DRV8300DPWRQ1 [TI]

具有自举二极管的汽车类 100V(最大值)简单三相栅极驱动器 | PW | 20 | -40 to 125;
DRV8300DPWRQ1
型号: DRV8300DPWRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有自举二极管的汽车类 100V(最大值)简单三相栅极驱动器 | PW | 20 | -40 to 125

栅极驱动 二极管 驱动器
文件: 总26页 (文件大小:1519K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DRV8300-Q1  
ZHCSPF5 APRIL 2022  
DRV8300-Q1100V BLDC 栅极驱动器  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准  
– 温度等140°C TA 125°C  
100V 三相半桥栅极驱动器  
DRV8300-Q1 是一款 100V 三相半桥栅极驱动器能  
够驱动高侧和低侧 N 沟道功率 MOSFETDRV8300-  
Q1 使用集成自举二极管和外部电容为高侧 MOSFET  
生成合适的栅极驱动电压。GVDD 于为低侧  
MOSFET 生成栅极驱动电压。栅极驱动架构支持高达  
750 mA 的峰值拉电流1.5A 的峰值灌电流。  
– 驱N MOSFET (NMOS)  
– 栅极驱动器电(GVDD)5-20V  
MOSFET (SHx) 支持高100V 的电压  
• 集成自举二极管  
相位引脚 SHx 能够承受显著的负电压瞬变而高侧栅  
极驱动器电源 BSTx GHx 能够支持更高的正电压瞬  
(115V) 绝对最大值从而提高系统的稳健性。较小  
的传播延迟和延迟匹配规格可最大限度地降低死区时间  
要求从而进一步提高效率。通GVDD BST 欠压  
锁定功能为低侧和高侧提供欠压保护。  
• 自举栅极驱动架构  
750mA 拉电流  
1.5A 灌电流  
• 支持高48V 的汽车系统  
SHx 引脚具有低泄漏电流55µA)  
• 绝对最BSTx 电压高115V  
• 支SHx 上低-22V 的负电压瞬变  
• 内置跨导保护  
• 固定插215 ns 死区时间  
• 支3.3V 5V 逻辑输入绝对最大值20V)  
4ns 典型传播延迟匹配  
器件信息  
器件型号(1)  
封装尺寸标称值)  
封装  
DRV8300QDPWRQ1 TSSOP (20)  
6.40mm × 4.40mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
• 紧凑TSSOP 封装  
• 具有电源块的高效系统设计  
• 集成保护特性  
PVDD  
GVDD  
DBx  
BSTA, BSTB, BSTC  
GVDD  
BST 欠压锁(BSTUV)  
GVDD (GVDDUV)  
INHA  
INHB  
INHC  
GHA, GHB, GHC  
SHA, SHB, SHC  
MCU  
DRV8300D  
INLA  
INLB  
INLC  
2 应用  
GLA, GLB. GLC  
48V 汽车和工业应用  
GND  
Repeated for 3  
phases  
电动自行车电动汽车  
电动踏板车  
压缩机  
HVAC 风机风扇  
汽车风扇和鼓风机  
DRV8300-Q1 的简化版原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSGO4  
 
 
 
DRV8300-Q1  
ZHCSPF5 APRIL 2022  
www.ti.com.cn  
Table of Contents  
8.3 Feature Description...................................................11  
8.4 Device Functional Modes..........................................13  
9 Application and Implementation..................................14  
9.1 Application Information............................................. 14  
9.2 Typical Application.................................................... 15  
10 Power Supply Recommendations..............................18  
11 Layout...........................................................................19  
11.1 Layout Guidelines................................................... 19  
12 Device and Documentation Support..........................20  
12.1 接收文档更新通知................................................... 20  
12.2 支持资源..................................................................20  
12.3 Trademarks.............................................................20  
12.4 Electrostatic Discharge Caution..............................20  
12.5 术语表..................................................................... 20  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings........................................ 5  
7.2 ESD Ratings AUTO.................................................... 5  
7.3 Recommended Operating Conditions.........................5  
7.4 Thermal Information....................................................6  
7.5 Electrical Characteristics.............................................6  
7.6 Timing Diagrams.........................................................7  
7.7 Typical Characteristics................................................8  
8 Detailed Description........................................................9  
8.1 Overview.....................................................................9  
8.2 Functional Block Diagram.........................................10  
Information.................................................................... 20  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
4-1.  
Date  
Revision  
Notes  
April 2022  
*
Initial Release  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: DRV8300-Q1  
 
DRV8300-Q1  
ZHCSPF5 APRIL 2022  
www.ti.com.cn  
5 Device Comparison Table  
Integrated Bootstrap  
Diode  
GLx polarity with  
respect to INLx Input  
Device Variants  
Package  
20-Pin TSSOP  
Deadtime  
DRV8300D  
Yes  
Non-Inverted  
Fixed  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: DRV8300-Q1  
 
DRV8300-Q1  
ZHCSPF5 APRIL 2022  
www.ti.com.cn  
6 Pin Configuration and Functions  
1
INHA  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
BSTA  
2
3
4
5
6
INHB  
INHC  
GHA  
SHA  
BSTB  
GHB  
INLA  
INLB  
INLC  
GVDD  
GND  
GLC  
DRV8300  
SHB  
BSTC  
GHC  
7
8
SHC  
GLA  
9
GLB  
10  
6-1. DRV8300-Q1 PW Package 20-Pin TSSOP Top View  
6-1. Pin Functions20-Pin DRV8300-Q1 Devices  
PIN  
TYPE1  
DESCRIPTION  
NAME  
BSTA  
BSTB  
BSTC  
GHA  
GHB  
GHC  
GLA  
NO.  
20  
17  
14  
19  
16  
13  
11  
10  
9
O
O
O
O
O
O
O
O
O
I
Bootstrap output pin. Connect capacitor between BSTA and SHA  
Bootstrap output pin. Connect capacitor between BSTB and SHB  
Bootstrap output pin. Connect capacitor between BSTC and SHC  
High-side gate driver output. Connect to the gate of the high-side power MOSFET.  
High-side gate driver output. Connect to the gate of the high-side power MOSFET.  
High-side gate driver output. Connect to the gate of the high-side power MOSFET.  
Low-side gate driver output. Connect to the gate of the low-side power MOSFET.  
Low-side gate driver output. Connect to the gate of the low-side power MOSFET.  
Low-side gate driver output. Connect to the gate of the low-side power MOSFET.  
GLB  
GLC  
INHA  
INHB  
INHC  
INLA  
INLB  
INLC  
GND  
SHA  
1
High-side gate driver control input. This pin controls the output of the high-side gate driver.  
High-side gate driver control input. This pin controls the output of the high-side gate driver.  
High-side gate driver control input. This pin controls the output of the high-side gate driver.  
Low-side gate driver control input. This pin controls the output of the low-side gate driver.  
Low-side gate driver control input. This pin controls the output of the low-side gate driver.  
Low-side gate driver control input. This pin controls the output of the low-side gate driver.  
2
I
3
I
4
I
5
I
6
I
8
PWR Device ground.  
18  
15  
12  
I
I
I
High-side source sense input. Connect to the high-side power MOSFET source.  
SHB  
High-side source sense input. Connect to the high-side power MOSFET source.  
High-side source sense input. Connect to the high-side power MOSFET source.  
SHC  
Gate driver power supply input. Connect a X5R or X7R, GVDD-rated ceramic and greater then or equal  
to 10-uF local capacitance between the GVDD and GND pins.  
GVDD  
7
PWR  
1. PWR = power, I = input, O = output, NC = no connection  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: DRV8300-Q1  
 
 
DRV8300-Q1  
ZHCSPF5 APRIL 2022  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating temperature range (unless otherwise noted)(1)  
MIN  
-0.3  
-0.3  
-0.3  
-0.3  
-22  
MAX UNIT  
Gate driver regulator pin voltage  
Bootstrap pin voltage  
GVDD  
21.5  
115  
V
V
BSTx  
Bootstrap pin voltage  
BSTx with respect to SHx  
21.5  
V
Logic pin voltage  
INHx, INLx  
VGVDD+0.3  
115  
V
High-side gate drive pin voltage  
High-side gate drive pin voltage  
Transient 500-ns high-side gate drive pin voltage  
Low-side gate drive pin voltage  
Transient 500-ns low-side gate drive pin voltage  
High-side source pin voltage  
Ambient temperature, TA  
GHx  
V
GHx with respect to SHx  
-0.3  
-5  
22  
V
GHx with respect to SHx  
22  
V
GLx  
GLx  
SHx  
-0.3  
-5  
VGVDD+0.3  
VGVDD+0.3  
100  
V
V
-22  
V
125  
°C  
°C  
°C  
40  
40  
65  
Junction temperature, TJ  
150  
Storage temperature, Tstg  
150  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime  
7.2 ESD Ratings AUTO  
VALUE  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
HBM ESD Classification Level 2  
±2000  
Electrostatic  
discharge  
V(ESD)  
V
Corner pins  
Other pins  
±750  
±750  
Charged device model (CDM), per AEC Q100-011  
CDM ESD Classification Level C4B  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
over operating temperature range (unless otherwise noted)  
MIN  
5
NOM  
MAX UNIT  
VGVDD  
VSHx  
Power supply voltage  
GVDD  
SHx  
20  
85  
V
V
High-side source pin voltage  
-2  
Transient 2µs high-side source pin  
voltage  
VSHx  
SHx  
-22  
85  
V
VBST  
VBST  
VIN  
Bootstrap pin voltage  
BSTx  
5
5
0
0
105  
20  
V
V
Bootstrap pin voltage  
BSTx with respect to SHx  
INHx, INLx, MODE, DT  
INHx, INLx  
Logic input voltage  
GVDD  
200  
2
V
fPWM  
VSHSL  
CBOOT  
TA  
PWM frequency  
kHz  
V/ns  
µF  
°C  
°C  
Slew rate on SHx pin  
(1)  
Capacitor between BSTx and SHx  
Operating ambient temperature  
Operating junction temperature  
1
125  
150  
40  
40  
TJ  
(1) Current flowing through boot diode (DBOOT) needs to be limited for CBOOT > 1µF  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: DRV8300-Q1  
 
 
 
 
 
 
 
DRV8300-Q1  
ZHCSPF5 APRIL 2022  
www.ti.com.cn  
UNIT  
7.4 Thermal Information  
DRV8300-Q1  
PW (TSSOP)  
20 PINS  
97.4  
THERMAL METRIC (1)  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top) Junction-to-case (top) thermal resistance  
38.3  
RθJB  
ΨJT  
Junction-to-board thermal resistance  
48.8  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
4.3  
48.4  
ΨJB  
RθJC(bot) Junction-to-case (bottom) thermal resistance  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
4.8 V VGVDD 20 V, 40°C TJ 150°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLIES (GVDD, BSTx)  
GVDD standby mode current  
INHx = INLX = 0; VBSTx = VGVDD  
400  
400  
2
800  
825  
4
1400  
1400  
7
µA  
µA  
µA  
µA  
IGVDD  
INHx = INLX = Switching @20kHz; VBSTx  
= VGVDD; NO FETs connected  
GVDD active mode current  
Bootstrap pin leakage current  
ILBSx  
VBSTx = VSHx = 85V; VGVDD = 0V  
INHx = Switching@20kHz  
Bootstrap pin active mode transient  
leakage current  
ILBS_TRAN  
30  
105  
220  
Bootstrap pin active mode leakage  
static current  
ILBS_DC  
ILSHx  
INHx = High  
30  
30  
85  
55  
150  
80  
µA  
µA  
INHx = INLX = 0; VBSTx - VSHx = 12V;  
VSHx = 0 to 85V  
High-side source pin leakage current  
LOGIC-LEVEL INPUTS (INHx, INLx, MODE)  
VHYS_MODE  
VHYS  
Input hysteresis  
Input hysteresis  
Mode pin  
1600  
40  
2000  
100  
2400  
260  
mV  
mV  
INLx, INHx pins  
VPIN (Pin Voltage) = 0 V; INLx in non-  
inverting mode  
IIL_INLx  
IIH_INLx  
INLx Input logic low current  
INLx Input logic high current  
-1  
5
0
1
µA  
µA  
VPIN (Pin Voltage) = 5 V; INLx in non-  
inverting mode  
20  
30  
IIL  
INHx, MODE Input logic low current VPIN (Pin Voltage) = 0 V;  
INHx, MODE Input logic high current VPIN (Pin Voltage) = 5 V;  
-1  
5
0
20  
1
30  
µA  
µA  
IIH  
RPD_INHx  
RPD_INLx  
RPD_MODE  
INHx Input pulldown resistance  
INLx Input pulldown resistance  
MODE Input pulldown resistance  
To GND  
120  
120  
120  
200  
200  
200  
280  
280  
280  
kΩ  
kΩ  
kΩ  
To GND, INLx in non-inverting mode  
To GND  
GATE DRIVERS (GHx, GLx, SHx, SLx)  
IGLx = -100 mA; VGVDD = 12V; No FETs  
connected  
VGHx_LO  
VGHx_HI  
VGLx_LO  
VGLx_HI  
High-side gate drive low level voltage  
0
0.3  
0
0.15  
0.6  
0.35  
1.2  
V
V
V
V
High-side gate drive high level  
voltage (VBSTx - VGHx  
IGHx = 100 mA; VGVDD = 12V; No FETs  
connected  
)
IGLx = -100 mA; VGVDD = 12V; No FETs  
connected  
Low-side gate drive low level voltage  
0.15  
0.6  
0.35  
1.2  
Low-side gate drive high level voltage IGHx = 100 mA; VGVDD = 12V; No FETs  
0.3  
(VGVDD - VGHx  
)
connected  
IDRIVEP_HS  
IDRIVEN_HS  
High-side peak source gate current  
High-side peak sink gate current  
GHx-SHx = 12V  
GHx-SHx = 0V  
400  
850  
750  
1200  
2100  
mA  
mA  
1500  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: DRV8300-Q1  
 
 
 
DRV8300-Q1  
ZHCSPF5 APRIL 2022  
www.ti.com.cn  
4.8 V VGVDD 20 V, 40°C TJ 150°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
400  
850  
TYP  
750  
MAX  
1200  
2100  
UNIT  
mA  
IDRIVEP_LS  
IDRIVEN_LS  
Low-side peak source gate current  
Low-side peak sink gate current  
GLx = 12V  
GLx = 0V  
1500  
mA  
INHx, INLx to GHx, GLx; VGVDD = VBSTx  
VSHx > 8V; SHx = 0V, No load on GHx  
and GLx  
-
tPD  
Input to output propagation delay  
70  
125  
±4  
180  
30  
ns  
ns  
GHx turning OFF to GLx turning ON, GLx  
turning OFF to GHx turning ON; VGVDD  
Matching propagation delay per  
phase  
=
tPD_match  
-30  
VBSTx - VSHx > 8V; SHx = 0V, No load on  
GHx and GLx  
GHx/GLx turning ON to GHy/GLy turning  
Matching propagation delay phase to ON, GHx/GLx turning OFF to GHy/GLy  
tPD_match  
-30  
±4  
30  
ns  
phase  
turning OFF; VGVDD = VBSTx - VSHx  
>
8V; SHx = 0V, No load on GHx and GLx  
CLOAD = 1000 pF; VGVDD = VBSTx  
VSHx > 8V; SHx = 0V  
-
-
tR_GLx  
tR_GHx  
tF_GLx  
GLx rise time (10% to 90%)  
GHx rise time (10% to 90%)  
GLx fall time (90% to 10%)  
10  
10  
5
24  
24  
12  
50  
50  
30  
ns  
ns  
ns  
CLOAD = 1000 pF; VGVDD = VBSTx  
VSHx > 8V; SHx = 0V  
CLOAD = 1000 pF; VGVDD = VBSTx - VSHx  
8V; SHx = 0V  
>
>
CLOAD = 1000 pF; VGVDD = VBSTx - VSHx  
8V; SHx = 0V  
tF_GHx  
tDEAD  
GHx fall time (90% to 10%)  
Gate drive dead time  
5
12  
30  
ns  
ns  
150  
215  
280  
Minimum input pulse width on INHx,  
INLx that changes the output on  
GHx, GLx  
tPW_MIN  
40  
70  
150  
ns  
BOOTSTRAP DIODES (DRV8300D, DRV8300DI)  
IBOOT = 100 µA  
IBOOT = 100 mA  
0.45  
2
0.7  
2.3  
0.85  
3.1  
V
V
VBOOTD  
Bootstrap diode forward voltage  
Bootstrap dynamic resistance  
RBOOTD  
IBOOT = 100 mA and 80 mA  
11  
15  
25  
(ΔVBOOTD/ΔIBOOT  
PROTECTION CIRCUITS  
)
Supply rising  
4.45  
4.2  
4.6  
4.35  
280  
4.7  
4.4  
V
V
Gate Driver Supply undervoltage  
lockout (GVDDUV)  
VGVDDUV  
Supply falling  
VGVDDUV_HYS Gate Driver Supply UV hysteresis  
Rising to falling threshold  
250  
310  
mV  
Gate Driver Supply undervoltage  
deglitch time  
tGVDDUV  
5
3.6  
3.5  
10  
4.2  
4
13  
4.8  
4.5  
µs  
V
Boot Strap undervoltage lockout  
Supply rising  
(VBSTx - VSHx  
Boot Strap undervoltage lockout  
(VBSTx - VSHx  
)
VBSTUV  
Supply falling  
V
)
VBSTUV_HYS  
tBSTUV  
Bootstrap UV hysteresis  
Rising to falling threshold  
200  
10  
mV  
µs  
Bootstrap undervoltage deglitch time  
6
22  
7.6 Timing Diagrams  
INHx/INLx  
GHx/GLx  
50%  
50%  
tPD  
tPD  
7-1. Propagation Delay(tPD  
)
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: DRV8300-Q1  
 
DRV8300-Q1  
ZHCSPF5 APRIL 2022  
www.ti.com.cn  
INHx  
INLx  
GHx  
GLx  
tPD_match  
tPD_match  
7-2. Propagation Delay Match (tPD_match  
)
7.7 Typical Characteristics  
1150  
1100  
1050  
1000  
950  
1150  
1100  
1050  
1000  
950  
VGVDD = 5 V  
VGVDD = 12 V  
VGVDD = 20 V  
900  
900  
850  
850  
800  
TJ = -40C  
800  
750  
700  
TJ = 25C  
TJ = 150C  
750  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
4
6
8
10  
12  
14  
16  
18  
20  
Junction Temperature (C)  
GVDD Voltage (V)  
7-4. Supply Current Over Temperature  
7-3. Supply Current Over GVDD Voltage  
7-6. Bootstrap Diode Forward Voltage over  
7-5. Bootstrap Resistance Over GVDD Voltage  
GVDD Voltage  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: DRV8300-Q1  
 
DRV8300-Q1  
ZHCSPF5 APRIL 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The DRV8300-Q1 is a gate driver for three-phase motor drive applications. These devices decrease system  
component count, saves PCB space and cost by integrating three independent half-bridge gate drivers and  
optional bootstrap diodes.  
DRV8300-Q1 supports external N-channel high-side and low-side power MOSFETs and can drive 750-mA  
source, 1.5-A sink peak currents with total combined 30-mA average output current. The DRV8300-Q1 is  
available in 0.65-mm pitch TSSOP surface-mount packages. The TSSOP body size is 6.5 × 4.4 mm (0.65-mm  
pin pitch) for the 20-pin package.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: DRV8300-Q1  
 
 
DRV8300-Q1  
ZHCSPF5 APRIL 2022  
www.ti.com.cn  
8.2 Functional Block Diagram  
GVDD  
PVDD  
CGVDD  
GVDD  
HS  
BSTA  
GHA  
SHA  
CBSTA  
RGHA  
INHA  
INLA  
HS  
GVDD  
LS  
RGLA  
GLA  
LS  
Gate Driver  
GVDD  
BSTB  
GHB  
SHB  
PVDD  
CBSTB  
RGHB  
HS  
HS  
INHB  
Input logic  
control  
INLB  
GVDD  
LS  
RGLB  
GLB  
LS  
Shoot-  
Through  
Prevenon  
Gate Driver  
GVDD  
PVDD  
BSTC  
GHC  
SHC  
CBSTC  
R
INHC  
INLC  
GHC  
HS  
HS  
GVDD  
LS  
Gate Driver  
RGLC  
GLC  
LS  
GND  
PowerPAD  
8-1. Block Diagram for DRV8300-Q1  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: DRV8300-Q1  
 
DRV8300-Q1  
ZHCSPF5 APRIL 2022  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Three BLDC Gate Drivers  
The DRV8300-Q1 integrates three half-bridge gate drivers, each capable of driving high-side and low-side N-  
channel power MOSFETs. Input on GVDD provides the gate bias voltage for the low-side MOSFETs. The high  
voltage is generated using bootstrap capacitor and GVDD supply. The half-bridge gate drivers can be used in  
combination to drive a three-phase motor or separately to drive other types of loads.  
8.3.1.1 Gate Drive Timings  
8.3.1.1.1 Propagation Delay  
The propagation delay time (tpd) is measured as the time between an input logic edge to a detected output  
change. This time has two parts consisting of the input deglitcher delay and the delay through the analog gate  
drivers.  
The input deglitcher prevents high-frequency noise on the input pins from affecting the output state of the gate  
drivers. The analog gate drivers have a small delay that contributes to the overall propagation delay of the  
device.  
8.3.1.1.2 Deadtime and Cross-Conduction Prevention  
In the DRV8300-Q1, high-side and low-side inputs operate independently, with an exception to prevent cross  
conduction when high and low side are turned ON at same time. The DRV8300-Q1 turns OFF high-side and low-  
side output to prevent shoot through when the both high-side and low-side inputs are at logic HIGH at same  
time.  
Fixed deadtime of 215 ns (typical value) is inserted to prevent high and low side gate output turning ON at same  
time.  
INHx/INLx Inputs  
INHx  
INLx  
GHx/GLx outputs  
GHx  
GLx  
DT  
DT  
Cross  
Conduction  
Prevention  
8-2. Cross Conduction Prevention and Deadtime Insertion  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: DRV8300-Q1  
 
DRV8300-Q1  
ZHCSPF5 APRIL 2022  
www.ti.com.cn  
8.3.1.2 Gate Driver Outputs  
8-3 shows the relation between INHx and INLx inputs and GHx and GLx outputs for DRV8300-Q1.  
INHx  
INLx  
GHx  
GLx  
DT  
DT  
DT  
8-3. Non-Inverted INLx inputs  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: DRV8300-Q1  
 
DRV8300-Q1  
ZHCSPF5 APRIL 2022  
www.ti.com.cn  
8.3.2 Pin Diagrams  
8-4 shows the input structure for the logic level pins INHx, INLx.  
INPUT  
Logic High  
Logic Low  
INHx  
INLx  
200 k  
8-4. INHx and INLx Logic-Level Input Pin Structure  
8.3.3 Gate Driver Protective Circuits  
The DRV8300-Q1 is protected against BSTx undervoltage and GVDD undervoltage events.  
8-1. Fault Action and Response  
FAULT  
CONDITION  
GATE DRIVER  
RECOVERY  
Automatic:  
VBSTx > VBSTUV and low to high  
PWM edge detected on INHx pin  
VBSTx undervoltage  
(BSTUV)  
VBSTx < VBSTUV  
GHx - Hi-Z  
GVDD undervoltage  
(GVDDUV)  
Automatic:  
VGVDD > VGVDDUV  
VGVDD < VGVDDUV  
Hi-Z  
8.3.3.1 VBSTx Undervoltage Lockout (BSTUV)  
The DRV8300-Q1 has separate voltage comparator to detect undervoltage condition for each phases. If at any  
time the voltage on the BSTx pin falls lower than the VBSTUV threshold, high side external MOSFETs of that  
particular phase is disabled by disabling (Hi-Z) GHx pin. Normal operation starts again when the BSTUV  
condition clears and low to high PWM edge is detected on INHx input of the same phase that BSTUV condition  
was detected. BSTUV protection ensures that high-side MOSFETs are not driven when the BSTx pins has lower  
value.  
8.3.3.2 GVDD Undervoltage Lockout (GVDDUV)  
If at any time the voltage on the GVDD pin falls lower than the VGVDDUV threshold voltage, all of the external  
MOSFETs are disabled. Normal operation starts again when the GVDDUV condition clears. GVDDUV protection  
ensures that external MOSFETs are not driven when the GVDD input is at lower value.  
8.4 Device Functional Modes  
The DRV8300-Q1 is in operating (active) mode, whenever the GVDD and BST pins are higher than the UV  
threshold (GVDD > VGVDDUVand VBSTX > VBSTUV). In active mode, the gate driver output GHx and GLX will  
follow respective inputs INHx and INLx.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: DRV8300-Q1  
 
 
DRV8300-Q1  
ZHCSPF5 APRIL 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
The DRV8300-Q1 family of devices is primarily used in applications for three-phase brushless DC motor control.  
The design procedures in the Typical Application section highlight how to use and configure the DRV8300-Q1.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: DRV8300-Q1  
 
 
DRV8300-Q1  
ZHCSPF5 APRIL 2022  
www.ti.com.cn  
9.2 Typical Application  
GVDD  
GVDD  
GND  
CGVDD  
PVDD  
External  
Supply  
GND  
BSTA  
CBSTA  
RGHA  
GHA  
SHA  
RGLA  
INHA  
INLA  
GLA  
INHB  
INLB  
PWM  
MCU  
PVDD  
BSTB  
INHC  
INLC  
CBSTB  
RGHB  
GHB  
SHB  
DRV8300-  
Q1  
RGLB  
GLB  
PVDD  
BSTC  
BSTC  
CBSTC  
R
GHC  
GHC  
SHC  
GHC  
SHC  
RGLC  
GLC  
GLC  
INA+  
INB+ INC+  
R
INA-  
INB-  
INC-  
R
R
N-  
INx+  
INx-  
N-  
N+  
R
R
IN-  
+  
OUT  
IN+  
+
Reference  
Voltage  
V
R
REF  
Current Sense Amplifier 1x or 3x  
+
9-1. Application Schematic  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: DRV8300-Q1  
 
DRV8300-Q1  
ZHCSPF5 APRIL 2022  
www.ti.com.cn  
9.2.1 Design Requirements  
9-1 lists the example design input parameters for system design.  
9-1. Design Parameters  
EXAMPLE DESIGN PARAMETER  
REFERENCE  
EXAMPLE VALUE  
MOSFET  
-
CSD19532Q5B  
12 V  
Gate Supply Voltage  
Gate Charge  
VGVDD  
QG  
48 nC  
9.2.2 Bootstrap Capacitor and GVDD Capacitor Selection  
The bootstrap capacitor must be sized to maintain the bootstrap voltage above the undervoltage lockout for  
normal operation. 方程1 calculates the maximum allowable voltage drop across the bootstrap capacitor:  
¿8$56: = 8)8&& F8$116&F8  
$5678  
(1)  
=12 V 0.85 V 4.5 V = 6.65 V  
where  
VGVDD is the supply voltage of the gate drive  
VBOOTD is the forward voltage drop of the bootstrap diode  
VBSTUV is the threshold of the bootstrap undervoltage lockout  
In this example the allowed voltage drop across bootstrap capacitor is 6.65 V. It is generally recommended that  
ripple voltage on both the bootstrap capacitor and GVDD capacitor should be minimized as much as possible.  
Many of commercial, industrial, and automotive applications use ripple value between 0.5 V to 1 V.  
The total charge needed per switching cycle can be estimated with 方程2:  
+.$5_64#05  
3616 = 3) +  
B
59  
(2)  
=48 nC + 220 μA/20 kHz = 50 nC + 11 nC = 61 nC  
where  
QG is the total MOSFET gate charge  
ILBS_TRAN is the bootstrap pin leakage current  
fSW is the is the PWM frequency  
The minimum bootstrap capacitor an then be estimated as below assuming 1V ΔVBSTx  
:
3
%
=
616W  
$56_/+0  
¿8  
$56:  
(3)  
= 61 nC / 1 V = 61 nF  
The calculated value of minimum bootstrap capacitor is 61 nF. It should be noted that, this value of capacitance  
is needed at full bias voltage. In practice, the value of the bootstrap capacitor must be greater than calculated  
value to allow for situations where the power stage may skip pulse due to various transient conditions. It is  
recommended to use a 100 nF bootstrap capacitor in this example. It is also recommenced to include enough  
margin and place the bootstrap capacitor as close to the BSTx and SHx pins as possible.  
%
)8&&  
R 10 × %$56:  
(4)  
= 10*100 nF= 1 μF  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: DRV8300-Q1  
 
 
 
DRV8300-Q1  
ZHCSPF5 APRIL 2022  
www.ti.com.cn  
For this example application choose 1 µF CGVDD capacitor. Choose a capacitor with a voltage rating at least  
twice the maximum voltage that it will be exposed to because most ceramic capacitors lose significant  
capacitance when biased. This value also improves the long term reliability of the system.  
9.2.3 Application Curves  
GHA  
GHA  
SHA  
SHA  
GLA  
GLA  
9-2. Gate voltages, SHx rising with 15 ohm gate  
9-3. Gate voltages, SHx falling with 15 ohm gate  
resistor and CSD19532Q5B MOSFET  
resistor and CSD19532Q5B MOSFET  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: DRV8300-Q1  
DRV8300-Q1  
ZHCSPF5 APRIL 2022  
www.ti.com.cn  
10 Power Supply Recommendations  
The DRV8300-Q1 is designed to operate from an input voltage supply (GVDD) range from 4.8 V to 20 V. A local  
bypass capacitor should be placed between the GVDD and GND pins. This capacitor should be located as close  
to the device as possible. A low ESR, ceramic surface mount capacitor is recommended. It is recommended to  
use two capacitors across GVDD and GND: a low capacitance ceramic surface-mount capacitor for high  
frequency filtering placed very close to GVDD and GND pin, and another high capacitance value surfacemount  
capacitor for device bias requirements. In a similar manner, the current pulses delivered by the GHx pins are  
sourced from the BSTx pins. Therefore, capacitor across the BSTx to SHx is recommended, it should be high  
enough capacitance value capacitor to deliver GHx pulses  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: DRV8300-Q1  
 
DRV8300-Q1  
ZHCSPF5 APRIL 2022  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
Low ESR/ESL capacitors must be connected close to the device between GVDD and GND and between  
BSTx and SHx pins to support high peak currents drawn from GVDD and BSTx pins during the turn-on of the  
external MOSFETs.  
To prevent large voltage transients at the drain of the top MOSFET, a low ESR electrolytic capacitor and a  
good quality ceramic capacitor must be connected between the high side MOSFET drain and ground.  
In order to avoid large negative transients on the switch node (SHx) pin, the parasitic inductances between  
the source of the high-side MOSFET and the source of the low-side MOSFET must be minimized.  
In order to avoid unexpected transients, the parasitic inductance of the GHx, SHx, and GLx connections must  
be minimized. Minimize the trace length and number of vias wherever possible. Minimum 10 mil and typical  
15 mil trace width is recommended.  
Place the gate driver as close to the MOSFETs as possible. Confine the high peak currents that charge and  
discharge the MOSFET gates to a minimal physical area by reducing trace length. This confinement  
decreases the loop inductance and minimize noise issues on the gate terminals of the MOSFETs.  
Refer to sections General Routing Techniques and MOSFET Placement and Power Stage Routing in  
Application Report  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: DRV8300-Q1  
 
 
DRV8300-Q1  
ZHCSPF5 APRIL 2022  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: DRV8300-Q1  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Apr-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DRV8300DPWRQ1  
ACTIVE  
TSSOP  
PW  
20  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
8300D-Q  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF DRV8300-Q1 :  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Apr-2022  
Catalog : DRV8300  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE OUTLINE  
PW0020A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
18X 0.65  
20  
1
2X  
5.85  
6.6  
6.4  
NOTE 3  
10  
B
11  
0.30  
20X  
4.5  
4.3  
NOTE 4  
0.19  
1.2 MAX  
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220206/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0020A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
20X (1.5)  
(R0.05) TYP  
20  
1
20X (0.45)  
SYMM  
18X (0.65)  
11  
10  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220206/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0020A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
20X (1.5)  
SYMM  
(R0.05) TYP  
20  
1
20X (0.45)  
SYMM  
18X (0.65)  
10  
11  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220206/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

DRV8300DRGE

DRV8300: Three-Phase BLDC Gate Driver
TI

DRV8300DRGER

DRV8300: Three-Phase BLDC Gate Driver
TI

DRV8300N

DRV8300: Three-Phase BLDC Gate Driver
TI

DRV8300NI

DRV8300: Three-Phase BLDC Gate Driver
TI

DRV8300NIPW

DRV8300: Three-Phase BLDC Gate Driver
TI

DRV8300NIPWR

DRV8300: Three-Phase BLDC Gate Driver
TI

DRV8300NPW

DRV8300: Three-Phase BLDC Gate Driver
TI

DRV8300NPWR

DRV8300: Three-Phase BLDC Gate Driver
TI

DRV8300NRGE

DRV8300: Three-Phase BLDC Gate Driver
TI

DRV8300NRGER

DRV8300: Three-Phase BLDC Gate Driver
TI

DRV8300U

具有自举二极管和增强型 UVLO 保护的 100V(最大值)简单三相栅极驱动器
TI

DRV8300UDIPWR

100-V max, simple three-phase gate driver with bootstrap diodes and enhanced UVLO protection | PW | 20 | -40 to 125
TI