DAC7644 [TI]

16-Bit, Quad Voltage Output DIGITAL-TO-ANALOG CONVERTER;
DAC7644
型号: DAC7644
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

16-Bit, Quad Voltage Output DIGITAL-TO-ANALOG CONVERTER

文件: 总25页 (文件大小:555K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
DAC7644  
DAC7644  
For most current data sheet and other product  
information, visit www.burr-brown.com  
16-Bit, Quad Voltage Output  
DIGITAL-TO-ANALOG CONVERTER  
DESCRIPTION  
FEATURES  
The DAC7644 is a 16-bit, quad voltage output digital-  
to-analog converter with guaranteed 15-bit monotonic  
performance over the specified temperature range. It  
accepts 16-bit parallel input data, has double-buffered  
DAC input logic (allowing simultaneous update of all  
DACs), and provides a readback mode of the internal  
input registers. Programmable asynchronous reset clears  
all registers to a mid-scale code of 8000H or to a zero-  
scale of 0000H. The DAC7644 can operate from a single  
+5V supply or from +5V and –5V supplies.  
LOW POWER: 10mW  
UNIPOLAR OR BIPOLAR OPERATION  
SETTLING TIME: 10µs to 0.003%  
15-BIT LINEARITY AND MONOTONICITY:  
–40°C to +85°C  
PROGRAMMABLE RESET TO MID-SCALE  
OR ZERO-SCALE  
DATA READBACK  
DOUBLE-BUFFERED DATA INPUTS  
Low power and small size per DAC make the DAC7644  
ideal for automatic test equipment, DAC-per-pin pro-  
grammers, data acquisition systems, and closed-loop  
servo-control. The DAC7644 is available in a 48-lead  
SSOP package and offers guaranteed specifications  
over the –40°C to +85°C temperature range.  
APPLICATIONS  
PROCESS CONTROL  
CLOSED-LOOP SERVO-CONTROL  
MOTOR CONTROL  
DATA ACQUISITION SYSTEMS  
DAC-PER-PIN PROGRAMMERS  
VREF  
L
VREF  
H
AB Sense  
AB Sense  
VREFL AB VREFH AB  
VDD  
VSS  
VCC  
DAC7644  
16  
I/O  
Buffer  
Input  
Register A  
DAC  
Register A  
DATA I/O  
DAC A  
VOUT  
A
A
VOUT  
Sense  
Sense  
Sense  
Sense  
Input  
Register B  
DAC  
Register B  
DAC B  
DAC C  
DAC D  
VOUT  
B
B
VOUT  
A1  
A0  
Input  
Register C  
DAC  
Register C  
Control  
Logic  
VOUT  
C
C
CS  
R/W  
VOUT  
Input  
Register D  
DAC  
Register D  
VOUT  
D
D
VOUT  
VREFL CD VREFH CD  
VREF  
CD Sense  
L
VREF  
CD Sense  
H
AGND DGND  
RST  
RSTSEL LOADDACS  
International Airport Industrial Park  
Mailing Address: PO Box 11400, Tucson, AZ 85734  
Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706  
FAX: (520) 889-1510  
Tel: (520) 746-1111  
Twx: 910-952-1111  
Internet: http://www.burr-brown.com/  
Cable: BBRCORP Telex: 066-6491  
Immediate Product Info: (800) 548-6132  
© 1999 Burr-Brown Corporation  
PDS-1535B  
Printedin U.S.A. November, 1999  
SBAS121  
SPECIFICATIONS (Dual Supply)  
At TA = TMIN to TMAX, VDD = VCC = +5V, VSS = –5V, VREFH = +2.5V, and VREFL = –2.5V, unless otherwise noted.  
DAC7644E  
DAC7644EB  
TYP  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
MAX  
UNITS  
ACCURACY  
Linearity Error  
Linearity Match  
±3  
±4  
±2  
±4  
±3  
±2  
±2  
±1  
±3  
±2  
LSB  
LSB  
LSB  
Bits  
mV  
ppm/°C  
mV  
ppm/°C  
mV  
mV  
ppm/V  
Differential Linearity Error  
Monotonicity, TMIN to TMAX  
Bipolar Zero Error  
Bipolar Zero Error Drift  
Full-Scale Error  
Full-Scale Error Drift  
Bipolar Zero Matching  
Full Scale Matching  
Power Supply Rejection Ratio (PSRR)  
14  
15  
±1  
5
±1  
5
±1  
±1  
10  
±2  
10  
±2  
10  
±2  
Channel-to-Channel Matching  
Channel-to-Channel Matching  
At Full Scale  
±1  
±1  
±2  
±2  
±2  
100  
ANALOG OUTPUT  
Voltage Output  
Output Current  
Maximum Load Capacitance  
Short-Circuit Current  
Short-Circuit Duration  
VREF = –2.5V, RL = 10k, VSS = –5V  
No Oscillation  
VREF  
–1.25  
L
VREF  
+1.25  
H
V
mA  
pF  
500  
–10, +30  
Indefinite  
mA  
GND or VCC or VSS  
REFERENCE INPUT  
Ref High Input Voltage Range  
Ref Low Input Voltage Range  
Ref High Input Current  
VREFL + 1.25  
–2.5  
+2.5  
VREFH – 1.25  
V
V
µA  
µA  
500  
–500  
Ref Low Input Current  
DYNAMIC PERFORMANCE  
Settling Time  
Channel-to-Channel Crosstalk  
Digital Feedthrough  
Output Noise Voltage  
DAC Glitch  
To ±0.003%, 5V Output Step  
8
0.5  
2
60  
40  
10  
µs  
LSB  
nV-s  
nV/Hz  
nV-s  
See Figure 5.  
f = 10kHz  
7FFFH to 8000H or 8000H to 7FFFH  
DIGITAL INPUT  
VIH  
VIL  
IIH  
0.7 • VDD  
V
V
µA  
µA  
0.3 • VDD  
±10  
±10  
IIL  
DIGITAL OUTPUT  
VOH  
VOL  
IOH = –0.8mA  
IOL = 1.2mA  
3.6  
4.5  
0.3  
V
V
0.4  
POWER SUPPLY  
VDD  
VCC  
VSS  
ICC  
IDD  
ISS  
+4.75  
+4.75  
–5.25  
+5.0  
+5.0  
–5.0  
1.5  
50  
–1.5  
15  
+5.25  
+5.25  
–4.75  
2
V
V
V
mA  
µA  
mA  
mW  
–2.3  
–40  
Power  
20  
TEMPERATURE RANGE  
Specified Performance  
+85  
°C  
Specifications same as DAC7644E.  
The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes  
no responsibility for the use of this information, and all use of such information shall be entirely at the user’s own risk. Prices and specifications are subject to change  
without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant  
any BURR-BROWN product for use in life support devices and/or systems.  
®
2
DAC7644  
SPECIFICATIONS (Single Supply)  
At TA = TMIN to TMAX, VDD = VCC = +5V, VSS = 0V, VREFH = +2.5V, and VREFL = 0V, unless otherwise noted.  
DAC7644E  
DAC7644EB  
TYP  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
MAX  
UNITS  
ACCURACY  
Linearity Error(1)  
Linearity Match  
Differential Linearity Error  
Monotonicity, TMIN to TMAX  
Zero Scale Error  
Zero Scale Error Drift  
Full-Scale Error  
Full-Scale Error Drift  
Zero Scale Matching  
Full-Scale Matching  
Power Supply Rejection Ratio (PSRR)  
±3  
±4  
±2  
±4  
±3  
±2  
±2  
±1  
±3  
±2  
LSB  
LSB  
LSB  
Bits  
mV  
ppm/°C  
mV  
ppm/°C  
mV  
mV  
ppm/V  
14  
15  
±1  
5
±1  
5
±1  
±1  
10  
±2  
10  
±2  
10  
±2  
Channel-to-Channel Matching  
Channel-to-Channel Matching  
At Full Scale  
±1  
±1  
±2  
±2  
±2  
100  
ANALOG OUTPUT  
Voltage Output  
Output Current  
Maximum Load Capacitance  
Short-Circuit Current  
Short-Circuit Duration  
VREFL = 0V, VSS = 0V, RL = 10kΩ  
No Oscillation  
0
VREF  
+1.25  
H
V
mA  
pF  
–1.25  
500  
±30  
Indefinite  
mA  
GND or VCC  
REFERENCE INPUT  
Ref High Input Voltage Range  
Ref Low Input Voltage Range  
Ref High Input Current  
VREFL + 1.25  
0
+2.5  
VREFH – 1.25  
V
V
µA  
µA  
250  
–250  
Ref Low Input Current  
DYNAMIC PERFORMANCE  
Settling Time  
Channel-to-Channel Crosstalk  
Digital Feedthrough  
Output Noise Voltage, f = 10kHz  
DAC Glitch  
To ±0.003%, 2.5V Output Step  
8
0.5  
2
60  
40  
10  
µs  
LSB  
nV-s  
nV/Hz  
nV-s  
See Figure 6.  
7FFFH to 8000H or 8000H to 7FFFH  
DIGITAL INPUT  
VIH  
VIL  
IIH  
0.7 • VDD  
V
V
µA  
µA  
0.3 • VDD  
±10  
±10  
IIL  
DIGITAL OUTPUT  
VOH  
VOL  
IOH = –0.8mA  
IOL = 1.2mA  
3.6  
4.5  
0.3  
V
V
0.4  
POWER SUPPLY  
VDD  
VCC  
VSS  
ICC  
IDD  
Power  
+4.75  
+4.75  
0
+5.0  
+5.0  
0
1.5  
50  
+5.25  
+5.25  
0
V
V
V
mA  
µA  
mW  
2
7.5  
10  
TEMPERATURE RANGE  
Specified Performance  
–40  
+85  
°C  
NOTE: (1) If VSS = 0V specification applies at Code 0040H and above due to possible negative zero-scale error.  
Specifications same as DAC7644E.  
®
3
DAC7644  
ABSOLUTE MAXIMUM RATINGS(1)  
ELECTROSTATIC  
DISCHARGE SENSITIVITY  
This integrated circuit can be damaged by ESD. Burr-Brown  
recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling  
and installation procedures can cause damage.  
VCC and VDD to VSS .............................................................. –0.3V to 11V  
VCC and VDD to GND ........................................................... –0.3V to 5.5V  
VREFL to VSS ............................................................. –0.3V to (VCC – VSS  
VCC to VREFH ............................................................ –0.3V to (VCC – VSS  
VREFH to VREFL ......................................................... –0.3V to (VCC – VSS  
Digital Input Voltage to GND ................................... –0.3V to VDD + 0.3V  
Digital Output Voltage to GND ................................. –0.3V to VDD + 0.3V  
Maximum Junction Temperature ................................................... +150°C  
Operating Temperature Range ........................................40°C to +85°C  
Storage Temperature Range ......................................... –65°C to +125°C  
Lead Temperature (soldering, 10s)............................................... +300°C  
)
)
)
ESD damage can range from subtle performance degradation  
to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric  
changes could cause the device not to meet its published  
specifications.  
NOTE: (1) Stresses above those listed under “Absolute Maximum Ratings”  
may cause permanent damage to the device. Exposure to absolute maximum  
conditions for extended periods may affect device reliability.  
PACKAGE/ORDERING INFORMATION  
LINEARITY  
ERROR  
(LSB)  
DIFFERENTIAL  
NONLINEARITY  
(LSB)  
PACKAGE  
DRAWING  
NUMBER(1)  
SPECIFICATION  
TEMPERATURE  
RANGE  
ORDERING  
NUMBER(2)  
TRANSPORT  
MEDIA  
PRODUCT  
PACKAGE  
DAC7644E  
±4  
"
±3  
"
±3  
"
±2  
"
48-Lead SSOP  
333  
"
333  
"
–40°C to +85°C  
DAC7644E  
DAC7644E/1K  
DAC7644EB  
Rails  
Tape and Reel  
Rails  
"
"
"
DAC7644EB  
48-Lead SSOP  
–40°C to +85°C  
"
"
"
DAC7644EB/1K  
Tape and Reel  
NOTES: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book. (2) Models with a slash (/)  
are available only in Tape and Reel in the quantities indicated (e.g., /1K indicates 1000 devices per reel). Ordering 1000 pieces of “DAC7644/1K” will get a single  
1000-piece Tape and Reel. For detailed Tape and Reel mechanical information, refer to Appendix B of Burr-Brown IC Data Book.  
®
4
DAC7644  
PIN CONFIGURATION  
Top View  
SSOP  
DB15  
DB14  
DB13  
DB12  
DB11  
DB10  
DB9  
1
2
3
4
5
6
7
8
9
48 NC  
47 NC  
46 NC  
45 NC  
44 VOUTA Sense  
43 VOUT  
A
42 VREFL AB Sense  
41 VREFL AB  
DB8  
DB7  
40 VREFH AB  
DB6 10  
DB5 11  
39 VREFH AB Sense  
38 VOUTB Sense  
DB4 12  
37 VOUT  
36 VOUTC Sense  
35 VOUT  
B
DAC7644  
DB3 13  
DB2 14  
C
DB1 15  
34 VREFH CD Sense  
33 VREFH CD  
DB0 16  
RSTSEL 17  
RST 18  
32 VREFL CD  
31 VREFL CD Sense  
30 VOUTD Sense  
LOADDACS 19  
R/W 20  
29 VOUT  
28 VSS  
D
A1 21  
A0 22  
27 AGND  
26 VCC  
25 VDD  
CS 23  
DGND 24  
PIN DESCRIPTIONS  
PIN  
NAME  
DESCRIPTION  
PIN  
NAME  
DESCRIPTION  
1
2
DB15  
DB14  
DB13  
DB12  
DB11  
DB10  
DB9  
Data Bit 15, MSB  
Data Bit 14  
Data Bit 13  
Data Bit 12  
Data Bit 11  
Data Bit 10  
Data Bit 9  
23  
24  
CS  
DGND  
VDD  
Chip Select. Active LOW.  
Digital Ground  
3
25  
26  
27  
28  
29  
30  
Positive Power Supply (digital)  
Positive Power Supply (analog)  
Analog Ground  
4
VCC  
5
AGND  
VSS  
6
Negative Power Supply  
DAC D Voltage Output  
7
VOUTD  
8
DB8  
Data Bit 8  
VOUTD Sense  
DAC D’s Output Amplifier Inverting Input. Used to  
close the feedback loop at the load.  
9
DB7  
Data Bit 7  
31  
32  
33  
34  
35  
36  
VREFL CD Sense DAC C and D Reference Low Sense Input  
10  
11  
12  
13  
14  
15  
16  
17  
DB6  
Data Bit 6  
V
REFL CD  
DAC C and D Reference Low Input  
DAC C and D Reference High Input  
DB5  
Data Bit 5  
VREFH CD  
DB4  
Data Bit 4  
VREFH CD Sense DAC C and D Reference High Sense Input  
DB3  
Data Bit 3  
VOUTC  
DAC C Voltage Output  
DB2  
Data Bit 2  
V
V
OUTC Sense  
DAC C’s Output Amplifier Inverting Input. Used to  
close the feedback loop at the load.  
DB1  
Data Bit 1  
DB0  
Data Bit 0, LSB  
37  
38  
VOUTB  
DAC B Voltage Output  
RSTSEL  
Reset Select. Determines the action of RST. If  
HIGH, a RST command will set the DAC registers to  
mid-scale. IfLOW, aRSTcommandwillsettheDAC  
registers to zero.  
OUTB Sense  
DAC B’s Output Amplifier Inverting Input. Used to  
close the feedback loop at the load.  
39  
40  
41  
42  
43  
44  
VREFH AB Sense DAC A and B Reference High Sense Input  
18  
RST  
Reset, Rising Edge Triggered. Depending on the  
state of RSTSEL, the DAC registers are set to either  
mid-scale or zero.  
V
REFH AB  
DAC A and B Reference High Input  
DAC A and B Reference Low Input  
V
REFL AB  
VREFL AB Sense DAC A and B Reference Low Sense Input  
19  
20  
21  
22  
LOADDACS  
DAC Output Registers Load Control. Rising edge  
triggered.  
VOUTA  
DAC A Voltage Input  
V
OUTA Sense  
DAC A’s Output Amplifier Inverting Input. Used to  
close the feedback loop at the load.  
R/W  
A1  
Enabled by the CS, Controls Data Read and Write  
from the Input Registers.  
45  
46  
47  
48  
NC  
NC  
NC  
NC  
No Connection  
No Connection  
No Connection  
No Connection  
Enabled by the CS, in Combination With A0 Selects  
the Individual DAC Input Registers.  
A0  
Enabled by the CS, in Combination With A1 Selects  
the Individual DAC Input Registers.  
®
5
DAC7644  
TYPICAL PERFORMANCE CURVES: VSS = 0V  
At TA = +25°C, VDD = VCC = +5V, VSS = 0V, VREFH = +2.5V, VREFL = 0V, representative unit, unless otherwise specified.  
+25°C  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC A, +25°C)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC B, +25°C)  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC C, +25°C)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC D, +25°C)  
2.0  
2.0  
1.5  
1.0  
1.5  
1.0  
0.5  
0
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
+85°C  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC B, +85°C)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC B, +85°C)  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
®
6
DAC7644  
TYPICAL PERFORMANCE CURVES: VSS = 0V (CONT)  
At TA = +25°C, VDD = VCC = +5V, VSS = 0V, VREFH = +2.5V, VREFL = 0V, representative unit, unless otherwise specified.  
+85°C (cont)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC C, +85°C)  
(DAC D, +85°C)  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
–40°C  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC A, –40°C)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC B, –40°C)  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC C, –40°C)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC D, –40°C)  
2.0  
2.0  
1.5  
1.5  
1.0  
1.0  
0.5  
0
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
®
7
DAC7644  
TYPICAL PERFORMANCE CURVES: VSS = 0V (CONT)  
At TA = +25°C, VDD = VCC = +5V, VSS = 0V, VREFH = +2.5V, VREFL = 0V, representative unit, unless otherwise specified.  
FULL-SCALE ERROR vs TEMPERATURE  
Code (FFFFH)  
ZERO-SCALE ERROR vs TEMPERATURE  
Code (0040H)  
2
1.5  
1
2
1.5  
1
DAC B  
DAC C  
DAC C  
DAC D  
0.5  
0
0.5  
0
–0.5  
–1  
–0.5  
–1  
DAC A  
DAC D  
DAC A  
DAC B  
–1.5  
–2  
–1.5  
–2  
–40  
–25  
0
25  
55  
85  
–40  
–25  
0
25  
55  
85  
Temperature (°C)  
Temperature (°C)  
VREFH CURRENT vs CODE  
(all DACs sent to indicated code)  
VREFL CURRENT vs CODE  
(all DACs sent to indicated code)  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
0.00  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.30  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
POSITIVE SUPPLY CURRENT  
vs DIGITAL INPUT CODE  
POSITIVE SUPPLY CURRENT vs TEMPERATURE  
2
2
No Load  
Data = FFFFH (all DACs)  
No Load  
1.5  
1.5  
All DACs  
One DAC  
1
0.5  
0
1
0.5  
0
–40  
–25  
0
25  
55  
85  
0000H 0200H 0400H 0800H 1000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Temperature (°C)  
Digital Input Code  
®
8
DAC7644  
TYPICAL PERFORMANCE CURVES: VSS = 0V (CONT)  
At TA = +25°C, VDD = VCC = +5V, VSS = 0V, VREFH = +2.5V, VREFL = 0V, representative unit, unless otherwise specified.  
OUTPUT VOLTAGE vs SETTLING TIME  
OUTPUT VOLTAGE vs SETTLING TIME  
(0V to +2.5V)  
(+2.5V to 2mV)  
+5V  
LDAC  
0
+5V  
LDAC  
0
Large-Signal Settling Time: 0.5V/div  
Small-Signal Settling Time: 4LSB/div  
Small-Signal Settling Time: 4LSB/div  
Large-Signal Settling Time: 0.5V/div  
Time (2µs/div)  
Time (2µs/div)  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
vs MIDSCALE GLITCH PERFORMANCE  
vs MIDSCALE GLITCH PERFORMANCE  
+5V  
LDAC  
0
+5V  
LDAC  
0
7FFFH to 8000H  
8000H to 7FFFH  
Time (1µs/div)  
Time (1µs/div)  
BROADBAND NOISE  
OUTPUT NOISE VOLTAGE vs FREQUENCY  
1000  
100  
10  
BW = 10kHz  
Code = 8000H  
10  
100  
1000  
10000  
100000  
1000000  
Time (10µs/div)  
Frequency (Hz)  
®
9
DAC7644  
TYPICAL PERFORMANCE CURVES: VSS = 0V (CONT)  
At TA = +25°C, VDD = VCC = +5V, VSS = 0V, VREFH = +2.5V, VREFL = 0V, representative unit, unless otherwise specified.  
LOGIC SUPPLY CURRENT  
vs LOGIC INPUT LEVEL FOR DATA BITS  
VOUT vs RLOAD  
5
4
3
2
1
0
12  
10  
8
Source  
6
4
2
Sink  
0
0.01  
0.1  
1
10  
100  
0
1
2
3
4
5
RLOAD (k)  
Logic Input Level for Data Bits (V)  
®
10  
DAC7644  
TYPICAL PERFORMANCE CURVES: VSS = –5V  
At TA = +25°C, VDD = VCC = +5V, VSS = –5V, VREFH = +2.5V, VREFL = –2.5V, representative unit, unless otherwise specified.  
+25°C  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC A, +25°C)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC B, +25°C)  
2.0  
1.5  
1.0  
0.5  
1.0  
0
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC D, +25°C)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC C, +25°C)  
1.0  
2.0  
1.5  
0.5  
0
1.0  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
1.0  
0.5  
2.0  
1.5  
0
1.0  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
+85°C  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC B, +85°C)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC A, +85°C)  
1.0  
0.5  
0
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
1.0  
0.5  
2.0  
1.5  
0
1.0  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
®
11  
DAC7644  
TYPICAL PERFORMANCE CURVES: VSS = –5V (CONT)  
At TA = +25°C, VDD = VCC = +5V, VSS = –5V, VREFH = +2.5V, VREFL = –2.5V, representative unit, unless otherwise specified.  
+85°C (cont)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC C, +85°C)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC D, +85°C)  
1.5  
1.0  
1.0  
0.5  
0.5  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
2.0  
1.5  
1.0  
0.5  
1.0  
0
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
–40°C  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC B, –40°C)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC A, –40°C)  
1.5  
2.0  
1.5  
1.0  
0.5  
1.0  
0
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC C, –40°C)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC D, –40°C)  
1.5  
1.5  
1.0  
1.0  
0.5  
0.5  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
2.0  
1.5  
1.5  
1.0  
1.0  
0.5  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
®
12  
DAC7644  
TYPICAL PERFORMANCE CURVES: VSS = –5V (CONT)  
At TA = +25°C, VDD = VCC = +5V, VSS = –5V, VREFH = +2.5V, VREFL = –2.5V, representative unit, unless otherwise specified.  
VREFL CURRENT vs CODE  
(all DACs sent to indicated code)  
VREFH CURRENT vs CODE  
(all DACs sent to indicated code)  
0.0  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
+0.6  
+0.5  
+0.4  
+0.3  
+0.2  
+0.1  
0.0  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
POSITIVE FULL-SCALE ERROR vs TEMPERATURE  
ZERO-SCALE ERROR vs TEMPERATURE  
(Code FFFFH)  
(Code 8000H)  
2
1.5  
2
1.5  
1
0.5  
0
1
0.5  
0
DAC A  
DAC B  
DAC A  
DAC B  
DAC D  
–0.5  
–1  
–0.5  
–1  
DAC C  
DAC D  
DAC C  
–1.5  
–2  
–1.5  
–2  
–40  
–25  
0
25  
55  
85  
–40  
–25  
0
25  
55  
85  
Temperature (°C)  
Temperature (°C)  
POWER SUPPLY CURRENT  
vs TEMPERATURE  
NEGATIVE FULL-SCALE ERROR vs TEMPERATURE  
(Code 0000H)  
3
2.5  
2
2
1.5  
1
Data = FFFFH (all DACs)  
No Load  
ICC  
1.5  
1
DAC D  
DAC A  
DAC C  
0.5  
0
0.5  
0
–0.5  
–1  
–0.5  
–1  
DAC B  
ISS  
–1.5  
–2  
–1.5  
–2  
–2.5  
–3  
–40  
–25  
0
25  
55  
85  
–40  
–25  
0
25  
55  
85  
Temperature (°C)  
Temperature (°C)  
®
13  
DAC7644  
TYPICAL PERFORMANCE CURVES: VSS = –5V (CONT)  
At TA = +25°C, VDD = VCC = +5V, VSS = –5V, VREFH = +2.5V, VREFL = –2.5V, representative unit, unless otherwise specified.  
POSITIVE SUPPLY CURRENT  
vs DIGITAL INPUT CODE  
VOUT vs RLOAD  
5
4
2
1.5  
1
No Load  
All DACs  
Source  
3
2
One DAC  
1
0
–1  
–2  
–3  
–4  
–5  
Sink  
0.5  
0
0000H 0200H 0400H 0800H 1000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0.01  
0.1  
1
10  
100  
Digital Input Code  
RLOAD (k)  
OUTPUT VOLTAGE vs SETTLING TIME  
(–2.5V to +2.5V)  
OUTPUT VOLTAGE vs SETTLING TIME  
(+2.5V to –2.5V)  
+5V  
+5V  
LDAC  
0
LDAC  
0
Large-Signal Settling Time: 1V/div  
Small-Signal Settling Time: 2LSB/div  
Small-Signal Settling Time:  
2LSB/div  
Large-Signal Settling Time: 1V/div  
Time (2µs/div)  
Time (2µs/div)  
®
14  
DAC7644  
by the external voltage references (VREFL and VREFH, re-  
spectively). The digital input is a 16-bit parallel word and  
the DAC input registers offer a readback capability. The  
converters can be powered from either a single +5V supply  
or a dual ±5V supply. The device offers a reset function  
which immediately sets all DAC output voltages and DAC  
registers to mid-scale code 8000H or to zero-scale, code  
0000H. See Figures 2 and 3 for the basic operation of the  
DAC7644.  
THEORY OF OPERATION  
The DAC7644 is a quad voltage output, 16-bit digital-to-  
analog converter (DAC). The architecture is an R-2R ladder  
configuration with the three MSB’s segmented followed by  
an operational amplifier that serves as a buffer. Each DAC  
has its own R-2R ladder network, segmented MSBs and  
output op amp (see Figure 1). The minimum voltage output  
(zero-scale) and maximum voltage output (full-scale) are set  
RF  
VOUT Sense  
VOUT  
R
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
VREF  
VREFH Sense  
VREF  
H
L
VREFL Sense  
FIGURE 1. DAC7644 Architecture.  
1
2
3
4
5
6
7
8
9
DB15  
NC 48  
DB14  
DB13  
DB12  
DB11  
DB10  
DB9  
NC 47  
NC 46  
NC 45  
V
OUTA Sense 44  
0V to +2.5V  
+2.5000V  
VOUT  
REFL AB Sense 42  
REFL AB 41  
REFH AB 40  
A
43  
V
DB8  
V
Data  
Bus  
DB7  
V
10 DB6  
11 DB5  
12 DB4  
13 DB3  
14 DB2  
15 DB1  
16 DB0  
17 RSTSEL  
18 RST  
19 LOADDACS  
20 R/W  
21 A1  
V
REFH AB Sense 39  
VOUTB Sense 38  
0V to +2.5V  
0V to +2.5V  
+2.5000V  
V
OUTB 37  
OUTC Sense 36  
OUTC 35  
DAC7644  
V
V
V
REFH CD Sense 34  
VREFH CD 33  
V
REFL CD 32  
REFL CD Sense 31  
OUTD Sense 30  
VOUT  
29  
Reset DACs  
Load DAC Registers  
READ/WRITE  
V
V
0V to +2.5V  
D
VSS 28  
AGND 27  
VCC 26  
Address  
22 A0  
0.1µF  
1µF  
Chips Select  
23 CS  
+
+5V  
24 DGND  
VDD 25  
NC = No Connection  
FIGURE 2. Basic Single-Supply Operation of the DAC7644.  
15  
®
DAC7644  
1
2
3
4
5
6
7
8
9
DB15  
DB14  
DB13  
DB12  
DB11  
DB10  
DB9  
NC 48  
NC 47  
NC 46  
NC 45  
V
OUTA Sense 44  
–2.5V to +2.5V  
V
OUTA 43  
VREFL AB Sense 42  
VREFL AB 41  
–2.5V  
+2.5V  
DB8  
Data  
Bus  
DB7  
V
REFH AB 40  
VREFH AB Sense 39  
OUTB Sense 38  
VOUT  
37  
OUTC Sense 36  
VOUT  
35  
10 DB6  
11 DB5  
12 DB4  
13 DB3  
14 DB2  
15 DB1  
16 DB0  
17 RSTSEL  
18 RST  
19 LOADDACS  
20 R/W  
21 A1  
V
–2.5V to +2.5V  
–2.5V to +2.5V  
B
DAC7644  
V
C
V
REFH CD Sense 34  
+2.5V  
–2.5V  
VREFH CD 33  
+5V  
Reset DACs  
VREFL CD 32  
V
REFL CD Sense 31  
Load DAC Registers  
READ/WRITE  
VOUTD Sense 30  
–2.5V to +2.5V  
V
OUTD 29  
VSS 28  
–5V  
+5V  
Address  
0.1µF  
1.0µF  
1.0µF  
+
+
22 A0  
AGND 27  
VCC 26  
VDD 25  
0.1µF  
Chips Select  
23 CS  
24 DGND  
NC = No Connection  
FIGURE 3. Basic Dual-Supply Operation of the DAC7644.  
The DAC7644 offers a force and sense output configuration  
for the high open-loop gain output amplifier. This feature  
allows the loop around the output amplifier to be closed at  
the load (see Figure 4), thus ensuring an accurate output  
voltage.  
ANALOG OUTPUTS  
When VSS = –5V (dual supply operation), the output ampli-  
fier can swing to within 2.25V of the supply rails, guaran-  
teed over the –40°C to +85°C temperature range. With VSS  
= 0V (single-supply operation), and with RLOAD also con-  
nected to ground, the output can swing to ground. Care must  
also be taken when measuring the zero-scale error when VSS  
= 0V. Since the output voltage cannot swing below ground,  
the output voltage may not change for the first few digital  
input codes (0000H, 0001H, 0002H, etc.) if the output ampli-  
fier has a negative offset. At the negative limit of –2mV, the  
first specified output starts at code 0040H.  
NC 48  
NC 47  
NC 46  
RW1  
NC 45  
V
OUTA Sense 44  
OUTA 43  
VREFL AB Sense 42  
REFL AB 41  
REFH AB 40  
RW2  
Due to the high accuracy of these D/A converters, system  
design problems such as grounding and contact resistance  
become very important. A 16-bit converter with a 2.5V full-  
scale range has a 1LSB value of 38µV. With a load current  
of 1mA, series wiring and connector resistance (see Figure  
4) of only 40m(RW2) will cause a voltage drop of 40µV.  
To understand what this means in terms of a system layout,  
the resistivity of a typical 1 ounce copper-clad printed circuit  
board is 1/2 mper square. For a 1mA load, a 10 milli-inch  
wide printed circuit conductor 600 milli-inches long will  
result in a voltage drop of 30µV.  
VOUT  
+V  
V
DAC7644  
V
V
+2.5V  
VREFH AB Sense 39  
RW1  
VOUTB Sense 38  
V
OUTB 37  
RW2  
VOUT  
FIGURE 4. Analog Output Closed-Loop Configuration  
(1/2 DAC7644). RW represents wiring resis-  
tances.  
®
16  
DAC7644  
REFERENCE INPUTS  
The current into the VREFH input and out of VREFL depends  
on the DAC output voltages and can vary from a few  
microamps to approximately 0.5mA. The reference input  
appears as a varying load to the reference. If the reference  
can sink or source the required current, a reference buffer is  
not required. The DAC7644 features a reference drive and  
sense connection such that the internal errors caused by the  
changing reference current and the circuit impedances can  
be minimized. Figures 5 through 12 show different reference  
configurations and the effect on the linearity and differential  
linearity.  
The reference inputs, VREFL and VREFH, can be any voltage  
between VSS + 2.5V and VCC – 2.5V provided that VREFH is  
at least 1.25V greater than VREFL. The minimum output of  
each DAC is equal to VREFL plus a small offset voltage  
(essentially, the offset of the output op amp). The maximum  
output is equal to VREFH plus a similar offset voltage. Note  
that VSS (the negative power supply) must either be  
connected to ground or must be in the range of –4.75V to  
–5.25V. The voltage on VSS sets several bias points within  
the converter. If VSS is not in one of these two configura-  
tions, the bias values may be in error and proper operation  
of the device is not guaranteed.  
NC 48  
NC 47  
NC 46  
NC 45  
+V  
V
OUTA Sense 44  
OUTA 43  
REFL AB Sense 42  
REFL AB 41  
REFH AB 40  
REFH AB Sense 39  
OUTB Sense 38  
OUTB 37  
OPA2234  
VOUT  
V
DAC7644  
V
–2.5V  
V
500pF  
V
–V  
+V  
V
500pF  
V
V
VOUT  
+2.5V  
–V  
FIGURE 5. Dual Supply Configuration-Buffered References, used for Dual Supply Performance Curves (1/2 DAC7644).  
NC 48  
NC 47  
NC 46  
+V  
NC 45  
VOUTA Sense 44  
OPA2350  
VOUT  
V
OUTA 43  
REFL AB Sense 42  
REFL AB 41  
REFH AB 40  
REFH AB Sense 39  
OUTB Sense 38  
OUTB 37  
DAC7644  
V
2k  
100Ω  
100Ω  
2200pF  
2200pF  
V
1000pF  
1000pF  
0.050V  
V
+V  
98kΩ  
V
V
+2.5V  
V
VOUT  
NOTE: VREFL has been chosen to be 50mV to allow for current sinking voltage  
drops across the 100resistor and the output stage of the buffer op amp.  
FIGURE 6. Single-Supply Buffered Reference with a Reference Low of 50mV (1/2 DAC7644).  
®
17  
DAC7644  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC A, +25°C)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC A, +25°C)  
2.5  
2.0  
2.0  
1.5  
1.5  
1.0  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
0.5  
0
–0.5  
–1.0  
–1.5  
2.5  
2.0  
2.0  
1.5  
1.5  
1.0  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
0.5  
0
–0.5  
–1.0  
–1.5  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
FIGURE 8. Integral Linearity and Differential Linearity  
Error Curves for Figure 9.  
FIGURE 7. Integral Linearity and Differential Linearity  
Error Curves for Figure 6.  
NC 48  
NC 47  
NC 46  
NC 45  
+V  
V
OUTA Sense 44  
VOUT  
43  
REFL AB Sense 42  
REFL AB 41  
REFH AB 40  
VREFH AB Sense 39  
OUTB Sense 38  
OUTB 37  
+V  
OPA2350  
VOUT  
A
DAC7644  
V
100  
100Ω  
2200pF  
2200pF  
+1.25V  
V
1000pF  
1000pF  
V
+V  
V
V
+2.5V  
VOUT  
FIGURE 9. Single-Supply Buffered Reference with VREFL = +1.25V and VREFH = +2.5V (1/2 DAC7644).  
NC 48  
NC 47  
NC 46  
NC 45  
V
OUTA Sense 44  
VOUT  
43  
REFL AB Sense 42  
REFL AB 41  
VREFH AB 40  
REFH AB Sense 39  
OUTB Sense 38  
VOUT  
37  
VOUT  
A
DAC7644  
+V  
V
V
+V  
OPA350  
100  
+2.5V  
V
1000pF  
2200pF  
V
VOUT  
B
FIGURE 10. Single-Supply Buffered VREFH (1/2 DAC7644).  
®
18  
DAC7644  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC A, +25°C)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
(DAC A, +25°C)  
2.5  
2.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.5  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–0.5  
–1.0  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
FIGURE 13. Linearity and Differential Linearity Error Curves  
for Figure 12.  
FIGURE 11. Linearity and Differential Linearity Error Curves  
for Figure 10.  
DIGITAL INTERFACE  
Table I shows the basic control logic for the DAC7644. Note  
that each internal register is edge triggered and not level  
triggered. When the LOADDACS signal is transitioned to  
HIGH, the digital word currently in the register is latched.  
The first set of registers (the input registers) are triggered via  
the A0, A1, R/W, and CS inputs. Only one of these registers  
is transparent at any given time.  
NC 48  
NC 47  
NC 46  
NC 45  
V
OUTA Sense 44  
OUTA 43  
REFL AB Sense 42  
REFL AB 41  
REFH AB 40  
REFH AB Sense 39  
OUTB Sense 38  
OUTB 37  
VOUT  
V
DAC7644  
The double-buffered architecture is designed mainly so each  
DAC input register can be written to at any time and then all  
DAC voltages updated simultaneously by the rising edge of  
LOADDACS. It also allows a DAC input register to be  
written to at any point and the DAC voltages to be synchro-  
nously changed via a trigger signal connected to  
LOADDACS.  
V
+V  
V
+2.5V  
V
V
V
VOUT  
V
FIGURE 12. Low Cost Single-Supply Configuration.  
INPUT  
DAC  
A1  
A0  
R/W  
CS  
RST  
RSTSEL LOADDACS  
REGISTER  
REGISTER  
MODE  
DAC  
L
L
H
H
L
L
H
L
H
L
L
L
L
L
L
L
L
L
L
L
L
H
H
X
X
H
H
H
H
H
H
H
H
H
H
X
X
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
X
X
Write  
Write  
Write  
Write  
Read  
Read  
Read  
Read  
Hold  
Hold  
Hold  
Hold  
Hold  
Hold  
Hold  
Hold  
Hold  
Write  
Write Input  
Write Input  
Write Input  
Write Input  
Read Input  
Read Input  
Read Input  
Read Input  
Update  
A
B
C
D
A
B
C
D
All  
All  
All  
All  
L
H
H
H
H
X
X
X
X
L
H
L
H
H
X
X
X
X
H
X
X
X
X
H
X
X
Hold  
Hold  
Hold  
Reset to Zero  
Reset to Midscale  
Reset to Zero  
Reset to Midscale  
H
TABLE I. DAC7644 Logic Truth Table.  
®
19  
DAC7644  
DIGITAL TIMING  
V
REFH – VREFL • N  
(
)
Figure 14 and Table II provide detailed timing for the digital  
interface of the DAC7644.  
VOUT = VREFL +  
(1)  
65,536  
DIGITAL INPUT CODING  
where N is the digital input code. This equation does not  
include the effects of offset (zero-scale) or gain (full-scale)  
errors.  
The DAC7644 input data is in Straight Binary format. The  
output voltage is given by Equation 1.  
tWCS  
CS  
tWS  
tWH  
R/W  
tRCS  
tAH  
CS  
tAS  
tRDH  
tRDS  
A0/A1  
tLH  
R/W  
tLS  
tLWD  
tLX  
tAS  
tAH  
±0.003% of FSR  
Error Band  
LOADDACS  
Data In  
A0/A1  
tDH  
tDS  
tDZ  
tS  
Data Out  
Data Valid  
tCSD  
VOUT  
Data Read Timing  
Data Write Timing  
±0.003% of FSR  
Error Band  
tSS  
tSH  
RESET SEL  
tRSH  
tRSS  
RST  
+FS  
VOUT,RESET SEL LOW  
–FS  
+FS  
MS  
VOUT,RESET SEL HIGH  
–FS  
DAC7644 Reset Timing  
FIGURE 14. Digital Input and Output Timing.  
SYMBOL  
DESCRIPTION  
MIN  
TYP  
MAX  
UNITS  
tRCS  
tRDS  
tRDH  
tDZ  
tCSD  
tWCS  
tWS  
tWH  
tAS  
tAH  
tLS  
tLH  
tLX  
tDS  
tDH  
tLWD  
tSS  
tSH  
tRSS  
tRSH  
tS  
CS LOW for Read  
R/W HIGH to CS LOW  
R/W HIGH after CS HIGH  
CS HIGH to Data Bus in High Impedance  
CS LOW to Data Bus Valid  
CS LOW for Write  
150  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
10  
100  
150  
100  
40  
0
10  
0
10  
30  
100  
100  
0
10  
100  
0
R/W LOW to CS LOW  
R/W LOW after CS HIGH  
Address Valid to CS LOW  
Address Valid after CS HIGH  
CS LOW to LOADDACS HIGH  
CS LOW after LOADDACS HIGH  
LOADDACS HIGH  
Data Valid to CS LOW  
Data Valid after CS HIGH  
LOADDACS LOW  
RSTSEL Valid Before RESET HIGH  
RSTSEL Valid After RESET HIGH  
RESET LOW Before RESET HIGH  
RESET LOW After RESET HIGH  
Settling Time  
200  
10  
10  
10  
TABLE II. Timing Specifications (TA = –40°C to +85°C).  
®
20  
DAC7644  
DIGITALLY-PROGRAMMABLE  
CURRENT SOURCE  
Figure 15 shows a DAC7644 in a 4mA to 20mA current  
output configuration. The output current can be determined  
by Equation 3:  
The DAC7644 offers a unique set of features that allows a  
wide range of flexibility in designing applications circuits  
such as programmable current sources. The DAC7644 offers  
both a differential reference input as well as an open-loop  
configuration around the output amplifier. The open-loop  
configuration around the output amplifier allows transistor  
to be placed within the loop to implement a digitally-  
programmable, uni-directional current source. The availabil-  
ity of a differential reference also allows programmability  
for both the full-scale and zero-scale currents. The output  
current is calculated as:  
(3)  
2.5V – 0.5V  
N Value  
65,536  
0.5V  
IOUT  
=
+
125  
125Ω  
At full-scale, the output current is 16mA plus the 4mA for  
the zero current. At zero scale the output current is the offset  
current of 4mA (0.5V/125).  
VREFH – VREF  
RSENSE  
L
N Value  
65,536  
(2)  
IOUT  
=
+ VREFL / RSENSE  
(
)
IOUT  
VPROGRAMMED  
NC 48  
NC 47  
125  
NC 46  
NC 45  
+V  
VOUTA Sense 44  
OPA2350  
VOUT  
VREFL AB Sense 42  
REFL AB 41  
A
43  
DAC7644  
20kΩ  
100Ω  
2200pF  
V
1000pF  
1000pF  
+0.5V  
VREFH AB 40  
VREFH AB Sense 39  
VOUTB Sense 38  
100Ω  
80kΩ  
+V  
2200pF  
V
OUTB 37  
+2.5V  
IOUT  
VPROGRAMMED  
125Ω  
GND  
FIGURE 15. 4-to-20mA Digitally Controlled Current Source (1/2 DAC7644).  
®
21  
DAC7644  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Jul-2007  
PACKAGING INFORMATION  
Orderable Device  
DAC7644E  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SSOP  
DL  
48  
48  
48  
48  
48  
48  
48  
48  
25 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
DAC7644E/1K  
DAC7644E/1KG4  
DAC7644EB  
SSOP  
SSOP  
SSOP  
SSOP  
SSOP  
SSOP  
SSOP  
DL  
DL  
DL  
DL  
DL  
DL  
DL  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
25 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
DAC7644EB/1K  
DAC7644EB/1KG4  
DAC7644EBG4  
DAC7644EG4  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
25 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
25 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Mar-2008  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) W1 (mm)  
(mm) (mm) Quadrant  
DAC7644E/1K  
SSOP  
SSOP  
DL  
DL  
48  
48  
1000  
1000  
330.0  
330.0  
32.4  
32.4  
11.35  
11.35  
16.2  
16.2  
3.1  
3.1  
16.0  
16.0  
32.0  
32.0  
Q1  
Q1  
DAC7644EB/1K  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Mar-2008  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DAC7644E/1K  
SSOP  
SSOP  
DL  
DL  
48  
48  
1000  
1000  
346.0  
346.0  
346.0  
346.0  
49.0  
49.0  
DAC7644EB/1K  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Amplifiers  
Data Converters  
DSP  
Clocks and Timers  
Interface  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/audio  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
Logic  
Military  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Optical Networking  
Security  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2008, Texas Instruments Incorporated  

相关型号:

DAC7644E

16-Bit, Quad Voltage Output DIGITAL-TO-ANALOG CONVERTER
BB

DAC7644E

16-Bit, Quad Voltage Output DIGITAL-TO-ANALOG CONVERTER
TI

DAC7644E/1K

16-Bit, Quad Voltage Output DIGITAL-TO-ANALOG CONVERTER
TI

DAC7644EB

16-Bit, Quad Voltage Output DIGITAL-TO-ANALOG CONVERTER
BB

DAC7644EB

16-Bit, Quad Voltage Output DIGITAL-TO-ANALOG CONVERTER
TI

DAC7644EB/1K

16-Bit, Quad Voltage Output DIGITAL-TO-ANALOG CONVERTER
TI

DAC7644EB/1KG4

16 位四路电压输出数模转换器 | DL | 48 | -40 to 85
TI

DAC7644EBG4

16-Bit, Quad Voltage Output Digital-to-Analog Converter 48-SSOP -40 to 85
TI

DAC7644EG4

16-Bit, Quad Voltage Output Digital-to-Analog Converter 48-SSOP -40 to 85
TI

DAC7654

16-Bit, Dual Voltage Output DIGITAL-TO-ANALOG CONVERTER
BB

DAC7654

16 位、四路电压输出数模转换器
TI

DAC7654YBR

16-Bit, Dual Voltage Output DIGITAL-TO-ANALOG CONVERTER
BB