DAC43401DSGTQ1 [TI]

具有 NVM、缓冲电压输出和 I2C 接口的汽车类 8 位单通道智能 DAC | DSG | 8 | -40 to 125;
DAC43401DSGTQ1
型号: DAC43401DSGTQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 NVM、缓冲电压输出和 I2C 接口的汽车类 8 位单通道智能 DAC | DSG | 8 | -40 to 125

文件: 总53页 (文件大小:4078K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DAC53401-Q1, DAC43401-Q1  
ZHCSOM0 OCTOBER 2020  
DACx3401-Q1 具有非易失性存储器和兼PMBus™ I2C 接口且采用微2 × 2  
WSON 封装的汽车10 8 位电压输出智DAC  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准  
10 DAC53401-Q1 8 DAC43401-Q1  
(DACx3401-Q1) 是具有引脚兼容性的汽车类缓冲电压  
输出智能数模转换器 (DAC) 系列产品。这些器件功耗  
极低且均可采用微型 8 引脚 WSON 封装。凭借这组特  
性以及微型封装和低功耗DACx3401-Q1 非常适合以  
下应用LED 和通用偏置点生成、电源控制和 PWM  
信号生成。  
– 温度等140°C +125°CTA  
1 LSB INL DNL10 8 )  
• 宽工作电压范围:  
– 电源1.8V 5.5V  
• 兼PMBusI2C 接口  
– 标准模式、快速模式和快速+ 模式  
A0 引脚配置的四个从器件地址选项  
1.62V VIH (VDD = 5.5V)  
这些器件具有非易失性存储器 (NVM)、一个内部基准  
和一个兼容 PMBus I2C 接口。DACx3401-Q1 在内  
部基准或电源基准下运行提供 1.8V 5.5V 的满量  
程输出。该器件通过 I2C 接口通信。这些器件支持 I2C  
标准模式、快速模式和快速+ 模式。  
• 用户可编程的非易失性存储器NVMEEPROM)  
– 保存和撤销所有寄存器设置  
• 可编程波形生成方形、斜坡和锯齿状  
• 使用三角波形FB 引脚的脉宽调(PWM) 输出  
• 数字压摆率控制  
DACx3401-Q1 是智能 DAC 器件因为它们具有高级  
集成特性。这些智能 DAC 具有强制检测输出、PWM  
输出和 NVM 功能无需使用软件即可实现系统性能和  
控制功能。  
• 内部基准  
• 超低功耗1.8V 0.2 mA  
• 灵活启动高阻抗10K-GND  
• 微型封装8 WSON (2mm × 2mm)  
器件信息  
器件型号(1)  
DAC53401-Q1  
DAC43401-Q1  
封装尺寸标称值)  
封装  
2 应用  
WSON (8)  
2.00mm × 2.00mm  
USB 充电  
前灯  
后灯  
(1) 如需了解所有可用封装请参阅数据表末尾的封装选项附录。  
VCC  
LED  
VDD  
ILED = ISET  
VOUT  
DACx3401-Q1  
Q1  
+
VGS  
VFB  
œ
VDAC  
RSET  
ISET  
功能方框图  
使DACx3401-Q1 LED 偏置  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLASE30  
 
 
 
DAC53401-Q1, DAC43401-Q1  
ZHCSOM0 OCTOBER 2020  
www.ti.com.cn  
Table of Contents  
8.2 Functional Block Diagram.........................................18  
8.3 Feature Description...................................................19  
8.4 Device Functional Modes..........................................25  
8.5 Programming............................................................ 27  
8.6 Register Map.............................................................32  
9 Application and Implementation..................................39  
9.1 Application Information............................................. 39  
9.2 Typical Applications.................................................. 39  
10 Power Supply Recommendations..............................43  
11 Layout...........................................................................43  
11.1 Layout Guidelines................................................... 43  
11.2 Layout Example...................................................... 43  
12 Device and Documentation Support..........................44  
12.1 Documentation Support.......................................... 44  
12.2 接收文档更新通知................................................... 44  
12.3 支持资源..................................................................44  
12.4 Trademarks.............................................................44  
12.5 静电放电警告.......................................................... 44  
12.6 术语表..................................................................... 44  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 4  
7.1 Absolute Maximum Ratings ....................................... 4  
7.2 ESD Ratings .............................................................. 4  
7.3 Recommended Operating Conditions ........................4  
7.4 Thermal Information ...................................................4  
7.5 Electrical Characteristics ............................................5  
7.6 Timing Requirements: I2C Standard Mode ................ 7  
7.7 Timing Requirements: I2C Fast Mode ........................8  
7.8 Timing Requirements: I2C Fast Mode Plus ................8  
7.9 Typical Characteristics: VDD = 1.8 V (Reference  
= VDD) or VDD = 2 V (Internal Reference)......................9  
7.10 Typical Characteristics: VDD = 5.5 V (Reference  
= VDD) or VDD = 5 V (Internal Reference)....................11  
7.11 Typical Characteristics............................................ 13  
8 Detailed Description......................................................18  
8.1 Overview...................................................................18  
Information.................................................................... 44  
4 Revision History  
DATE  
REVISION  
NOTES  
October 2020  
*
Initial release.  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: DAC53401-Q1 DAC43401-Q1  
 
DAC53401-Q1, DAC43401-Q1  
www.ti.com.cn  
ZHCSOM0 OCTOBER 2020  
5 Device Comparison Table  
DEVICE  
RESOLUTION  
10-bit  
DAC53401-Q1  
DAC43401-Q1  
8-bit  
6 Pin Configuration and Functions  
A0  
SCL  
SDA  
CAP  
1
2
3
4
8
7
6
5
OUT  
FB  
VDD  
AGND  
Not to scale  
6-1. DSG Package, 8-Pin WSON, Top View  
6-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
A0  
NO.  
1
Input  
Four-state address input  
AGND  
5
Ground  
Ground reference point for all circuitry on the device  
External capacitor for the internal LDO. Connect a capacitor (0.5 µF to 15 µF) between CAP and  
AGND.  
CAP  
4
Input  
FB  
7
8
Input  
Voltage feedback pin  
OUT  
Output  
Analog output voltage from DAC  
Serial interface clock. This pin must be connected to the supply voltage with an external pullup  
resistor.  
SCL  
2
Input  
Data are clocked into or out of the input register. This pin is a bidirectional, and must be connected to  
the supply voltage with an external pullup resistor.  
SDA  
VDD  
3
6
Input/output  
Power  
Analog supply voltage: 1.8 V to 5.5 V  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: DAC53401-Q1 DAC43401-Q1  
 
 
DAC53401-Q1, DAC43401-Q1  
ZHCSOM0 OCTOBER 2020  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
0.3  
0.3  
10  
40  
65  
MAX  
6
UNIT  
V
VDD  
Supply voltage, VDD to AGND  
Digital input(s) to AGND  
CAP to AGND  
VDD + 0.3  
1.65  
V
V
VFB to AGND  
VDD + 0.3  
VDD + 0.3  
10  
V
VOUT to AGND  
V
Current into any pin  
Junction temperature  
Storage temperature  
mA  
°C  
°C  
TJ  
150  
Tstg  
150  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
HBM ESD classification level 2  
±2000  
Electrostatic  
discharge  
V(ESD)  
V
Charged device model (CDM), per AEC Q100-011  
CDM ESD classification level C5  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.71  
1.62  
NOM  
MAX UNIT  
VDD  
VIH  
VIL  
TA  
Positive supply voltage to ground (AGND  
)
5.5  
V
V
V
Digital input high voltage, 1.7 V < VDD 5.5 V  
Digital input low voltage  
0.4  
Ambient temperature  
125 °C  
40  
7.4 Thermal Information  
DACx3401-Q1  
THERMAL METRIC(1)  
DSG (WSON)  
UNIT  
8 PINS  
49  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
50  
24.1  
1.1  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ΨJT  
24.1  
8.7  
ΨJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: DAC53401-Q1 DAC43401-Q1  
 
 
 
 
 
 
 
 
DAC53401-Q1, DAC43401-Q1  
www.ti.com.cn  
ZHCSOM0 OCTOBER 2020  
7.5 Electrical Characteristics  
all minimum/maximum specifications at TA = 40°C to +125°C and typical specifications at TA = 25°C, 1.8 V VDD 5.5 V,  
DAC reference tied to VDD, gain = 1x, DAC output pin (OUT) loaded with resistive load (RL = 5 kΩto AGND) and capacitive  
load (CL = 200 pF to AGND), and digital inputs at VDD or AGND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
STATIC PERFORMANCE  
DAC53401-Q1  
DAC43401-Q1  
10  
8
Resolution  
Bits  
INL Relative accuracy(1)  
1
1
LSB  
LSB  
1  
1  
DNL Differential nonlinearity(1)  
Code 0d into DAC  
6
6
12  
15  
Zero code error  
mV  
Internal VREF, gain = 4x, VDD = 5.5 V  
Zero code error temperature  
coefficient  
±10  
0.25  
µV/°C  
%FSR  
Offset error(4)  
0.6  
0.5  
0.6  
0.5  
Offset error temperature  
coefficient(4)  
±0.0003  
0.25  
%FSR/°C  
%FSR  
Gain error(4)  
Gain error temperature  
coefficient(4)  
±0.0008  
%FSR/°C  
1.8 V VDD 2.7 V, code 1023d into DAC,  
0.5  
0.25  
1
1  
no headroom  
Full scale error  
%FSR  
2.7 V VDD 5.5 V, code 1023d into DAC,  
no headroom  
0.5  
0.5  
Full scale error temperature  
coefficient  
±0.0008  
%FSR/°C  
OUTPUT CHARACTERISTICS  
Output voltage  
Reference tied to VDD  
0
5.5  
1
V
RL = Infinite, phase margin = 30°  
RL = 5 kΩ, phase margin = 30°  
CL  
Capacitive load(2)  
Load regulation  
nF  
2
DAC at midscale, 10 mA IOUT 10 mA,  
VDD = 5.5 V  
0.4  
10  
mV/mA  
VDD = 1.8 V, full-scale output shorted to AGND or  
zero-scale output shorted to VDD  
VDD = 2.7 V, full-scale output shorted to AGND or  
zero-scale output shorted to VDD  
Short circuit current  
25  
mA  
VDD = 5.5 V, full-scale output shorted to AGND or  
zero-scale output shorted to VDD  
50  
To VDD (DAC output unloaded, internal reference =  
1.21 V), VDD 1.21 gain + 0.2 V  
0.2  
0.8  
V
To VDD  
Output voltage headroom(1)  
(DAC output unloaded, reference tied to VDD  
)
%FSR  
To VDD (ILOAD = 10 mA at VDD = 5.5 V, ILOAD = 3 mA at  
VDD = 2.7 V, ILOAD = 1 mA at VDD = 1.8 V), DAC code  
= full scale  
10  
DAC output enabled and DAC code = midscale  
DAC output enabled and DAC code = 4d  
DAC output enabled and DAC code = 1016d  
0.25  
0.25  
0.26  
VOUT dc output impedance  
VFB dc output impedance(3)  
Ω
DAC output enabled, DAC reference tied to VDD (gain  
= 1x) or internal reference (gain = 1.5x or 2x)  
160  
192  
200  
240  
240  
288  
ZO  
kΩ  
DAC output enabled, internal VREF, gain = 3x or 4x  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: DAC53401-Q1 DAC43401-Q1  
 
DAC53401-Q1, DAC43401-Q1  
ZHCSOM0 OCTOBER 2020  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
all minimum/maximum specifications at TA = 40°C to +125°C and typical specifications at TA = 25°C, 1.8 V VDD 5.5 V,  
DAC reference tied to VDD, gain = 1x, DAC output pin (OUT) loaded with resistive load (RL = 5 kΩto AGND) and capacitive  
load (CL = 200 pF to AGND), and digital inputs at VDD or AGND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VOUT + VFB dc output  
leakage(2)  
At startup, measured when DAC output is disabled and  
held at VDD / 2 for VDD = 5.5 V  
5
nA  
Power supply rejection ratio  
(dc)  
Internal VREF, gain = 2x, DAC at midscale;  
VDD = 5 V ±10%  
0.25  
8
mV/V  
µs  
DYNAMIC PERFORMANCE  
1/4 to 3/4 scale and 3/4 to 1/4 scale settling to  
10%FSR, VDD = 5.5 V  
tsett Output voltage settling time  
1/4 to 3/4 scale and 3/4 to 1/4 scale settling to  
10%FSR, VDD = 5.5 V, internal VREF, gain = 4x  
12  
1
Slew rate  
VDD = 5.5 V  
V/µs  
mV  
At startup (DAC output disabled), RL = 5 k,  
CL = 200 pF  
75  
Power-on glitch magnitude  
200  
250  
34  
At startup (DAC output disabled), RL = 100 kΩ  
DAC output disabled to enabled (DAC registers at zero  
scale, RL = 100 kΩ  
Output enable glitch  
magnitude  
mV  
0.1 Hz to 10 Hz, DAC at midscale, VDD = 5.5 V  
Output noise voltage (peak to  
peak)  
Vn  
µVPP  
Internal VREF, gain = 4x, 0.1 Hz to 10 Hz, DAC at  
midscale, VDD = 5.5 V  
70  
Measured at 1 kHz, DAC at midscale, VDD = 5.5 V  
0.2  
0.7  
Output noise density  
µV/Hz  
Internal VREF, gain = 4x,, measured at 1 kHz, DAC at  
midscale, VDD = 5.5 V  
Internal VREF, gain = 4x, 200-mV 50 or 60 Hz sine  
wave superimposed on power supply voltage, DAC at  
midscale  
Power supply rejection ratio  
(ac)(3)  
dB  
71  
±1 LSB change around mid code (including  
feedthrough)  
Code change glitch impulse  
10  
15  
nV-s  
mV  
Code change glitch impulse  
magnitude  
±1 LSB change around mid code (including  
feedthrough)  
VOLTAGE REFERENCE  
Initial accuracy  
TA = 25°C  
1.212  
V
Reference output temperature  
coefficient(2)  
50 ppm/°C  
EEPROM  
20000  
1000  
50  
40°C TA +85°C  
TA > 85°C  
Endurance  
Cycles  
Years  
Data retention(2)  
TA = 25°C  
EEPROM programming write  
cycle time(2)  
10  
20  
ms  
DIGITAL INPUTS  
Digital feedthrough  
Pin capacitance  
DAC output static at midscale, fast mode plus, SCL  
toggling  
20  
10  
nV-s  
pF  
Per pin  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: DAC53401-Q1 DAC43401-Q1  
DAC53401-Q1, DAC43401-Q1  
www.ti.com.cn  
ZHCSOM0 OCTOBER 2020  
7.5 Electrical Characteristics (continued)  
all minimum/maximum specifications at TA = 40°C to +125°C and typical specifications at TA = 25°C, 1.8 V VDD 5.5 V,  
DAC reference tied to VDD, gain = 1x, DAC output pin (OUT) loaded with resistive load (RL = 5 kΩto AGND) and capacitive  
load (CL = 200 pF to AGND), and digital inputs at VDD or AGND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER  
Load capacitor - CAP pin(2)  
0.5  
15  
µF  
mA  
µA  
Normal mode, DACs at full scale, digital pins static  
DAC power-down, internal reference power down  
0.5  
80  
0.8  
IDD  
Current flowing into VDD  
(1) Measured with DAC output unloaded. For external reference between end-point codes: 8d to 1016d for 10-bit resolution, 2d to 254d for  
8-bit resolution. For internal reference VDD 1.21 x gain + 0.2 V, between end-point codes: 8d to 1016d for 10-bit resolution, 2d to  
254d for 8-bit resolution.  
(2) Specified by design and characterization, not production tested.  
(3) Specified with 200-mV headroom with respect to reference value when internal reference is used.  
(4) Measured with DAC output unloaded. For 10-bit resolution, between end-point codes: 8d to 1016d and for 8-bit resolution, between  
end-point codes: 2d to 254d.  
7.6 Timing Requirements: I2C Standard Mode  
all input signals are timed from VIL to 70% of VDD, 1.8 V VDD 5.5 V, 40°C TA +125°C, and  
1.8 V Vpull-up VDD V (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
MHz  
µs  
fSCLK  
tBUF  
SCL frequency  
0.1  
Bus free time between stop and start conditions  
Hold time after repeated start  
Repeated start setup time  
Stop condition setup time  
Data hold time  
4.7  
4
tHDSTA  
tSUSTA  
tSUSTO  
tHDDAT  
tSUDAT  
tLOW  
tHIGH  
tF  
µs  
4.7  
4
µs  
µs  
0
ns  
Data setup time  
250  
4700  
4000  
ns  
SCL clock low period  
ns  
SCL clock high period  
Clock and data fall time  
Clock and data rise time  
ns  
300  
ns  
tR  
1000  
ns  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: DAC53401-Q1 DAC43401-Q1  
 
 
 
 
 
DAC53401-Q1, DAC43401-Q1  
ZHCSOM0 OCTOBER 2020  
www.ti.com.cn  
7.7 Timing Requirements: I2C Fast Mode  
all input signals are timed from VIL to 70% of VDD, 1.8 V VDD 5.5 V, 40°C TA +125°C, and  
1.8 V Vpull-up VDD V (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
MHz  
µs  
fSCLK  
tBUF  
SCL frequency  
0.4  
Bus free time between stop and start conditions  
Hold time after repeated start  
Repeated start setup time  
Stop condition setup time  
Data hold time  
1.3  
0.6  
tHDSTA  
tSUSTA  
tSUSTO  
tHDDAT  
tSUDAT  
tLOW  
tHIGH  
tF  
µs  
0.6  
µs  
0.6  
µs  
0
ns  
Data setup time  
100  
1300  
600  
ns  
SCL clock low period  
ns  
SCL clock high period  
Clock and data fall time  
Clock and data rise time  
ns  
300  
300  
ns  
tR  
ns  
7.8 Timing Requirements: I2C Fast Mode Plus  
all input signals are timed from VIL to 70% of VDD, 1.8 V VDD 5.5 V, 40°C TA +125°C, and  
1.8 V Vpull-up VDD V (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
MHz  
µs  
fSCLK  
tBUF  
SCL frequency  
1
Bus free time between stop and start conditions  
Hold time after repeated start  
Repeated start setup time  
Stop condition setup time  
Data hold time  
0.5  
0.26  
0.26  
0.26  
0
tHDSTA  
tSUSTA  
tSUSTO  
tHDDAT  
tSUDAT  
tLOW  
tHIGH  
tF  
µs  
µs  
µs  
ns  
Data setup time  
50  
ns  
SCL clock low period  
0.5  
µs  
SCL clock high period  
Clock and data fall time  
Clock and data rise time  
0.26  
µs  
120  
120  
ns  
tR  
ns  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: DAC53401-Q1 DAC43401-Q1  
 
 
DAC53401-Q1, DAC43401-Q1  
www.ti.com.cn  
ZHCSOM0 OCTOBER 2020  
7.9 Typical Characteristics: VDD = 1.8 V (Reference = VDD) or VDD = 2 V (Internal Reference)  
at TA = 25°C, 10-bit DAC, and DAC outputs unloaded (unless otherwise noted)  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
Reference = VDD, gain = 1x  
Internal reference, gain = 1.5x  
Reference = VDD, gain = 1x  
Internal reference, gain = 1.5x  
0
128  
256  
384  
512  
Code  
640  
768  
896 1023  
0
128  
256  
384  
512  
Code  
640  
768  
896 1023  
7-1. Integral Linearity Error vs Digital Input Code  
7-2. Differential Linearity Error vs Digital Input Code  
0.25  
0.2  
1
INL max, reference = VDD, gain = 1x  
INL min, reference = VDD, gain = 1x  
INL max, internal reference, gain = 1.5x  
0.8  
0.15  
0.1  
0.6  
INL min, internal reference, gain = 1.5x  
0.4  
0.05  
0
0.2  
0
-0.05  
-0.1  
-0.15  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
Reference = VDD, gain = 1x  
-0.2  
Internal reference, gain = 1.5x  
-0.25  
0
128  
256  
384  
512  
Code  
640  
768  
896 1023  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
7-3. Total Unadjusted Error vs Digital Input Code  
7-4. Integral Linearity Error vs Temperature  
1
1
0.8  
0.6  
0.4  
0.2  
0
DNL max, reference = VDD, gain = 1x  
DNL min, reference = VDD, gain = 1x  
DNL max, internal reference, gain = 1.5x  
0.8  
0.6  
DNL min, internal reference, gain = 1.5x  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
TUE max, reference = VDD, gain = 1x  
TUE min, reference = VDD, gain = 1x  
TUE max, internal reference, gain = 1.5x  
TUE min, internal reference, gain = 1.5x  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
7-5. Differential Linearity Error vs Temperature  
7-6. Total Unadjusted Error vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: DAC53401-Q1 DAC43401-Q1  
 
DAC53401-Q1, DAC43401-Q1  
ZHCSOM0 OCTOBER 2020  
www.ti.com.cn  
7.9 Typical Characteristics: VDD = 1.8 V (Reference = VDD) or VDD = 2 V (Internal Reference)  
(continued)  
at TA = 25°C, 10-bit DAC, and DAC outputs unloaded (unless otherwise noted)  
8
7
6
5
4
3
2
1
0
0.5  
0.3  
0.1  
-0.1  
-0.3  
-0.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
Reference = VDD  
7-7. Zero Code Error vs Temperature  
Reference = VDD  
7-8. Offset Error vs Temperature  
0.5  
0.5  
0.4  
0.3  
0.2  
0.1  
0
Reference = VDD, gain = 1x  
Internal reference, gain = 1.5x  
0.3  
0.1  
-0.1  
-0.3  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Reference = VDD, gain = 1x  
Internal reference, gain = 1.5x  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
7-9. Gain Error vs Temperature  
7-10. Full-Scale Error vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: DAC53401-Q1 DAC43401-Q1  
DAC53401-Q1, DAC43401-Q1  
www.ti.com.cn  
ZHCSOM0 OCTOBER 2020  
7.10 Typical Characteristics: VDD = 5.5 V (Reference = VDD) or VDD = 5 V (Internal Reference)  
at TA = 25°C, 10-bit DAC, and DAC outputs unloaded (unless otherwise noted)  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
Reference = VDD, gain = 1x  
Internal reference, gain = 4x  
Reference = VDD, gain = 1x  
Internal reference, gain = 4x  
0
128  
256  
384  
512  
Code  
640  
768  
896 1023  
0
128  
256  
384  
512  
Code  
640  
768  
896 1023  
7-11. Integral Linearity Error vs Digital Input Code  
7-12. Differential Linearity Error vs Digital Input Code  
0.5  
1
Reference = VDD, gain = 1x  
Internal reference, gain = 4x  
INL min, reference = VDD, gain = 1x  
INL max, reference = VDD, gain = 1x  
INL min, internal reference, gain = 4x  
0.4  
0.8  
0.3  
0.2  
0.1  
0
0.6  
INL max, internal reference, gain = 4x  
0.4  
0.2  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
128  
256  
384  
512  
Code  
640  
768  
896 1023  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
7-13. Total Unadjusted Error vs Digital Input Code  
7-14. Integral Linearity Error vs Temperature  
1
0.5  
DNL max, reference = VDD, gain = 1x  
DNL min, reference = VDD, gain = 1x  
DNL max, internal reference, gain = 4x  
TUE max, reference = VDD, gain = 1x  
TUE min, reference = VDD, gain = 1x  
TUE max, internal reference, gain = 4x  
TUE min, internal reference, gain = 4x  
0.8  
0.4  
0.3  
0.2  
0.1  
0
0.6  
DNL min, internal reference, gain = 4x  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
7-15. Differential Linearity Error vs Temperature  
7-16. Total Unadjusted Error vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: DAC53401-Q1 DAC43401-Q1  
 
DAC53401-Q1, DAC43401-Q1  
ZHCSOM0 OCTOBER 2020  
www.ti.com.cn  
7.10 Typical Characteristics: VDD = 5.5 V (Reference = VDD) or VDD = 5 V (Internal Reference)  
(continued)  
at TA = 25°C, 10-bit DAC, and DAC outputs unloaded (unless otherwise noted)  
2
1.5  
1
0.5  
0.3  
0.5  
0
0.1  
-0.1  
-0.3  
-0.5  
-0.5  
-1  
-1.5  
-2  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
Reference = VDD  
7-17. Zero Code Error vs Temperature  
Reference = VDD  
7-18. Offset Error vs Temperature  
0.5  
0.5  
Reference = VDD, gain = 1x  
Internal reference, gain = 4x  
Reference = VDD, gain 1x  
Internal reference, gain 4x  
0.3  
0.3  
0.1  
0.1  
-0.1  
-0.3  
-0.5  
-0.1  
-0.3  
-0.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
7-19. Gain Error vs Temperature  
7-20. Full-Scale Error vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: DAC53401-Q1 DAC43401-Q1  
DAC53401-Q1, DAC43401-Q1  
www.ti.com.cn  
ZHCSOM0 OCTOBER 2020  
7.11 Typical Characteristics  
at TA = 25°C, 10-bit DAC, and DAC outputs unloaded (unless otherwise noted)  
Reference = VDD  
7-21. Integral Linearity Error  
Reference = VDD  
7-22. Differential Linearity Error  
vs Supply Voltage  
vs Supply Voltage  
Reference = VDD  
Reference = VDD  
7-23. Total Unadjusted Error  
7-24. Zero-Code Error  
vs Supply Voltage  
vs Supply Voltage  
Reference = VDD  
7-25. Offset Error vs Supply Voltage  
Reference = VDD  
7-26. Gain Error vs Supply Voltage  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: DAC53401-Q1 DAC43401-Q1  
 
DAC53401-Q1, DAC43401-Q1  
ZHCSOM0 OCTOBER 2020  
www.ti.com.cn  
7.11 Typical Characteristics (continued)  
at TA = 25°C, 10-bit DAC, and DAC outputs unloaded (unless otherwise noted)  
0.4  
0.35  
0.3  
Reference = VDD, gain = 1x  
Internal reference, gain = 1.5x  
0.25  
0.2  
0.15  
0.1  
0.05  
0
0
128  
256  
384  
512  
Code  
640  
768  
896 1023  
VDD = 1.8 V  
Reference = VDD  
7-27. Full-Scale Error vs Supply Voltage  
7-28. Supply Current vs Digital Input Code  
0.4  
0.35  
0.3  
0.4  
0.35  
0.3  
Reference = VDD, gain = 1x  
Internal reference, gain = 4x  
IDD, VDD = 1.8 V  
IDD, VDD = 3.3 V  
IDD, VDD = 5.5 V  
0.25  
0.2  
0.25  
0.2  
0.15  
0.1  
0.15  
0.1  
0.05  
0
0.05  
0
0
128  
256  
384  
512  
Code  
640  
768  
896 1023  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
VDD = 5.5 V  
7-29. Supply Current vs Digital Input Code  
Reference = VDD, DAC at midscale  
7-30. Supply Current vs Temperature  
0.4  
0.35  
0.3  
IDD, VDD = 3.3 V  
IDD, VDD = 5.5 V  
0.25  
0.2  
0.15  
0.1  
0.05  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
DAC at midscale  
Internal reference (gain = 4x), DAC at midscale  
7-32. Supply Current vs Supply Voltage  
7-31. Supply Current vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: DAC53401-Q1 DAC43401-Q1  
DAC53401-Q1, DAC43401-Q1  
www.ti.com.cn  
ZHCSOM0 OCTOBER 2020  
7.11 Typical Characteristics (continued)  
at TA = 25°C, 10-bit DAC, and DAC outputs unloaded (unless otherwise noted)  
0.1  
0.0875  
0.075  
0.0625  
0.05  
6
5
4
3
2
0.0375  
0.025  
0.0125  
0
1
0
IDD, VDD = 1.8 V  
IDD, VDD = 3.3 V  
IDD, VDD = 5.5 V  
-1  
-2  
Reference = VDD = 1.8 V  
Reference = VDD = 5.5 V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
-20  
-15  
-10  
-5  
0
5
Load Current (mA)  
10  
15  
20  
Reference = VDD, DAC powered down  
7-33. Power-Down Current vs Temperature  
7-34. Source and Sink Capability  
Reference = VDD = 5.5 V, DAC code transition from midscale  
Reference = VDD = 5.5 V, DAC code transition from midscale  
to midscale + 1 LSB, DAC load = 5kΩ|| 200pF  
to midscale 1 LSB, DAC load = 5kΩ|| 200pF  
7-35. Glitch Impulse, Rising Edge,  
7-36. Glitch Impulse, Falling Edge,  
1-LSB Step  
1-LSB Step  
Reference = VDD = 5.5 V, DAC load = 5kΩ|| 200pF  
7-37. Full-Scale Settling Time, Rising Edge  
Reference = VDD = 5.5 V, DAC load = 5kΩ|| 200pF  
7-38. Full-Scale Settling Time, Falling Edge  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: DAC53401-Q1 DAC43401-Q1  
DAC53401-Q1, DAC43401-Q1  
ZHCSOM0 OCTOBER 2020  
www.ti.com.cn  
7.11 Typical Characteristics (continued)  
at TA = 25°C, 10-bit DAC, and DAC outputs unloaded (unless otherwise noted)  
VDD (1 V / div)  
VOUT unloaded (500 mV / div)  
VOUT 10K-GND (15 mV / div)  
VDD (1 V / div)  
VOUT unloaded (500 mV / div)  
VOUT 10K-GND (15 mV / div)  
0
5
10  
15  
20  
25  
Time (ms)  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
Time (ms)  
30  
35  
40  
45  
50  
Reference = VDD = 5.5 V  
7-39. Power-on Glitch  
Reference = VDD = 5.5 V  
7-40. Power-off Glitch  
-40  
VOUT (6 mV / div)  
SCL (4 V / div)  
-50  
-60  
-70  
-80  
-90  
-100  
0
1
2
3
4
5
10  
20 30 50 70100 200  
500 1000 2000 5000 10000  
Time (ms)  
Frequency (Hz)  
Reference = VDD = 5.5 V, Fast+ mode, DAC at midscale, DAC  
Internal reference (gain = 4x), VDD = 5.25 V + 0.25 VPP, DAC  
load = 5kΩ|| 200pF  
at midscale, DAC load = 5kΩ|| 200pF  
7-41. Clock Feedthrough  
7-42. DAC Output AC PSRR vs Frequency  
Reference = VDD = 5.5 V  
Internal reference (gain = 4x), VDD = 5.5 V  
7-43. DAC Output Noise Spectral Density  
7-44. DAC Output Noise Spectral Density  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: DAC53401-Q1 DAC43401-Q1  
DAC53401-Q1, DAC43401-Q1  
www.ti.com.cn  
ZHCSOM0 OCTOBER 2020  
7.11 Typical Characteristics (continued)  
at TA = 25°C, 10-bit DAC, and DAC outputs unloaded (unless otherwise noted)  
Reference = VDD = 5.5 V, DAC at midscale  
Internal reference (gain = 4x), VDD = 5.5 V, DAC at midscale  
7-45. DAC Output Noise: 0.1 Hz to 10 Hz  
7-46. DAC Output Noise: 0.1 Hz to 10 Hz  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: DAC53401-Q1 DAC43401-Q1  
DAC53401-Q1, DAC43401-Q1  
ZHCSOM0 OCTOBER 2020  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The 10-bit DAC53401-Q1 and 8-bit DAC43401-Q1 (DACx3401-Q1) are a pin-compatible family of automotive,  
buffered voltage-output, smart digital-to-analog converters (DACs). These smart DACs contain nonvolatile  
memory (NVM), an internal reference, a PMBus-compatible I2C interface, and a force-sense output. The  
DACx3401-Q1 operate with either an internal reference or with a power supply as the reference, and provide a  
full-scale output of 1.8 V to 5.5 V.  
The devices communicate through an I2C interface and support I2C standard mode (100 kbps), fast mode (400  
kbps), and fast mode plus (1 Mbps). These devices also support specific PMBus commands such as turn on/off,  
margin high or low, and more. The DACx3401-Q1 also include digital slew rate control, and support basic signal  
generation such as square, ramp, and sawtooth waveforms. These devices can generate pulse-width modulation  
(PWM) output with the combination of the triangular or sawtooth waveform and the FB pin. These features  
enable DACx3401-Q1 to go beyond the limitations of a conventional DAC that depends on a processor to  
function. Because of processor-less operation and the smart feature set, the DACx3401-Q1 are called smart  
DACs.  
The DACx3401-Q1 devices have a power-on-reset (POR) circuit that makes sure all the registers start with  
default or user-programmed settings using NVM. The DAC output powers on in high-impedance mode (default);  
this setting can be programmed to 10k-GND using NVM.  
8.2 Functional Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: DAC53401-Q1 DAC43401-Q1  
 
 
 
DAC53401-Q1, DAC43401-Q1  
www.ti.com.cn  
ZHCSOM0 OCTOBER 2020  
8.3 Feature Description  
8.3.1 Digital-to-Analog Converter (DAC) Architecture  
The DACx3401-Q1 family of devices consists of string architecture with an output buffer amplifier. 8.2 shows  
the DAC architecture within the block diagram. This DAC architecture operates from a 1.8-V to 5.5-V power  
supply. These devices consume only 0.2 mA of current when using a 1.8-V power supply. The DAC output pin  
starts up in high impedance mode making it an excellent choice for power-supply control applications. To change  
the power-up mode to 10k-GND, program the DAC_PDN bit (address: D1h), and load these bits in the device  
NVM. The DACx3401-Q1 devices include a smart feature set to enable processor-less operation and high-  
integration. The NVM enables a predictable startup. The integrated functions and the FB pin enable PWM output  
for control applications. The FB pin enables this device to be used as a programmable comparator. The digital  
slew rate control and the Hi-Z power-down modes enable a hassle-free voltage margining and function.  
8.3.1.1 Reference Selection and DAC Transfer Function  
The device writes the input data to the DAC data registers in straight-binary format. After a power-on or a reset  
event, the device sets all DAC registers to the values set in the NVM.  
8.3.1.1.1 Power Supply as Reference  
By default, the DACx3401-Q1 operate with the power-supply pin (VDD) as a reference. 方程式 1 shows DAC  
transfer function when the power-supply pin is used as reference.  
DAC _DATA  
2N  
VOUT  
=
ì VDD  
(1)  
where  
N is the resolution in bits, either 8 (DAC43401-Q1) or 10 (DAC53401-Q1).  
DAC_DATA is the decimal equivalent of the binary code that is loaded to the DAC register.  
DAC_DATA ranges from 0 to 2N 1.  
VDD is used as the DAC reference voltage.  
8.3.1.1.2 Internal Reference  
The DACx3401-Q1 also contain an internal reference that is disabled by default. Enable the internal reference  
by writing 1 to REF_EN (address D1h). The internal reference generates a fixed 1.21-V voltage (typical). Using  
DAC_SPAN (address D1h) bits, gain of 1.5x, 2x, 3x, 4x can be achieved for the DAC output voltage (VOUT) 方程  
2 shows DAC transfer function when the internal reference is used.  
DAC_DATA  
2N  
VOUT  
=
ì VREF ìGAIN  
(2)  
where  
N is the resolution in bits, either 8 (DAC43401-Q1) or 10 (DAC53401-Q1).  
DAC_DATA is the decimal equivalent of the binary code that is loaded to the DAC register  
DAC_DATA ranges from 0 to 2N 1.  
VREF is the internal reference voltage = 1.21 V.  
GAIN = 1.5x, 2x, 3x, 4x based on DAC_SPAN (address D1h) bits.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: DAC53401-Q1 DAC43401-Q1  
 
 
 
DAC53401-Q1, DAC43401-Q1  
ZHCSOM0 OCTOBER 2020  
www.ti.com.cn  
8.3.2 DAC Update  
The DAC output pin (OUT) is updated at the end of I2C DAC write frame.  
8.3.2.1 DAC Update Busy  
The DAC_UPDATE_BUSY bit (address D0h) is set to 1 by the device when certain DAC update operations,  
such as function generation, transition to margin high or low, or any of the medical alarms are in progress. When  
the DAC_UPDATE_BUSY bit is set to 1, do not write to any of the DAC registers. After the DAC update  
operation is completed (DAC_UPDATE_BUSY = 0), any of the DAC registers can be written.  
8.3.3 Nonvolatile Memory (EEPROM or NVM)  
The DACx3401-Q1 contain nonvolatile memory (NVM) bits. These memory bits are user programmable and  
erasable, and retain the set values in the absence of a power supply. All the register bits, as shown in 8-1,  
can be stored in the device NVM by setting NVM_PROG = 1 (address D3h). The NVM_BUSY bit (address D0h)  
is set to 1 by device when a NVM write or reload operation is ongoing. During this time, the device blocks all  
write operations to the device. The NVM_BUSY bit is set to 0 after the write or reload operation is complete; at  
this point, all write operations to the device are allowed. The default value for all the registers in the DACx3401-  
Q1 is loaded from NVM as soon as a POR event is issued. Do not perform a read operation from the DAC  
register while NVM_BUSY = 1.  
8-1. NVM Programmable Registers  
REGISTER ADDRESS  
REGISTER NAME  
BIT ADDRESS  
BIT NAME  
FUNC_CONFIG  
15:14  
13  
DEVICE_LOCK  
11:9  
8:5  
4:3  
2
CODE_STEP  
D1h  
GENERAL_CONFIG  
SLEW_RATE  
DAC_PDN  
REF_EN  
1:0  
8
DAC_SPAN  
D3h  
10h  
25h  
26h  
TRIGGER  
START_FUNC_GEN  
DAC_DATA  
DAC_DATA  
11:2  
11:4  
11:4  
DAC_MARGIN_HIGH  
DAC_MARGIN_LOW  
MARGIN_HIGH (8 most significant bits)  
MARGIN_LOW (8 most significant bits)  
The DACx3401-Q1 also implement NVM_RELOAD bit (address D3h). Set this bit to 1 for the device to start an  
NVM reload operation. After the operation is complete, the device autoresets this bit to 0. During the  
NVM_RELOAD operation, the NVM_BUSY bit is set to 1.  
8.3.3.1 NVM Cyclic Redundancy Check  
The DACx3401-Q1 implement a cyclic redundancy check (CRC) feature for the device NVM to make sure that  
the data stored in the device NVM is uncorrupted. There are two types of CRC alarm bits implemented in  
DACx3401-Q1:  
NVM_CRC_ALARM_USER  
NVM_CRC_ALARM_INTERNAL  
The NVM_CRC_ALARM_USER bit indicates the status of user-programmable NVM bits, and the  
NVM_CRC_ALARM_INTERNAL bit indicates the status of internal NVM bits The CRC feature is implemented by  
storing a 10-Bit CRC (CRC-10-ATM) along with the NVM data each time NVM program operation (write or  
reload) is performed and during the device start up. The device reads the NVM data and validates the data with  
the stored CRC. The CRC alarm bits (NVM_CRC_ALARM_USER and NVM_CRC_ALARM_INTERNAL address  
D0h) report any errors after the data are read from the device NVM.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: DAC53401-Q1 DAC43401-Q1  
 
DAC53401-Q1, DAC43401-Q1  
www.ti.com.cn  
ZHCSOM0 OCTOBER 2020  
8.3.3.2 NVM_CRC_ALARM_USER Bit  
A logic 1 on NVM_CRC_ALARM_USER bit indicates that the user-programmable NVM data is corrupt. During  
this condition, all registers in the DAC are initialized with factory reset values, and any DAC registers can be  
written to or read from. To reset the alarm bits to 0, issue a software reset (see 8.3.6) command, or cycle  
power to the DAC. Alternatively, cycle the power to reload the user-programmable NVM bits.  
8.3.3.3 NVM_CRC_ALARM_INTERNAL Bit  
A logic 1 on NVM_CRC_ALARM_INTERNAL bit indicates that the internal NVM data is corrupt. During this  
condition, all registers in the DAC are initialized with factory reset values, and any DAC registers can be written  
to or read from. To reset the alarm bits to 0, issue a software reset (see 8.3.6) command or cycle power to the  
DAC.  
8.3.4 Programmable Slew Rate  
When the DAC data registers are written, the voltage on DAC output (VOUT) immediately transitions to the new  
code following the slew rate and settling time specified in 7.5. The slew rate control feature allows the user to  
control the rate at which the output voltage (VOUT) changes. When this feature is enabled (using  
SLEW_RATE[3:0] bits), the DAC output changes from the current code to the code in MARGIN_HIGH (address  
25h) or MARGIN_LOW (address 26h) registers (when margin high or low commands are issued to the DAC)  
using the step and rate set in CODE_STEP and SLEW_RATE bits. With the default slew rate control setting  
(CODE_STEP and SLEW_RATE bits, address D1h), the output changes smoothly at a rate limited by the output  
drive circuitry and the attached load. Using this feature, the output steps digitally at a rate defined by bits  
CODE_STEP and SLEW_RATE on address D1h. SLEW_RATE defines the rate at which the digital slew  
updates; CODE_STEP defines the amount by which the output value changes at each update. 8-2 and 8-3  
show different settings for CODE_STEP and SLEW_RATE.  
When the slew rate control feature is used, the output changes happen at the programmed slew rate. This  
configuration results in a staircase formation at the output. Do not write to CODE_STEP, SLEW_RATE, or  
DAC_DATA during the output slew.  
8-2. Code Step  
REGISTER ADDRESS  
CODE_STEP[2]  
CODE_STEP[1]  
CODE_STEP[0]  
COMMENT  
AND NAME  
Code step size = 1 LSB  
(default)  
0
0
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
Code step size = 2 LSB  
Code step size = 3 LSB  
Code step size = 4 LSB  
Code step size = 6 LSB  
Code step size = 8 LSB  
Code step size = 16 LSB  
Code step size = 32 LSB  
D1h, GENERAL_CONFIG  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: DAC53401-Q1 DAC43401-Q1  
 
DAC53401-Q1, DAC43401-Q1  
ZHCSOM0 OCTOBER 2020  
www.ti.com.cn  
COMMENT  
8-3. Slew Rate  
REGISTER  
ADDRESS AND  
NAME  
SLEW_RATE[3]  
SLEW_RATE[2]  
SLEW_RATE[1]  
SLEW_RATE[0]  
25.6 µs  
(per step)  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
25.6 µs × 1.25  
(per step)  
25.6 µs × 1.50  
(per step)  
25.6 µs × 1.75  
(per step)  
204.8 µs  
(per step)  
204.8 µs × 1.25  
(per step)  
204.8 µs × 1.50  
(per step)  
D1h,  
GENERAL_CONFIG  
204.8 µs × 1.75  
(per step)  
0
1
1
1
0
0
1
0
0
1
0
1
1.6384 ms (per step)  
1.6384 ms × 1.25  
(per step)  
1.6384 ms × 1.50  
(per step)  
1
1
0
0
1
1
0
1
1.6384 ms × 1.75  
(per step)  
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
12 µs (per step)  
8 µs (per step)  
4 µs (per step)  
No slew (default)  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: DAC53401-Q1 DAC43401-Q1  
 
DAC53401-Q1, DAC43401-Q1  
www.ti.com.cn  
ZHCSOM0 OCTOBER 2020  
8.3.5 Power-on-Reset (POR)  
The DACx3401-Q1 family of devices includes a power-on reset (POR) function that controls the output voltage at  
power up. After the VDD supply has been established, a POR event is issued. The POR causes all registers to  
initialize to default values, and communication with the device is valid only after a 30-ms, POR delay. The default  
value for all the registers in the DACx3401-Q1 is loaded from NVM as soon as the POR event is issued.  
When the device powers up, a POR circuit sets the device to the default mode. The POR circuit requires specific  
VDD levels, as indicated in 8-1, in order to make sure that the internal capacitors discharge and reset the  
device on power up. To make sure that a POR occurs, VDD must be less than 0.7 V for at least 1 ms. When VDD  
drops to less than 1.65 V, but remains greater than 0.7 V (shown as the undefined region), the device may or  
may not reset under all specified temperature and power-supply conditions. In this case, initiate a POR. When  
VDD remains greater than 1.65 V, a POR does not occur.  
VDD (V)  
5.5 V  
Specified supply  
voltage range  
No power-on reset  
1.71 V  
1.65 V  
Undefined  
0.7 V  
Power-on reset  
0 V  
8-1. Threshold Levels for VDD POR Circuit  
8.3.6 Software Reset  
To initiate a device software reset event, write the reserved code 1010 to the SW_RESET (address D3h). A  
software reset initiates a POR event.  
8.3.7 Device Lock Feature  
The DACx3401-Q1 implement a device lock feature that prevents an accidental or unintended write to the DAC  
registers. The device locks all the registers when the DEVICE_LOCK bit (address D1h) is set to 1. To bypass the  
DEVICE_LOCK setting, write 0101 to the DEVICE_UNLOCK_CODE bits (address D3h).  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: DAC53401-Q1 DAC43401-Q1  
 
 
DAC53401-Q1, DAC43401-Q1  
ZHCSOM0 OCTOBER 2020  
www.ti.com.cn  
8.3.8 PMBus Compatibility  
The PMBus protocol is an I2C-based communication standard for power-supply management. PMBus contains  
standard command codes tailored to power supply applications. The DACx3401-Q1 implement some PMBus  
commands such as Turn Off, Turn On, Margin Low, Margin High, Communication Failure Alert Bit (CML), as well  
as PMBUS revision. 8-2 shows typical PMBus connections. The EN_PMBus bit (Bit 12, address D1h) must be  
set to 1 to enable the PMBus protocol.  
PMBus-compatible device #1  
ALERT  
CONTROL  
DATA  
CLOCK  
Alert signal  
PMBus-compatible device #2  
ALERT  
Control signal  
CONTROL  
Data  
DATA  
Clock  
CLOCK  
Optional  
Required  
PMBus-compatible device #3  
ALERT  
CONTROL  
DATA  
CLOCK  
8-2. PMBus Connections  
Similar to I2C, PMBus is a variable length packet of 8-bit data bytes, each with a receiver acknowledge, wrapped  
between a start and stop bit. The first byte is always a 7-bit slave address followed by a write bit, sometimes  
called the even address that identifies the intended receiver of the packet. The second byte is an 8-bit command  
byte, identifying the PMBus command being transmitted using the respective command code. After the  
command byte, the transmitter either sends data associated with the command to write to the receiver command  
register (from most significant byte to least significant byte), or sends a new start bit indicating the desire to read  
the data associated with the command register from the receiver. After, the receiver transmits the data following  
the same most significant byte first format (see 8-7).  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: DAC53401-Q1 DAC43401-Q1  
 
DAC53401-Q1, DAC43401-Q1  
www.ti.com.cn  
ZHCSOM0 OCTOBER 2020  
8.4 Device Functional Modes  
8.4.1 Power Down Mode  
The DACx3401-Q1 output amplifier and internal reference can be independently powered down through the  
DAC_PDN bits (address D1h). At power up, the DAC output and the internal reference are disabled by default.  
In power-down mode, the DAC output (OUT pin) is in a high-impedance state. To change this state to 10k-  
AGND (at power up), use the DAC_PDN bits (address D1h).  
The DAC power-up state can be programmed to any state (power-down or normal mode) using the NVM. 8-4  
shows the DAC power-down bits.  
8-4. DAC Power-Down Bits  
REGISTER ADDRESS AND NAME  
DAC_PDN[1]  
DAC_PDN[0]  
DESCRIPTION  
Power up  
0
0
0
1
Power down to 10 kΩ  
D1h, GENERAL_CONFIG  
Power down to high impedance (Hi-Z)  
(default)  
1
1
0
1
Power down to 10 kΩ  
8.4.2 Continuous Waveform Generation (CWG) Mode  
The DACx3401-Q1 implement a continuous waveform generation feature. To set the device to this mode, set the  
START_FUNC_GEN (address D3h) to 1. In this mode, the DAC output pin (OUT) generates a continuous  
waveform based on the FUNC_CONFIG bits (address D1h). 8-5 shows the continuous waveforms that can be  
generated in this mode. The frequency of the waveform depends on the resistive and capacitive load on the  
OUT pin, high and low codes, and slew rate settings as shown in the following equations.  
1
fSQUARE-WAVE  
=
2ìSLEW _RATE  
(3)  
(4)  
(5)  
1
fTRIANGLE-WAVE  
=
MARGIN_HIGH -MARGIN_LOW +1’  
CODE _STEP  
2ìSLEW _RATEì  
÷
«
1
fSAWTOOTH-WAVE  
=
MARGIN_HIGH-MARGIN_LOW +1’  
CODE_STEP  
SLEW _RATEì  
÷
«
where:  
SLEW_RATE is the programmable DAC slew rate specified in 8-3.  
MARGIN_HIGH and MARGIN_LOW are the programmable DAC codes.  
CODE_STEP is the programmable DAC step code in 8-2.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: DAC53401-Q1 DAC43401-Q1  
 
 
DAC53401-Q1, DAC43401-Q1  
ZHCSOM0 OCTOBER 2020  
www.ti.com.cn  
8-5. FUNC_CONFIG bits  
REGISTER ADDRESS AND NAME  
FUNC_CONFIG[1]  
FUNC_CONFIG[0]  
DESCRIPTION  
Generates a triangle wave between  
MARGIN_HIGH (address 25h) code to  
MARGIN_LOW (address 26h) code with  
slope defined by SLEW_RATE (address  
D1h) bits  
0
0
Generates Saw-Tooth wave between  
MARGIN_HIGH (address 25h) code to  
MARGIN_LOW (address 26h) code, with  
rising slope defined by SLEW_RATE  
(address D1h) bits and immediate falling  
edge  
0
1
D1h, GENERAL_CONFIG  
Generates Saw-Tooth wave between  
MARGIN_HIGH (address 25h) code to  
MARGIN_LOW (address 26h) code, with  
falling slope defined by SLEW_RATE  
(address D1h) bits and immediate rising  
edge  
1
1
0
1
Generates a square wave between  
MARGIN_HIGH (address 25h) code to  
MARGIN_LOW (address 26h) code with  
pulse high and low period defined by  
SLEW_RATE (address D1h) bits  
8.4.3 PMBus Compatibility Mode  
The DACx3401-Q1 I2C interface implements some of the PMBus commands. 8-6 shows the supported  
PMBus commands that are implemented in DACx3401-Q1.The DAC uses MARGIN_LOW (address 26h),  
MARGIN_HIGH (address 25h) bits, SLEW_RATE, and CODE_STEP bits (address D1h) for  
PMBUS_OPERATION_CMD. The EN_PMBus bit (Bit 12, address D1h) must be set to 1 to enable the PMBus  
protocol.  
8-6. PMBus Operation Commands  
REGISTER ADDRESS AND NAME  
PMBUS_OPERATION_CMD[15:8]  
DESCRIPTION  
Turn off  
00h  
80h  
94h  
A4h  
Turn on  
01h, PMBUS_OPERATION  
Margin low  
Margin high  
The DACx3401-Q1 also implement PMBus features such as group command protocol and communication time-  
out failure. The CML bit (address 78h) indicates a communication fault in the PMBus. This bit is reset by writing  
1. In case of timeout, if the SDA line is held low, the SDA line stays low during the time-out event until next SCL  
pulse is received.  
To get the PMBus version, read the PMBUS_VERSION bits (address 98h).  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: DAC53401-Q1 DAC43401-Q1  
 
 
DAC53401-Q1, DAC43401-Q1  
www.ti.com.cn  
ZHCSOM0 OCTOBER 2020  
8.5 Programming  
The DACx3401-Q1 devices have a 2-wire serial interface (SCL and SDA), and one address pin (A0), as shown  
in the pin diagram of 6. The I2C bus consists of a data line (SDA) and a clock line (SCL) with pullup  
structures. When the bus is idle, both SDA and SCL lines are pulled high. All the I2C-compatible devices connect  
to the I2C bus through the open drain I/O pins, SDA and SCL.  
The I2C specification states that the device that controls communication is called a master, and the devices that  
are controlled by the master are called slaves. The master device generates the SCL signal. The master device  
also generates special timing conditions (start condition, repeated start condition, and stop condition) on the bus  
to indicate the start or stop of a data transfer. Device addressing is completed by the master. The master device  
on an I2C bus is typically a microcontroller or digital signal processor (DSP). The DACx3401-Q1 family operates  
as a slave device on the I2C bus. A slave device acknowledges master commands, and upon master control,  
receives or transmits data.  
Typically, theDACx3401-Q1 family operates as a slave receiver. A master device writes to the DACx3401-Q1, a  
slave receiver. However, if a master device requires the DACx3401-Q1 internal register data, the DACx3401-Q1  
operate as a slave transmitter. In this case, the master device reads from the DACx3401-Q1. According to I2C  
terminology, read and write refer to the master device.  
The DACx3401-Q1 family is a slave and supports the following data transfer modes:  
Standard mode (100 kbps)  
Fast mode (400 kbps)  
Fast mode plus (1.0 Mbps)  
The data transfer protocol for standard and fast modes is exactly the same; therefore, both modes are referred  
to as F/S-mode in this document. The fast mode plus protocol is supported in terms of data transfer speed, but  
not output current. The low-level output current would be 3 mA; similar to the case of standard and fast modes.  
The DACx3401-Q1 family supports 7-bit addressing. The 10-bit addressing mode is not supported. The device  
supports the general call reset function. Sending the following sequence initiates a software reset within the  
device: start or repeated start, 0x00, 0x06, stop. The reset is asserted within the device on the rising edge of the  
ACK bit, following the second byte.  
Other than specific timing signals, the I2C interface works with serial bytes. At the end of each byte, a ninth clock  
cycle generates and detects an acknowledge signal. An acknowledge is when the SDA line is pulled low during  
the high period of the ninth clock cycle. A not-acknowledge is when the SDA line is left high during the high  
period of the ninth clock cycle, as shown in 8-3.  
Data output  
by transmitter  
Not acknowledge  
Data output  
by receiver  
Acknowledge  
2
9
1
8
SCL from  
master  
S
Clock pulse for  
acknowledgement  
Start  
condition  
8-3. Acknowledge and Not Acknowledge on the I2C Bus  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: DAC53401-Q1 DAC43401-Q1  
 
 
 
DAC53401-Q1, DAC43401-Q1  
ZHCSOM0 OCTOBER 2020  
www.ti.com.cn  
8.5.1 F/S Mode Protocol  
The following steps explain a complete transaction in F/S mode.  
1. The master initiates data transfer by generating a start condition. The start condition is when a high-to-low  
transition occurs on the SDA line while SCL is high, as shown in 8-4. All I2C-compatible devices  
recognize a start condition.  
2. The master then generates the SCL pulses, and transmits the 7-bit address and the read/write direction bit  
(R/W) on the SDA line. During all transmissions, the master makes sure that data are valid. A valid data  
condition requires the SDA line to be stable during the entire high period of the clock pulse, as shown in 图  
8-5. All devices recognize the address sent by the master and compare the address to the respective  
internal fixed address. Only the slave device with a matching address generates an acknowledge by pulling  
the SDA line low during the entire high period of the 9th SCL cycle, as shown in Figure 8-3. When the  
master detects this acknowledge, the communication link with a slave has been established.  
3. The master generates further SCL cycles to transmit (R/W bit 0) or receive (R/W bit 1) data to the slave. In  
either case, the receiver must acknowledge the data sent by the transmitter. The acknowledge signal can be  
generated by the master or by the slave, depending on which is the receiver. The 9-bit valid data sequences  
consists of 8-data bits and 1 acknowledge-bit, and can continue as long as necessary.  
4. To signal the end of the data transfer, the master generates a stop condition by pulling the SDA line from  
low-to-high while the SCL line is high, as shown in 8-4. This action releases the bus and stops the  
communication link with the addressed slave. All I2C-compatible devices recognize the stop condition. Upon  
receipt of a stop condition, the bus is released, and all slave devices then wait for a start condition followed  
by a matching address.  
SDA  
SDA  
SCL  
SCL  
S
P
Start  
condition  
Stop  
condition  
Change of data  
allowed  
Data line stable  
Data valid  
8-4. Start and Stop Conditions  
8-5. Bit Transfer on the I2C Bus  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: DAC53401-Q1 DAC43401-Q1  
 
DAC53401-Q1, DAC43401-Q1  
www.ti.com.cn  
ZHCSOM0 OCTOBER 2020  
8.5.2 I2C Update Sequence  
For a single update, the DACx3401-Q1 require a start condition, a valid I2C address byte, a command byte, and  
two data bytes, as listed in 8-7.  
8-7. Update Sequence  
MSB  
....  
LSB  
ACK  
MSB  
...  
LSB  
ACK  
MSB  
...  
LSB  
ACK  
MSB  
...  
LSB  
ACK  
Address (A) byte  
Command byte  
8.5.2.2  
Data byte - MSDB  
DB [15:8]  
Data byte - LSDB  
DB [7:0]  
8.5.2.1  
DB [31:24]  
DB [23:16]  
After each byte is received, the DACx3401-Q1 family acknowledges the byte by pulling the SDA line low during  
the high period of a single clock pulse, as shown in 8-6. These four bytes and acknowledge cycles make up  
the 36 clock cycles required for a single update to occur. A valid I2C address byte selects the DACx3401-Q1  
devices.  
Recognize  
START or  
REPEATED  
Recognize  
STOP or  
REPEATED  
Generate ACKNOWLEDGE  
START  
START  
signal  
condition  
condition  
P
SDA  
Sr  
MSB  
Acknowledgement  
signal from Slave  
Address  
R/W  
1
SCL  
1
7
8
9
2 - 8  
9
Sr  
or  
P
S
or  
Sr  
ACK  
ACK  
START or  
REPEATED  
START or  
STOP  
REPEATED  
START  
condition  
Clock line held low while  
interrupts are serviced  
condition  
8-6. I2C Bus Protocol  
The command byte sets the operating mode of the selected DACx3401-Q1 device. For a data update to occur  
when the operating mode is selected by this byte, the DACx3401-Q1 device must receive two data bytes: the  
most significant data byte (MSDB) and least significant data byte (LSDB). The DACx3401-Q1 device performs  
an update on the falling edge of the acknowledge signal that follows the LSDB.  
When using fast mode (clock = 400 kHz), the maximum DAC update rate is limited to 10 kSPS. Using the fast  
mode plus (clock = 1 MHz), the maximum DAC update rate is limited to 25 kSPS. When a stop condition is  
received, the DACx3401-Q1 device releases the I2C bus and awaits a new start condition.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: DAC53401-Q1 DAC43401-Q1  
 
 
DAC53401-Q1, DAC43401-Q1  
ZHCSOM0 OCTOBER 2020  
www.ti.com.cn  
8.5.2.1 Address Byte  
The address byte, as shown in 8-8, is the first byte received from the master device following the start  
condition. The first four bits (MSBs) of the address are factory preset to 1001. The next three bits of the address  
are controlled by the A0 pin. The A0 pin input can be connected to VDD, AGND, SCL, or SDA. The A0 pin is  
sampled during the first byte of each data frame to determine the address. The device latches the value of the  
address pin, and consequently responds to that particular address according to 8-9.  
8-8. Address Byte  
COMMENT  
MSB  
LSB  
AD6  
1
AD5  
0
AD4  
0
AD3  
AD2  
AD1  
AD0  
R/ W  
See 8-9  
General address  
1
0
0 or 1  
0
(slave address column)  
Broadcast address  
1
0
0
1
1 1  
The DACx3401-Q1 supports broadcast addressing, which is used for synchronously updating or powering down  
multiple DACx3401-Q1 devices. When the broadcast address is used, the DACx3401-Q1 responds regardless of  
the address pin state. Broadcast is supported only in write mode.  
8-9. Address Format  
SLAVE ADDRESS  
A0 PIN  
AGND  
VDD  
000  
001  
010  
011  
SDA  
SCL  
8.5.2.2 Command Byte  
8-10 lists the command byte.  
8-10. Command Byte (Register Names)  
ADDRESS  
REGISTER NAME  
D0h  
STATUS  
D1h  
GENERAL_CONFIG  
TRIGGER  
D3h  
21h  
DAC_DATA  
25h  
DAC_MARGIN_HIGH  
DAC_MARGIN_LOW  
PMBUS_OP  
26h  
01h  
78h  
PMBUS_STATUS_BYTE  
PMBUS_VERSION  
98h  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: DAC53401-Q1 DAC43401-Q1  
 
 
 
 
 
DAC53401-Q1, DAC43401-Q1  
www.ti.com.cn  
ZHCSOM0 OCTOBER 2020  
8.5.3 I2C Read Sequence  
To read any register the following command sequence must be used:  
1. Send a start or repeated start command with a slave address and the R/ W bit set to 0 for writing. The device  
acknowledges this event.  
2. Send a command byte for the register to be read. The device acknowledges this event again.  
3. Send a repeated start with the slave address and the R/ W bit set to 1 for reading. The device acknowledges  
this event.  
4. The device writes the MSDB byte of the addressed register. The master must acknowledge this byte.  
5. Finally, the device writes out the LSDB of the register.  
An alternative reading method allows for reading back the value of the last register written. The sequence is a  
start or repeated start with the slave address and the R/ W bit set to 1, and the two bytes of the last register are  
read out.  
The broadcast address cannot be used for reading.  
8-11. Read Sequence  
R/ W  
(0)  
R/ W  
(1)  
S
MSB  
ACK MSB  
LSB ACK Sr MSB  
ACK MSB  
LSB  
ACK  
MSB  
LSB  
ACK  
ADDRESS  
BYTE  
8.5.2.1  
COMMAND  
BYTE  
8.5.2.2  
ADDRESS  
BYTE  
8.5.2.1  
Sr  
MSDB  
From Slave  
LSDB  
From Master  
Slave  
From Master  
Slave  
From Master  
Slave  
Master  
From Slave  
Master  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: DAC53401-Q1 DAC43401-Q1  
DAC53401-Q1, DAC43401-Q1  
ZHCSOM0 OCTOBER 2020  
www.ti.com.cn  
8.6 Register Map  
8-12. Register Map  
MOST SIGNIFICANT DATA BYTE (MSDB)  
LEAST SIGNIFICANT DATA BYTE (LSDB)  
ADDR  
BIT15  
BIT14  
BIT13  
BIT12  
BIT11 BIT10  
BIT9  
BIT8  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
NVM_  
CRC_  
ALARM_  
USER  
NVM_  
CRC_  
ALARM_  
INTERNAL  
DAC_  
UPDATE_  
BUSY  
NVM_  
BUSY  
D0h  
X(1)  
DEVICE_ID  
VERSION_ID  
DAC_SPAN  
DEVICE_  
LOCK  
EN_  
PMBUS  
REF_  
EN  
D1h  
D3h  
FUNC_CONFIG  
CODE_STEP  
SLEW_RATE  
DAC_PDN  
NVM_  
DEVICE_  
CONFIG_  
RESET  
START_  
FUNC_  
GEN  
PMBUS_ PMBUS_  
MARGIN_ MARGIN_  
NVM_  
DEVICE_UNLOCK_CODE  
X
SW_RESET  
RELOAD PROG  
HIGH  
LOW  
21h  
25h  
26h  
01h  
78h  
98h  
X
X
X
DAC_DATA[9:0] (10-Bit) or DAC_DATA[7:0] (8-Bit)  
X
X
X
MARGIN_HIGH[9:0] (10-Bit) or MARGIN_HIGH[7:0] (8-Bit)  
MARGIN_LOW[9:0] (10-Bit) or MARGIN_LOW[7:0] (8-Bit)  
PMBUS_OPERATION_CMD  
N/A  
X
CML  
N/A  
PMBUS_VERSION  
N/A  
(1) X = Don't care.  
8-13. Register Names  
ADDRESS  
D0h  
REGISTER NAME  
SECTION  
8.6.1  
8.6.2  
8.6.3  
8.6.4  
8.6.5  
8.6.6  
8.6.7  
8.6.8  
8.6.9  
STATUS  
D1h  
GENERAL_CONFIG  
TRIGGER  
D3h  
21h  
DAC_DATA  
25h  
DAC_MARGIN_HIGH  
DAC_MARGIN_LOW  
PMBUS_OPERATION  
PMBUS_STATUS_BYTE  
PMBUS_VERSION  
26h  
01h  
78h  
98h  
8-14. Access Type Codes  
Access Type  
Code  
Description  
X
X
Don't care  
Read Type  
R
R
Read  
Write  
Write Type  
W
W
Reset or Default Value  
-n  
Value after reset or the default  
value  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: DAC53401-Q1 DAC43401-Q1  
 
 
DAC53401-Q1, DAC43401-Q1  
www.ti.com.cn  
ZHCSOM0 OCTOBER 2020  
8.6.1 STATUS Register (address = D0h) [reset = 000Ch or 0014h]  
8-7. STATUS Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
NVM_CRC_  
ALARM_  
USER  
NVM_CRC_  
ALARM_  
INTERNAL  
NVM_  
BUSY  
DAC_  
UPDATE_  
BUSY  
X
DEVICE_ID  
VERSION_ID  
R-0h  
R-0h  
R-0h  
R-0h  
X-00h  
10-bit: R-0Ch  
8-bit: R-14h  
8-15. STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
NVM_CRC_ALARM_USER  
NVM_CRC_ALARM_INTERNAL  
NVM_BUSY  
R
0
0 : No CRC error in user NVM bits  
1: CRC error in user NVM bits  
14  
13  
R
R
0
0
0 : No CRC error in internal NVM  
1: CRC error in internal NVM bits  
0 : NVM write or load completed,write to DAC registers  
allowed  
1 : NVM write or load in progress, write to DAC registers  
not allowed  
12  
DAC_UPDATE_BUSY  
R
0
0 : DAC outputs updated, write to DAC registers allowed  
1 : DAC outputs update in progress, write to DAC  
registers not allowed  
11 - 6  
5 - 2  
1 - 0  
X
X
R
00h  
Don't care  
DEVICE_ID  
VERSION_ID  
DAC53401-Q1:  
0Ch  
DAC43401-Q1:  
14h  
DAC53401-Q1: 0Ch  
DAC43401-Q1: 14h  
8.6.2 GENERAL_CONFIG Register (address = D1h) [reset = 01F0h]  
8-8. GENERAL_CONFIG Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
FUNC_  
DEVICE_  
LOCK  
EN_  
PMBUS  
CODE_STEP  
SLEW_RATE  
R/ W-Fh  
DAC_PDN  
REF_EN DAC_SPAN  
CONFIG  
R/ W-0h  
W-0h  
R/ W-0h  
R/ W-0h  
R/ W-2h  
R/ W-0h R/ W-0h  
8-16. GENERAL_CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15 - 14 FUNC_CONFIG  
R/ W  
00  
00 : Generates a triangle wave between MARGIN_HIGH  
(address 25h) code to MARGIN_LOW (address 26h) code with  
slope defined by SLEW_RATE (address D1h) bits.  
01: Generates Saw-Tooth wave between MARGIN_HIGH  
(address 25h) code to MARGIN_LOW (address 26h) code, with  
rising slope defined by SLEW_RATE (address D1h) bits and  
immediate falling edge.  
10: Generates Saw-Tooth wave between MARGIN_HIGH  
(address 25h) code to MARGIN_LOW (address 26h) code, with  
falling slope defined by SLEW_RATE (address D1h) bits and  
immediate rising edge.  
11: Generates a square wave between MARGIN_HIGH (address  
25h) code to MARGIN_LOW (address 26h) code with pulse high  
and low period defined by SLEW_RATE (address D1h) bits.  
13  
12  
DEVICE_LOCK  
EN_PMBUS  
W
0
0
0 : Device not locked  
1: Device locked, the device locks all the registers. This bit can be  
reset (unlock device) by writing 0101 to the  
DEVICE_UNLOCK_CODE bits (address D3h)  
R/ W  
0: PMBus mode disabled  
1: PMBus mode enabled  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: DAC53401-Q1 DAC43401-Q1  
 
 
 
DAC53401-Q1, DAC43401-Q1  
ZHCSOM0 OCTOBER 2020  
www.ti.com.cn  
8-16. GENERAL_CONFIG Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
11 - 9  
CODE_STEP  
R/ W  
000  
Code step for programmable slew rate control.  
000: Code step size = 1 LSB (default)  
001: Code step size = 2 LSB  
010: Code step size = 3 LSB  
011: Code step size = 4 LSB  
100: Code step size = 6 LSB  
101: Code step size = 8 LSB  
110: Code step size = 16 LSB  
111: Code step size = 32 LSB  
8 - 5  
SLEW_RATE  
R/ W  
1111  
Slew rate for programmable slew rate control.  
0000: 25.6 µs (per step)  
0001: 25.6 µs × 1.25 (per step)  
0010: 25.6 µs × 1.50 (per step)  
0011: 25.6 µs × 1.75 (per step)  
0100: 204.8 µs (per step)  
0101: 204.8 µs × 1.25 (per step)  
0110: 204.8 µs × 1.50 (per step)  
0111: 204.8 µs × 1.75 (per step)  
1000: 1.6384 ms (per step)  
1001: 1.6384 ms × 1.25 (per step)  
1010: 1.6384 ms × 1.50 (per step)  
1011: 1.6384 ms × 1.75 (per step)  
1100: 12 µs (per step)  
1101: 8 µs (per step)  
1110: 4 µs (per step)  
1111: No slew (default)  
4 - 3  
DAC_PDN  
R/ W  
10  
00: Power up  
01: Power down to 10K  
10: Power down to high impedance (default)  
11: Power down to 10K  
2
REF_EN  
R/ W  
R/ W  
0
0: Internal reference disabled, VDD is DAC reference voltage,  
DAC output range from 0 to VDD  
1: Internal reference enabled, DAC reference = 1.21 V  
.
1 - 0  
DAC_SPAN  
00  
Only applicable when internal reference is enabled.  
00: Reference to VOUT gain 1.5X  
01: Reference to VOUT gain 2X  
10: Reference to VOUT gain 3X  
11: Reference to VOUT gain 4X  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: DAC53401-Q1 DAC43401-Q1  
DAC53401-Q1, DAC43401-Q1  
www.ti.com.cn  
ZHCSOM0 OCTOBER 2020  
8.6.3 TRIGGER Register (address = D3h) [reset = 0008h]  
8-9. TRIGGER Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DEVICE_UNLOCK_CODE  
X
X
DEVICE_ START_  
PMBUS_  
PMBUS_  
NVM_  
NVM_  
SW_RESET  
CONFIG_  
RESET  
FUNC_  
GEN  
MARGIN_ MARGIN_ RELOAD PROG  
HIGH  
LOW  
W-0h  
W-0h  
W-0h  
R/ W-0h  
R/ W-0h  
W-0h  
W-0h  
W-8h  
8-17. TRIGGER Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0000  
0h  
Description  
15 - 12 DEVICE_UNLOCK_CODE  
W
Write 0101 to unlock the device to bypass DEVICE_LOCK bit.  
Don't care  
11 - 10  
9
X
X
DEVICE_CONFIG_RESET  
W
0
0: Device configuration reset not initiated  
1: Device configuration reset initiated. All registers loaded with  
factory reset values.  
8
START_FUNC_GEN  
W
0
0: Continuous waveform generation mode disabled  
1: Continuous waveform generation mode enabled, device  
generates continuous waveform based on FUNC_CONFIG (D1h),  
MARGIN_LOW (address 18h), and SLEW_RATE (address D1h)  
bits.  
7
6
5
4
PMBUS_MARGIN_HIGH  
PMBUS_MARGIN_LOW  
NVM_RELOAD  
R/ W  
R/ W  
W
0
0
0
0
0: PMBus margin high command not initiated  
1: PMBus margin high command initiated, DAC output margins  
high to MARGIN_HIGH code (address 25h). This bit automatically  
resets to 0 after the DAC code reaches MARGIN_HIGH value.  
0: PMBus margin low command not initiated  
1: PMBus margin low command initiated, DAC output margins  
low to MARGIN_LOW code (address 26h). This bit automatically  
resets to 0 after the DAC code reaches MARGIN_LOW value.  
0: NVM reload not initiated  
1: NVM reload initiated, applicable DAC registers loaded with  
corresponding NVM. NVM_BUSY bit set to 1 while this operation  
is in progress. This bit is self-resetting.  
NVM_PROG  
W
0: NVM write not initiated  
1: NVM write initiated, NVM corresponding to applicable DAC  
registers loaded with existing register settings. NVM_BUSY bit  
set to 1 while this operation is in progress. This bit is self-  
resetting.  
3 - 0  
SW_RESET  
W
1000  
1000: Software reset not initiated  
1010: Software reset initiated, DAC registers loaded with  
corresponding NVMs, all other registers loaded with default  
settings.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: DAC53401-Q1 DAC43401-Q1  
 
DAC53401-Q1, DAC43401-Q1  
ZHCSOM0 OCTOBER 2020  
www.ti.com.cn  
8.6.4 DAC_DATA Register (address = 21h) [reset = 0000h]  
8-10. DAC_DATA Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
X
X
DAC_DATA[9:0] / DAC_DATA[7:0] MSB Left aligned  
X-0h  
W-000h  
X-0h  
8-18. DAC_DATA Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-12  
11-2  
X
X
0h  
Don't care  
DAC_DATA[9:0] / DAC_DATA[7:0]  
W
000h  
Writing to the DAC_DATA register forces the respective DAC  
channel to update the active register data to the DAC_DATA.  
Data are in straight binary format and use the following format:  
DACx3401-Q1: { DATA[9:0] }  
DACx3401-Q1: { DATA[7:0], X, X }  
X = Dont care bits  
1-0  
X
X
0h  
Don't care  
8.6.5 DAC_MARGIN_HIGH Register (address = 25h) [reset = 0000h]  
8-11. DAC_MARGIN_HIGH Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
X
X
MARGIN_HIGH[9:0] / MARGIN_HIGH[7:0] MSB Left aligned  
X-0h  
W-000h  
X-0h  
8-19. DAC_MARGIN_HIGH Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-12  
11-2  
X
X
0h  
Don't care  
MARGIN_HIGH[9:0] /  
MARGIN_HIGH[7:0] MSB Left  
aligned  
W
000h  
Margin high code for DAC output.  
Data are in straight binary format and use the following format:  
DACx3401-Q1: { MARGIN_HIGH[[9:0] }  
DACx3401-Q1: { MARGIN_HIGH[[7:0], X, X }  
X = Dont care bits  
1-0  
X
X
0h  
Don't care  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: DAC53401-Q1 DAC43401-Q1  
 
 
DAC53401-Q1, DAC43401-Q1  
www.ti.com.cn  
ZHCSOM0 OCTOBER 2020  
8.6.6 DAC_MARGIN_LOW Register (address = 26h) [reset = 0000h]  
8-12. DAC_MARGIN_LOW Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
X
X
MARGIN_LOW[9:0] / MARGIN_LOW[7:0] MSB Left aligned  
X-0h  
W-000h  
X-0h  
8-20. DAC_MARGIN_LOW Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-12  
11-2  
X
X
0h  
Don't care  
MARGIN_LOW[9:0] /  
MARGIN_LOW[7:0] MSB Left  
aligned  
W
000h  
Margin low code for DAC output.  
Data are in straight binary format and follows the format below:  
DACx3401-Q1: { MARGIN_LOW[[9:0] }  
DACx3401-Q1: { MARGIN_LOW[[7:0], X, X }  
X = Dont care bits  
1-0  
X
X
0h  
Don't care  
8.6.7 PMBUS_OPERATION Register (address = 01h) [reset = 0000h]  
8-13. PMBUS_OPERATION Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PMBUS_OPERATION_CMD  
R/ W-00h  
X
X-00h  
8-21. PMBUS_OPERATION Register Field Descriptions  
Bit  
15 - 8  
Field  
Type  
Reset  
Description  
PMBUS_OPERATION_CMD  
R/W  
00h  
PMBus operation commands  
00h: Turn off  
80h: Turn on  
A4h: Margin high, DAC output margins high to MARGIN_HIGH  
code (address 25h)  
94h: Margin low, DAC output margins low to MARGIN_LOW code  
(address 26h)  
7 - 0  
X
X
00h  
Not applicable  
8.6.8 PMBUS_STATUS_BYTE Register (address = 78h) [reset = 0000h]  
8-14. PMBUS_STATUS_BYTE Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
X
3
2
1
0
X
CML  
X-00h  
R/W-0h  
X-000h  
8-22. PMBUS_STATUS_BYTE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
00h  
0
Description  
15 - 10  
9
X
X
Don't care  
CML  
R/W  
0: No communication Fault  
1: PMBus communication fault for timeout, write with incorrect  
number of clocks, read before write command, and so more;  
reset this bit by writing 1.  
8 - 0  
X
X
000h  
Not applicable  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: DAC53401-Q1 DAC43401-Q1  
 
 
 
DAC53401-Q1, DAC43401-Q1  
ZHCSOM0 OCTOBER 2020  
www.ti.com.cn  
8.6.9 PMBUS_VERSION Register (address = 98h) [reset = 2200h]  
8-15. PMBUS_VERSION Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PMBUS_VERSION  
R-22h  
X
X-00h  
8-23. PMBUS_VERSION Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15 - 8  
7 - 0  
PMBUS_VERSION  
X
R
22h  
PMBus version  
Not applicable  
X
00h  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: DAC53401-Q1 DAC43401-Q1  
 
DAC53401-Q1, DAC43401-Q1  
www.ti.com.cn  
ZHCSOM0 OCTOBER 2020  
9 Application and Implementation  
Note  
以下应用部分的信息不属TI 组件规范TI 不担保其准确性和完整性。客户应负责确定 TI 组件是否适  
用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The DACx3401-Q1 are buffered, force-sense output, single-channel, DACs that include an NVM and internal  
reference and are available in a tiny 3 mm × 3 mm package. This device interfaces to a processor using I2C.  
There are 4 I2C addresses possible by configuring the A0 pin as shown in Table 7-5. The NVM allows processor-  
less operation of this device after programming at factory. The force-sense output can work with a transitor to  
create a programmable current sink that can bias LEDs. These digipots are designed for general-purpose  
applications in a wide range of end equipment. Some of the most common applications for these devices are  
power-supply margining and control, adaptive voltage scaling (AVS), set-and-forget LED biasing in automotive  
applications and mobile projectors, general-purpose function generation, and programmable comparator  
applications (such as standalone PWM control loops and offset and gain trimming in precision circuits).  
9.2 Typical Applications  
This section explains the design details of three primary applications of DACx3401-Q1: programmable LED  
biasing, and power-supply margining.  
9.2.1 Programmable LED Biasing  
LED and laser biasing or driving circuits often require accuracy and stability of the luminosity with respect to  
variation in temperature, electrical conditions, and physical characteristics. This accuracy and stability are most  
effectively achieved using a precision DAC, such as the DACx3401-Q1. The DACx3401-Q1 have additional  
features, such as the VFB pin that compensates for the gate-to-source voltage of the transistor (VGS) drop and  
the drift of the MOSFET. The NVM allows the microprocessor to set-and-forget the LED biasing value, even  
during a power cycle. 9-1 shows the circuit diagram for LED biasing.  
VCC  
LED  
VDD  
ILED = ISET  
VOUT  
DACx3401-Q1  
Q1  
+
VGS  
VFB  
œ
VDAC  
RSET  
ISET  
9-1. LED Biasing  
9.2.1.1 Design Requirements  
DAC output range: 0 V to 2.4 V  
LED current range: 0 mA to 20 mA  
9.2.1.2 Detailed Design Procedure  
The DAC sets the source current of a MOSFET using the integrated buffer, as shown in 9-1. Connect the LED  
between the power supply and the drain of the MOSFET. This configuration allows the DAC to control or set the  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: DAC53401-Q1 DAC43401-Q1  
 
 
 
 
DAC53401-Q1, DAC43401-Q1  
ZHCSOM0 OCTOBER 2020  
www.ti.com.cn  
amount of current through the LED. The integrated buffer controls the gate-source voltage of the MOSFET inside  
the feedback loop, thus compensating this drop and corresponding drift due to temperature, current, and ageing  
of the MOSFET. Calculate the value of the LED current set by the DAC using 方程式 6. In order to generate 0  
mA to 20 mA from a 0-V to 2.4-V DAC output range, the value of RSET resistor is 120-Ω. Select the internal  
reference with a span of 2x. Given a VGS of 1.2 V, the VDD of the DAC must be at least 3.6 V. Select a VDD of 5 V  
to allow variation of VGS across temperature. When the VDD headroom is a constraint, use a bipolar junction  
transistor (BJT) in place of the MOSFET. BJTs have much less VBE drop as compared to a VGS of a MOSFET. A  
MOSFET provides a much better match between the current through the set register and the LED current, as  
compared to a BJT.  
VDAC  
ISET  
=
RSET  
(6)  
The pseudocode for getting started with an LED biasing application is as follows:  
//SYNTAX: WRITE <REGISTER NAME (Hex code)>, <MSB DATA>, <LSB DATA>  
//Power-up the device, enable internal reference with 2x output span  
WRITE GENERAL_CONFIG(0xD1), 0x11, 0xE5  
//Write DAC code (12-bit aligned)  
WRITE DAC_DATA(0x21), 0x07, 0xFC  
//Write settings to the NVM  
WRITE TRIGGER(0xD3), 0x00, 0x10  
9.2.1.3 Application Curves  
LED breathing effect in triangular pattern  
LED breathing effect in sawtooth pattern  
9-2. Triangular Waveform  
9-3. Sawtooth Waveform  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: DAC53401-Q1 DAC43401-Q1  
 
DAC53401-Q1, DAC43401-Q1  
www.ti.com.cn  
ZHCSOM0 OCTOBER 2020  
9.2.2 Power-Supply Margining  
A power-supply margining circuit is used to test and trim the output of a power converter. This circuit is used to  
test a system by margining the power supplies, for adaptive voltage scaling, or to program a desired value at the  
output. Adjustable power supplies, such as LDOs and DC/DC converters, provide a feedback or adjust input that  
is used to set the desired output. A precision voltage-output DAC is an excellent choice to control the power-  
supply output linearly. 9-4 shows a control circuit for a switch-mode power supply (SMPS) using the  
DACx3401-Q1. Typical applications include communications equipment, enterprise servers, test and  
measurement, automotive processor modules,and general-purpose power-supply modules.  
9-4. Power-Supply Margining  
9.2.2.1 Design Requirements  
Power supply nominal output: 3.3 V  
Reference voltage of the converter (VFB): 0.6 V  
Margin: ±10% (that is, 2.97 V to 3.63 V)  
DAC output range: 1.8 V  
Nominal current through R1 and R2: 100 µA  
9.2.2.2 Detailed Design Procedure  
The DACx3401-Q1 features a Hi-Z power-down mode that is set by default at power-up, unless the device is  
programmed otherwise using NVM. When the DAC output is at Hi-Z, the current through R3 is zero and the  
SMPS is set at the nominal output voltage of 3.3 V. To have the same nominal condition when the DAC powers  
up, bring up the device at the same output as VFB (that is, 0.6 V). This configuration makes sure there is no  
current through R3 even at power-up. Calculate R1 as (VOUT VFB) / 100 µA = 27 kΩ.  
To achieve ±10% margin-high and margin-low conditions, the DAC must sink or source additional current  
through R1. Calculate the current from the DAC (IMARGIN) using 方程7 as 12 µA.  
«
÷
VOUT ì(1+ MARGIN) - VFB  
R1  
IMARGIN  
=
-I  
NOMINAL  
(7)  
where:  
IMARGIN is the margin current sourced or sinked from the DAC.  
MARGIN is the percentage margin value divided by 100.  
INOMINAL is the nominal current through R1 and R2.  
To calculate the value of R3, first decide the DAC output range; for safe operation in the linear region, avoid the  
codes near zero-scale and full-scale. A DAC output of 20 mV is a safe consideration as the minimum output, and  
(1.8 V 0.6 V 20 mV = 1.18 V) as the maximum output. When the DAC output is at 20 mV, the power supply  
goes to margin high, and when the DAC output is at 1.18 V, the power supply goes to margin low. Calculate the  
value of R3 using 方程式 8 as 48.3 kΩ. Choose a standard resistor value and adjust the DAC outputs. Choosing  
R3 = 47 kΩgives the DAC margin high code as 1.164 V and the DAC margin low code as 36 mV.  
VDAC - VFB  
R3  
=
IMARGIN  
(8)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: DAC53401-Q1 DAC43401-Q1  
 
 
 
DAC53401-Q1, DAC43401-Q1  
ZHCSOM0 OCTOBER 2020  
www.ti.com.cn  
The DACx3401-Q1 have a slew rate feature that is used to toggle between margin high, margin low, and  
nominal outputs with a defined slew rate. See 8-16 for the slew rate setting details.  
Note  
The MARGIN HIGH register value in DACx3401-Q1 results in the MARGIN LOW value at the power  
supply output. Similarly, the MARGIN LOW register value in DACx3401-Q1 results in the MARGIN  
HIGH value at the power-supply output.  
The pseudocode for getting started with a power-supply control application is as follows:  
//SYNTAX: WRITE <REGISTER NAME (Hex code)>, <MSB DATA>, <LSB DATA>  
//Write DAC code (12-bit aligned) for nominal output  
//For  
a 1.8-V output range, the 10-bit hex code for 0.6 V is 0x0155. With 12-bit alignment, it  
becomes 0x0554  
WRITE DAC_DATA(0x21), 0x05, 0x54  
//Write DAC code (12-bit aligned) for margin-low output at the power supply  
//For a 1.8-V output range, the 10-bit hex code for 1.164 V is 0x0296. With 12-bit alignment, it  
becomes 0x0A58  
WRITE DAC_MARGIN_HIGH(0x25), 0x0A, 0x58  
//Write DAC code (12-bit aligned) for margin-high output at the power supply  
//For  
a 1.8-V output range, the 10-bit hex code for 36 mV is 0x14. With 12-bit alignment, it  
becomes 0x50  
WRITE DAC_MARGIN_LOW(0x26), 0x00, 0x50  
//Power-up the device with enable internal reference with 1.5x output span. This will output the  
nominal voltage (0.6 V)  
//CODE_STEP: 2 LSB, SLEW_RATE: 25.6 µs  
WRITE GENERAL_CONFIG(0xD1), 0x12, 0x14  
//Trigger margin-low output at the power supply  
WRITE TRIGGER(0xD3), 0x00, 0x80  
//Trigger margin-high output at the power supply  
WRITE TRIGGER(0xD3), 0x00, 0x40  
//Write back DAC code (12-bit aligned) for nominal output  
WRITE DAC_DATA(0x21), 0x05, 0x54  
9.2.2.3 Application Curves  
9-5. Power-Supply Margin High  
9-6. Power Supply Margin Low  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: DAC53401-Q1 DAC43401-Q1  
DAC53401-Q1, DAC43401-Q1  
www.ti.com.cn  
ZHCSOM0 OCTOBER 2020  
10 Power Supply Recommendations  
The DACx3401-Q1 family of devices does not require specific supply sequencing. These devices require a  
single power supply, VDD. Use a 0.1-µF decoupling capacitor for the VDD pin. Use a bypass capacitor with a  
value around 1.5-µF for the CAP pin.  
11 Layout  
11.1 Layout Guidelines  
The DACx3401-Q1 pin configuration separates the analog, digital, and power pins for an optimized layout. For  
signal integrity, separate the digital and analog traces, and place decoupling capacitors close to the device pins.  
11.2 Layout Example  
11-1 shows an example layout drawing with decoupling capacitors and pullup resistors.  
11-1. Layout Example  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: DAC53401-Q1 DAC43401-Q1  
 
 
 
 
 
DAC53401-Q1, DAC43401-Q1  
ZHCSOM0 OCTOBER 2020  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation see the following:  
Texas, Instruments DAC53401EVM user's guide  
12.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
PMBusis a trademark of SMIF, Inc.  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: DAC53401-Q1 DAC43401-Q1  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Jul-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DAC43401DSGRQ1  
DAC43401DSGTQ1  
DAC53401DSGRQ1  
DAC53401DSGTQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WSON  
WSON  
WSON  
WSON  
DSG  
DSG  
DSG  
DSG  
8
8
8
8
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
44Q1  
44Q1  
54Q1  
54Q1  
NIPDAU  
NIPDAU  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Jul-2021  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF DAC43401-Q1, DAC53401-Q1 :  
Catalog : DAC43401, DAC53401  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Jul-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DAC43401DSGRQ1  
DAC43401DSGTQ1  
DAC53401DSGRQ1  
DAC53401DSGTQ1  
WSON  
WSON  
WSON  
WSON  
DSG  
DSG  
DSG  
DSG  
8
8
8
8
3000  
250  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
1.15  
1.15  
1.15  
1.15  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
Q2  
Q2  
Q2  
Q2  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Jul-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DAC43401DSGRQ1  
DAC43401DSGTQ1  
DAC53401DSGRQ1  
DAC53401DSGTQ1  
WSON  
WSON  
WSON  
WSON  
DSG  
DSG  
DSG  
DSG  
8
8
8
8
3000  
250  
210.0  
210.0  
210.0  
210.0  
185.0  
185.0  
185.0  
185.0  
35.0  
35.0  
35.0  
35.0  
3000  
250  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DSG 8  
2 x 2, 0.5 mm pitch  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224783/A  
www.ti.com  
PACKAGE OUTLINE  
DSG0008A  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
B
A
0.32  
0.18  
PIN 1 INDEX AREA  
2.1  
1.9  
0.4  
0.2  
ALTERNATIVE TERMINAL SHAPE  
TYPICAL  
0.8  
0.7  
C
SEATING PLANE  
0.05  
0.00  
SIDE WALL  
0.08 C  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
EXPOSED  
THERMAL PAD  
(DIM A) TYP  
0.9 0.1  
5
4
6X 0.5  
2X  
1.5  
9
1.6 0.1  
8
1
0.32  
0.18  
PIN 1 ID  
(45 X 0.25)  
8X  
0.4  
0.2  
8X  
0.1  
C A B  
C
0.05  
4218900/E 08/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.9)  
(
0.2) VIA  
8X (0.5)  
TYP  
1
8
8X (0.25)  
(0.55)  
SYMM  
9
(1.6)  
6X (0.5)  
5
4
SYMM  
(1.9)  
(R0.05) TYP  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218900/E 08/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
8X (0.5)  
METAL  
8
SYMM  
1
8X (0.25)  
(0.45)  
SYMM  
9
(0.7)  
6X (0.5)  
5
4
(R0.05) TYP  
(0.9)  
(1.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 9:  
87% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4218900/E 08/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

DAC43508

具有 SPI 的八路 8 位缓冲电压输出 DAC
TI

DAC43508RTER

具有 SPI 的八路 8 位缓冲电压输出 DAC | RTE | 16 | -40 to 125
TI

DAC43608

采用微型 QFN 封装的 8 位、8 通道、I2C、电压输出 DAC
TI

DAC43608RTER

采用微型 QFN 封装的 8 位、8 通道、I2C、电压输出 DAC | RTE | 16 | -40 to 125
TI

DAC43608RTET

采用微型 QFN 封装的 8 位、8 通道、I2C、电压输出 DAC | RTE | 16 | -40 to 125
TI

DAC43701

具有 GPIO 触发器和函数发生器的单通道输出电压、8 位智能 DAC
TI

DAC43701-Q1

具有 GPIO 触发器的汽车类 8 位、单通道、电压输出、智能 DAC
TI

DAC43701DSGR

具有 GPIO 触发器和函数发生器的单通道输出电压、8 位智能 DAC | DSG | 8 | -40 to 125
TI

DAC43701DSGRQ1

具有 GPIO 触发器的汽车类 8 位、单通道、电压输出、智能 DAC | DSG | 8 | -40 to 125
TI

DAC43701DSGT

具有 GPIO 触发器和函数发生器的单通道输出电压、8 位智能 DAC | DSG | 8 | -40 to 125
TI

DAC43701DSGTQ1

具有 GPIO 触发器的汽车类 8 位、单通道、电压输出、智能 DAC | DSG | 8 | -40 to 125
TI

DAC4813

QUAD 12-BIT DIGITAL-TO-ANALOG CONVERTER 12-bit port interface
BB