DRV8300UDIPWR [TI]

100-V max, simple three-phase gate driver with bootstrap diodes and enhanced UVLO protection | PW | 20 | -40 to 125;
DRV8300UDIPWR
型号: DRV8300UDIPWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

100-V max, simple three-phase gate driver with bootstrap diodes and enhanced UVLO protection | PW | 20 | -40 to 125

文件: 总34页 (文件大小:2949K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DRV8300U  
ZHCSQZ4A JULY 2022 REVISED OCTOBER 2022  
DRV8300U100V BLDC 栅极驱动器  
1 特性  
3 说明  
100V 三相半桥栅极驱动器  
DRV8300U 是一款 100V 三相半桥栅极驱动器能够  
驱动高侧和低侧 N 沟道功率 MOSFETDRV8300UD  
使用集成自举二极管和外部电容为高侧 MOSFET 生成  
合适的栅极驱动电压。GVDD 用于为低侧 MOSFET 生  
成栅极驱动电压。栅极驱动架构支持高达 750mA 的峰  
值拉电流1.5A 的灌电流。  
– 驱N MOSFET (NMOS)  
– 栅极驱动器电(GVDD)5-20V  
MOSFET (SHx) 支持高100V 的电压  
• 集成自举二极(DRV8300UD 器件)  
• 支持反相和同INLx 输入  
• 自举栅极驱动架构  
相位引脚 SHx 能够承受显著的负电压瞬变而高侧栅  
极驱动器电源 BSTx GHx 能够支持更高的正电压瞬  
(125V) 绝对最大值从而提高系统的鲁棒性。较小  
的传播延迟和延迟匹配参数可尽可能降低死区时间要  
从而进一步提高效率。通GVDD BST 欠压锁  
定为低侧和高侧提供欠压保护。  
750mA 拉电流  
1.5A 灌电流  
• 支持由高15 节串联电池供电的应用  
• 支持标MOSFET 的更BSTUV8V 典型值)  
GVDDUV7.6V 典型值阈值  
SHx 引脚具有低漏电流55µA)  
• 绝对最BSTx 电压高125V  
SHx 引脚瞬态负压可-22V  
• 内置跨导保护  
• 针QFN 封装型号可通DT 引脚调节死区时间  
• 针TSSOP 封装型号固定插200ns 死区时间  
• 支3.3V 5V 逻辑输入绝对最大值20V)  
4ns 典型传播延迟匹配  
器件信息(1)  
封装尺寸标称值)  
器件型号  
封装  
TSSOP (20)  
TSSOP (20)  
VQFN (24)  
DRV8300UDPW  
DRV8300UDIPW  
DRV8300UDRGE  
6.40mm × 4.40mm  
6.40mm × 4.40mm  
4.00mm × 4.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
• 紧凑QFN TSSOP 封装  
• 具有电源块的高效系统设计  
• 集成保护特性  
PVDD  
GVDD  
DBx  
BSTA, BSTB, BSTC  
GVDD  
BST 欠压锁(BSTUV)  
INHA  
INHB  
INHC  
GHA, GHB, GHC  
SHA, SHB, SHC  
GVDD (GVDDUV)  
MCU  
2 应用  
DRV8300D  
INLA  
INLB  
INLC  
GLA, GLB. GLC  
电动自行车电动踏板车电动汽车  
风扇、泵伺服驱动器  
GND  
Repeated for 3  
phases  
无刷直(BLDC) 电机模块PMSM  
无线园艺电动工具割草机  
无线真空吸尘器  
无人机、机器人和遥控玩具  
工业和物流机器人  
DRV8300UD 的简化原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSGY3  
 
 
 
 
DRV8300U  
ZHCSQZ4A JULY 2022 REVISED OCTOBER 2022  
www.ti.com.cn  
Table of Contents  
8.3 Feature Description...................................................13  
8.4 Device Functional Modes..........................................15  
9 Application and Implementation..................................16  
9.1 Application Information............................................. 16  
9.2 Typical Application.................................................... 17  
10 Power Supply Recommendations..............................20  
11 Layout...........................................................................21  
11.1 Layout Guidelines................................................... 21  
11.2 Layout Example...................................................... 21  
12 Device and Documentation Support..........................22  
12.1 接收文档更新通知................................................... 22  
12.2 支持资源..................................................................22  
12.3 Trademarks.............................................................22  
12.4 Electrostatic Discharge Caution..............................22  
12.5 术语表..................................................................... 22  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 6  
7.1 Absolute Maximum Ratings........................................ 6  
7.2 ESD Ratings Comm....................................................6  
7.3 Recommended Operating Conditions.........................6  
7.4 Thermal Information....................................................7  
7.5 Electrical Characteristics.............................................7  
7.6 Timing Diagrams.........................................................9  
7.7 Typical Characteristics................................................9  
8 Detailed Description......................................................11  
8.1 Overview................................................................... 11  
8.2 Functional Block Diagram.........................................12  
Information.................................................................... 22  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (July 2022) to Revision A (October 2022)  
Page  
• 将器件状态更新为“量产数据”......................................................................................................................... 1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: DRV8300U  
 
DRV8300U  
ZHCSQZ4A JULY 2022 REVISED OCTOBER 2022  
www.ti.com.cn  
5 Device Comparison Table  
Integrated Bootstrap  
Diode  
GLx polarity with  
Deadtime  
Device Variants  
Package  
respect to INLx Input  
DRV8300UD  
DRV8300UDI  
DRV8300UD  
Yes  
Yes  
Yes  
Inverted  
Non-Inverted  
Fixed  
Fixed  
20-Pin TSSOP  
24-Pin VQFN  
Non-Inverted or Inverted  
Variable  
5-1. DRV8300 vs DRV8300U comparison  
Parameters  
DRV8300  
4.6-V (typ)  
4.35-V (typ)  
4.2-V (typ)  
4-V (typ)  
DRV8300U  
GVDDUV rising  
GVDDUV falling  
BSTUV rising  
BSTUV falling  
8.3-V (typ)  
8-V (typ)  
8-V (typ)  
7.6-V(typ)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: DRV8300U  
 
 
DRV8300U  
ZHCSQZ4A JULY 2022 REVISED OCTOBER 2022  
www.ti.com.cn  
6 Pin Configuration and Functions  
INLA  
INLB  
1
2
3
4
5
6
18 SHA  
17  
16  
BSTB  
GHB  
DRV8300  
INLC  
GVDD  
15 SHB  
PowerPAD  
14  
MODE  
GND  
BSTC  
13  
GHC  
6-1. DRV8300UD RGE Package 24-Pin VQFN With Exposed Thermal Pad Top View  
6-1. Pin Functions24-Pin DRV8300U Devices  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
BSTA  
BSTB  
BSTC  
NO.  
20  
O
O
O
Bootstrap output pin. Connect capacitor between BSTA and SHA  
Bootstrap output pin. Connect capacitor between BSTB and SHB  
Bootstrap output pin. Connect capacitor between BSTC and SHC  
17  
14  
Deadtime input pin. Connect resistor to ground for variable deadtime, fixed deadtime when left it  
floating  
DT  
21  
I
GHA  
GHB  
GHC  
GLA  
19  
16  
13  
11  
10  
9
O
O
O
O
O
O
I
High-side gate driver output. Connect to the gate of the high-side power MOSFET.  
High-side gate driver output. Connect to the gate of the high-side power MOSFET.  
High-side gate driver output. Connect to the gate of the high-side power MOSFET.  
Low-side gate driver output. Connect to the gate of the low-side power MOSFET.  
Low-side gate driver output. Connect to the gate of the low-side power MOSFET.  
Low-side gate driver output. Connect to the gate of the low-side power MOSFET.  
High-side gate driver control input. This pin controls the output of the high-side gate driver.  
High-side gate driver control input. This pin controls the output of the high-side gate driver.  
High-side gate driver control input. This pin controls the output of the high-side gate driver.  
Low-side gate driver control input. This pin controls the output of the low-side gate driver.  
Low-side gate driver control input. This pin controls the output of the low-side gate driver.  
Low-side gate driver control input. This pin controls the output of the low-side gate driver.  
GLB  
GLC  
INHA  
INHB  
INHC  
INLA  
INLB  
INLC  
22  
23  
24  
1
I
I
I
2
I
3
I
Mode Input controls polarity of GLx compared to INLx inputs.  
MODE  
5
I
Mode pin floating: GLx output polarity same(Non-Inverted) as INLx input  
Mode pin to GVDD: GLx output polarity inverted compared to INLx input  
NC  
7, 8  
6
NC  
No internal connection. This pin can be left floating or connected to system ground.  
GND  
SHA  
SHB  
SHC  
PWR Device ground.  
18  
15  
12  
I
I
I
High-side source sense input. Connect to the high-side power MOSFET source.  
High-side source sense input. Connect to the high-side power MOSFET source.  
High-side source sense input. Connect to the high-side power MOSFET source.  
Gate driver power supply input. Connect a X5R or X7R, GVDD-rated ceramic and greater then or equal  
to 10-uF local capacitance between the GVDD and GND pins.  
GVDD  
4
PWR  
(1) PWR = power, I = input, O = output, NC = no connection  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: DRV8300U  
 
 
DRV8300U  
ZHCSQZ4A JULY 2022 REVISED OCTOBER 2022  
www.ti.com.cn  
1
2
3
4
5
6
INHA  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
BSTA  
INHB  
INHC  
GHA  
SHA  
BSTB  
GHB  
INLA  
INLB  
INLC  
GVDD  
GND  
GLC  
DRV8300  
SHB  
BSTC  
GHC  
7
8
SHC  
GLA  
9
GLB  
10  
6-2. DRV8300UD, DRV8300UDI PW Package 20-Pin TSSOP Top View  
6-2. Pin Functions20-Pin DRV8300U Devices  
PIN  
NAME  
BSTA  
BSTB  
BSTC  
GHA  
TYPE1  
DESCRIPTION  
NO.  
20  
17  
14  
19  
16  
13  
11  
10  
9
O
O
O
O
O
O
O
O
O
I
Bootstrap output pin. Connect capacitor between BSTA and SHA  
Bootstrap output pin. Connect capacitor between BSTB and SHB  
Bootstrap output pin. Connect capacitor between BSTC and SHC  
High-side gate driver output. Connect to the gate of the high-side power MOSFET.  
High-side gate driver output. Connect to the gate of the high-side power MOSFET.  
High-side gate driver output. Connect to the gate of the high-side power MOSFET.  
Low-side gate driver output. Connect to the gate of the low-side power MOSFET.  
Low-side gate driver output. Connect to the gate of the low-side power MOSFET.  
Low-side gate driver output. Connect to the gate of the low-side power MOSFET.  
High-side gate driver control input. This pin controls the output of the high-side gate driver.  
High-side gate driver control input. This pin controls the output of the high-side gate driver.  
High-side gate driver control input. This pin controls the output of the high-side gate driver.  
Low-side gate driver control input. This pin controls the output of the low-side gate driver.  
Low-side gate driver control input. This pin controls the output of the low-side gate driver.  
Low-side gate driver control input. This pin controls the output of the low-side gate driver.  
GHB  
GHC  
GLA  
GLB  
GLC  
INHA  
INHB  
INHC  
INLA  
1
2
I
3
I
4
I
INLB  
5
I
INLC  
GND  
6
I
8
PWR Device ground.  
SHA  
18  
15  
12  
I
I
I
High-side source sense input. Connect to the high-side power MOSFET source.  
SHB  
High-side source sense input. Connect to the high-side power MOSFET source.  
High-side source sense input. Connect to the high-side power MOSFET source.  
SHC  
Gate driver power supply input. Connect a X5R or X7R, GVDD-rated ceramic and greater then or equal  
to 10-uF local capacitance between the GVDD and GND pins.  
GVDD  
7
PWR  
1. PWR = power, I = input, O = output, NC = no connection  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: DRV8300U  
 
DRV8300U  
ZHCSQZ4A JULY 2022 REVISED OCTOBER 2022  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating temperature range (unless otherwise noted)(1)  
MIN  
-0.3  
-0.3  
-0.3  
-0.3  
-22  
MAX UNIT  
Gate driver regulator pin voltage  
Bootstrap pin voltage  
GVDD  
21.5  
125  
V
V
BSTx  
Bootstrap pin voltage  
BSTx with respect to SHx  
21.5  
V
Logic pin voltage  
INHx, INLx, MODE, DT  
VGVDD+0.3  
125  
V
High-side gate drive pin voltage  
High-side gate drive pin voltage  
Transient 500-ns high-side gate drive pin voltage  
Low-side gate drive pin voltage  
Transient 500-ns low-side gate drive pin voltage  
High-side source pin voltage  
Ambient temperature, TA  
GHx  
V
GHx with respect to SHx  
-0.3  
-5  
22  
V
GHx with respect to SHx  
22  
V
GLx  
GLx  
SHx  
-0.3  
-5  
VGVDD+0.3  
VGVDD+0.3  
110  
V
V
-22  
V
125  
°C  
°C  
°C  
40  
40  
65  
Junction temperature, TJ  
150  
Storage temperature, Tstg  
150  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime  
7.2 ESD Ratings Comm  
VALUE  
±1000  
±250  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Electrostatic  
discharge  
V(ESD)  
V
Charged device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating temperature range (unless otherwise noted)  
MIN  
8.7  
-2  
NOM  
MAX UNIT  
VGVDD  
VSHx  
Power supply voltage  
GVDD  
SHx  
20  
85  
V
V
High-side source pin voltage  
Transient 2µs high-side source pin  
voltage  
VSHx  
SHx  
-22  
85  
V
VBST  
VBST  
VIN  
Bootstrap pin voltage  
Bootstrap pin voltage  
Logic input voltage  
PWM frequency  
BSTx  
5
5
0
0
105  
20  
V
V
BSTx with respect to SHx  
INHx, INLx, MODE, DT  
INHx, INLx  
GVDD  
200  
V
fPWM  
kHz  
Slew rate on SHx pin (DRV8300UD and  
DRV8300UDI)  
VSHSL  
2
1
V/ns  
µF  
Capacitor between BSTx and SHx  
(DRV8300UD and DRV8300UDI)  
(1)  
CBOOT  
TA  
TJ  
Operating ambient temperature  
Operating junction temperature  
125  
150  
°C  
°C  
40  
40  
(1) Current flowing through boot diode (DBOOT) needs to be limited for CBOOT > 1µF  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: DRV8300U  
 
 
 
 
 
 
 
 
DRV8300U  
ZHCSQZ4A JULY 2022 REVISED OCTOBER 2022  
www.ti.com.cn  
7.4 Thermal Information  
DRV8300U  
THERMAL METRIC(1)  
PW (TSSOP)  
20 PINS  
97.4  
RGE (VQFN)  
24 PINS  
49.3  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
Rθ  
38.3  
42.5  
JC(top)  
RθJB  
ΨJT  
Junction-to-board thermal resistance  
48.8  
4.3  
26.5  
2.2  
°C/W  
°C/W  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
48.4  
26.4  
ΨJB  
Rθ  
Junction-to-case (bottom) thermal resistance  
N/A  
11.5  
°C/W  
JC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
8.7 V VGVDD 20 V, 40°C TJ 150°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLIES (GVDD, BSTx)  
GVDD standby mode current  
INHx = INLX = 0; VBSTx = VGVDD  
400  
400  
2
800  
825  
4
1400  
1400  
7
µA  
µA  
µA  
µA  
IGVDD  
INHx = INLX = Switching @20kHz; VBSTx  
= VGVDD; NO FETs connected  
GVDD active mode current  
Bootstrap pin leakage current  
ILBSx  
VBSTx = VSHx = 85V; VGVDD = 0V  
INHx = Switching@20kHz  
Bootstrap pin active mode transient  
leakage current  
ILBS_TRAN  
30  
105  
220  
Bootstrap pin active mode leakage  
static current  
ILBS_DC  
ILSHx  
INHx = High  
30  
30  
85  
55  
150  
80  
µA  
µA  
INHx = INLX = 0; VBSTx - VSHx = 12V;  
VSHx = 0 to 85V  
High-side source pin leakage current  
LOGIC-LEVEL INPUTS (INHx, INLx, MODE)  
VIL_MODE  
VIL  
VIH_MODE  
VIH  
VHYS_MODE  
VHYS  
Input logic low voltage  
Input logic low voltage  
Input logic high voltage  
Input logic high voltage  
Input hysteresis  
Mode pin  
0.6  
0.8  
V
V
INLx, INHx pins  
Mode pin  
3.7  
2.0  
V
INLx, INHx pins  
Mode pin  
V
1600  
40  
2000  
100  
2400  
260  
mV  
mV  
Input hysteresis  
INLx, INHx pins  
VPIN (Pin Voltage) = 0 V; INLx in non-  
inverting mode  
-1  
5
0
20  
1
30  
µA  
µA  
µA  
µA  
IIL_INLx  
INLx Input logic low current  
INLx Input logic high current  
VPIN (Pin Voltage) = 0 V; INLx in inverting  
mode  
VPIN (Pin Voltage) = 5 V; INLx in non-  
inverting mode  
5
20  
30  
IIH_INLx  
VPIN (Pin Voltage) = 5 V; INLx in inverting  
mode  
0
0.5  
1.5  
IIL  
INHx, MODE Input logic low current VPIN (Pin Voltage) = 0 V;  
INHx, MODE Input logic high current VPIN (Pin Voltage) = 5 V;  
-1  
5
0
20  
1
30  
µA  
µA  
IIH  
RPD_INHx  
RPD_INLx  
RPU_INLx  
RPD_MODE  
INHx Input pulldown resistance  
INLx Input pulldown resistance  
INLx Input pullup resistance  
To GND  
120  
120  
120  
120  
200  
200  
200  
200  
280  
280  
280  
280  
kΩ  
kΩ  
kΩ  
kΩ  
To GND, INLx in non-inverting mode  
To INT_5V, INLx in inverting mode  
To GND  
MODE Input pulldown resistance  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: DRV8300U  
 
 
 
DRV8300U  
ZHCSQZ4A JULY 2022 REVISED OCTOBER 2022  
www.ti.com.cn  
8.7 V VGVDD 20 V, 40°C TJ 150°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
GATE DRIVERS (GHx, GLx, SHx, SLx)  
IGLx = -100 mA; VGVDD = 12V; No FETs  
connected  
VGHx_LO  
VGHx_HI  
VGLx_LO  
VGLx_HI  
High-side gate drive low level voltage  
0
0.3  
0
0.15  
0.6  
0.35  
1.2  
V
V
V
V
High-side gate drive high level  
voltage (VBSTx - VGHx  
IGHx = 100 mA; VGVDD = 12V; No FETs  
connected  
)
IGLx = -100 mA; VGVDD = 12V; No FETs  
connected  
Low-side gate drive low level voltage  
0.15  
0.6  
0.35  
1.2  
Low-side gate drive high level voltage IGHx = 100 mA; VGVDD = 12V; No FETs  
0.3  
(VGVDD - VGHx  
)
connected  
IDRIVEP_HS  
IDRIVEN_HS  
IDRIVEP_LS  
IDRIVEN_LS  
High-side peak source gate current  
High-side peak sink gate current  
Low-side peak source gate current  
Low-side peak sink gate current  
GHx-SHx = 12V  
GHx-SHx = 0V  
GLx = 12V  
400  
850  
400  
850  
750  
1500  
750  
1200  
2100  
1200  
2100  
mA  
mA  
mA  
mA  
GLx = 0V  
1500  
INHx, INLx to GHx, GLx; VGVDD = VBSTx  
VSHx > 8V; SHx = 0V, No load on GHx  
and GLx  
-
tPD  
Input to output propagation delay  
70  
125  
±4  
180  
30  
ns  
ns  
GHx turning OFF to GLx turning ON, GLx  
turning OFF to GHx turning ON; VGVDD  
Matching propagation delay per  
phase  
=
tPD_match  
-30  
VBSTx - VSHx > 8V; SHx = 0V, No load on  
GHx and GLx  
GHx/GLx turning ON to GHy/GLy turning  
Matching propagation delay phase to ON, GHx/GLx turning OFF to GHy/GLy  
tPD_match  
-30  
±4  
30  
ns  
phase  
turning OFF; VGVDD = VBSTx - VSHx > 8V;  
SHx = 0V, No load on GHx and GLx  
CLOAD = 1000 pF; VGVDD = VBSTx - VSHx  
8V; SHx = 0V  
>
tR_GLx  
tR_GHx  
tF_GLx  
tF_GHx  
GLx rise time (10% to 90%)  
GHx rise time (10% to 90%)  
GLx fall time (90% to 10%)  
GHx fall time (90% to 10%)  
10  
10  
5
24  
24  
12  
12  
50  
50  
30  
30  
ns  
ns  
ns  
ns  
CLOAD = 1000 pF; VGVDD = VBSTx - VSHx  
8V; SHx = 0V  
>
>
>
CLOAD = 1000 pF; VGVDD = VBSTx - VSHx  
8V; SHx = 0V  
CLOAD = 1000 pF; VGVDD = VBSTx - VSHx  
8V; SHx = 0V  
5
DT pin floating  
150  
150  
215  
215  
280  
280  
ns  
ns  
ns  
ns  
DT pin connected to GND  
40 kbetween DT pin and GND  
400 kbetween DT pin and GND  
tDEAD  
Gate drive dead time  
150  
200  
260  
1500  
2000  
2600  
Minimum input pulse width on INHx,  
INLx that changes the output on  
GHx, GLx  
tPW_MIN  
40  
70  
150  
ns  
BOOTSTRAP DIODES(DRV8300UD, DRV8300UDI)  
IBOOT = 100 µA  
IBOOT = 100 mA  
0.45  
2
0.7  
2.3  
0.85  
3.1  
V
V
VBOOTD  
Bootstrap diode forward voltage  
Bootstrap dynamic resistance  
RBOOTD  
IBOOT = 100 mA and 80 mA  
11  
15  
25  
(ΔVBOOTD/ΔIBOOT  
PROTECTION CIRCUITS  
)
Supply rising  
8
7.8  
8.3  
8
8.6  
8.25  
360  
V
V
Gate Driver Supply undervoltage  
lockout (GVDDUV)  
VGVDDUV  
Supply falling  
VGVDDUV_HYS Gate Driver Supply UV hysteresis  
Rising to falling threshold  
295  
330  
mV  
Gate Driver Supply undervoltage  
deglitch time  
tGVDDUV  
5
10  
13  
µs  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: DRV8300U  
DRV8300U  
ZHCSQZ4A JULY 2022 REVISED OCTOBER 2022  
www.ti.com.cn  
8.7 V VGVDD 20 V, 40°C TJ 150°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Boot Strap undervoltage lockout  
Supply rising  
7.5  
8
8.7  
V
(VBSTx - VSHx  
Boot Strap undervoltage lockout  
(VBSTx - VSHx  
)
VBSTUV  
Supply falling  
6.9  
7.6  
8.4  
V
)
VBSTUV_HYS  
tBSTUV  
Bootstrap UV hysteresis  
Rising to falling threshold  
250  
5.5  
400  
10  
850  
22  
mV  
µs  
Bootstrap undervoltage deglitch time  
7.6 Timing Diagrams  
INHx/INLx  
GHx/GLx  
50%  
50%  
tPD  
tPD  
7-1. Propagation Delay(tPD  
)
INHx  
INLx  
GHx  
GLx  
tPD_match  
tPD_match  
7-2. Propagation Delay Match (tPD_match  
)
7.7 Typical Characteristics  
1150  
1100  
1050  
1000  
950  
1150  
1100  
1050  
1000  
950  
VGVDD = 5 V  
VGVDD = 12 V  
VGVDD = 20 V  
900  
900  
850  
850  
800  
TJ = -40C  
800  
750  
700  
TJ = 25C  
TJ = 150C  
750  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
4
6
8
10  
12  
14  
16  
18  
20  
Junction Temperature (C)  
GVDD Voltage (V)  
7-4. Supply Current Over Temperature  
7-3. Supply Current Over GVDD Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: DRV8300U  
 
 
DRV8300U  
ZHCSQZ4A JULY 2022 REVISED OCTOBER 2022  
www.ti.com.cn  
7-6. Bootstrap Diode Forward Voltage over  
7-5. Bootstrap Resistance Over GVDD Voltage  
GVDD Voltage  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: DRV8300U  
DRV8300U  
ZHCSQZ4A JULY 2022 REVISED OCTOBER 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The DRV8300U family of devices is a gate driver for three-phase motor drive applications. These devices  
decrease system component count, saves PCB space and cost by integrating three independent half-bridge  
gate drivers and optional bootstrap diodes.  
DRV8300U supports external N-channel high-side and low-side power MOSFETs and can drive 750-mA source,  
1.5-A sink peak currents with total combined 30-mA average output current. The DRV8300U family of devices  
are available in 0.5-mm pitch QFN and 0.65-mm pitch TSSOP surface-mount packages. The QFN size is 4 × 4  
mm (0.5-mm pin pitch) for the 24-pin package, and TSSOP body size is 6.5 × 4.4 mm (0.65-mm pin pitch) for the  
20-pin package.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: DRV8300U  
 
 
DRV8300U  
ZHCSQZ4A JULY 2022 REVISED OCTOBER 2022  
www.ti.com.cn  
8.2 Functional Block Diagram  
GVDD  
CGVDD  
PVDD  
GVDD  
HS  
BSTA  
GHA  
SHA  
CBSTA  
RGHA  
INHA  
HS  
INT_5V  
GVDD  
LS  
INLA/INLA  
RGLA  
GLA  
LS  
MODE**  
Gate Driver  
GVDD  
BSTB  
GHB  
SHB  
PVDD  
CBSTB  
RGHB  
HS  
HS  
INHB  
INT_5V  
Input logic  
control  
GVDD  
LS  
INLB/INLB  
RGLB  
GLB  
LS  
Shoot-  
Through  
Prevention  
MODE**  
Gate Driver  
GVDD  
PVDD  
BSTC  
GHC  
SHC  
CBSTC  
RGHC  
INHC  
HS  
HS  
INT_5V  
GVDD  
LS  
Gate Driver  
INLC/INLC  
RGLC  
GLC  
LS  
MODE**  
DT**  
MODE**  
GND  
PowerPAD  
** QFN-24 Package  
8-1. Block Diagram for DRV8300UD  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: DRV8300U  
 
DRV8300U  
ZHCSQZ4A JULY 2022 REVISED OCTOBER 2022  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Three BLDC Gate Drivers  
The DRV8300U integrates three half-bridge gate drivers, each capable of driving high-side and low-side N-  
channel power MOSFETs. Input on GVDD provides the gate bias voltage for the low-side MOSFETs. The high  
voltage is generated using bootstrap capacitor and GVDD supply. The half-bridge gate drivers can be used in  
combination to drive a three-phase motor or separately to drive other types of loads.  
8.3.1.1 Gate Drive Timings  
8.3.1.1.1 Propagation Delay  
The propagation delay time (tpd) is measured as the time between an input logic edge to a detected output  
change. This time has two parts consisting of the input deglitcher delay and the delay through the analog gate  
drivers.  
The input deglitcher prevents high-frequency noise on the input pins from affecting the output state of the gate  
drivers. The analog gate drivers have a small delay that contributes to the overall propagation delay of the  
device.  
8.3.1.1.2 Deadtime and Cross-Conduction Prevention  
In the DRV8300U, high-side and low-side inputs operate independently, with an exception to prevent cross  
conduction when high and low side are turned ON at same time. The DRV8300U turns OFF high-side and low-  
side output to prevent shoot through when the both high-side and low-side inputs are at logic HIGH at same  
time.  
The DRV8300U also provides option to insert additional deadtime to prevent the external high-side and low-side  
MOSFET from switching on at the same time. In the devices with DT pin (QFN package), deadtime can be  
linearly adjusted between 200 ns to 2000 ns by configuring resistor value between DT and GND. When the DT  
pin is left floating, fixed deadtime of 200 nS (typical value) is inserted. The value of resistor can be calculated  
using 方程1.  
&A=@PEIA (J5)  
4&6(GÀ) =  
5
(1)  
In the devices without DT pin (TSSOP package), fixed deadtime of 200 ns (typical value) is inserted to prevent  
high and low side gate output turning ON at same time.  
INHx/INLx Inputs  
INHx  
INLx  
GHx/GLx outputs  
GHx  
GLx  
DT  
DT  
Cross  
Conduction  
Prevention  
8-2. Cross Conduction Prevention and Deadtime Insertion  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: DRV8300U  
 
 
DRV8300U  
ZHCSQZ4A JULY 2022 REVISED OCTOBER 2022  
www.ti.com.cn  
8.3.1.2 Mode (Inverting and non inverting INLx)  
The DRV8300U has flexibility of accepting different kind of inputs on INLx. In the devices with MODE pin (QFN  
package), the DRV8300U provides option of configuring the GLx outputs to be inverted or non-inverted  
compared to polarity of signal on INLx pins. When the MODE pin is left floating, the INLx is configured to be in  
non-inverting mode and GLx output is in phase with respect to INLx (see 8-3), whereas when the MODE pin  
is connected to GVDD, GLx output is out of phase with respect to INLx (see 8-4). In devices without MODE  
pin (TSSOP package device), there are different device option available for inverting and non inverting inputs  
(see 5).  
INHx  
INLx  
GHx  
GLx  
DT  
DT  
DT  
8-3. Non-Inverted INLx inputs  
INHx  
INLx  
GHx  
GLx  
DT  
DT  
DT  
8-4. Inverted INLx inputs  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: DRV8300U  
 
 
DRV8300U  
ZHCSQZ4A JULY 2022 REVISED OCTOBER 2022  
www.ti.com.cn  
8.3.2 Pin Diagrams  
8-5 shows the input structure for the logic level pins INHx, INLx. INHx and non-inverted INLx has passive pull  
down, so when inputs are floating the output the gate driver will be pulled low. 8-6 shows the input structure  
for the inverted INLx pins. The inverted INLx has passive pull up, so when inputs are floating the output of the  
low-side gate driver will be pulled low.  
INT_5V  
INPUT  
INPUT  
200 k  
Logic High  
Logic Low  
Logic High  
Logic Low  
INHx  
INLx  
INLx  
200 k  
8-6. Inverted INLx Logic-Level Input Pin  
8-5. INHx and non-inverted INLx Logic-Level  
Structure  
Input Pin Structure  
8.3.3 Gate Driver Protective Circuits  
The DRV8300U is protected against BSTx undervoltage and GVDD undervoltage events.  
8-1. Fault Action and Response  
FAULT  
CONDITION  
GATE DRIVER  
RECOVERY  
Automatic:  
VBSTx > VBSTUV and low to high  
PWM edge detected on INHx pin  
VBSTx undervoltage  
(BSTUV)  
VBSTx < VBSTUV  
GHx - Hi-Z  
GVDD undervoltage  
(GVDDUV)  
Automatic:  
VGVDD > VGVDDUV  
VGVDD < VGVDDUV  
Hi-Z  
8.3.3.1 VBSTx Undervoltage Lockout (BSTUV)  
The DRV8300U has separate voltage comparator to detect undervoltage condition for each phases. If at any  
time the voltage on the BSTx pin falls lower than the VBSTUV threshold, high side external MOSFETs of that  
particular phase is disabled by disabling (Hi-Z) GHx pin. Normal operation starts again when the BSTUV  
condition clears and low to high PWM edge is detected on INHx input of the same phase that BSTUV condition  
was detected. BSTUV protection ensures that high-side MOSFETs are not driven when the BSTx pins has lower  
value.  
8.3.3.2 GVDD Undervoltage Lockout (GVDDUV)  
If at any time the voltage on the GVDD pin falls lower than the VGVDDUV threshold voltage, all of the external  
MOSFETs are disabled. Normal operation starts again when the GVDDUV condition clears. GVDDUV protection  
ensures that external MOSFETs are not driven when the GVDD input is at lower value.  
8.4 Device Functional Modes  
The DRV8300U is in operating (active) mode, whenever the GVDD and BST pins are higher than the UV  
threshold (GVDD > VGVDDUVand VBSTX > VBSTUV). In active mode, the gate driver output GHx and GLX will  
follow respective inputs INHx and INLx.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: DRV8300U  
 
 
DRV8300U  
ZHCSQZ4A JULY 2022 REVISED OCTOBER 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
The DRV8300U family of devices is primarily used in applications for three-phase brushless DC motor control.  
The design procedures in the 9.2 section highlight how to use and configure the DRV8300U.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: DRV8300U  
 
 
DRV8300U  
ZHCSQZ4A JULY 2022 REVISED OCTOBER 2022  
www.ti.com.cn  
9.2 Typical Application  
GVDD  
GVDD  
GND  
CGVDD  
PVDD  
External  
Supply  
GND  
BSTA  
CBSTA  
RGHA  
GHA  
SHA  
RGLA  
INHA  
INLA  
GLA  
INHB  
INLB  
PWM  
MCU  
PVDD  
BSTB  
INHC  
INLC  
CBSTB  
RGHB  
GHB  
SHB  
RGLB  
DRV8300D  
GLB  
PVDD  
GVDD  
BSTC  
BSTC  
CBSTC  
RGHC  
MODE**  
GHC  
SHC  
GND or Floating  
GHC  
SHC  
DT**  
RGLC  
GLC  
** QFN-24 Package  
GLC  
INA+  
INA-  
INB+ INC+  
R
R
INB-  
INC-  
R
N-  
INx+  
INx-  
N-  
N+  
R
R
IN-  
N+  
œ
OUT  
IN+  
+
Reference  
Voltage  
V
REF  
R
Current Sense Amplifier 1x or 3x  
+
œ
9-1. Application Schematic  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: DRV8300U  
 
 
DRV8300U  
ZHCSQZ4A JULY 2022 REVISED OCTOBER 2022  
www.ti.com.cn  
9.2.1 Design Requirements  
9-1 lists the example design input parameters for system design.  
9-1. Design Parameters  
EXAMPLE DESIGN PARAMETER  
REFERENCE  
EXAMPLE VALUE  
MOSFET  
-
CSD19532Q5B  
12 V  
Gate Supply Voltage  
Gate Charge  
VGVDD  
QG  
48 nC  
9.2.2 Bootstrap Capacitor and GVDD Capacitor Selection  
The bootstrap capacitor must be sized to maintain the bootstrap voltage above the undervoltage lockout for  
normal operation. 方程2 calculates the maximum allowable voltage drop across the bootstrap capacitor:  
¿8$56: = 8)8&& F8$116&F8  
$5678  
(2)  
=12 V 0.85 V 4.5 V = 6.65 V  
where  
VGVDD is the supply voltage of the gate drive  
VBOOTD is the forward voltage drop of the bootstrap diode  
VBSTUV is the threshold of the bootstrap undervoltage lockout  
In this example the allowed voltage drop across bootstrap capacitor is 6.65 V. It is generally recommended that  
ripple voltage on both the bootstrap capacitor and GVDD capacitor should be minimized as much as possible.  
Many of commercial, industrial, and automotive applications use ripple value between 0.5 V to 1 V.  
The total charge needed per switching cycle can be estimated with 方程3:  
+.$5_64#05  
3616 = 3) +  
B
59  
(3)  
=48 nC + 220 μA/20 kHz = 50 nC + 11 nC = 59 nC  
where  
QG is the total MOSFET gate charge  
ILBS_TRAN is the bootstrap pin leakage current  
fSW is the is the PWM frequency  
The minimum bootstrap capacitor an then be estimated as below assuming 1V ΔVBSTx  
:
3
%
=
616W  
$56_/+0  
¿8  
$56:  
(4)  
= 59 nC / 1 V = 59 nF  
The calculated value of minimum bootstrap capacitor is 59 nF. It should be noted that, this value of capacitance  
is needed at full bias voltage. In practice, the value of the bootstrap capacitor must be greater than calculated  
value to allow for situations where the power stage may skip pulse due to various transient conditions. It is  
recommended to use a 100 nF bootstrap capacitor in this example. It is also recommenced to include enough  
margin and place the bootstrap capacitor as close to the BSTx and SHx pins as possible.  
%
)8&&  
R 10 × %$56:  
(5)  
= 10*100 nF= 1 μF  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: DRV8300U  
 
 
 
DRV8300U  
ZHCSQZ4A JULY 2022 REVISED OCTOBER 2022  
www.ti.com.cn  
For this example application choose 1 µF CGVDD capacitor. Choose a capacitor with a voltage rating at least  
twice the maximum voltage that it will be exposed to because most ceramic capacitors lose significant  
capacitance when biased. This value also improves the long term reliability of the system.  
9.2.3 Application Curves  
GHA  
GHA  
SHA  
SHA  
GLA  
GLA  
9-2. Gate voltages, SHx rising with 15 ohm gate  
9-3. Gate voltages, SHx falling with 15 ohm gate  
resistor and CSD19532Q5B MOSFET  
resistor and CSD19532Q5B MOSFET  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: DRV8300U  
DRV8300U  
ZHCSQZ4A JULY 2022 REVISED OCTOBER 2022  
www.ti.com.cn  
10 Power Supply Recommendations  
The DRV8300U is designed to operate from an input voltage supply (GVDD) range from 4.8 V to 20 V. A local  
bypass capacitor should be placed between the GVDD and GND pins. This capacitor should be located as close  
to the device as possible. A low ESR, ceramic surface mount capacitor is recommended. It is recommended to  
use two capacitors across GVDD and GND: a low capacitance ceramic surface-mount capacitor for high  
frequency filtering placed very close to GVDD and GND pin, and another high capacitance value surfacemount  
capacitor for device bias requirements. In a similar manner, the current pulses delivered by the GHx pins are  
sourced from the BSTx pins. Therefore, capacitor across the BSTx to SHx is recommended, it should be high  
enough capacitance value capacitor to deliver GHx pulses  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: DRV8300U  
 
DRV8300U  
ZHCSQZ4A JULY 2022 REVISED OCTOBER 2022  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
Low ESR/ESL capacitors must be connected close to the device between GVDD and GND and between  
BSTx and SHx pins to support high peak currents drawn from GVDD and BSTx pins during the turn-on of the  
external MOSFETs.  
To prevent large voltage transients at the drain of the top MOSFET, a low ESR electrolytic capacitor and a  
good quality ceramic capacitor must be connected between the high side MOSFET drain and ground.  
In order to avoid large negative transients on the switch node (SHx) pin, the parasitic inductances between  
the source of the high-side MOSFET and the source of the low-side MOSFET must be minimized.  
In order to avoid unexpected transients, the parasitic inductance of the GHx, SHx, and GLx connections must  
be minimized. Minimize the trace length and number of vias wherever possible. Minimum 10 mil and typical  
15 mil trace width is recommended.  
Resistance between DT and GND must be place as close as possible to device  
Place the gate driver as close to the MOSFETs as possible. Confine the high peak currents that charge and  
discharge the MOSFET gates to a minimal physical area by reducing trace length. This confinement  
decreases the loop inductance and minimize noise issues on the gate terminals of the MOSFETs.  
In QFN package device variants, NC pins can be connected to GND to increase ground conenction between  
thermal pad and external ground plane.  
Refer to sections General Routing Techniques and MOSFET Placement and Power Stage Routing in  
Application Report  
11.2 Layout Example  
BSTx capacitor close  
to device  
DT resistor  
close to device  
GVDD capacitor  
close to device  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: DRV8300U  
 
 
 
DRV8300U  
ZHCSQZ4A JULY 2022 REVISED OCTOBER 2022  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: DRV8300U  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Nov-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DRV8300UDIPWR  
DRV8300UDPWR  
DRV8300UDRGER  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
VQFN  
PW  
PW  
20  
20  
24  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
8300UDI  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
8300UD  
8300UD  
RGE  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Nov-2022  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Nov-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DRV8300UDIPWR  
DRV8300UDPWR  
DRV8300UDRGER  
TSSOP  
TSSOP  
VQFN  
PW  
PW  
20  
20  
24  
3000  
3000  
3000  
330.0  
330.0  
330.0  
16.4  
16.4  
12.4  
6.95  
6.95  
4.25  
7.1  
7.1  
1.6  
1.6  
8.0  
8.0  
8.0  
16.0  
16.0  
12.0  
Q1  
Q1  
Q2  
RGE  
4.25  
1.15  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Nov-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DRV8300UDIPWR  
DRV8300UDPWR  
DRV8300UDRGER  
TSSOP  
TSSOP  
VQFN  
PW  
PW  
20  
20  
24  
3000  
3000  
3000  
356.0  
356.0  
367.0  
356.0  
356.0  
367.0  
35.0  
35.0  
35.0  
RGE  
Pack Materials-Page 2  
PACKAGE OUTLINE  
PW0020A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
18X 0.65  
20  
1
2X  
5.85  
6.6  
6.4  
NOTE 3  
10  
B
11  
0.30  
20X  
4.5  
4.3  
NOTE 4  
0.19  
1.2 MAX  
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220206/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0020A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
20X (1.5)  
(R0.05) TYP  
20  
1
20X (0.45)  
SYMM  
18X (0.65)  
11  
10  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220206/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0020A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
20X (1.5)  
SYMM  
(R0.05) TYP  
20  
1
20X (0.45)  
SYMM  
18X (0.65)  
10  
11  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220206/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
GENERIC PACKAGE VIEW  
RGE 24  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4204104/H  
PACKAGE OUTLINE  
RGE0024B  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
4.1  
3.9  
B
A
0.5  
0.3  
PIN 1 INDEX AREA  
4.1  
3.9  
0.3  
0.2  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 2.5  
(0.2) TYP  
2.45 0.1  
7
12  
EXPOSED  
SEE TERMINAL  
DETAIL  
THERMAL PAD  
13  
6
2X  
SYMM  
25  
2.5  
18  
1
0.3  
24X  
20X 0.5  
0.2  
19  
24  
0.1  
C A B  
SYMM  
24X  
PIN 1 ID  
(OPTIONAL)  
0.05  
0.5  
0.3  
4219013/A 05/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGE0024B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
2.45)  
SYMM  
24  
19  
24X (0.6)  
1
18  
24X (0.25)  
(R0.05)  
TYP  
25  
SYMM  
(3.8)  
20X (0.5)  
13  
6
(
0.2) TYP  
VIA  
7
12  
(0.975) TYP  
(3.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219013/A 05/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGE0024B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X ( 1.08)  
(0.64) TYP  
19  
24  
24X (0.6)  
1
25  
18  
24X (0.25)  
(R0.05) TYP  
SYMM  
(0.64)  
TYP  
(3.8)  
20X (0.5)  
13  
6
METAL  
TYP  
7
12  
SYMM  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 25  
78% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4219013/A 05/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY