DAC7643VFBR [TI]

16-Bit, Dual Voltage Output DIGITAL-TO-ANALOG CONVERTER; 16位,双电压输出数位类比转换器
DAC7643VFBR
型号: DAC7643VFBR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

16-Bit, Dual Voltage Output DIGITAL-TO-ANALOG CONVERTER
16位,双电压输出数位类比转换器

转换器 数模转换器
文件: 总20页 (文件大小:769K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DAC7642  
DAC7643  
DAC7643  
DAC7642  
SBAS233 – DECEMBER 2001  
16-Bit, Dual Voltage Output  
DIGITAL-TO-ANALOG CONVERTER  
DESCRIPTION  
FEATURES  
LOW POWER: 4mW  
The DAC7642 and DAC7643 are dual channel, 16-bit, volt-  
age output Digital-to-Analog Converters (DACs) which pro-  
vide 15-bit monotonic performance over the specified tem-  
perature range. They accept 16-bit parallel input data, have  
double-buffered DAC input logic (allowing simultaneous up-  
date of all DACs), and provide a readback mode of the  
internal input registers. Programmable asynchronous reset  
clears all registers to a mid-scale code of 8000H (DAC7642)  
or to a zero-scale code of 0000H (DAC7643). These DACs  
can operate from a single +5V supply or from +5V and –5V  
supplies, providing an output range of 0 to +2.5V or –2.5V to  
+2.5V, respectively.  
UNIPOLAR OR BIPOLAR OPERATION  
SETTLING TIME: 10µs to 0.003% FSR  
15-BIT LINEARITY AND MONOTONICITY:  
–40°C to +85°C  
RESET TO MID-SCALE (DAC7642) OR  
ZERO-SCALE (DAC7643)  
DATA READBACK  
DOUBLE-BUFFERED DATA INPUTS  
APPLICATIONS  
PROCESS CONTROL  
Low power and small size per DAC make the DAC7642 and  
DAC7643 ideal for automatic test equipment, DAC-per-pin  
programmers, data acquisition systems, and closed-loop  
servo-control. The DAC7642 and DAC7643 are available in  
a LQFP-32 package and specified over a –40°C to +85°C  
temperature range.  
CLOSED-LOOP SERVO-CONTROL  
MOTOR CONTROL  
DATA ACQUISITION SYSTEMS  
DAC-PER-PIN PROGRAMMERS  
VREF  
L
VREF  
H
Sense  
Sense  
VREF  
L
VREFH  
VCC  
VSS  
DAC7642  
DAC7643  
16  
I/O  
Buffer  
Input  
Register A  
DAC  
Register A  
DATA I/O  
DAC A  
VOUT  
A
A
VOUT  
Sense  
Sense  
Input  
Register B  
DAC  
Register B  
DAC B  
VOUT  
B
B
DACSEL  
CS  
VOUT  
Control  
Logic  
R/W  
GND  
RST  
LOADDACS  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
Copyright © 2001, Texas Instruments Incorporated  
www.ti.com  
ABSOLUTE MAXIMUM RATINGS(1)  
ELECTROSTATIC  
DISCHARGE SENSITIVITY  
This integrated circuit can be damaged by ESD. Texas Instru-  
ments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling  
and installation procedures can cause damage.  
VCC to VSS ............................................................................. 0.3V to 11V  
V
V
V
V
CC to GND .......................................................................... 0.3V to 5.5V  
REFL to VSS ............................................................. 0.3V to (VCC VSS  
CC to VREFH ............................................................ 0.3V to (VCC VSS  
REFH to VREFL ......................................................... 0.3V to (VCC VSS  
)
)
)
Digital Input Voltage to GND ................................... 0.3V to VCC + 0.3V  
Digital Output Voltage to GND ................................. 0.3V to VCC + 0.3V  
Maximum Junction Temperature ................................................... +150°C  
Operating Temperature Range ........................................40°C to +85°C  
Storage Temperature Range .........................................65°C to +125°C  
Lead Temperature (soldering, 10s) ............................................... +300°C  
ESD damage can range from subtle performance  
degradation to complete device failure. Precision integrated  
circuits may be more susceptible to damage because very  
small parametric changes could cause the device not to meet  
its published specifications.  
NOTE: (1) Stresses above those listed under Absolute Maximum Ratings”  
may cause permanent damage to the device. Exposure to absolute maximum  
conditions for extended periods may affect device reliability.  
PACKAGE/ORDERING INFORMATION  
SPECIFIED  
PACKAGE  
TEMPERATURE  
RANGE  
PACKAGE  
MARKING  
ORDERING  
NUMBER  
TRANSPORT  
MEDIA, QUANTITY  
PRODUCT  
MONOTONICITY PACKAGE-LEAD DESIGNATOR(1)  
DAC7642VF  
14 Bits  
LQFP-32  
VF  
40°C to +85°C  
DAC7642  
DAC7642VFT  
DAC7642VFR  
Tape and Reel, 250  
Tape and Reel, 1000  
"
"
"
"
"
"
DAC7642VFB  
15 Bits  
LQFP-32  
VF  
40°C to +85°C  
DAC7642B  
DAC7642VFBT  
Tape and Reel, 250  
"
"
"
"
"
"
DAC7642VFBR Tape and Reel, 1000  
DAC7643VF  
14 Bits  
LQFP-32  
VF  
40°C to +85°C  
DAC7643  
DAC7643VFT  
DAC7643VFR  
Tape and Reel, 250  
Tape and Reel, 1000  
"
"
"
"
"
"
DAC7643VFB  
15 Bits  
LQFP-32  
VF  
40°C to +85°C  
DAC7643B  
DAC7643VFBT  
Tape and Reel, 250  
"
"
"
"
"
"
DAC7643VFBR Tape and Reel, 1000  
NOTE: (1) For the most current specifications and package information, refer to our web site at www.ti.com.  
DAC7642, DAC7643  
2
SBAS233  
www.ti.com  
ELECTRICAL CHARACTERISTICS (Dual Supply)  
At TA = TMIN to TMAX, VCC = +5V, VSS = 5V, VREFH = +2.5V, and VREFL = 2.5V, unless otherwise noted.  
DAC7642VF  
DAC7643VF  
DAC7642VFB  
DAC7643VFB  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
ACCURACY  
Linearity Error  
Linearity Match  
±3  
±4  
±2  
±4  
±3  
±2  
±2  
±1  
±3  
±2  
LSB  
LSB  
LSB  
Bits  
mV  
ppm/°C  
mV  
ppm/°C  
mV  
mV  
ppm/V  
Differential Linearity Error  
Monotonicity, TMIN to TMAX  
Bipolar Zero Error  
Bipolar Zero Error Drift  
Full-Scale Error  
Full-Scale Error Drift  
Bipolar Zero Matching  
Full-Scale Matching  
Power-Supply Rejection Ratio (PSRR)  
14  
15  
±1  
5
±1  
5
±1  
±1  
10  
±3  
10  
±3  
10  
±3  
±1  
±1  
±3  
±3  
Channel-to-Channel Matching  
Channel-to-Channel Matching  
At Full-Scale  
±3  
100  
ANALOG OUTPUT  
Voltage Output  
Output Current  
Maximum Load Capacitance  
Short-Circuit Current  
Short-Circuit Duration  
R
L = 10kΩ  
VREF  
1.25  
L
VREF  
+1.25  
H
V
mA  
pF  
No Oscillation  
500  
10, +30  
Indefinite  
mA  
GND, VCC or VSS  
REFERENCE INPUT  
Ref High Input Voltage Range  
Ref Low Input Voltage Range  
Ref High Input Current  
VREFL + 1.25  
2.5  
+2.5  
VREFH 1.25  
V
V
µA  
µA  
500  
500  
Ref Low Input Current  
DYNAMIC PERFORMANCE  
Settling Time  
Channel-to-Channel Crosstalk  
Digital Feedthrough  
Output Noise Voltage  
DAC Glitch  
To ±0.003%, 5V Output Step  
8
0.5  
2
60  
40  
10  
µs  
LSB  
nV-s  
nV/Hz  
nV-s  
See Figure 5  
f = 10kHz  
7FFFH to 8000H or 8000H to 7FFFH  
DIGITAL INPUT  
VIH  
VIL  
IIH  
0.7 VCC  
V
V
µA  
µA  
0.3 VCC  
±10  
±10  
IIL  
DIGITAL OUTPUT  
VOH  
VOL  
IOH = 0.8mA  
IOL = 1.2mA  
3.6  
4.5  
0.3  
V
V
0.4  
POWER SUPPLY  
VCC  
VSS  
ICC  
ISS  
Power  
+4.75  
5.25  
+5.0  
5.0  
0.7  
0.8  
7.5  
+5.25  
4.75  
1.1  
V
V
mA  
mA  
mW  
1.2  
40  
11.5  
+85  
TEMPERATURE RANGE  
Specified Performance  
°C  
Specifications same as DAC7642VF and DAC7643VF.  
DAC7642, DAC7643  
3
SBAS233  
www.ti.com  
ELECTRICAL CHARACTERISTICS (Single Supply)  
At TA = TMIN to TMAX, VCC = +5V, VSS = 0V, VREFH = +2.5V, and VREFL = 0V, unless otherwise noted.  
DAC7642VF  
DAC7643VF  
DAC7642VFB  
DAC7643VFB  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
ACCURACY  
Linearity Error(1)  
Linearity Match  
Differential Linearity Error  
Monotonicity, TMIN to TMAX  
Zero-Scale Error  
Zero-Scale Error Drift  
Full-Scale Error  
Full-Scale Error Drift  
Zero-Scale Matching  
Full-Scale Matching  
Power-Supply Rejection Ratio (PSRR)  
±3  
±4  
±2  
±4  
±3  
±2  
±2  
±1  
±3  
±2  
LSB  
LSB  
LSB  
Bits  
mV  
ppm/°C  
mV  
ppm/°C  
mV  
mV  
ppm/V  
14  
15  
±1  
5
±1  
5
±1  
±1  
10  
±3  
10  
±3  
10  
±3  
±1  
±1  
±3  
±3  
Channel-to-Channel Matching  
Channel-to-Channel Matching  
At Full-Scale  
±3  
100  
ANALOG OUTPUT  
Voltage Output  
Output Current  
Maximum Load Capacitance  
Short-Circuit Current  
Short-Circuit Duration  
RL = 10kΩ  
No Oscillation  
GND or VCC  
0
VREF  
+1.25  
H
V
mA  
pF  
1.25  
500  
10, +30  
Indefinite  
mA  
REFERENCE INPUT  
Ref High Input Voltage Range  
Ref Low Input Voltage Range  
Ref High Input Current  
VREFL + 1.25  
0
+2.5  
VREFH 1.25  
V
V
µA  
µA  
250  
250  
Ref Low Input Current  
DYNAMIC PERFORMANCE  
Settling Time  
Channel-to-Channel Crosstalk  
Digital Feedthrough  
Output Noise Voltage, f = 10kHz  
DAC Glitch  
To ±0.003%, 2.5V Output Step  
8
0.5  
2
60  
40  
10  
µs  
LSB  
nV-s  
nV/Hz  
nV-s  
See Figure 6  
7FFFH to 8000H or 8000H to 7FFFH  
DIGITAL INPUT  
VIH  
VIL  
IIH  
0.7 VCC  
V
V
µA  
µA  
0.3 VCC  
±10  
±10  
IIL  
DIGITAL OUTPUT  
VOH  
VOL  
IOH = 0.8mA  
IOL = 1.2mA  
3.6  
4.5  
0.3  
V
V
0.4  
POWER SUPPLY  
VCC  
VSS  
ICC  
+4.75  
0
+5.0  
0
0.5  
2.5  
+5.25  
0
0.9  
4.5  
V
V
mA  
mW  
Power  
TEMPERATURE RANGE  
Specified Performance  
40  
+85  
°C  
Specifications same as DAC7642VF and DAC7643VF.  
NOTE: (1) If VSS = 0V, specification applies at Code 0040H and above due to possible negative zero-scale error.  
DAC7642, DAC7643  
4
SBAS233  
www.ti.com  
PIN CONFIGURATION  
Top View  
LQFP  
VCC  
GND  
1
2
3
4
5
6
7
8
24 VSS  
23 DACSEL  
22 RST  
DB15  
DB14  
DB13  
DB12  
DB11  
DB10  
21 LOADDACS  
20 R/W  
DAC7642  
DAC7643  
19 CS  
18 DB0  
17 DB1  
PIN DESCRIPTIONS  
PIN  
NAME  
DESCRIPTION  
PIN  
NAME  
DESCRIPTION  
1
2
VCC  
GND  
DB15  
DB14  
DB13  
DB12  
DB11  
DB10  
DB9  
DB8  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
CS  
Positive Power Supply  
Ground  
20  
R/W  
Enabled by CS, Controls Data Read from and Write  
to the Input Registers.  
21  
LOADDACS  
RST  
DAC Output Registers Load Control. Rising edge  
triggered.TransfersDatafromtheInputRegistersto  
the DAC Registers, Updating the DAC Output.  
3
Data Bit 15, MSB  
Data Bit 14  
Data Bit 13  
Data Bit 12  
Data Bit 11  
Data Bit 10  
Data Bit 9  
4
5
22  
23  
Reset, Rising Edge Triggered. DAC7642 resets to  
mid-scale, DAC7643 resets to zero. (Resets Both  
Input Registers and DAC Registers)  
6
7
DACSEL  
VSS  
Enabled by CS. Selects the individual DAC Input  
Registers. (LOW Selects Register A, HIGH Selects  
Register B)  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
Data Bit 8  
24  
25  
26  
Negative Power Supply  
DAC B Voltage Output  
Data Bit 7  
VOUT  
B
Data Bit 6  
VOUTB Sense  
DAC B Output Amplifier Inverting Input. Used to  
close the feedback loop at the load.  
Data Bit 5  
27  
28  
29  
30  
31  
V
REFH Sense  
VREF  
VOUT  
DAC A and B Reference High Sense Input  
DAC A and B Reference High Input  
DAC A and B Reference Low Input  
Data Bit 4  
H
Data Bit 3  
L
Data Bit 2  
VREFL Sense  
VOUTA Sense  
DAC A and B Reference Low Sense Input  
Data Bit 1  
DAC A Output Amplifier Inverting Input. Used to  
close the feedback loop at the load.  
Data Bit 0, LSB  
Chip Select, Active LOW  
32  
VOUTA  
DAC A Output Voltage  
DAC7642, DAC7643  
5
SBAS233  
www.ti.com  
TYPICAL CHARACTERISTICS: VSS = 0V  
At TA = +25°C, VCC = +5V, VSS = 0V, VREFH = +2.5V, VREFL = 0V, representative unit, unless otherwise specified.  
+25°C  
LINEARITY ERROR AND  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC A, +25°C)  
(DAC B, +25°C)  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
+85°C  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC A, +85°C)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC B, +85°C)  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
40°C  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC A, 40°C)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC B, 40°C)  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
DAC7642, DAC7643  
6
SBAS233  
www.ti.com  
TYPICAL CHARACTERISTICS: VSS = 0V (Cont.)  
At TA = +25°C, VCC = +5V, VSS = 0V, VREFH = +2.5V, VREFL = 0V, representative unit, unless otherwise specified.  
POSITIVE FULL-SCALE ERROR vs TEMPERATURE  
NEGATIVE FULL-SCALE ERROR vs TEMPERATURE  
3
2
3
2
Code (FFFFH)  
Code (0040H)  
DAC A  
DAC A  
1
1
0
0
DAC B  
DAC B  
1  
2  
3  
1  
2  
3  
40  
15  
10  
35  
60  
85  
40  
15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
V
REFH CURRENT vs CODE  
VREFL CURRENT vs CODE  
(all DACs sent to indicated code)  
(all DACs sent to indicated code)  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
0.00  
0.05  
0.10  
0.15  
0.20  
0.25  
0.30  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
SUPPLY CURRENT vs TEMPERATURE  
SUPPLY CURRENT vs DIGITAL INPUT CODE  
1
1.0  
Data = FFFFH (all DACs)  
No Load  
No Load  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0.0  
All DACs  
40  
15  
10  
35  
60  
85  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Temperature (°C)  
Digital Input Code  
DAC7642, DAC7643  
7
SBAS233  
www.ti.com  
TYPICAL CHARACTERISTICS: VSS = 0V (Cont.)  
At TA = +25°C, VCC = +5V, VSS = 0V, VREFH = +2.5V, VREFL = 0V, representative unit, unless otherwise specified.  
OUTPUT VOLTAGE vs SETTLING TIME  
(0V to +2.5V)  
OUTPUT VOLTAGE vs SETTLING TIME  
(+2.5V to 2mV)  
+5V  
LDAC  
0
Large-Signal Settling Time: 1V/div  
Small-Signal Settling  
Time: 500µV/div  
Small-Signal Settling Time: 500µV/div  
Large-Signal Settling Time: 1V/div  
+5V  
LDAC  
0
Time (2µs/div)  
Time (2µs/div)  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
vs MIDSCALE GLITCH PERFORMANCE  
vs MIDSCALE GLITCH PERFORMANCE  
+5V  
LDAC  
0
+5V  
LDAC  
0
8000H to 7FFFH  
7FFFH to 8000H  
Time (1µs/div)  
Time (1µs/div)  
BROADBAND NOISE  
OUTPUT NOISE VOLTAGE vs FREQUENCY  
1000  
100  
10  
10  
100  
1000  
10000  
100000  
1000000  
Time (10µs/div)  
Frequency (Hz)  
DAC7642, DAC7643  
8
SBAS233  
www.ti.com  
TYPICAL CHARACTERISTICS: VSS = 0V (Cont.)  
At TA = +25°C, VCC = +5V, VSS = 0V, VREFH = +2.5V, VREFL = 0V, representative unit, unless otherwise specified.  
LOGIC SUPPLY CURRENT  
VOUT vs RLOAD  
vs LOGIC INPUT LEVEL FOR DIGITAL INPUTS  
5
4
3
2
1
0
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
Typical of One  
Digital Input  
Source  
Sink  
0.01  
0.1  
1
10  
100  
0
1
2
3
4
5
RLOAD (k)  
Logic Input Level for Digital Inputs (V)  
VSS = 5V  
At TA = +25°C, VCC = +5V, VSS = 5V, VREFH = +2.5V, VREFL = 2.5V, representative unit, unless otherwise specified.  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC A, +25°C)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
+25°C  
(DAC B, +25°C)  
1.0  
0.5  
0
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
+85°C  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC A, +85°C)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC B, +85°C)  
1.0  
0.5  
0
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
DAC7642, DAC7643  
9
SBAS233  
www.ti.com  
TYPICAL CHARACTERISTICS: VSS = 5V (Cont.)  
At TA = +25°C, VCC = +5V, VSS = 5V, VREFH = +2.5V, VREFL = 2.5V, representative unit, unless otherwise specified.  
40°C  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC A, 40°C)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC B, 40°C)  
1.0  
0.5  
0
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
V
REFH CURRENT vs CODE  
VREFL CURRENT vs CODE  
(all DACs sent to indicated code)  
(all DACs sent to indicated code)  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
POSITIVE FULL-SCALE ERROR vs TEMPERATURE  
BIPOLAR ZERO ERROR vs TEMPERATURE  
3
3
Code (FFFFH)  
Code (8000H)  
2
1
2
1
DAC A  
DAC A  
0
0
1  
2  
3  
1  
2  
3  
DAC B  
DAC B  
40  
15  
10  
35  
60  
85  
40  
15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
DAC7642, DAC7643  
10  
SBAS233  
www.ti.com  
TYPICAL CHARACTERISTICS: VSS = 5V (Cont.)  
At TA = +25°C, VCC = +5V, VSS = 5V, VREFH = +2.5V, VREFL = 2.5V, representative unit, unless otherwise specified.  
NEGATIVE FULL-SCALE ERROR vs TEMPERATURE  
SUPPLY CURRENT vs DIGITAL INPUT CODE  
3
2
1.00  
0.75  
No Load  
Code (0000H)  
DAC A  
ICC  
0.50  
1
0.25  
0
0.00  
0.25  
0.50  
0.75  
1.00  
DAC B  
1  
2  
3  
ISS  
40  
15  
10  
35  
60  
85  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Temperature (°C)  
Digital Input Code  
VOUT vs RLOAD  
SUPPLY CURRENT vs TEMPERATURE  
5
4
1
ICC  
Source  
3
0.5  
0
2
1
0
1  
2  
3  
4  
5  
0.5  
1  
Sink  
ISS  
Data = FFFFH (all DACs)  
No Load  
1.5  
0.01  
0.1  
1
10  
100  
40  
15  
10  
35  
60  
85  
RLOAD (k)  
Temperature (°C)  
OUTPUT VOLTAGE vs SETTLING TIME  
OUTPUT VOLTAGE vs SETTLING TIME  
(2.5V to +2.5V)  
(+2.5V to 2.5V)  
+5V  
LDAC  
0
Large-Signal Settling Time: 2V/div  
Small-Signal Settling Time:  
500µV/div  
Small-Signal Settling Time: 500µV/div  
Large-Signal Settling Time: 2V/div  
+5V  
LDAC  
0
Time (2µs/div)  
Time (2µs/div)  
DAC7642, DAC7643  
11  
SBAS233  
www.ti.com  
TYPICAL CHARACTERISTICS: VSS = 5V (Cont.)  
At TA = +25°C, VCC = +5V, VSS = 5V, VREFH = +2.5V, VREFL = 2.5V, representative unit, unless otherwise specified.  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
vs MIDSCALE GLITCH PERFORMANCE  
vs MIDSCALE GLITCH PERFORMANCE  
7FFFH to 8000H  
8000H to 7FFFH  
+5V  
LDAC  
0
+5V  
LDAC  
0
Time (1µs/div)  
Time (1µs/div)  
by the external voltage references VREFL and VREFH, respec-  
tively. The digital input is a 16-bit parallel word and the DAC  
input registers offer a readback capability. The converters  
can be powered from either a single +5V supply or a dual  
±5V supply. Each device offers a reset function which imme-  
diately sets all DAC output voltages, DAC registers and Input  
registers to mid-scale, code 8000H (DAC7642), or to zero-  
scale, code 0000H (DAC7643). See Figures 2 and 3 for the  
basic configurations of the DAC7642 and DAC7643.  
THEORY OF OPERATION  
The DAC7642 and DAC7643 are dual channel, voltage  
output, 16-bit DACs. The architecture is an R-2R ladder  
configuration with the three MSBs segmented followed by an  
operational amplifier that serves as a buffer. Each DAC has  
its own R-2R ladder network, segmented MSBs, and output  
op amp, as shown in Figure 1. The minimum voltage output  
(zero-scale) and maximum voltage output (full-scale) are set  
RF  
VOUT Sense  
VOUT  
R
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
VREF  
VREFH Sense  
VREF  
H
L
VREFL Sense  
FIGURE 1. DAC7642 and DAC7643 Architecture.  
DAC7642, DAC7643  
12  
SBAS233  
www.ti.com  
0V to +2.5V  
+2.5V  
0V to +2.5V  
32 31 30 29 28 27 26 25  
VOUTA  
VREFL  
Sense  
VREFH  
VOUTB  
Sense  
VOUTA  
Sense  
VREFH  
Sense  
VOUTB  
VREFL  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
VCC  
VSS  
+5V  
1µF  
0.1µF  
GND  
DACSEL  
RST  
SELECT DAC CHANNEL  
RESET DAC REGISTERS  
LOAD DAC REGISTERS  
READ/WRITE  
DB15  
DB14  
DB13  
DB12  
DB11  
DB10  
DAC7642  
DAC7643  
LDAC  
R/W  
DATA BUS  
CS  
CHIP SELECT  
DB0  
DATA BUS  
DB1  
DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2  
10 11 12 13 14 15 16  
9
FIGURE 2. Basic Single-Supply Operation of the DAC7642 and DAC7643.  
2.5V to  
2.5V to  
2.5V  
+2.5V  
+2.5V  
+2.5V  
32 31 30 29 28 27 26 25  
VOUTA  
VREFL  
Sense  
VREFH  
VOUTB  
Sense  
VOUTA  
Sense  
VREFH  
Sense  
VOUTB  
VREFL  
1µF  
0.1µF  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
VCC  
VSS  
+5V  
5V  
1µF  
0.1µF  
GND  
DACSEL  
RST  
SELECT DAC CHANNEL  
RESET DAC REGISTERS  
LOAD DAC REGISTERS  
READ/WRITE  
DB15  
DB14  
DB13  
DB12  
DB11  
DB10  
DAC7642  
DAC7643  
LDAC  
R/W  
DATA BUS  
CS  
CHIP SELECT  
DB0  
DATA BUS  
DB1  
DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2  
10 11 12 13 14 15 16  
9
FIGURE 3. Basic Dual-Supply Operation of the DAC7642 and DAC7643.  
DAC7642, DAC7643  
13  
SBAS233  
www.ti.com  
ANALOG OUTPUTS  
When VSS = 5V (dual-supply operation), the output amplifier  
can swing to within 2.25V of the supply rails over the 40°C  
to +85°C temperature range. When VSS = 0V (single-supply  
operation), and with RLOAD also connected to ground, the  
output can swing to ground. Care must also be taken when  
measuring the zero-scale error when VSS = 0V. Since the  
DAC output cannot swing below ground, the output voltage  
may not change for the first few digital input codes (0000H,  
0001H, 0002H, etc.) if the output amplifier has a negative  
offset. At the negative limit of 2mV, the first specified output  
starts at code 0040H.  
RW2  
VOUT  
OUTA Sense 31  
REFL Sense 30  
REFL 29  
REFH 28  
A
32  
RW1  
VOUT  
V
V
+V  
DAC7642  
DAC7643  
V
V
+2.5V  
VOUT  
V
REFH Sense 27  
OUTB Sense 26  
RW1  
V
VOUT  
B
25  
RW2  
Due to the high accuracy of these DACs, system design  
problems such as grounding and contact resistance become  
very important. A 16-bit converter with a 2.5V full-scale range  
has a 1LSB value of 38µV. With a load current of 1mA, a series  
wiring and connector resistance of only 40m(RW2) will cause  
a voltage drop of 40µV, as shown in Figure 4. To understand  
what this means in terms of a system layout, the resistivity of  
a typical 1 ounce copper-clad printed circuit board is 1/2 mΩ  
per square. For a 1mA load, a 10 milli-inch wide printed circuit  
conductor 600 milli-inches long will result in a voltage drop of  
30µV.  
FIGURE 4. Analog Output Closed-Loop Configuration. RW  
represents wiring resistances.  
that VSS (the negative power supply) must either be con-  
nected to ground or must be in the range of 4.75V to  
5.25V. The voltage on VSS sets several bias points within  
the converter. If VSS is not in one of these two configurations,  
the bias values may be in error and proper operation of the  
device may be affected.  
The DAC7642 and DAC7643 offer a force and sense output  
configuration for the high open-loop gain output amplifiers.  
This feature allows the loop around the output amplifier to be  
closed at the load (shown in Figure 4), thus ensuring an  
accurate output voltage.  
The current into the VREFH input and out of VREFL depends  
on the DAC output voltages and can vary from a few  
microamps to approximately 0.5mA. The reference input  
appears as a varying load to the reference. If the references  
applied can sink or source the required current, a reference  
buffer is not required. The DAC7642 and DAC7643 feature  
reference drive and sense connections such that the internal  
errors caused by the changing reference current and the  
circuit impedances can be minimized. Figures 5 through 13  
show different reference configurations and the effect on the  
linearity and differential linearity.  
REFERENCE INPUTS  
The reference inputs, VREFL and VREFH, can be any voltage  
between VSS + 2.5V and VCC 2.5V provided that VREFH is  
at least 1.25V greater than VREFL. The minimum output of  
each DAC is equal to VREFL plus a small offset voltage  
(essentially, the offset of the output op amp). The maximum  
output is equal to VREFH plus a similar offset voltage. Note  
+V  
OPA2234  
VOUT  
VOUT  
OUTA Sense 31  
REFL Sense 30  
REFL 29  
REFH 28  
A
32  
V
2.5V  
2200pF  
100  
V
1000pF  
1000pF  
V  
V
DAC7642  
DAC7643  
+V  
V
100Ω  
V
REFH Sense 27  
OUTB Sense 26  
+2.5V  
2200pF  
V
VOUTB 25  
VOUT  
V  
FIGURE 5. Dual Supply Configuration-Buffered References, Used for Dual-Supply Characteristic Curves.  
DAC7642, DAC7643  
14  
SBAS233  
www.ti.com  
+V  
OPA2350  
VOUT  
VOUT  
OUTA Sense 31  
REFL Sense 30  
REFL 29  
REFH 28  
A
32  
V
2200pF  
100Ω  
2kΩ  
V
1000pF  
1000pF  
+0.050V  
V
DAC7642  
DAC7643  
98kΩ  
+V  
V
100Ω  
V
REFH Sense 27  
OUTB Sense 26  
+2.5V  
2200pF  
V
VOUTB 25  
VOUT  
FIGURE 6. Single-Supply Buffered Reference with VREFL of 50mV.  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC A, +25°C)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC A, +25°C)  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
FIGURE 8. Integral Linearity and Differential Linearity Error  
Curves for Figure 9.  
FIGURE 7. Integral Linearity and Differential Linearity Error  
Curves for Figure 6.  
+V  
+V  
OPA2350  
VOUT  
VOUT  
OUTA Sense 31  
REFL Sense 30  
REFL 29  
REFH 28  
A
32  
V
+1.25V  
2200pF  
100  
V
1000pF  
1000pF  
V
DAC7642  
DAC7643  
+V  
V
100Ω  
V
REFH Sense 27  
OUTB Sense 26  
+2.5V  
2200pF  
V
V
OUTB 25  
VOUT  
FIGURE 9. Single-Supply Buffered Reference with VREFL = +1.25V and VREFH = +2.5V.  
DAC7642, DAC7643  
15  
SBAS233  
www.ti.com  
VOUT  
VOUT  
VOUTA Sense 31  
REFL Sense 30  
VREF  
29  
REFH 28  
VREFH Sense 27  
OUTB Sense 26  
VOUT  
25  
A
32  
+V  
V
OPA2350  
L
DAC7642  
DAC7643  
+V  
V
100  
1000pF  
+2.5V  
2200pF  
V
B
VOUT  
FIGURE 10. Single-Supply Buffered VREFH.  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC A, +25°C)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC A, +25°C)  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
FIGURE 11. Linearity and Differential Linearity Error Curves  
for Figure 10.  
FIGURE 13. Linearity and Differential Linearity Error Curves  
for Figure 12.  
DIGITAL INTERFACE  
See Table I for the basic control logic of the DAC7642 and  
DAC7643. Note that each internal register is edge triggered  
and not level triggered. When the LOADDACS signal is  
transitioned from LOW to HIGH, the digital word existing in  
the input register is latched into the DAC register. The first  
set of registers (the input registers) are triggered via the  
DACSEL, R/W, and CS inputs. Only one of these registers  
can be transparent at any given time.  
VOUT  
VOUT  
OUTA Sense 31  
REFL Sense 30  
REFL 29  
VREF  
28  
A
32  
V
V
+V  
DAC7642  
DAC7643  
V
H
+2.5V  
V
REFH Sense 27  
OUTB Sense 26  
The double-buffered architecture is designed mainly so each  
DAC input register can be written to at any time without  
affecting the DAC outputs. All DAC voltages are updated  
simultaneously by the rising edge of LOADDACS. It also  
allows multiple devices to be updated simultaneously by  
sharing the LOADDACS control from the host with each  
device.  
V
V
OUTB 25  
VOUT  
FIGURE 12. Low-Cost Single-Supply Configuration.  
DAC7642, DAC7643  
16  
SBAS233  
www.ti.com  
INPUT  
DAC  
DACSEL  
R/W  
CS  
RST  
LOADDACS  
REGISTER  
REGISTER  
MODE  
DAC  
L
H
L
H
X
X
X
L
L
L
L
L
L, H  
L, H  
L, H  
L, H  
L, H  
L, H  
X
X
X
X
Write  
Write  
Read  
Read  
Hold  
Hold  
Hold  
Hold  
Hold  
Write  
Hold  
Reset  
Write Input  
Write Input  
Read Input  
Read Input  
Update  
A
B
A
H
H
X
X
X
L
B
H
H
X
All  
All  
All  
L, H  
L, H  
Hold  
Reset  
Hold  
Reset  
TABLE I. DAC7642 and DAC7643 Logic Truth Table.  
DIGITAL TIMING  
Figure 14 and Table II provide detailed timing for the digital  
interface of the DAC7642 and DAC7643.  
V
REFH VREFL N  
(
)
VOUT = VREFL +  
65,536  
(1)  
where N is the digital input code. This equation does not  
include the effects of offset (zero-scale) or gain (full-scale)  
errors.  
DIGITAL INPUT CODING  
The DAC7642 and DAC7643 input data is in Straight Binary  
format. The output voltage is given by Equation 1:  
tWCS  
CS  
tWS  
tWH  
R/W  
tRCS  
tAH  
CS  
tAS  
tRDH  
tRDS  
DACSEL  
tLH  
R/W  
tLS  
tLWD  
tLX  
tAS  
tAH  
±0.003% of FSR  
Error Band  
LOADDACS  
Data In  
DACSEL  
Data Out  
tDH  
tDS  
tDZ  
tS  
Data Valid  
tCSD  
VOUT  
Data Read Timing  
Data Write Timing  
±0.003% of FSR  
Error Band  
tRSH  
tRSS  
RST  
tS  
+FS  
(DAC7643)  
(DAC7642)  
VOUT  
Zero-Scale  
Midscale  
FS  
+FS  
VOUT  
FS  
FIGURE 14. Digital Input and Output Timing.  
DAC7642, DAC7643  
17  
SBAS233  
www.ti.com  
SYMBOL  
DESCRIPTION  
MIN  
TYP  
MAX  
UNITS  
tRCS  
tRDS  
tRDH  
tDZ  
tCSD  
tWCS  
tWS  
tWH  
tAS  
tAH  
tLS  
tLH  
tLX  
tDS  
tDH  
tLWD  
tRSS  
tRSH  
tS  
CS LOW for Read  
R/W HIGH to CS LOW  
R/W HIGH after CS HIGH  
CS HIGH to Data Bus in High Impedance  
CS LOW to Data Bus Valid  
CS LOW for Write  
150  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
10  
100  
150  
100  
40  
0
10  
0
10  
30  
100  
100  
0
10  
100  
10  
10  
R/W LOW to CS LOW  
R/W LOW after CS HIGH  
DACSEL Valid to CS LOW  
DACSEL Valid after CS HIGH  
CS LOW to LOADDACS HIGH  
CS LOW after LOADDACS HIGH  
LOADDACS HIGH  
Data Valid to CS LOW  
Data Valid after CS HIGH  
LOADDACS LOW  
RESET LOW  
RESET HIGH  
Settling Time  
10  
TABLE II. Timing Specifications (TA = 40°C to +85°C).  
DIGITALLY-PROGRAMMABLE  
CURRENT SOURCE  
Figure 15 shows a DAC7642 and DAC7643 in a 4-20mA  
current output configuration. The output current can be  
determined by Equation 3:  
The DAC7642 and DAC7643 offer a unique set of features  
that allows a wide range of flexibility in designing applications  
circuits, such as programmable current sources. The  
DAC7642 and DAC7643 offer both a differential reference  
input, as well as an open-loop configuration around the  
output amplifier. The open-loop configuration around the  
output amplifier allows a transistor to be placed within the  
loop to implement a digitally-programmable, unidirectional  
current source. The availability of a differential reference also  
allows programmability for both the full-scale and zero-scale  
currents. The output current is calculated as:  
(3)  
2.5V 0.5V  
125Ω  
N Value  
65,536  
0.5V  
IOUT  
=
+
125Ω  
At full-scale, the output current is 16mA plus the 4mA for the  
zero current. At zero scale the output current is the offset  
current of 4mA (0.5V/125).  
VREFH VREF  
L
N Value  
65,536  
IOUT  
=
RSENSE  
(2)  
+ VREFL /RSENSE  
(
)
IOUT  
+V  
VPROGRAMMED  
125  
OPA2350  
VOUT  
OUTA Sense 31  
REFL Sense 30  
REFL 29  
REFH 28  
A
32  
V
2200pF  
100Ω  
20kΩ  
V
1000pF  
1000pF  
V
DAC7642  
DAC7643  
80kΩ  
+V  
V
100Ω  
VREFH Sense 27  
VOUTB Sense 26  
+2.5V  
2200pF  
V
OUTB 25  
IOUT  
VPROGRAMMED  
125Ω  
FIGURE 15. 4-20mA Digitally Controlled Current Source.  
18  
DAC7642, DAC7643  
SBAS233  
www.ti.com  
PACKAGE DRAWING  
VF (S-PQFP-G32)  
MTQF002B JANUARY 1995 REVISED MAY 2000  
PLASTIC QUAD FLATPACK  
0,45  
0,25  
0,20  
M
0,80  
24  
17  
25  
16  
32  
9
0,13 NOM  
1
8
5,60 TYP  
7,20  
SQ  
6,80  
Gage Plane  
9,20  
8,80  
SQ  
0,25  
0,05 MIN  
0°7°  
1,45  
1,35  
0,75  
0,45  
Seating Plane  
0,10  
1,60 MAX  
4040172/D 04/00  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
DAC7642, DAC7643  
19  
SBAS233  
www.ti.com  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, maskworkright, orotherTIintellectualpropertyrightrelatingtoanycombination, machine, orprocess  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2003, Texas Instruments Incorporated  

相关型号:

DAC7643VFBRG4

16-Bit, Dual Voltage Output DAC with Parallel Interface and Reset to Min-Scale 32-LQFP -40 to 85
TI

DAC7643VFBT

16-Bit, Dual Voltage Output DIGITAL-TO-ANALOG CONVERTER
TI

DAC7643VFBT

16-Bit, Dual Voltage Output DIGITAL-TO-ANALOG CONVERTER
BB

DAC7643VFBTG4

IC PARALLEL, WORD INPUT LOADING, 8 us SETTLING TIME, 16-BIT DAC, PQFP32, GREEN, PLASTIC, LQFP-32, Digital to Analog Converter
TI

DAC7643VFR

16-Bit, Dual Voltage Output DIGITAL-TO-ANALOG CONVERTER
TI

DAC7643VFR

16-Bit, Dual Voltage Output DIGITAL-TO-ANALOG CONVERTER
BB

DAC7643VFT

16-Bit, Dual Voltage Output DIGITAL-TO-ANALOG CONVERTER
TI

DAC7643VFT

16-Bit, Dual Voltage Output DIGITAL-TO-ANALOG CONVERTER
BB

DAC7644

16-Bit, Quad Voltage Output DIGITAL-TO-ANALOG CONVERTER
BB

DAC7644

16-Bit, Quad Voltage Output DIGITAL-TO-ANALOG CONVERTER
TI

DAC7644E

16-Bit, Quad Voltage Output DIGITAL-TO-ANALOG CONVERTER
BB

DAC7644E

16-Bit, Quad Voltage Output DIGITAL-TO-ANALOG CONVERTER
TI