DLP2010AFQJ [TI]

0.20-inch, WVGA DLP® digital micromirror device (DMD) | FQJ | 40 | 0 to 70;
DLP2010AFQJ
型号: DLP2010AFQJ
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

0.20-inch, WVGA DLP® digital micromirror device (DMD) | FQJ | 40 | 0 to 70

光电
文件: 总43页 (文件大小:1738K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DLP2010  
ZHCSJE6B FEBRUARY 2019 REVISED MAY 2022  
DLP2010 .2 WVGA DMD  
1 特性  
3 说明  
0.2 (5.29mm) 对角线微镜阵列  
DLP2010 数字微镜器件 (DMD) 是一款数控微光机电系  
(MOEMS) 空间照明调制(SLM)。当与适当的光学  
系统配合使用时DMD 可显示图像、视频和图案。  
此 器 件 是 由 DLP2010 DMD DLPC3430 或  
DLPC3435 控 制 器 以 及 DLPA200x/DLPA3000  
PMIC/LED 驱动器组成的芯片组的一个组件。此 DMD  
紧凑的物理尺寸适合用于注重小外形尺寸和低功耗的便  
携式设备。紧凑的封装与 LED 的小尺寸相得益彰是  
空间受限型光引擎的理想选择。  
– 在正交布局中显854 × 480 像素阵列  
5.4 微米微镜间距  
±17° 微镜倾斜度相对于平坦表面)  
– 采用侧面照明实现最优的效率和光学引擎尺寸  
– 偏振无关型铝微镜表面  
4 SubLVDS 输入数据总线  
• 专DLPC3430 DLPC3435 显示控制器以及  
DLPA200x/DLPA3000 PMIC LED 驱动器确保  
可靠运行  
请访问 TI DLP®PicoTM 显示技术入门了解如何开  
始使DLP2010。  
2 应用  
生态系统包含现成的资源可帮助用户加快设计周期。  
这些资源包括可直接用于量产环境的光学模块光学模  
块制造商设计公司。  
• 产品嵌入式显示屏包括:  
– 平板电脑、移动电话  
– 人工智(AI) 助理、智能音箱  
• 控制面板、安防系统和恒温器  
• 可穿戴显示器  
器件信息  
器件型号(1)  
DLP2010  
封装尺寸标称值)  
封装  
FQJ (40)  
15.9mm × 5.3mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
D_P(0)  
VOFFSET  
VBIAS  
DLPC343x  
D_N(0)  
Display Controller  
D_P(1)  
VRESET  
D_N(1)  
DLPA2000  
(PMIC and LED Driver)  
600-MHz  
D_P(2)  
SubLVDS  
D_N(2)  
DLP2010 DMD  
DDR Interface  
D_P(3)  
D_N(3)  
Digital  
Micromirror  
Device  
DCLK_P  
DCLK_N  
VDDI  
VDD  
VSS  
DMD_DEN_ARSTZ  
LS_WDATA  
120-MHz  
LS_CLK  
SDR Interface  
LS_RDATA  
(System signal routing omitted for clarity)  
0.2 WVGA 芯片组  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: DLPS123  
 
 
 
 
DLP2010  
www.ti.com.cn  
ZHCSJE6B FEBRUARY 2019 REVISED MAY 2022  
Table of Contents  
7.5 Optical Interface and System Image Quality  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 6  
6.1 Absolute Maximum Ratings........................................ 6  
6.2 Storage Conditions..................................................... 7  
6.3 ESD Ratings............................................................... 7  
6.4 Recommended Operating Conditions.........................7  
6.5 Thermal Information....................................................9  
6.6 Electrical Characteristics.............................................9  
6.7 Timing Requirements................................................ 11  
6.8 Switching Characteristics(1) ..................................... 14  
6.9 System Mounting Interface Loads............................ 16  
6.10 Physical Characteristics of the Micromirror Array...17  
6.11 Micromirror Array Optical Characteristics............... 18  
6.12 Window Characteristics.......................................... 20  
6.13 Chipset Component Usage Specification............... 20  
6.14 Software Requirements.......................................... 20  
7 Detailed Description......................................................21  
7.1 Overview...................................................................21  
7.2 Functional Block Diagram.........................................21  
7.3 Feature Description...................................................22  
7.4 Device Functional Modes..........................................22  
Considerations............................................................ 22  
7.6 Micromirror Array Temperature Calculation.............. 23  
7.7 Micromirror Landed-On/Landed-Off Duty Cycle....... 24  
8 Application and Implementation..................................28  
8.1 Application Information............................................. 28  
8.2 Typical Application.................................................... 28  
9 Power Supply Recommendations................................31  
9.1 DMD Power Supply Power-Up Procedure................31  
9.2 DMD Power Supply Power-Down Procedure........... 31  
9.3 Power Supply Sequencing Requirements................ 32  
10 Layout...........................................................................34  
10.1 Layout Guidelines................................................... 34  
10.2 Layout Example...................................................... 34  
11 Device and Documentation Support..........................36  
11.1 Device Support........................................................36  
11.2 Related Links.......................................................... 36  
11.3 接收文档更新通知................................................... 36  
11.4 支持资源..................................................................37  
11.5 Trademarks............................................................. 37  
11.6 Electrostatic Discharge Caution..............................37  
11.7 术语表..................................................................... 37  
12 Mechanical, Packaging, and Orderable  
Information.................................................................... 38  
4 Revision History  
Changes from Revision A (January 2022) to Revision B (May 2022)  
Page  
Updated Absolute Maximum Ratings disclosure to the latest TI standard......................................................... 6  
Updated Micromirror Array Optical Characteristics ......................................................................................... 18  
Added Third-Party Products Disclaimer ...........................................................................................................36  
Changes from Revision * (February 2019) to Revision A (January 2022)  
Page  
• 更新了整个文档中的表、图和交叉参考的编号格式.............................................................................................1  
Updated |TDELTA| MAX from 30°C to 15°C..........................................................................................................7  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: DLP2010  
 
DLP2010  
www.ti.com.cn  
ZHCSJE6B FEBRUARY 2019 REVISED MAY 2022  
5 Pin Configuration and Functions  
5-1. FQJ Package 40-Pin Connector Bottom View  
5-1. Pin Functions Connector Pins(1)  
PIN  
NAME  
PACKAGE NET  
LENGTH(2) (mm)  
TYPE  
SIGNAL  
DATA RATE  
DESCRIPTION  
NO.  
DATA INPUTS  
D_N(0)  
G4  
G3  
G8  
G7  
H5  
H6  
H1  
H2  
H9  
H10  
I
I
I
I
I
I
I
I
I
I
SubLVDS Double  
SubLVDS Double  
SubLVDS Double  
SubLVDS Double  
SubLVDS Double  
SubLVDS Double  
SubLVDS Double  
SubLVDS Double  
SubLVDS Double  
SubLVDS Double  
Data, Negative  
7.03  
7.03  
7.03  
7.03  
7.02  
7.02  
7.00  
7.00  
7.03  
7.03  
D_P(0)  
Data, Positive  
Data, Negative  
Data, Positive  
Data, Negative  
Data, Positive  
Data, Negative  
Data, Positive  
Clock, Negative  
Clock, Positive  
D_N(1)  
D_P(1)  
D_N(2)  
D_P(2)  
D_N(3)  
D_P(3)  
DCLK_N  
DCLK_P  
CONTROL INPUTS  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: DLP2010  
 
DLP2010  
www.ti.com.cn  
ZHCSJE6B FEBRUARY 2019 REVISED MAY 2022  
5-1. Pin Functions Connector Pins(1) (continued)  
PIN  
NAME  
PACKAGE NET  
TYPE  
SIGNAL  
DATA RATE  
DESCRIPTION  
LENGTH(2) (mm)  
NO.  
Asynchronous reset DMD signal. A low  
signal places the DMD in reset. A high  
signal releases the DMD from reset and  
places it in active mode.  
DMD_DEN_ARSTZ  
G12  
I
LPSDR(1)  
5.72  
LS_CLK  
G19  
G18  
G11  
I
I
LPSDR  
LPSDR  
LPSDR  
Single  
Single  
Single  
Clock for low-speed interface  
3.54  
3.54  
8.11  
LS_WDATA  
LS_RDATA  
POWER  
Write data for low-speed interface  
Read data for low-speed interface  
O
Supply voltage for positive bias level at  
micromirrors  
VBIAS(3)  
H17  
H13  
H18  
Power  
Power  
Power  
Supply voltage for HVCMOS core logic.  
Includes: supply voltage for stepped high  
level at micromirror address electrodes and  
supply voltage for offset level at  
micromirrors  
VOFFSET(3)  
VRESET(3)  
Supply voltage for negative reset level at  
micromirrors  
VDD(3)  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDI(3)  
VDDI  
VDDI  
VDDI  
VSS(3)  
VSS  
G20  
H14  
H15  
H16  
H19  
H20  
G1  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Ground  
Supply voltage for micromirror low voltage  
CMOS core logic includes supply voltage  
for LPSDR inputs and supply voltage for  
normal high level at micromirror address  
electrodes.  
G2  
Supply voltage for SubLVDS receivers  
G5  
G6  
G9  
G10 Ground  
G13 Ground  
G14 Ground  
G15 Ground  
G16 Ground  
G17 Ground  
VSS  
VSS  
VSS  
VSS  
VSS  
Ground. Common return for all power.  
VSS  
H3  
H4  
H7  
H8  
Ground  
Ground  
Ground  
Ground  
VSS  
VSS  
VSS  
VSS  
H11 Ground  
H12 Ground  
VSS  
(1) Low speed interface is LPSDR and adheres to the Electrical Characteristics and AC/DC Operating Conditions table in JEDEC  
Standard No. 209B, Low Power Double Data Rate (LPDDR) JESD209B.  
(2) Net trace lengths inside the package:  
Relative dielectric constant for the FQJ ceramic package is 9.8.  
Propagation speed = 11.8 / sqrt(9.8) = 3.769 inches/ns.  
Propagation delay = 0.265 ns/inch = 265 ps/inch = 10.43 ps/mm.  
(3) The following power supplies are all required to operate the DMD: VSS, VDD, VDDI, VOFFSET, VBIAS, VRESET.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: DLP2010  
 
 
 
DLP2010  
www.ti.com.cn  
ZHCSJE6B FEBRUARY 2019 REVISED MAY 2022  
5-2. Pin Functions Test Pads  
NUMBER  
SYSTEM BOARD  
NUMBER  
SYSTEM BOARD  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
A2  
A3  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
D2  
D3  
A4  
D17  
A5  
D18  
A6  
A7  
E2  
E3  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
A8  
A9  
E17  
E18  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
F1  
F2  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
B2  
B3  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
B17  
B18  
C2  
C3  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
C17  
C18  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: DLP2010  
DLP2010  
www.ti.com.cn  
ZHCSJE6B FEBRUARY 2019 REVISED MAY 2022  
6 Specifications  
6.1 Absolute Maximum Ratings  
See (1)  
MIN  
MAX  
UBIT  
for LVCMOS core logic(2)  
Supply voltage for LPSDR low speed interface  
VDD  
2.3  
0.5  
VDDI  
for SubLVDS receivers(2)  
2.3  
10.6  
19  
0.5  
0.5  
0.5  
15  
VOFFSET  
for HVCMOS and micromirror electrode(2) (3)  
for micromirror electrode(2)  
VBIAS  
Supply voltage  
V
VRESET  
for micromirror electrode(2)  
0.5  
delta (absolute value)(4)  
0.3  
| VDDIVDD |  
| VBIASVOFFSET |  
| VBIASVRESET |  
for other inputs LPSDR(2)  
delta (absolute value)(5)  
11  
delta (absolute value)(6)  
34  
VDD + 0.5  
VDDI + 0.5  
810  
0.5  
0.5  
Input voltage  
Input pins  
V
for other inputs SubLVDS(2) (7)  
| VID |  
IID  
SubLVDS input differential voltage (absolute value)(7)  
mV  
mA  
SubLVDS input differential current  
8.1  
Clock frequency for low speed interface LS_CLK  
Clock frequency for high speed interface DCLK  
Temperature operational(8)  
130  
ƒclock  
ƒclock  
Clock frequency  
MHz  
620  
90  
20  
40  
TARRAY and TWINDOW  
Temperature non-operational(8)  
90  
Dew Point Temperature - operating and non-operating (non-  
condensing)  
Environmental  
°C  
TDP  
|TDELTA  
81  
30  
Absolute Temperature delta between any point on the  
window edge and the ceramic test point TP1(9)  
|
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) All voltage values are with respect to the ground terminals (VSS). The following power supplies are all required to operate the DMD:  
VSS, VDD, VDDI, VOFFSET, VBIAS, and VRESET.  
(3) VOFFSET supply transients must fall within specified voltages.  
(4) Exceeding the recommended allowable absolute voltage difference between VDDI and VDD may result in excessive current draw.  
(5) Exceeding the recommended allowable absolute voltage difference between VBIAS and VOFFSET may result in excessive current  
draw.  
(6) Exceeding the recommended allowable absolute voltage difference between VBIAS and VRESET may result in excessive current  
draw.  
(7) This maximum input voltage rating applies when each input of a differential pair is at the same voltage potential. Sub-LVDS differential  
inputs must not exceed the specified limit or damage may result to the internal termination resistors.  
(8) The highest temperature of the active array (as calculated by the 7.6), or of any point along the Window Edge as defined in 7-1.  
The locations of thermal test points TP2 and TP3 in 7-1 are intended to measure the highest window edge temperature. If a  
particular application causes another point on the window edge to be at a higher temperature, that point should be used.  
(9) Temperature delta is the highest difference between the ceramic test point 1 (TP1) and anywhere on the window edge as shown in 图  
7-1. The window test points TP2 and TP3 shown in 7-1 are intended to result in the worst case delta. If a particular application  
causes another point on the window edge to result in a larger delta temperature, that point should be used.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: DLP2010  
 
 
 
 
 
 
 
 
 
 
 
 
DLP2010  
www.ti.com.cn  
ZHCSJE6B FEBRUARY 2019 REVISED MAY 2022  
6.2 Storage Conditions  
applicable for the DMD as a component or non-operational in a system  
MIN  
MAX  
85  
24  
36  
6
UNIT  
°C  
TDMD  
DMD storage temperature  
40  
TDP-AVG  
TDP-ELR  
CTELR  
Average dew point temperature, (non-condensing)(1)  
Elevated dew point temperature range, (non-condensing)(2)  
Cumulative time in elevated dew point temperature range  
°C  
28  
°C  
Months  
(1) The average over time (including storage and operating) that the device is not in the elevated dew point temperature range.  
(2) Exposure to dew point temperatures in the elevated range during storage and operation should be limited to less than a total  
cumulative time of CTELR  
.
6.3 ESD Ratings  
VALUE  
UNIT  
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
6.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1) (2) (3)  
MIN  
NOM  
MAX  
UNIT  
SUPPLY VOLTAGE RANGE(4)  
Supply voltage for LVCMOS core logic  
Supply voltage for LPSDR low-speed  
interface  
VDD  
1.65  
1.8  
1.95  
V
VDDI  
Supply voltage for SubLVDS receivers  
1.65  
9.5  
1.8  
10  
1.95  
10.5  
V
V
Supply voltage for HVCMOS and micromirror  
electrode(5)  
VOFFSET  
VBIAS  
Supply voltage for mirror electrode  
17.5  
18  
18.5  
13.5  
0.3  
V
V
V
V
V
VRESET  
Supply voltage for micromirror electrode  
Supply voltage delta (absolute value)(6)  
Supply voltage delta (absolute value)(7)  
Supply voltage delta (absolute value)(8)  
14.5  
14  
|VDDIVDD|  
10.5  
33  
|VBIASVOFFSET|  
|VBIASVRESET|  
CLOCK FREQUENCY  
Clock frequency for low speed interface  
LS_CLK(9)  
108  
120  
MHz  
MHz  
ƒclock  
ƒclock  
Clock frequency for high speed interface  
DCLK(10)  
300  
600  
Duty cycle distortion DCLK  
44%  
56%  
SUBLVDS INTERFACE(10)  
SubLVDS input differential voltage (absolute  
value) 6-8, 6-9  
| VID  
VCM  
|
150  
250  
900  
350  
mV  
700  
575  
90  
1100  
1225  
110  
mV  
mV  
Common mode voltage 6-8, 6-9  
SubLVDS voltage 6-8, 6-9  
VSUBLVDS  
ZLINE  
Line differential impedance (PWB/trace)  
100  
100  
Internal differential termination resistance 图  
6-10  
ZIN  
80  
120  
6.35  
152.4  
mm  
100-Ωdifferential PCB trace  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: DLP2010  
 
 
 
 
 
 
DLP2010  
www.ti.com.cn  
ZHCSJE6B FEBRUARY 2019 REVISED MAY 2022  
6.4 Recommended Operating Conditions (continued)  
over operating free-air temperature range (unless otherwise noted)(1) (2) (3)  
MIN  
NOM  
MAX  
UNIT  
ENVIRONMENTAL  
40 to  
70(13)  
Array Temperature long-term  
0
20  
10  
70  
operational(11) (12) (13) (14)  
Array Temperature - short-term operational,  
10  
0
25 hr max(12) (15)  
TARRAY  
°C  
°C  
Array Temperature - short-term operational,  
500 hr max(12) (15)  
Array Temperature short-term operational,  
75  
500 hr max(12) (15)  
Absolute Temperature difference between  
|TDELTA  
TWINDOW  
TDP-AVG  
|
any point on the window edge and the  
15  
ceramic test point TP1 (16)  
Window temperature operational(11) (17)  
90  
24  
°C  
°C  
Average dew point temperature (non-  
condensing)(18)  
Elevated dew point temperature range (non-  
condensing)(19)  
TDP-ELR  
28  
36  
6
°C  
Cumulative time in elevated dew point  
temperature range  
CTELR  
ILLUV  
ILLVIS  
Months  
Illumination wavelengths < 420 nm(11)  
0.68 mW/cm2  
Thermally  
limited  
10 mW/cm2  
55 deg  
Illumination wavelengths between 420 nm  
and 700 nm  
ILLIR  
ILLθ  
Illumination wavelengths > 700 nm  
Illumination marginal ray angle(20)  
(1) 6.4 are applicable after the DMD is installed in the final product.  
(2) The functional performance of the device specified in this datasheet is achieved when operating the device within the limits defined by  
the 6.4. No level of performance is implied when operating the device above or below the 6.4 limits.  
(3) The following power supplies are all required to operate the DMD: VSS, VDD, VDDI, VOFFSET, VBIAS, and VRESET.  
(4) All voltage values are with respect to the ground pins (VSS).  
(5) VOFFSET supply transients must fall within specified maximum voltages.  
(6) To prevent excess current, the supply voltage delta |VDDI VDD| must be less than specified limit.  
(7) To prevent excess current, the supply voltage delta |VBIAS VOFFSET| must be less than specified limit.  
(8) To prevent excess current, the supply voltage delta |VBIAS VRESET| must be less than specified limit.  
(9) LS_CLK must run as specified to ensure internal DMD timing for reset waveform commands.  
(10) Refer to the SubLVDS timing requirements in 6.7.  
(11) Simultaneous exposure of the DMD to the maximum 6.4 for temperature and UV illumination will reduce device lifetime.  
(12) The array temperature cannot be measured directly and must be computed analytically from the temperature measured at test point 1  
(TP1) shown in 7-1 and the Package Thermal Resistance using 7.6.  
(13) Per 6-1, the maximum operational array temperature should be derated based on the micromirror landed duty cycle that the DMD  
experiences in the end application. Refer to 7.7 for a definition of micromirror landed duty cycle.  
(14) Long-term is defined as the usable life of the device  
(15) Short-term is the total cumulative time over the useful life of the device.  
(16) Temperature delta is the highest difference between the ceramic test point 1 (TP1) and anywhere on the window edge shown in 7-1.  
The window test points TP2 and TP3 shown in 7-1 are intended to result in the worst case delta temperature. If a particular  
application causes another point on the window edge to result in a larger delta temperature, that point should be used.  
(17) Window temperature is the highest temperature on the window edge shown in 7-1. The locations of thermal test points TP2 and  
TP3 in 7-1 are intended to measure the highest window edge temperature. If a particular application causes another point on the  
window edge to result in a larger delta temperature, that point should be used.  
(18) The average over time (including storage and operating) that the device is not in the elevated dew point temperature range.  
(19) Exposure to dew point temperatures in the elevated range during storage and operation should be limited to less than a total  
cumulative time of CTELR  
.
(20) The maximum marginal ray angle of the incoming illumination light at any point in the micromirror array, including Pond of Micromirrors  
(POM), should not exceed 55 degrees from the normal to the device array plane. The device window aperture has not necessarily  
been designed to allow incoming light at higher maximum angles to pass to the micromirrors, and the device performance has not  
been tested nor qualified at angles exceeding this. Illumination light exceeding this angle outside the micromirror array (including POM)  
will contribute to thermal limitations described in this document, and may negatively affect lifetime.  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: DLP2010  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
DLP2010  
www.ti.com.cn  
ZHCSJE6B FEBRUARY 2019 REVISED MAY 2022  
80  
70  
60  
50  
40  
30  
0/100 5/95 10/90 15/85 20/80 25/75 30/70 35/65 40/60 45/55 50/50  
90/10 85/15 80/20 75/25 70/30 65/35 60/40 55/45  
100/0 95/5  
D001  
Micromirror Landed Duty Cycle  
6-1. Maximum Recommended Array Temperature Derating Curve  
6.5 Thermal Information  
DLP2010  
FQJ Package  
40 PINS  
THERMAL METRIC(1)  
UNIT  
Thermal resistance Active area to test point 1 (TP1)(1)  
7.9  
°C/W  
(1) The DMD is designed to conduct absorbed and dissipated heat to the back of the package. The cooling system must be capable of  
maintaining the package within the temperature range specified in the 6.4. The total heat load on the DMD is largely driven by the  
incident light absorbed by the active area; although other contributions include light energy absorbed by the window aperture and  
electrical power dissipation of the array. Optical systems should be designed to minimize the light energy falling outside the window  
clear aperture since any additional thermal load in this area can significantly degrade the reliability of the device.  
6.6 Electrical Characteristics  
Over operating free-air temperature range (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS(2)  
MIN  
TYP  
MAX UNIT  
CURRENT  
VDD = 1.95 V  
34.7  
mA  
IDD  
Supply current: VDD(3) (4)  
Supply current: VDDI(3) (4)  
Supply current: VOFFSET(5) (6)  
Supply current: VBIAS(5) (6)  
Supply current: VRESET(6)  
VDD = 1.8 V  
27.5  
6.6  
0.9  
0.2  
VDDI = 1.95 V  
9.4  
mA  
IDDI  
VDD = 1.8 V  
VOFFSET = 10.5 V  
VOFFSET = 10 V  
VBIAS = 18.5 V  
VBIAS = 18 V  
1.7  
mA  
IOFFSET  
0.4  
mA  
IBIAS  
2
VRESET = 14.5 V  
VRESET = 14 V  
IRESET  
mA  
1.2  
POWER(7)  
PDD  
VDD = 1.95 V  
VDD = 1.8 V  
67.7  
mW  
Supply power dissipation: VDD(3) (4)  
Supply power dissipation: VDDI(3) (4)  
Supply power dissipation: VOFFSET(5) (6)  
Supply power dissipation: VBIAS(5) (6)  
49.5  
11.9  
9
VDDI = 1.95 V  
VDD = 1.8 V  
18.3  
mW  
PDDI  
VOFFSET = 10.5 V  
VOFFSET = 10 V  
VBIAS = 18.5 V  
VBIAS = 18 V  
17.9  
mW  
POFFSET  
7.4  
PBIAS  
mW  
3.6  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: DLP2010  
 
 
 
 
DLP2010  
www.ti.com.cn  
MAX UNIT  
ZHCSJE6B FEBRUARY 2019 REVISED MAY 2022  
6.6 Electrical Characteristics (continued)  
Over operating free-air temperature range (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS(2)  
VRESET = 14.5 V  
VRESET = 14 V  
MIN  
TYP  
29  
PRESET  
Supply power dissipation: VRESET(6)  
Supply power dissipation: Total  
mW  
16.8  
90.8  
PTOTAL  
LPSDR INPUT(8)  
140.3 mW  
VIH(DC)  
VIL(DC)  
VIH(AC)  
VIL(AC)  
VT  
DC input high voltage(9)  
0.7 × VDD  
0.3  
VDD + 0.3  
V
V
DC input low voltage(9)  
AC input high voltage(9)  
AC input low voltage(9)  
Hysteresis ( VT+ VT–  
Lowlevel input current  
0.3 × VDD  
VDD + 0.3  
0.2 × VDD  
0.4 × VDD  
0.8 × VDD  
0.3  
V
V
0.1 × VDD  
V
)
6-11  
IIL  
VDD = 1.95 V; VI = 0 V  
VDD = 1.95 V; VI = 1.95 V  
nA  
nA  
100  
IIH  
100  
Highlevel input current  
LPSDR OUTPUT(10)  
VOH  
VOL  
DC output high voltage  
DC output low voltage  
0.8 × VDD  
V
V
IOH = 2 mA  
IOL = 2 mA  
0.2 × VDD  
CAPACITANCE  
Input capacitance LPSDR  
10  
20  
10  
ƒ= 1 MHz  
ƒ= 1 MHz  
ƒ= 1 MHz  
CIN  
pF  
Input capacitance SubLVDS  
Output capacitance  
COUT  
pF  
pF  
ƒ= 1 MHz; (480 × 108)  
micromirrors  
CRESET  
Reset group capacitance  
95  
113  
(1) Device electrical characteristics are over 6.4 unless otherwise noted.  
(2) All voltage values are with respect to the ground pins (VSS).  
(3) To prevent excess current, the supply voltage delta |VDDI VDD| must be less than specified limit.  
(4) Supply power dissipation based on noncompressed commands and data.  
(5) To prevent excess current, the supply voltage delta |VBIAS VOFFSET| must be less than specified limit.  
(6) Supply power dissipation based on 3 global resets in 200 µs.  
(7) The following power supplies are all required to operate the DMD: VSS, VDD, VDDI, VOFFSET, VBIAS, VRESET.  
(8) LPSDR specifications are for pins LS_CLK and LS_WDATA.  
(9) Low-speed interface is LPSDR and adheres to the Electrical Characteristics and AC/DC Operating Conditions table in JEDEC  
Standard No. 209B, Low-Power Double Data Rate (LPDDR) JESD209B.  
(10) LPSDR specification is for pin LS_RDATA.  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: DLP2010  
 
 
 
 
 
 
 
 
 
 
DLP2010  
www.ti.com.cn  
ZHCSJE6B FEBRUARY 2019 REVISED MAY 2022  
6.7 Timing Requirements  
Device electrical characteristics are over Recommended Operating Conditions unless otherwise noted.  
MIN  
NOM  
MAX UNIT  
LPSDR  
Rise slew rate(1)  
Fall slew rate(1)  
Rise slew rate(2)  
Fall slew rate(2)  
Cycle time LS_CLK,  
tR  
1
1
3
3
V/ns  
V/ns  
V/ns  
V/ns  
ns  
(30% to 80%) × VDD, 6-3  
(70% to 20%) × VDD, 6-3  
(20% to 80%) × VDD, 6-3  
(80% to 20%) × VDD, 6-3  
6-2  
tF  
tR  
0.25  
0.25  
7.7  
3.1  
tF  
tC  
8.3  
tW(H)  
Pulse duration LS_CLK  
high  
ns  
50% to 50% reference points, 6-2  
50% to 50% reference points, 6-2  
tW(L)  
Pulse duration LS_CLK  
low  
3.1  
ns  
tSU  
1.5  
1.5  
3.0  
ns  
ns  
ns  
ns  
Setup time  
LS_WDATA valid before LS_CLK , 6-2  
LS_WDATA valid after LS_CLK , 6-2  
Setup time + Hold time, 6-2  
t H  
Hold time  
Window time(1) (3)  
tWINDOW  
tDERATING  
For each 0.25 V/ns reduction in slew rate below  
1 V/ns, 6-5  
0.35  
Window time derating(1) (3)  
SubLVDS  
tR  
Rise slew rate  
0.7  
0.7  
1
1
V/ns  
V/ns  
ns  
20% to 80% reference points, 6-4  
80% to 20% reference points, 6-4  
6-6  
tF  
Fall slew rate  
tC  
Cycle time LS_CLK,  
Pulse duration DCLK high  
Pulse duration DCLK low  
1.61  
0.71  
0.71  
1.67  
tW(H)  
tW(L)  
ns  
50% to 50% reference points, 6-6  
50% to 50% reference points, 6-6  
ns  
D(0:3) valid before  
DCLK or DCLK , 6-6  
tSU  
Setup time  
D(0:3) valid after  
DCLK or DCLK , 6-6  
t H  
Hold time  
tWINDOW  
Window time  
3.0  
ns  
ns  
Setup time + Hold time, 6-6, 6-7  
tLVDS-  
Power-up receiver(4)  
2000  
ENABLE+REFGEN  
(1) Specification is for LS_CLK and LS_WDATA pins. Refer to LPSDR input rise slew rate and fall slew rate in 6-3.  
(2) Specification is for DMD_DEN_ARSTZ pin. Refer to LPSDR input rise and fall slew rate in 6-3.  
(3) Window time derating example: 0.5-V/ns slew rate increases the window time by 0.7 ns, from 3 to 3.7 ns.  
(4) Specification is for SubLVDS receiver time only and does not take into account commanding and latency after commanding.  
t
C
t
t
w(L)  
w(H)  
50%  
LS_CLK  
t
t
H|  
SU|  
50%  
LS_WDATA  
t
WINDOW|  
A. Low-speed interface is LPSDR and adheres to the 6.6 and AC/DC Operating Conditions table in JEDEC Standard No. 209B, Low  
Power Double Data Rate (LPDDR) JESD209B.  
6-2. LPSDR Switching Parameters  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: DLP2010  
 
 
 
 
 
 
 
DLP2010  
www.ti.com.cn  
ZHCSJE6B FEBRUARY 2019 REVISED MAY 2022  
LS_CLK, LS_WDATA  
1.0 * VDD  
DMD_DEN_ARSTZ  
1.0 * VDD  
0.8 * VDD  
VIH(AC)  
VIH(DC)  
0.8 * VDD  
0.7 * VDD  
VIL(DC)  
VIL(AC)  
0.3 * VDD  
0.2 * VDD  
0.2 * VDD  
0.0 * VDD  
0.0 * VDD  
tr  
tf  
tr  
tf  
6-3. LPSDR Input Rise and Fall Slew Rate  
VDCLK_P , VDCLK_N  
VD_P(0:7) , VD_N(0:7)  
1.0 * V  
ID  
0.8 * V  
ID  
V
CM  
0.2 * V  
0.0 * V  
ID  
ID  
tr  
tf  
6-4. SubLVDS Input Rise and Fall Slew Rate  
VIH MIN  
LS_CLK Midpoint  
VIL MAX  
tSU  
tH  
VIH MIN  
LS_WDATA Midpoint  
VIL MAX  
tWINDOW  
VIH MIN  
Midpoint  
LS_CLK  
VIL MAX  
tDERATING  
tH  
tSU  
VIH MIN  
Midpoint  
VIL MAX  
LS_WDATA  
tWINDOW  
6-5. Window Time Derating Concept  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: DLP2010  
 
 
 
DLP2010  
www.ti.com.cn  
ZHCSJE6B FEBRUARY 2019 REVISED MAY 2022  
t
C
t
t
W(H)  
W(L)  
DCLK_P  
50%  
DCLK_N  
t
t
H|  
SU|  
D_P(0:3)  
50%  
D_N(0:3)  
t
WINDOW|  
6-6. SubLVDS Switching Parameters  
t
C
(1)  
WINDOW  
t
|
DCLK_P  
50%  
DCLK_N  
¼ t  
C|  
¼ t  
C|  
D_P(0:3)  
50%  
D_N(0:3)  
(1) High-speed training scan window  
Note: Refer to 7.3.3 for details.  
6-7. High-Speed Training Scan Window  
+
(VIP + VIN  
2
)
VCM  
=
œ
DCLK_P, D_P(0:3)  
DCLK_N, D_N(0:3)  
VID  
SubLVDS  
Receiver  
VCM  
VIP  
VIN  
6-8. SubLVDS Voltage Parameters  
1.255 V  
V
LVDS(max)  
V
V
CM  
ID  
V
LVDS(min)  
0.575 V  
A. VSubLVDS(max) = VCM(max) + | ½ × VID(max)  
|
|
B. VSubLVDS(min) = VCM(min) | ½ × VID(max)  
6-9. SubLVDS Waveform Parameters  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: DLP2010  
 
 
 
 
DLP2010  
www.ti.com.cn  
ZHCSJE6B FEBRUARY 2019 REVISED MAY 2022  
DCLK_P, D_P(0:3)  
ESD  
ESD  
Internal  
Termination  
SubLVDS  
Receiver  
DCLK_N, D_N(0:3)  
6-10. SubLVDS Equivalent Input Circuit  
LS_CLK and LS_WDATA  
V
IH  
V
T+  
DV  
T
V
Tœ  
V
IL  
Time  
6-11. LPSDR Input Hysteresis  
LS_CLK  
LS_WDATA  
Stop  
Start  
tPD  
LS_RDATA  
Acknowledge  
6-12. LPSDR Read Out  
Data Sheet Timing Reference Point  
Device Pin  
Tester Channel  
Output Under Test  
C
L
A. See 7.3.4 for more information.  
6-13. Test Load Circuit for Output Propagation Measurement  
6.8 Switching Characteristics(1)  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
15  
UNIT  
ns  
Output propagation, Clock to Q, rising edge of  
LS_CLK input to LS_RDATA output. 6-12  
CL = 45 pF  
tPD  
Slew rate, LS_RDATA  
0.5  
V/ns  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: DLP2010  
 
 
 
 
DLP2010  
www.ti.com.cn  
ZHCSJE6B FEBRUARY 2019 REVISED MAY 2022  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Output duty cycle distortion, LS_RDATA  
40%  
60%  
(1) Device electrical characteristics are over 6.4 unless otherwise noted.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: DLP2010  
 
DLP2010  
www.ti.com.cn  
ZHCSJE6B FEBRUARY 2019 REVISED MAY 2022  
6.9 System Mounting Interface Loads  
PARAMETER  
MIN  
NOM  
MAX  
UNIT  
N
45  
Connector area (see 6-14)  
Maximum system mounting  
interface load to be applied to the:  
DMD mounting area uniformly distributed over 4  
areas (see 6-14)  
100  
N
5ꢀšµu Z![ !Œꢁꢀ  
(3 places)  
5ꢀšµu Z9[ !Œꢁꢀ  
(1 place)  
DMD Mounting Area  
(4 ‰oꢀꢂꢁ• }‰‰}•]šꢁ 5ꢀšµu• Z![ ꢀvꢃ Z9[)  
Connector Area  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: DLP2010  
 
 
DLP2010  
www.ti.com.cn  
ZHCSJE6B FEBRUARY 2019 REVISED MAY 2022  
6.10 Physical Characteristics of the Micromirror Array  
PARAMETER  
VALUE  
854  
UNIT  
micromirrors  
micromirrors  
µm  
Number of active columns  
Number of active rows  
See 6-15  
480  
See 6-15  
Micromirror (pixel) pitch  
5.4  
See 6-16  
Micromirror active array width  
Micromirror active array height  
Micromirror active border  
4.6116  
2.592  
20  
mm  
Micromirror pitch × number of active columns; see 6-15  
Micromirror pitch × number of active rows; see 6-15  
Pond of micromirror (POM)(1)  
mm  
micromirrors/side  
(1) The structure and qualities of the border around the active array includes a band of partially functional micromirrors called the POM.  
These micromirrors are structurally and/or electrically prevented from tilting toward the bright or ON state, but still require an electrical  
bias to tilt toward OFF.  
Width .  
Mirror 479  
Mirror 478  
Mirror 477  
Mirror 476  
Illumination  
854 × 480 mirrors  
Height  
Mirror 3  
Mirror 2  
Mirror 1  
Mirror 0  
6-15. Micromirror Array Physical Characteristics  
e
e
e
e
6-16. Mirror (Pixel) Pitch  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: DLP2010  
 
 
 
 
DLP2010  
www.ti.com.cn  
ZHCSJE6B FEBRUARY 2019 REVISED MAY 2022  
6.11 Micromirror Array Optical Characteristics  
PARAMETER  
Micromirror tilt angle  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
DMD landed state(1)  
17  
degrees  
degrees  
Micromirror tilt angle tolerance(2) (3) (4) (5)  
1.4  
1.4  
Landed ON state  
180  
270  
1
Micromirror tilt direction(6) (7)  
degrees  
Landed OFF state  
Typical Performance  
Typical Performance  
Micromirror crossover time(8)  
Micromirror switching time(9)  
3
μs  
10  
Bright pixel(s) in active  
Gray 10 Screen (12)  
Gray 10 Screen (12)  
0
1
area (11)  
Bright pixel(s) in the  
POM (13)  
Image performance(10) Dark pixel(s) in the  
active area (14)  
micromirrors  
White Screen  
Any Screen  
Any Screen  
4
0
0
Adjacent pixel(s) (15)  
Unstable pixel(s) in  
active area (16)  
(1) Measured relative to the plane formed by the overall micromirror array.  
(2) Additional variation exists between the micromirror array and the package datums.  
(3) Represents the landed tilt angle variation relative to the nominal landed tilt angle.  
(4) Represents the variation that can occur between any two individual micromirrors, located on the same device or located on different  
devices.  
(5) For some applications, it is critical to account for the micromirror tilt angle variation in the overall system optical design. With some  
system optical designs, the micromirror tilt angle variation within a device may result in perceivable non-uniformities in the light field  
reflected from the micromirror array. With some system optical designs, the micromirror tilt angle variation between devices may result  
in colorimetry variations, system efficiency variations or system contrast variations.  
(6) When the micromirror array is landed (not parked), the tilt direction of each individual micromirror is dictated by the binary contents of  
the CMOS memory cell associated with each individual micromirror. A binary value of 1 results in a micromirror landing in the ON state  
direction. A binary value of 0 results in a micromirror landing in the OFF state direction. See 6-17  
(7) Micromirror tilt direction is measured as in a typical polar coordinate system: Measuring counter-clockwise from a 0° reference which is  
aligned with the +X Cartesian axis.  
(8) The time required for a micromirror to nominally transition from one landed state to the opposite landed state.  
(9) The minimum time between successive transitions of a micromirror.  
(10) Conditions of Acceptance: All DMD image quality returns will be evaluated using the following projected image test conditions:  
Test set degamma shall be linear  
Test set brightness and contrast shall be set to nominal  
The diagonal size of the projected image shall be a minimum of 20 inches  
The projections screen shall be 1X gain  
The projected image shall be inspected from a 38 inch minimum viewing distance  
The image shall be in focus during all image quality tests  
(11) Bright pixel definition: A single pixel or mirror that is stuck in the ON position and is visibly brighter than the surrounding pixels  
(12) Gray 10 screen definition: All areas of the screen are colored with the following settings:  
Red = 10/255  
Green = 10/255  
Blue = 10/255  
(13) POM definition: Rectangular border of off-state mirrors surrounding the active area  
(14) Dark pixel definition: A single pixel or mirror that is stuck in the OFF position and is visibly darker than the surrounding pixels  
(15) Adjacent pixel definition: Two or more stuck pixels sharing a common border or common point, also referred to as a cluster  
(16) Unstable pixel definition: A single pixel or mirror that does not operate in sequence with parameters loaded into memory. The unstable  
pixel appears to be flickering asynchronously with the image  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: DLP2010  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
DLP2010  
www.ti.com.cn  
ZHCSJE6B FEBRUARY 2019 REVISED MAY 2022  
(843, 479)  
Incident  
illumination  
light path  
On-state  
landed edge  
Tilted axis of  
pixel rotation  
Off-state  
landed edge  
(0, 0)  
Off-state  
light path  
6-17. Landed Pixel Orientation and Tilt  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: DLP2010  
 
DLP2010  
www.ti.com.cn  
MAX UNIT  
ZHCSJE6B FEBRUARY 2019 REVISED MAY 2022  
6.12 Window Characteristics  
PARAMETER(1)  
MIN  
NOM  
Corning Eagle XG  
1.5119  
Window material designation  
Window refractive index  
Window aperture(2)  
at wavelength 546.1 nm  
See (2)  
See (3)  
Illumination overfill(3)  
Window transmittance, single-pass  
through both surfaces and glass  
Minimum within the wavelength range  
420 to 680 nm. Applies to all angles 0° to  
30° AOI.  
97%  
97%  
Window Transmittance, single-pass  
through both surfaces and glass  
Average over the wavelength range 420  
to 680 nm. Applies to all angles 30° to  
45° AOI.  
(1) See 7.5 for more information.  
(2) See the package mechanical characteristics for details regarding the size and location of the window aperture.  
(3) The active area of the DLP2010 device is surrounded by an aperture on the inside of the DMD window surface that masks structures  
of the DMD device assembly from normal view. The aperture is sized to anticipate several optical conditions. Overfill light illuminating  
the area outside the active array can scatter and create adverse effects to the performance of an end application using the DMD. The  
illumination optical system should be designed to limit light flux incident outside the active array to less than 10% of the average flux  
level in the active area. Depending on the particular system's optical architecture and assembly tolerances, the amount of overfill light  
on the outside of the active array may cause system performance degradation.  
6.13 Chipset Component Usage Specification  
The DLP2010 is a component of one or more TI DLP® chipsets. Reliable function and operation of the DLP2010  
requires that it be used in conjunction with the other components of the applicable DLP chipset, including those  
components that contain or implement TI DMD control technology. TI DMD control technology is the TI  
technology and devices for operating or controlling a DLP DMD.  
备注  
TI assumes no responsibility for image quality artifacts or DMD failures caused by optical system  
operating conditions exceeding limits described previously.  
6.14 Software Requirements  
CAUTION  
The DLP2010 DMD has mandatory software requirements. Refer to Software Requirements for TI  
DLP®Pico® TRP Digital Micromirror Devices application report for additional information. Failure to  
use the specified software will result in failure at power up.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: DLP2010  
 
 
 
 
 
 
DLP2010  
www.ti.com.cn  
ZHCSJE6B FEBRUARY 2019 REVISED MAY 2022  
7 Detailed Description  
7.1 Overview  
The DLP2010 is a 0.2 inch diagonal spatial light modulator of aluminum micromirrors. Pixel array size is 854  
columns by 480 rows in a square grid pixel arrangement. The electrical interface is sub low voltage differential  
signaling (SubLVDS) data.  
This DMD is part of the chipset that is composed of the DMD, DLPC3430 or DLPC3435 display controller and  
the DLPA200x/DLPA3000 PMIC and LED driver. To ensure reliable operation, the DMD must always be used  
with the DLPC3430 or DLPC3435 display controller and the DLPA200x/DLPA3000 PMIC and LED driver.  
7.2 Functional Block Diagram  
High-Speed  
Interface  
Control  
Misc  
Column Write  
Bit Lines  
(0,0)  
Word  
Lines  
Voltages  
Voltage  
Generators  
SRAM  
Row  
(479,853)  
Control  
Column Read  
Control  
Low-Speed  
Interface  
Details omitted for clarity.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: DLP2010  
 
 
 
DLP2010  
www.ti.com.cn  
ZHCSJE6B FEBRUARY 2019 REVISED MAY 2022  
7.3 Feature Description  
7.3.1 Power Interface  
The power management component DLPA200x/DLPA3000, contains three 3 regulated DC supplies for the DMD  
reset circuitry: VBIAS, VRESET and VOFFSET, as well as the two regulated DC supplies for the DLPC3430 or  
DLPC3435 controller.  
7.3.2 Low-Speed Interface  
The low speed interface handles instructions that configure the DMD and control reset operation. LS_CLK is the  
lowspeed clock, and LS_WDATA is the low speed data input.  
7.3.3 High-Speed Interface  
The purpose of the high-speed interface is to transfer pixel data rapidly and efficiently, making use of high speed  
DDR transfer and compression techniques to save power and time. The high-speed interface uses differential  
SubLVDS receivers for inputs, with a dedicated clock.  
7.3.4 Timing  
The data sheet provides timing test results at the device pin. For output timing analysis, the tester pin electronics  
and its transmission line effects must be considered. Test Load Circuit for Output Propagation Measurement  
shows an equivalent test load circuit for the output under test. Timing reference loads are not intended as a  
precise representation of any particular system environment or depiction of the actual load presented by a  
production test. TI recommends that system designers use IBIS or other simulation tools to correlate the timing  
reference load to a system environment. The load capacitance value stated is intended for characterization and  
measurement of AC timing signals only. This load capacitance value does not indicate the maximum load the  
device is capable of driving.  
7.4 Device Functional Modes  
DMD functional modes are controlled by the DLPC3430 or DLPC3435 controller. See the DLPC3430 or  
DLPC3435 controller data sheet or contact a TI applications engineer.  
7.5 Optical Interface and System Image Quality Considerations  
备注  
TI assumes no responsibility for image quality artifacts or DMD failures caused by optical system  
operating conditions exceeding limits described previously.  
7.5.1 Optical Interface and System Image Quality  
TI assumes no responsibility for end-equipment optical performance. Achieving the desired end-equipment  
optical performance involves making trade-offs between numerous component and system design parameters.  
Optimizing system optical performance and image quality strongly relate to optical system design parameter  
trades. Although it is not possible to anticipate every conceivable application, projector image quality and optical  
performance is contingent on compliance to the optical system operating conditions described in the following  
sections.  
7.5.1.1 Numerical Aperture and Stray Light Control  
The angle defined by the numerical aperture of the illumination and projection optics at the DMD optical area is  
typically the same. Ensure this angle does not exceed the nominal device micromirror tilt angle unless  
appropriate apertures are added in the illumination or projection pupils to block out flat-state and stray light from  
the projection lens. The micromirror tilt angle defines DMD capability to separate the "ON" optical path from any  
other light path, including undesirable flatstate specular reflections from the DMD window, DMD border  
structures, or other system surfaces near the DMD such as prism or lens surfaces. If the numerical aperture  
exceeds the micromirror tilt angle, or if the projection numerical aperture angle is more than two degrees larger  
than the illumination numerical aperture angle (and vice versa), contrast degradation and objectionable artifacts  
in the display border and/or active area may occur.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: DLP2010  
 
 
 
 
 
DLP2010  
www.ti.com.cn  
ZHCSJE6B FEBRUARY 2019 REVISED MAY 2022  
7.5.1.2 Pupil Match  
The optical and image quality specifications assume that the exit pupil of the illumination optics is nominally  
centered within 2° of the entrance pupil of the projection optics. Misalignment of pupils can create objectionable  
artifacts in the display border and/or active area. These artifacts may require additional system apertures to  
control, especially if the numerical aperture of the system exceeds the pixel tilt angle.  
7.5.1.3 Illumination Overfill  
The active area of the device is surrounded by an aperture on the inside DMD window surface that masks  
structures of the DMD chip assembly from normal view, and is sized to anticipate several optical operating  
conditions. Overfill light illuminating the window aperture can create artifacts from the edge of the window  
aperture opening and other surface anomalies that may be visible on the screen. Be sure to design an  
illumination optical system that limits light flux incident anywhere on the window aperture from exceeding  
approximately 10% of the average flux level in the active area. Depending on the particular optical architecture,  
overfill light may require further reduction below the suggested 10% level in order to be acceptable.  
7.6 Micromirror Array Temperature Calculation  
Illumination  
Direction  
Off-state  
Light  
7-1. DMD Thermal Test Points  
Micromirror array temperature can be computed analytically from measurement points on the outside of the  
package, the ceramic package thermal resistance, the electrical power dissipation, and the illumination heat  
load. The relationship between micromirror array temperature and the reference ceramic temperature is provided  
by the following equations:  
TARRAY = TCERAMIC + (QARRAY × RARRAYTOCERAMIC  
QARRAY = QELECTRICAL + QILLUMINATION  
QILLUMINATION = (CL2W × SL)  
)
(1)  
(2)  
(3)  
where  
TARRAY = Computed DMD array temperature (°C)  
TCERAMIC = Measured ceramic temperature (°C), TP1 location in DMD Thermal Test Points  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: DLP2010  
 
 
DLP2010  
www.ti.com.cn  
ZHCSJE6B FEBRUARY 2019 REVISED MAY 2022  
RARRAYTOCERAMIC = DMD package thermal resistance from array to outside ceramic (°C/W) specified in  
Thermal Information  
QARRAY = Total DMD power; electrical plus absorbed (calculated) (W)  
QELECTRICAL = Nominal DMD electrical power dissipation (W)  
CL2W = Conversion constant for screen lumens to absorbed optical power on the DMD (W/lm) specified below  
SL = Measured ANSI screen lumens (lm)  
Electrical power dissipation of the DMD is variable and depends on the voltages, data rates and operating  
frequencies. A nominal electrical power dissipation to use when calculating array temperature is 0.07 W.  
Absorbed optical power from the illumination source varies and depends on the operating state of the  
micromirrors and the intensity of the light source. Equation 1 through Equation 1 are valid for a 1-chip DMD  
system with total projection efficiency through the projection lens from DMD to the screen of 87%.  
The conversion constant CL2W is based on the DMD micromirror array characteristics. It assumes a spectral  
efficiency of 300 lm/W for the projected light and illumination distribution of 83.7% on the DMD active array, and  
16.3% on the DMD array border and window aperture. The conversion constant is calculated to be 0.00266  
W/lm.  
The following is a sample calculation for typical projection application:  
TCERAMIC = 55°C (measured)  
SL = 150 lm (measured)  
QELECTRICAL = 0.070 W  
CL2W = 0.00266 W/lm  
QARRAY = 0.070 W + (0.00266 W/lm × 150 lm) = 0.469 W  
TARRAY = 55°C + (0.469 W × 7.9°C/W) = 58.7°C  
7.7 Micromirror Landed-On/Landed-Off Duty Cycle  
7.7.1 Definition of Micromirror Landed-On and Landed-Off Duty Cycle  
The micromirror landed-on/landed-off duty cycle (landed duty cycle) denotes the amount of time (as a  
percentage) that an individual micromirror is landed in the ON state versus the amount of time the same  
micromirror is landed in the OFF state.  
As an example, a landed duty cycle of 75/25 indicates that the referenced pixel is in the ON state 75% of the  
time (and in the OFF state 25% of the time), whereas 25/75 indicates that the pixel is in the OFF state 75% of  
the time. Likewise, 50/50 indicates that the pixel is ON 50% of the time and OFF 50% of the time.  
When assessing landed duty cycle, the time spent switching from the current state to the opposite state is  
considered negligible and is thus ignored.  
Because a micromirror can only be landed in one state or the other (ON or OFF), the two numbers (percentages)  
nominally add to 100.In practice, image processing algorithms in the DLP chipset can result a total of less that  
100.  
7.7.2 Landed Duty Cycle and Useful Life of the DMD  
Knowing the long-term average landed duty cycle (of the end product or application) is important because  
subjecting all (or a portion) of the DMDs micromirror array (also called the active array) to an asymmetric  
landed duty cycle for a prolonged period of time can reduce the DMDs usable life.  
It is the symmetry or asymmetry of the landed duty cycle that is relevant. The symmetry of the landed duty cycle  
is determined by how close the two numbers (percentages) are to being equal. For example, a landed duty cycle  
of 50/50 is perfectly symmetrical whereas a landed duty cycle of 100/0 or 0/100 is perfectly asymmetrical.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: DLP2010  
 
 
DLP2010  
www.ti.com.cn  
ZHCSJE6B FEBRUARY 2019 REVISED MAY 2022  
7.7.3 Landed Duty Cycle and Operational DMD Temperature  
Operational DMD temperature and landed duty cycle interact to affect the usable life of the DMD. This interaction  
can be used to reduce the impact that an asymmetrical landed duty cycle has on the useable life of the DMD. 图  
6-1 describes this relationship. The importance of this curve is that:  
All points along this curve represent the same usable life.  
All points above this curve represent lower usable life (and the further away from the curve, the lower the  
usable life).  
All points below this curve represent higher usable life (and the further away from the curve, the higher the  
usable life).  
In practice, this curve specifies the maximum operating DMD temperature that the DMD should be operated at  
for a give long-term average landed duty cycle.  
7.7.4 Estimating the Long-Term Average Landed Duty Cycle of a Product or Application  
During a given period of time, the landed duty cycle of a given pixel depends on the image content being  
displayed by that pixel.  
In the simplest case for example, when the system displays pure-white on a given pixel for a given time period,  
that pixel operates very close to a 100/0 landed duty cycle during that time period. Likewise, when the system  
displays pure-black, the pixel operates very close to a 0/100 landed duty cycle.  
Between the two extremes (ignoring for the moment color and any image processing that may be applied to an  
incoming image), the landed duty cycle tracks one-to-one with the gray scale value, as shown in 7-1.  
7-1. Grayscale Value  
and Landed Duty Cycle  
Nominal  
Grayscale  
Landed Duty  
Value  
Cycle  
0%  
10%  
20%  
30%  
40%  
50%  
60%  
70%  
80%  
90%  
100%  
0/100  
10/90  
20/80  
30/70  
40/60  
50/50  
60/40  
70/30  
80/20  
90/10  
100/0  
To account for color rendition (and continuing to ignore image processing for this example) requires knowing  
both the color intensity (from 0% to 100%) for each constituent primary color (red, green, and/or blue) for the  
given pixel as well as the color cycle time for each primary color, where color cycle time describes the total  
percentage of the frame time that a given primary must be displayed in order to achieve the desired white point.  
During a given period of time, the nominal landed duty cycle of a given pixel can be calculated as shown in 方程  
4:  
Landed Duty Cycle = (Red_Cycle_% × Red_Scale_Value) + (Green_Cycle_% × Green_Scale_Value) + (Blue_Cycle_% (4)  
×
Blue_Scale_Value)  
where  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: DLP2010  
 
 
DLP2010  
www.ti.com.cn  
ZHCSJE6B FEBRUARY 2019 REVISED MAY 2022  
Red_Cycle_% represents the percentage of the frame time that red displays to achieve the desired white  
point  
Green_Cycle_% represents the percentage of the frame time that green displays to achieve the desired white  
point  
Blue_Cycle_% represents the percentage of the frame time that blue displays to achieve the desired white  
point  
For example, assume that the ratio of red, green and blue color cycle times are as listed in 7-2 (in order to  
achieve the desired white point) then the resulting nominal landed duty cycle for various combinations of red,  
green, blue color intensities are as shown in 7-3.  
7-2. Example Landed Duty Cycle for Full-Color  
Pixels  
Red Cycle  
Percentage  
Green Cycle  
Percentage  
Blue Cycle  
Percentage  
50%  
20%  
30%  
7-3. Color Intensity Combinations  
Nominal  
Landed Duty  
Cycle  
Red Scale  
Value  
Green Scale  
Value  
Blue Scale  
Value  
0%  
100%  
0%  
0%  
0%  
0%  
0%  
0/100  
50/50  
20/80  
30/70  
6/94  
100%  
0%  
0%  
0%  
100%  
0%  
12%  
0%  
0%  
35%  
0%  
0%  
7/93  
0%  
60%  
0%  
18/82  
70/30  
50/50  
80/20  
13/87  
25/75  
24/76  
100/0  
100%  
0%  
100%  
100%  
0%  
100%  
100%  
0%  
100%  
12%  
0%  
35%  
35%  
0%  
60%  
60%  
100%  
12%  
100%  
100%  
The last factor to consider when estimating the landed duty cycle is any applied image processing. In the  
DLPC34xx controller family, the two functions which influence the actual landed duty cycle are Gamma and  
IntelliBright, and bitplane sequencing rules.  
Gamma is a power function of the form Output_Level = A × Input_LevelGamma, where A is a scaling factor that is  
typically set to 1.  
In the DLPC34xx controller family, gamma is applied to the incoming image data on a pixel-by-pixel basis. A  
typical gamma factor is 2.2, which transforms the incoming data as shown in 7-2.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: DLP2010  
 
 
DLP2010  
www.ti.com.cn  
ZHCSJE6B FEBRUARY 2019 REVISED MAY 2022  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Gamma = 2.2  
0
10  
20  
30  
40  
50  
60  
Input Level (%)  
70  
80  
90 100  
D002  
7-2. Example of Gamma = 2.2  
As shown in 7-2, when the gray scale value of a given input pixel is 40% (before gamma is applied), then gray  
scale value is 13% after gamma is applied. Because gamma has a direct impact on the displayed gray scale  
level of a pixel, it also has a direct impact on the landed duty cycle of a pixel.  
The IntelliBright algorithms content adaptive illumination control (CAIC) and local area brightness boost (LABB)  
also apply transform functions on the gray scale level of each pixel. But while amount of gamma applied to every  
pixel (of every frame) is constant (the exponent, gamma, is constant), CAIC and LABB are both adaptive  
functions that can apply a different amounts of either boost or compression to every pixel of every frame. Be  
sure to account for any image processing which occurs before the controller.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: DLP2010  
 
DLP2010  
www.ti.com.cn  
ZHCSJE6B FEBRUARY 2019 REVISED MAY 2022  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The DMDs are spatial light modulators which reflect incoming light from an illumination source to one of two  
directions, with the primary direction being into a projection or collection optic. Each application depends  
primarily on the optical architecture of the system and the format of the data coming into the DLPC3430 or  
DLPC3435 controller. The new high-tilt pixel in the side-illuminated DMD increases brightness performance and  
enables a smaller system electronics footprint for thickness constrained applications. Applications include  
projection embedded in display devices  
smartphones  
tablets  
cameras  
camcorders  
wearable (near-eye) displays  
battery powered mobile accessory  
interactive display  
low-latency gaming display  
digital signage  
DMD power-up and power-down sequencing is strictly controlled by the DLPA200x/DLPA3000. Refer to 9 for  
power-up and power-down specifications. DLP2010 DMD reliability is specified when used with DLPC3430 or  
DLPC3435 controller and DLPA200x/DLPA3000 PMIC/LED driver only.  
8.2 Typical Application  
This section describes a pico-projector using a DLP chipset that includes a DLP2010 DMD, DLPC3430 or  
DLPC3435 controller and DLPA200x/DLPA3000 PMIC/LED driver. The DLPC3430 or DLPC3435 controller does  
the digital image processing, the DLPA200x/DLPA3000 provides the needed analog functions for the projector,  
and DMD is the display device for producing the projected image.  
The DLPC3430 controller in the pico-projector embedded module typically receives images/video from a host  
processor within the product. DLPC3430 controller then drives the DMD synchronized with the R, G, B LEDs in  
the optical engine to display the image/video as output of the optical engine.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: DLP2010  
 
 
 
DLP2010  
www.ti.com.cn  
ZHCSJE6B FEBRUARY 2019 REVISED MAY 2022  
1.1 V  
1.1 Reg  
L3  
SYSPWR  
L2  
DC  
Supplies  
1.8 V  
1.8 V external  
L1  
DLPA200x  
V
LED  
1.8 V  
VSPI  
PROJ_ON  
LED_SEL (2)  
SPI (4)  
PROJ_ON  
GPIO_8  
SPI1  
2
I C  
RESETZ  
PARKZ  
R
LIM  
INTZ  
1.1 V  
Thermistor  
Video  
Front End  
HOST_IRQ  
DSI (10)  
CMP_OUT  
HDMI  
VDDLP12  
VDD  
Illumination  
optics  
Parallel Interface (28)  
Flash  
DLPC34xx  
System  
Controller  
RC_  
CHARGE  
SPI (4)  
SPI0  
GPIO_10  
Keypad  
V
, V  
BIAS OFFSET  
,
VCC_18  
1.8 V  
TI DLP Chipset  
Non-TI Device  
V
RESET  
DMD  
VCC_INTF  
VCC_FLSH  
CTRL  
Sub-LVDS DATA  
1.8 V  
8-1. Typical Application  
8.2.1 Design Requirements  
In addition to the three DLP devices in the chipset, other IC components may be needed. At a minimum, this  
design requires a flash device to store the software and firmware to control the DLPC3430 or DLPC3435.  
Red, green, and blue LEDs typically supply the illumination light that is applied to the DMD. These LEDs are  
often contained in three separate packages, but sometimes more than one color of LED die may be in the same  
package to reduce the overall size of the pico-projector.  
A parallel interface connects the DLPC3430 or DLPC3435 to the host processing for receiving images. When the  
parallel interface is used, use an I2C interface to the host processor for sending commands to the DLPC3430 or  
DLPC3435.  
The battery (SYSPWR) and a regulated 1.8-V supply are the only power supplies needed external to the  
projector in case of DLPA200x. The DLPA3000 supplies the 1.8V without external regulator.  
8.2.2 Detailed Design Procedure  
For connecting together the DLPC3430 or DLPC3435, the DLPA200x/DLPA3000, and the DMD, see the  
reference design schematic. When a circuit board layout is created from this schematic a very small circuit board  
is possible. An example small board layout is included in the reference design data base. Layout guidelines  
should be followed to achieve a reliable projector.  
The optical engine that has the LED packages and the DMD mounted to it is typically supplied by an optical  
OEM who specializes in designing optics for DLP projectors.  
A miniature stepper motor can optionally be added to the optical engine for creating a motorized focus. Direct  
control and driving of the motor can be done by the DLPA200x/DLPA3000, and software commands sent over  
I2C to the DLPC3430 or DLPC3435 are available to move the motor to the desired position.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: DLP2010  
DLP2010  
www.ti.com.cn  
ZHCSJE6B FEBRUARY 2019 REVISED MAY 2022  
8.2.3 Application Curve  
This device drives current time-sequentially though the LEDs. As the LED currents through the red, green, and  
blue LEDs increases, the brightness of the projector increases. This increase is somewhat non-linear, and the  
curve for typical white screen lumens changes with LED currents as shown in 8-2. For the LED currents  
shown, assumed that the same current amplitude is applied to the red, green, and blue.  
SPACE  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
100  
200  
300 400  
Current (mA)  
500  
600  
700  
D001  
ILED(red) = ILED(green) = ILED(blue)  
8-2. Luminance vs Current  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: DLP2010  
 
DLP2010  
www.ti.com.cn  
ZHCSJE6B FEBRUARY 2019 REVISED MAY 2022  
9 Power Supply Recommendations  
The following power supplies are all required to operate the DMD:  
VSS  
VBIAS  
VDD  
VDDI  
VOFFSET  
VRESET  
The DLPAxxxx device strictly controls the DMD power-up and power-down sequences as described in 9-1.  
CAUTION  
To ensure reliable operation of the DMD, follow the power supply sequencing requirements  
described in this section. Failure to adhere to any of these requirements can result in a significant  
reduction in the DMD reliability and lifetime.  
VBIAS, VDD, VDDI, VOFFSET, and VRESET power supplies must be coordinated during power-up  
and power-down operations . Common ground (VSS) to all lines must also be connected.  
9.1 DMD Power Supply Power-Up Procedure  
During the power-up sequence, VDD and VDDI must always start and settle before VOFFSET, VBIAS, and  
VRESET voltages are applied to the DMD.  
During the power-up sequence, it is a strict requirement that the voltage difference between VBIAS and  
VOFFSET must be within the specified limit shown in 6.4. Refer to 9-1 for the power-up sequence,  
delay requirements.  
During the power-up sequence, there is no requirement for the relative timing of VRESET with respect to  
VBIAS and VOFFSET.  
Power supply slew rates during the power-up sequence are flexible, provided that the transient voltage levels  
follow the requirements specified in 6.1, in 6.4, and in 9.3.  
During the power-up sequence, LPSDR input pins must not be driven high until after VDD/VDDI have settled  
at operating voltages listed in 6.4.  
9.2 DMD Power Supply Power-Down Procedure  
The power-down sequence is the reverse order of the previous power-up sequence. During the power-down  
sequence, VDD and VDDI must be supplied until after VBIAS, VRESET, and VOFFSET are discharged to  
within 4 V of ground.  
During the power-down sequence, it is a strict requirement that the voltage difference between VBIAS and  
VOFFSET must be within the specified limit shown in 6.4.  
During the power-down sequence, there is no requirement for the relative timing of VRESET with respect to  
VBIAS and VOFFSET.  
Power supply slew rates during the power-down sequence, are flexible, provided that the transient voltage  
levels follow the requirements specified in 6.1, in 6.4, and in 9.3.  
During the power-down sequence, LPSDR input pins must be less than VDD/VDDI specified in 6.4.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: DLP2010  
 
 
 
 
DLP2010  
www.ti.com.cn  
ZHCSJE6B FEBRUARY 2019 REVISED MAY 2022  
9.3 Power Supply Sequencing Requirements  
(4)  
Mirror park sequence  
VDD / VDDI  
VDD and VDDI  
VDD and VDDI  
VSS  
VSS  
VBIAS  
VBIAS  
VBIAS  
VDD ≤ VBIAS < 6 V  
VBIAS < 4 V  
ûV < Specification(2)  
VSS  
VSS  
ûV < Specification(1)(2)  
VOFFSET  
VOFFSET  
VDD ≤ VOFFSET < 6 V  
ûV < Specification(3)  
VOFFSET  
VOFFSET < 4 V  
VSS  
VSS  
VSS  
VSS  
VRESET < 0.5 V  
VRESET > œ4 V  
VRESET  
VRESET  
VDD  
VRESET  
VDD  
DMD_DEN_ARSTZ  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
Initialization  
VDD  
VDD  
LS_CLK  
LS_WDATA  
VID  
D_P(0:3), D_N(0:3)  
DCLK_P, DCLK_N  
t
2
t
3
t
4
t
1
DLP controller and PMIC controls start of DMD operation  
Mirror park sequence starts  
Mirror park sequence ends. DLP controller and PMIC disables VBIAS, VOFFSET, and VRESET.  
Power off.  
Refer to 9-1 and 9-2 for critical power-up sequence delay requirements.  
When system power is interrupted, the ASIC driver initiates hardware the power-down sequence, that disables VBIAS, VRESET and  
VOFFSET after the micromirror park sequence is complete. Software the power-down sequence, disables VBIAS, VRESET, and  
VOFFSET after the micromirror park sequence through software control.  
To prevent excess current, the supply voltage delta |VBIAS VRESET| must be less than specified limit shown in 6.4.  
Drawing is not to scale and details are omitted for clarity.  
9-1. Power Supply Sequencing Requirements  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: DLP2010  
 
 
 
DLP2010  
www.ti.com.cn  
ZHCSJE6B FEBRUARY 2019 REVISED MAY 2022  
9-1. Power-Up Sequence Delay Requirement  
PARAMETER  
MIN  
MAX  
UNIT  
tDELAY  
Delay requirement from VOFFSET power up to VBIAS power up  
Supply voltage level during powerup sequence delay (see 9-2)  
Supply voltage level during powerup sequence delay (see 9-2)  
2
ms  
VOFFSE  
T
6
6
V
V
VBIAS  
12  
VOFFSET  
8
VDD ≤ VOFFSET ≤ 6 V  
4
VSS  
0
t
DELAY  
20  
16  
12  
8
VBIAS  
VDD ≤ VBIAS ≤ 6 V  
4
VSS  
0
Time  
Refer to 9-1 for VOFFSET and VBIAS supply voltage levels during power-up sequence delay.  
9-2. Power-Up Sequence Delay Requirement  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: DLP2010  
 
 
DLP2010  
www.ti.com.cn  
ZHCSJE6B FEBRUARY 2019 REVISED MAY 2022  
10 Layout  
10.1 Layout Guidelines  
There are no specific layout guidelines because in most cases the DMD is connected using a board-to-board  
connector to a flex cable. The flex cable provides the interface of data and control signals between the  
DLPC3430 or DLPC3435 controller and the DLP2010 DMD. For detailed layout guidelines refer to the layout  
design files.  
Layout guidelines for the flex cable interface with DMD are:  
Match lengths for the LS_WDATA and LS_CLK signals.  
Minimize vias, layer changes, and turns for the HS bus signals. Refer 10-1.  
Place a decoupling capacitor (minimum 100-nF) close to VBIAS. See capacitor C4 in 10-2.  
Place a decoupling capacitor (minimum 100-nF) close to VRST. See capacitor C6 in 10-2.  
Place a decoupling capacitor (minimum 220-nF) close to VOFS. See capacitor C7 in 10-2.  
Place the optional decoupling capacitor (minimum between 200-nF and 220-nF) to meet the ripple  
requirements of the DMD. See capacitor C5 in 10-2.  
Place a decoupling capacitor (minimum 100-nF) close to VDDI. See capacitor C1 in 10-2.  
Place a decoupling capacitor (minimum 100-nF) close to both groups of VDD pins, for a total of 200 nF for  
VDD. See capacitors C2 and C3 in 10-2.  
10.2 Layout Example  
10-1. High-Speed (HS) Bus Connections  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: DLP2010  
 
 
 
 
DLP2010  
www.ti.com.cn  
ZHCSJE6B FEBRUARY 2019 REVISED MAY 2022  
10-2. Power Supply Connections  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: DLP2010  
 
DLP2010  
www.ti.com.cn  
ZHCSJE6B FEBRUARY 2019 REVISED MAY 2022  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
11.1.2 Device Nomenclature  
11-1. Part Number Description  
11.1.3 Device Markings  
Device Marking will include the humanreadable character string GHJJJJK VVVV on the electrical connector.  
GHJJJJK is the lot trace code. VVVV is a 4 character encoded device part number.  
GHJJJJKHVVVV  
11-2. DMD Marking  
11.2 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to sample or buy.  
11-1. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
SAMPLE & BUY  
DLPC3430  
DLPC3435  
DLPA2000  
DLPA2005  
DLPA3000  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
11.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: DLP2010  
 
 
 
 
 
DLP2010  
www.ti.com.cn  
ZHCSJE6B FEBRUARY 2019 REVISED MAY 2022  
11.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.5 Trademarks  
IntelliBrightand TI E2Eare trademarks of Texas Instruments.  
DLP® and Pico® are registered trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: DLP2010  
 
 
 
 
DLP2010  
www.ti.com.cn  
ZHCSJE6B FEBRUARY 2019 REVISED MAY 2022  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: DLP2010  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DLP2010AFQJ  
ACTIVE  
CLGA  
FQJ  
40  
120  
RoHS & Green  
Call TI  
N / A for Pkg Type  
0 to 70  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
DWG NO.  
SH  
8
5
3
6
1
7
4
1
2512515  
REVISIONS  
C
COPYRIGHT 2012 TEXAS INSTRUMENTS  
UN-PUBLISHED, ALL RIGHTS RESERVED.  
NOTES UNLESS OTHERWISE SPECIFIED:  
REV  
A
DESCRIPTION  
DATE  
BY  
BMH  
9/14/2012  
ECO 2127544: INITIAL RELEASE  
ECO 2129552: ENLARGE APERTURE ON RIGHT SIDE;  
MOVE ACTIVE ARRAY Y-LOCATION DIM, SH. 3  
ECO 2131252: ENLARGE APERTURE ALONG BOTTOM EDGE  
ECO 2135244: CORRECT WINDOW THK TOL, ZONE B6  
ECO 2138016: INCREASE WINDOW THK NOMINAL  
ECO 2186532: ADD APERTURE SLOTS PICTORIALLY  
1
2
DIE PARALLELISM TOLERANCE APPLIES TO DMD ACTIVE ARRAY ONLY.  
12/10/2012  
B
BMH  
ROTATION ANGLE OF DMD ACTIVE ARRAY IS A REFINEMENT OF THE LOCATION  
TOLERANCE AND HAS A MAXIMUM ALLOWED VALUE OF 0.6 DEGREES.  
2/20/2013  
8/5/2013  
11/21/2013  
3/31/2020  
C
D
E
F
BMH  
BMH  
BMH  
BMH  
3
4
5
BOUNDARY MIRRORS SURROUNDING THE DMD ACTIVE ARRAY.  
DMD MARKING TO APPEAR IN CONNECTOR RECESS.  
D
C
B
A
D
C
B
A
NOTCH DIMENSIONS ARE DEFINED BY UPPERMOST LAYERS OF CERAMIC,  
AS SHOWN IN SECTION A-A.  
6
ENCAPSULANT TO BE CONTAINED WITHIN DIMENSIONS SHOWN IN VIEW C  
(SHEET 2). NO ENCAPSULANT IS ALLOWED ON TOP OF THE WINDOW.  
7
8
ENCAPSULANT NOT TO EXCEED THE HEIGHT OF THE WINDOW.  
DATUM B IS DEFINED BY A DIA. 2.5 PIN, WITH A FLAT ON THE SIDE FACING  
TOWARD THE CENTER OF THE ACTIVE ARRAY, AS SHOWN IN VIEW B (SHEET 2).  
9
WHILE ONLY THE THREE DATUM A TARGET AREAS A1, A2, AND A3 ARE USED  
FOR MEASUREMENT, ALL 4 CORNERS SHOULD BE CONTACTED, INCLUDING E1,  
TO SUPPORT MECHANICAL LOADS.  
1.1760.05  
4X (R0.2)  
5
5
+
-
0.3  
0.1  
5.3  
5
90° 1°  
5
(ILLUMINATION  
DIRECTION)  
4X R0.4 0.1  
5
2X 2.5 0.075  
(2.5)  
5
C
1.25  
5
A
A
5
2.65  
8
5
+
0.2  
0.1  
B
-
+
-
0.2  
0.1  
1.4  
5
5
+
-
0.2  
0.1  
(1)  
0.8  
14.1 0.08  
+
0.3  
-
0.1  
15.9  
(OFF-STATE  
DIRECTION)  
6 7  
1.0030.077  
0.7 0.05  
D
2X ENCAPSULANT  
(1.783)  
3 SURFACES INDICATED  
IN VIEW B (SHEET 2)  
0.038A  
0.02D  
1 9  
9
A
0.78 0.063  
ACTIVE ARRAY  
1.40.1  
(2.5)  
0.05  
(1.4)  
5
0.4 MIN  
TYP.  
H
H
(0.88)  
(SHEET 3)  
(SHEET 3)  
0 MIN TYP.  
(PANASONIC AXT640124DD1, 40-CONTACT, 0.4 mm  
PITCH BOARD-TO-BOARD CONNECTOR HEADER)  
MATES WITH PANASONIC AXT540124DD1 OR EQUIVALENT  
DATE  
DRAWN  
UNLESS OTHERWISE SPECIFIED  
DIMENSIONS ARE IN MILLIMETERS  
TOLERANCES:  
TEXAS  
9/14/2012  
9/14/2012  
9/26/2012  
9/26/2012  
9/18/2012  
9/18/2012  
B. HASKETT  
INSTRUMENTS  
ENGINEER  
Dallas Texas  
CONNECTOR SOCKET  
SECTION A-A  
NOTCH OFFSETS  
B. HASKETT  
QA/CE  
ANGLES 1  
TITLE  
ICD, MECHANICAL, DMD,  
.2 WVGA SERIES 244  
(FQJ PACKAGE)  
2 PLACE DECIMALS 0.25  
1 PLACE DECIMALS 0.50  
P. KONRAD  
CM  
DIMENSIONAL LIMITS APPLY BEFORE PROCESSES  
INTERPRET DIMENSIONS IN ACCORDANCE WITH ASME  
Y14.5M-1994  
F. ARMSTRONG  
THIRD ANGLE  
PROJECTION  
DWG NO  
REV  
SIZE  
D
0314DA  
USED ON  
REMOVE ALL BURRS AND SHARP EDGES  
M. DORAK  
APPROVED  
2512515  
F
PARENTHETICAL INFORMATION FOR REFERENCE ONLY  
NEXT ASSY  
SCALE  
SHEET  
OF  
APPLICATION  
M. SOUCEK  
20:1  
1
3
INV11-2006a  
5
3
6
1
2
7
8
4
DWG NO.  
SH  
8
5
3
6
1
7
4
2512515  
2
2X (1)  
A2  
2X 1.176  
2X (0.8)  
2X 14.1  
A3  
D
C
B
A
D
C
B
A
4X 1.45  
1.25  
C
2.5  
4X (1.2)  
B
8
9
(1.1)  
E1  
A1  
VIEW B  
DATUMS A, B, C, AND E  
1.176  
14.1  
(FROM SHEET 1)  
5.5  
(2.5)  
C
1.25  
2.75  
B
6
VIEW C  
ENCAPSULANT MAXIMUM X/Y DIMENSIONS  
(FROM SHEET 1)  
2X 0 MIN  
7
VIEW D  
ENCAPSULANT MAXIMUM HEIGHT  
DWG NO  
REV  
SIZE  
DRAWN  
DATE  
9/14/2012  
TEXAS  
2512515  
B. HASKETT  
F
3
D
INSTRUMENTS  
Dallas Texas  
SCALE  
SHEET  
OF  
2
INV11-2006a  
5
3
6
1
2
7
8
4
DWG NO.  
SH  
8
5
3
6
1
7
4
2512515  
3
(4.6116)  
ACTIVE ARRAY  
6.454 0.075  
3
4X (0.108)  
0.940.05  
0.1340.0635  
D
C
B
A
D
C
B
A
(4.86)  
WINDOW  
(2.592)  
ACTIVE ARRAY  
(ILLUMINATION  
DIRECTION)  
3.0160.0635  
(3.15)  
APERTURE  
3.920.05  
F
G
(2.5)  
C
1.25  
1.102 0.075  
B
2
0.424 0.0635  
2.9610.05  
4.8390.0635  
(5.263)  
APERTURE  
6.505 0.05  
(9.466)  
WINDOW  
VIEW E  
WINDOW AND ACTIVE ARRAY  
(FROM SHEET 1)  
53X TEST PADS  
0.2ABC  
50X 0.6±0.1 X 0.54±0.1  
3X Ø0.54±0.1  
0.1A  
4
(9.8)  
3.326  
BACK INDEX MARK  
0.4ABC  
(42°) TYP.  
(42°) TYP.  
C
B
2.23  
1.25  
(2.5)  
2X (1.86)  
0.4ABC  
(0.15) TYP.  
(0.075) TYP.  
2X 0.93  
5 X 0.892 = 4.46  
(42°) TYP.  
(0.068) TYP.  
(0.068) TYP.  
1.026  
18 X 0.8 = 14.4  
DETAIL G  
APERTURE RIGHT EDGE  
DETAIL F  
APERTURE LEFT EDGE  
VIEW H-H  
(POND OF MIRRORS OMITTED FOR CLARITY)  
SCALE 60 : 1  
SCALE 60 : 1  
TEST PADS AND CONNECTOR  
(FROM SHEET 1)  
DWG NO  
REV  
SIZE  
DRAWN  
DATE  
9/14/2012  
TEXAS  
2512515  
B. HASKETT  
F
3
D
INSTRUMENTS  
Dallas Texas  
SCALE  
SHEET  
OF  
3
INV11-2006a  
5
3
6
1
2
7
8
4
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

DLP2010LC

DLP® 0.2 英寸 WVGA 数字微镜器件 (DMD)
TI

DLP2010LCFQJ

DLP® 0.2 英寸 WVGA 数字微镜器件 (DMD) | FQJ | 40 | 0 to 70
TI

DLP2010NIR

DLP® 0.2 WVGA NIR DMD
TI

DLP2010NIRAFQJ

DLP® 0.2 WVGA NIR DMD | FQJ | 40 | 0 to 70
TI

DLP2010NIRFQJ

DLP&reg; 0.2 WVGA NIR DMD 40-CLGA
TI

DLP2021-Q1

汽车类 0.2 英寸 DLP® 数字微镜器件 (DMD)
TI

DLP230GP

DLP® 0.23 qHD DMD
TI

DLP230GPAFQP

0.23-inch, qHD DLP® digital micromirror device (DMD) | FQP | 54 | 0 to 70
TI

DLP230KP

0.23 英寸 HD DLP® 数字微镜器件 (DMD)
TI

DLP230KPAFQP

0.23-inch, HD DLP® digital micromirror device (DMD) | FQP | 54 | 0 to 70
TI

DLP230NP

DLP® 0.23 1080p DMD
TI

DLP230NPAFQP

0.23-inch 1080p DLP® digital micromirror device (DMD) | FQP | 54 | 0 to 70
TI