DIG_CLK  
1: Force reload of seed into PRBS  
checker LFSR without holding the  
checker in reset.  
This bit enables the clock to operate  
the PRBS generator and/or the PRBS  
checher. Toggling this bit is the  
primary method to reset the PRBS  
pattern generator and PRBS checker.  
2
0
RW  
N
PRBS_PROGPATT_EN  
Enable a fixed data pattern output.  
Requires that serializer is enabled with  
Reg_0x1E[4]. PRBS generator and  
checker should be disabled,  
Reg_0x30[3]. The fixed data pattern is  
set by Reg_0x7C and Reg_0x97.  
Enable inversion of the pattern every  
16 bits with Reg_0x30[5].  
1
0
0
0
RW  
RW  
N
N
PRBS_PATTERN_SEL[1]  
PRBS_PATTERN_SEL[0]  
Selects the pattern output when using  
the PRBS generator. Requires the  
pattern generator to be configured  
properly. The MSB for the  
PRBS_PATTERN_SEL field is in  
Reg_0x2E[2].  
Use Reg_0x30[3] to enable the PRBS  
generator.  
000: 2^7-1 bits PRBS sequence  
001: 2^9-1 bits PRBS sequence  
010: 2^11-1 bits PRBS sequence  
011: 2^15-1 bits PRBS sequence  
100: 2^23-1 bits PRBS sequence  
101: 2^31-1 bits PRBS sequence  
110: 2^58-1 bits PRBS sequence  
111: 2^63-1 bits PRBS sequence  
Copyright © 2016–2019, Texas Instruments Incorporated  
49  
DS250DF410  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
www.ti.com.cn  
Table 10. Channel Registers, 0 to 39 (continued)  
DEFAULT  
VALUE  
(HEX)  
ADDRESS  
(HEX)  
BITS  
MODE  
EEPROM  
FIELD NAME  
PRBS_INT_EN  
DESCRIPTION  
31  
7
0
RW  
N
1: Enables interrupt for detection of  
PRBS errors. The PRBS checker must  
be properly configured for this feature  
to work.  
6
5
0
1
RW  
RW  
Y
Y
ADAPT_MODE[1]  
ADAPT_MODE[0]  
00: no adaption  
01: adapt CTLE only  
10: adapt CTLE until optimal, then  
DFE, then CTLE again  
11: adapt CTLE until lock, then DFE,  
then EQ until optimal  
Note: for ADAPT_MODE=2 or 3, the  
DFE must be enabled by setting  
Reg_0x1E[3]=0 and Reg_0x1E[1]=1.  
(Refer to the Programming Guide for  
more details)  
4
3
0
0
RW  
RW  
Y
Y
EQ_SM_FOM[1]  
EQ_SM_FOM[0]  
CTLE (EQ) adaption state machine  
figure of merit.  
00: (Default) SM uses both HEO and  
VEO  
01: SM uses HEO only  
10: SM uses VEO only  
11: SM uses both HEO and VEO  
Additionally, if Reg_0x6E[7]=1, the  
Alternate FOM is used. Reg_0x6E[7]  
takes precedence over EQ_SM_FOM.  
2
1
0
0
RW  
RW  
N
Y
RESERVED  
RESERVED  
CDR_LOCK_LOSS_INT_EN  
Enable for CDR Lock Loss Interrupt.  
Observable in Reg_0x01[5]  
0
0
RW  
Y
SIGNAL_DET_LOSS_INT_EN  
Enable for Signal Detect Loss  
Interrupt. Observable in Reg_0x01[0]  
32  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
1
0
0
0
1
1
0
0
0
1
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
HEO_INT_THRESH[3]  
HEO_INT_THRESH[2]  
HEO_INT_THRESH[1]  
HEO_INT_THRESH[0]  
VEO_INT_THRESH[3]  
VEO_INT_THRESH[2]  
VEO_INT_THRESH[1]  
VEO_INT_THRESH[0]  
HEO_THRESH[3]  
These bits set the threshold for the  
HEO and VEO interrupt. Each  
threshold bit represents 8 counts of  
HEO or VEO.  
33  
In adapt mode 3, the register sets the  
minimum HEO and VEO required for  
CTLE adaption, before starting DFE  
adaption. This can be a max of 15.  
HEO_THRESH[2]  
HEO_THRESH[1]  
HEO_THRESH[0]  
VEO_THRESH[3]  
VEO_THRESH[2]  
VEO_THRESH[1]  
VEO_THRESH[0]  
50  
Copyright © 2016–2019, Texas Instruments Incorporated  
DS250DF410  
www.ti.com.cn  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
Table 10. Channel Registers, 0 to 39 (continued)  
DEFAULT  
VALUE  
(HEX)  
ADDRESS  
(HEX)  
BITS  
MODE  
EEPROM  
FIELD NAME  
PPM_ERR_RDY  
DESCRIPTION  
34  
7
0
R
N
1: Indicates that a PPM error count is  
read to be read from channel  
Reg_0x3B and Reg_0x3C  
6
0
RW  
Y
LOW_POWER_MODE_DISABL By default, all blocks (except signal  
E
detect) power down after 100 ms after  
signal detect goes low. If set high, all  
blocks get powered on after the signal  
detect initially goes high.  
5
4
1
1
RW  
RW  
Y
Y
LOCK_COUNTER[1]  
LOCK_COUNTER[0]  
After achieving lock, the CDR  
continues to monitor the lock criteria. If  
the lock criteria fail, the lock is  
checked for a total of N number of  
times before declaring an out of lock  
condition, where N is set by this the  
value in these registers, with a max  
value of +3, for a total of 4. If during  
the N lock checks, lock is regained,  
then the lock condition is left HI, and  
the counter is reset back to zero.  
3
2
1
0
7
6
1
1
1
1
0
0
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
DFE_MAX_TAP2_5[3]  
DFE_MAX_TAP2_5[2]  
DFE_MAX_TAP2_5[1]  
DFE_MAX_TAP2_5[0]  
DATA_LOCK_PPM[1]  
DATA_LOCK_PPM[0]  
These four bits are used to set the  
maximum value by which DFE taps 2-  
5 are able to adapt with each  
subsequent adaptation. Same used for  
both polarities.  
35  
Modifies the value of the PPM delta  
tolerance from channel Reg_0x64:  
00 - ppm_delta[7:0] =1 x  
ppm_delta[7:0]  
01 - ppm_delta[7:0] =1 x  
ppm_delta[7:0] + ppm_delta[3:1]  
10 - ppm_delta[7:0] =2 x  
ppm_delta[7:0]  
11 - ppm_delta[7:0] =2 x  
ppm_delta[7:0] + ppm_delta[3:1]  
5
0
RW  
N
GET_PPM_ERROR  
Get PPM error from PPM_COUNT -  
clears when done. Normally updates  
continuously, but can be manually  
triggered with read value from  
Reg_0x3B and Reg_0x3C  
4
3
2
1
0
7
6
0
1
1
1
1
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
N
Y
DFE_MAX_TAP1[4]  
DFE_MAX_TAP1[3]  
DFE_MAX_TAP1[2]  
DFE_MAX_TAP1[1]  
DFE_MAX_TAP1[0]  
RESERVED  
Limits DFE tap 1 maximum magnitude.  
36  
RESERVED  
HEO_VEO_INT_EN  
1: Enable HEO/VEO interrupt  
capability  
5
4
3
2
1
0
1
1
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
N
Y
N
N
REF_MODE[1]  
REF_MODE[0]  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
11: Normal Operation. Refererence  
mode 3.  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
Copyright © 2016–2019, Texas Instruments Incorporated  
51  
DS250DF410  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
www.ti.com.cn  
Table 10. Channel Registers, 0 to 39 (continued)  
DEFAULT  
VALUE  
(HEX)  
ADDRESS  
(HEX)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
37  
38  
39  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
R
R
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
Y
Y
CTLE_STATUS[7]  
Feature is reserved for future use  
Feature is reserved for future use  
RESERVED  
CTLE_STATUS[6]  
CTLE_STATUS[5]  
CTLE_STATUS[4]  
CTLE_STATUS[3]  
CTLE_STATUS[2]  
CTLE_STATUS[1]  
CTLE_STATUS[0]  
DFE_STATUS[7]  
DFE_STATUS[6]  
DFE_STATUS[5]  
DFE_STATUS[4]  
DFE_STATUS[3]  
DFE_STATUS[2]  
DFE_STATUS[1]  
DFE_STATUS[0]  
RESERVED  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
RW  
RW  
RW  
MR_EOM_RATE[1]  
MR_EOM_RATE[0]  
With eom_ov = 1, these bits control  
the Eye Monitor Rate:  
11: Use for full rate, fastest  
10: Use for 1/2 Rate  
All other values are reserved  
4
3
2
1
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
RESERVED  
RESERVED  
START_INDEX[3]  
START_INDEX[2]  
START_INDEX[1]  
START_INDEX[0]  
Start index for EQ adaptation  
52  
版权 © 2016–2019, Texas Instruments Incorporated  
DS250DF410  
www.ti.com.cn  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
Table 11. Channel Registers, 3A to A9  
DEFAULT  
VALUE  
(Hex)  
ADDRESS  
(Hex)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
3A  
3B  
3C  
3D  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
Y
Y
Y
Y
Y
Y
Y
Y
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
Y
FIXED_EQ_BST0[1]  
During adaptation, if the divider  
setting is >2, then a fixed EQ setting  
from this register will be used.  
However, if channel Reg_0x6F[7] is  
enabled, then an EQ adaptation will  
be performed instead  
FIXED_EQ_BST0[0]  
FIXED_EQ_BST1[1]  
FIXED_EQ_BST1[0]  
FIXED_EQ_BST2[1]  
FIXED_EQ_BST2[0]  
FIXED_EQ_BST3[1]  
FIXED_EQ_BST3[0]  
PPM_COUNT[15]  
PPM_COUNT[14]  
PPM_COUNT[13]  
PPM_COUNT[12]  
PPM_COUNT[11]  
PPM_COUNT[10]  
PPM_COUNT[9]  
PPM_COUNT[8]  
PPM_COUNT[7]  
PPM_COUNT[6]  
PPM_COUNT[5]  
PPM_COUNT[4]  
PPM_COUNT[3]  
PPM_COUNT[2]  
PPM_COUNT[1]  
PPM_COUNT[0]  
EN_FIR_CURSOR  
PPM count MSB  
R
R
R
R
R
R
R
R
PPM count LSB  
R
R
R
R
R
R
R
RW  
1: Enable Pre- and Post-cursor FIR  
0: Disable Pre- and Post-cursor FIR  
(lower power)  
6
0
RW  
Y
FIR_C0_SGN  
Main-cursor sign bit  
0: positive  
1: negative  
5
4
3
2
1
0
7
6
0
1
1
0
1
0
0
1
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
RESERVED  
FIR_C0[4]  
RESERVED  
Main-cursor magnitude  
(Refer to the Programming Guide for  
more details)  
FIR_C0[3]  
FIR_C0[2]  
FIR_C0[1]  
FIR_C0[0]  
3E  
FIR_PD_TX  
FIR_CN1_SGN  
Pre-cursor sign bit  
1: negative  
0: positive  
5
4
3
2
1
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
RESERVED  
RESERVED  
FIR_CN1[3]  
FIR_CN1[2]  
FIR_CN1[1]  
FIR_CN1[0]  
RESERVED  
RESERVED  
Pre-cursor magnitude  
(Refer to the Programming Guide for  
more details)  
Copyright © 2016–2019, Texas Instruments Incorporated  
53  
DS250DF410  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
www.ti.com.cn  
Table 11. Channel Registers, 3A to A9 (continued)  
DEFAULT  
VALUE  
(Hex)  
ADDRESS  
(Hex)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
3F  
7
6
0
1
RW  
RW  
Y
Y
RESERVED  
RESERVED  
FIR_CP1_SGN  
Post-cursor sign bit  
1: negative  
0: positive  
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
1
0
0
0
0
1
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
RESERVED  
RESERVED  
RESERVED  
RESERVED  
FIR_CP1[3]  
Post-cursor magnitude  
(Refer to the Programming Guide for  
more details)  
FIR_CP1[2]  
FIR_CP1[1]  
FIR_CP1[0]  
40  
41  
42  
43  
EQ_ARRAY_INDEX_0_BST0[1]  
EQ_ARRAY_INDEX_0_BST0[0]  
EQ_ARRAY_INDEX_0_BST1[1]  
EQ_ARRAY_INDEX_0_BST1[0]  
EQ_ARRAY_INDEX_0_BST2[1]  
EQ_ARRAY_INDEX_0_BST2[0]  
EQ_ARRAY_INDEX_0_BST3[1]  
EQ_ARRAY_INDEX_0_BST3[0]  
EQ_ARRAY_INDEX_1_BST0[1]  
EQ_ARRAY_INDEX_1_BST0[0]  
EQ_ARRAY_INDEX_1_BST1[1]  
EQ_ARRAY_INDEX_1_BST1[0]  
EQ_ARRAY_INDEX_1_BST2[1]  
EQ_ARRAY_INDEX_1_BST2[0]  
EQ_ARRAY_INDEX_1_BST3[1]  
EQ_ARRAY_INDEX_1_BST3[0]  
EQ_ARRAY_INDEX_2_BST0[1]  
EQ_ARRAY_INDEX_2_BST0[0]  
EQ_ARRAY_INDEX_2_BST1[1]  
EQ_ARRAY_INDEX_2_BST1[0]  
EQ_ARRAY_INDEX_2_BST2[1]  
EQ_ARRAY_INDEX_2_BST2[0]  
EQ_ARRAY_INDEX_2_BST3[1]  
EQ_ARRAY_INDEX_2_BST3[0]  
EQ_ARRAY_INDEX_3_BST0[1]  
EQ_ARRAY_INDEX_3_BST0[0]  
EQ_ARRAY_INDEX_3_BST1[1]  
EQ_ARRAY_INDEX_3_BST1[0]  
EQ_ARRAY_INDEX_3_BST2[1]  
EQ_ARRAY_INDEX_3_BST2[0]  
EQ_ARRAY_INDEX_3_BST3[1]  
EQ_ARRAY_INDEX_3_BST3[0]  
54  
Copyright © 2016–2019, Texas Instruments Incorporated  
DS250DF410  
www.ti.com.cn  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
Table 11. Channel Registers, 3A to A9 (continued)  
DEFAULT  
VALUE  
(Hex)  
ADDRESS  
(Hex)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
44  
45  
46  
47  
48  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
1
0
0
1
0
0
0
0
1
1
0
0
0
0
0
0
1
1
0
1
0
0
0
0
1
1
0
1
0
0
0
1
1
1
0
1
0
1
0
1
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
EQ_ARRAY_INDEX_4_BST0[1]  
EQ_ARRAY_INDEX_4_BST0[0]  
EQ_ARRAY_INDEX_4_BST1[1]  
EQ_ARRAY_INDEX_4_BST1[0]  
EQ_ARRAY_INDEX_4_BST2[1]  
EQ_ARRAY_INDEX_4_BST2[0]  
EQ_ARRAY_INDEX_4_BST3[1]  
EQ_ARRAY_INDEX_4_BST3[0]  
EQ_ARRAY_INDEX_5_BST0[1]  
EQ_ARRAY_INDEX_5_BST0[0]  
EQ_ARRAY_INDEX_5_BST1[1]  
EQ_ARRAY_INDEX_5_BST1[0]  
EQ_ARRAY_INDEX_5_BST2[1]  
EQ_ARRAY_INDEX_5_BST2[0]  
EQ_ARRAY_INDEX_5_BST3[1]  
EQ_ARRAY_INDEX_5_BST3[0]  
EQ_ARRAY_INDEX_6_BST0[1]  
EQ_ARRAY_INDEX_6_BST0[0]  
EQ_ARRAY_INDEX_6_BST1[1]  
EQ_ARRAY_INDEX_6_BST1[0]  
EQ_ARRAY_INDEX_6_BST2[1]  
EQ_ARRAY_INDEX_6_BST2[0]  
EQ_ARRAY_INDEX_6_BST3[1]  
EQ_ARRAY_INDEX_6_BST3[0]  
EQ_ARRAY_INDEX_7_BST0[1]  
EQ_ARRAY_INDEX_7_BST0[0]  
EQ_ARRAY_INDEX_7_BST1[1]  
EQ_ARRAY_INDEX_7_BST1[0]  
EQ_ARRAY_INDEX_7_BST2[1]  
EQ_ARRAY_INDEX_7_BST2[0]  
EQ_ARRAY_INDEX_7_BST3[1]  
EQ_ARRAY_INDEX_7_BST3[0]  
EQ_ARRAY_INDEX_8_BST0[1]  
EQ_ARRAY_INDEX_8_BST0[0]  
EQ_ARRAY_INDEX_8_BST1[1]  
EQ_ARRAY_INDEX_8_BST1[0]  
EQ_ARRAY_INDEX_8_BST2[1]  
EQ_ARRAY_INDEX_8_BST2[0]  
EQ_ARRAY_INDEX_8_BST3[1]  
EQ_ARRAY_INDEX_8_BST3[0]  
Copyright © 2016–2019, Texas Instruments Incorporated  
55  
DS250DF410  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
www.ti.com.cn  
Table 11. Channel Registers, 3A to A9 (continued)  
DEFAULT  
VALUE  
(Hex)  
ADDRESS  
(Hex)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
49  
4A  
4B  
4C  
4D  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
1
1
0
1
1
0
0
0
1
1
1
0
1
0
1
0
1
1
1
1
0
1
1
1
1
1
1
1
1
1
0
1
1
1
1
0
1
1
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
EQ_ARRAY_INDEX_9_BST0[1]  
EQ_ARRAY_INDEX_9_BST0[0]  
EQ_ARRAY_INDEX_9_BST1[1]  
EQ_ARRAY_INDEX_9_BST1[0]  
EQ_ARRAY_INDEX_9_BST2[1]  
EQ_ARRAY_INDEX_9_BST2[0]  
EQ_ARRAY_INDEX_9_BST3[1]  
EQ_ARRAY_INDEX_9_BST3[0]  
EQ_ARRAY_INDEX_10_BST0[1]  
EQ_ARRAY_INDEX_10_BST0[0]  
EQ_ARRAY_INDEX_10_BST1[1]  
EQ_ARRAY_INDEX_10_BST1[0]  
EQ_ARRAY_INDEX_10_BST2[1]  
EQ_ARRAY_INDEX_10_BST2[0]  
EQ_ARRAY_INDEX_10_BST3[1]  
EQ_ARRAY_INDEX_10_BST3[0]  
EQ_ARRAY_INDEX_11_BST0[1]  
EQ_ARRAY_INDEX_11_BST0[0]  
EQ_ARRAY_INDEX_11_BST1[1]  
EQ_ARRAY_INDEX_11_BST1[0]  
EQ_ARRAY_INDEX_11_BST2[1]  
EQ_ARRAY_INDEX_11_BST2[0]  
EQ_ARRAY_INDEX_11_BST3[1]  
EQ_ARRAY_INDEX_11_BST3[0]  
EQ_ARRAY_INDEX_12_BST0[1]  
EQ_ARRAY_INDEX_12_BST0[0]  
EQ_ARRAY_INDEX_12_BST1[1]  
EQ_ARRAY_INDEX_12_BST1[0]  
EQ_ARRAY_INDEX_12_BST2[1]  
EQ_ARRAY_INDEX_12_BST2[0]  
EQ_ARRAY_INDEX_12_BST3[1]  
EQ_ARRAY_INDEX_12_BST3[0]  
EQ_ARRAY_INDEX_13_BST0[1]  
EQ_ARRAY_INDEX_13_BST0[0]  
EQ_ARRAY_INDEX_13_BST1[1]  
EQ_ARRAY_INDEX_13_BST1[0]  
EQ_ARRAY_INDEX_13_BST2[1]  
EQ_ARRAY_INDEX_13_BST2[0]  
EQ_ARRAY_INDEX_13_BST3[1]  
EQ_ARRAY_INDEX_13_BST3[0]  
56  
Copyright © 2016–2019, Texas Instruments Incorporated  
DS250DF410  
www.ti.com.cn  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
Table 11. Channel Registers, 3A to A9 (continued)  
DEFAULT  
VALUE  
(Hex)  
ADDRESS  
(Hex)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
4E  
4F  
50  
51  
52  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
1
1
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
1
0
0
0
1
0
0
0
0
0
1
0
1
0
1
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
EQ_ARRAY_INDEX_14_BST0[1]  
EQ_ARRAY_INDEX_14_BST0[0]  
EQ_ARRAY_INDEX_14_BST1[1]  
EQ_ARRAY_INDEX_14_BST1[0]  
EQ_ARRAY_INDEX_14_BST2[1]  
EQ_ARRAY_INDEX_14_BST2[0]  
EQ_ARRAY_INDEX_14_BST3[1]  
EQ_ARRAY_INDEX_14_BST3[0]  
EQ_ARRAY_INDEX_15_BST0[1]  
EQ_ARRAY_INDEX_15_BST0[0]  
EQ_ARRAY_INDEX_15_BST1[1]  
EQ_ARRAY_INDEX_15_BST1[0]  
EQ_ARRAY_INDEX_15_BST2[1]  
EQ_ARRAY_INDEX_15_BST2[0]  
EQ_ARRAY_INDEX_15_BST3[1]  
EQ_ARRAY_INDEX_15_BST3[0]  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
Copyright © 2016–2019, Texas Instruments Incorporated  
57  
DS250DF410  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
www.ti.com.cn  
Table 11. Channel Registers, 3A to A9 (continued)  
DEFAULT  
VALUE  
(Hex)  
ADDRESS  
(Hex)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
53  
54  
55  
56  
57  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
1
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
0
0
1
1
0
0
1
0
1
1
0
0
0
0
1
1
0
0
1
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
58  
Copyright © 2016–2019, Texas Instruments Incorporated  
DS250DF410  
www.ti.com.cn  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
Table 11. Channel Registers, 3A to A9 (continued)  
DEFAULT  
VALUE  
(Hex)  
ADDRESS  
(Hex)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
58  
59  
5A  
5B  
5C  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
1
0
1
0
1
1
1
0
1
0
1
1
1
0
1
0
1
1
0
1
0
0
1
0
1
1
1
0
1
0
1
1
1
0
1
0
1
0
1
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
Copyright © 2016–2019, Texas Instruments Incorporated  
59  
DS250DF410  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
www.ti.com.cn  
Table 11. Channel Registers, 3A to A9 (continued)  
DEFAULT  
VALUE  
(Hex)  
ADDRESS  
(Hex)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
5D  
5E  
5F  
60  
61  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
1
0
0
1
1
0
0
1
1
0
0
1
0
1
1
0
1
0
1
0
0
1
0
1
0
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
Group 0 count LSB  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
GRP0_OV_CNT[7]  
GRP0_OV_CNT[6]  
GRP0_OV_CNT[5]  
GRP0_OV_CNT[4]  
GRP0_OV_CNT[3]  
GRP0_OV_CNT[2]  
GRP0_OV_CNT[1]  
GRP0_OV_CNT[0]  
CNT_DLTA_OV_0  
Override enable for group 0 manual  
data rate selection  
6
5
4
3
2
1
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
GRP0_OV_CNT[14]  
GRP0_OV_CNT[13]  
GRP0_OV_CNT[12]  
GRP0_OV_CNT[11]  
GRP0_OV_CNT[10]  
GRP0_OV_CNT[9]  
GRP0_OV_CNT[8]  
Group 0 count MSB  
60  
Copyright © 2016–2019, Texas Instruments Incorporated  
DS250DF410  
www.ti.com.cn  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
Table 11. Channel Registers, 3A to A9 (continued)  
DEFAULT  
VALUE  
(Hex)  
ADDRESS  
(Hex)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
Group 1 count LSB  
62  
7
6
5
4
3
2
1
0
7
0
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
Y
GRP1_OV_CNT[7]  
GRP1_OV_CNT[6]  
GRP1_OV_CNT[5]  
GRP1_OV_CNT[4]  
GRP1_OV_CNT[3]  
GRP1_OV_CNT[2]  
GRP1_OV_CNT[1]  
GRP1_OV_CNT[0]  
CNT_DLTA_OV_1  
63  
Override enable for group 1 manual  
data rate selection  
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
GRP1_OV_CNT[14]  
GRP1_OV_CNT[13]  
GRP1_OV_CNT[12]  
GRP1_OV_CNT[11]  
GRP1_OV_CNT[10]  
GRP1_OV_CNT[9]  
GRP1_OV_CNT[8]  
GRP0_OV_DLTA[3]  
GRP0_OV_DLTA[2]  
GRP0_OV_DLTA[1]  
GRP0_OV_DLTA[0]  
GRP1_OV_DLTA[3]  
GRP1_OV_DLTA[2]  
GRP1_OV_DLTA[1]  
GRP1_OV_DLTA[0]  
RESERVED  
Group 1 count MSB  
64  
65  
66  
Sets the PPM delta tolerance for the  
PPM counter lock check for group 0.  
Must also program channel  
Reg_0x67[7].  
Sets the PPM delta tolerance for the  
PPM counter lock check for group 1.  
Must also program channel  
Reg_0x67[6].  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
Copyright © 2016–2019, Texas Instruments Incorporated  
61  
DS250DF410  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
www.ti.com.cn  
Table 11. Channel Registers, 3A to A9 (continued)  
DEFAULT  
VALUE  
(Hex)  
ADDRESS  
(Hex)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
67  
7
6
5
0
0
1
RW  
RW  
RW  
Y
Y
Y
GRP0_OV_DLTA[4]  
GRP1_OV_DLTA[4]  
HV_LOCKMON_EN  
1: Enable periodic monitoring of  
HEO/VEO for lock qualification.  
0: Disable periodic HEO/VEO  
monitoring for lock qualification.  
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
1
0
0
0
0
1
0
1
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
68  
69  
6A  
6B  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
VEO_LCK_THRSH[3]  
VEO_LCK_THRSH[2]  
VEO_LCK_THRSH[1]  
VEO_LCK_THRSH[0]  
HEO_LCK_THRSH[3]  
HEO_LCK_THRSH[2]  
HEO_LCK_THRSH[1]  
HEO_LCK_THRSH[0]  
RESERVED  
VEO threshold to meet before lock is  
established. The LSB step size is 4  
counts of VEO.  
HEO threshold to meet before lock is  
established. The LSB step size is 4  
counts of HEO.  
RESERVED  
FOM_A[6]  
Alternate Figure of Merit variable A.  
Max value for this register is 128.  
FOM_A[5]  
FOM_A[4]  
FOM_A[3]  
FOM_A[2]  
FOM_A[1]  
FOM_A[0]  
62  
Copyright © 2016–2019, Texas Instruments Incorporated  
DS250DF410  
www.ti.com.cn  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
Table 11. Channel Registers, 3A to A9 (continued)  
DEFAULT  
VALUE  
(Hex)  
ADDRESS  
(Hex)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
6C  
6D  
6E  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
FOM_B[7]  
FOM_B[6]  
FOM_B[5]  
FOM_B[4]  
FOM_B[3]  
FOM_B[2]  
FOM_B[1]  
FOM_B[0]  
FOM_C[7]  
FOM_C[6]  
FOM_C[5]  
FOM_C[4]  
FOM_C[3]  
FOM_C[2]  
FOM_C[1]  
FOM_C[0]  
HEO adjustment for Alternate FoM,  
variable B  
VEO adjustment for Alternate FoM,  
variable C  
EN_NEW_FOM_CTLE  
1: CTLE adaption state machine will  
use the alternate FoM  
HEO_ALT = (HEO-B)*A*2VEO_ALT  
= (VEO-C)*(1-A)*2  
The values of A,B,C are set in  
channel Reg_0x6B, 0x6C, and 0x6D.  
The value of A is equal to the  
register value divided by 128.  
The Alternate FoM = (HEOB)*A*2 +  
(VEO-C)*(1-A)*2  
6
0
RW  
Y
EN_NEW_FOM_DFE  
1: DFE adaption state machine will  
use the alternate FoM.  
HEO_ALT = (HEO-B)*A*2VEO_ALT  
= (VEO-C)*(1-A)*2  
The values of A,B,C are set in  
channel Reg_0x6B, 0x6C, and 0x6D.  
The value of A is equal to the  
register value divided by 128  
The Alternate FoM = (HEOB)*A*2 +  
(VEO-C)*(1-A)*2  
5
4
3
2
1
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
N
N
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
Copyright © 2016–2019, Texas Instruments Incorporated  
63  
DS250DF410  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
www.ti.com.cn  
Table 11. Channel Registers, 3A to A9 (continued)  
DEFAULT  
VALUE  
(Hex)  
ADDRESS  
(Hex)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
6F  
7
0
RW  
Y
MR_EN_LOW_DIVSEL_EQ  
Normally, during adaptation, if the  
divider setting is >2, then a fixed EQ  
setting, from Reg_0x3A will be used.  
However, if Reg_0x6F[7]=1, then an  
EQ adaptation will be performed  
instead.  
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
Y
Y
N
N
N
N
N
N
N
N
N
Y
Y
Y
Y
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
EQ_LB_CNT[3]  
EQ_LB_CNT[2]  
EQ_LB_CNT[1]  
EQ_LB_CNT[0]  
PRBS_INT  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
70  
CTLE look-beyond count for  
adaptation  
71  
When enabled by Reg_0x31[7], goes  
HI if a PRBS stream is detected.  
Clears on reading.  
PRBS checker must be enabled with  
Reg_0x30[3].  
Once cleared, if a PRBS error  
occurs, then the interrupt will again  
go HI. Clears on reading.  
If signal detect is lost, this is  
considered a PRBS error, and the  
interrupt will go HI. Clears on  
reading.  
6
5
4
3
2
1
0
7
6
5
4
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
N
N
N
N
N
N
N
N
N
N
N
RESERVED  
RESERVED  
DFE_POL_1_OBS  
DFE_WT1_OBS[4]  
DFE_WT1_OBS[3]  
DFE_WT1_OBS[2]  
DFE_WT1_OBS[1]  
DFE_WT1_OBS[0]  
RESERVED  
DFE tap 1 polarity observation  
DFE tap 1 weight observation  
72  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
DFE_POL_2_OBS  
Primary observation point for DFE  
tap 2 polarity  
3
2
1
0
0
0
0
0
R
R
R
R
N
N
N
N
DFE_WT2_OBS[3]  
DFE_WT2_OBS[2]  
DFE_WT2_OBS[1]  
DFE_WT2_OBS[0]  
Primary observation point for DFE  
tap 2 weight  
64  
Copyright © 2016–2019, Texas Instruments Incorporated  
DS250DF410  
www.ti.com.cn  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
Table 11. Channel Registers, 3A to A9 (continued)  
DEFAULT  
VALUE  
(Hex)  
ADDRESS  
(Hex)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
73  
74  
75  
7
6
5
4
0
0
0
0
R
R
R
R
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
DFE_POL_3_OBS  
Primary observation point for DFE  
tap 3 polarity  
3
2
1
0
7
6
5
4
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
N
N
N
N
N
N
N
N
DFE_WT3_OBS[3]  
DFE_WT3_OBS[2]  
DFE_WT3_OBS[1]  
DFE_WT3_OBS[0]  
RESERVED  
Primary observation point for DFE  
tap 3 weight  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
DFE_POL_4_OBS  
Primary observation point for DFE  
tap 4 polarity  
3
2
1
0
7
6
5
4
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
N
N
N
N
N
N
N
N
DFE_WT4_OBS[3]  
DFE_WT4_OBS[2]  
DFE_WT4_OBS[1]  
DFE_WT4_OBS[0]  
RESERVED  
Primary observation point for DFE  
tap 4 weight  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
DFE_POL_5_OBS  
Primary observation point for DFE  
tap 5 polarity  
3
2
1
0
7
6
5
4
3
2
1
0
7
0
0
0
0
0
0
1
0
0
0
0
1
0
R
N
N
N
N
Y
Y
Y
Y
Y
Y
Y
Y
N
DFE_WT5_OBS[3]  
Primary observation point for DFE  
tap 5 weight  
R
DFE_WT5_OBS[2]  
R
DFE_WT5_OBS[1]  
R
DFE_WT5_OBS[0]  
76  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
POST_LOCK_VEO_THR[3]  
POST_LOCK_VEO_THR[2]  
POST_LOCK_VEO_THR[1]  
POST_LOCK_VEO_THR[0]  
POST_LOCK_HEO_THR[3]  
POST_LOCK_HEO_THR[2]  
POST_LOCK_HEO_THR[1]  
POST_LOCK_HEO_THR[0]  
PRBS_GEN_POL_EN  
VEO threshold after LOCK is  
established  
HEO threshold after LOCK is  
established  
77  
1: Force polarity inversion on  
generated PRBS data  
6
5
4
3
2
1
0
0
0
1
1
0
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
Copyright © 2016–2019, Texas Instruments Incorporated  
65  
DS250DF410  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
www.ti.com.cn  
Table 11. Channel Registers, 3A to A9 (continued)  
DEFAULT  
VALUE  
(Hex)  
ADDRESS  
(Hex)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
78  
7
6
5
0
0
0
R
R
R
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
SD_STATUS  
Primary observation point for signal  
detect status  
4
3
0
0
R
R
N
N
CDR_LOCK_STATUS  
CDR_LOCK_INT  
Primary observation point for CDR  
lock status  
Requires that channel Reg_0x79[1]  
be set.  
1: Indicates CDR has achieved lock,  
lock goes from LOW to HIGH. This  
bit is cleared after reading. This bit  
will stay set until it has been cleared  
by reading.  
2
0
R
N
SD_INT  
Requires that channel Reg_0x79[0]  
be set.  
1: Indicates signal detect status has  
changed. This will trigger when  
signal detect goes from LOW to  
HIGH or HIGH to LOW. This bit is  
cleared after reading. This bit will  
stay set until it has been cleared by  
reading.  
1
0
0
0
R
R
N
N
EOM_VRANGE_LIMIT_ERROR  
HEO_VEO_INT  
Goes high if GET_HEO_VEO  
indicates high during adaptation  
Requires that channel Reg_0x36[6]  
be set.  
1: Indicates that HEO/VEO dropped  
below the limits set in channel  
Reg_0x76 This bit is cleared after  
reading. This bit will stay set until it  
has been cleared by reading.  
79  
7
6
0
0
RW  
RW  
N
N
RESERVED  
RESERVED  
PRBS_CHKR_EN  
1: Enable the PRBS checker.  
0: Disable the PRBS checker  
5
0
RW  
N
PRBS_GEN_EN  
1: Enable the pattern generator  
0: Disable the pattern generator  
4
3
2
1
1
0
0
0
RW  
RW  
RW  
RW  
N
N
N
Y
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
CDR_LOCK_INT_EN  
1: Enable CDR lock interrupt,  
observable in channel Reg_0x78[3]  
0: Disable CDR lock interrupt  
0
0
RW  
Y
SD_INT_EN  
1: Enable signal detect interrupt,  
observable in channel Reg_0x78[3]  
0: Disable signal detect interrupt  
7A  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
N
N
N
N
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
66  
Copyright © 2016–2019, Texas Instruments Incorporated  
DS250DF410  
www.ti.com.cn  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
Table 11. Channel Registers, 3A to A9 (continued)  
DEFAULT  
VALUE  
(Hex)  
ADDRESS  
(Hex)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
7B  
7C  
7D  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
Y
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
PRBS_FIXED[7]  
PRBS_FIXED[6]  
PRBS_FIXED[5]  
PRBS_FIXED[4]  
PRBS_FIXED[3]  
PRBS_FIXED[2]  
PRBS_FIXED[1]  
PRBS_FIXED[0]  
Pattern generator user defined  
pattern LSB. MSB located at channel  
Reg_0x97.  
R
R
R
R
R
R
R
RW  
CONT_ADAPT_HEO_CHNG_TH Limit for HEO change before  
RS[3]  
triggering a DFE adaption while  
continuous DFE adaption is enabled.  
6
5
4
3
2
1
0
1
0
0
1
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
CONT_ADAPT_HEO_CHNG_TH  
RS[2]  
CONT_ADAPT_HEO_CHNG_TH  
RS[1]  
CONT_ADAPT_HEO_CHNG_TH  
RS[0]  
CONT_ADAPT_VEO_CHNG_TH Limit for VEO change before  
RS[3]  
triggering a DFE adaption while  
continuous DFE adaption is enabled.  
(Refer to the Programming Guide for  
more details)  
CONT_ADAPT_VEO_CHNG_TH  
RS[2]  
CONT_ADAPT_VEO_CHNG_TH  
RS[1]  
CONT_ADAPT_VEO_CHNG_TH  
RS[0]  
7E  
7
6
5
4
3
2
1
0
0
0
0
1
0
0
1
1
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Y
Y
Y
Y
Y
Y
Y
Y
CONT_ADPT_TAP_INCR[3]  
CONT_ADPT_TAP_INCR[2]  
CONT_ADPT_TAP_INCR[1]  
CONT_ADPT_TAP_INCR[0]  
RESERVED  
Limit for allowable tap increase from  
the previous base point  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
Copyright © 2016–2019, Texas Instruments Incorporated  
67  
DS250DF410  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
www.ti.com.cn  
Table 11. Channel Registers, 3A to A9 (continued)  
DEFAULT  
VALUE  
(Hex)  
ADDRESS  
(Hex)  
BITS  
MODE  
EEPROM  
FIELD NAME  
EN_OBS_ALT_FOM  
DESCRIPTION  
7F  
7
0
RW  
N
1: Allows for alternate FoM  
calculation to be shown in channel  
registers Reg_0x27, Reg_0x28 and  
Reg_0x29 instead of HEO and VEO  
6
5
4
0
1
0
RW  
RW  
RW  
N
Y
Y
RESERVED  
RESERVED  
RESERVED  
RESERVED  
EN_DFE_CONT_ADAPT  
1: Continuous DFE adaption is  
enabled  
0: DFE adapts only during lock and  
then freezes  
(Refer to the Programming Guide for  
more details)  
3
1
RW  
Y
CONT_ADPT_CMP_BOTH  
1: If continuous DFE adaption is  
enabled, a DFE adaption will trigger  
if either HEO orVEO degrades  
2
1
0
0
1
0
RW  
RW  
RW  
Y
Y
Y
CONT_ADPT_COUNT[2]  
CONT_ADPT_COUNT[1]  
CONT_ADPT_COUNT[0]  
Limit for number of weights the DFE  
can look ahead in continuous  
adaption.  
(Refer to the Programming Guide for  
more details)  
80  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
0
0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
81  
68  
Copyright © 2016–2019, Texas Instruments Incorporated  
DS250DF410  
www.ti.com.cn  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
Table 11. Channel Registers, 3A to A9 (continued)  
DEFAULT  
VALUE  
(Hex)  
ADDRESS  
(Hex)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
82  
7
0
RW  
N
FREEZE_PRBS_CNTR  
1: Freeze the PRBS error count to  
allow for readback.  
0: Normal operation. Error counters  
is allowed to increment if the PRBS  
checker is properly configured  
6
5
0
0
RW  
RW  
N
N
RST_PRBS_CNTS  
PRBS_PATT_OV  
1: Reset the PRBS error counter.  
0: Normal operation. Error counter is  
released from reset.  
1: Override PRBS pattern auto-  
detection. Forces the pattern checker  
to only lock onto the pattern defined  
in Reg_0x82[4:2].  
0: Normal operation. Pattern checker  
will automatically detect the PRBS  
pattern  
4
3
2
0
0
0
RW  
RW  
RW  
N
N
N
PRBS_PATT[2]  
PRBS_PATT[1]  
PRBS_PATT[0]  
Used with the PRBS checker. Usage  
is enabled with Reg_0x82[5]. Select  
PRBS pattern to be checked:  
000 - PRBS7  
001 - PRBS9  
010 - PRBS11  
011 - PRBS15  
100 - PRBS23  
101 - PRBS31  
110 - PRBS58  
111 - PRBS63  
1
0
0
0
RW  
RW  
N
N
PRBS_POL_OV  
PRBS_POL  
1: Override PRBS pattern auto  
polarity detection. Forces the pattern  
checker to only lock onto the polarity  
defined in bit 0 of this register.  
0: Normal operation, pattern checker  
will automatically detect the PRBS  
pattern polarity  
Usage is enabled with  
Reg_0x82[1]=1  
0: Forced polarity = true  
1: Forced polarity = inverted  
83  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
PRBS_ERR_CNT[10]  
PRBS_ERR_CNT[9]  
PRBS_ERR_CNT[8]  
PRBS_ERR_CNT[7]  
PRBS_ERR_CNT[6]  
PRBS_ERR_CNT[5]  
PRBS_ERR_CNT[4]  
PRBS_ERR_CNT[3]  
PRBS_ERR_CNT[2]  
PRBS_ERR_CNT[1]  
PRBS_ERR_CNT[0]  
PRBS checker error count  
84  
PRBS checker error count  
Copyright © 2016–2019, Texas Instruments Incorporated  
69  
DS250DF410  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
www.ti.com.cn  
Table 11. Channel Registers, 3A to A9 (continued)  
DEFAULT  
VALUE  
(Hex)  
ADDRESS  
(Hex)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
85  
86  
87  
88  
89  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
70  
Copyright © 2016–2019, Texas Instruments Incorporated  
DS250DF410  
www.ti.com.cn  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
Table 11. Channel Registers, 3A to A9 (continued)  
DEFAULT  
VALUE  
(Hex)  
ADDRESS  
(Hex)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
8A  
8B  
8C  
8D  
8E  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
R
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
Y
RESERVED  
RESERVED  
R
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
VGA_SEL_GAIN  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
R
R
R
R
R
R
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VGA selection bit :  
1: VGA high-gain mode  
0: VGA low-gain mode  
(Refer to the Programming Guide for  
more details)  
Copyright © 2016–2019, Texas Instruments Incorporated  
71  
DS250DF410  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
www.ti.com.cn  
Table 11. Channel Registers, 3A to A9 (continued)  
DEFAULT  
VALUE  
(Hex)  
ADDRESS  
(Hex)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
8F  
90  
91  
7
6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
EQ_BST_TO_EQ[7]  
Primary observation point for the EQ  
boost setting.  
R
EQ_BST_TO_EQ[6]  
EQ_BST_TO_EQ5]  
EQ_BST_TO_EQ[4]  
EQ_BST_TO_EQ[3]  
EQ_BST_TO_EQ[2]  
EQ_BST_TO_EQ[1]  
EQ_BST_TO_EQ[0]  
RESERVED  
5
R
4
R
3
R
2
R
1
R
0
R
7
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
6
RESERVED  
5
RESERVED  
4
RESERVED  
3
RESERVED  
2
RESERVED  
1
RESERVED  
0
RESERVED  
7
RESERVED  
6
RESERVED  
5
RESERVED  
4
RESERVED  
3
RESERVED  
2
RESERVED  
1
RESERVED  
0
RESERVED  
92  
93  
94  
95  
7:0  
7:0  
7:0  
7
RESERVED  
RESERVED  
RESERVED  
SD_ENABLE  
1: Force enable signal detect  
0: Normal operation  
6
5
0
0
RW  
RW  
N
N
SD_DISABLE  
1: Force disable signal detect  
0: Normal operation  
DC_OFF_ENABLE  
1: Force enable DC offset  
compensation  
0: Normal operation  
4
0
RW  
N
DC_OFF_DISABLE  
1: Force disable DC offset  
compensation  
0: Normal operation  
3
2
1
0
RW  
RW  
N
N
EQ_ENABLE  
EQ_DISABLE  
1: Force enable the CTLE  
0: Normal operation  
1: Force disable the CTLE  
0: Normal operation  
1
0
0
0
RW  
RW  
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
72  
Copyright © 2016–2019, Texas Instruments Incorporated  
DS250DF410  
www.ti.com.cn  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
Table 11. Channel Registers, 3A to A9 (continued)  
DEFAULT  
VALUE  
(Hex)  
ADDRESS  
(Hex)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
96  
7
6
5
4
3
0
0
0
0
1
RW  
RW  
RW  
RW  
RW  
N
N
N
N
Y
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
EQ_EN_LOCAL  
RESERVED  
RESERVED  
RESERVED  
1: Enable the ebuf for the local  
output. Can be set independently of  
other controls.  
(Refer to the Programming Guide for  
more details)  
2
1
0
0
0
0
RW  
RW  
RW  
Y
Y
Y
EQ_EN_FANOUT  
EQ_SEL_XPNT  
XPNT_SLAVE  
1: Enable the ebuf for the fanout.  
Can be set independently of other  
controls.  
(Refer to the Programming Guide for  
more details)  
1: Indicates to a channel where it is  
getting its data from. 0 indicates  
local. 1-indicates from the cross.  
(Refer to the Programming Guide for  
more details)  
1: Indicates to a channel if it needs to  
wait for the other channel to  
complete its lock/adaptation. The  
need for this condition comes up  
when input of one channel is routed  
to the other channel or multiple  
channels.  
(Refer to the Programming Guide for  
more details)  
97  
7
6
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
R
R
N
N
N
N
N
N
N
N
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
PRBS_FIXED[15]  
PRBS_FIXED[14]  
PRBS_FIXED[13]  
PRBS_FIXED[12]  
PRBS_FIXED[11]  
PRBS_FIXED[10]  
PRBS_FIXED[9]  
PRBS_FIXED[8]  
RESERVED  
Pattern generator user defined  
pattern MSB. LSB located at channel  
Reg_0x7C.  
5
R
4
R
3
R
2
R
1
R
0
R
98  
99  
7:6  
5:0  
7
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
6
RESERVED  
5
RESERVED  
4
RESERVED  
3
RESERVED  
2
RESERVED  
1
RESERVED  
0
RESERVED  
Copyright © 2016–2019, Texas Instruments Incorporated  
73  
DS250DF410  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
www.ti.com.cn  
Table 11. Channel Registers, 3A to A9 (continued)  
DEFAULT  
VALUE  
(Hex)  
ADDRESS  
(Hex)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
9A  
9B  
9C  
9D  
9E  
7
6
0
0
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
0
0
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0
1
0
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
N
N
N
Y
Y
Y
Y
Y
Y
N
N
N
N
Y
Y
Y
N
Y
Y
Y
Y
Y
Y
N
N
N
N
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
CP_EN_IDAC_PD[2]  
CP_EN_IDAC_PD[1]  
CP_EN_IDAC_PD[0]  
CP_EN_IDAC_FD[2]  
CP_EN_IDAC_FD[1]  
CP_EN_IDAC_FD[0]  
RESERVED  
RESERVED  
NOT USED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
Phase detector charge pump setting,  
when override is enabled. See  
reg_0C for other bits.  
6
5
4
Frequency detector charge pump  
setting, when override is enabled.  
See reg_0C for other bits.  
3
2
1
RESERVED  
RESERVED  
0
9F  
A0  
A1  
A2  
A3  
A4  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
R
NOT USED  
R
NOT USED  
R
NOT USED  
R
NOT USED  
R
NOT USED  
74  
Copyright © 2016–2019, Texas Instruments Incorporated  
DS250DF410  
www.ti.com.cn  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
Table 11. Channel Registers, 3A to A9 (continued)  
DEFAULT  
VALUE  
(Hex)  
ADDRESS  
(Hex)  
BITS  
MODE  
EEPROM  
FIELD NAME  
DESCRIPTION  
A5  
7
6
5
0
0
1
RW  
RW  
RW  
Y
Y
Y
PFD_SEL_DATA_PSTLCK[2]  
PFD_SEL_DATA_PSTLCK[1]  
PFD_SEL_DATA_PSTLCK[0]  
Output mode for when the CDR is in  
lock. For these values to take effect,  
Reg_0x09[5] must be set to 0, which  
is the default.  
000: Raw Data  
001: Retimed data (default)  
100: PRBS Generator or Fixed  
Pattern Generator Data  
101: 10M clock  
111: Mute  
All other values are reserved. (Refer  
to the Programming Guide for more  
details)  
4
3
2
1
0
7
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
N
N
N
N
N
N
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
INCR_HIST_TMR  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
A6  
Provides an option to increase EOM  
timer given by 0x2A[7:4] for  
histogram collection by +8 for  
selection values < 8  
6
1
RW  
Y
EOM_TMR_ABRT_ON_HIT  
Enables faster scan through the eye-  
matrix by moving on to the next  
matrix point as soon as hit is  
observed  
Note: This bit does not affect when  
slope measurement are in progress  
5
4
0
0
RW  
RW  
Y
Y
SLP_MIN_REQ_HITS[1]  
SLP_MIN_REQ_HITS[0]  
Minimum required hit count for  
registering a hit during slope  
measurements.  
3
0
RW  
Y
LFT_SLP  
0: allows slope measurement for the  
right side of the eye  
1: allows slope measurement for the  
left side of the eye  
2
0
RW  
Y
TOP_SLP  
0: allows slope measurement for the  
bottom side of the eye  
1: allows slope measurement for the  
top side of the eye  
1
0
1
1
RW  
RW  
Y
Y
DFE_BATHTUB_FOM  
CTLE_BATHTUB_FOM  
Enables slope-based bathtub FoM  
for DFE adaptation  
Enables slope-based bathtub FoM  
for CTLE adaptation  
A7  
A8  
A9  
7:0  
7:0  
7:0  
0
0
0
R
N
N
Y
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RW  
RW  
版权 © 2016–2019, Texas Instruments Incorporated  
75  
DS250DF410  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The DS250DF410 is a high-speed retimer which extends the reach of differential channels and cleans jitter and  
other signal impairments in the process. It can be deployed in a variety of different systems from backplanes to  
front ports to active cable assemblies. The following sections outline typical applications and their associated  
design considerations.  
9.2 Typical Applications  
The DS250DF410 is typically used in the following application scenarios:  
1. Front-Port Jitter Cleaning Applications  
2. Active Cable Applications  
3. Backplane and Mid-plane Applications  
Line Card  
Switch Fabric  
25G-LR  
x4  
25G-VSR  
x4  
DS250DF410  
DS250DF410  
Optical  
x4  
25G-LR  
SFP28/QSFP28  
ASIC  
ASIC  
FPGA  
FPGA  
Active Copper  
DS250DF410  
x4  
25G-LR  
x4 25G  
DS250DF410  
QSFP28  
Backplane/  
Midplane  
15. Typical Uses for the DS250DF410 in a System  
76  
版权 © 2016–2019, Texas Instruments Incorporated  
DS250DF410  
www.ti.com.cn  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
Typical Applications (接下页)  
9.2.1 Front-Port Jitter Cleaning Applications  
The DS250DF410 has strong equalization capabilities that allow it to equalize insertion loss, reduce jitter, and  
extend the reach of front-port interfaces. A single DS250DF410 can be used to support all four egress channels  
for a 100GbE port. Another DS250DF410 can be used to support all four ingress channels for the same 100GbE  
ports. Alternatively, a single DS250DF410 can be used to support all egress channels for four 25GbE ports, and  
another DS250DF410 can be used to support all four ingress channels for the same four 25GbE ports.  
For applications which require IEEE802.3 100GBASE-CR4 or 25GBASE-CR auto-negotiation and link training, a  
linear repeater device such as the DS280BR810 (or similar) is recommended.  
16 illustrates this configuration, and 17 shows an example simplified schematic for a typical front-port  
application.  
Network Interface Card (NIC) or Host Bus Adapter (HBA)  
25G/28G-LR  
25G/28G-VSR  
DS250DF410  
Optical or  
fixed-rate Copper  
x4  
x4  
DS250DF410  
1 x 100GbE QSFP28  
ASIC  
PCIe  
FPGA  
Optical or Copper  
25G/28G-LR  
25G/28G-VSR  
x4  
Optical or Copper  
Optical or Copper  
DS250DF410  
x4  
DS250DF410  
Optical or Copper  
4 x 25GbE SFP28  
or  
2 x 50GbE SFP28  
16. Front-Port Application Block Diagram  
版权 © 2016–2019, Texas Instruments Incorporated  
77  
 
 
DS250DF410  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
www.ti.com.cn  
Typical Applications (接下页)  
AC coupling  
capacitors needed  
No AC coupling  
capacitors needed  
Egress Retimer  
RX0P  
RX0N  
TX0P  
TX0N  
CDR  
RX  
TX  
.
.
.
.
.
.
.
.
.
.
.
.
RX3P  
RX3N  
TX3P  
TX3N  
CDR  
RX  
TX  
2.5V or  
3.3V  
VDD  
SMBus  
Slave mode  
To other  
open-drain  
interrupt pins  
1 kΩ  
INT_N  
EN_SMB  
SDA  
SDC  
To system  
SMBus(1)  
Address straps  
(pull-up, pull-  
down, or float)  
ADDR0  
ADDR1  
NC_TEST[5:0]  
CAL_CLK_IN  
To next device‘s  
CAL_CLK_IN  
25 MHz  
CAL_CLK_OUT  
SMBus Slave  
mode  
ALL_DONE_N  
GND  
READ_EN_N  
VDD  
2.5V  
Minimum  
recommended  
decoupling  
0.1F  
(4x)  
1F  
(2x)  
1 x QSFP28  
Or  
4 x SFP28  
Host ASIC /  
FPGA  
AC coupling  
capacitors needed  
No AC coupling  
capacitors needed  
Ingress Retimer  
TX0P  
RX0P  
CDR  
TX  
RX  
TX0N  
RX0N  
.
.
.
.
.
.
.
.
.
.
.
.
TX7P  
TX7N  
RX7P  
RX7N  
CDR  
TX  
RX  
VDD  
SMBus  
Slave mode  
1 kΩ  
INT_N  
EN_SMB  
SDA  
SDC  
Address straps  
(pull-up, pull-  
down, or float)  
ADDR0  
ADDR1  
NC_TEST[5:0]  
CAL_CLK_IN  
CAL_CLK_OUT  
SMBus Slave  
mode  
ALL_DONE_N  
GND  
READ_EN_N  
VDD  
2.5V  
Minimum  
recommended  
decoupling  
0.1F  
(4x)  
1F  
(2x)  
(1) SMBus signals need to be pulled up elsewhere in the system.  
17. Front-Port Application Schematic  
9.2.1.1 Design Requirements  
For this design example, the following guidelines outlined in 12 apply.  
78  
版权 © 2016–2019, Texas Instruments Incorporated  
DS250DF410  
www.ti.com.cn  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
Typical Applications (接下页)  
12. Front-Port Application Design Guidelines  
DESIGN PARAMETER  
REQUIREMENT  
Egress (ASIC-to-module) direction: AC coupling capacitors in the  
range of 100 to 220 nF are required for the RX inputs and are NOT  
required for the TX outputs.  
Ingress (module-to-ASIC) direction: AC coupling capacitors in the  
range of 100 to 220 nF are required for the TX outputs and are NOT  
required for the RX inputs.  
AC coupling capacitors  
Input channel insertion loss  
Output channel insertion loss  
35 dB at 25.78125 Gbps Nyquist frequency (12.9 GHz)  
Egress (ASIC-to-module) direction: Follow CAUI-4 / CEI-25G-VSR  
host channel requirements (approximately 7dB at 12.9 GHz).  
Ingress (module-to-ASIC) direction: Depends on downstream ASIC /  
FPGA capabilities. The DS250DF410 has a low-jitter output driver  
with 3-tap FIR filter for equalizing a portion of the output channel.  
Host ASIC TX launch amplitude  
Host ASIC TX FIR filter  
800 mVppd to 1200 mVppd.  
Depends on channel loss. Refer to Setting the Output VOD, Pre-  
Cursor, and Post-Cursor Equalization.  
9.2.1.2 Detailed Design Procedure  
The design procedure for front-port applications is as follows:  
1. Determine the total number of channels on the board which require a DS250DF410 for signal conditioning.  
This will dictate the total number of DS250DF410 devices required for the board. It is generally  
recommended that channels connected to the same front-port cage be grouped together in the same  
DS250DF410 device. This will simplify the device settings, as similar loss channels generally utilize similar  
settings.  
2. Determine the maximum current draw required for all DS250DF410 retimers. This may impact the selection  
of the regulator for the 2.5-V supply rail. To calculate the maximum current draw, multiply the maximum  
transient power supply current by the total number of DS250DF410 devices.  
3. Determine the maximum operational power consumption for the purpose of thermal analysis. There are two  
ways to approach this calculation:  
a. Maximum mission-mode operational power consumption is when all channels are locked and re-  
transmitting the data which is received. PRBS pattern checkers/generators are not used in this mode  
because normal traffic cannot be checked with a PRBS checker. For this calculation, multiply the worst-  
case power consumption in mission mode by the total number of DS250DF410 devices.  
b. Maximum debug-mode operational power consumption is when all channels are locked and re-  
transmitting the data which is received. At the same time, some channels’ PRBS checkers or generators  
may be enabled. For this calculation, multiply the worst-case power consumption in debug mode by the  
total number of DS250DF410 devices.  
4. Determine the SMBus address scheme needed to uniquely address each DS250DF410 device on the board,  
depending on the total number of devices identified in step 2. Each DS250DF410 can be strapped with one  
of 16 unique SMBus addresses. If there are more DS250DF410 devices on the board than the number of  
unique SMBus addresses which can be assigned, then use an I2C expander like the TCA/PCA family of  
I2C/SMBus switches and multiplexers to split up the SMBus into multiple busses.  
5. Determine if the device will be configured from EEPROM (SMBus Master Mode) or from the system I2C bus  
(SMBus Slave Mode).  
a. If SMBus Master Mode will be used, provisions should be made for an EEPROM on the board with 8-bit  
SMBus address 0xA0. Refer to SMBus Master Mode for more details on SMBus Master Mode including  
EEPROM size requirements.  
b. If SMBus Slave Mode will be used for all device configurations, an EEPROM is not needed.  
6. Make provisions in the schematic and layout for standard decoupling capacitors between the device VDD  
supply and GND. Refer to the pin function description in Pin Configuration and Functions for more details.  
7. Make provisions in the schematic and layout for a 25 MHz (±100 ppm) single-ended CMOS clock. Each  
DS250DF410 retimer buffers the clock on the CAL_CLK_IN pin and presents the buffered clock on the  
CAL_CLK_OUT pin. This allows multiple (up to 20) retimers’ calibration clocks to be daisy chained to avoid  
版权 © 2016–2019, Texas Instruments Incorporated  
79  
DS250DF410  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
www.ti.com.cn  
the need for multiple oscillators on the board. If the oscillator used on the board has a 2.5-V CMOS output,  
then no AC coupling capacitor or resistor ladder is required at the input to CAL_CLK_IN. No AC coupling or  
resistor ladder is needed between one retimer’s CAL_CLK_OUT output and the next retimer’s CAL_CLK_IN  
input. The final retimer’s CAL_CLK_OUT output can be left floating.  
8. Connect the INT_N open-drain output to an FPGA or CPU if interrupt monitoring is desired. Note that  
multiple retimers’ INT_N outputs can be connected together because this is an open-drain output. The  
common INT_N net should be pulled high.  
9. If the application requires initial CDR lock acquisition at the ambient temperature extremes defined in  
Recommended Operating Conditions, care should be taken to ensure the operating junction temperature is  
met as well as the CDR stay-in-lock ambient temperature range defined in Timing Requirements, Retimer  
Jitter Specifications. For example, if initial CDR lock acquisition occurs at an ambient temperature of 85 ºC,  
then maintaining CDR lock would require the ambient temperature surrounding the DS250DF410 to be kept  
above (85 ºC - TEMPLOCK-).  
9.2.1.3 Application Curves  
18. DS250DF410 Operating at 25.78125 Gbps  
19. DS250DF410 FIR Transmit Equalization While  
Operating at 25.78125 Gbps  
18 shows a typical output eye diagram for the DS250DF410 operating at 25.78125 Gbps with PRBS9 pattern  
using FIR main-cursor of +18, pre-cursor of -1 and post-cursor of +2. All other device settings are left at default.  
19 shows an example of DS250DF410 FIR transmit equalization while operating at 25.78125 Gbps. In this  
example, the Tx FIR filter main-cursor is set to +15, post-cursor to -3 and pre-cursor to -3. An 8T pattern is used  
to evaluate the FIR filter, which consists of 0xFF00. All other device settings are left at default.  
80  
版权 © 2016–2019, Texas Instruments Incorporated  
 
 
DS250DF410  
www.ti.com.cn  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
9.2.2 Active Cable Applications  
The DS250DF410 has strong equalization capabilities that allow it to recover data over long and/or thin-gauge  
copper cables. A single DS250DF410 can be used on a QSFP28 paddle card to create a half-active cable  
assembly which is longer and/or thinner than passive cables. Alternatively, two DS250DF410 devices can be  
used on a QSFP28 paddle card to create a full-active cable assembly and achieve even longer reach and/or  
thinner cables.  
20 illustrates these configurations, 21 shows an example simplified schematic for a half-active cable  
application, and 22 shows an example simplified schematic for a full-active cable application.  
Line Card  
Full-Active Cable  
DS250DF410  
DS250DF410  
DS250DF410  
DS250DF410  
QSFP  
x4 25G VSR  
ASIC  
FPGA  
Half-Active Cable  
DS250DF410  
QSFP  
x4 25G VSR  
DS250DF410  
20. Active Cable Application Block Diagram  
版权 © 2016–2019, Texas Instruments Incorporated  
81  
 
DS250DF410  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
www.ti.com.cn  
No Retimer and no AC coupling capacitors needed  
Paddle  
card host  
Paddle  
card cable  
side  
AC coupling  
capacitors needed  
RX Retimer  
AC coupling  
capacitors needed  
TX0P  
RX0P  
CDR  
TX  
RX  
side  
TX0N  
RX0N  
.
.
.
.
.
.
.
.
.
.
.
.
TX7P  
TX7N  
RX7P  
RX7N  
CDR  
TX  
RX  
2.5V or  
3.3V  
VDD  
To micro-  
controller  
interrupt pin  
SMBus  
Slave mode  
1 kΩ  
INT_N  
EN_SMB  
SDA  
SDC  
To paddle  
card SMBus  
Address straps  
(pull-up, pull-  
down, or float)  
ADDR0  
ADDR1  
NC_TEST[5:0]  
CAL_CLK_IN  
25 MHz  
CAL_CLK_OUT  
SMBus Slave  
mode  
ALL_DONE_N  
GND  
READ_EN_N  
VDD  
2.5V  
Minimum  
recommended  
decoupling  
0.1F  
(4x)  
1F  
(2x)  
21. Half-Active Cable Application Schematic  
82  
版权 © 2016–2019, Texas Instruments Incorporated  
DS250DF410  
www.ti.com.cn  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
TX Retimer  
RX0P  
RX0N  
TX0P  
TX0N  
CDR  
RX  
TX  
.
.
.
.
.
.
.
.
.
.
.
.
RX3P  
RX3N  
TX3P  
TX3N  
CDR  
RX  
TX  
2.5V or  
3.3V  
VDD  
To micro-  
controller  
interrupt pin  
SMBus  
Slave mode  
1 kΩ  
INT_N  
EN_SMB  
SDA  
SDC  
To paddle  
card SMBus  
Address straps  
(pull-up, pull-  
down, or float)  
ADDR0  
ADDR1  
NC_TEST[5:0]  
CAL_CLK_IN  
To next device‘s  
CAL_CLK_IN  
25 MHz  
CAL_CLK_OUT  
SMBus Slave  
mode  
ALL_DONE_N  
GND  
READ_EN_N  
VDD  
2.5V  
Minimum  
recommended  
decoupling  
0.1F  
(4x)  
1F  
(2x)  
Paddle  
card host  
side  
Paddle  
AC coupling  
capacitors needed  
RX Retimer  
AC coupling  
card cable  
capacitors needed  
TX0P  
RX0P  
CDR  
TX  
RX  
side  
TX0N  
RX0N  
.
.
.
.
.
.
.
.
.
.
.
.
TX7P  
TX7N  
RX7P  
RX7N  
CDR  
TX  
RX  
VDD  
1 kΩ  
SMBus  
Slave mode  
INT_N  
EN_SMB  
SDA  
SDC  
Address straps  
(pull-up, pull-  
down, or float)  
ADDR0  
ADDR1  
NC_TEST[5:0]  
CAL_CLK_IN  
CAL_CLK_OUT  
SMBus Slave  
mode  
ALL_DONE_N  
GND  
READ_EN_N  
VDD  
2.5V  
Minimum  
recommended  
decoupling  
0.1F  
(4x)  
1F  
(2x)  
22. Full-Active Cable Application Schematic  
版权 © 2016–2019, Texas Instruments Incorporated  
83  
DS250DF410  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
www.ti.com.cn  
9.2.2.1 Design Requirements  
For this design example, the following guidelines outlined in 13 and 14 apply.  
13. Half-Active Cable Application Design Guidelines  
DESIGN PARAMETER  
REQUIREMENT  
Place the DS250DF410 on the receive side of the paddle card such  
that it is receiving data from the cable, and transmitting towards the  
host.  
Device placement  
100 nF AC coupling capacitors are required for the RX inputs and  
the TX outputs.  
AC coupling capacitors  
The raw cable insertion loss including the insertion loss of the paddle  
card should be 27 dB at 25.78125 Gbps Nyquist frequency (12.9  
GHz). This is to ensure that the total loss at the input to the  
DS250DF410 is 35 dB at 12.9 GHz. Assuming a worst-case host-  
side PCB loss of 7 dB, plus a connector loss of 1 dB, the remaining  
loss allocated for the raw cable and paddle cards is 27 dB.  
Cable insertion loss  
14. Full-Active Cable Application Design Guidelines  
DESIGN PARAMETER  
REQUIREMENT  
A full-active QSFP cable will utilize two pieces of DS250DF410 per  
paddle card. Typically, one device will be placed on each side of the  
paddle card.  
Device placement  
Transmit-side Retimer: 100 nF AC coupling capacitors are required  
for the RX inputs and are not required for the TX outputs. This link  
segment will be AC coupled on the paddle card at the opposite end  
of the cable.  
Receive-side Retimer: 100 nF AC coupling capacitors are required  
for the RX inputs and the TX outputs.  
AC coupling capacitors  
Cable insertion loss  
The raw cable insertion loss including the insertion loss of the paddle  
card should be 35 dB at 25.78125 Gbps Nyquist frequency (12.9  
GHz).  
9.2.2.2 Detailed Design Procedure  
The design procedure for active cable applications is as follows:  
1. Determine the maximum current draw required for the DS250DF410 retimer(s) on the paddle card. This may  
impact the selection of the regulator for the 2.5-V supply rail. To calculate the maximum current draw,  
multiply the maximum transient power supply current by the total number of DS250DF410 devices.  
2. Determine the maximum operational power consumption for the purpose of thermal analysis. There are two  
ways to approach this calculation:  
a. Maximum mission-mode operational power consumption is when all channels are locked and re-  
transmitting the data which is received. PRBS pattern checkers/generators are not used in this mode  
because normal traffic cannot be checked with a PRBS checker. For this calculation, multiply the worst-  
case power consumption in mission mode by the total number of DS250DF410 devices.  
b. Maximum debug-mode operational power consumption is when all channels are locked and re-  
transmitting the data which is received. At the same time, some channels’ PRBS checkers or generators  
may be enabled. For this calculation, multiply the worst-case power consumption in debug mode by the  
total number of DS250DF410 devices.  
3. Determine the SMBus address for the DS250DF410 Retimer(s). If using just one Retimer for a half-active  
cable, the ADDR[1:0] pins can be left floating for an 8-bit SMBus slave address of 0x44. If using a second  
DS250DF410, as in the case of a full-active cable assembly, a single pull-up or pull-down resistor can be  
used on one address pin. For example, with ADDR0 = Float and ADDR1 = 1 kΩ the 8-bit SMBus slave  
address will be 0x34.  
4. Determine if the device will be configured from EEPROM (SMBus Master Mode) or from the system I2C bus  
(SMBus Slave Mode).  
a. If SMBus Master Mode will be used, provisions should be made for an EEPROM on the board with 8-bit  
SMBus address 0xA0. Refer to SMBus Master Mode for more details on SMBus Master Mode including  
EEPROM size requirements.  
84  
版权 © 2016–2019, Texas Instruments Incorporated  
 
 
DS250DF410  
www.ti.com.cn  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
b. If SMBus Slave Mode will be used for all device configurations, for example when the Retimer(s) is  
configured with a microcontroller, an EEPROM is not needed.  
5. Make provisions in the schematic and layout for standard decoupling capacitors between the device VDD  
supply and GND. Refer to the pin function description in Pin Configuration and Functions for more details.  
6. Make provisions in the schematic and layout for a 25 MHz (±100 ppm) single-ended CMOS clock. The  
DS250DF410 retimer buffers the clock on the CAL_CLK_IN pin and presents the buffered clock on the  
CAL_CLK_OUT pin. When using two Retimers on a paddle card, only one 25 MHz clock is required. The  
CAL_CLK_OUT pin of one retimer can be connected to teh CAL_CLK_IN pin of the other retimer.  
7. Connect the INT_N open-drain output to the paddle card MCU if interrupt monitoring is desired, otherwise  
leave it floating. Note that multiple retimers’ INT_N outputs can be connected together because this is an  
open-drain output. The common INT_N net should be pulled high.  
8. If the application requires initial CDR lock acquisition at the ambient temperature extremes defined in  
Recommended Operating Conditions, care should be taken to ensure the operating junction temperature is  
met as well as the CDR stay-in-lock ambient temperature range defined in Timing Requirements, Retimer  
Jitter Specifications. For example, if initial CDR lock acquisition occurs at an ambient temperature of 85 ºC,  
then maintaining CDR lock would require the ambient temperature surrounding the DS250DF410 to be kept  
above (85 ºC - TEMPLOCK-).  
9.2.2.3 Application Curves  
See Application Curves in section Front-Port Jitter Cleaning Applications.  
版权 © 2016–2019, Texas Instruments Incorporated  
85  
DS250DF410  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
www.ti.com.cn  
9.2.3 Backplane and Mid-plane Applications  
The DS250DF410 has strong equalization capabilities that allow it to recover data over channels up to 35 dB  
insertion loss. As a result, the optimum placement for the DS250DF410 in a backplane/mid-plane application is  
with the higher-loss channel segment at the input and the lower-loss channel segment at the output. This  
reduces the equalization burden on the downstream ASIC/FPGA, as the DS250DF410 is equalizing a majority of  
the overall channel. This type of asymmetric placement is not a requirement, but when an asymmetric placement  
is required due to the presence of a passive backplane or mid-plane, then this becomes the recommended  
placement.  
Passive Backplane/  
Midplane  
Switch Fabric Card  
Line Card  
x4 25G  
ASIC  
FPGA  
x4 25G  
ASIC  
FPGA  
23. Backplane/Mid-Plane Application Block Diagram  
86  
版权 © 2016–2019, Texas Instruments Incorporated  
DS250DF410  
www.ti.com.cn  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
RX0P  
TX0P  
CDR  
CDR  
RX  
RX  
TX  
TX  
RX0N  
.
.
.
TX0N  
.
.
.
.
.
.
.
.
.
RX3P  
RX3N  
TX3P  
TX3N  
CDR  
CDR  
RX  
RX  
TX  
TX  
VDD  
2.5 V or 3.3 V  
SMBus  
Slave mode  
1 kΩ  
To other  
open-drain  
interrupt pins  
EN_SMB  
INT_N  
NC_TEST[5:0]  
SDA  
SDC  
To system  
SMBus(1)  
Address straps  
(pull-up, pull-  
down, or float)  
ADDR0  
ADDR1  
25 MHz  
CAL_CLK_IN  
CAL_CLK_OUT  
To next device‘s  
CAL_CLK_IN  
Output can float  
in slave mode  
SMBus Slave mode  
2.5 V  
READ_EN_N  
VDD  
ALL_DONE_N  
GND  
Minimum  
recommended  
decoupling  
1 F  
(2x)  
0.1 F  
(4x)  
Backplane /  
Mid-plane  
Connector  
ASIC / FPGA  
TX0P  
RX0P  
CDR  
CDR  
TX  
TX  
RX  
RX  
TX0N  
.
.
.
RX0N  
.
.
.
TX3P  
TX3N  
RX3P  
RX3N  
CDR  
CDR  
TX  
TX  
RX  
RX  
VDD  
SMBus  
1 kΩ  
Slave mode  
EN_SMB  
INT_N  
SDA  
SDC  
NC_TEST[5:0]  
Address straps  
(pull-up, pull-  
down, or float)  
ADDR0  
ADDR1  
CAL_CLK_IN  
CAL_CLK_OUT  
ALL_DONE_N  
GND  
Output can float  
in slave mode  
SMBus Slave mode  
2.5 V  
READ_EN_N  
VDD  
1 F  
(2x)  
0.1 F  
(4x)  
Minimum  
recommended  
decoupling  
24. Backplane/Mid-Plane Application Schematic  
版权 © 2016–2019, Texas Instruments Incorporated  
87  
DS250DF410  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
www.ti.com.cn  
9.2.3.1 Design Requirements  
For this design example, the following guidelines outlined in 15 apply.  
15. Backplane/Mid-Plane Application Design Guidelines  
DESIGN PARAMETER  
REQUIREMENT  
AC coupling capacitors in the range of 100 to 220 nF are required for  
the RX inputs and TX outputs.  
AC coupling capacitors  
Input channel insertion loss  
Output channel insertion loss  
35 dB at 25.78125 Gbps Nyquist frequency (12.9 GHz)  
Depends on downstream ASIC / FPGA capabilities. The  
DS250DF410 has a low-jitter output driver with 3-tap FIR filter for  
equalizing a portion of the output channel.  
Link partner TX launch amplitude  
Link partner TX FIR filter  
800 mVppd to 1200 mVppd  
Depends on channel loss. Refer to Setting the Output VOD, Pre-  
Cursor, and Post-Cursor Equalization.  
9.2.3.2 Detailed Design Procedure  
The design procedure for backplane/mid-plane applications is as follows:  
1. Determine the total number of channels on the board which require a DS250DF410 for signal conditioning.  
This will dictate the total number of DS250DF410 devices required for the board. It is generally  
recommended that channels with similar total insertion loss on the board be grouped together in the same  
DS250DF410 device. This will simplify the device settings, as similar loss channels generally utilize similar  
settings.  
2. Determine the maximum current draw required for all DS250DF410 retimers. This may impact the selection  
of the regulator for the 2.5-V supply rail. To calculate the maximum current draw, multiply the maximum  
transient power supply current by the total number of DS250DF410 devices.  
3. Determine the maximum operational power consumption for the purpose of thermal analysis. There are two  
ways to approach this calculation:  
a. Maximum mission-mode operational power consumption is when all channels are locked and re-  
transmitting the data which is received. PRBS pattern checkers/generators are not used in this mode  
because normal traffic cannot be checked with a PRBS checker. For this calculation, multiply the worst-  
case power consumption in mission mode by the total number of DS250DF410 devices.  
b. Maximum debug-mode operational power consumption is when all channels are locked and re-  
transmitting the data which is received. At the same time, some channels’ PRBS checkers or generators  
may be enabled. For this calculation, multiply the worst-case power consumption in debug mode by the  
total number of DS250DF410 devices.  
4. Determine the SMBus address scheme needed to uniquely address each DS250DF410 device on the board,  
depending on the total number of devices identified in step 2. Each DS250DF410 can be strapped with one  
of 16 unique SMBus addresses. If there are more DS250DF410 devices on the board than the number of  
unique SMBus addresses which can be assigned, then use an I2C expander like the TCA/PCA family of  
I2C/SMBus switches and multiplexers to split up the SMBus into multiple busses.  
5. Determine if the device will be configured from EEPROM (SMBus Master Mode) or from the system I2C bus  
(SMBus Slave Mode).  
a. If SMBus Master Mode will be used, provisions should be made for an EEPROM on the board with 8-bit  
SMBus address 0xA0. Refer to SMBus Master Mode for more details on SMBus Master Mode including  
EEPROM size requirements.  
b. If SMBus Slave Mode will be used for all device configurations, an EEPROM is not needed.  
6. Make provisions in the schematic and layout for standard decoupling capacitors between the device VDD  
supply and GND. Refer to the pin function description in Pin Configuration and Functions for more details.  
7. Make provisions in the schematic and layout for a 25MHz (±100 ppm) single-ended CMOS clock. Each  
DS250DF410 retimer buffers the clock on the CAL_CLK_IN pin and presents the buffered clock on the  
CAL_CLK_OUT pin. This allows multiple (up to 20) retimers’ calibration clocks to be daisy chained to avoid  
the need for multiple oscillators on the board. If the oscillator used on the board has a 2.5-V CMOS output,  
then no AC coupling capacitor or resistor ladder is required at the input to CAL_CLK_IN. No AC coupling or  
resistor ladder is needed between one retimer’s CAL_CLK_OUT output and the next retimer’s CAL_CLK_IN  
input. The final retimer’s CAL_CLK_OUT output can be left floating.  
88  
版权 © 2016–2019, Texas Instruments Incorporated  
 
DS250DF410  
www.ti.com.cn  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
8. Connect the INT_N open-drain output to an FPGA or CPU if interrupt monitoring is desired. Note that  
multiple retimers’ INT_N outputs can be connected together because this is an open-drain output. The  
common INT_N net should be pulled high.  
9. If the application requires initial CDR lock acquisition at the ambient temperature extremes defined in  
Recommended Operating Conditions, care should be taken to ensure the operating junction temperature is  
met as well as the CDR stay-in-lock ambient temperature range defined in Timing Requirements, Retimer  
Jitter Specifications. For example, if initial CDR lock acquisition occurs at an ambient temperature of 85 ºC,  
then maintaining CDR lock would require the ambient temperature surrounding the DS250DF410 to be kept  
above (85 ºC - TEMPLOCK-).  
9.2.3.3 Application Curves  
See Application Curves in section Front-Port Jitter Cleaning Applications.  
版权 © 2016–2019, Texas Instruments Incorporated  
89  
DS250DF410  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
www.ti.com.cn  
10 Power Supply Recommendations  
Follow these general guidelines when designing the power supply:  
1. The power supply should be designed to provide the recommended operating conditions outlined in  
Specifications in terms of DC voltage, AC noise, and start-up ramp time.  
2. The maximum current draw for the DS250DF410 is provided in Specifications . This figure can be used to  
calculate the maximum current the power supply must provide. Typical mission-mode current draw can be  
inferred from the typical power consumption in Specifications.  
3. The DS250DF410 does not require any special power supply filtering (that is, ferrite bead), provided the  
recommended operating conditions are met. Only standard supply decoupling is required. Refer to Pin  
Configuration and Functions for details concerning the recommended supply decoupling.  
11 Layout  
11.1 Layout Guidelines  
The following guidelines should be followed when designing the layout:  
1. Decoupling capacitors should be placed as close to the VDD pins as possible. Placing them directly  
underneath the device is one option if the board design permits.  
2. High-speed differential signals TXnP/TXnN and RXnP/RXnN should be tightly coupled, skew matched, and  
impedance controlled.  
3. Vias should be avoided when possible on the high-speed differential signals. When vias must be used, care  
should be taken to minimize the via stub, either by transitioning through most/all layers, or by back drilling.  
4. GND relief can be used beneath the high-speed differential signal pads to improve signal integrity by  
counteracting the pad capacitance.  
5. GND relief can be used beneath the AC coupling capacitor pads to improve signal integrity by counteracting  
the pad capacitance.  
6. GND vias should be placed directly beneath the device connecting the GND plane attached to the device to  
the GND planes on other layers. This has the added benefit of improving thermal conductivity from the  
device to the board  
7. BGA landing pads for a 0.5-mm pitch flip-chip BGA are typically 0.3 mm in diameter (exposed). The actual  
size of the copper pad will depend on whether solder-mask-defined (SMD) or non-solder-mask-defined  
solder land pads are used. For more information, refer to TI’s Surface Mount Technology (SMT) and  
Packaging application notes on the TI website.  
8. If vias are used for the high-speed signals, ground via should be implemented adjacent to the signal via to  
provide return path and isolation. For differential pair, the typical via configuration is ground-signal-signal-  
ground.  
9. Note that some BGA balls in the DS250DF410 pinout have been de-populated to allow for GND and VDD  
vias to be placed with 1.0 mm via-to-via spacing.  
11.2 Layout Example  
The following example layout demonstrates how all signals can be escaped from the BGA array using microstrip  
routing on a generic multi-layer stackup. This example layout assumes the following:  
Trace width: 0.159 mm (6.25 mil)  
Trace edge-to-edge spacing: 0.197 mm (7.75 mil)  
VIA-to-VIA spacing: 0.7 mm (27.9 mil) minimum; Note: 1.0 mm VIA-to-VIA spacing is also achievable if PCB  
manufacturing rules stipulate  
No VIA-in-pad used  
Note: Some TI test pins (i.e. NC_TEST[5:0]) are routed in this example layout, but in most applications these  
pins can be left floating.  
Note that many other escape routing options exist using different trace width and spacing combinations. The  
optimum trace width and spacing will depend on the PCB material, PCB routing density, and other factors.  
90  
版权 © 2016–2019, Texas Instruments Incorporated  
DS250DF410  
www.ti.com.cn  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
Layout Example (接下页)  
26. Layer 1 GND  
25. Top Layer  
27. Internal Low-Speed Signal Layers  
28. VDD Layer  
29. Bottom Layer  
版权 © 2016–2019, Texas Instruments Incorporated  
91  
DS250DF410  
ZHCSKE8D MARCH 2016REVISED OCTOBER 2019  
www.ti.com.cn  
12 器件和文档支持  
12.1 文档支持  
12.1.1 开发支持  
更多相关信息,请参阅 TI 表面贴装技术 (SMT) 参考资料(位于  
http://focus.ti.com/quality/docs 页面的质量和无铅 (Pb) 数据菜单下)。  
12.2 文档支持  
12.2.1 相关文档  
请参阅如下相关文档:  
DS2x0DF810DS250DFx10DS250DF230 编程人员指南》 (SNLU182)  
单击此处,请求访问 DS250DF410 MySecure 文件夹中的 DS2X0DFX10 IBIS-AMI 模型和编程人员指南。  
12.3 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.4 支持资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.5 商标  
E2E is a trademark of Texas Instruments.  
12.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
92  
版权 © 2016–2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Nov-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DS250DF410ABMR  
DS250DF410ABMT  
ACTIVE  
ACTIVE  
FCCSP  
FCCSP  
ABM  
ABM  
101  
101  
1000 RoHS & Green  
250 RoHS & Green  
SNAGCU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
DS250DF4  
DS250DF4  
SNAGCU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Nov-2021  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Jul-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DS250DF410ABMR  
DS250DF410ABMT  
FCCSP  
FCCSP  
ABM  
ABM  
101  
101  
1000  
250  
330.0  
178.0  
16.4  
16.4  
6.3  
6.3  
6.3  
6.3  
1.5  
1.5  
12.0  
12.0  
16.0  
16.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Jul-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DS250DF410ABMR  
DS250DF410ABMT  
FCCSP  
FCCSP  
ABM  
ABM  
101  
101  
1000  
250  
356.0  
208.0  
356.0  
191.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
ABM0101A  
FCBGA - 1.03 mm max height  
SCALE 2.300  
PLASTIC BALL GRID ARRAY  
6.1  
5.9  
A
B
BALL A1 CORNER  
6.1  
5.9  
1.03 MAX  
C
SEATING PLANE  
0.08 C  
BALL TYP  
0.26  
TYP  
0.15  
5 TYP  
SYMM  
(0.5) TYP  
L
K
J
(0.5) TYP  
H
G
F
SYMM  
5
TYP  
E
D
C
0.35  
101X  
0.25  
0.15  
0.05  
C A  
C
B
B
A
0.5 TYP  
1
2
3
4
5
6
7
8
9
10 11  
0.5 TYP  
BALL A1 CORNER  
4222100/B 09/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
ABM0101A  
FCBGA - 1.03 mm max height  
PLASTIC BALL GRID ARRAY  
(0.5) TYP  
101X ( 0.28)  
8
9
1
2
3
4
5
6
7
10  
11  
A
B
C
(0.5) TYP  
D
E
F
G
H
J
SYMM  
K
L
SYMM  
LAND PATTERN EXAMPLE  
SCALE:15X  
0.05 MAX  
0.05 MIN  
METAL UNDER  
SOLDER MASK  
(
0.28)  
METAL  
(
0.28)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4222100/B 09/2015  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For information, see Texas Instruments literature number SPRAA99 (www.ti.com/lit/spraa99).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
ABM0101A  
FCBGA - 1.03 mm max height  
PLASTIC BALL GRID ARRAY  
(0.5) TYP  
8
9
1
2
3
4
5
6
7
10  
11  
A
(0.5) TYP  
B
C
D
E
F
G
H
J
SYMM  
K
L
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:15X  
101X ( 0.25)  
PCB PAD  
(R0.05) TYP  
S
C
A
L
E
6
0
.
0
0
0
STENCIL DETAIL  
NTS  
4222100/B 09/2015  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

DS250DF810

25Gbps 多速率 8 通道重定时器
TI

DS250DF810ABVR

25Gbps 多速率 8 通道重定时器 | ABV | 135 | -10 to 85
TI

DS250DF810ABVT

25Gbps 多速率 8 通道重定时器 | ABV | 135 | -10 to 85
TI

DS2540-7D0TB2

D/A Converter,
BEL

DS2540-7DDTB1

D/A Converter,
BEL

DS2540-7ED0TB2

D/A Converter,
BEL

DS2540-7EDDTB2

D/A Converter,
BEL

DS2540-7EPD0

暂无描述
BEL

DS2540-7EPD0B2

DC-DC Regulated Power Supply Module, 2 Output, 100W, Hybrid, METAL, CASE S02, MODULE
BEL

DS2540-7EPD0T

DC-DC Regulated Power Supply Module, 2 Output, Hybrid, HEAT SINK, METAL, CASE S02, MODULE
BEL

DS2540-7EPD0TB1

DC-DC Regulated Power Supply Module, 2 Output, Hybrid, METAL, CASE S02, MODULE
BEL

DS2540-7EPD0TB2

DC-DC Regulated Power Supply Module, 2 Output, 100W, Hybrid, METAL, CASE S02, MODULE
BEL