BQ40Z50RSMR-R2 [TI]

支持涡轮模式 2.0 的 1 至 4 节串联锂离子电池组管理器 | RSM | 32 | -40 to 85;
BQ40Z50RSMR-R2
型号: BQ40Z50RSMR-R2
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

支持涡轮模式 2.0 的 1 至 4 节串联锂离子电池组管理器 | RSM | 32 | -40 to 85

电池
文件: 总56页 (文件大小:3271K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BQ40Z50-R2  
ZHCSGX4C JUNE 2017 REVISED APRIL 2021  
BQ40Z50-R2 1 节、2 节、3 4 节串联锂离子电池组管理器  
1 特性  
3 说明  
• 完全集成1 节、2 节、3 4 节串联锂离子或  
锂聚合物电池组管理器和保护  
• 获得专利的新一Impedance Track技术可准确  
测量锂离子和锂聚合物电池中的可用电量  
• 高N 沟道保FET 驱动器  
• 充电或者静止状态时具有集成的电池平衡功能  
• 适合100mAh 29Ah 之间的电池  
• 全面的可编程保护功能  
– 电压  
BQ40Z50-R2 器件采用已获专利的 Impedance Track™  
技术是一个全集成、单芯片、基于电池组的解决方  
1 节、2 节、3 4 节串联锂离子和锂聚合  
物电池组提供电量监测、保护和认证等各种特性。  
BQ40Z50-R2 器件利用其集成的高性能模拟外设测  
量锂离子或锂聚合物电池的可用容量、电压、电流、温  
度和其他关键参数留准确的数据记录通过  
SMBus v1.1 兼容接口将这些信息报告给系统主机控制  
器。  
– 电流  
– 温度  
器件信息  
– 充电终止时间  
CHG/DSG FET  
封装尺寸标称值)  
器件型号  
封装  
VQFN (32)  
BQ40Z50-R2  
4.00mm × 4.00mm  
– 模拟前(AFE)  
• 精密的充电算法  
+
PACK  
JEITA  
– 增强型充电  
– 自适应充电  
– 电池均衡  
• 支持涡轮模2.0  
• 支持电池跳闸(BTP)  
• 诊断使用寿命数据监控器和黑盒记录器  
LED 显示屏  
• 支持双线SMBus v1.1 接口  
• 安全散列算(SHA-1) 认证  
IATA 支持  
LEDCNTLA  
BAT  
VC4  
LEDCNTLB  
LEDCNTLC  
VC3  
VC2  
OUT  
VC3  
VC2  
VC1  
Cell 3  
Cell 2  
DISP  
SMBD  
VDD  
GND  
SMBD  
SMBC  
VC1  
PBI  
SMBC  
PRES  
VSS SRP SRN TS1 TS2 TS3 TS4 BTP PRES  
Cell 1  
BTP  
• 紧凑型封装32 线QFN (RSM)  
PACK  
Copyright  
© 2017, Texas Instruments Incorporated  
2 应用  
简化版原理图  
平板电脑  
无人机  
UPS/电池备用系统  
医疗设备  
手持式真空吸尘器和扫地机器人  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSCS4  
 
 
BQ40Z50-R2  
ZHCSGX4C JUNE 2017 REVISED APRIL 2021  
www.ti.com.cn  
Table of Contents  
7.26 Low-Frequency Oscillator....................................... 16  
7.27 Voltage Reference 1............................................... 16  
7.28 Voltage Reference 2............................................... 16  
7.29 Instruction Flash......................................................16  
7.30 Data Flash...............................................................17  
7.31 OLD, SCC, SCD1, SCD2 Current Protection  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Description (continued).................................................. 3  
6 Pin Configuration and Functions...................................3  
6.1 Pin Equivalent Diagrams.............................................5  
7 Specifications.................................................................. 8  
7.1 Absolute Maximum Ratings........................................ 8  
7.2 ESD Ratings............................................................... 8  
7.3 Recommended Operating Conditions.........................8  
7.4 Thermal Information....................................................9  
7.5 Supply Current............................................................9  
7.6 Power Supply Control................................................. 9  
7.7 AFE Power-On Reset............................................... 10  
7.8 AFE Watchdog Reset and Wake Timer.................... 10  
7.9 Current Wake Comparator........................................10  
7.10 VC1, VC2, VC3, VC4, BAT, PACK.......................... 11  
7.11 SMBD, SMBC..........................................................11  
7.12 PRES, BTP_INT, DISP ...........................................11  
7.13 LEDCNTLA, LEDCNTLB, LEDCNTLC................... 12  
7.14 Coulomb Counter....................................................12  
7.15 CC Digital Filter.......................................................12  
7.16 ADC........................................................................ 12  
7.17 ADC Digital Filter.................................................... 13  
7.18 CHG, DSG FET Drive.............................................13  
7.19 PCHG FET Drive.................................................... 14  
7.20 FUSE Drive.............................................................14  
7.21 Internal Temperature Sensor.................................. 15  
7.22 TS1, TS2, TS3, TS4................................................15  
7.23 PTC, PTCEN...........................................................15  
7.24 Internal 1.8-V LDO..................................................15  
7.25 High-Frequency Oscillator...................................... 16  
Thresholds...................................................................17  
7.32 Timing Requirements: OLD, SCC, SCD1,  
SCD2 Current Protection Timing.................................18  
7.33 Timing Requirements: SMBus................................ 19  
7.34 Timing Requirements: SMBus XL...........................19  
7.35 Typical Characteristics............................................20  
8 Detailed Description......................................................24  
8.1 Overview...................................................................24  
8.2 Functional Block Diagram.........................................24  
8.3 Feature Description...................................................25  
8.4 Device Functional Modes..........................................28  
9 Application and Implementation..................................29  
9.1 Application Information............................................. 29  
9.2 Typical Applications.................................................. 30  
10 Power Supply Recommendations..............................41  
11 Layout...........................................................................42  
11.1 Layout Guidelines................................................... 42  
11.2 Layout Example...................................................... 44  
12 Device and Documentation Support..........................46  
12.1 第三方产品免责声明................................................46  
12.2 Documentation Support.......................................... 46  
12.3 支持资源..................................................................46  
12.4 Trademarks.............................................................46  
12.5 Electrostatic Discharge Caution..............................46  
12.6 Glossary..................................................................46  
13 Mechanical, Packaging, and Orderable  
Information.................................................................... 46  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision B (July 2018) to Revision C (April 2021)  
Page  
• 将整个数据表中出现的所OCD 更改OLD................................................................................................... 1  
Changes from Revision A (October 2017) to Revision B (July 2018)  
Page  
Changed Pin Configuration and Functions ........................................................................................................5  
Changed System Present ................................................................................................................................34  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: BQ40Z50-R2  
 
BQ40Z50-R2  
ZHCSGX4C JUNE 2017 REVISED APRIL 2021  
www.ti.com.cn  
5 Description (continued)  
The BQ40Z50-R2 device supports TURBO Mode 2.0 by providing the available max power and max current to  
the host system. The device also supports Battery Trip Point to send a BTP interrupt signal to the host system at  
the preset state of charge thresholds.  
The BQ40Z50-R2 provides software-based 1st- and 2nd-level safety protection against overvoltage,  
undervoltage, overcurrent, short-circuit current, overload, and overtemperature conditions, as well as other pack-  
and cell-related faults.  
SHA-1 authentication, with secure memory for authentication keys, enables identification of genuine battery  
packs.  
The compact 32-lead QFN package minimizes solution cost and size for smart batteries while providing  
maximum functionality and safety for battery gauging applications.  
6 Pin Configuration and Functions  
PBI  
VC4  
VC3  
VC2  
VC1  
SRN  
NC  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
PTCEN  
PTC  
LEDCNTLC  
LEDCNTLB  
LEDCNTLA  
SMBC  
Thermal  
Pad  
SMBD  
SRP  
DISP  
Not to scale  
6-1. Pin Functions  
PIN NUMBER  
PIN NAME  
TYPE  
DESCRIPTION  
1
PBI  
P(1)  
Power supply backup input pin. Connect to the 2.2-µF capacitor to VSS.  
Sense voltage input pin for the most positive cell, and balance current input  
for the most positive cell. Should be connected to the positive terminal of the  
fourth cell from the bottom of the stack with a 100-Ωseries resistor and a 0.1-  
μF capacitor to VC3. If not used, connect to VC3.  
2
3
VC4  
IA  
Sense voltage input pin for the third-most positive cell, balance current input  
for the third-most positive cell, and return balance current for the most  
positive cell. Should be connected to the positive terminal of the third cell from  
the bottom of the stack with a 100-Ωseries resistor and a 0.1-μF capacitor  
to VC2. If not used, connect to VC2.  
VC3  
VC2  
VC1  
IA  
IA  
IA  
Sense voltage input pin for the second-most positive cell, balance current  
input for the second-most positive cell, and return balance current for the  
third-most positive cell. Should be connected to the positive terminal of the  
second cell from the bottom of the stack with a 100-Ωseries resistor and a  
0.1-μF capacitor to VC1. If not used, connect to VC1.  
4
5
Sense voltage input pin for the least positive cell, balance current input for the  
least positive cell, and return balance current for the second-most positive  
cell. Should be connected to the positive terminal of the first cell from the  
bottom of the stack with a 100-Ωseries resistor and a 0.1-μF capacitor to  
VSS.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: BQ40Z50-R2  
 
 
BQ40Z50-R2  
ZHCSGX4C JUNE 2017 REVISED APRIL 2021  
www.ti.com.cn  
6-1. Pin Functions (continued)  
PIN NUMBER  
PIN NAME  
TYPE  
DESCRIPTION  
Analog input pin connected to the internal coulomb counter peripheral for  
integrating a small voltage between SRP and SRN where SRP is the top of  
the sense resistor.  
6
7
8
SRN  
NC  
I
Not internally connected. It is okay to leave floating or to tie to VSS.  
Analog input pin connected to the internal coulomb counter peripheral for  
integrating a small voltage between SRP and SRN where SRP is the top of  
the sense resistor.  
SRP  
I
9
VSS  
TS1  
P
Device ground  
Temperature sensor 1 thermistor input pin. Connect to thermistor-1. If not  
used, connect directly to VSS and configure data flash accordingly.  
10  
IA  
Temperature sensor 2 thermistor input pin. Connect to thermistor-2. If not  
used, connect directly to VSS and configure data flash accordingly.  
11  
12  
13  
TS2  
TS3  
TS4  
IA  
IA  
IA  
Temperature sensor 3 thermistor input pin. Connect to thermistor-3. If not  
used, connect directly to VSS and configure data flash accordingly.  
Temperature sensor 4 thermistor input pin. Connect to thermistor-4. If not  
used, connect directly to VSS and configure data flash accordingly.  
14  
15  
NC  
Not internally connected. It is okay to leave floating or to tie to VSS.  
BTP_INT  
O
Battery Trip Point (BTP) interrupt output. If not used, connect directly to VSS.  
Host system present input for removable battery pack or emergency system  
shutdown input for embedded pack. A pullup is not required for this pin. If not  
used, connect directly to VSS.  
16  
PRES or SHUTDN  
I
17  
18  
19  
DISP  
Display control for LEDs. If not used, connect directly to VSS.  
SMBD  
SMBC  
I/OD  
I/OD  
SMBus data pin  
SMBus clock pin  
LED display segment that drives the external LEDs depending on the  
firmware configuration. If LEDs are not used, these pins can be left floating or  
connected to VSS through a 20-kΩresistor.  
20  
21  
22  
LEDCNTLA  
LEDCNTLB  
LEDCNTLC  
LED display segment that drives the external LEDs depending on the  
firmware configuration. If LEDs are not used, these pins can be left floating or  
connected to VSS through a 20-kΩresistor.  
LED display segment that drives the external LEDs depending on the  
firmware configuration. If LEDs are not used, these pins can be left floating or  
connected to VSS through a 20-kΩresistor.  
Safety PTC thermistor input pin. To disable, connect both PTC and PTCEN to  
VSS.  
23  
24  
PTC  
IA  
IA  
Safety PTC thermistor enable input pin. Connect to BAT. To disable, connect  
both PTC and PTCEN to VSS.  
PTCEN  
25  
26  
27  
FUSE  
VCC  
O
P
Fuse drive output pin. If not used, connect directly to VSS.  
Secondary power supply input  
PACK  
IA  
Pack sense input pin  
NMOS Discharge FET drive output pin. If not used, it can be left floating or  
connected to VSS through a 20-kΩresistor.  
28  
29  
30  
DSG  
NC  
O
Not internally connected. It is okay to leave floating or to tie to VSS.  
PMOS Precharge FET drive output pin. If not used, it can be left floating or  
connected to VSS through a 20-kΩresistor.  
PCHG  
O
NMOS Charge FET drive output pin. If not used, it can be left floating or  
connected to VSS through a 20-kΩresistor.  
31  
32  
CHG  
BAT  
O
P
Primary power supply input pin  
(1) P = Power Connection, O = Digital Output, AI = Analog Input, I = Digital Input, I/OD = Digital Input/Output  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: BQ40Z50-R2  
 
BQ40Z50-R2  
ZHCSGX4C JUNE 2017 REVISED APRIL 2021  
www.ti.com.cn  
6.1 Pin Equivalent Diagrams  
VC4  
CDEN4  
CDEN3  
BAT  
VCC  
PACK  
VC3  
+
BATDET  
ENVCC  
3.1 V  
PACK  
Detector  
VC2  
ADC Mux  
ADC  
PACKDET  
PBI  
SHUTDOWN  
Shutdown  
Latch  
CDEN2  
Reference  
System  
1.8 V  
Domain  
SHOUT  
VC1  
ENBAT  
BAT  
Control  
CDEN1  
Power Supply Control  
Cell Balancing  
VCC  
CHGEN  
BAT  
2 kΩ  
CHG  
CHG  
Pump  
8 kΩ  
PCHG  
2 kΩ  
CHGOFF  
PCHGEN  
Pre-Charge Drive  
PACK  
BAT  
DSGEN  
ZVCD  
BAT  
2 kΩ  
DSG  
DSG  
CHGEN  
Pump  
BAT  
CHG  
Pump  
VCC  
DSGOFF  
ZVCHGEN  
CHG, DSG Drive  
Zero-Volt Charge  
6-1. Pin Equivalent Diagram 1  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: BQ40Z50-R2  
 
BQ40Z50-R2  
ZHCSGX4C JUNE 2017 REVISED APRIL 2021  
www.ti.com.cn  
1.8 V  
ADTHx  
BAT  
FUSEWKPUP  
18 kΩ  
2 kΩ  
ADC Mux  
ADC  
150 nA  
TS1,2,3,4  
FUSEEN  
2 kΩ  
FUSE  
1.8 V  
1.8 V  
100 kΩ  
FUSEDIG  
RCWKPUP  
RCPUP  
FUSE Drive  
1 kΩ  
RCIN  
RCOUT  
100 kΩ  
SMBCIN  
SMBC  
Thermistor Inputs  
SMBCOUT  
SMBCEN  
1 MΩ  
PBI  
100 kΩ  
SMBDIN  
SMBD  
RHOEN  
SMBDOUT  
10 kΩ  
SMBDEN  
1 MΩ  
PRES  
SMBus Interface  
RHOUT  
100 kΩ  
RHIN  
High-Voltage GPIO  
BAT  
RLOEN  
LED1, 2, 3  
22.5 mA  
RLOUT  
100 kΩ  
RLIN  
LED Drive  
6-2. Pin Equivalent Diagram 2  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: BQ40Z50-R2  
BQ40Z50-R2  
ZHCSGX4C JUNE 2017 REVISED APRIL 2021  
www.ti.com.cn  
10 Ω  
VC4  
CHANx  
Φ
2
3.8 kΩ  
1.9 MΩ  
0.1 MΩ  
SRP  
SRN  
Φ
1
ADC Mux  
ADC  
Comparator  
Array  
Φ
2
1
3.8 kΩ  
Φ
Φ
2
10 Ω  
100 Ω  
PACK  
Φ
1
Coulomb  
Counter  
Φ
2
1
CHANx  
100 Ω  
Φ
1.9 MΩ  
0.1 MΩ  
ADC Mux  
ADC  
OLD , SCC, SCD Comparators and Coulomb Counter  
VC4 and PACK Dividers  
6-3. Pin Equivalent Diagram 3  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: BQ40Z50-R2  
BQ40Z50-R2  
ZHCSGX4C JUNE 2017 REVISED APRIL 2021  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over-operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
Supply voltage range,  
BAT, VCC, PBI  
VCC  
30  
V
0.3  
PACK, SMBC, SMBD, PRES or SHUTDN, BTP_INT, DISP  
TS1, TS2, TS3, TS4  
30  
V
V
V
V
0.3  
0.3  
0.3  
0.3  
VREG + 0.3  
VBAT + 0.3  
0.3  
PTC, PTCEN, LEDCNTLA, LEDCNTLB, LEDCNTLC  
SRP, SRN  
VC3 + 8.5, or  
VSS + 30  
VC4  
V
V
V
V
VC3 0.3  
VC2 0.3  
VC1 0.3  
VSS 0.3  
Input voltage range, VIN  
VC2 + 8.5, or  
VSS + 30  
VC3  
VC2  
VC1  
VC1 + 8.5, or  
VSS + 30  
VSS + 8.5, or  
VSS + 30  
CHG, DSG  
32  
30  
0.3  
0.3  
Output voltage range,  
VO  
PCHG, FUSE  
V
Maximum VSS current, ISS  
50  
mA  
°C  
°C  
Storage temperature, TSTG  
150  
300  
65  
Lead temperature (soldering, 10 s), TSOLDER  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolutemaximumrated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Electrostatic  
discharge  
V(ESD)  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
MIN  
2.2  
NOM  
MAX  
26  
UNIT  
VCC  
Supply voltage  
BAT, VCC, PBI  
V
V
V
VSHUTDOWNShutdown voltage  
VPACK < VSHUTDOWN –  
VPACK > VSHUTDOWN+ VHYS  
1.8  
2.0  
2.2  
VSHUTDOWN+  
VHYS  
Start-up voltage  
2.05  
2.25  
2.45  
Shutdown voltage  
hysteresis  
250  
mV  
V
SHUTDOWN+ VSHUTDOWN–  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: BQ40Z50-R2  
 
 
 
 
 
 
 
BQ40Z50-R2  
ZHCSGX4C JUNE 2017 REVISED APRIL 2021  
www.ti.com.cn  
7.3 Recommended Operating Conditions (continued)  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
MIN  
NOM  
MAX  
26  
UNIT  
PACK, SMBC, SMBD, PRES, BTP_IN, DISP  
TS1, TS2, TS3, TS4  
VREG  
PTC, PTCEN, LEDCNTLA, LEDCNTLB, LEDCNTLC  
VBAT  
SRP, SRN  
VC4  
0.2  
0.2  
VVC3  
VVC2  
VVC1  
VVSS  
VIN  
Input voltage range  
V
VVC3 + 5  
VVC2 + 5  
VVC1 + 5  
VVSS + 5  
VC3  
VC2  
VC1  
Output voltage  
range  
VO  
CHG, DSG, PCHG, FUSE  
26  
V
External PBI  
capacitor  
CPBI  
TOPR  
2.2  
µF  
°C  
Operating  
temperature  
85  
40  
7.4 Thermal Information  
BQ40Z50-R2  
RSM (QFN)  
32 PINS  
47.4  
THERMAL METRIC(1)  
UNIT  
RθJA, High K  
RθJC(top)  
RθJB  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
40.3  
Junction-to-board thermal resistance  
14.7  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
0.8  
ψJT  
14.4  
ψJB  
RθJC(bottom)  
3.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
7.5 Supply Current  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 20 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
336  
75  
MAX  
UNIT  
INORMAL  
ISLEEP  
NORMAL mode  
CHG on. DSG on, no Flash write  
µA  
CHG off, DSG on, no SBS communication  
CHG off, DSG off, no SBS communication  
SLEEP mode  
µA  
µA  
52  
ISHUTDOWN  
SHUTDOWN mode  
1.6  
7.6 Power Supply Control  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
BAT to VCC  
switchover voltage  
VSWITCHOVER–  
VSWITCHOVER+  
VBAT < VSWITCHOVER–  
1.95  
2.1  
2.2  
V
VCC to BAT  
switchover voltage  
VBAT > VSWITCHOVER+ VHYS  
2.9  
3.1  
3.25  
V
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: BQ40Z50-R2  
 
 
 
 
BQ40Z50-R2  
ZHCSGX4C JUNE 2017 REVISED APRIL 2021  
www.ti.com.cn  
7.6 Power Supply Control (continued)  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Switchover  
voltage hysteresis  
VHYS  
1000  
mV  
V
SWITCHOVER+ VSWITCHOVER–  
BAT pin, BAT = 0 V, VCC = 25 V, PACK = 25 V  
PACK pin, BAT = 25 V, VCC = 0 V, PACK = 0 V  
1
1
Input Leakage  
current  
ILKG  
µA  
BAT and PACK terminals, BAT = 0 V, VCC = 0 V, PACK =  
0 V, PBI = 25 V  
1
7.7 AFE Power-On Reset  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Negative-going  
voltage input  
VREGIT–  
VHYS  
VREG  
REGIT+ VREGIT–  
1.51  
1.55  
1.59  
V
Power-on reset  
hysteresis  
70  
100  
300  
130  
400  
mV  
µs  
V
Power-on reset  
time  
tRST  
200  
7.8 AFE Watchdog Reset and Wake Timer  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
372  
TYP  
500  
MAX  
628  
UNIT  
tWDT = 500  
tWDT = 1000  
tWDT = 2000  
tWDT = 4000  
tWAKE = 250  
tWAKE = 500  
tWAKE = 1000  
tWAKE = 512  
744  
1000  
2000  
4000  
250  
1256  
2512  
5024  
314  
AFE watchdog  
timeout  
tWDT  
ms  
1488  
2976  
186  
372  
500  
628  
tWAKE  
AFE wake timer  
ms  
ms  
744  
1000  
2000  
1256  
2512  
1488  
FET off delay after  
reset  
tFETOFF  
tFETOFF = 512  
409  
512  
614  
7.9 Current Wake Comparator  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
±0.3  
±0.6  
±1.2  
±2.4  
TYP  
±0.625  
±1.25  
±2.5  
MAX UNIT  
±0.9  
VWAKE = ±0.625 mV  
VWAKE = ±1.25 mV  
VWAKE = ±2.5 mV  
VWAKE = ±5 mV  
±1.8  
Wake voltage  
threshold  
VWAKE  
mV  
±3.6  
±7.2  
±5.0  
Temperature drift of  
VWAKE accuracy  
VWAKE(DRIFT)  
0.5%  
°C  
µs  
Time from  
application of  
current to wake  
interrupt  
tWAKE  
700  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: BQ40Z50-R2  
 
 
 
BQ40Z50-R2  
ZHCSGX4C JUNE 2017 REVISED APRIL 2021  
www.ti.com.cn  
7.9 Current Wake Comparator (continued)  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
1000 µs  
Wake comparator  
startup time  
tWAKE(SU)  
500  
7.10 VC1, VC2, VC3, VC4, BAT, PACK  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VC1VSS, VC2VC1, VC3VC2, VC4VC3  
BATVSS, PACKVSS  
MIN  
TYP  
MAX  
0.2020  
0.051  
0.510  
5
UNIT  
0.1980 0.2000  
K
Scaling factor  
0.049  
0.490  
0.2  
0.2  
0.050  
0.500  
VREF2  
VC1VSS, VC2VC1, VC3VC2, VC4VC3  
BATVSS, PACKVSS  
VIN  
Input voltage range  
Input leakage current  
V
20  
VC1, VC2, VC3, VC4, cell balancing off, cell detach  
detection off, ADC multiplexer off  
ILKG  
RCB  
ICD  
1
200  
70  
µA  
Internal cell balance  
resistance  
RDS(ON) for internal FET switch at 2 V < VDS < 4 V  
VCx > VSS + 0.8 V  
Ω
Internal cell detach  
check current  
30  
50  
µA  
7.11 SMBD, SMBC  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VIH  
Input voltage high  
Input voltage low  
Output low voltage  
Input capacitance  
Input leakage current  
Pulldown resistance  
SMBC, SMBD, VREG = 1.8 V  
1.3  
V
VIL  
SMBC, SMBD, VREG = 1.8 V  
0.8  
0.4  
V
V
VOL  
CIN  
ILKG  
RPD  
SMBC, SMBD, VREG = 1.8 V, IOL = 1.5 mA  
5
pF  
µA  
MΩ  
1
0.7  
1.0  
1.3  
7.12 PRES, BTP_INT, DISP  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
High-level input  
Low-level input  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VIH  
VIL  
1.3  
V
0.55  
V
3.5  
1.8  
VBAT > 5.5 V, IOH = 0 µA  
VOH  
Output voltage high  
V
VBAT > 5.5 V, IOH = 10 µA  
VOL  
CIN  
Output voltage low  
Input capacitance  
Input leakage current  
IOL = 1.5 mA  
0.4  
1
V
5
pF  
µA  
ILKG  
Output reverse  
resistance  
RO  
Between PRES or BTP_INT or DISP and PBI  
8
kΩ  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: BQ40Z50-R2  
 
 
 
BQ40Z50-R2  
ZHCSGX4C JUNE 2017 REVISED APRIL 2021  
www.ti.com.cn  
7.13 LEDCNTLA, LEDCNTLB, LEDCNTLC  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
High-level input  
Low-level input  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VIH  
VIL  
1.45  
V
0.55  
V
VBAT  
VOH  
VOL  
ISC  
Output voltage high  
Output voltage low  
V
VBAT > 3.0 V, IOH = 22.5 mA  
1.6  
IOL = 1.5 mA  
0.4  
V
High level output  
current protection  
mA  
30  
45  
6 0  
Low level output  
current  
IOL  
VBAT > 3.0 V, VOH = 0.4 V  
VBAT = VLEDCNTLx + 2.5 V  
15.75  
22.5  
29.25  
mA  
Current matching  
between LEDCNTLx  
ILEDCNTLx  
±1%  
20  
CIN  
Input capacitance  
pF  
µA  
ILKG  
Input leakage current  
1
Frequency of LED  
pattern  
fLEDCNTLx  
124  
Hz  
7.14 Coulomb Counter  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
0.1  
TYP  
MAX  
0.1  
UNIT  
V
Input voltage range  
Full scale range  
Integral nonlinearity(1)  
Offset error  
VREF1/10  
±22.3  
±10  
V
VREF1/10  
16-bit, best fit over input voltage range  
16-bit, Post-calibration  
±5.2  
±5  
LSB  
µV  
Offset error drift  
Gain error  
15-bit + sign, Post-calibration  
0.2  
0.3 µV/°C  
15-bit + sign, over input voltage range  
15-bit + sign, over input voltage range  
±0.2%  
±0.8%  
FSR  
150 PPM/°C  
MΩ  
Gain error drift  
Effective input resistance  
2.5  
(1) 1 LSB = VREF1/(10 × 2N) = 1.215/(10 × 215) = 3.71 µV  
7.15 CC Digital Filter  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ms  
Bits  
Conversion time  
Effective resolution  
Single conversion  
Single conversion  
250  
15  
7.16 ADC  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
0.2  
0.2  
VFS  
TYP  
MAX UNIT  
Internal reference (VREF1  
)
1
Input voltage range  
Full scale range  
V
External reference (VREG  
VFS = VREF1 or VREG  
)
0.8 × VREG  
VFS  
V
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: BQ40Z50-R2  
 
 
 
 
 
BQ40Z50-R2  
ZHCSGX4C JUNE 2017 REVISED APRIL 2021  
www.ti.com.cn  
7.16 ADC (continued)  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
±6.6  
16-bit, best fit, 0.1 V to 0.8 × VREF1  
Integral nonlinearity(1)  
LSB  
±13.1  
±157  
3
16-bit, best fit, 0.2 V to 0.1 V  
16-bit, Post-calibration, VFS = VREF1  
16-bit, Post-calibration, VFS = VREF1  
16-bit, 0.1 V to 0.8 × VFS  
Offset error(2)  
±67  
0.6  
µV  
Offset error drift  
Gain error  
µV/°C  
FSR  
±0.2%  
±0.8%  
Gain error drift  
Effective input resistance  
150 PPM/°C  
16-bit, 0.1 V to 0.8 × VFS  
8
MΩ  
(1) 1 LSB = VREF1/(2N) = 1.225/(215) = 37.4 µV (when tCONV = 31.25 ms)  
(2) For VC1VSS, VC2VC1, VC3VC2, VC4VC3, VC4VSS, PACKVSS, and VREF1/2, the offset error is multiplied by (1/ADC  
multiplexer scaling factor (K)).  
7.17 ADC Digital Filter  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
Conversion time  
Resolution  
TEST CONDITIONS  
MIN  
TYP  
31.25  
15.63  
7.81  
MAX UNIT  
Single conversion  
Single conversion  
ms  
Single conversion  
Single conversion  
1.95  
No missing codes  
16  
14  
13  
11  
9
Bits  
Bits  
With sign, tCONV = 31.25 ms  
With sign, tCONV = 15.63 ms  
With sign, tCONV = 7.81 ms  
With sign, tCONV = 1.95 ms  
15  
14  
12  
10  
Effective resolution  
7.18 CHG, DSG FET Drive  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
RatioDSG = (VDSG VBAT)/VBAT, 2.2 V < VBAT < 4.92 V,  
10 MΩbetween PACK and DSG  
2.133  
2.333  
2.433  
Output voltage  
ratio  
RatioCHG = (VCHG VBAT)/VBAT, 2.2 V < VBAT < 4.92 V,  
10 MΩbetween BAT and CHG  
2.133  
10.5  
2.333  
11.5  
2.433  
12  
VDSG(ON) = VDSG VBAT, VBAT 4.92 V, 10 MΩ  
between PACK and DSG, VBAT = 18 V  
Output voltage,  
CHG and DSG on  
V(FETON)  
V
V
VCHG(ON) = VCHG VBAT, VBAT 4.92 V, 10 MΩ  
between BAT and CHG, VBAT = 18 V  
10.5  
11.5  
12  
VDSG(OFF) = VDSG VPACK, 10 MΩbetween PACK and  
DSG  
0.4  
0.4  
0.4  
0.4  
Output voltage,  
CHG and DSG off  
V(FETOFF)  
VCHG(OFF) = VCHG VBAT, 10 MΩbetween BAT and  
CHG  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: BQ40Z50-R2  
 
 
 
 
BQ40Z50-R2  
ZHCSGX4C JUNE 2017 REVISED APRIL 2021  
www.ti.com.cn  
7.18 CHG, DSG FET Drive (continued)  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VDSG from 0% to 35% VDSG (ON)(TYP), VBAT 2.2 V, CL =  
4.7 nF between DSG and PACK, 5.1 kΩbetween DSG  
and CL, 10 MΩbetween PACK and DSG  
200  
500  
tR  
Rise time  
µs  
VCHG from 0% to 35% VCHG (ON)(TYP), VBAT 2.2 V, CL =  
4.7 nF between CHG and BAT, 5.1 kΩbetween CHG  
and CL, 10 MΩbetween BAT and CHG  
200  
40  
500  
300  
200  
VDSG from VDSG(ON)(TYP) to 1 V, VBAT 2.2 V, CL = 4.7  
nF between DSG and PACK, 5.1 kΩbetween DSG and  
CL, 10 MΩbetween PACK and DSG  
tF  
Fall time  
µs  
VCHG from VCHG(ON)(TYP) to 1 V, VBAT 2.2 V, CL = 4.7  
nF between CHG and BAT, 5.1 kΩbetween CHG and  
CL, 10 MΩbetween BAT and CHG  
40  
7.19 PCHG FET Drive  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Output voltage,  
PCHG on  
VPCHG(ON) = VVCC VPCHG, 10 MΩbetween VCC and  
PCHG  
V(FETON)  
6
7
8
V
Output voltage,  
PCHG off  
VPCHG(OFF) = VVCC VPCHG, 10 MΩbetween VCC and  
PCHG  
V(FETOFF)  
0.4  
V
0.4  
VPCHG from 10% to 90% VPCHG(ON)(TYP), VVCC 8 V, CL  
= 4.7 nF between PCHG and VCC, 5.1 kΩbetween  
PCHG and CL, 10 MΩbetween VCC and CHG  
tR  
Rise time  
Fall time  
40  
40  
200  
200  
µs  
VPCHG from 90% to 10% VPCHG(ON)(TYP), VCC 8 V, CL =  
4.7 nF between PCHG and VCC, 5.1 kΩbetween PCHG  
and CL, 10 MΩbetween VCC and CHG  
tF  
µs  
7.20 FUSE Drive  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
BAT 8 V, CL = 1 nF, IAFEFUSE = 0 µA  
VBAT < 8 V, CL = 1 nF, IAFEFUSE = 0 µA  
MIN  
TYP  
MAX UNIT  
6
7
8.65  
V
Output voltage  
high  
VOH  
V
VBAT  
2.5  
V
BAT 0.1  
VIH  
High-level input  
1.5  
2.0  
V
Internal pullup  
current  
IAFEFUSE(PU)  
150  
330  
3.2  
nA  
V
BAT 8 V, VAFEFUSE = VSS  
RAFEFUSE  
CIN  
Output impedance  
Input capacitance  
2
2.6  
5
kΩ  
pF  
Fuse trip detection  
delay  
tDELAY  
tRISE  
128  
256  
20  
µs  
µs  
Fuse output rise  
time  
5
V
BAT 8 V, CL = 1 nF, VOH = 0 V to 5 V  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: BQ40Z50-R2  
 
 
BQ40Z50-R2  
ZHCSGX4C JUNE 2017 REVISED APRIL 2021  
www.ti.com.cn  
7.21 Internal Temperature Sensor  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Internal  
temperature  
sensor voltage drift  
VTEMPP  
TEMPP VTEMPN, assured by design  
1.9  
2.0  
2.1  
VTEMP  
mV/°C  
0.177  
0.178  
0.179  
V
7.22 TS1, TS2, TS3, TS4  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
0.2  
0.2  
TYP  
MAX UNIT  
TS1, TS2, TS3, TS4, VBIAS = VREF1  
TS1, TS2, TS3, TS4, VBIAS = VREG  
0.8 × VREF1  
Input voltage  
range  
VIN  
V
0.8 × VREG  
21.6  
Internal pullup  
resistance  
RNTC(PU)  
TS1, TS2, TS3, TS4  
TS1, TS2, TS3, TS4  
14.4  
18  
kΩ  
Resistance drift  
over  
RNTC(DRIFT)  
PPM/°C  
360  
280  
200  
temperature  
7.23 PTC, PTCEN  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
1.2  
TYP  
2.5  
MAX UNIT  
PTC trip  
resistance  
RPTC(TRIP)  
VPTC(TRIP)  
IPTC  
3.95  
890  
350  
145  
MΩ  
mV  
nA  
PTC trip voltage  
200  
200  
40  
500  
290  
80  
VPTC(TRIP) = VPTCEN VPTC  
TA = 40°C to 110°C  
TA = 40°C to 110°C  
Internal PTC  
current bias  
tPTC(DELAY) PTC delay time  
ms  
7.24 Internal 1.8-V LDO  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VREG  
Regulator voltage  
Regulator output  
over temperature  
Line regulation  
Load regulation  
1.6  
1.8  
2.0  
V
±0.25%  
ΔVO(TEMP)  
ΔVREG/ΔTA, IREG = 10 mA  
0.5%  
1.5%  
ΔVO(LINE)  
ΔVO(LOAD)  
ΔVREG/ΔVBAT, VBAT = 10 mA  
0 .6%  
1.5%  
ΔVREG/ΔIREG, IREG = 0 mA to 10 mA  
Regulator output  
current limit  
IREG  
VREG = 0.9 × VREG(NOM), VIN > 2.2 V  
VREG = 0 × VREG(NOM)  
20  
25  
mA  
mA  
dB  
Regulator short-  
circuit current limit  
ISC  
40  
40  
55  
Power supply  
rejection ratio  
PSRRREG  
ΔVBAT/ΔVREG, IREG = 10 mA ,VIN > 2.5 V, f = 10 Hz  
Slew rate  
VSLEW  
enhancement  
voltage threshold  
VREG  
1.58  
1.65  
V
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: BQ40Z50-R2  
 
 
 
 
BQ40Z50-R2  
ZHCSGX4C JUNE 2017 REVISED APRIL 2021  
www.ti.com.cn  
7.25 High-Frequency Oscillator  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
16.78  
MAX UNIT  
MHz  
fHFO  
Operating frequency  
±0.25%  
±0.25%  
2.5%  
3.5%  
TA = 20°C to 70°C, includes frequency drift  
2.5%  
3.5%  
fHFO(ERR)  
Frequency error  
Start-up time  
TA = 40°C to 85°C, includes frequency drift  
TA = 20°C to 85°C, oscillator frequency within +/–  
3% of nominal  
4
ms  
µs  
tHFO(SU)  
100  
oscillator frequency within +/3% of nominal  
7.26 Low-Frequency Oscillator  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
262.144  
±0.25%  
±0.25  
MAX UNIT  
kHz  
fLFO  
Operating frequency  
1.5%  
2.5  
TA = 20°C to 70°C, includes frequency drift  
TA = 40°C to 85°C, includes frequency drift  
1.5%  
2.5  
fLFO(ERR)  
Frequency error  
Failure detection  
frequency  
fLFO(FAIL)  
30  
80  
100  
kHz  
7.27 Voltage Reference 1  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
1.22 V  
Internal reference  
voltage  
VREF1  
TA = 25°C, after trim  
1.21  
1.215  
TA = 0°C to 60°C, after trim  
±50  
±80  
Internal reference  
voltage drift  
VREF1(DRIFT)  
PPM/°C  
TA = 40°C to 85°C, after trim  
7.28 Voltage Reference 2  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
1.23 V  
Internal reference  
voltage  
VREF2  
TA = 25°C, after trim  
1.22  
1.225  
TA = 0°C to 60°C, after trim  
±50  
±80  
Internal reference  
voltage drift  
VREF2(DRIFT)  
PPM/°C  
TA = 40°C to 85°C, after trim  
7.29 Instruction Flash  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Years  
Data retention  
10  
Flash programming  
write cycles  
1000  
Cycles  
µs  
Word programming  
time  
tPROGWORD  
40  
TA = 40°C to 85°C  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: BQ40Z50-R2  
 
 
 
 
 
BQ40Z50-R2  
ZHCSGX4C JUNE 2017 REVISED APRIL 2021  
www.ti.com.cn  
7.29 Instruction Flash (continued)  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
tMASSERASE  
tPAGEERASE  
IFLASHREAD  
IFLASHWRITE  
IFLASHERASE  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Mass-erase time  
Page-erase time  
Flash-read current  
Flash-write current  
Flash-erase current  
40  
40  
2
ms  
TA = 40°C to 85°C  
TA = 40°C to 85°C  
TA = 40°C to 85°C  
TA = 40°C to 85°C  
TA = 40°C to 85°C  
ms  
mA  
mA  
mA  
5
15  
7.30 Data Flash  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Years  
Data retention  
10  
Flash programming  
write cycles  
20000  
Cycles  
tPROGWORD  
tMASSERASE  
tPAGEERASE  
IFLASHREAD  
IFLASHWRITE  
IFLASHERASE  
Word programming time  
Mass-erase time  
40  
40  
40  
1
µs  
ms  
ms  
mA  
mA  
mA  
TA = 40°C to 85°C  
TA = 40°C to 85°C  
TA = 40°C to 85°C  
TA = 40°C to 85°C  
TA = 40°C to 85°C  
TA = 40°C to 85°C  
Page-erase time  
Flash-read current  
Flash-write current  
Flash-erase current  
5
15  
7.31 OLD, SCC, SCD1, SCD2 Current Protection Thresholds  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VOLD = VSRP VSRN, AFE PROTECTION  
CONTROL[RSNS] = 1  
16.6  
100  
OLD detection threshold  
voltage range  
VOLD  
mV  
VOLD = VSRP VSRN, AFE PROTECTION  
CONTROL[RSNS] = 0  
8.3  
50  
VOLD = VSRP VSRN, AFE PROTECTION  
CONTROL[RSNS] = 1  
5.56  
2.78  
OLD detection threshold  
voltage program step  
mV  
mV  
mV  
mV  
ΔVOLD  
VOLD = VSRP VSRN, AFE PROTECTION  
CONTROL[RSNS] = 0  
VSCC = VSRP VSRN, AFE PROTECTION  
CONTROL[RSNS] = 1  
44.4  
22.2  
200  
100  
SCC detection threshold  
voltage range  
VSCC  
VSCC = VSRP VSRN, AFE PROTECTION  
CONTROL[RSNS] = 0  
VSCC = VSRP VSRN, AFE PROTECTION  
CONTROL[RSNS] = 1  
22.2  
11.1  
SCC detection threshold  
voltage program step  
ΔVSCC  
VSCC = VSRP VSRN, AFE PROTECTION  
CONTROL[RSNS] = 0  
VSCD1 = VSRP VSRN, AFE PROTECTION  
CONTROL[RSNS] = 1  
44.4  
22.2  
200  
100  
SCD1 detection  
threshold voltage range  
VSCD1  
VSCD1 = VSRP VSRN, AFE PROTECTION  
CONTROL[RSNS] = 0  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: BQ40Z50-R2  
 
 
BQ40Z50-R2  
ZHCSGX4C JUNE 2017 REVISED APRIL 2021  
www.ti.com.cn  
7.31 OLD, SCC, SCD1, SCD2 Current Protection Thresholds (continued)  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VSCD1 = VSRP VSRN, AFE PROTECTION  
CONTROL[RSNS] = 1  
22.2  
SCD1 detection  
threshold voltage  
program step  
mV  
ΔVSCD1  
VSCD1 = VSRP VSRN, AFE PROTECTION  
CONTROL[RSNS] = 0  
11.1  
VSCD2 = VSRP VSRN, AFE PROTECTION  
CONTROL[RSNS] = 1  
44.4  
22.2  
200  
100  
SCD2 detection  
threshold voltage range  
VSCD2  
mV  
mV  
VSCD2 = VSRP VSRN, AFE PROTECTION  
CONTROL[RSNS] = 0  
VSCD2 = VSRP VSRN, AFE PROTECTION  
CONTROL[RSNS] = 1  
22.2  
11.1  
SCD2 detection  
threshold voltage  
program step  
ΔVSCD2  
VSCD2 = VSRP VSRN, AFE PROTECTION  
CONTROL[RSNS] = 0  
OLD, SCC, and SCDx  
offset error  
VOFFSET  
Post-trim  
2.5  
mV  
2.5  
No trim  
10%  
5%  
10%  
5%  
OLD, SCC, and SCDx  
scale error  
VSCALE  
Post-trim  
7.32 Timing Requirements: OLD, SCC, SCD1, SCD2 Current Protection Timing  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
MIN  
NOM  
MAX UNIT  
OLD detection  
delay time  
tOLD  
1
31  
ms  
OLD detection  
delay time  
program step  
2
ms  
µs  
µs  
ΔtOLD  
SCC detection  
delay time  
tSCC  
0
915  
SCC detection  
delay time  
61  
ΔtSCC  
program step  
AFE PROTECTION CONTROL[SCDDx2] = 0  
AFE PROTECTION CONTROL[SCDDx2] = 1  
AFE PROTECTION CONTROL[SCDDx2] = 0  
0
0
915  
SCD1 detection  
delay time  
tSCD1  
µs  
µs  
µs  
1850  
SCD1 detection  
delay time  
program step  
61  
ΔtSCD1  
AFE PROTECTION CONTROL[SCDDx2] = 1  
121  
AFE PROTECTION CONTROL[SCDDx2] = 0  
AFE PROTECTION CONTROL[SCDDx2] = 1  
AFE PROTECTION CONTROL[SCDDx2] = 0  
0
0
458  
915  
SCD2 detection  
delay time  
tSCD2  
SCD2 detection  
delay time  
program step  
30.5  
61  
µs  
µs  
ΔtSCD2  
AFE PROTECTION CONTROL[SCDDx2] = 1  
Current fault  
detect time  
V
V
SRP VSRN = VT 3 mV for OLD, SCD1, and SC2,  
SRP VSRN = VT + 3 mV for SCC  
tDETECT  
tACC  
160  
Current fault delay  
time accuracy  
Max delay setting  
10%  
10%  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: BQ40Z50-R2  
 
BQ40Z50-R2  
ZHCSGX4C JUNE 2017 REVISED APRIL 2021  
www.ti.com.cn  
7.33 Timing Requirements: SMBus  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
SMBus operating  
frequency  
fSMB  
SLAVE mode, SMBC 50% duty cycle  
10  
100  
kHz  
SMBus master clock  
frequency  
fMAS  
MASTER mode, no clock low slave extend  
51.2  
kHz  
µs  
Bus free time between start  
and stop  
tBUF  
4.7  
4.0  
Hold time after (repeated)  
start  
tHD(START)  
µs  
tSU(START)  
tSU(STOP)  
tHD(DATA)  
tSU(DATA)  
tTIMEOUT  
tLOW  
Repeated start setup time  
Stop setup time  
4.7  
4.0  
300  
250  
25  
µs  
µs  
ns  
ns  
ms  
µs  
µs  
ns  
ns  
Data hold time  
Data setup time  
Error signal detect time  
Clock low period  
Clock high period  
Clock rise time  
35  
4.7  
4.0  
tHIGH  
50  
1000  
300  
tR  
10% to 90%  
90% to 10%  
tF  
Clock fall time  
Cumulative clock low slave  
extend time  
tLOW(SEXT)  
tLOW(MEXT)  
25  
10  
ms  
ms  
Cumulative clock low  
master extend time  
7.34 Timing Requirements: SMBus XL  
Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = 40°C to 85°C and VCC =  
2.2 V to 26 V (unless otherwise noted)  
MIN  
NOM  
MAX UNIT  
fSMBXL  
tBUF  
SMBus XL operating  
frequency  
SLAVE mode  
40  
400  
kHz  
Bus free time between start  
and stop  
4.7  
µs  
tHD(START)  
tSU(START)  
tSU(STOP)  
tTIMEOUT  
tLOW  
Hold time after (repeated) start  
Repeated start setup time  
Stop setup time  
4.0  
4.7  
4.0  
5
µs  
µs  
µs  
ms  
µs  
µs  
Error signal detect time  
Clock low period  
20  
20  
20  
tHIGH  
Clock high period  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: BQ40Z50-R2  
 
 
BQ40Z50-R2  
ZHCSGX4C JUNE 2017 REVISED APRIL 2021  
www.ti.com.cn  
TtR  
TtF  
TtF  
TtR  
TtHIGH  
T
tSU(STOP)p  
tHD(START)  
TtBUFT  
TtLOWT  
SMBC  
SMBC  
SMBD  
SMBD  
P
S
tHD(DATA)  
T
TtSU(DATA)  
Start and Stop Condition  
Wait and Hold Condition  
tSU(START)  
T
TtTIMEOUT  
SMBC  
SMBD  
SMBC  
SMBD  
S
Repeated Start Condition  
Timeout Condition  
7-1. SMBus Timing Diagram  
7.35 Typical Characteristics  
±8.  
0.15  
0.10  
Max CC Offset Error  
Min CC Offset Error  
ꢀ8.  
ꢁ8.  
0.05  
ꢂ8.  
0.00  
.8.  
±ꢂ8.  
±ꢁ8.  
±ꢀ8.  
±±8.  
œ0.05  
œ0.10  
œ0.15  
Max ADC Offset Error  
Min ADC Offset Error  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
.
ꢂ.  
ꢁ.  
ꢀ.  
±.  
1..  
1ꢂ.  
±ꢁ.  
±ꢂ.  
Temperature (°C)  
C001  
Temperature (°C)  
C..3  
7-2. CC Offset Error vs. Temperature  
7-3. ADC Offset Error vs. Temperature  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: BQ40Z50-R2  
 
BQ40Z50-R2  
ZHCSGX4C JUNE 2017 REVISED APRIL 2021  
www.ti.com.cn  
1.24  
264  
262  
260  
258  
256  
254  
252  
250  
1.23  
1.22  
1.21  
1.20  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
œ40  
œ20  
œ40  
œ20  
Temperature (°C)  
Temperature (°C)  
C006  
C007  
7-4. Reference Voltage vs. Temperature  
7-5. Low-Frequency Oscillator vs. Temperature  
16.9  
–24.6  
–24.8  
–25.0  
–25.2  
–25.4  
–25.6  
–25.8  
16.8  
16.7  
16.6  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
–40  
–20  
Temperature (°C)  
Temperature (°C)  
C008  
C009  
Threshold setting is 25 mV.  
7-6. High-Frequency Oscillator vs. Temperature  
7-7. Overcurrent Discharge Protection  
Threshold vs. Temperature  
87.4  
87.2  
87.0  
86.8  
86.6  
86.4  
86.2  
œ86.0  
œ86.2  
œ86.4  
œ86.6  
œ86.8  
œ87.0  
œ87.2  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
œ40  
œ20  
Temperature (°C)  
Temperature (°C)  
C010  
C011  
Threshold setting is 88.85 mV.  
Threshold setting is 88.85 mV.  
7-8. Short Circuit Charge Protection Threshold  
7-9. Short Circuit Discharge 1 Protection  
vs. Temperature  
Threshold vs. Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: BQ40Z50-R2  
BQ40Z50-R2  
ZHCSGX4C JUNE 2017 REVISED APRIL 2021  
www.ti.com.cn  
11.00  
10.95  
10.90  
10.85  
10.80  
10.75  
10.70  
œ172.9  
œ173.0  
œ173.1  
œ173.2  
œ173.3  
œ173.4  
œ173.5  
œ173.6  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
œ40  
œ20  
Temperature (°C)  
Temperature (°C)  
C012  
C013  
Threshold setting is 11 ms.  
Threshold setting is 177.7 mV.  
7-11. Overcurrent Delay Time vs. Temperature  
7-10. Short Circuit Discharge 2 Protection  
Threshold vs. Temperature  
452  
450  
448  
446  
444  
442  
440  
438  
436  
434  
432  
480  
460  
440  
420  
400  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
œ40  
œ20  
Temperature (°C)  
Temperature (°C)  
C014  
C015  
Threshold setting is 465 µs.  
Threshold setting is 465 µs (including internal delay).  
7-12. Short Circuit Charge Current Delay Time  
7-13. Short Circuit Discharge 1 Delay Time vs.  
vs. Temperature  
Temperature  
2.4984  
2.49835  
2.4983  
2.49825  
2.4982  
2.49815  
2.4981  
2.49805  
2.498  
3.49825  
3.4982  
3.49815  
3.4981  
3.49805  
3.498  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
œ40  
œ20  
Temperature (°C)  
Temperature (°C)  
C017  
C016  
This is the VCELL average for single cell.  
7-14. VCELL Measurement at 2.5-V vs.  
Temperature  
7-15. VCELL Measurement at 3.5-V vs.  
Temperature  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: BQ40Z50-R2  
BQ40Z50-R2  
ZHCSGX4C JUNE 2017 REVISED APRIL 2021  
www.ti.com.cn  
4.24805  
99.25  
99.20  
99.15  
99.10  
99.05  
99.00  
4.248  
4.24795  
4.2479  
4.24785  
4.2478  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
Temperature (°C)  
Temperature (°C)  
C018  
C019  
This is the VCELL average for single cell.  
ISET = 100 mA  
7-16. VCELL Measurement at 4.25-V vs.  
7-17. I measured vs. Temperature  
Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: BQ40Z50-R2  
BQ40Z50-R2  
ZHCSGX4C JUNE 2017 REVISED APRIL 2021  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The BQ40Z50-R2 device, incorporating patented Impedance Tracktechnology, provides cell balancing while  
charging or at rest. This fully integrated, single-chip, pack-based solution, including a diagnostic lifetime data  
monitor and black box recorder, provides a rich array of features for gas gauging, protection, and authentication  
for 1-series, 2-series, 3-series, and 4-series cell Li-ion and Li-polymer battery packs.  
8.2 Functional Block Diagram  
Cell, Stack,  
Pack  
Voltage  
High Side  
N-CH FET  
Drive  
Cell  
Balancing  
Cell Detach  
Detection  
Power Mode  
Control  
P-CH  
FET Drive  
Zero Volt  
Charge  
Control  
PTCEN  
PTC  
Wake  
Comparator  
Power On  
Reset  
PTC  
Overtemp  
Short Circuit  
Comparator  
FUSE  
Control  
FUSE  
SRP  
SRN  
BTP_INT  
Over  
Current  
Comparator  
High  
Voltage  
I/O  
Voltage  
Reference2  
PRES or SHUTDN  
DISP  
Random  
Number  
Generator  
Watchdog  
Timer  
NTC Bias  
TS1  
TS2  
TS3  
TS4  
LEDCNTLC  
LEDCNTLB  
LEDCNTLA  
Internal  
Temp  
Sensor  
LED Display  
Drive I/O  
Voltage  
Reference1  
ADC MUX  
AFE Control  
Low  
Frequency  
Oscillator  
SBS High  
Voltage  
Translation  
SMBD  
SMBC  
ADC/CC  
FRONTEND  
1.8V LDO  
Regulator  
AFE COM  
Engine  
High  
Frequency  
Oscillator  
Low Voltage  
I/O  
I/O  
I/O &  
Interrupt  
Controller  
ADC/CC  
Digital Filter  
Timers&  
PWM  
AFE COM  
Engine  
SBS COM  
Engine  
Data (8bit)  
DMAddr (16bit)  
bqBMP  
CPU  
PMInstr  
(8bit)  
PMAddr  
(16bit)  
Program  
Flash  
EEPROM  
Data Flash  
EEPROM  
Data  
SRAM  
Copyright © 2017, Texas Instruments Incorporated  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: BQ40Z50-R2  
 
 
 
BQ40Z50-R2  
ZHCSGX4C JUNE 2017 REVISED APRIL 2021  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Primary (1st Level) Safety Features  
The BQ40Z50-R2 supports a wide range of battery and system protection features that can easily be configured.  
See the BQ40Z50-R2 Technical Reference Manual (SLUUBK0) for detailed descriptions of each protection  
function.  
The primary safety features include:  
Cell Overvoltage Protection  
Cell Undervoltage Protection  
Cell Undervoltage Protection Compensated  
Overcurrent in Charge Protection  
Overcurrent in Discharge Protection  
Overload in Discharge Protection  
Short Circuit in Charge Protection  
Short Circuit in Discharge Protection  
Overtemperature in Charge Protection  
Overtemperature in Discharge Protection  
Undertemperature in Charge Protection  
Undertemperature in Discharge Protection  
Overtemperature FET protection  
Precharge Timeout Protection  
Host Watchdog Timeout Protection  
Fast Charge Timeout Protection  
Overcharge Protection  
Overcharging Voltage Protection  
Overcharging Current Protection  
Over Precharge Current Protection  
8.3.2 Secondary (2nd Level) Safety Features  
The secondary safety features of the BQ40Z50-R2 can be used to indicate more serious faults via the FUSE pin.  
This pin can be used to blow an in-line fuse to permanently disable the battery pack from charging or  
discharging. See the BQ40Z50-R2 Technical Reference Manual (SLUUBK0) for detailed descriptions of each  
protection function.  
The secondary safety features provide protection against:  
Safety Overvoltage Permanent Failure  
Safety Undervoltage Permanent Failure  
Safety Overtemperature Permanent Failure  
Safety FET Overtemperature Permanent Failure  
Qmax Imbalance Permanent Failure  
Impedance Imbalance Permanent Failure  
Capacity Degradation Permanent Failure  
Cell Balancing Permanent Failure  
Fuse Failure Permanent Failure  
PTC Permanent Failure  
Voltage Imbalance At Rest Permanent Failure  
Voltage Imbalance Active Permanent Failure  
Charge FET Permanent Failure  
Discharge FET Permanent Failure  
AFE Register Permanent Failure  
AFE Communication Permanent Failure  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: BQ40Z50-R2  
 
BQ40Z50-R2  
ZHCSGX4C JUNE 2017 REVISED APRIL 2021  
www.ti.com.cn  
Second Level Protector Permanent Failure  
Instruction Flash Checksum Permanent Failure  
Open Cell Connection Permanent Failure  
Data Flash Permanent Failure  
Open Thermistor Permanent Failure  
8.3.3 Charge Control Features  
The BQ40Z50-R2 charge control features include:  
Supports JEITA temperature ranges. Reports charging voltage and charging current according to the active  
temperature range  
Handles more complex charging profiles. Allows for splitting the standard temperature range into two sub-  
ranges and allows for varying the charging current according to the cell voltage  
Reports the appropriate charging current needed for constant current charging and the appropriate charging  
voltage needed for constant voltage charging to a smart charger using SMBus broadcasts  
Reduces the charge difference of the battery cells in a fully charged state of the battery pack gradually using  
a voltage-based cell balancing algorithm during charging. A voltage threshold can be set up for cell balancing  
to be active. This prevents fully charged cells from overcharging and causing excessive degradation and also  
increases the usable pack energy by preventing premature charge termination.  
Supports precharging/0-volt charging  
Supports charge inhibit and charge suspend if battery pack temperature is out of temperature range  
Reports charging fault and also indicates charge status via charge and discharge alarms  
8.3.4 Gas Gauging  
The BQ40Z50-R2 uses the Impedance Track algorithm to measure and calculate the available capacity in  
battery cells. The BQ40Z50-R2 accumulates a measure of charge and discharge currents and compensates the  
charge current measurement for the temperature and state-of-charge of the battery. The BQ40Z50-R2 estimates  
self-discharge of the battery and also adjusts the self-discharge estimation based on temperature. The device  
also has TURBO Mode 2.0 support, which enables the BQ40Z50-R2 to provide the necessary data for the MCU  
to determine what level of peak power consumption can be applied without causing a system reset or transient  
battery voltage level spike to trigger termination flags. See the BQ40Z50-R2 Technical Reference Manual  
(SLUUBK0) for further details.  
8.3.5 Configuration  
8.3.5.1 Oscillator Function  
The BQ40Z50-R2 fully integrates the system oscillators and does not require any external components to  
support this feature.  
8.3.5.2 System Present Operation  
The BQ40Z50-R2 checks the PRES pin periodically (1 s). If PRES input is pulled to ground by the external  
system, the BQ40Z50-R2 detects this as system present.  
8.3.5.3 Emergency Shutdown  
For battery maintenance, the emergency shutdown feature enables a push button action connecting the  
SHUTDN pin to shut down an embedded battery pack system before removing the battery. A high-to-low  
transition of the SHUTDN pin signals the BQ40Z50-R2 to turn off the CHG and DSG FETs, disconnecting the  
power from the system to safely remove the battery pack. The CHG and DSG FETs can be turned on again by  
another high-to-low transition detected by the SHUTDN pin or when a data flash configurable timeout is reached.  
8.3.5.4 1-Series, 2-Series, 3-Series, or 4-Series Cell Configuration  
In a 1-series cell configuration, VC4 is shorted to VC, VC2, and VC1. In a 2-series cell configuration, VC4 is  
shorted to VC3 and VC2. In a 3-series cell configuration, VC4 is shorted to VC3.  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: BQ40Z50-R2  
BQ40Z50-R2  
ZHCSGX4C JUNE 2017 REVISED APRIL 2021  
www.ti.com.cn  
8.3.5.5 Cell Balancing  
The device supports cell balancing by bypassing the current of each cell during charging or at rest. If the  
device's internal bypass is used, up to 10 mA can be bypassed and multiple cells can be bypassed at the same  
time. Higher cell balance current can be achieved by using an external cell balancing circuit. In external cell  
balancing mode, only one cell at a time can be balanced.  
The cell balancing algorithm determines the amount of charge needed to be bypassed to balance the capacity of  
all cells.  
8.3.6 Battery Parameter Measurements  
8.3.6.1 Charge and Discharge Counting  
The BQ40Z50-R2 uses an integrating delta-sigma analog-to-digital converter (ADC) for current measurement,  
and a second delta-sigma ADC for individual cell and battery voltage and temperature measurement.  
The integrating delta-sigma ADC measures the charge/discharge flow of the battery by measuring the voltage  
drop across a small-value sense resistor between the SRP and SRN terminals. The integrating ADC measures  
bipolar signals from 0.1 V to 0.1 V. The BQ40Z50-R2 detects charge activity when VSR = V(SRP) V(SRN) is  
positive, and discharge activity when VSR = V(SRP) V(SRN) is negative. The BQ40Z50-R2 continuously  
integrates the signal over time, using an internal counter. The fundamental rate of the counter is 0.26 nVh.  
8.3.7 Battery Trip Point (BTP)  
Required for WIN8 OS, the battery trip point (BTP) feature indicates when the RSOC of a battery pack has  
depleted to a certain value set in a DF register. This feature enables a host to program two capacity-based  
thresholds that govern the triggering of a BTP interrupt on the BTP_INT pin, and the setting or clearing of the  
OperationStatus[BTP_INT] on the basis of RemainingCapacity().  
An internal weak pullup is applied when the BTP feature is active. Depending on the system design, an external  
pullup may be required to put on the BTP_INT pin. See 7.12 for details.  
8.3.8 Lifetime Data Logging Features  
The BQ40Z50-R2 offers lifetime data logging for several critical battery parameters. The following parameters  
are updated every 10 hours if a difference is detected between values in RAM and data flash:  
Maximum and Minimum Cell Voltages  
Maximum Delta Cell Voltage  
Maximum Charge Current  
Maximum Discharge Current  
Maximum Average Discharge Current  
Maximum Average Discharge Power  
Maximum and Minimum Cell Temperature  
Maximum Delta Cell Temperature  
Maximum and Minimum Internal Sensor Temperature  
Maximum FET Temperature  
Number of Safety Events Occurrences and the Last Cycle of the Occurrence  
Number of Valid Charge Termination and the Last Cycle of the Valid Charge Termination  
Number of Qmax and Ra Updates and the Last Cycle of the Qmax and Ra Updates  
Number of Shutdown Events  
Cell Balancing Time for Each Cell  
(This data is updated every 2 hours if a difference is detected.)  
Total FW Runtime and Time Spent in Each Temperature Range  
(This data is updated every 2 hours if a difference is detected.)  
8.3.9 Authentication  
The BQ40Z50-R2 supports authentication by the host using SHA-1.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: BQ40Z50-R2  
BQ40Z50-R2  
ZHCSGX4C JUNE 2017 REVISED APRIL 2021  
www.ti.com.cn  
8.3.10 LED Display  
The BQ40Z50-R2 can drive a 3-, 4-, or 5- segment LED display for remaining capacity indication and/or a  
permanent fail (PF) error code indication.  
8.3.11 IATA Support  
The BQ40Z50-R2 supports IATA with several new commands and procedures. See the BQ40Z50-R2 Technical  
Reference Manual (SLUUBK0) for further details.  
8.3.12 Voltage  
The BQ40Z50-R2 updates the individual series cell voltages at 0.25-s intervals. The internal ADC of the  
BQ40Z50-R2 measures the voltage, and scales and calibrates it appropriately. This data is also used to  
calculate the impedance of the cell for the Impedance Track gas gauging.  
8.3.13 Current  
The BQ40Z50-R2 uses the SRP and SRN inputs to measure and calculate the battery charge and discharge  
current using a 1-mΩto 3-mΩtyp. sense resistor.  
8.3.14 Temperature  
The BQ40Z50-R2 has an internal temperature sensor and inputs for four external temperature sensors. All five  
temperature sensor options can be individually enabled and configured for cell or FET temperature usage. Two  
configurable thermistor models are provided to allow the monitoring of cell temperature in addition to FET  
temperature, which use a different thermistor profile.  
8.3.15 Communications  
The BQ40Z50-R2 uses SMBus v1.1 with MASTER mode and packet error checking (PEC) options per the SBS  
specification.  
8.3.15.1 SMBus On and Off State  
The BQ40Z50-R2 detects an SMBus off state when SMBC and SMBD are low for two or more seconds. Clearing  
this state requires that either SMBC or SMBD transition high. The communication bus will resume activity within  
1 ms.  
8.3.15.2 SBS Commands  
See the BQ40Z50-R2 Technical Reference Manual (SLUUBK0) for further details.  
8.4 Device Functional Modes  
The BQ40Z50-R2 supports three power modes to reduce power consumption:  
In NORMAL mode, the BQ40Z50-R2 performs measurements, calculations, protection decisions, and data  
updates in 250-ms intervals. Between these intervals, the BQ40Z50-R2 is in a reduced power stage.  
In SLEEP mode, the BQ40Z50-R2 performs measurements, calculations, protection decisions, and data  
updates in adjustable time intervals. Between these intervals, the BQ40Z50-R2 is in a reduced power stage.  
The BQ40Z50-R2 has a wake function that enables exit from SLEEP mode when current flow or failure is  
detected.  
In SHUTDOWN mode, the BQ40Z50-R2 is completely disabled.  
See the BQ40Z50-R2 Technical Reference Manual (SLUUBK0) for further details.  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: BQ40Z50-R2  
 
BQ40Z50-R2  
ZHCSGX4C JUNE 2017 REVISED APRIL 2021  
www.ti.com.cn  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
The BQ40Z50-R2 is a gas gauge with primary protection support, and can be used with 1-series to 4-series Li-  
ion/Li-polymer battery packs. To implement and design a comprehensive set of parameters for a specific battery  
pack, users need the Battery Management Studio (BQSTUDIO) graphical user-interface tool installed on a PC  
during development. The firmware installed on the BQSTUDIO tool has default values for this product, which are  
summarized in the BQ40Z50-R2 Technical Reference Manual (SLUUBK0). Using the BQSTUDIO tool, these  
default values can be changed to cater to specific application requirements during development once the system  
parameters, such as fault trigger thresholds for protection, enable/disable of certain features for operation,  
configuration of cells, chemistry that best matches the cell used, and more are known. This data is referred to as  
the "golden image."  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: BQ40Z50-R2  
 
 
BQ40Z50-R2  
ZHCSGX4C JUNE 2017 REVISED APRIL 2021  
www.ti.com.cn  
9.2 Typical Applications  
9
PAD  
4
2
4,7  
5,6,8  
1,2,  
t°  
10.0k ohm  
t°  
10.0k ohm  
t°  
10.0k ohm  
t°  
4
10.0k ohm  
1
4
3
2
2
2
1
1
2
1
9-1. Application Schematic  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: BQ40Z50-R2  
 
BQ40Z50-R2  
ZHCSGX4C JUNE 2017 REVISED APRIL 2021  
www.ti.com.cn  
9.2.1 Design Requirements  
9-1 shows the default settings for the main parameters. Use the BQSTUDIO tool to update the settings to  
meet the specific application or battery pack configuration requirements.  
The device should be calibrated before any gauging test. Follow the procedures on the BQSTUDIO Calibration  
page to calibrate the device, and use the information on the BQSTUDIO Chemistry page to update the match  
chemistry profile to the device.  
9-1. Design Parameters  
DESIGN PARAMETER  
Cell Configuration  
EXAMPLE  
3s1p (3-series with 1 parallel)(1)  
Design Capacity  
4400 mAh  
Device Chemistry  
1210 (LiCoO2/graphitized carbon)  
Cell Overvoltage at Standard Temperature  
Cell Undervoltage  
4300 mV  
2500 mV  
Shutdown Voltage  
2300 mV  
Overcurrent in CHARGE Mode  
Overcurrent in DISCHARGE Mode  
Short Circuit in CHARGE Mode  
Short Circuit in DISCHARGE Mode  
Safety Overvoltage  
6000 mA  
6000 mA  
0.1 V/Rsense across SRP, SRN  
0.1 V/Rsense across SRP, SRN  
4500 mV  
Cell Balancing  
Disabled  
Internal and External Temperature Sensor  
Undertemperature Charging  
Undertemperature Discharging  
BROADCAST Mode  
External temperature sensor is used.  
0°C  
0°C  
Disabled  
Disabled  
Battery Trip Point (BTP) with active high interrupt  
(1) When using the device the first time and if a 1-s or 2-s battery pack is used, then a charger or power supply should be connected to  
the PACK+ terminal to prevent device shutdown. Then update the cell configuration (see the BQ40Z50-R2 Technical Reference  
Manual [SLUUBK0] for details) before removing the charger connection.  
9.2.2 Detailed Design Procedure  
9.2.2.1 High-Current Path  
The high-current path begins at the PACK+ terminal of the battery pack. As charge current travels through the  
pack, it finds its way through protection FETs, a chemical fuse, the Li-ion cells and cell connections, and the  
sense resistor, and then returns to the PACKterminal (see 9-2). In addition, some components are placed  
across the PACK+ and PACKterminals to reduce effects from electrostatic discharge.  
9.2.2.1.1 Protection FETs  
Select the N-channel charge and discharge FETs for a given application. Most portable battery applications are a  
good match for the CSD17308Q3. The TI CSD17308Q3 is a 47A, 30-V device with Rds(on) of 8.2 mΩwhen the  
gate drive voltage is 8 V.  
If a precharge FET is used, R1 is calculated to limit the precharge current to the desired rate. Be sure to account  
for the power dissipation of the series resistor. The precharge current is limited to (VCHARGER VBAT)/R1 and  
maximum power dissipation is (Vcharger Vbat)2/R1.  
The gates of all protection FETs are pulled to the source with a high-value resistor between the gate and source  
to ensure they are turned off if the gate drive is open.  
Capacitors C1 and C2 help protect the FETs during an ESD event. Using two devices ensures normal operation  
if one becomes shorted. To have good ESD protection, the copper trace inductance of the capacitor leads must  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: BQ40Z50-R2  
 
 
 
BQ40Z50-R2  
ZHCSGX4C JUNE 2017 REVISED APRIL 2021  
www.ti.com.cn  
be designed to be as short and wide as possible. Ensure that the voltage ratings of both C1 and C2 are  
adequate to hold off the applied voltage if one of the capacitors becomes shorted.  
9-2. BQ40Z50-R2 Protection FETs  
9.2.2.1.2 Chemical Fuse  
The chemical fuse (Dexerials, Uchihashi, and so on) is ignited under command from either the bq294700  
secondary voltage protection IC or from the FUSE pin of the gas gauge. Either of these events applies a positive  
voltage to the gate of Q5, shown in 9-3, which then sinks current from the third terminal of the fuse, causing it  
to ignite and open permanently.  
It is important to carefully review the fuse specifications and match the required ignition current to that available  
from the N-channel FET. Ensure that the proper voltage, current, and Rds(on) ratings are used for this device.  
The fuse control circuit is discussed in detail in 9.2.2.2.5.  
4P  
to 2nd Level Protector  
to FUSE Pin  
9-3. FUSE Circuit  
9.2.2.1.3 Li-Ion Cell Connections  
For cell connections, it is important to remember that high current flows through the top and bottom connections;  
therefore, the voltage sense leads at these points must be made with a Kelvin connection to avoid any errors  
due to a drop in the high-current copper trace. The location marked 4P in 9-4 indicates the Kelvin connection  
of the most positive battery node. The connection marked 1N is equally important. The VC5 pin (a ground  
reference for cell voltage measurement), which is in the older generation devices, is not in the BQ40Z50-R2  
device. Therefore, the single-point connection at 1N to the low-current ground is needed to avoid an unwanted  
voltage drop through long traces while the gas gauge is measuring the bottom cell voltage.  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: BQ40Z50-R2  
 
 
 
BQ40Z50-R2  
ZHCSGX4C JUNE 2017 REVISED APRIL 2021  
www.ti.com.cn  
9-4. Li-Ion Cell Connections  
9.2.2.1.4 Sense Resistor  
As with the cell connections, the quality of the Kelvin connections at the sense resistor is critical. The sense  
resistor must have a temperature coefficient no greater than 50 ppm in order to minimize current measurement  
drift with temperature. Choose the value of the sense resistor to correspond to the available overcurrent and  
short-circuit ranges of the BQ40Z50-R2 device. Select the smallest value possible to minimize the negative  
voltage generated on the BQ40Z50-R2 VSS node(s) during a short circuit. This pin has an absolute minimum of  
0.3 V. Parallel resistors can be used as long as good Kelvin sensing is ensured. The device is designed to  
support a 1-mΩto 3-mΩsense resistor.  
The BQ40Z50-R2 ground scheme is different from that of the older generation devices. In previous devices, the  
device ground (or low current ground) is connected to the SRN side of the RSENSE resistor pad. In the BQ40Z50-  
R2 device, however, it connects the low-current ground on the SRP side of the RSENSE resistor pad close to the  
battery 1N terminal (see 9.2.2.1.3). This is because the BQ40Z50-R2 device has one less VC pin (a ground  
reference pin VC5) compared to the previous devices. The pin was removed and was internally combined to  
SRP.  
9-5. Sense Resistor  
9.2.2.1.5 ESD Mitigation  
A pair of series 0.1-μF ceramic capacitors is placed across the PACK+ and PACKterminals to help in the  
mitigation of external electrostatic discharges. The two devices in series ensure continued operation of the pack  
if one of the capacitors becomes shorted.  
Optionally, a tranzorb such as the SMBJ2A can be placed across the terminals to further improve ESD immunity.  
9.2.2.2 Gas Gauge Circuit  
The gas gauge circuit includes the BQ40Z50-R2 and its peripheral components. These components are divided  
into the following groups: differential low-pass filter, PBI, system present, SMBus communication, fuse circuit,  
and LED.  
9.2.2.2.1 Coulomb-Counting Interface  
The BQ40Z50-R2 uses an integrating delta-sigma ADC for current measurements. Add a 100-Ω resistor from  
the sense resistor to the SRP and SRN inputs of the device. Place a 0.1-µF (C18) filter capacitor across the SRP  
and SRN inputs.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: BQ40Z50-R2  
 
BQ40Z50-R2  
ZHCSGX4C JUNE 2017 REVISED APRIL 2021  
www.ti.com.cn  
9-6. Differential Filter  
9.2.2.2.2 Power Supply Decoupling and PBI  
The BQ40Z50-R2 device has an internal LDO that is internally compensated and does not require an external  
decoupling capacitor.  
The PBI pin is used as a power supply backup input pin, providing power during brief transient power outages. A  
standard 2.2-µF ceramic capacitor is connected from the PBI pin to ground, as shown in 9-7.  
24  
23  
22  
21  
20  
19  
18  
17  
1
2
3
4
5
6
7
8
PBI  
PTCEN  
PTC  
VC4  
VC3  
VC2  
VC1  
C13  
LEDCNTLC  
2.2 μF  
LEDCNTLB  
LEDCNTLA  
SMBC  
SRN  
NC  
SMBD  
DISP  
SRP  
Copyright © 2017, Texas Instruments Incorporated  
9-7. Power Supply Decoupling  
9.2.2.2.3 System Present  
The system present signal informs the gas gauge whether the pack is installed into or removed from the system.  
In the host system, this pin is grounded. The PRES pin of the BQ40Z50-R2 device is occasionally sampled to  
test for system present. In ACTIVE mode, the PRES pin is pulsed every 250 ms for a duration of 5 ms (RHOEN  
is on), and just before it is turned off, the state of the PRES pin is checked to see if it is low or high. The average  
of the four measurements is used to determine if the PRES is asserted or not. In SLEEP mode, the PRES pin is  
pulsed every "Sleep Voltage Time," and the state of the PRES pin is determined. A resistor can be used to pull  
the signal low and the resistance must be 20 kΩor lower to ensure that the test pulse is lower than the VIL limit.  
The pullup current source is typically 10 µA to 20 µA. When the PRES pin is not pulsed, the PRES pin is tied  
internally to VSS (RHOUT is on), and any pullup on the PRES pin will cause a battery drain when not charging.  
Refer to the PRES pin diagram in  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: BQ40Z50-R2  
 
 
BQ40Z50-R2  
ZHCSGX4C JUNE 2017 REVISED APRIL 2021  
www.ti.com.cn  
VIL  
<20 K  
9-8. System Present Pull-Down Resistor  
Because the System Present signal is part of the pack connector interface to the outside world, it must be  
protected from external electrostatic discharge events. The PRES pin has integrated ESD protection to 2 kV.  
External protection can be added to support higher ESD protection requirements. The TPD1E10B06 single-  
channel ESD protection diode (U2) can protect the input up to 30 kV, and the R8 reduces the holding current to  
release the internal SCR in the event that it triggers.  
to Discharge FET  
9-9. System Present ESD and Short Protection  
9.2.2.2.4 SMBus Communication  
The SMBus clock and data pins have integrated high-voltage ESD protection circuits; however, adding  
TPD1E10B06 ESD protection diodes (U4 and U5) and series resistors (R24 and R25) provides more robust ESD  
performance.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: BQ40Z50-R2  
BQ40Z50-R2  
ZHCSGX4C JUNE 2017 REVISED APRIL 2021  
www.ti.com.cn  
The SMBus clock and data lines have internal pulldown. When the gas gauge senses that both lines are low  
(such as during removal of the pack), the device performs auto-offset calibration and then goes into SLEEP  
mode to conserve power.  
9-10. ESD Protection for SMBus Communication  
9.2.2.2.5 FUSE Circuitry  
The FUSE pin of the BQ40Z50-R2 device is designed to ignite the chemical fuse if one of the various safety  
criteria is violated. The FUSE pin also monitors the state of the secondary-voltage protection IC. Q5 ignites the  
chemical fuse when its gate is high. The 7-V output of the bq294700 is divided by R18 and R19, which provides  
adequate gate drive for Q5 while guarding against excessive back current into the bq294700 if the FUSE signal  
is high.  
Using C7 is generally a good practice, especially for RFI immunity. C7 may be removed, if desired, because the  
chemical fuse is a comparatively slow device and is not affected by any sub-microsecond glitches that come  
from the FUSE output during the cell connection process.  
If the AFEFUSE output is not used, it should be connected to VSS.  
4P  
to 2nd Level Protector  
to FUSE Pin  
9-11. FUSE Circuit  
When the BQ40Z50-R2 device is commanded to ignite the chemical fuse, the FUSE pin activates to give a  
typical 8-V output. The new design makes it possible to use a higher Vgs FET for Q5. This improves the  
robustness of the system, as well as widens the choices for Q5.  
9.2.2.3 Secondary-Current Protection  
The BQ40Z50-R2 device provides secondary overcurrent and short-circuit protection, cell balancing, cell voltage  
multiplexing, and voltage translation. The following section examines cell and battery inputs, pack and FET  
control, temperature output, and cell balancing.  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: BQ40Z50-R2  
 
BQ40Z50-R2  
ZHCSGX4C JUNE 2017 REVISED APRIL 2021  
www.ti.com.cn  
9.2.2.3.1 Cell and Battery Inputs  
Each cell input is conditioned with a simple RC filter, which provides ESD protection during cell connect and acts  
to filter unwanted voltage transients. The resistor value allows some trade-off for cell balancing versus safety  
protection.  
The integrated cell balancing FETs enable the AFE to bypass cell current around a given cell or numerous cells,  
effectively balancing the entire battery stack. External series resistors placed between the cell connections and  
the VCx I/O pins set the balancing current magnitude. The internal FETs provide a 200-Ωresistance (2 V < VDS  
< 4 V). Series input resistors between 100 Ωand 300 Ωare recommended for effective cell balancing.  
The BAT input uses a diode (D1) to isolate and decouple it from the cells in the event of a transient dip in voltage  
caused by a short-circuit event.  
Also, as described in 9.2.2.1, the top and bottom nodes of the cells must be sensed at the battery  
connections with a Kelvin connection to prevent voltage sensing errors caused by a drop in the high-current PCB  
copper.  
9-12. Cell and BAT Inputs  
9.2.2.3.2 External Cell Balancing  
Internal cell balancing can only support up to 10 mA. External cell balancing is provided as another option for  
faster cell balancing. For details, refer to the application note, Fast Cell Balancing Using External MOSFET  
(SLUA420).  
9.2.2.3.3 PACK and FET Control  
The PACK and VCC inputs provide power to the BQ40Z50-R2 device from the charger. The PACK input also  
provides a method to measure and detect the presence of a charger. The PACK input uses a 10-kΩ resistor;  
whereas, the VCC input uses an internal diode to guard against input transients and prevent a misoperation of  
the gate driver during short-circuit events.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: BQ40Z50-R2  
BQ40Z50-R2  
ZHCSGX4C JUNE 2017 REVISED APRIL 2021  
www.ti.com.cn  
9-13. BQ40Z50-R2 PACK and FET Control  
The N-channel charge and discharge FETs are controlled with 5.1-kΩ series gate resistors, which provide a  
switching time constant of a few microseconds. The 10-MΩresistors ensure that the FETs are off in the event of  
an open connection to the FET drivers. Q4 is provided to protect the discharge FET (Q3) in the event of a  
reverse-connected charger. Without Q4, Q3 can be driven into its linear region and suffer severe damage if the  
PACK+ input becomes slightly negative.  
Q4 turns on in that case to protect Q3 by shorting its gate to source. To use the simple ground gate circuit, the  
FET must have a low gate turn-on threshold. If it is desired to use a more standard device, such as the 2N7002  
as the reference schematic, the gate should be biased up to 3.3 V with a high-value resistor. The BQ40Z50-R2  
device has the capability to provide a current-limited charging path typically used for low battery voltage or low  
temperature charging. The BQ40Z50-R2 device uses an external P-channel, precharge FET controlled by  
PCHG.  
9.2.2.3.4 Temperature Output  
For the BQ40Z50-R2 device, TS1, TS2, TS3, and TS4 provide thermistor drive-under program control. Each pin  
can be enabled with an integrated 18-k(typical) linearization pullup resistor to support the use of a 10-kat  
25°C (103) NTC external thermistor, such as a Mitsubishi BN35-3H103. The reference design includes four 10-  
kthermistors: RT2, RT3, RT4, and RT5. The BQ40Z50-R2 device supports up to four external thermistors.  
Connect unused thermistor pins to VSS  
.
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: BQ40Z50-R2  
BQ40Z50-R2  
ZHCSGX4C JUNE 2017 REVISED APRIL 2021  
www.ti.com.cn  
9-14. Thermistor Drive  
9.2.2.3.5 LEDs  
Three LED control outputs provide constant current sinks for the driving external LEDs. These outputs are  
configured to provide voltage and control for up to five LEDs. No external bias voltage is required. Unused  
LEDCNTL pins can remain open or they can be connected to VSS. The DISP pin should be connected to VSS if  
the LED feature is not used.  
9-15. LEDs  
9.2.2.3.6 Safety PTC Thermistor  
The BQ40Z50-R2 device provides support for a safety PTC thermistor. The PTC thermistor is connected  
between the PTC and BAT pins. It can be placed close to the CHG/DSG FETs to monitor the temperature. The  
PTC pin monitors the voltage at the pin and will trip if the thermistor resistance exceeds the defined threshold. A  
PTC fault is one of the permanent failure modes. It can only be cleared by a POR.  
To disable, connect PTC and PTCEN to VSS.  
9-16. PTC Thermistor  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: BQ40Z50-R2  
BQ40Z50-R2  
ZHCSGX4C JUNE 2017 REVISED APRIL 2021  
www.ti.com.cn  
9.2.3 Application Curves  
–24.6  
–24.8  
–25.0  
–25.2  
–25.4  
–25.6  
–25.8  
87.4  
87.2  
87.0  
86.8  
86.6  
86.4  
86.2  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
œ40  
œ20  
Temperature (°C)  
Temperature (°C)  
C009  
C010  
Threshold setting is 88.85 mV.  
Threshold setting is 25 mV.  
9-18. Short Circuit Charge Protection Threshold  
9-17. Overcurrent Discharge Protection  
vs. Temperature  
Threshold vs. Temperature  
œ86.0  
œ86.2  
œ86.4  
œ86.6  
œ86.8  
œ87.0  
œ87.2  
œ172.9  
œ173.0  
œ173.1  
œ173.2  
œ173.3  
œ173.4  
œ173.5  
œ173.6  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
Temperature (°C)  
Temperature (°C)  
C011  
C012  
Threshold setting is 88.85 mV.  
Threshold setting is 177.7 mV.  
9-19. Short Circuit Discharge 1 Protection  
9-20. Short Circuit Discharge 2 Protection  
Threshold vs. Temperature  
Threshold vs. Temperature  
11.00  
10.95  
10.90  
10.85  
10.80  
10.75  
10.70  
452  
450  
448  
446  
444  
442  
440  
438  
436  
434  
432  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
œ40  
œ20  
Temperature (°C)  
Temperature (°C)  
C013  
C014  
Threshold setting is 11 ms.  
Threshold setting is 465 µs.  
9-21. Overcurrent Delay Time vs. Temperature  
9-22. Short Circuit Charge Current Delay Time  
vs. Temperature  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: BQ40Z50-R2  
BQ40Z50-R2  
ZHCSGX4C JUNE 2017 REVISED APRIL 2021  
www.ti.com.cn  
10 Power Supply Recommendations  
The device manages its supply voltage dynamically according to the operation conditions. Normally, the BAT  
input is the primary power source to the device. The BAT pin should be connected to the positive termination of  
the battery stack. The input voltage for the BAT pin ranges from 2.2 V to 26 V.  
The VCC pin is the secondary power input, which activates when the BAT voltage falls below minimum VCC. This  
enables the device to source power from a charger (if present) connected to the PACK pin. The VCC pin should  
be connected to the common drain of the CHG and DSG FETs. The charger input should be connected to the  
PACK pin.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: BQ40Z50-R2  
 
BQ40Z50-R2  
ZHCSGX4C JUNE 2017 REVISED APRIL 2021  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
A battery fuel gauge circuit board is a challenging environment due to the fundamental incompatibility of high-  
current traces and ultra-low current semiconductor devices. The best way to protect against unwanted trace-to-  
trace coupling is with a component placement, such as that shown in 11-1, where the high-current section is  
on the opposite side of the board from the electronic devices. Clearly, this is not possible in many situations due  
to mechanical constraints. Still, every attempt should be made to route high-current traces away from signal  
traces, which enter the BQ40Z50-R2 directly. IC references and registers can be disturbed and in rare cases  
damaged due to magnetic and capacitive coupling from the high-current path.  
Note  
During surge current and ESD events, the high-current traces appear inductive and can couple  
unwanted noise into sensitive nodes of the gas gauge electronics, as illustrated in 11-2.  
BAT +  
C2  
C3  
Q1  
Q2  
Low Level Circuits  
F1  
C1  
BAT –  
J1  
R1  
Copyright © 2016, Texas Instruments Incorporated  
11-1. Separating High- and Low-Current Sections Provides an Advantage in Noise Immunity  
PACK+  
COMM  
BMU  
PACK–  
Copyright © 2016, Texas Instruments Incorporated  
11-2. Avoid Close Spacing Between High-Current and Low-Level Signal Lines  
Kelvin voltage sensing is extremely important in order to accurately measure current and top and bottom cell  
voltages. Place all filter components as close as possible to the device. Route the traces from the sense resistor  
in parallel to the filter circuit. Adding a ground plane around the filter network can add additional noise immunity.  
11-3 and 11-4 demonstrate correct Kelvin current sensing.  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: BQ40Z50-R2  
 
 
 
 
BQ40Z50-R2  
ZHCSGX4C JUNE 2017 REVISED APRIL 2021  
www.ti.com.cn  
Current Direction  
R
SNS  
Current Sensing Direction  
To SRP – SRN pin or HSRP – HSRN pin  
11-3. Sensing Resistor PCB Layout  
Sense Resistor  
Ground Shield  
Filter Circuit  
11-4. Sense Resistor, Ground Shield, and Filter Circuit Layout  
11.1.1 Protector FET Bypass and Pack Terminal Bypass Capacitors  
Use wide copper traces to lower the inductance of the bypass capacitor circuit. 11-5 shows an example  
layout, demonstrating this technique.  
BAT+  
C2  
C3  
C2  
C3  
Q1  
Q2  
Pack+  
F1  
Low Level Circuits  
F1  
BATœ  
C1  
Packœ  
C1  
J1  
R1  
Copyright © 2016, Texas Instruments Incorporated  
11-5. Use Wide Copper Traces to Lower the Inductance of Bypass Capacitors C1, C2, and C3  
11.1.2 ESD Spark Gap  
Protect SMBus clock, data, and other communication lines from ESD with a spark gap at the connector. The  
pattern in 11-6 is recommended, with 0.2-mm spacing between the points.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: BQ40Z50-R2  
 
 
 
BQ40Z50-R2  
ZHCSGX4C JUNE 2017 REVISED APRIL 2021  
www.ti.com.cn  
11-6. Recommended Spark-Gap Pattern Helps Protect Communication Lines from ESD  
11.2 Layout Example  
THERMISTORS  
CHARGE  
AND  
DISCHARGE  
PATH  
2ND LEVEL  
PROTECTOR  
LEDS  
CURRENT  
FILTER  
SENSE  
RESISTOR  
11-7. Top Layer  
11-8. Internal Layer 1  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: BQ40Z50-R2  
 
 
BQ40Z50-R2  
ZHCSGX4C JUNE 2017 REVISED APRIL 2021  
www.ti.com.cn  
11-9. Internal Layer 2  
CHARGE  
AND  
DISCHARGE  
PATH  
FILTER  
COMPONENTS  
11-10. Bottom Layer  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: BQ40Z50-R2  
BQ40Z50-R2  
ZHCSGX4C JUNE 2017 REVISED APRIL 2021  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
12.2 Documentation Support  
12.2.1 Related Documentation  
For related documentation, see the following from the BQ40Z50-R2 product page on TI.com:  
BQ40Z50-R2 Technical Reference Manual (SLUUBK0)  
BQ40Z50EVM Li-Ion Battery Pack Manager Evaluation Module User's Guide (SLUUAV7)  
12.2.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
Impedance Trackand TI E2Eare trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: BQ40Z50-R2  
 
 
 
 
 
 
 
 
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Mar-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ40Z50RSMR-R2  
BQ40Z50RSMT-R2  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RSM  
RSM  
32  
32  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
BQ40Z50  
BQ40Z50  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Mar-2021  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
BQ40Z50RSMR-R2  
BQ40Z50RSMT-R2  
VQFN  
VQFN  
RSM  
RSM  
32  
32  
3000  
250  
330.0  
180.0  
12.4  
12.4  
4.25  
4.25  
4.25  
4.25  
1.15  
1.15  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
BQ40Z50RSMR-R2  
BQ40Z50RSMT-R2  
VQFN  
VQFN  
RSM  
RSM  
32  
32  
3000  
250  
367.0  
210.0  
367.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RSM 32  
4 x 4, 0.4 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224982/A  
www.ti.com  
PACKAGE OUTLINE  
RSM0032A  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
B
4.1  
3.9  
A
0.5  
0.3  
PIN 1 INDEX AREA  
4.1  
3.9  
0.25  
0.15  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 2.8  
1.4 0.05  
(0.2) TYP  
4X (0.45)  
28X 0.4  
9
16  
8
17  
EXPOSED  
THERMAL PAD  
2X  
SYMM  
33  
2.8  
24  
0.25  
32X  
1
SEE TERMINAL  
DETAIL  
0.15  
0.1  
C A B  
25  
32  
PIN 1 ID  
(OPTIONAL)  
0.05  
SYMM  
0.5  
0.3  
32X  
4219107/A 11/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RSM0032A  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.4)  
SYMM  
32  
25  
32X (0.6)  
1
32X (0.2)  
24  
SYMM  
33  
(3.8)  
28X (0.4)  
(
0.2) VIA  
17  
8
(R0.05)  
TYP  
9
16  
(3.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219107/A 11/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RSM0032A  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.3)  
(R0.05) TYP  
25  
32  
32X (0.6)  
32X (0.2)  
1
24  
SYMM  
33  
(3.8)  
28X (0.4)  
METAL  
TYP  
17  
8
16  
9
SYMM  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD 33:  
86% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4219107/A 11/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

BQ40Z50RSMT

1-Series, 2-Series, 3-Series, and 4-Series Li-Ion Battery Pack Manager
TI

BQ40Z50RSMT-R1

支持涡轮模式 1.0 的 1 至 4 节串联锂离子电池组管理器 | RSM | 32 | -40 to 85
TI

BQ40Z50RSMT-R2

支持涡轮模式 2.0 的 1 至 4 节串联锂离子电池组管理器 | RSM | 32 | -40 to 85
TI

BQ40Z60

完整的多节电池管理器 | 电池电量监测计
TI

BQ40Z60RHBR

完整的多节电池管理器 | 电池电量监测计 | RHB | 32 | -40 to 85
TI

BQ40Z60RHBT

完整的多节电池管理器 | 电池电量监测计 | RHB | 32 | -40 to 85
TI

BQ40Z80

采用 Impedance Track™ 电量监测技术的 2 节至 7 节电池组管理器
TI

BQ40Z80RSMR

采用 Impedance Track™ 电量监测技术的 2 节至 7 节电池组管理器 | RSM | 32 | -40 to 85
TI

BQ40Z80RSMT

采用 Impedance Track™ 电量监测技术的 2 节至 7 节电池组管理器 | RSM | 32 | -40 to 85
TI

BQ4115YMA-150

NVRAM (Battery Based)
ETC

BQ4285

Real-Time Clock RTC With NVRAM Control
TI

BQ4285E

Enhanced RTC With NVRAM Control
TI