DLP300S [TI]

0.3 英寸、360 万像素近紫外 DLP® 数字微镜器件 (DMD);
DLP300S
型号: DLP300S
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

0.3 英寸、360 万像素近紫外 DLP® 数字微镜器件 (DMD)

文件: 总40页 (文件大小:1744K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DLP300S  
ZHCSOH3B – JULY 2021 – REVISED MAY 2022  
DLP300S 适用于低成本 TI DLP® 3D 打印机的 0.3 英寸 360 万像素 DMD  
1 特性  
3 说明  
0.3 英寸 (7.93mm) 对角线微镜阵列  
– 1280 × 720 铝制微米级微镜阵列,采用正交布  
DLP300S 数字微镜器件 (DMD) 是一款数控微光机电  
系统 (MOEMS) 空间照明调制器 (SLM)。当与适当的光  
学系统成对使用时,DMD 可显示非常清晰的高质量图  
像。该 DMD 是由 DLP300S DMDDLPC1438 3D 打  
印控制器和 DLPA200x PMIC/LED 驱动器所组成的芯  
片组的一部分。DLP300S DMD 外形小巧,与控制器  
PMIC/LED 驱动器共同组成完整的系统解决方案,  
从而实现快速、高分辨率的可靠 DLP 3D 打印机。  
– 360 万像素,树脂上 2560 x 1440 像素  
– 5.4 微米微镜间距  
– ±17° 微镜倾斜度(相对于平坦表面)  
采用侧面照明,实现最优的效率和光学引擎尺寸  
偏振无关型铝微镜表面  
8 SubLVDS 输入数据总线  
专用 DLPC1438 3D 打印控制器和 DLPA200x  
PMIC/LED 驱动器,确保可靠运行  
TI DLP® 控制术入门页,了解如何开始使用  
DLP300S。  
ti.com 上的 DLP 先进光控制资源可加快上市速度,这  
些资源包括参考设计光学模块制造商DLP 设计网  
络合作伙伴。  
2 应用  
TI DLP® 3D 打印机  
器件信息(1)  
增材制造  
光聚合  
器件型号  
DLP300S  
封装  
封装尺寸(标称值)  
掩模立体光刻(mSLA 3D 打印机)  
曝光:可编程空间和时间曝光  
FQK (57)  
18.20mm × 7.00mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
D_P(0)  
DLPC1438  
Display  
D_N(0)  
Controller  
VOFFSET  
DLPA2000  
D_P(1)  
D_N(1)  
DLPA2005  
VBIAS  
Power  
Management  
600 MHz  
SubLVDS  
DDR  
D_P(6)  
D_N(6)  
VRESET  
DLP300S DMD  
Interface  
Digital  
Micromirror  
Device  
D_P(7)  
D_N(7)  
VDDI  
VDD  
DCLK_P  
DCLK_N  
LS_WDATA  
LS_CLK  
120 MHz  
SDR  
Interface  
LS_RDATA  
VSS  
DMD_DEN_ARSTZ  
(System signal routing omitted for clarity)  
简化版应用  
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。有关适用的官方英文版本的最新信息,请访问  
www.ti.com,其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: DLPS214  
 
 
 
 
DLP300S  
ZHCSOH3B – JULY 2021 – REVISED MAY 2022  
www.ti.com.cn  
Table of Contents  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 6  
6.1 Absolute Maximum Ratings........................................ 6  
6.2 Storage Conditions..................................................... 7  
6.3 ESD Ratings............................................................... 7  
6.4 Recommended Operating Conditions.........................7  
6.5 Thermal Information....................................................9  
6.6 Electrical Characteristics.............................................9  
6.7 Timing Requirements................................................10  
6.8 Switching Characteristics..........................................15  
6.9 System Mounting Interface Loads............................ 15  
6.10 Micromirror Array Physical Characteristics.............16  
6.11 Micromirror Array Optical Characteristics............... 17  
6.12 Window Characteristics.......................................... 19  
6.13 Chipset Component Usage Specification............... 19  
6.14 Software Requirements.......................................... 19  
7 Detailed Description......................................................20  
7.1 Overview...................................................................20  
7.2 Functional Block Diagram.........................................21  
7.3 Feature Description...................................................22  
7.4 Device Functional Modes..........................................22  
7.5 Optical Interface and System Image Quality  
Considerations............................................................ 22  
7.6 Micromirror Array Temperature Calculation.............. 23  
7.7 Micromirror Landed-On/Landed-Off Duty Cycle....... 24  
8 Application and Implementation..................................26  
8.1 Application Information............................................. 26  
8.2 Typical Application.................................................... 26  
9 Power Supply Recommendations................................30  
9.1 DMD Power Supply Power-Up Procedure................30  
9.2 DMD Power Supply Power-Down Procedure........... 30  
9.3 Power Supply Sequencing Requirements................ 31  
10 Layout...........................................................................33  
10.1 Layout Guidelines................................................... 33  
10.2 Layout Example...................................................... 33  
11 Device and Documentation Support..........................34  
11.1 Device Support........................................................34  
11.2 接收文档更新通知................................................... 34  
11.3 Related Links.......................................................... 34  
11.4 支持资源..................................................................35  
11.5 Trademarks............................................................. 35  
11.6 Electrostatic Discharge Caution..............................35  
11.7 术语表..................................................................... 35  
12 Mechanical, Packaging, and Orderable  
Information.................................................................... 35  
4 Revision History  
注:以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (August 2021) to Revision B (May 2022)  
Page  
Updated Absolute Maximum Ratings disclosure to the latest TI standard......................................................... 6  
Updated Micromirror Array Optical Characteristics ......................................................................................... 17  
Added Third-Party Products Disclaimer ...........................................................................................................34  
Changes from Revision (July 2021) to Revision A (August 2021)  
Page  
将器件状态从预告信息 更改为量产数据 .............................................................................................................1  
Updated Functional Block Diagram to show all high-speed data pairs.............................................................21  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: DLP300S  
 
DLP300S  
ZHCSOH3B – JULY 2021 – REVISED MAY 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
5-1. FQK Package 57-Pin LGA (Bottom View)  
5-1. Pin Functions – Connector Pins(1)  
PIN  
NAME  
PACKAGE NET  
LENGTH(2) (mm)  
TYPE  
SIGNAL  
DATA RATE  
DESCRIPTION  
NO.  
DATA INPUTS  
D_N(0)  
C9  
B9  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Data, Negative  
10.54  
10.54  
13.14  
13.14  
14.24  
14.24  
14.35  
14.35  
5.89  
D_P(0)  
Data, Positive  
Data, Negative  
Data, Positive  
Data, Negative  
Data, Positive  
Data, Negative  
Data, Positive  
Data, Negative  
Data, Positive  
Data, Negative  
Data, Positive  
Data, Negative  
Data, Positive  
Data, Negative  
Data, Positive  
Clock, Negative  
Clock, Positive  
D_N(1)  
D10  
D11  
C11  
B11  
D12  
D13  
D4  
D_P(1)  
D_N(2)  
D_P(2)  
D_N(3)  
D_P(3)  
D_N(4)  
D_P(4)  
D5  
5.89  
D_N(5)  
C5  
5.45  
D_P(5)  
B5  
5.45  
D_N(6)  
D6  
8.59  
D_P(6)  
D7  
8.59  
D_N(7)  
C7  
7.69  
D_P(7)  
B7  
7.69  
DCLK_N  
DCLK_P  
CONTROL INPUTS  
LS_WDATA  
LS_CLK  
D8  
8.10  
D9  
8.10  
C12  
C13  
I
I
LPSDR(1)  
LPSDR  
Single  
Single  
Write data for low speed interface.  
Clock for low-speed interface  
7.16  
7.89  
Asynchronous reset DMD signal. A low  
signal places the DMD in reset. A high  
signal releases the DMD from reset  
and places it in active mode.  
DMD_DEN_ARSTZ C14  
I
LPSDR  
LPSDR  
LS_RDATA  
POWER (3)  
VBIAS  
C15  
O
Single  
Read data for low-speed interface  
C1  
Power  
Power  
Supply voltage for positive bias level at  
micromirrors  
VBIAS  
C18  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: DLP300S  
 
DLP300S  
ZHCSOH3B – JULY 2021 – REVISED MAY 2022  
www.ti.com.cn  
5-1. Pin Functions – Connector Pins(1) (continued)  
PIN  
NAME  
VOFFSET  
PACKAGE NET  
LENGTH(2) (mm)  
TYPE  
SIGNAL  
DATA RATE  
DESCRIPTION  
NO.  
D1  
Power  
Supply voltage for HVCMOS core  
logic. Supply voltage for stepped  
high level at micromirror address  
electrodes.  
Supply voltage for offset level at  
micromirrors.  
VOFFSET  
D17  
Power  
VRESET  
VRESET  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDI  
VDDI  
VDDI  
VDDI  
VSS  
B1  
B18  
B6  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Supply voltage for negative reset level  
at micromirrors.  
B10  
B19  
C6  
Supply voltage for LVCMOS core logic.  
Supply voltage for LPSDR inputs.  
Supply voltage for normal high level at  
micromirror address electrodes.  
C10  
C19  
D2  
D18  
D19  
B2  
C2  
Supply voltage for SubLVDS receivers.  
C3  
D3  
B3  
VSS  
B4  
VSS  
B8  
VSS  
B12  
B13  
B14  
B15  
B16  
B17  
C4  
VSS  
VSS  
Common return.  
Ground for all power.  
VSS  
VSS  
VSS  
VSS  
VSS  
C8  
VSS  
C16  
C17  
D14  
D15  
D16  
VSS  
VSS  
VSS  
VSS  
(1) Low speed interface is LPSDR and adheres to the Electrical Characteristics and AC/DC Operating Conditions table in JEDEC  
Standard No. 209B, Low Power Double Data Rate (LPDDR) JESD209B.  
(2) Net trace lengths inside the package:  
Relative dielectric constant for the FQK ceramic package is 9.8.  
Propagation speed = 11.8 / sqrt (9.8) = 3.769 inches/ns.  
Propagation delay = 0.265 ns/inch = 265 ps/inch = 10.43 ps/mm.  
(3) The following power supplies are all required to operate the DMD: VSS, VDD, VDDI, VOFFSET, VBIAS, VRESET.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: DLP300S  
 
 
 
DLP300S  
ZHCSOH3B – JULY 2021 – REVISED MAY 2022  
www.ti.com.cn  
5-2. Pin Functions – Test Pads  
NUMBER  
A13  
SYSTEM BOARD  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
A14  
A15  
A16  
A17  
A18  
E13  
E14  
E15  
E16  
E17  
E18  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: DLP300S  
DLP300S  
ZHCSOH3B – JULY 2021 – REVISED MAY 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
See (1)  
MIN  
–0.5  
–0.5  
–0.5  
MAX  
2.3  
2.3  
11  
UNIT  
Supply voltage for LVCMOS core logic(2)  
Supply voltage for LPSDR low speed interface  
VDD  
V
V
V
VDDI  
Supply voltage for SubLVDS receivers(2)  
Supply voltage for HVCMOS and micromirror  
electrode(2) (3)  
VOFFSET  
Supply voltage for micromirror electrode(2)  
Supply voltage for micromirror electrode(2)  
Supply voltage delta (absolute value)(4)  
Supply voltage delta (absolute value)(5)  
Supply voltage delta (absolute value)(6)  
–0.5  
–15  
19  
0.5  
0.3  
11  
V
V
V
V
V
Supply voltage  
VBIAS  
VRESET  
| VDDI–VDD |  
| VBIAS–VOFFSET |  
| VBIAS–VRESET |  
34  
Input voltage for other inputs LPSDR(2)  
–0.5  
–0.5  
VDD + 0.5  
V
V
Input voltage  
Input pins  
Input voltage for other inputs SubLVDS(2) (7)  
VDDI + 0.5  
| VID |  
IID  
SubLVDS input differential voltage (absolute value)(7)  
810  
10  
mV  
mA  
MHz  
MHz  
°C  
SubLVDS input differential current  
ƒclock  
ƒclock  
Clock frequency for low speed interface LS_CLK  
Clock frequency for high speed interface DCLK  
Temperature – operational (8)  
130  
560  
90  
Clock  
frequency  
–20  
–40  
TARRAY and TWINDOW  
Temperature – non-operational(8)  
90  
°C  
Dew Point Temperature - operating and non-operating  
(non-condensing)  
Environmental  
TDP  
|TDELTA  
81  
30  
°C  
°C  
Absolute Temperature delta between any point on the  
window edge and the ceramic test point TP1(9)  
|
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and  
this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) All voltage values are with respect to the ground terminals (VSS). The following power supplies are all required to operate the DMD:  
VSS, VDD, VDDI, VOFFSET, VBIAS, and VRESET.  
(3) VOFFSET supply transients must fall within specified voltages.  
(4) Exceeding the recommended allowable absolute voltage difference between VDDI and VDD may result in excessive current draw.  
(5) Exceeding the recommended allowable absolute voltage difference between VBIAS and VOFFSET may result in excessive current  
draw.  
(6) Exceeding the recommended allowable absolute voltage difference between VBIAS and VRESET may result in excessive current  
draw.  
(7) This maximum input voltage rating applies when each input of a differential pair is at the same voltage potential. Sub-LVDS differential  
inputs must not exceed the specified limit or damage may result to the internal termination resistors.  
(8) The highest temperature of the active array (as calculated in 7.6) or of any point along the Window Edge as defined in 7-1. The  
locations of thermal test points TP2 and TP3 in 7-1 are intended to measure the highest window edge temperature. If a particular  
application causes another point on the window edge to be at a higher temperature, that point should be used.  
(9) Temperature delta is the highest difference between the ceramic test point 1 (TP1) and anywhere on the window edge as shown in  
7-1. The window test points TP2 and TP3 shown in 7-1 are intended to result in the worst case delta. If a particular application  
causes another point on the window edge to result in a larger delta temperature, that point should be used.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: DLP300S  
 
 
 
 
 
 
 
 
 
 
 
 
DLP300S  
ZHCSOH3B – JULY 2021 – REVISED MAY 2022  
www.ti.com.cn  
6.2 Storage Conditions  
Applicable for the DMD as a component or non-operational in a system  
MIN  
MAX  
85  
24  
36  
6
UNIT  
°C  
TDMD  
DMD storage temperature  
–40  
TDP-AVG  
TDP-ELR  
CTELR  
Average dew point temperature, (non-condensing)(1)  
Elevated dew point temperature range, (non-condensing)(2)  
Cumulative time in elevated dew point temperature range  
°C  
28  
°C  
Months  
(1) The average over time (including storage and operating) that the device is not in the elevated dew point temperature range.  
(2) Exposure to dew point temperatures in the elevated range during storage and operation should be limited to less than a total  
cumulative time of CTELR  
.
6.3 ESD Ratings  
VALUE  
UNIT  
V(ESD) Electrostatic discharge  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V
(1) JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process.  
6.4 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
NOM  
MAX  
UNIT  
SUPPLY VOLTAGE RANGE(3)  
Supply voltage for LVCMOS core logic  
VDD  
1.65  
1.8  
1.95  
V
Supply voltage for LPSDR low-speed interface  
Supply voltage for SubLVDS receivers  
Supply voltage for HVCMOS and micromirror electrode(4)  
Supply voltage for mirror electrode  
VDDI  
1.65  
9.5  
1.8  
10  
1.95  
10.5  
18.5  
–13.5  
0.3  
V
V
V
V
V
V
V
VOFFSET  
VBIAS  
17.5  
–14.5  
18  
VRESET  
Supply voltage for micromirror electrode  
Supply voltage delta (absolute value)(5)  
Supply voltage delta (absolute value)(6)  
Supply voltage delta (absolute value)(7)  
–14  
|VDDI–VDD|  
|VBIAS–VOFFSET|  
|VBIAS–VRESET|  
CLOCK FREQUENCY  
ƒclock  
10.5  
33  
Clock frequency for low speed interface LS_CLK(8)  
Clock frequency for high speed interface DCLK(9)  
Duty cycle distortion DCLK  
108  
300  
120  
540  
MHz  
MHz  
ƒclock  
44%  
56%  
SUBLVDS INTERFACE(9)  
| VID  
VCM  
|
SubLVDS input differential voltage (absolute value) 6-9, 6-10  
Common mode voltage 6-9, 6-10  
SubLVDS voltage 6-9, 6-10  
150  
700  
575  
90  
250  
900  
350  
1100  
1225  
110  
mV  
mV  
mV  
VSUBLVDS  
ZLINE  
Line differential impedance (PWB/trace)  
Internal differential termination resistance 6-11  
100-Ω differential PCB trace  
100  
100  
ZIN  
80  
120  
6.35  
152.4  
mm  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: DLP300S  
 
 
 
 
 
 
DLP300S  
ZHCSOH3B – JULY 2021 – REVISED MAY 2022  
www.ti.com.cn  
6.4 Recommended Operating Conditions (continued)  
Over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
NOM  
MAX  
UNIT  
ENVIRONMENTAL  
Array Temperature – long-term operational(10) (11) (12)  
0
–20  
–10  
40  
–10  
0
TARRAY  
Array Temperature - short-term operational, 25 hr max(11) (13)  
Array Temperature - short-term operational, 500 hr max(11) (13)  
°C  
°C  
Absolute Temperature difference between any point on the window  
edge and the ceramic test point TP1 (14)  
|TDELTA  
|
15  
TWINDOW  
TDP-AVG  
Window temperature – operational(15)  
85  
24  
36  
6
°C  
°C  
Average dew point temperature (non-condensing)(16)  
Elevated dew point temperature range (non-condensing)(17)  
Cumulative time in elevated dew point temperature range  
Illumination overfill in critical areal(19) (20)  
TDP-ELR  
28  
°C  
CTELR  
Months  
W/cm2  
mW/cm2  
QAP-ILL  
0
ILLUV  
Illumination wavelengths < 380 nm(10)  
2
ILL380 - 390 nm  
ILL390 - 400 nm  
ILL400 - 550 nm  
ILL> 550 nm  
ILLθ  
Illumination wavelengths between 380 nm and 390 nm  
Illumination wavelengths between 390 nm and 400 nm  
Illumination wavelengths between 400 nm and 550 nm  
Illumination wavelengths > 550 nm  
55 mW/cm2  
450 mW/cm2  
3
W/cm2  
10 mW/cm2  
55 deg  
Illumination marginal ray angle(18)  
(1) 6.4 is applicable after the DMD is installed in the final product.  
(2) The functional performance of the device specified in this datasheet is achieved when operating the device within the limits defined by  
6.4. No level of performance is implied when operating the device above or below the 6.4 limits.  
(3) All voltage values are with respect to the ground pins (VSS).  
(4) VOFFSET supply transients must fall within specified maximum voltages.  
(5) To prevent excess current, the supply voltage delta |VDDI – VDD| must be less than specified limit.  
(6) To prevent excess current, the supply voltage delta |VBIAS – VOFFSET| must be less than specified limit.  
(7) To prevent excess current, the supply voltage delta |VBIAS – VRESET| must be less than specified limit.  
(8) LS_CLK must run as specified to ensure internal DMD timing for reset waveform commands.  
(9) Refer to the SubLVDS timing requirements in 6.7.  
(10) Simultaneous exposure of the DMD to the maximum limits in 6.4 for temperature and UV illumination will reduce device lifetime.  
(11) The array temperature cannot be measured directly and must be computed analytically from the temperature measured at test point 1  
(TP1) shown in 7-1 and the Package Thermal Resistance using 7.6.  
(12) Long-term is defined as the usable life of the device.  
(13) Short-term is the total cumulative time over the useful life of the device.  
(14) Temperature delta is the highest difference between the ceramic test point 1 (TP1) and anywhere on the window edge shown in 图  
7-1. The window test points TP2 and TP3 shown in 7-1 are intended to result in the worst case delta temperature. If a particular  
application causes another point on the window edge to result in a larger delta temperature, that point should be used.  
(15) Window temperature is the highest temperature on the window edge shown in 7-1. The locations of thermal test points TP2 and  
TP3 in 7-1 are intended to measure the highest window edge temperature. If a particular application causes another point on the  
window edge to result in a higher temperature, that point should be used.  
(16) The average over time (including storage and operating) that the device is not in the elevated dew point temperature range.  
(17) Exposure to dew point temperatures in the elevated range during storage and operation should be limited to less than a total  
cumulative time of CTELR  
.
(18) The maximum marginal ray angle of the incoming illumination light at any point in the micromirror array, including Pond of Micromirrors  
(POM), should not exceed 55 degrees from the normal to the device array plane. The device window aperture has not necessarily  
been designed to allow incoming light at higher maximum angles to pass to the micromirrors, and the device performance has not  
been tested nor qualified at angles exceeding this. Illumination light exceeding this angle outside the micromirror array (including POM)  
will contribute to thermal limitations described in this document, and may negatively affect lifetime.  
(19) The active area of the device is surrounded by an aperture on the inside of the DMD window surface that masks structures of the DMD  
device assembly from normal view. The window aperture is sized to anticipate several optical operating conditions. Overfill light directly  
illuminating the window aperture can create adverse imaging effects, and additional device heating leading to reduced device lifetime.  
Direct incident illumination should be prevented from striking the DMD window aperture.  
(20) Applies to the region in red in 6-1, at the inside plane of the glass window where the physical aperture is located.  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: DLP300S  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
DLP300S  
ZHCSOH3B – JULY 2021 – REVISED MAY 2022  
www.ti.com.cn  
4X 0.52 mm critical area on aperture  
Window  
Window  
6-1. Illumination Overfill Diagram - Critical Area  
6.5 Thermal Information  
DLP300S  
FQK (LGA)  
57 PINS  
5.4  
THERMAL METRIC(1)  
UNIT  
Thermal resistance  
Active area to test point 1 (TP1)(1)  
°C/W  
(1) The DMD is designed to conduct absorbed and dissipated heat to the back of the package. The cooling system must be capable of  
maintaining the package within the temperature range specified in the 6.4. The total heat load on the DMD is largely driven by  
the incident light absorbed by the active area although other contributions include light energy absorbed by the window aperture and  
electrical power dissipation of the array. Optical systems should be designed to minimize the light energy falling outside the window  
clear aperture since any additional thermal load in this area can significantly degrade the reliability of the device.  
6.6 Electrical Characteristics  
Over operating free-air temperature range (unless otherwise noted)(10)  
PARAMETER  
TEST CONDITIONS(2)  
MIN  
TYP  
MAX UNIT  
CURRENT  
VDD = 1.95 V  
60.5  
mA  
IDD  
Supply current: VDD(3) (5)  
Supply current: VDDI(3) (5)  
Supply current: VOFFSET(4) (6)  
Supply current: VBIAS(4) (6)  
Supply current: VRESET(6)  
VDD = 1.8 V  
54  
11.3  
1.5  
VDDI = 1.95 V  
VDD = 1.8 V  
16.5  
mA  
IDDI  
VOFFSET = 10.5 V  
VOFFSET = 10 V  
VBIAS = 18.5 V  
VBIAS = 18 V  
2.2  
mA  
IOFFSET  
0.6  
mA  
IBIAS  
0.3  
VRESET = –14.5 V  
VRESET = –14 V  
2.4  
mA  
IRESET  
1.7  
POWER(1)  
PDD  
VDD = 1.95 V  
118  
Supply power dissipation: VDD(3) (5)  
Supply power dissipation: VDDI(3) (5)  
mW  
VDD = 1.8 V  
95  
20  
15  
6
VDDI = 1.95 V  
VDD = 1.8 V  
32  
PDDI  
mW  
VOFFSET = 10.5 V  
VOFFSET = 10 V  
VBIAS = 18.5 V  
VBIAS = 18 V  
23  
Supply power dissipation:  
VOFFSET(4) (6)  
POFFSET  
mW  
11  
PBIAS  
Supply power dissipation: VBIAS(4) (6)  
mW  
VRESET = –14.5 V  
VRESET = –14 V  
35  
PRESET  
PTOTAL  
Supply power dissipation: VRESET(6)  
Supply power dissipation: Total  
mW  
24  
160  
219  
mW  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: DLP300S  
 
 
 
 
DLP300S  
www.ti.com.cn  
MAX UNIT  
ZHCSOH3B – JULY 2021 – REVISED MAY 2022  
6.6 Electrical Characteristics (continued)  
Over operating free-air temperature range (unless otherwise noted)(10)  
PARAMETER  
TEST CONDITIONS(2)  
MIN  
TYP  
LPSDR INPUT(7)  
VIH(DC)  
VIL(DC)  
VIH(AC)  
VIL(AC)  
∆VT  
DC input high voltage(9)  
DC input low voltage(9)  
AC input high voltage(9)  
AC input low voltage(9)  
0.7 × VDD  
–0.3  
VDD + 0.3  
V
V
0.3 × VDD  
VDD + 0.3  
0.2 × VDD  
0.4 × VDD  
0.8 × VDD  
–0.3  
V
V
Hysteresis ( VT+ – VT–  
)
6-12  
0.1 × VDD  
–100  
V
IIL  
Low–level input current  
VDD = 1.95 V; VI = 0 V  
nA  
nA  
IIH  
High–level input current  
VDD = 1.95 V; VI = 1.95 V  
100  
LPSDR OUTPUT(8)  
VOH  
VOL  
DC output high voltage  
DC output low voltage  
IOH = –2 mA  
IOL = 2 mA  
0.8 × VDD  
V
V
0.2 × VDD  
CAPACITANCE  
Input capacitance LPSDR  
ƒ = 1 MHz  
ƒ = 1 MHz  
ƒ = 1 MHz  
10  
10  
10  
pF  
pF  
pF  
CIN  
Input capacitance SubLVDS  
Output capacitance  
COUT  
(1) The following power supplies are all required to operate the DMD: VSS, VDD, VDDI, VOFFSET, VBIAS, VRESET.  
(2) All voltage values are with respect to the ground pins (VSS).  
(3) To prevent excess current, the supply voltage delta |VDDI – VDD| must be less than specified limit.  
(4) To prevent excess current, the supply voltage delta |VBIAS – VOFFSET| must be less than specified limit.  
(5) Supply power dissipation based on non–compressed commands and data.  
(6) Supply power dissipation based on 3 global resets in 200 µs.  
(7) LPSDR specifications are for pins LS_CLK and LS_WDATA.  
(8) LPSDR specification is for pin LS_RDATA.  
(9) Low-speed interface is LPSDR and adheres to the Electrical Characteristics and AC/DC Operating Conditions table in JEDEC  
Standard No. 209B, Low-Power Double Data Rate (LPDDR) JESD209B.  
(10) Device electrical characteristics are over 6.4 unless otherwise noted.  
6.7 Timing Requirements  
Device electrical characteristics are over 6.4 unless otherwise noted.  
MIN  
NOM  
MAX  
UNIT  
LPSDR  
tr  
Rise slew rate(1)  
(30% to 80%) × VDD, 6-3  
(70% to 20%) × VDD, 6-3  
(20% to 80%) × VDD, 6-4  
(80% to 20%) × VDD, 6-4  
6-2  
1
1
3
3
V/ns  
V/ns  
V/ns  
V/ns  
ns  
tƒ  
Fall slew rate(1)  
tr  
Rise slew rate(2)  
0.25  
0.25  
7.7  
3.1  
3.1  
tƒ  
Fall slew rate(2)  
tc  
Cycle time LS_CLK,  
Pulse duration LS_CLK high  
Pulse duration LS_CLK low  
8.3  
tW(H)  
tW(L)  
50% to 50% reference points, 6-2  
50% to 50% reference points, 6-2  
ns  
ns  
LS_WDATA valid before LS_CLK ↑, 图  
6-2  
tsu  
Setup time  
1.5  
ns  
LS_WDATA valid after LS_CLK ↑, 图  
t h  
Hold time  
1.5  
3
ns  
ns  
ns  
6-2  
tWINDOW  
tDERATING  
Window time(1) (4)  
Window time derating(1) (4)  
Setup time + Hold time, 6-2  
For each 0.25 V/ns reduction in slew  
rate below 1 V/ns, 6-6  
0.35  
SubLVDS  
tr  
Rise slew rate  
Fall slew rate  
20% to 80% reference points, 6-5  
80% to 20% reference points, 6-5  
0.7  
0.7  
1
1
V/ns  
V/ns  
tƒ  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: DLP300S  
 
 
 
 
 
 
 
 
 
 
 
DLP300S  
ZHCSOH3B – JULY 2021 – REVISED MAY 2022  
www.ti.com.cn  
6.7 Timing Requirements (continued)  
Device electrical characteristics are over 6.4 unless otherwise noted.  
MIN  
1.79  
0.79  
0.79  
NOM  
MAX  
UNIT  
ns  
tc  
Cycle time DCLK,  
6-7  
1.85  
tW(H)  
tW(L)  
Pulse duration DCLK high  
Pulse duration DCLK low  
50% to 50% reference points, 6-7  
50% to 50% reference points, 6-7  
ns  
ns  
D(0:3) valid before  
DCLK ↑ or DCLK ↓, 6-7  
tsu  
Setup time  
D(0:3) valid after  
DCLK ↑ or DCLK ↓, 6-7  
t h  
Hold time  
tWINDOW  
Window time  
Setup time + Hold time, 6-7, 6-8  
0.3  
ns  
ns  
tLVDS-  
Power-up receiver(3)  
2000  
ENABLE+REFGEN  
(1) Specification is for LS_CLK and LS_WDATA pins. Refer to LPSDR input rise slew rate and fall slew rate in 6-3.  
(2) Specification is for DMD_DEN_ARSTZ pin. Refer to LPSDR input rise and fall slew rate in 6-4.  
(3) Specification is for SubLVDS receiver time only and does not take into account commanding and latency after commanding.  
(4) Window time derating example: 0.5-V/ns slew rate increases the window time by 0.7 ns, from 3 to 3.7 ns.  
t
C
t
t
w(L)  
w(H)  
50%  
LS_CLK  
t
t
H|  
SU|  
50%  
LS_WDATA  
t
WINDOW|  
Low-speed interface is LPSDR and adheres to the 6.6 and AC/DC Operating Conditions table in JEDEC Standard No. 209B, Low  
Power Double Data Rate (LPDDR) JESD209B.  
6-2. LPSDR Switching Parameters  
LS_CLK and LS_WDATA  
100  
V
V
IH(AC)  
IH(DC)  
80  
70  
V
V
IL(DC)  
IL(AC)  
30  
20  
t
F
t
R
Time  
6-3. LPSDR Input Slew Rate  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: DLP300S  
 
 
 
 
 
 
DLP300S  
ZHCSOH3B – JULY 2021 – REVISED MAY 2022  
www.ti.com.cn  
DMD_DEN_ARSTZ  
100  
80  
V
IL(AC)  
20  
t
F
t
R
Time  
6-4. LPSDR Input Slew Rate  
VDCLK_P and VDCLK_N  
VD_P(0:3) and VD_N(0:3)  
100  
80  
70  
V
CM  
50  
20  
t
F
t
R
Time  
6-5. SubLVDS Input Rise and Fall Slew Rate  
VIH MIN  
LS_CLK Midpoint  
VIL MAX  
tSU  
tH  
VIH MIN  
LS_WDATA Midpoint  
VIL MAX  
tWINDOW  
VIH MIN  
Midpoint  
LS_CLK  
VIL MAX  
tDERATING  
tH  
tSU  
VIH MIN  
Midpoint  
VIL MAX  
LS_WDATA  
tWINDOW  
6-6. Window Time Derating Concept  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: DLP300S  
 
 
 
DLP300S  
ZHCSOH3B – JULY 2021 – REVISED MAY 2022  
www.ti.com.cn  
t
C
t
t
w(H)  
w(L)  
DCLK_P  
50%  
DCLK_N  
t
t
H|  
SU|  
D_P(0:7)  
50%  
D_N(0:7)  
t
WINDOW|  
6-7. SubLVDS Switching Parameters  
t
C
(1)  
WINDOW  
t
|
DCLK_P  
50%  
DCLK_N  
¼ t  
C|  
¼ t  
C|  
D_P(0:7)  
50%  
D_N(0:7)  
(1) High-speed training scan window  
(2) Refer to 7.3.3 for details  
6-8. High-Speed Training Scan Window  
+
(VIP + VIN  
2
)
VCM  
=
œ
DCLP_P, D_P(0:7)  
DCLP_N, D_N(0:7)  
VID  
SubLVDS  
Receiver  
VCM  
VIP  
VIN  
6-9. SubLVDS Voltage Parameters  
1.255 V  
V
LVDS(max)  
V
V
CM  
ID  
V
LVDS(min)  
0.575 V  
6-10. SubLVDS Waveform Parameters  
VSubLVDS(max) = VCM(max) + ½ × |VID(max)  
|
VSubLVDS(min) = VCM(min) – ½ × |VID(max)  
|
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: DLP300S  
 
 
 
 
DLP300S  
ZHCSOH3B – JULY 2021 – REVISED MAY 2022  
www.ti.com.cn  
DCLP_P, D_P(0:7)  
DCLP_N, D_N(0:7)  
ESD  
ESD  
Internal  
Termination  
SubLVDS  
Receiver  
6-11. SubLVDS Equivalent Input Circuit  
LS_CLK and LS_WDATA  
V
IH  
V
T+  
DV  
T
V
Tœ  
V
IL  
Time  
6-12. LPSDR Input Hysteresis  
LS_CLK  
LS_WDATA  
Stop  
Start  
tPD  
LS_RDATA  
Acknowledge  
6-13. LPSDR Read Out  
Timing specification reference point  
Device pin  
output under test  
CL  
Tester channel  
See 7.3.4 for more information.  
6-14. Test Load Circuit for Output Propagation Measurement  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: DLP300S  
 
 
 
DLP300S  
ZHCSOH3B – JULY 2021 – REVISED MAY 2022  
www.ti.com.cn  
6.8 Switching Characteristics  
Over operating free-air temperature range (unless otherwise noted).(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
11.1  
11.3  
15  
UNIT  
ns  
CL = 5 pF  
Output propagation, Clock to Q, rising  
edge of LS_CLK input to LS_RDATA  
output. 6-13  
tPD  
CL = 10 pF  
CL = 85 pF  
ns  
ns  
Slew rate, LS_RDATA  
0.5  
V/ns  
Output duty cycle distortion, LS_RDATA  
40%  
60%  
(1) Device electrical characteristics are over 6.4 unless otherwise noted.  
6.9 System Mounting Interface Loads  
PARAMETER  
MIN  
NOM  
MAX  
125  
67  
UNIT  
N
Maximum system mounting interface load to Electrical Interface Area (see 6-15)  
be applied to the:  
Clamping and Thermal Interface Area (see 图  
6-15)  
N
Electrical Interface Area  
125 N Maximum  
Clamping and Thermal Interface Area # 1  
33.5 N Maximum  
Clamping and Thermal Interface Area # 2  
33.5 N Maximum  
6-15. System Interface Loads  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: DLP300S  
 
 
 
 
DLP300S  
ZHCSOH3B – JULY 2021 – REVISED MAY 2022  
www.ti.com.cn  
6.10 Micromirror Array Physical Characteristics  
PARAMETER  
VALUE  
1280  
720  
UNIT  
micromirrors  
micromirrors  
µm  
Number of active columns  
Number of active rows  
Micromirror (pixel) pitch  
See 6-16  
See 6-16  
See 6-17  
ε
5.4  
Micromirror pitch × number of active  
columns; see 6-16  
Micromirror active array width  
Micromirror active array height  
Micromirror active border  
6.912  
3.888  
20  
mm  
mm  
Micromirror pitch × number of active rows;  
see 6-16  
micromirrors/  
side  
Pond of micromirror (POM)(1)  
(1) The structure and qualities of the border around the active array includes a band of partially functional micromirrors called the POM.  
These micromirrors are structurally and/or electrically prevented from tilting toward the bright or ON state, but still require an electrical  
bias to tilt toward OFF.  
Width .  
Mirror 719  
Mirror 718  
Mirror 717  
Mirror 716  
Illumination  
1280 × 720 mirrors  
Height  
Mirror 3  
Mirror 2  
Mirror 1  
Mirror 0  
6-16. Micromirror Array Physical Characteristics  
e
e
e
e
6-17. Mirror (Pixel) Pitch  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: DLP300S  
 
 
 
 
DLP300S  
ZHCSOH3B – JULY 2021 – REVISED MAY 2022  
www.ti.com.cn  
6.11 Micromirror Array Optical Characteristics  
PARAMETER  
Micromirror tilt angle  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
degree  
degree  
DMD landed state(1)  
17  
Micromirror tilt angle tolerance(2) (3) (4) (5)  
–1.4  
1.4  
Landed ON state  
180  
270  
1
Micromirror tilt direction (6) (7)  
degree  
µs  
Landed OFF state  
Typical performance  
Typical performance  
Micromirror crossover time(8)  
Micromirror switching time(9)  
3
10  
Bright pixel(s) in active area  
Gray 10 Screen (12)  
0
1
4
0
0
(11)  
Bright pixel(s) in the POM (13) Gray 10 Screen (12)  
Image  
Dark pixel(s) in the active  
White Screen  
micromirrors  
performance(10)  
area (14)  
Adjacent pixel(s) (15)  
Any Screen  
Any Screen  
Unstable pixel(s) in active  
area (16)  
(1) Measured relative to the plane formed by the overall micromirror array.  
(2) Additional variation exists between the micromirror array and the package datums.  
(3) Represents the landed tilt angle variation relative to the nominal landed tilt angle.  
(4) Represents the variation that can occur between any two individual micromirrors, located on the same device or located on different  
devices.  
(5) For some applications, it is critical to account for the micromirror tilt angle variation in the overall system optical design. With some  
system optical designs, the micromirror tilt angle variation within a device may result in perceivable non-uniformities in the light field  
reflected from the micromirror array. With some system optical designs, the micromirror tilt angle variation between devices may result  
in colorimetry variations, system efficiency variations, or system contrast variations.  
(6) When the micromirror array is landed (not parked), the tilt direction of each individual micromirror is dictated by the binary contents of  
the CMOS memory cell associated with each individual micromirror. A binary value of 1 results in a micromirror landing in the ON state  
direction. A binary value of 0 results in a micromirror landing in the OFF state direction. See 6-18.  
(7) Micromirror tilt direction is measured as in a typical polar coordinate system: Measuring counter-clockwise from a 0° reference which is  
aligned with the +X Cartesian axis.  
(8) The time required for a micromirror to nominally transition from one landed state to the opposite landed state.  
(9) The minimum time between successive transitions of a micromirror.  
(10) Conditions of Acceptance: All DMD image quality returns will be evaluated using the following projected image test conditions:  
Test set degamma shall be linear  
Test set brightness and contrast shall be set to nominal  
The diagonal size of the projected image shall be a minimum of 20 inches  
The projections screen shall be 1X gain  
The projected image shall be inspected from a 38 inch minimum viewing distance  
The image shall be in focus during all image quality tests  
(11) Bright pixel definition: A single pixel or mirror that is stuck in the ON position and is visibly brighter than the surrounding pixels  
(12) Gray 10 screen definition: All areas of the screen are colored with the following settings:  
Red = 10/255  
Green = 10/255  
Blue = 10/255  
(13) POM definition: Rectangular border of off-state mirrors surrounding the active area  
(14) Dark pixel definition: A single pixel or mirror that is stuck in the OFF position and is visibly darker than the surrounding pixels  
(15) Adjacent pixel definition: Two or more stuck pixels sharing a common border or common point, also referred to as a cluster  
(16) Unstable pixel definition: A single pixel or mirror that does not operate in sequence with parameters loaded into memory. The unstable  
pixel appears to be flickering asynchronously with the image  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: DLP300S  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
DLP300S  
ZHCSOH3B – JULY 2021 – REVISED MAY 2022  
www.ti.com.cn  
(1279, 719)  
Incident  
illumination  
light path  
On-state  
landed edge  
Tilted axis of  
pixel rotation  
Off-state  
landed edge  
(0, 0)  
Off-state  
light path  
Bond pad 1  
6-18. Landed Pixel Orientation and Tilt  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: DLP300S  
 
DLP300S  
ZHCSOH3B – JULY 2021 – REVISED MAY 2022  
www.ti.com.cn  
6.12 Window Characteristics  
PARAMETER(3)  
MIN  
TYP  
MAX  
UNIT  
Window material  
Corning Eagle  
XG  
Window aperture(1)  
Illumination overfill(2)  
See (1)  
See (2)  
Window transmittance, single-pass  
through both surfaces and glass (4)  
Minimum within the wavelength range 390  
nm to 450 nm, 0-30° AOI.  
93%  
98%  
75%  
99%  
99%  
90%  
Average within the wavelength range 390 nm  
to 450 nm, 0-30° AOI.  
Minimum within the wavelength range 450  
nm to 550 nm. 0-30° AOI.  
(1) See the package mechanical characteristics for details regarding the size and location of the window aperture.  
(2) The active area of the device is surrounded by an aperture on the inside of the DMD window surface that masks structures of the DMD  
device assembly from normal view. The window aperture is sized to anticipate several optical operating conditions. Overfill light directly  
illuminating the window aperture can create adverse imaging effects, and additional device heating leading to reduced device lifetime.  
Direct incident illumination should be prevented from striking the DMD window aperture.  
(3) See 7.5 for more information.  
(4) See the TI application report DLPA031, Wavelength Transmittance Considerations for DLP DMD Window.  
SPACER  
6.13 Chipset Component Usage Specification  
The DLP300S is a component of one or more TI DLP® chipsets. Reliable function and operation of the DLP300S  
requires that it be used in conjunction with the other components of the applicable DLP chipset, including  
those components that contain or implement TI DMD control technology. TI DMD control technology is the TI  
technology and devices for operating or controlling a DLP DMD.  
备注  
TI assumes no responsibility for image quality artifacts or DMD failures caused by optical system  
operating conditions exceeding limits described previously.  
6.14 Software Requirements  
CAUTION  
The DMD has mandatory software requirements. Refer to Software Requirements for TI DLP®Pico®  
TRP Digital Micromirror Devices application report for additional information. Failure to use the  
specified software results in failure at power up.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: DLP300S  
 
 
 
 
 
 
 
DLP300S  
ZHCSOH3B – JULY 2021 – REVISED MAY 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The DLP300S DMD is a 0.3 inch diagonal spatial light modulator of aluminum micromirrors. Pixel array size  
is 1280 columns by 720 rows in a square grid pixel arrangement. The fast switching speed of the DMD  
micromirrors combined with advanced DLP image processing algorithms enable each micromirror to display 4  
distinct pixels on the screen during every frame, resulting in a full 3.6MP image being displayed. The electrical  
interface is Sub Low Voltage Differential Signaling (SubLVDS) data.  
This DMD is part of the chipset that includes the DLP300S DMD, DLPC1438 display and light controller and  
DLPA200x PMIC/LED driver. To ensure reliable operation, this DMD must always be used with DLPC1438  
display and light controller and DLPA200x PMIC/LED driver.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: DLP300S  
 
 
DLP300S  
ZHCSOH3B – JULY 2021 – REVISED MAY 2022  
www.ti.com.cn  
7.2 Functional Block Diagram  
High-Speed  
Interface  
Control  
Misc  
Column Write  
Bit Lines  
(0,0)  
Word  
Lines  
Voltages  
Voltage  
Generators  
SRAM  
Row  
(719,1279)  
Control  
Column Read  
Control  
Low-Speed  
Interface  
A. Details omitted for clarity  
B. Orientation is not representative of optical system  
C. Scale is not representative of layout  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: DLP300S  
 
 
DLP300S  
ZHCSOH3B – JULY 2021 – REVISED MAY 2022  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Power Interface  
The power management IC, DLPA200x, contains 3 regulated DC supplies for the DMD reset circuitry: VBIAS,  
VRESET and VOFFSET, as well as the 2 regulated DC supplies for the DLPC1438 controller.  
7.3.2 Low-Speed Interface  
The Low Speed Interface handles instructions that configure the DMD and control reset operation. LS_CLK is  
the low–speed clock, and LS_WDATA is the low speed data input.  
7.3.3 High-Speed Interface  
The purpose of the high-speed interface is to transfer pixel data rapidly and efficiently, making use of high speed  
DDR transfer and compression techniques to save power and time. The high-speed interface is composed of  
differential SubLVDS receivers for inputs, with a dedicated clock.  
7.3.4 Timing  
The data sheet provides timing test results at the device pin. For output timing analysis, the tester pin electronics  
and its transmission line effects must be considered. The Test Load Circuit Output Propagation Measurement  
shows an equivalent test load circuit for the output under test. Timing reference loads are not intended as  
a precise representation of any particular system environment or depiction of the actual load presented by a  
production test. TI recommends that system designers use IBIS or other simulation tools to correlate the timing  
reference load to a system environment. The load capacitance value stated is intended for characterization and  
measurement of AC timing signals only. This load capacitance value does not indicate the maximum load the  
device is capable of driving.  
7.4 Device Functional Modes  
DMD functional modes are controlled by the DLPC1438 controller. See the DLPC1438 controller data sheet or  
contact a TI applications engineer.  
7.5 Optical Interface and System Image Quality Considerations  
备注  
TI assumes no responsibility for image quality artifacts or DMD failures caused by optical system  
operating conditions exceeding limits described previously.  
7.5.1 Optical Interface and System Image Quality  
TI assumes no responsibility for end-equipment optical performance. Achieving the desired end-equipment  
optical performance involves making trade-offs between numerous component and system design parameters.  
Optimizing system optical performance and image quality strongly relate to optical system design parameter  
trades. Although it is not possible to anticipate every conceivable application, projector image quality and optical  
performance is contingent on compliance to the optical system operating conditions described in the following  
sections.  
7.5.1.1 Numerical Aperture and Stray Light Control  
The angle defined by the numerical aperture of the illumination and projection optics at the DMD optical area  
is typically the same. Ensure this angle does not exceed the nominal device micromirror tilt angle unless  
appropriate apertures are added in the illumination or projection pupils to block out flat-state and stray light from  
the projection lens. The micromirror tilt angle defines DMD capability to separate the "ON" optical path from  
any other light path, including undesirable flat–state specular reflections from the DMD window, DMD border  
structures, or other system surfaces near the DMD such as prism or lens surfaces. If the numerical aperture  
exceeds the micromirror tilt angle, or if the projection numerical aperture angle is more than two degrees larger  
than the illumination numerical aperture angle (and vice versa), contrast degradation and objectionable artifacts  
in the display border or active area may occur.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: DLP300S  
 
 
 
 
 
DLP300S  
ZHCSOH3B – JULY 2021 – REVISED MAY 2022  
www.ti.com.cn  
7.5.1.2 Pupil Match  
The optical and image quality specifications assume that the exit pupil of the illumination optics is nominally  
centered within 2° of the entrance pupil of the projection optics. Misalignment of pupils can create objectionable  
artifacts in the display border or active area. These artifacts may require additional system apertures to control,  
especially if the numerical aperture of the system exceeds the pixel tilt angle.  
7.5.1.3 Illumination Overfill  
The active area of the device is surrounded by an aperture on the inside of the DMD window surface that masks  
structures of the DMD device assembly from normal view. The window aperture is sized to anticipate several  
optical operating conditions. Overfill light directly illuminating the window aperture can create adverse imaging  
effects, and additional device heating leading to reduced device lifetime. Direct incident illumination should be  
prevented from striking the DMD window aperture.  
7.6 Micromirror Array Temperature Calculation  
TP3  
Illumination  
Direction  
TP2  
Off-state Light  
Window Edge  
(4 surfaces)  
TP2  
TP3  
TP1  
TP1  
7-1. Thermal Test Point Location - FQK Package  
Micromirror array temperature cannot be measured directly, therefore it must be computed analytically from  
measurement points on the outside of the package, the package thermal resistance, the electrical power, and  
the illumination heat load. The relationship between array temperature and the reference ceramic temperature  
shown as TP1 in 7-1 is provided by the following equations:  
TARRAY = TCERAMIC + (QARRAY × RARRAY-TO-CERAMIC  
)
(1)  
(2)  
QARRAY = QELECTRICAL + QILLUMINATION  
where  
TARRAY = Computed micromirror array temperature (°C)  
TCERAMIC = Measured ceramic temperature (°C) (TP1 location)  
RARRAY-TO-CERAMIC = Thermal resistance of package specified in 6.5 from array to ceramic TP1 (°C/W)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: DLP300S  
 
 
DLP300S  
ZHCSOH3B – JULY 2021 – REVISED MAY 2022  
www.ti.com.cn  
QARRAY = Total DMD power on the array (electrical + absorbed) (W)  
QELECTRICAL = Nominal electrical power (W)  
QINCIDENT = measured total illumination optical power at DMD (W)  
QILLUMINATION = (QINCIDENT × DMD average thermal absortivity) (W)  
DMD average thermal absortivity = 0.40  
The electrical power dissipation of the DMD is variable and depends on the voltages, data rates, and operating  
frequencies. A nominal electrical power dissipation to use when calculating array temperature is 0.1 W. The  
absorbed power from the illumination source is variable and depends on the operating state of the micromirrors  
and the intensity of the light source. The equations shown above are valid for each DMD chip in a system. It  
assumes illumination distribution of 83.7% on the active array and 16.3% on the area outside the array.  
QELECTRICAL = 0.1 W  
(3)  
(4)  
(5)  
(6)  
(7)  
QINCIDENT = 0.9 W (measured)  
TCERAMIC = 35.0 °C (measured)  
QARRAY = 0.1 W + (0.9 W x 0.40) = 0.46 W  
TARRAY = 35.0 °C + (0.46 W x 5.4 °C /W) = 37.5°C  
7.7 Micromirror Landed-On/Landed-Off Duty Cycle  
7.7.1 Definition of Micromirror Landed-On and Landed-Off Duty Cycle  
The micromirror landed-on/landed-off duty cycle (landed duty cycle) denotes the amount of time (as a  
percentage) that an individual micromirror is landed in the ON state versus the amount of time the same  
micromirror is landed in the OFF state.  
As an example, a landed duty cycle of 75/25 indicates that the referenced pixel is in the ON state 75% of the  
time (and in the OFF state 25% of the time), whereas 25/75 indicates that the pixel is in the OFF state 75% of  
the time. Likewise, 50/50 indicates that the pixel is ON 50% of the time and OFF 50% of the time.  
When assessing landed duty cycle, the time spent switching from the current state to the opposite state is  
considered negligible and is thus ignored.  
Because a micromirror can only be landed in one state or the other (ON or OFF), the two numbers (percentages)  
nominally add to 100. In practice, image processing algorithms in the DLP chipset can result a total of less that  
100.  
7.7.2 Landed Duty Cycle and Useful Life of the DMD  
Knowing the long-term average landed duty cycle (of the end product or application) is important because  
subjecting all (or a portion) of the micromirror array (also called the active array) to an asymmetric landed duty  
cycle for a prolonged period of time can reduce the usable life of the DMD.  
The symmetry of the landed duty cycle is determined by how close the two numbers (percentages) are to being  
equal. For example, a landed duty cycle of 50/50 is perfectly symmetrical whereas a landed duty cycle of 100/0  
or 0/100 is perfectly asymmetrical.  
7.7.3 Landed Duty Cycle and Operational DMD Temperature  
Operational DMD temperature and landed duty cycle interact to affect the usable life of the DMD. This interaction  
can be used to reduce the impact that an asymmetrical landed duty cycle has on the useable life of the DMD.  
7.7.4 Estimating the Long-Term Average Landed Duty Cycle of a Product or Application  
During a given period of time, the landed duty cycle of a given pixel depends on the image content being  
displayed by that pixel. To enhance reliability, when coupled with the DLPC1438 controller, the DLP300S DMD  
operates at a maximum 78/22 duty cycle and a minimum of 22/78 duty cycle.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: DLP300S  
 
DLP300S  
ZHCSOH3B – JULY 2021 – REVISED MAY 2022  
www.ti.com.cn  
In the simplest case for example, when the system displays maximum full scale brightness on a given pixel for a  
given time period, that pixel operates very close to a 78/22 landed duty cycle during that time period. Likewise,  
when the system displays a pixel value of zero, the pixel operates very close to a 22/78 landed duty cycle.  
The nominal landed duty cycle is additionally biased from the worst case above toward 50/50 during the time  
between print layers. The duty cycle approaches 50/50 when the illuminated print time is the same as the  
between layer time.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: DLP300S  
DLP300S  
ZHCSOH3B – JULY 2021 – REVISED MAY 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
The DMDs are spatial light modulators which reflect incoming light from an illumination source to one of  
two directions, with the primary direction being into a projection or collection optic. Each application depends  
primarily on the optical architecture of the system and format of the data coming into the DLPC1438 controller.  
Applications include:  
DLP 3D Printer  
– Additive manufacturing  
– Vat polymerization  
– Masked stereolithography (mSLA 3D printer)  
Light exposure: programmable spatial and temporal light exposure  
DMD power-up and power-down sequencing is strictly controlled by the DLPA2000/DLPA2005. Refer to 9  
for power-up and power-down specifications. For reliable operation, the DLP300S DMD must be used with the  
DLPC1438 controller and DLPA2000/DLPA2005 PMIC/LED driver.  
8.2 Typical Application  
8-1 and 8-2 show typical DLP 3D printer system block diagrams using the DLP300S DMD, DLPC1438  
controller, and DLPA200x PMIC/LED driver.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: DLP300S  
 
 
 
DLP300S  
ZHCSOH3B – JULY 2021 – REVISED MAY 2022  
www.ti.com.cn  
1.1 V  
1.1 Reg  
L3  
SYSPWR  
L2  
DC  
Supplies  
1.8 V  
1.8 V external  
L1  
DLPA200x  
V
LED  
1.8 V  
VSPI  
PROJ_ON  
LED_SEL (2)  
PROJ_ON  
SPI (4)  
INTZ  
GPIO_8  
SPI1  
RESETZ  
PARKZ  
2
I C  
R
LIM  
Thermistor  
Video  
Front End  
HOST_IRQ  
FPGA  
CMP_OUT  
2
VDDLP12  
VDD  
I C  
SPI_RDY  
SPI (4)  
Parallel (12)  
FPGA_READY  
1.1 V  
Illumination  
optics  
DLPC1438  
System  
Controller  
ACT_SYNC  
RC_  
CHARGE  
SPI0  
GPIO_10  
V
, V  
,
BIAS OFFSET  
Flash  
VCC_18  
1.8 V  
V
RESET  
DMD  
VCC_INTF  
VCC_FLSH  
CTRL  
Sub-LVDS DATA  
Frame  
Memory  
1.8 V  
SPI (4)  
Flash  
TI DLP Chipset  
Actuator  
Driver  
Actuator  
Non-TI Device  
Optional Non-TI Device  
8-1. With FPGA  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: DLP300S  
 
DLP300S  
ZHCSOH3B – JULY 2021 – REVISED MAY 2022  
www.ti.com.cn  
1.1 V  
1.1 Reg  
L3  
L2  
SYSPWR  
DC  
Supplies  
1.8 V  
1.8 V external  
L1  
DLPA200x  
V
LED  
1.8 V  
VSPI  
PROJ_ON  
LED_SEL (2)  
PROJ_ON  
SPI (4)  
INTZ  
GPIO_8  
SPI1  
RESETZ  
PARKZ  
2
I C  
R
LIM  
Thermistor  
HOST_IRQ  
CMP_OUT  
Front End  
Processor  
VDDLP12  
VDD  
DLPC1438  
Parallel (12)  
1.1 V  
Illumination  
optics  
RC_  
CHARGE  
SPI0  
GPIO_10  
V
, V  
,
BIAS OFFSET  
VCC_18  
1.8 V  
V
RESET  
DMD  
VCC_INTF  
VCC_FLSH  
CTRL  
Sub-LVDS DATA  
1.8 V  
SPI (4)  
Flash  
TI DLP Chipset  
Non-TI Device  
8-2. Without FPGA  
8.2.1 Design Requirements  
A DLP 3D printer can be created using the DLP300S, DLPC1438, and DLPA200x PMIC/LED driver. In addition  
to the DLP chipset, other IC components may be needed including a flash device to store the software and  
firmware to control the DLPC1438.  
A 405nm LED typically supplies the illumination for the DMD. In addition to LEDs, other light sources are  
supported.  
8.2.2 Detailed Design Procedure  
The optical engine, which includes the LED, DMD, and sometimes the electronics is typically supplied by an  
optical OEM who specializes in designing optics for DLP projectors.  
8.2.3 Application Curve  
This device drives current though the LED(s). As the LED current increases, the brightness of the optical engine  
increases. This increase is somewhat non-linear, and the curve for typical optical output power changes with  
LED currents as shown in 8-3.  
SPACE  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: DLP300S  
 
DLP300S  
ZHCSOH3B – JULY 2021 – REVISED MAY 2022  
www.ti.com.cn  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
100  
200  
300 400  
Current (mA)  
500  
600  
700  
D001  
8-3. Optical Output vs LED Current  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: DLP300S  
 
DLP300S  
ZHCSOH3B – JULY 2021 – REVISED MAY 2022  
www.ti.com.cn  
9 Power Supply Recommendations  
The following power supplies are all required to operate the DMD:  
VSS  
VBIAS  
VDD  
VDDI  
VOFFSET  
VRESET  
DMD power-up and power-down sequencing is strictly controlled by the DLPAxxxx device.  
CAUTION  
For reliable operation of the DMD, the following power supply sequencing requirements must be  
followed. Failure to adhere to any of the prescribed power-up and power-down requirements may  
affect device reliability. See the DMD power supply sequencing requirements in 9-1.  
VBIAS, VDD, VDDI, VOFFSET, and VRESET power supplies must be coordinated during power-up and  
power-down operations. Failure to meet any of the below requirements significantly reduces DMD  
reliability and lifetime. Common ground VSS must also be connected.  
9.1 DMD Power Supply Power-Up Procedure  
During power-up, VDD and VDDI must always start and settle before VOFFSET, VBIAS, and VRESET voltages are  
applied to the DMD.  
During power-up, it is a strict requirement that the voltage difference between VBIAS and VOFFSET must be  
within the specified limit shown in 6.4. Refer to 9-1 for power-up delay requirements.  
During power-up, there is no requirement for the relative timing of VRESET with respect to VBIAS and VOFFSET  
Power supply slew rates during power-up are flexible, provided that the transient voltage levels follow the  
requirements specified in 6.1, in 6.4, and in 9.3.  
.
During power-up, LPSDR input pins must not be driven high until after VDD /VDDI have settled at operating  
voltages listed in 6.4.  
9.2 DMD Power Supply Power-Down Procedure  
Power-down sequence is the reverse order of the previous power-up sequence. During power-down, VDD and  
VDDI must be supplied until after VBIAS, VRESET, and VOFFSET are discharged to within 4 V of ground.  
During power-down, it is a strict requirement that the voltage difference between VBIAS and VOFFSET must be  
within the specified limit shown in 6.4.  
During power-down, there is no requirement for the relative timing of VRESET with respect to VBIAS and  
VOFFSET  
.
Power supply slew rates during power-down are flexible, provided that the transient voltage levels follow the  
requirements specified in 6.1, in 6.4, and in 9.3.  
During power-down, LPSDR input pins must be less than VDD /VDDI specified in 6.4.  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: DLP300S  
 
 
 
 
DLP300S  
ZHCSOH3B – JULY 2021 – REVISED MAY 2022  
www.ti.com.cn  
9.3 Power Supply Sequencing Requirements  
DLP Display Controller and  
PMIC control start of DMD  
operation  
DLP Display Controller and PMIC  
disable VBIAS, VOFFSET and  
VRESET  
Mirror Park  
Sequence  
Note 4  
Power Off  
VDD / VDDI  
VDD / VDDI  
VDD / VDDI  
VSS  
VSS  
VBIAS  
VBIAS  
VBIAS  
VDD < VBIAS  
< 6 V  
VBIAS < 4 V  
VSS  
VSS  
VOFFSET  
VOFFSET  
VDD < VOFFSET  
< 6 V  
VOFFSET < 4 V  
VOFFSET  
VSS  
VSS  
VSS  
VSS  
VRESET < 0.5 V  
VRESET > - 4 V  
VRESET  
VRESET  
VDD  
VRESET  
VDD  
DMD_DEN_ARSTZ  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
INITIALIZATION  
VDD  
VDD  
LS_CLK  
LS_WDATA  
VID  
VID  
D_P(0:3), D_N(0:3)  
DCLK_P, DCLK_N  
A. Refer to 9-1 and 9-2 for critical power-up sequence delay requirements.  
B. To prevent excess current, the supply voltage delta |VBIAS – VOFFSET| must be less than specified in 6.4. OEMs may find that the  
most reliable way to ensure this is to power VOFFSET prior to VBIAS during power-up and to remove VBIAS prior to VOFFSET during  
power-down. Refer to 9-1 and 9-2 for power-up delay requirements.  
C. To prevent excess current, the supply voltage delta |VBIAS – VRESET| must be less than specified limit shown in 6.4.  
D. When system power is interrupted, the ASIC driver initiates hardware power-down that disables VBIAS, VRESET and VOFFSET after the  
Micromirror Park Sequence. Software power-down disables VBIAS, VRESET, and VOFFSET after the Micromirror Park Sequence through  
software control.  
E. Drawing is not to scale and details are omitted for clarity.  
9-1. Power Supply Sequencing Requirements (Power Up and Power Down)  
9-1. Power-Up Sequence Delay Requirement  
PARAMETER  
MIN  
MAX  
UNIT  
ms  
V
tDELAY  
Delay requirement from VOFFSET power up to VBIAS power up  
2
VOFFSET Supply voltage level during power–up sequence delay (see 9-2)  
6
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: DLP300S  
 
 
 
 
DLP300S  
ZHCSOH3B – JULY 2021 – REVISED MAY 2022  
www.ti.com.cn  
9-1. Power-Up Sequence Delay Requirement (continued)  
PARAMETER  
MIN  
MAX  
UNIT  
VBIAS  
Supply voltage level during power–up sequence delay (see 9-2)  
6
V
12  
VOFFSET  
8
VDD ≤ VOFFSET ≤ 6 V  
4
VSS  
0
t
DELAY  
20  
16  
12  
8
VBIAS  
VDD ≤ VBIAS ≤ 6 V  
4
VSS  
0
Time  
A. Refer to 9-1 for VOFFSET and VBIAS supply voltage levels during power-up sequence delay.  
9-2. Power-Up Sequence Delay Requirement  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: DLP300S  
 
DLP300S  
ZHCSOH3B – JULY 2021 – REVISED MAY 2022  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
There are no specific layout guidelines for the DMD as typically DMD is connected using a board to board  
connector to a flex cable. Flex cable provides the interface of data and control signals between the DLPC1438  
controller and the DLP300S DMD. For detailed layout guidelines refer to the layout design files. Some layout  
guideline for the flex cable interface with DMD are:  
Match lengths for the LS_WDATA and LS_CLK signals.  
Minimize vias, layer changes, and turns for the HS bus signals. Refer 10-1.  
Minimum of two 100-nF decoupling capacitor close to VBIAS. Capacitor C6 and C7 in 10-1.  
Minimum of two 100-nF decoupling capacitor close to VRST. Capacitor C9 and C8 in 10-1.  
Minimum of two 220-nF decoupling capacitor close to VOFS. Capacitor C5 and C4 in 10-1.  
Minimum of four 100-nF decoupling capacitor close to VDDI and VDD. Capacitor C1, C2, C3 and C10 in 图  
10-1.  
10.2 Layout Example  
10-1. Power Supply Connections  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: DLP300S  
 
 
 
 
DLP300S  
ZHCSOH3B – JULY 2021 – REVISED MAY 2022  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此  
类产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
11.1.2 Device Nomenclature  
DLP300S FQK  
Package Type  
Device Descriptor  
11-1. Part Number Description  
11.1.3 Device Markings  
The device marking includes the legible character string GHJJJJK DLP300SFQK. GHJJJJK is the lot trace code.  
DLP300SFQK is the orderable device number.  
Lot Trace Code  
Part Marking  
11-2. DMD Marking  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册,即可每周接收产品信息更  
改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 Related Links  
11-1 lists quick access links. Categories include technical documents, support and community resources,  
tools and software, and quick access to sample or buy.  
11-1. Related Links  
TECHNICAL  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
SAMPLE & BUY  
DOCUMENTS  
DLP300S  
DLPC1438  
DLPA2000  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: DLP300S  
 
 
 
 
 
 
DLP300S  
ZHCSOH3B – JULY 2021 – REVISED MAY 2022  
www.ti.com.cn  
11-1. Related Links (continued)  
TECHNICAL  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
SAMPLE & BUY  
DOCUMENTS  
DLPA2005  
Click here  
Click here  
Click here  
Click here  
Click here  
11.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者按原样提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI  
《使用条款》。  
11.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
DLP® and Pico® are registered trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: DLP300S  
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-May-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DLP300SFQK  
ACTIVE  
CLGA  
FQK  
57  
120  
RoHS & Green  
NI/AU  
N / A for Pkg Type  
0 to 40  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
DWG NO.  
SH  
8
5
3
6
1
7
4
1
2512014  
REVISIONS  
C
COPYRIGHT 2013 TEXAS INSTRUMENTS  
UN-PUBLISHED, ALL RIGHTS RESERVED.  
NOTES UNLESS OTHERWISE SPECIFIED:  
REV  
A
DESCRIPTION  
DATE  
BY  
6/6/2013  
6/17/2013  
4/8/2020  
ECO 2133835: INITIAL RELEASE  
ECO 2134093: CORRECT WINDOW THK TOL, ZONE B6  
ECO 2186947: ADD APERTURE SLOTS PICTORIALLY  
BMH  
BMH  
PPC  
1
2
DIE PARALLELISM TOLERANCE APPLIES TO DMD ACTIVE ARRAY ONLY.  
B
C
ROTATION ANGLE OF DMD ACTIVE ARRAY IS A REFINEMENT OF THE LOCATION  
TOLERANCE AND HAS A MAXIMUM ALLOWED VALUE OF 0.6 DEGREES.  
3
4
BOUNDARY MIRRORS SURROUNDING THE DMD ACTIVE ARRAY.  
NOTCH DIMENSIONS ARE DEFINED BY UPPERMOST LAYERS OF CERAMIC,  
AS SHOWN IN SECTION A-A.  
D
C
B
A
D
C
B
A
5
ENCAPSULANT TO BE CONTAINED WITHIN DIMENSIONS SHOWN IN VIEW C  
(SHEET 2). NO ENCAPSULANT IS ALLOWED ON TOP OF THE WINDOW.  
6
7
ENCAPSULANT NOT TO EXCEED THE HEIGHT OF THE WINDOW.  
DATUM B IS DEFINED BY A DIA. 2.5 PIN, WITH A FLAT ON THE SIDE FACING  
TOWARD THE CENTER OF THE ACTIVE ARRAY, AS SHOWN IN VIEW B (SHEET 2).  
WHILE ONLY THE THREE DATUM A TARGET AREAS A1, A2, AND A3 ARE USED  
FOR MEASUREMENT, ALL 4 CORNERS SHOULD BE CONTACTED, INCLUDING E1,  
TO SUPPORT MECHANICAL LOADS.  
8
1.1760.05  
4X (R0.2)  
4
4
+
-
0.3  
7
0.1  
90° 1°  
4
4
(ILLUMINATION  
DIRECTION)  
4X R0.40.1  
4
2X 2.50.075  
(2.5)  
4
1.25  
4
A
A
B
4
3.5  
+
-
0.2  
0.1  
7
+
-
0.2  
0.1  
2.25  
4
4
+
-
0.2  
0.1  
(1)  
0.8  
16.4 0.08  
4
+
-
0.3  
0.1  
18.2  
(OFF-STATE  
DIRECTION)  
5 6  
2X ENCAPSULANT  
D
1.1 0.05  
1.403 0.077  
(2.183)  
3 SURFACES INDICATED  
IN VIEW B (SHEET 2)  
0.038A  
0.02D  
1 8  
A
8
0.780.063  
ACTIVE ARRAY  
1.60.1  
(1.6)  
(2.5)  
4
0.4 MIN  
TYP.  
H
H
(SHEET 3)  
(SHEET 3)  
0 MIN TYP.  
DATE  
DRAWN  
UNLESS OTHERWISE SPECIFIED  
DIMENSIONS ARE IN MILLIMETERS  
TOLERANCES:  
TEXAS  
6/6/2013  
6/6/2013  
6/7/2013  
6/6/2013  
6/10/2013  
6/6/2013  
B. HASKETT  
ENGINEER  
B. HASKETT  
QA/CE  
INSTRUMENTS  
Dallas Texas  
ANGLES 1  
TITLE  
SECTION A-A  
NOTCH OFFSETS  
ICD, MECHANICAL, DMD,  
.3 720p SERIES 245  
(FQK PACKAGE)  
2 PLACE DECIMALS 0.25  
1 PLACE DECIMALS 0.50  
DIMENSIONAL LIMITS APPLY BEFORE PROCESSES  
INTERPRET DIMENSIONS IN ACCORDANCE WITH ASME  
Y14.5M-1994  
P. KONRAD  
CM  
S. SUSI  
THIRD ANGLE  
PROJECTION  
DWG NO  
REV  
SIZE  
D
0314DA  
USED ON  
REMOVE ALL BURRS AND SHARP EDGES  
PARENTHETICAL INFORMATION FOR REFERENCE ONLY  
S. CROFF  
APPROVED  
R. LONG  
2512014  
C
NEXT ASSY  
SCALE  
SHEET  
OF  
APPLICATION  
20:1  
1
3
INV11-2006a  
5
3
6
1
2
7
8
4
DWG NO.  
SH  
8
5
7.2  
5
3
6
1
7
4
2512014  
2
2X (1)  
A2  
2X 1.176  
2X (0.8)  
2X 16.4  
A3  
D
C
B
A
D
C
B
A
4X 1.5  
1.25  
C
2.5  
B
4X (2)  
7
(1.1)  
VIEW B  
A1  
8
E1  
DATUMS A, B, C, AND E  
1.176  
16.4  
(FROM SHEET 1)  
(2.5)  
1.25  
C
B
3.6  
5
VIEW C  
ENCAPSULANT MAXIMUM X/Y DIMENSIONS  
(FROM SHEET 1)  
2X 0 MIN  
6
VIEW D  
ENCAPSULANT MAXIMUM HEIGHT  
DWG NO  
REV  
SIZE  
DRAWN  
DATE  
TEXAS  
6/6/2013  
2512014  
B. HASKETT  
C
D
INSTRUMENTS  
Dallas Texas  
SCALE  
SHEET  
OF  
2
3
INV11-2006a  
3
6
1
2
7
8
4
DWG NO.  
SH  
8
5
3
6
1
7
4
2512014  
3
(6.912)  
ACTIVE ARRAY  
6.4490.075  
4X (0.108)  
3
0.9710.05  
0.193 0.0635  
D
C
B
A
D
C
B
A
B
(6.15)  
WINDOW  
(3.888)  
ACTIVE ARRAY  
4.319 0.0635  
(ILLUMINATION  
DIRECTION)  
(2.5)  
(4.512)  
APERTURE  
G
F
5.1790.05  
C
1.25  
1.784 0.075  
2
0.4240.0635  
2.961 0.05  
7.1390.0635  
(7.563)  
APERTURE  
8.815 0.05  
(11.776)  
WINDOW  
VIEW E  
WINDOW AND ACTIVE ARRAY  
(FROM SHEET 1)  
57X LGA PADS  
0.52±0.05 X 0.52±0.05  
12X TEST PADS  
(0.52 0.05)  
0.2ABC  
0.1A  
BACK INDEX MARK  
(42°)  
TYP.  
(42°)  
TYP.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17 18  
19  
(0.15) TYP.  
A
B
C
D
E
B
(0.075) TYP.  
1.25  
C
(2.5)  
2 X 0.7424  
= 1.4848  
0.7424  
2X (0.7424)  
(0.068) TYP.  
(0.068) TYP.  
(42°) TYP.  
(0.7424)  
DETAIL G  
2.874  
18 X 0.7424 = 13.3632  
DETAIL F  
APERTURE LEFT EDGE  
APERTURE RIGHT EDGE  
SCALE 60 : 1  
VIEW H-H  
SCALE 60 : 1  
BACK SIDE METALLIZATION  
(FROM SHEET 1)  
DWG NO  
REV  
SIZE  
DRAWN  
DATE  
6/6/2013  
TEXAS  
2512014  
B. HASKETT  
C
3
D
INSTRUMENTS  
Dallas Texas  
SCALE  
SHEET  
OF  
3
INV11-2006a  
5
3
6
1
2
7
8
4
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

DLP300SFQK

0.3 英寸、360 万像素近紫外 DLP® 数字微镜器件 (DMD) | FQK | 57 | 0 to 40
TI

DLP3010

DLP® 0.3 720p DMD
TI

DLP3010AFQK

DLP® 0.3 720p DMD | FQK | 57 | 0 to 70
TI

DLP3010FQK

DLP&reg; 0.3 720p DMD 57-CLGA
TI

DLP3010LC

DLP® 0.3 英寸 720p 数字微镜器件 (DMD)
TI

DLP3010LCFQK

DLP® 0.3 英寸 720p 数字微镜器件 (DMD) | FQK | 57 | 0 to 70
TI

DLP301S

0.3 英寸、360 万像素、大功率、近紫外 DLP® 数字微镜器件 (DMD)
TI

DLP301SFQS

0.3 英寸、360 万像素、大功率、近紫外 DLP® 数字微镜器件 (DMD) | FQS | 99 | 0 to 40
TI

DLP3020-Q1

采用小型 S247 封装的汽车类 0.3 英寸 DLP® 数字微镜器件 (DMD)
TI

DLP3020AFQRQ1

Automotive 0.3-inch DLP® digital micromirror device (DMD) in small S247 package | FQR | 54 | -40 to 105
TI

DLP3021-Q1

DLP® 汽车类 0.3 英寸数字微镜器件 (DMD)
TI

DLP3021FFQRQ1

DLP® 汽车类 0.3 英寸数字微镜器件 (DMD) | FQR | 54 | -40 to 105
TI