BQ40Z80RSMR [TI]

采用 Impedance Track™ 电量监测技术的 2 节至 7 节电池组管理器 | RSM | 32 | -40 to 85;
BQ40Z80RSMR
型号: BQ40Z80RSMR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 Impedance Track™ 电量监测技术的 2 节至 7 节电池组管理器 | RSM | 32 | -40 to 85

电池
文件: 总47页 (文件大小:3453K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BQ40Z80  
ZHCSIH4B JUNE 2018 REVISED SEPTEMBER 2020  
BQ40Z80 2-6 节锂离子电池组管理器  
BQ40Z80 器件为主机系统提供可用的最大功率和最大  
电流从而支持涡轮模式 2.0/Intel 动态电池功率技术  
(DBPTv2)。该器件有八个多功能引脚可配置为热输  
入、ADC 入、通用输入/(GPIO) 脚、  
Presence 引脚、LED 功能、显示按钮输入或其他功  
能。状态和标志寄存器可映射到 GPIO并用作主机处  
理器的中断。  
1 特性  
• 完全集成2-6 节锂离子或锂聚合物电池组管理器  
和保护功能  
• 获得专利的新一Impedance Track® 技术可准确  
测量锂离子和锂聚合物电池中的可用电量  
• 具有可配置的多功能引脚支持多种应用  
• 支持椭圆曲线加(ECC) SHA-1 认证  
• 高N 沟道保FET 驱动器  
• 充电或者静止状态时具有集成的电池平衡功能  
• 原生支29Ah 的电池扩展后还可支持更大的电  
池容量  
器件信息  
封装  
封装尺寸标称值)  
器件型号  
BQ40Z80  
VQFN (32)  
4.00mm × 4.00mm  
1k  
• 全面的可编程保护功能  
– 电压  
– 电流  
PACK+  
10k  
100  
– 温度  
– 充电终止时间  
CHG/DSG FET  
LEDCNTLA/  
PDSG/GPIO  
BAT  
VC6  
VC5  
LEDCNTLB/GPIO  
LEDCNTLC/GPIO  
DISP*/TS4/  
ADCIN2/GPIO  
– 模拟前(AFE)  
• 精密的充电算法  
/DISP*/GPIO  
VC4  
VC3  
SMBC  
SMBD  
SMBC  
SMBD  
JEITA  
– 增强型充电  
– 自适应充电  
– 电池均衡  
VC2  
VC1  
PDSG/GPIO  
TS3/ADCIN1/  
GPIO  
PRES*/SHUTDN*/  
DISP*/PDSG/GPIO  
PRES*  
• 支TURBO 2.0/Intel® 动态电池功率技术  
(DBPTv2)  
PACK-  
• 诊断使用寿命数据监控器和黑盒记录器  
LED 显示屏  
简化版原理图  
• 支持双线SMBus v1.1 接口  
IATA 支持  
• 紧凑型封装32 线QFN (RSM)  
2 应用  
工业器械和机器人  
手持式园艺和电动工具  
电池供电型吸尘器  
能源存储系统UPS  
3 说明  
BQ40Z80 器件采用已获专利的 Impedance Track技  
是一个全集成、单芯片、基于电池组的解决方案,  
可为 2-6 节串联锂离子和锂聚合物电池组提供电量监  
测、保护和认证等各种特性。  
BQ40Z80 器件利用其集成的高性能模拟外设测量锂  
离子或锂聚合物电池的可用容量、电压、电流、温度和  
其他关键参数保留准确的数据记录并通过 SMBus  
v1.1 兼容接口将这些信息报告给系统主机控制器。  
椭圆曲线加密 (ECC) SHA-1 认证具有用于认证密钥  
的安全存储器可确保识别真正的电池组。  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSBV4  
 
 
 
BQ40Z80  
www.ti.com.cn  
ZHCSIH4B JUNE 2018 REVISED SEPTEMBER 2020  
Table of Contents  
8.4 Device Functional Modes..........................................25  
9 Applications and Implementation................................26  
9.1 Application Information............................................. 26  
9.2 Typical Applications.................................................. 26  
10 Power Supply Recommendations..............................31  
11 Layout...........................................................................32  
11.1 Layout Guidelines................................................... 32  
11.2 Layout Examples.....................................................34  
12 Device and Documentation Support..........................38  
12.1 Documentation Support.......................................... 38  
12.2 Receiving Notification of Documentation Updates..38  
12.3 支持资源..................................................................38  
12.4 Trademarks.............................................................38  
12.5 静电放电警告.......................................................... 38  
12.6 术语表..................................................................... 38  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 说明.........................................................................3  
6 Pin Configuration and Functions...................................3  
Pin Functions.................................................................... 3  
7 Specifications.................................................................. 8  
7.1 Absolute Maximum Ratings........................................ 8  
7.2 ESD Ratings............................................................... 8  
7.3 Recommended Operating Conditions.........................8  
7.4 Thermal Information....................................................9  
7.5 Electrical Characteristics.............................................9  
7.6 Typical Characteristics..............................................18  
8 Detailed Description......................................................20  
8.1 Overview...................................................................20  
8.2 Functional Block Diagram.........................................20  
8.3 Feature Description...................................................21  
Information.................................................................... 38  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (June 2018) to Revision B (September 2020)  
Page  
• 删除了数据表中7 节串联器件选项..................................................................................................................1  
Deleted VC7 I/O details...................................................................................................................................... 3  
Changed high-voltage GPIO default from 7-series cell option to GPIO..............................................................9  
Deleted 7-series cell option and BQ40Z80 multifunction pin combinations......................................................22  
Changed the 7-series EVM schematic for the 6-series EVM schematic.......................................................... 26  
Updated the layout examples........................................................................................................................... 34  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: BQ40Z80  
 
BQ40Z80  
www.ti.com.cn  
ZHCSIH4B JUNE 2018 REVISED SEPTEMBER 2020  
5 说明)  
BQ40Z80 器件可针对过压、欠压、过流、短路电流、过载和过热条件以及其他与电池组和电池相关的故障提供  
基于软件的第 1 级和第 2 级安全保护功能。这个紧凑的 32 线QFN 封装在尽可能地提供电池电量测量应用的功  
能性和安全性的同时更大限度地降低解决方案成本和智能电池的尺寸。  
6 Pin Configuration and Functions  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
VC5  
VC4  
VC3  
VC2  
VC1  
SRN  
NC  
VCC  
FUSE  
LEDCNTLC/GPIO  
LEDCNTLB/GPIO  
LEDCNTLA/PDSG/GPIO  
SMBC  
SMBD  
SRP  
/PRES//SHUTDOWN//DISP/PDSG/GPIO  
Not to Scale  
6-1. RSM Package 32-Pin VQFN with Exposed Thermal Pad Top View  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
NUMBER  
Sense voltage input pin for the fifth cell from the bottom of the stack, balance current  
input for the fifth cell from the bottom of the stack, and return balance current for the  
sixth cell from the bottom of the stack. Should be connected to the positive terminal of  
the fifth cell from the bottom of stack with a 100-Ωseries resistor and a 0.1-µF  
capacitor to VC4. If not used, connect to VC4.  
VC5  
VC4  
VC3  
VC2  
VC1  
1
AI(1)  
Sense voltage input pin for the fourth cell from the bottom of the stack, balance  
current input for the fourth cell from the bottom of the stack, and return balance  
current for the fifth cell from the bottom of the stack. Should be connected to the  
positive terminal of the fourth cell from the bottom of stack with a 100-Ωseries  
resistor and a 0.1-µF capacitor to VC3. If not used, connect to VC3.  
2
3
4
5
AI  
AI  
AI  
AI  
Sense voltage input pin for the third cell from the bottom of the stack, balance current  
input for the third cell from the bottom of the stack, and return balance current for the  
fourth cell from the bottom of the stack. Should be connected to the positive terminal  
of the third cell from the bottom of stack with a 100-Ωseries resistor and a 0.1-µF  
capacitor to VC2. If not used, connect to VC2.  
Sense voltage input pin for the second cell from the bottom of the stack, balance  
current input for the second cell from the bottom of the stack, and return balance  
current for the third cell from the bottom of the stack. Should be connected to the  
positive terminal of the second cell from the bottom of stack with a 100-Ωseries  
resistor and a 0.1-µF capacitor to VC1. If not used, connect to VC1.  
Sense voltage input pin for the first cell from the bottom of the stack, balance current  
input for the first cell from the bottom of the stack, and return balance current for the  
second cell from the bottom of the stack. Should be connected to the positive terminal  
of the first cell from the bottom of stack with a 100-Ωseries resistor and a 0.1-µF  
capacitor to VSS.  
Analog input pin connected to the internal coulomb counter peripheral for integrating  
a small voltage between SRP and SRN, where SRP is the top of the sense resistor  
and charging current flows from SRP to SRN. Should be connected through an RC  
filter to the sense resistor terminal connected to PACK(not CELL).  
SRN  
NC  
6
7
I
Not internally connected  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: BQ40Z80  
 
 
 
BQ40Z80  
www.ti.com.cn  
ZHCSIH4B JUNE 2018 REVISED SEPTEMBER 2020  
PIN  
TYPE  
DESCRIPTION  
NAME  
NUMBER  
Analog input pin connected to the internal coulomb counter peripheral for integrating  
a small voltage between SRP and SRN, where SRP is the top of the sense resistor  
and charging current flows from SRP to SRN. Should be connected through an RC  
filter to the sense resistor positive terminal, which is connected to the least-positive  
cells negative terminal.  
SRP  
8
I
VSS  
TS1  
9
P
Device ground  
Temperature sensor 1 thermistor input pin. Connect to thermistor-1. If not used,  
connect directly to VSS and configure data flash accordingly.  
10  
AI  
Temperature sensor 2 thermistor input pin. Connect to thermistor-2. If not used,  
connect directly to VSS and configure data flash accordingly.  
TS2  
11  
12  
AI  
Multifunction pin for TS3, ADCIN1, and GPIO. Can be configured in the control  
registers. If not used, connect directly to VSS and configure data flash accordingly.  
TS3: Temperature sensor 3 thermistor input pin. Connect to thermistor-3.  
ADCIN1: General-purpose ADCIN pin. Connect properly scaled input to this pin.  
GPIO: Customizable GPIO  
TS3/ADCIN1/  
GPIO  
IO  
Multifunction pin for the display button, temperature sensor input, ADC input, or  
GPIO. Can be configured in the control registers. If not used, connect directly to VSS  
and configure data flash accordingly.  
DISP/TS4/ADCIN2/GPIO  
13  
IO  
DISP: Connect to the display button or LED.  
TS4: Temperature sensor 4 thermistor input pin. Connect to thermistor-4.  
ADCIN2: General-purpose ADCIN pin. Connect properly scaled input to this pin.  
GPIO: Customizable GPIO  
NC  
14  
15  
Not internally connected  
Multifunction pin for the display button, or GPIO. Can be configured in the control  
registers. If not used, connect directly to VSS and configure data flash accordingly.  
DISP: Connect to the display button or LED.  
DISP/GPIO  
I/OD  
GPIO: Customizable GPIO  
Multifunction pin for pre-discharge FET control, or GPIO. Can be configured in the  
control registers. If not used, connect directly to VSS and configure data flash  
accordingly.  
PDSG: Connect to the N-CH FET to control PRE-DISCHARGE mode.  
GPIO: Customizable GPIO  
PDSG/GPIO  
16  
17  
I/OD  
I/OD  
Multifunction pin for host system present input, emergency system shutdown, LED  
button control, pre-discharge control, or GPIO. Can be configured in the control  
registers. If not used, connect directly to VSS and configure data flash accordingly.  
PRES: Connect to host to detect system present input for a removable battery pack.  
Do not pullup this pin.  
PRES/ SHUTDN/ DISP/  
PDSG/GPIO  
SHUTDN: Emergency shutdown input for an embedded battery pack  
DISP: Connect to the display button or LED.  
PDSG: Connect to the N-CH FET to control PRE-DISCHARGE mode.  
GPIO: Customizable GPIO  
SMBD  
SMBC  
18  
19  
I/OD  
I/OD  
SMBus data pin  
SMBus clock pin  
Multifunction pin for LED display, pre-discharge, or GPIO. If not used, connect to VSS  
with a 20-kΩresistor.  
LEDCNTLA: LED display segment that drives the external LEDs, depending on the  
firmware configuration.  
LEDCNTLA/PDSG/GPIO  
20  
O
PDSG: Connect to the N-CH FET to control PRE-DISCHARGE mode.  
GPIO: Customizable GPIO  
Multifunction pin for LED display or GPIO. If not used, connect to VSS with a 20-kΩ  
resistor.  
LEDCNTLB/GPIO  
LEDCNTLC/GPIO  
21  
22  
O
O
LEDCNTLB: LED display segment that drives the external LEDs, depending on the  
firmware configuration.  
GPIO: Customizable GPIO  
Multifunction pin for LED display or GPIO. If not used, connect to VSS with a 20-kΩ  
resistor.  
LEDCNTLC: LED display segment that drives the external LEDs, depending on the  
firmware configuration  
GPIO: Customizable GPIO  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: BQ40Z80  
BQ40Z80  
www.ti.com.cn  
ZHCSIH4B JUNE 2018 REVISED SEPTEMBER 2020  
PIN  
TYPE  
DESCRIPTION  
NAME  
NUMBER  
Fuse drive output pin. Can be OR'ed together into the fuse N-CH FET gate drive with  
secondary protector. If not used, connect directly to VSS.  
FUSE  
VCC  
23  
O
Secondary power supply input. Connect to the middle of protection FETs through the  
series resistor.  
24  
P
PACK  
DSG  
NC  
25  
26  
27  
AI  
O
Pack sense input pin. Connect through the series resistor to PACK+.  
NMOS discharge FET drive output pin. Connect to the DSG FET gate.  
Not internally connected.  
PMOS precharge FET drive output pin. Connect to the PCHG FET gate if the  
precharge function is used. Leave floating if not used.  
PCHG  
CHG  
BAT  
28  
29  
30  
31  
O
O
P
P
NMOS charge FET drive output pin. Connect to the CHG FET gate.  
Primary power supply input pin. Connect through the diode and series resistor to the  
top of the cell stack.  
PBI  
Power supply backup input pin. Connect to the 2.2-µF capacitor to VSS.  
Sense voltage input pin for the sixth cell from the bottom of the stack, balance current  
input for the sixth cell from the bottom of the stack. Should be connected to the  
positive terminal of the sixth cell from the bottom of stack with 100-Ωseries resistor  
and a 0.1-µF capacitor to VC5. If not used, connect to VC5.  
VC6  
32  
AI  
(1) P = Power Connection, O = Digital Output, AI = Analog Input, I = Digital Input, I/OD = Digital Input/Output  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: BQ40Z80  
 
BQ40Z80  
www.ti.com.cn  
ZHCSIH4B JUNE 2018 REVISED SEPTEMBER 2020  
VC4  
CDEN4  
CDEN3  
BAT  
PACK  
VCC  
VC3  
+
BATDET  
ENVCC  
3.1 V  
œ
PACK  
Detector  
VC2  
ADC Mux  
ADC  
PACKDET  
PBI  
SHUTDOWN  
Shutdown  
Latch  
CDEN2  
Reference  
System  
1.8 V  
Domain  
SHOUT  
VC1  
ENBAT  
BAT  
Control  
CDEN1  
Power Supply Control  
Cell Balancing  
VCC  
CHGEN  
BAT  
2
k  
CHG  
CHG  
Pump  
8 kꢀ  
PCHG  
2 kꢀ  
CHGOFF  
PCHGEN  
Precharge  
Drive  
PACK  
DSGEN  
BAT  
2 kꢀ  
DSG  
DSG  
Pump  
DSGOFF  
CHG, DSG Drive  
6-2. Pin Equivalent Diagram 1  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: BQ40Z80  
BQ40Z80  
www.ti.com.cn  
ZHCSIH4B JUNE 2018 REVISED SEPTEMBER 2020  
1.8 V  
ADTHx  
BAT  
FUSEWKPUP  
18 kΩ  
2 kΩ  
ADC Mux  
ADC  
150 nA  
TS1,2,3,4  
FUSEEN  
2 kΩ  
FUSE  
1.8 V  
1.8 V  
100 kΩ  
FUSEDIG  
RCWKPUP  
RCPUP  
FUSE Drive  
1 kΩ  
RCIN  
RCOUT  
100 kΩ  
SMBCIN  
SMBC  
Thermistor Inputs  
SMBCOUT  
SMBCEN  
1 MΩ  
PBI  
100 kΩ  
SMBDIN  
SMBD  
RHOEN  
SMBDOUT  
10 kΩ  
SMBDEN  
1 MΩ  
PRES  
SMBus Interface  
RHOUT  
100 kΩ  
RHIN  
High-Voltage GPIO  
BAT  
RLOEN  
LED1, 2, 3  
22.5 mA  
RLOUT  
100 kΩ  
RLIN  
LED Drive  
6-3. Pin Equivalent Diagram 2  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: BQ40Z80  
BQ40Z80  
www.ti.com.cn  
ZHCSIH4B JUNE 2018 REVISED SEPTEMBER 2020  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over-operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
Supply voltage range,  
BAT(2), VCC(2), PBI(2), PACK(2)  
VCC  
35  
35  
V
0.3  
SMBC, SMBD, DISP/GPIO, PDSG/GPIO, PRES/ SHUTDN/ DISP/  
PDSG/GPIO(2)  
V
0.3  
TS1, TS2, TS3/ADCIN1/GPIO, DISP/TS4/ADCIN2/GPIO  
LEDCNTLA/PDSG/GPIO, LEDCNTLB/GPIO, LEDCNTLC/GPIO(2)  
SRP, SRN  
VREG + 0.3  
VBAT + 0.3  
VREG + 0.3  
VSS + 35  
VSS + 35  
VSS + 35  
VSS + 35  
VSS + 35  
VSS + 35  
43  
V
V
V
V
V
V
V
V
V
0.3  
0.3  
0.3  
VC6  
VC5 0.3  
VC4 0.3  
VC3 0.3  
VC2 0.3  
VC1 0.3  
VSS 0.3  
0.3  
Input voltage range, VIN  
VC5  
VC4  
VC3  
VC2  
VC1  
CHG, DSG(2)  
Output voltage range,  
VO  
PCHG, FUSE  
35  
V
0.3  
Maximum VSS current, ISS  
50  
mA  
Functional temperature TFUNC  
Storage temperature, TSTG  
110  
40  
65  
150  
°C  
°C  
Lead temperature (soldering, 10 s), TSOLDER  
300  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolutemaximumrated conditions for extended periods may affect device reliability.  
(2) A series 50-Ωor larger resistor is needed when voltage is applied beyond 28 V.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Electrostatic  
discharge  
V(ESD)  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
Typical values stated where TA = 25°C and VCC = 25.2 V, Min/Max values stated where TA = 40°C to 85°C and VCC = 2.2  
V to 32 V (unless otherwise noted)  
MIN  
2.2  
NOM  
MAX  
32  
UNIT  
VCC  
Supply voltage  
BAT(1), VCC(1), PBI(1), PACK(1)  
VPACK < VSHUTDOWN –  
V
V
V
VSHUTDOWNShutdown voltage  
1.8  
2.0  
2.2  
VSHUTDOWN+  
VHYS  
Start-up voltage  
VPACK > VSHUTDOWN+ VHYS  
2.05  
2.25  
250  
2.45  
Shutdown voltage  
hysteresis  
mV  
V
SHUTDOWN+ VSHUTDOWN–  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: BQ40Z80  
 
 
 
 
 
 
 
 
BQ40Z80  
www.ti.com.cn  
ZHCSIH4B JUNE 2018 REVISED SEPTEMBER 2020  
Typical values stated where TA = 25°C and VCC = 25.2 V, Min/Max values stated where TA = 40°C to 85°C and VCC = 2.2  
V to 32 V (unless otherwise noted)  
MIN  
NOM  
MAX  
32  
VREG  
VBAT  
UNIT  
SMBC, SMBD, DISP/GPIO, PDSG/GPIO, PRES/  
SHUTDN/, DISP/PDSG/GPIO(1)  
TS1, TS2, TS3/ADCIN1/GPIO, DISP/TS4/ADCIN2/GPIO  
LEDCNTLA/PDSG/GPIO, LEDCNTLB/GPIO, LEDCNTLC/  
GPIO(1)  
SRP, SRN  
VC6  
0.2  
0.2  
VIN  
Input voltage range  
V
VVC5  
VVC4  
VVC3  
VVC2  
VVC1  
VVSS  
VC5 + 5  
VC4 + 5  
VC3 + 5  
VC2 + 5  
VC1 + 5  
VSS + 5  
VC5  
VC4  
VC3  
VC2  
VC1  
Output voltage  
range  
VO  
PCHG, FUSE(1)  
32  
V
External PBI  
capacitor  
CPBI  
TOPR  
2.2  
µF  
°C  
Operating  
temperature  
85  
40  
(1) A series 50-Ωor larger resistor is needed when voltage is applied beyond 28 V.  
7.4 Thermal Information  
BQ40Z80  
THERMAL METRIC(1)  
RSM (QFN)  
32 PINS  
47.4  
UNIT  
RθJA, High K  
RθJC(top)  
RθJB  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
40.3  
14.7  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
0.8  
ψJT  
14.4  
ψJB  
RθJC(bottom)  
3.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
7.5 Electrical Characteristics  
Typical values stated where TA = 25°C and VCC = 21.6 V, Min/Max values stated where TA = 40°C to 85°C and VCC = 2.2  
V to 32 V unless otherwise noted  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Supply Currents  
CPU not active, CHG on. DSG on, High Frequency  
Oscillator on, Low Frequency Oscillator on, REG18  
on, ADC on, ADC_Filter on, CC_Filter on, CC on,  
LED/Buttons/GPIOs off, SMBus not active, no Flash  
write  
INORMAL  
NORMAL mode  
663  
µA  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: BQ40Z80  
 
 
 
 
BQ40Z80  
www.ti.com.cn  
ZHCSIH4B JUNE 2018 REVISED SEPTEMBER 2020  
Typical values stated where TA = 25°C and VCC = 21.6 V, Min/Max values stated where TA = 40°C to 85°C and VCC = 2.2  
V to 32 V unless otherwise noted  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CPU not active, CHG on, DSG on, High Frequency  
Oscillator off, Low Frequency Oscillator on, REG18  
on, ADC off, ADC_Filter off, CC_Filter off, LED/  
Buttons/GPIOs off, SMBus not active, no Flash  
write  
96  
µA  
ISLEEP  
SLEEP mode  
CPU not active, CHG off. DSG on, High Frequency  
Oscillator off, Low Frequency Oscillator on, REG18  
on, ADC off, ADC_Filter off, CC_Filter off, LED/  
Buttons/GPIOs off, SMBus not active, no Flash  
write, BAT = 14.4 V  
90  
µA  
µA  
CPU not active, CHG off. DSG off, High Frequency  
Oscillator off, Low Frequency Oscillator off, REG18  
off, ADC off, ADC_Filter off, CC_Filter off, LED/  
Buttons/GPIOs off, SMBus not active, no Flash  
write, BAT = 14.4 V  
ISHUTDOWN  
SHUTDOWN mode  
1.4  
Power Supply Control  
BAT to VCC switchover  
voltage  
VSWITCHOVER–  
VSWITCHOVER+  
VHYS  
VBAT < VSWITCHOVER–  
1.95  
2.9  
2.1  
3.1  
2.2  
V
V
VCC to BAT switchover  
voltage  
VBAT > VSWITCHOVER+ VHYS  
3.25  
Switchover voltage  
hysteresis  
1000  
mV  
V
SWITCHOVER+ VSWITCHOVER–  
BAT pin, BAT = 0 V, VCC = 32 V, PACK = 32 V  
PACK pin, BAT = 32 V, VCC = 0 V, PACK = 0 V  
1
1
ILKG  
Input Leakage Current  
µA  
kΩ  
V
BAT and PACK terminals, BAT = 0 V, VCC = 0 V,  
PACK = 0 V, PBI = 32 V  
1
Internal pulldown  
resistance  
RPD  
PACK  
30  
40  
50  
AFE Power-On Reset  
Negative-going voltage  
input  
VREGIT–  
VREG  
1.51  
1.55  
1.59  
VHYS  
tRST  
Power-on reset hysteresis  
Power-on reset time  
70  
100  
300  
130  
400  
mV  
µs  
V
REGIT+ VREGIT–  
200  
AFE Watchdog Reset and Wake Timer  
tWDT = 500  
372  
744  
500  
1000  
2000  
4000  
250  
628  
1256  
2512  
5024  
314  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
tWDT = 1000  
tWDT = 2000  
tWDT = 4000  
tWAKE = 250  
tWAKE = 500  
tWAKE = 1000  
tWAKE = 2000  
tFETOFF = 512  
tWDT  
AFE watchdog timeout  
1488  
2976  
186  
372  
500  
628  
tWAKE  
AFE wake timer  
744  
1000  
2000  
512  
1256  
2512  
614  
1488  
409  
tFETOFF  
FET off delay after reset  
Internal 1.8-V LDO  
VREG  
Regulator voltage  
1.6  
1.8  
2
V
Regulator output over  
temperature  
±0.25%  
ΔVO(TEMP)  
ΔVREG / ΔTA, IREG = 10 mA  
Line regulation  
Load regulation  
0.5%  
1.5%  
ΔVO(LINE)  
ΔVO(LOAD)  
ΔVREG / ΔVBAT, IBAT = 10 mA  
0.6%  
1.5%  
ΔVREG / ΔIREG, IREG = 0 mA to 10 mA  
Regulator output current  
limit  
IREG  
VREG = 0.9 × VREG(NOM), VIN > 2.2 V  
20  
mA  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: BQ40Z80  
BQ40Z80  
www.ti.com.cn  
ZHCSIH4B JUNE 2018 REVISED SEPTEMBER 2020  
Typical values stated where TA = 25°C and VCC = 21.6 V, Min/Max values stated where TA = 40°C to 85°C and VCC = 2.2  
V to 32 V unless otherwise noted  
PARAMETER  
CONDITIONS  
VREG = 0 × VREG(NOM)  
MIN  
TYP  
MAX  
UNIT  
Regulator short-circuit  
current limit  
ISC  
25  
40  
55  
mA  
Power supply rejection  
ratio  
ΔVBAT / ΔVREG, IREG = 10 mA, VIN > 2.5 V, f = 10  
Hz  
PSRRREG  
VSLEW  
40  
dB  
V
Slew rate enhancement  
voltage threshold  
VREG  
1.58  
1.65  
Voltage Reference 1  
VREF1  
Internal reference voltage TA = 25°C, after trim  
1.215  
1.22 1.225  
V
TA = 0°C to 60°C, after trim  
±50  
±80  
PPM/°C  
PPM/°C  
Internal reference voltage  
drift  
VREF1(DRIFT)  
TA = 40°C to 85°C, after trim  
Voltage Reference 2  
VREF2  
Internal reference voltage TA = 25°C, after trim  
1.22 1.225  
1.23  
V
TA = 0°C to 60°C, after trim  
±50  
±80  
PPM/°C  
PPM/°C  
Internal reference voltage  
drift  
VREF2(DRIFT)  
TA = 40°C to 85°C, after trim  
VC1, VC2, VC3, VC4, VC5, VC6, BAT, PACK  
VC1VSS, VC2VC1, VC3VC2, VC4VC3,  
VC5VC4, VC6VC5  
0.198  
0.2 0.202  
0.032 0.0333 0.034  
0.0275 0.0286 0.0295  
VC6VSS  
K
Scaling factor  
BATVSS, PACKVSS  
VREF2  
0.49  
0.5  
0.51  
5
VC1VSS, VC2VC1, VC3VC2, VC4VC3,  
VC5VC4, VC6VC5  
0.2  
VIN  
Input voltage range  
Input leakage current  
V
30  
32  
VC6VSS  
0.2  
0.2  
PACKVSS  
VC1, VC2, VC3, VC4, VC5, VC6, cell balancing off,  
cell detach detection off, ADC multiplexer off  
ILKG  
1
µA  
Cell Balancing and Cell Detach Detection  
Internal cell balance  
resistance  
RCB  
RDS(ON) for internal FET switch at 2 V < VDS < 4 V  
VCx > VSS + 0.8 V  
200  
70  
Ω
Internal cell detach check  
current  
ICD  
30  
50  
µA  
ADC  
Internal reference (VREF1  
)
1
0.2  
0.2  
VFS  
VIN  
Input voltage range  
Full scale range  
V
V
0.8 ×  
VREG  
External reference (VREG  
VFS = VREF1 or VREG  
)
VFS  
Integral nonlinearity (1 LSB  
= VREF1/(10 × 2N) =  
1.225/(10 × 215) = 37.41  
µV)  
±8.5  
16-bit, best fit, 0.1 V to 0.8 × VREF1  
INL  
LSB  
±13.1  
16-bit, best fit, 0.2 V to 0.1 V  
OE  
Offset error  
16-bit, post calibration, VFS = VREF1  
16-bit, post calibration, VFS = VREF1  
16-bit, 0.1 V to 0.8 × VFS  
±67  
0.6  
±157  
3
µV  
OED  
Offset error drift  
Gain error  
µV/°C  
/FSR  
GE  
±0.2% ±0.8%  
GED  
Gain error drift  
Effective input resistance  
150 PPM/°C  
16-bit, 0.1 V to 0.8 × VFS  
EIR  
8
MΩ  
ADC Digital Filter  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: BQ40Z80  
BQ40Z80  
www.ti.com.cn  
ZHCSIH4B JUNE 2018 REVISED SEPTEMBER 2020  
Typical values stated where TA = 25°C and VCC = 21.6 V, Min/Max values stated where TA = 40°C to 85°C and VCC = 2.2  
V to 32 V unless otherwise noted  
PARAMETER  
CONDITIONS  
ADCTL[SPEED1, SPEED0] = 0, 0  
ADCTL[SPEED1, SPEED0] = 0, 1  
ADCTL[SPEED1, SPEED0] = 1, 0  
ADCTL[SPEED1, SPEED0] = 1, 1  
MIN  
TYP  
31.25  
15.63  
7.81  
MAX  
UNIT  
tCONV  
Conversion time  
ms  
1.95  
No missing codes, ADCTL[SPEED1, SPEED0] = 0,  
0
Res  
Resolution  
16  
Bits  
Bits  
With sign, ADCTL[SPEED1, SPEED0] = 0, 0  
With sign, ADCTL[SPEED1, SPEED0] = 0, 1  
With sign, ADCTL[SPEED1, SPEED0] = 1, 0  
With sign, ADCTL[SPEED1, SPEED0] = 1, 1  
14  
13  
11  
9
15  
14  
12  
10  
Eff_Res  
Effective Resolution  
Current Wake Comparator  
±0.3 ±0.625  
±0.9  
±1.8  
±3.6  
±7.2  
VWAKE = VSRP VSRN= ± 0.625 mV  
VWAKE = VSRP VSRN = ± 1.25 mV  
VWAKE = VSRP VSRN = ± 2.5 mV  
VWAKE = VSRP VSRN = ± 5 mV  
±0.6  
±1.2  
±2.4  
±1.25  
±2.5  
±5.0  
VWAKE  
Wake voltage threshold  
mV  
Temperature drift of VWAKE  
accuracy  
VWAKE(DRIFT)  
tWAKE  
0.5%  
250  
/°C  
µs  
Time from application of  
current to wake interrupt  
700  
Wake comparator startup  
time  
tWAKE(SU)  
500  
1000  
µs  
Coulomb Counter  
VINPUT  
Input voltage range  
0.1  
V
V
0.1  
VREF1 /  
VREF1  
/
VRANGE  
Full scale range  
10  
10  
Integral nonlinearity (1 LSB  
= VREF1/(10 × 2N) =  
INL  
16-bit, best fit over input voltage range  
±5.2 ±22.3  
LSB  
1.215/(10 × 215) = 3.71 µV)  
OE  
Offset error  
16-bit, post calibration  
±5.0  
0.2  
±10  
0.3  
µV  
OED  
GE  
Offset error drift  
Gain error  
15-bit + sign, post calibration  
µV/°C  
/FSR  
15-bit + sign, Over input voltage range  
15-bit + sign, Over input voltage range  
±0.2% ±0.8%  
GED  
EIR  
Gain error drift  
150 PPM/°C  
Effective input resistance  
Conversion Time  
Effective Resolution  
2.5  
15  
MΩ  
ms  
tCONV  
Eff_Res  
Single conversion  
Single conversion  
250  
Bits  
Current Protection Thresholds  
VOCD = VSRP VSRN  
PROTECTION_CONTROL[RSNS] = 1  
,
mV  
mV  
mV  
mV  
16.6  
8.3  
100  
50  
OCD detection threshold  
voltage range  
VOCD  
VOCD = VSRP VSRN  
PROTECTION_CONTROL[RSNS] = 0  
,
VOCD = VSRP VSRN  
PROTECTION_CONTROL[RSNS] = 1  
,
5.56  
2.78  
OCD detection threshold  
voltage program step  
ΔVOCD  
VOCD = VSRP VSRN  
PROTECTION_CONTROL[RSNS] = 0  
,
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: BQ40Z80  
BQ40Z80  
www.ti.com.cn  
ZHCSIH4B JUNE 2018 REVISED SEPTEMBER 2020  
Typical values stated where TA = 25°C and VCC = 21.6 V, Min/Max values stated where TA = 40°C to 85°C and VCC = 2.2  
V to 32 V unless otherwise noted  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VSCC = VSRP VSRN  
PROTECTION_CONTROL[RSNS] = 1  
,
44.4  
200  
mV  
SCC detection threshold  
voltage range  
VSCC  
VSCC = VSRP VSRN  
PROTECTION_CONTROL[RSNS] = 0  
,
22.2  
100  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
VSCC = VSRP VSRN  
,
22.2  
11.1  
PROTECTION_CONTROL[RSNS] = 1  
SCC detection threshold  
voltage program step  
ΔVSCC  
VSCC = VSRP VSRN  
,
PROTECTION_CONTROL[RSNS] = 0  
VSCD1 = VSRP VSRN  
PROTECTION_CONTROL[RSNS] = 1  
,
44.4  
22.2  
200  
100  
SCD1 detection threshold  
voltage range  
VSCD1  
VSCD1 = VSRP VSRN  
PROTECTION_CONTROL[RSNS] = 0  
,
VSCD1 = VSRP VSRN  
PROTECTION_CONTROL[RSNS] = 1  
,
22.2  
11.1  
SCD1 detection threshold  
voltage program step  
ΔVSCD1  
VSCD1 = VSRP VSRN  
PROTECTION_CONTROL[RSNS] = 0  
,
VSCD2 = VSRP VSRN  
PROTECTION_CONTROL[RSNS] = 1  
,
44.4  
22.2  
200  
100  
SCD2 detection threshold  
voltage range  
VSCD2  
VSCD2 = VSRP VSRN  
PROTECTION_CONTROL[RSNS] = 0  
,
VSCD2 = VSRP VSRN  
PROTECTION_CONTROL[RSNS] = 1  
,
22.2  
11.1  
SCD2 detection threshold  
voltage program step  
ΔVSCD2  
VSCD2 = VSRP VSRN  
PROTECTION_CONTROL[RSNS] = 0  
,
OCD, SCC, and SCDx  
offset error  
VOFFSET  
Post-trim  
2.5  
2.5  
No trim  
10%  
5%  
10%  
5%  
OCD, SCC, and SCDx  
scale error  
VSCALE  
Post-trim  
Current Protection Timing  
tOCD  
OCD detection delay time  
1
0
31  
ms  
ms  
µs  
OCD detection delay time  
program step  
2
ΔtOCD  
tSCC  
SCC detection delay time  
915  
SCC detection delay time  
program step  
61  
µs  
ΔtSCC  
PROTECTION_CONTROL[SCDDx2] = 0  
PROTECTION_CONTROL[SCDDx2] = 1  
PROTECTION_CONTROL[SCDDx2] = 0  
PROTECTION_CONTROL[SCDDx2] = 1  
PROTECTION_CONTROL[SCDDx2] = 0  
PROTECTION_CONTROL[SCDDx2] = 1  
PROTECTION_CONTROL[SCDDx2] = 0  
PROTECTION_CONTROL[SCDDx2] = 1  
0
0
915  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
tSCD1  
SCD1 detection delay time  
1850  
61  
SCD1 detection delay time  
program step  
ΔtSCD1  
121  
0
0
458  
915  
tSCD2  
SCD2 detection delay time  
30.5  
61  
SCD2 detection delay time  
program step  
ΔtSCD2  
V
SRP VSRN = VT 3 mV for OCD, SCD1 and  
tDETECT  
tACC  
Current fault detect time  
160  
µs  
SCD2, VSRP VSRN = VT 3 mV for SCC  
Current fault delay time  
accuracy  
Max delay setting  
10%  
10%  
Internal Temperature Sensor  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: BQ40Z80  
BQ40Z80  
www.ti.com.cn  
ZHCSIH4B JUNE 2018 REVISED SEPTEMBER 2020  
Typical values stated where TA = 25°C and VCC = 21.6 V, Min/Max values stated where TA = 40°C to 85°C and VCC = 2.2  
V to 32 V unless otherwise noted  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
mV/°C  
mV/°C  
VTEMPP  
TEMPP VTEMPN, assured by design  
1.9  
2.1  
Internal temperature  
sensor voltage drift  
VTEMPT  
0.177 0.178 0.179  
V
NTC Thermistor Measurement Support (TS1, TS2, Pins 12 and 13 configured as TS3 and TS4)  
TS1  
TS2  
14.4  
14.4  
14.4  
14.4  
18  
18  
18  
18  
21.6  
21.6  
21.6  
21.6  
kΩ  
kΩ  
RNTC(PU)  
Internal pullup resistance  
TS3  
TS4  
kΩ  
kΩ  
RNTC(DRIFT)  
PPM/°C  
360 280 200  
Low-Voltage General Purpose I/O (Multifunction Pins 12 and 13 configured as GPIO)  
0.65 ×  
VREG  
VIH  
VIL  
High-level input  
Low-level input  
V
V
0.35 ×  
VREG  
Output high, pullup enabled, IOH = 1.0 mA  
Output high, pullup enabled, IOH = 10 µA  
0.75 ×  
VREG  
VOH  
Output voltage high  
Output voltage low  
V
V
0.2 ×  
VREG  
VOL  
Output Low, IOL = 1mA  
CIN  
Input capacitance  
5
pF  
µA  
ILKG  
Input leakage current  
1
High-Voltage General Purpose I/O (multifunction pins 15, 16, 17 configured as GPIO, PRES, DISP, or SHUTDN Pin 15 configured  
as GPIO; Pin 16 configured as PDSG)  
VIH  
VIL  
High-level input  
Low-level input  
1.3  
V
V
0.55  
3.5  
1.8  
Output enabled, VBAT > 5.5 V, IOH = 0 µA  
Output enabled, VBAT > 5.5 V, IOH = 10 µA  
Output disabled, IOL = 1.5 mA  
VOH  
Output voltage high  
V
VOL  
CIN  
Output voltage low  
Input capacitance  
Input leakage current  
0.4  
3
V
5
pF  
µA  
ILKG  
Between GPIO, PRES, DISP, SHUTDN, PDSG,  
and PBI  
RO  
Output reverse resistance  
8
kΩ  
General Purpose I/O with Constant Current Sink (Multifunction Pins 20, 21, 22 configured as LEDCNTLx)  
VIH  
VIL  
High-level input  
Low-level input  
LEDCNTLx  
LEDCNTLx  
1.45  
V
V
0.55  
LEDCNTLx, Output Enabled, VBAT > 3.0 V, IOH = VBAT  
VOH  
VOL  
Output voltage high  
Output voltage low  
V
V
22.5 mA  
1.6  
LEDCNTLx, Output Disabled, VBAT > 3.0 V, IOH = 3  
mA  
0.4  
High level output current  
protection  
ISC  
LEDCNTLx  
mA  
mA  
30  
45  
60  
IOL  
Low level output current  
LEDCNTLx, VBAT > 3.0 V, VOL > 0.4 V  
LEDCNTLx, VBAT = VLED + 2.5 V  
15.75  
22.5 29.25  
+/1%  
Current matching between  
outputs  
ILEDCNTLx  
CIN  
Input capacitance  
LEDCNTLx  
LEDCNTLx  
20  
pF  
µA  
Hz  
°C  
ILKG  
Input leakage current  
1
fLED  
Frequency of LED pattern LEDCNTLx  
Thermal shutdown LEDCNTLx, assured by design  
124  
135  
tSHUTDOWN  
120  
150  
General Purpose I/O (Multifunction Pins 20, 21, 22 configured as GPIO) (Pin 20 configured as PDSG)  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: BQ40Z80  
BQ40Z80  
www.ti.com.cn  
ZHCSIH4B JUNE 2018 REVISED SEPTEMBER 2020  
Typical values stated where TA = 25°C and VCC = 21.6 V, Min/Max values stated where TA = 40°C to 85°C and VCC = 2.2  
V to 32 V unless otherwise noted  
PARAMETER  
High-level input  
Low-level input  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
VIH  
VIL  
1.45  
0.55  
V
VBAT  
V
V
Output enabled, VBAT > 3.0 V, IOH = 22.5 mA  
1.6  
VOH  
Output voltage high  
Output disabled, IOL = 3 mA  
0.4  
High level output current  
protection  
ISC  
mA  
30  
45  
60  
IOL  
Low level output current  
Input capacitance  
VBAT > 3.0 V, VOL > 0.4 V  
15.75  
22.5 29.25  
mA  
pF  
CIN  
ILKG  
20  
Input leakage current  
1
uA  
SMBD, SMBC High Voltage I/O  
VIH  
Input voltage high  
Input voltage low  
SMBC, SMBD, VREG = 1.8 V  
1.3  
V
V
VIL  
SMBC, SMBD, VREG = 1.8 V  
0.8  
VOL  
CIN  
Output low voltage  
Input capacitance  
Input leakage current  
Pulldown resistance  
SMBC, SMBD, VREG = 1.8 V, IOL = 1.5 mA  
0.4  
V
5
pF  
µA  
MΩ  
ILKG  
RPD  
SMBus  
1
0.7  
10  
1
1.3  
SMBus operating  
frequency  
fSMB  
SLAVE mode, SMBC 50% duty cycle  
100  
kHz  
kHz  
µs  
SMBus master clock  
frequency  
fMAS  
MASTER mode, no clock low slave extend  
51.2  
Bus free time between  
start and stop  
tBUF  
4.7  
4
Hold time after (repeated)  
start  
tHD(START)  
µs  
tSU(START)  
tSU(STOP)  
tHD(DATA)  
tSU(DATA)  
tTIMEOUT  
tLOW  
Repeated start setup time  
Stop setup time  
4.7  
4
µs  
µs  
ns  
ns  
ms  
µs  
µs  
ns  
ns  
Data hold time  
300  
250  
25  
Data setup time  
Error signal detect time  
Clock low period  
Clock high period  
Clock rise time  
35  
4.7  
4
tHIGH  
50  
1000  
300  
tR  
10% to 90%  
90% to 10%  
tF  
Clock fall time  
Cumulative clock low slave  
extend time  
tLOW(SEXT)  
25  
10  
ms  
ms  
Cumulative clock low  
master extend time  
tLOW(MEXT)  
SMBus XL  
fSMBXL  
SMBus XL operating  
frequency  
SLAVE mode, SMBC 50% duty cycle  
40  
4.7  
4
400  
kHz  
µs  
Bus free time between  
start and stop  
tBUF  
Hold time after (repeated)  
start  
tHD(START)  
µs  
tSU(START)  
tSU(STOP)  
Repeated start setup time  
Stop setup time  
4.7  
4
µs  
µs  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: BQ40Z80  
BQ40Z80  
www.ti.com.cn  
ZHCSIH4B JUNE 2018 REVISED SEPTEMBER 2020  
Typical values stated where TA = 25°C and VCC = 21.6 V, Min/Max values stated where TA = 40°C to 85°C and VCC = 2.2  
V to 32 V unless otherwise noted  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
20  
UNIT  
ms  
µs  
tTIMEOUT  
tLOW  
Error signal detect time  
Clock low period  
Clock high period  
5
20  
tHIGH  
20  
µs  
FUSE Drive (AFEFUSE)  
6
7
8.65  
VBAT  
V
V
V
BAT 8 V, CL = 1 nF, IAFEFUSE = 0 µA  
VOH  
Output voltage high  
VBAT  
0.1  
VBAT < 8 V, CL = 1 nF, IAFEFUSE = 0 µA  
VIH  
High-level input  
1.5  
2
2
150  
2.6  
5
2.5  
330  
3.2  
V
nA  
kΩ  
pF  
µs  
IAFEFUSE(PU)  
RAFEFUSE  
CIN  
Internal pullup current  
Output impedance  
Input capacitance  
VBAT < 8 V, VAFEFUSE = VSS  
tDELAY  
tRISE  
Fuse trim detection delay  
Fuse output rise time  
128  
256  
20  
5
µs  
N-CH FET Drive (CHG, DSG)  
RatioDSG = (VDSG VBAT) / VBAT, 2.2 V < VBAT  
4.92 V, 10 MΩbetween PACK and DSG  
<
<
2.133 2.333  
2.45  
––  
––  
V
Output voltage ratio  
RatioCHG = (VCHG VBAT) / VBAT, 2.2 V < VBAT  
4.92 V, 10 MΩbetween BAT and CHG  
2.133 2.333 2.433  
VDSG(ON) = (VDSG VBAT), VBAT 4.92 V (up to 32  
V), 10 MΩbetween PACK and DSG  
10.5  
10.5  
11.5  
11.5  
12.5  
12.5  
0.4  
Output voltage, CHG and  
DSG on  
VFETON  
VCHG(ON) = (VCHG VBAT), VBAT 4.92 V (up to 32  
V), 10 MΩbetween BAT and CHG  
V
VDSG(OFF) = (VDSG VPACK), 10 MΩbetween  
PACK and DSG  
V
0.4  
0.4  
Output voltage, CHG and  
DSG off  
VFETOFF  
VCHG(OFF) = (VCHG VBAT), 10 MΩbetween BAT  
and CHG  
0.4  
V
VDSG from 0% to 35% VDSG(ON)(TYP), VBAT 2.2 V,  
CL = 4.7 nF between DSG and PACK, 5.1 kΩ  
between DSG and CL, 10 MΩbetween PACK and  
DSG  
200  
200  
500  
500  
µs  
µs  
tR  
Rise time  
VCHG from 0% to 35% VCHG(ON)(TYP), VBAT 2.2 V,  
CL = 4.7 nF between CHG and BAT, 5.1 kΩ  
between CHG and CL, 10 MΩbetween BAT and  
CHG  
VDSG from VDSG(ON)(TYP) to 1 V, VBAT 2.2 V, CL =  
4.7 nF between DSG and PACK, 5.1 kΩbetween  
DSG and CL, 10 MΩbetween PACK and DSG  
40  
40  
300  
200  
µs  
µs  
tF  
Fall time  
VCHG from VCHG(ON)(TYP) to 1 V, VBAT 2.2 V, CL =  
4.7 nF between CHG and BAT, 5.1 kΩbetween  
CHG and CL, 10 MΩbetween BAT and CHG  
P-CH FET Drive (PCHG)  
VPCHG(ON) = VCC VPCHG, 10 MΩbetween VCC  
and CHG, VBAT 8 V  
VFETON  
Output voltage, PCHG on  
6
7
8
V
V
VPCHG(OFF) = VCC VPCHG, 10 MΩbetween VCC  
and CHG  
VFETOFF  
Output voltage, PCHG off  
Rise time  
0.4  
0.4  
VPCHG from 10% to 90% VPCHG(ON)(TYP), VSS 8 V,  
CL = 4.7 nF between PCHG and VCC, 5.1 kΩ  
between PCHG and CL, 10 MΩbetween VCC and  
CHG  
tR  
40  
200  
µs  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: BQ40Z80  
BQ40Z80  
www.ti.com.cn  
ZHCSIH4B JUNE 2018 REVISED SEPTEMBER 2020  
Typical values stated where TA = 25°C and VCC = 21.6 V, Min/Max values stated where TA = 40°C to 85°C and VCC = 2.2  
V to 32 V unless otherwise noted  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VPCHG from 90% to 10% VPCHG(ON)(TYP), VSS 8 V,  
CL = 4.7 nF between PCHG and VCC, 5.1 kΩ  
between PCHG and CL, 10 MΩbetween VCC and  
CHG  
tF  
Fall time  
40  
200  
µs  
High-Frequency Oscillator  
fHFO  
Operating frequency  
16.78  
±0.25%  
±0.25%  
MHz  
2.5%  
3.5%  
TA = 20°C to 70°C, includes frequency drift  
TA = 40°C to 85°C, includes frequency drift  
2.5%  
3.5%  
fHFO(ERR)  
Frequency error  
Start-up time  
TA = 20°C to 85°C, CLKCTL[HFRAMP] = 1,  
oscillator frequency within ±3% of nominal  
4
ms  
µs  
tHFO(SU)  
TA = 20°C to 85°C, CLKCTL[HFRAMP] = 0,  
oscillator frequency within ±3% of nominal  
100  
Low-Frequency Oscillator  
262.14  
4
fLFO  
Operating frequency  
kHz  
kHz  
±0.25%  
±0.25%  
80  
1.5%  
2.5%  
100  
TA = 20°C to 70°C, includes frequency drift  
TA = 40°C to 85°C, includes frequency drift  
1.5%  
2.5%  
30  
fLFO(ERR)  
Frequency error  
tLFO(FAIL)  
Failure detection frequency  
Instruction Flash  
Data retention  
10  
Years  
Flash programming write  
cycles  
1000  
Cycles  
tPROGWORD  
tMASSERASE  
tPAGEERASE  
tFLASHREAD  
tFLASHWRITE  
IFLASHERASE  
Data Flash  
Word programming time  
Mass-erase time  
40  
40  
40  
2
µs  
ms  
ms  
mA  
mA  
mA  
Page-erase time  
Flash-read current  
Flash-write current  
Flash-erase current  
5
15  
Data retention  
10  
Years  
Flash programming write  
cycles  
20000  
Cycles  
tPROGWORD  
tMASSERASE  
tPAGEERASE  
tFLASHREAD  
tFLASHWRITE  
IFLASHERASE  
Word programming time  
Mass-erase time  
40  
40  
40  
1
µs  
ms  
ms  
mA  
mA  
mA  
Page-erase time  
Flash-read current  
Flash-write current  
Flash-erase current  
5
15  
ECC Authentication  
CPU active, CHG on. DSG on, High Frequency  
Oscillator on, Low Frequency Oscillator on, REG18  
on, ADC on, ADC_Filter on, CC_Filter on, CC on,  
SMBus not active, Authentication Start  
NORMAL mode +  
Authentication  
INORMAL+AUTH  
1350  
375  
µA  
EC-KCDSA signature  
signing time  
tSIGN  
3.8 V < VCC or BAT < 32 V  
ms  
Number of Authentication  
operations  
20000  
Operations  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: BQ40Z80  
BQ40Z80  
www.ti.com.cn  
ZHCSIH4B JUNE 2018 REVISED SEPTEMBER 2020  
7.6 Typical Characteristics  
1.9  
1.88  
1.86  
1.84  
1.82  
1.8  
1.225  
1.224  
1.223  
1.222  
1.221  
1.22  
1.78  
1.76  
1.74  
1.72  
1.7  
1.219  
1.218  
1.217  
1.216  
1.215  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100 110  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100 110  
Temperature (èC)  
Temperature (èC)  
VREF  
VREF  
7-1. VREG 1.8-V Voltage vs. Temperature  
7-2. VREF 1 Voltage vs. Temperature  
1.23  
1.229  
1.228  
1.227  
1.226  
1.225  
1.224  
1.223  
1.222  
1.221  
1.22  
271  
269  
267  
265  
263  
261  
259  
257  
255  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100 110  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (èC)  
VREF  
Temperature (èC)  
LFOv  
7-3. VREF 2 Voltage vs. Temperature  
7-4. Low-Frequency Oscillator vs. Temperature  
17.55  
17.4  
-22  
-22.2  
-22.4  
-22.6  
-22.8  
-23  
17.25  
17.1  
16.95  
16.8  
-23.2  
-23.4  
-23.6  
-23.8  
-24  
16.65  
16.5  
-24.2  
-24.4  
-24.6  
16.35  
16.2  
-24.8  
Setting is -25 mV  
16.05  
-25  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100 110  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100 110  
Temperature (èC)  
Temperature (èC)  
HFOv  
OCD(  
7-5. High-Frequency Oscillator vs. Temperature  
7-6. Overcurrent Discharge Protection  
Threshold vs. Temperature  
90  
89.75  
89.5  
89.25  
89  
-86.5  
-87  
-87.5  
-88  
88.75  
88.5  
88.25  
88  
-88.5  
-89  
87.75  
87.5  
87.25  
87  
-89.5  
86.75  
Setting is 88.85 mV  
Setting is -88.85 mV  
60 80 100  
86.5  
-40 -30 -20 -10  
-90  
-40  
0
10 20 30 40 50 60 70 80 90 100 110  
-20  
0
20  
40  
Temperature (èC)  
SCC(  
Temperature (èC)  
SCD1  
7-7. Short Circuit Charge Protection Threshold  
7-8. Short Circuit Discharge 1 Protection  
vs. Temperature  
Threshold vs. Temperature  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: BQ40Z80  
 
BQ40Z80  
www.ti.com.cn  
ZHCSIH4B JUNE 2018 REVISED SEPTEMBER 2020  
182  
181  
180  
179  
178  
177  
176  
175  
174  
173  
172  
12.25  
12  
11.75  
11.5  
11.25  
11  
10.75  
10.5  
10.25  
10  
Setting is 11 ms  
9.75  
-40  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100 110  
-20  
0
20  
40  
60  
80  
100  
Temperature (èC)  
SCD2  
Temperature (èC)  
OCDe  
Threshold setting is 177.7 mV.  
7-10. Overcurrent Delay Time vs. Temperature  
7-9. Short Circuit Discharge 2 Protection  
Threshold vs. Temperature  
510  
505  
500  
495  
490  
485  
480  
475  
470  
510  
505  
500  
495  
490  
485  
480  
475  
470  
465  
465  
488 ms Setting  
488 ms Setting  
460  
460  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100 110  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100 110  
Temperature (èC)  
Temperature (èC)  
SCCD  
SCD1  
7-11. Short Circuit Charge Current Delay Time  
7-12. Short Circuit Discharge 1 Delay Time vs.  
vs. Temperature  
Temperature  
276  
270  
264  
258  
252  
246  
240  
234  
228  
222  
2510  
2509  
2508  
2507  
2506  
2505  
2504  
2503  
2502  
2501  
2500  
216  
244 ms Setting  
210  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100 110  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100 110  
Temperature (èC)  
Temperature (èC)  
SCD2  
VCEL  
7-13. Short Circuit Discharge 2 Delay Time vs.  
7-14. VCELL Measurement at 2.5-V vs.  
Temperature  
Temperature  
3510  
3509  
3508  
3507  
3506  
3505  
3504  
3503  
3502  
3501  
3500  
4308  
4307  
4306  
4305  
4304  
4303  
4302  
4301  
4300  
4299  
4298  
4297  
4296  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100 110  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100 110  
Temperature (èC)  
Temperature (èC)  
VCEL  
VCEL  
This is the VCELL average for single cell.  
This is the VCELL average for single cell.  
7-15. VCELL Measurement at 3.5 V vs.  
7-16. VCELL Measurement at 4.3 V vs.  
Temperature  
Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: BQ40Z80  
BQ40Z80  
www.ti.com.cn  
ZHCSIH4B JUNE 2018 REVISED SEPTEMBER 2020  
8 Detailed Description  
8.1 Overview  
The BQ40Z80 device, incorporating patented Impedance Tracktechnology, provides cell balancing while  
charging or at rest. This fully integrated, single-chip, PACK-based solution provides a rich array of features for  
gas gauging, protection, and authentication for 2-series to 7-series cell Li-Ion and Li-Polymer battery packs,  
including a diagnostic lifetime data monitor and black box recorder.  
8.2 Functional Block Diagram  
Cell, Stack,  
Pack  
Voltage  
High Side  
N-CH FET  
Drive  
Cell  
Balancing  
Cell Detach  
Detection  
P-CH  
FET Drive  
Power Mode  
Control  
Wake  
Comparator  
Power On  
Reset  
Watchdog  
Timer  
ADCIN1  
ADCIN2  
Short Circuit  
Comparator  
SRP  
SRN  
FUSE  
Control  
Over  
Current  
Comparator  
FUSE  
Voltage  
Reference 2  
Random  
Number  
Generator  
NTC Bias  
High  
Voltage  
I/O  
PRES or SHUTDN  
TS1  
TS2  
DISP  
Internal  
Temp  
Sensor  
PDSG  
GPIO or TS3  
GPIO or TS4  
GPIO  
LEDCNTLC or GPIO  
LEDCNTLB or GPIO  
LEDCNTLA or PDSG or GPIO  
LED Display  
Drive I O  
/
Voltage  
Reference1  
AFE Control  
ADC MUX  
Low  
Frequency  
Oscillator  
SBS High  
Voltage  
Translation  
SMBD  
SMBC  
ADC/ CC  
FRONTEND  
1.8 V LDO  
Regulator  
AFE COM  
Engine  
High  
Frequency  
Oscillator  
Low Voltage  
I/O  
I/O  
I/ O &  
Interrupt  
Controller  
ADC/ CC  
Digital Filter  
Timers&  
PWM  
AFE COM  
Engine  
SBS COM  
Engine  
Data (8bit)  
DMAddr (16bit)  
bqBMP  
CPU  
PMInstr  
PMAddr  
Program  
Flash  
EEPROM  
Data Flash  
EEPROM  
Data  
SRAM  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: BQ40Z80  
 
 
 
BQ40Z80  
www.ti.com.cn  
ZHCSIH4B JUNE 2018 REVISED SEPTEMBER 2020  
8.3 Feature Description  
8.3.1 Primary (1st Level) Safety Features  
The BQ40Z80 supports a wide range of battery and system protection features that can easily be configured.  
See the BQ40Z80 Technical Reference Manual (SLUUBT5) for detailed descriptions of each protection function.  
The primary safety features include:  
Cell Overvoltage Protection  
Cell Undervoltage Protection  
Cell Undervoltage Protection Compensated  
Overcurrent in Charge Protection  
Overcurrent in Discharge Protection  
Overload in Discharge Protection  
Short Circuit in Charge Protection  
Short Circuit in Discharge Protection  
Overtemperature in Charge Protection  
Overtemperature in Discharge Protection  
Undertemperature in Charge Protection  
Undertemperature in Discharge Protection  
Overtemperature FET protection  
Precharge Timeout Protection  
Host Watchdog Timeout Protection  
Fast Charge Timeout Protection  
Overcharge Protection  
Overcharging Voltage Protection  
Overcharging Current Protection  
Over Precharge Current Protection  
8.3.2 Secondary (2nd Level) Safety Features  
The secondary safety features of the BQ40Z80 can be used to indicate more serious faults via the FUSE pin.  
This pin can be used to blow an in-line fuse to permanently disable the battery pack from charging or  
discharging. See the BQ40Z80 Technical Reference Manual (SLUUBT5) for detailed descriptions of each  
protection function.  
The secondary safety features provide protection against:  
Safety Overvoltage Permanent Failure  
Safety Undervoltage Permanent Failure  
Safety Overtemperature Permanent Failure  
Safety FET Overtemperature Permanent Failure  
Qmax Imbalance Permanent Failure  
Impedance Imbalance Permanent Failure  
Capacity Degradation Permanent Failure  
Cell Balancing Permanent Failure  
Fuse Failure Permanent Failure  
Voltage Imbalance at Rest Permanent Failure  
Voltage Imbalance Active Permanent Failure  
Charge FET Permanent Failure  
Discharge FET Permanent Failure  
AFE Register Permanent Failure  
AFE Communication Permanent Failure  
Second Level Protector Permanent Failure  
Instruction Flash Checksum Permanent Failure  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: BQ40Z80  
 
BQ40Z80  
www.ti.com.cn  
ZHCSIH4B JUNE 2018 REVISED SEPTEMBER 2020  
Open Cell Connection Permanent Failure  
Data Flash Permanent Failure  
Open Thermistor Permanent Failure  
8.3.3 Charge Control Features  
The BQ40Z80 charge control features include:  
Supports JEITA temperature ranges. Reports charging voltage and charging current according to the active  
temperature range  
Handles more complex charging profiles. Allows for splitting the standard temperature range into two sub-  
ranges and allows for varying the charging current according to the cell voltage  
Reports the appropriate charging current needed for constant current charging and the appropriate charging  
voltage needed for constant voltage charging to a smart charger using SMBus broadcasts  
Reduces the charge difference of the battery cells in fully charged state of the battery pack gradually using a  
voltage-based cell balancing algorithm during charging. A voltage threshold can be set up for cell balancing  
to be active. This prevents fully charged cells from overcharging and causing excessive degradation and also  
increases the usable pack energy by preventing premature charge termination.  
Supports charge inhibit and charge suspend if battery pack temperature is out of temperature range  
Reports charging fault and also indicates charge status via charge and discharge alarms  
8.3.4 Gas Gauging  
The BQ40Z80 uses the Impedance Track algorithm to measure and calculate the available capacity in battery  
cells. The BQ40Z80 accumulates a measure of charge and discharge currents and compensates the charge  
current measurement for the temperature and state-of-charge of the battery. The BQ40Z80 estimates self-  
discharge of the battery and also adjusts the self-discharge estimation based on temperature. The device also  
has TURBO Mode 2.0/DBPTv2 support, which enables the BQ40Z80 to provide the necessary data for the MCU  
to determine what level of peak power consumption can be applied without causing a system reset or transient  
battery voltage level spike to trigger termination flags. See the BQ40Z80 Technical Reference Manual  
(SLUUBT5) for further details.  
8.3.5 Multifunction Pins  
The BQ40Z80 includes several multifunction pins that firmware uses to implement different functions. 8-1 is a  
simplified schematic of an example system implementation that uses a 6-series pack with PRECHARGE mode,  
six LEDs, two thermistors, and system-present functionality.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: BQ40Z80  
 
BQ40Z80  
www.ti.com.cn  
ZHCSIH4B JUNE 2018 REVISED SEPTEMBER 2020  
1k  
PACK+  
10k  
100  
LEDCNTLA/  
PDSG/GPIO  
BAT  
VC6  
VC5  
LEDCNTLB/GPIO  
LEDCNTLC/GPIO  
DISP*/TS4/  
ADCIN2/GPIO  
/DISP*/GPIO  
VC4  
VC3  
SMBC  
SMBD  
SMBC  
SMBD  
VC2  
VC1  
PDSG/GPIO  
TS3/ADCIN1/  
GPIO  
PRES*/SHUTDN*/  
DISP*/PDSG/GPIO  
PRES*  
PACK-  
8-1. Simplified Schematic of a BQ40Z80 Configuration  
8-1 shows a summary of other common configurations.  
8-1. BQ40Z80 Multifunction Pin Combinations  
Number of  
Cells (with  
Balancing)  
Number of Thermistors  
LEDs  
LED Button  
Pre-Discharge  
SYSPRES  
4
Yes  
Yes (use DISP)  
Yes (uses PDSG)  
Yes  
2S6S  
8.3.6 Configuration  
8.3.6.1 Oscillator Function  
The BQ40Z80 fully integrates the system oscillators and does not require any external components to support  
this feature.  
8.3.6.2 System Present Operation  
The BQ40Z80 checks the PRES pin periodically (1 s). If PRES input is pulled to ground by the external system,  
the BQ40Z80 detects this as system present.  
8.3.6.3 Emergency Shutdown  
For battery maintenance, the emergency shutdown feature enables a push button action connecting the  
SHUTDN pin to shut down an embedded battery pack system before removing the battery. A high-to-low  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: BQ40Z80  
 
 
BQ40Z80  
www.ti.com.cn  
ZHCSIH4B JUNE 2018 REVISED SEPTEMBER 2020  
transition of the SHUTDN pin signals the BQ40Z80 to turn off both CHG and DSG FETs, disconnecting the  
power from the system to safely remove the battery pack. The CHG and DSG FETs can be turned on again by  
another high-to-low transition detected by the SHUTDN pin or when a data flash configurable timeout is reached.  
8.3.6.4 2-Series, 3-Series, 4-Series, 5-Series, or 6-Series Cell Configuration  
In a 2-series cell configuration, VC6 is shorted to VC5, VC4, VC3, and VC2. In a 3-series cell configuration, VC6  
is shorted to VC5, VC4, and VC3. In a 4-series cell configuration, VC6 is shorted to VC5 and VC4. In a 5-series  
cell configuration, VC6 is shorted to VC5.  
8.3.6.5 Cell Balancing  
For up to a 6-series cell configuration, the device supports cell balancing by bypassing the current of each cell  
during charging or at rest. If the device's internal bypass is used, up to 10 mA can be bypassed and multiple  
cells can be bypassed at the same time. A higher cell balance current can be achieved by using an external cell  
balancing circuit. In EXTERNAL CELL BALANCING mode, only one cell at a time can be balanced.  
The cell balancing algorithm determines the amount of charge needed to be bypassed to balance the capacity of  
all cells.  
8.3.7 Battery Parameter Measurements  
8.3.7.1 Charge and Discharge Counting  
The BQ40Z80 uses an integrating delta-sigma analog-to-digital converter (ADC) for current measurement, and a  
second delta-sigma ADC for individual cell and battery voltage and temperature measurement.  
The integrating delta-sigma ADC measures the charge/discharge flow of the battery by measuring the voltage  
drop across a small-value sense resistor between the SRP and SRN terminals. The integrating ADC measures  
bipolar signals from 0.1 V to 0.1 V. The BQ40Z80 detects charge activity when VSR = V(SRP) V(SRN) is  
positive, and discharge activity when VSR = V(SRP) V(SRN) is negative. The BQ40Z80 continuously integrates  
the signal over time, using an internal counter. The fundamental rate of the counter is 0.26 nVh.  
8.3.8 Lifetime Data Logging Features  
The BQ40Z80 offers lifetime data logging for several critical battery parameters. The following parameters are  
updated every 10 hours if a difference is detected between values in RAM and data flash:  
Maximum and Minimum Cell Voltages  
Maximum Delta Cell Voltage  
Maximum Charge Current  
Maximum Discharge Current  
Maximum Average Discharge Current  
Maximum Average Discharge Power  
Maximum and Minimum Cell Temperature  
Maximum Delta Cell Temperature  
Maximum and Minimum Internal Sensor Temperature  
Maximum FET Temperature  
Number of Safety Events Occurrences and the Last Cycle of the Occurrence  
Number of Valid Charge Termination and the Last Cycle of the Valid Charge Termination  
Number of Qmax and Ra Updates and the Last Cycle of the Qmax and Ra Updates  
Number of Shutdown Events  
Cell Balancing Time for Each Cell  
(This data is updated every two hours if a difference is detected.)  
Total FW Runtime and Time Spent in Each Temperature Range  
(This data is updated every two hours if a difference is detected.)  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: BQ40Z80  
BQ40Z80  
www.ti.com.cn  
ZHCSIH4B JUNE 2018 REVISED SEPTEMBER 2020  
8.3.9 Authentication  
To support host authentication, the BQ40Z80 uses Elliptic Curve Cryptography (ECC), which requires a strong  
163-bit key system for the authentication process. Additionally, the private key is required to be stored only in the  
BQ40Z80 Battery Pack Manager, which makes key management more simple and secure. See the BQ40Z80  
Technical Reference Manual (SLUUBT5) for further details.  
8.3.10 LED Display  
The BQ40Z80 can drive a 3-, 4-, or 5- segment LED display for remaining capacity indication and/or a  
permanent fail (PF) error code indication.  
8.3.11 IATA Support  
The BQ40Z80 supports IATA with several new commands and procedures. See the BQ40Z80 Technical  
Reference Manual (SLUUBT5) for further details.  
8.3.12 Voltage  
The BQ40Z80 updates the individual series cell voltages at a 1-second interval. The internal ADC of the  
BQ40Z80 measures the voltage, and scales and calibrates it appropriately. This data is also used to calculate  
the impedance of the cell for the Impedance Track gas gauging.  
8.3.13 Current  
The BQ40Z80 uses the SRP and SRN inputs to measure and calculate the battery charge and discharge current  
using a 1-mΩto 3-mΩtyp. sense resistor.  
8.3.14 Temperature  
The BQ40Z80 has an internal temperature sensor and inputs for up to four external temperature sensors. All five  
temperature sensor options can be individually enabled and configured for cell or FET temperature usage. Two  
configurable thermistor models are provided to allow the monitoring of cell temperature in addition to FET  
temperature, which use a different thermistor profile.  
8.3.15 Communications  
The BQ40Z80 uses SMBus v1.1 with MASTER mode and packet error checking (PEC) options per the SBS  
specification.  
8.3.15.1 SMBus On and Off State  
The BQ40Z80 detects an SMBus off state when SMBC and SMBD are low for two or more seconds. Clearing  
this state requires that either SMBC or SMBD transition high. The communication bus will resume activity within  
1 ms.  
8.3.15.2 SBS Commands  
See the BQ40Z80 Technical Reference Manual (SLUUBT5) for further details.  
8.4 Device Functional Modes  
The BQ40Z80 supports three power modes to reduce power consumption:  
In NORMAL mode, the BQ40Z80 performs measurements, calculations, protection decisions, and data  
updates in 250-ms intervals. Between these intervals, the BQ40Z80 is in a reduced power stage.  
In SLEEP mode, the BQ40Z80 performs measurements, calculations, protection decisions, and data updates  
in adjustable time intervals. Between these intervals, the BQ40Z80 is in a reduced power stage. The  
BQ40Z80 has a wake function that enables exit from SLEEP mode when current flow or failure is detected.  
In SHUTDOWN mode, the BQ40Z80 is completely disabled.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: BQ40Z80  
 
BQ40Z80  
www.ti.com.cn  
ZHCSIH4B JUNE 2018 REVISED SEPTEMBER 2020  
9 Applications and Implementation  
Note  
以下应用部分的信息不属TI 组件规范TI 不担保其准确性和完整性。客户应负责确定 TI 组件是否适  
用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The BQ40Z80 is a gas gauge with primary protection support, and can be used with a 2-series to 6-series li-  
ion/li-polymer battery pack. To implement and design a comprehensive set of parameters for a specific battery  
pack, the Battery Management Studio (BQSTUDIO) graphical user-interface tool must be installed on a PC  
during development.  
9.2 Typical Applications  
9-1. BQ40Z80EVM Gauge and Protector Schematic  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: BQ40Z80  
 
 
 
 
BQ40Z80  
www.ti.com.cn  
ZHCSIH4B JUNE 2018 REVISED SEPTEMBER 2020  
9.2.1 Design Requirements  
9-1 shows the default settings for the main parameters. Use the BQSTUDIO tool to update the settings to  
meet the specific application or battery pack configuration requirements.  
The device should be calibrated before any gauging test. Follow the BQSTUDIO Calibration page to calibrate  
the device, and use the BQSTUDIO Chemistry page to update the match chemistry profile to the device. Design  
Parameters shows all of the settings that are configurable in BQSTUDIO and in the BQ40Z80 firmware.  
9-1. Design Parameters  
DESIGN PARAMETER  
Cell Configuration  
EXAMPLE  
6s (6-series)(1)  
Design Capacity  
6000 mAh  
Device Chemistry  
1210 (LiCoO2/graphitized carbon)  
Cell Overvoltage at Standard Temperature  
Cell Undervoltage  
4300 mV  
2500 mV  
Shutdown Voltage  
2300 mV  
Overcurrent in CHARGE Mode  
Overcurrent in DISCHARGE Mode  
Short Circuit in CHARGE Mode  
Short Circuit in DISCHARGE Mode  
Safety Overvoltage  
6000 mA  
6000 mA  
0.1 V/Rsense across SRP, SRN  
0.1 V/Rsense across SRP, SRN  
4500 mV  
Cell Balancing  
Disabled  
Internal and External Temperature Sensor  
Undertemperature Charging  
Undertemperature Discharging  
BROADCAST Mode  
External Temperature Sensor is used.  
0°C  
0°C  
Disabled  
(1) When using the device the first time, if the a 1-s or 2-s battery pack is used, then a charger or power supply should be connected to  
the PACK+ terminal to prevent device shutdown. Then update the cell configuration (see the BQ40Z80 Technical Reference Manual  
[SLUUBT5] for details) before removing the charger connection.  
9.2.2 Detailed Design Procedure  
This application section uses the BQ40Z80 evaluation module (EVM) and jumper configurations to allow the user  
to evaluate many of the BQ40Z80 features.  
9.2.2.1 Using the BQ40Z80EVM with BQSTUDIO  
The firmware installed on the BQSTUDIO tool has BQ40Z80 default values, which are summarized in the  
BQ40Z80 Technical Reference Manual (SLUUBT5). Using the BQSTUDIO tool, these default values can be  
changed to cater to specific application requirements during development once the system parameters, such as  
fault trigger thresholds for protection, enable/disable of certain features for operation, configuration of cells,  
chemistry that best matches the cell used, and more, are known.  
9.2.2.2 High-Current Path  
The high-current path begins at the PACK+ terminal of the battery pack. As charge current travels through the  
pack, it finds its way through protection FETs, a chemical fuse, the lithium-ion cells and cell connections, and the  
sense resistor, and then returns to the PACKterminal. In addition, some components are placed across the  
PACK+ and PACKterminals to reduce effects from electrostatic discharge.  
9.2.2.2.1 Protection FETs  
Select the N-CH charge and discharge FETs for a given application. For a 7-series cell application, the charge  
FET must be rated above the max voltage, and for this reason the TI CSD18504Q5A is used. The TI  
CSD18504Q5A is a 50-A, 40-V device with Rds(on) of 5.3 mΩ when the gate drive voltage is 10 V. For the  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: BQ40Z80  
 
 
BQ40Z80  
www.ti.com.cn  
ZHCSIH4B JUNE 2018 REVISED SEPTEMBER 2020  
discharge FET, it may see a higher voltage, and so the TI CSD18540Q5B is used. The TI CSD18540Q5B is a  
100-A, 60-V device with Rds(on) of 1.8 mΩwhen the gate drive voltage is 10 V.  
If a precharge FET is used, R2 is calculated to limit the precharge current to the desired rate. Be sure to account  
for the power dissipation of the series resistor. The precharge current is limited to (VCHARGER VBAT)/R2 and  
maximum power dissipation is (VCHARGER VBAT)2/R2.  
The gates of all protection FETs are pulled to the source with a high-value resistor between the gate and source  
to ensure they are turned off if the gate drive is open.  
Capacitors C1 and C2 help protect the FETs during an ESD event. Using two devices ensures normal operation  
if one becomes shorted. To have good ESD protection, the copper trace inductance of the capacitor leads must  
be designed to be as short and wide as possible. Ensure that the voltage rating of both C1 and C2 are adequate  
to hold off the applied voltage if one of the capacitors becomes shorted.  
9.2.2.2.2 Chemical Fuse  
The chemical fuse (Dexerials, Uchihashi, and so on) is ignited under command from either the bq771800  
secondary voltage protection IC or from the FUSE pin of the gas gauge. Either of these events applies a positive  
voltage to the gate of Q9, which then sinks current from the third terminal of the fuse, causing it to ignite and  
open permanently.  
It is important to carefully review the fuse specifications and match the required ignition current to that available  
from the N-CH FET. Ensure that the proper voltage, current, and Rds(on) ratings are used for this device. The  
fuse control circuit is discussed in detail in 9.2.2.3.5.  
9.2.2.2.3 Lithium-Ion Cell Connections  
The important part about the cell connections is that high current flows through the top and bottom connections;  
therefore, the voltage sense leads at these points must be made with a Kelvin connection to avoid any errors  
due to a drop in the high-current copper trace. The location marked 6P indicates the Kelvin connection of the  
most positive directly measured battery node. The single-point connection at 1N to the low-current ground is  
needed to avoid an undesired voltage drop through long traces while the gas gauge is measuring the bottom cell  
voltage.  
9.2.2.2.4 Sense Resistor  
As with the cell connections, the quality of the Kelvin connections at the sense resistor is critical. The sense  
resistor must have a temperature coefficient no greater than 50 ppm to minimize current measurement drift with  
temperature. Choose the value of the sense resistor to correspond to the available overcurrent and short-circuit  
ranges of the BQ40Z80. Select the smallest value possible to minimize the negative voltage generated on the  
BQ40Z80 VSS node(s) during a short circuit. This pin has an absolute minimum of 0.3 V. Parallel resistors can  
be used as long as good Kelvin sensing is ensured. The device is designed to support a 1-mΩ to 3-mΩ sense  
resistor, and a 1-mΩ sense resistor is used, shown as R52. When using 1-mΩ, large currents during a short  
circuit event can cause the voltage across the sense resistor to exceed the abs max of the pin. Therefore, it is  
required to place 100-Ωseries resistors R47 and R48 as shown in the schematic.  
9.2.2.2.5 ESD Mitigation  
A pair of series 0.1-µF ceramic capacitors is placed across the PACK+ and PACKterminals to help mitigate  
external electrostatic discharges. The two devices in series ensure continued operation of the pack if one of the  
capacitors becomes shorted.  
Optionally, a transorb such as the SMBJ2A can be placed across the terminals to further improve ESD immunity.  
9.2.2.3 Gas Gauge Circuit  
The gas gauge circuit includes the BQ40Z80 and its peripheral components. These components are divided into  
the following groups: differential low-pass filter, PBI, system present, SMBus communication, FUSE circuit, and  
LED.  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: BQ40Z80  
BQ40Z80  
www.ti.com.cn  
ZHCSIH4B JUNE 2018 REVISED SEPTEMBER 2020  
9.2.2.3.1 Coulomb-Counting Interface  
The BQ40Z80 uses an integrating delta-sigma ADC for current measurements. Add a 100-Ω resistor from the  
sense resistor to the SRP and SRN inputs of the device. Place a 100-pF (C29) filter capacitor across the SRP  
and SRN inputs. Optional 0.1-µF filter capacitors (C26 and C27) can be added for additional noise filtering, if  
required for your circuit.  
9.2.2.3.2 Power Supply Decoupling and PBI  
The BQ40Z80 has an internal LDO that is internally compensated and does not require an external decoupling  
capacitor.  
The PBI pin is used as a power supply backup input pin providing power during brief transient power outages. A  
standard 2.2-µF ceramic capacitor is connected from the PBI pin to ground.  
9.2.2.3.3 System Present  
The System Present signal is used to inform the gas gauge whether the pack is installed into or removed from  
the system. In the host system, this pin is grounded. The PRES pin of the BQ40Z80 is used if J5[1, 2] jumper is  
installed, and is occasionally sampled to test for system present. To save power, an internal pullup is provided by  
the gas gauge during a brief 4-μs sampling pulse once per second. A resistor can be used to pull the signal low  
and the resistance must be 20 kΩ or lower to ensure that the test pulse is lower than the VIL limit. The pullup  
current source is typically 10 µA to 20 µA.  
Because the System Present signal is part of the pack connector interface to the outside world, it must be  
protected from external electrostatic discharge events. An integrated ESD protection on the PRES device pin  
reduces the external protection requirement to just R12 for an 8-kV ESD contact rating. However, if it is possible  
that the System Present signal may short to PACK+, then an E2 spark gap must be included for high-voltage  
protection.  
9.2.2.3.4 SMBus Communication  
The SMBus clock and data pins have integrated high-voltage ESD protection circuits; however, adding a ESD  
protection device, TPD1E10B06D (U5 and U6) and series resistor (R50 and R51), provides more robust ESD  
performance.  
The SMBus clock and data lines have an internal pulldown. When the gas gauge senses that both lines are low  
(such as during removal of the pack), the device performs auto-offset calibration and then goes into SLEEP  
mode to conserve power.  
9.2.2.3.5 FUSE Circuitry  
The FUSE pin of the BQ40Z80 is designed to ignite the chemical fuse if one of the various safety criteria is  
violated. The FUSE pin also monitors the state of the secondary-voltage protection IC. Q9 ignites the chemical  
fuse when its gate is high. The output of the bq7718xx is divided by R22 and R30, which provides adequate gate  
drive for Q9 while guarding against excessive back current into the bq7718xx if the FUSE signal is high.  
Using C8 is generally a good practice, especially for RFI immunity. C8 may be removed, if desired, because the  
chemical fuse is a comparatively slow device and is not affected by any sub-microsecond glitches that come  
from the FUSE output during the cell connection process.  
If the AFEFUSE output is not used, it should be connected to VSS.  
When the BQ40Z80 is commanded to ignite the chemical fuse, the FUSE pin activates to give a typical 8-V  
output.  
9.2.2.4 Secondary-Current Protection  
The BQ40Z80 provides secondary overcurrent and short-circuit protection, cell balancing, cell voltage  
multiplexing, and voltage translation. The following discussion examines cell and battery inputs, pack and FET  
control, temperature output, and cell balancing.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: BQ40Z80  
 
BQ40Z80  
www.ti.com.cn  
ZHCSIH4B JUNE 2018 REVISED SEPTEMBER 2020  
9.2.2.4.1 Cell and Battery Inputs  
Each cell input is conditioned with a simple RC filter, which provides ESD protection during cell connect and acts  
to filter unwanted voltage transients. The resistor value allows some trade-off for cell balancing versus safety  
protection.  
The BQ40Z80 has integrated cell balancing FETs The internal cell balancing FETs allow the AFE to bypass cell  
current around a given cell or numerous cells. External series resistors placed between the cell connections and  
the VCx I/O pins set the balancing current magnitude. The internal FETs provide a 200-Ωresistance (2 V < VDS  
< 4 V). Series input resistors between 100 Ωand 1 kΩare recommended for effective cell balancing.  
The BAT input uses a diode (D6) to isolate and decouple it from the cells in the event of a transient dip in voltage  
caused by a short-circuit event.  
9.2.2.4.2 External Cell Balancing  
Internal cell balancing can only support up to 10 mA. External cell balancing provides another option for faster  
cell balancing. For details, refer to the application note, Fast Cell Balancing Using External MOSFET (SLUA420).  
9.2.2.4.3 PACK and FET Control  
The PACK and VCC inputs provide power to the BQ40Z80 from the charger. The PACK input also provides a  
method to measure and detect the presence of a charger. The PACK input uses a 100-Ω resistor; whereas, the  
VCC input uses a diode to guard against input transients and prevents misoperation of the date driver during  
short-circuit events.  
The N-CH charge and discharge FETs are controlled with 10-kΩseries gate resistors, which provide a switching  
time constant of a few microseconds. The 10-MΩ resistors ensure that the FETs are off in the event of an open  
connection to the FET drivers. Q4 is provided to protect the discharge FET (Q3) in the event of a reverse-  
connected charger. Without Q4, Q3 can be driven into its linear region and suffer severe damage if the PACK+  
input becomes slightly negative. Q4 turns on in that case to protect Q3 by shorting its gate to source. To use the  
simple ground gate circuit, the FET must have a low gate turn-on threshold. If it is desired to use a more  
standard device, such as the 2N7002, as the reference schematic, the gate should be biased up to 3.3 V with a  
high-value resistor. The BQ40Z80 device has the capability to provide a current-limited charging path typically  
used for low battery voltage or low temperature charging. The BQ40Z80 device uses an external P-CH,  
precharge FET controlled by PCHG.  
9.2.2.4.4 Pre-Discharge Control  
Some applications have a large capacitive load that requires a pre-discharge feature that can slowly charge the  
cap and avoid a large current that may trip the OC protection. The BQ40Z80 device can be configured to use the  
PDSG output of Pins 16, 17, or 20 to drive the N-CH FET Q7 to turn on the pre-discharge P-CH FET Q5. The  
precharge rate can be set by adjusting the resistor R9.  
9.2.2.4.5 Temperature Output  
For the BQ40Z80 device, up to four thermistor inputs can be configured. TS1, TS2, TS3, and TS4 provide  
thermistor drive-under program control. Each pin can be enabled with an integrated 18-k(typical) linearization  
pullup resistor to support the use of a 10-kat 25°C (103) NTC external thermistor, such as a Mitsubishi  
BN35-3H103. The reference design includes four 10-kthermistors: RT1, RT2, RT3, and RT4.  
9.2.2.4.6 LEDs  
Multifunction Pins 20, 21, and 22 can be configured as three LED control outputs that provide constant current  
sinks for driving external LEDs. These outputs are configured to provide voltage and control for up to six LEDs.  
No external bias voltage is required. Unused LEDCNTL pins can remain open or they can be connected to VSS  
The DISP pin should be connected to VSS if the LED feature is not used.  
.
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: BQ40Z80  
BQ40Z80  
www.ti.com.cn  
ZHCSIH4B JUNE 2018 REVISED SEPTEMBER 2020  
9.2.3 Application Curve  
452  
450  
448  
446  
444  
442  
440  
438  
436  
434  
432  
0
20  
40  
60  
80  
100  
120  
œ40  
œ20  
Temperature (°C)  
C014  
9-2. Short Circuit Charge Current Delay Time vs. Temperature  
10 Power Supply Recommendations  
The device manages its supply voltage dynamically according to the operation conditions. Normally, the BAT  
input is the primary power source to the device. The BAT pin should be connected to the positive termination of  
the battery stack. The input voltage for the BAT pin ranges from 2.2 V to 32 V.  
The VCC pin is the secondary power input, which activates when the BAT voltage falls below minimum VCC. This  
enables the device to source power from a charger (if present) connected to the PACK pin. The VCC pin should  
be connected to the common drain of the CHG and DSG FETs. The charger input should be connected to the  
PACK pin.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: BQ40Z80  
 
BQ40Z80  
www.ti.com.cn  
ZHCSIH4B JUNE 2018 REVISED SEPTEMBER 2020  
11 Layout  
11.1 Layout Guidelines  
A battery fuel gauge circuit board is a challenging environment due to the fundamental incompatibility of high-  
current traces and ultra-low current semiconductor devices. The best way to protect against unwanted trace-to-  
trace coupling is with a component placement, such as that shown in 11-1, where the high-current section is  
on the opposite side of the board from the electronic devices. This may not possible in many situations due to  
mechanical constraints. Still, every attempt should be made to route high-current traces away from signal traces,  
which enter the BQ40Z80 directly. IC references and registers can be disturbed and in rare cases damaged due  
to magnetic and capacitive coupling from the high-current path.  
Note  
During surge current and ESD events, the high-current traces appear inductive and can couple  
unwanted noise into sensitive nodes of the gas gauge electronics, as illustrated in 11-2.  
BAT +  
C2  
C3  
Q1  
Q2  
Low Level Circuits  
F1  
C1  
BAT –  
J1  
R1  
Copyright © 2016, Texas Instruments Incorporated  
11-1. Separating High- and Low-Current Sections Provides an Advantage in Noise Immunity  
PACK+  
COMM  
BMU  
PACK–  
Copyright © 2016, Texas Instruments Incorporated  
11-2. Avoid Close Spacing Between High-Current and Low-Level Signal Lines  
Kelvin voltage sensing is extremely important in order to accurately measure current and top and bottom cell  
voltages. Place all filter components as close as possible to the device. Route the traces from the sense resistor  
in parallel to the filter circuit. Adding a ground plane around the filter network can add additional noise immunity.  
11-3 and 11-4 demonstrate correct kelvin current sensing.  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: BQ40Z80  
 
 
 
 
BQ40Z80  
www.ti.com.cn  
ZHCSIH4B JUNE 2018 REVISED SEPTEMBER 2020  
Current Direction  
R
SNS  
Current Sensing Direction  
To SRP – SRN pin or HSRP – HSRN pin  
11-3. Sensing Resistor PCB Layout  
Sense Resistor  
Ground Shield  
Filter Circuit  
11-4. Sense Resistor, Ground Shield, and Filter Circuit Layout  
11.1.1 Protector FET Bypass and Pack Terminal Bypass Capacitors  
Use wide copper traces to lower the inductance of the bypass capacitor circuit. In 11-5, an example layout  
demonstrates this technique. Note that in the BQ40Z80EVM-Rev A Schematic, these capacitors are C1, C2, C3,  
and C4.  
BAT+  
C2  
C3  
C2  
C3  
Q1  
Q2  
Pack+  
F1  
Low Level Circuits  
F1  
BATœ  
C1  
Packœ  
C1  
J1  
R1  
Copyright © 2016, Texas Instruments Incorporated  
11-5. Wide Copper Traces Lower the Inductance of Bypass Capacitors C1, C2, and C3  
11.1.2 ESD Spark Gap  
Protect the SMBus clock, data, and other communication lines from ESD with a spark gap at the connector. The  
pattern in 11-6 is recommended, with 0.2-mm spacing between the points.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: BQ40Z80  
 
 
 
BQ40Z80  
www.ti.com.cn  
ZHCSIH4B JUNE 2018 REVISED SEPTEMBER 2020  
11-6. Recommended Spark-Gap Pattern Helps Protect Communication Lines from ESD  
11.2 Layout Examples  
11-7. BQ40Z80EVM Top Composite  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: BQ40Z80  
 
 
BQ40Z80  
www.ti.com.cn  
ZHCSIH4B JUNE 2018 REVISED SEPTEMBER 2020  
11-8. BQ40Z80EVM Top Layer  
11-9. BQ40Z80EVM GND Layer  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: BQ40Z80  
BQ40Z80  
www.ti.com.cn  
ZHCSIH4B JUNE 2018 REVISED SEPTEMBER 2020  
11-10. BQ40Z80EVM Signal Layer  
11-11. BQ40Z80EVM Bottom Layer  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: BQ40Z80  
BQ40Z80  
www.ti.com.cn  
ZHCSIH4B JUNE 2018 REVISED SEPTEMBER 2020  
11-12. BQ40Z80EVM Bottom Layer Composite  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: BQ40Z80  
BQ40Z80  
www.ti.com.cn  
ZHCSIH4B JUNE 2018 REVISED SEPTEMBER 2020  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation, see the following:  
BQ40Z80 Technical Reference Manual (SLUUBT5)  
BQ40Z80 Manufacture, Production, and Calibration Application Note (SLUA868)  
BQ40Z80EVM Li-Ion Battery Pack Manager Evaluation Module User's Guide (SLUUBZ5)  
How to Complete a Successful Learning Cycle for the BQ40Z80 Application Note (SLUA848)  
TI Fuel Gauge Authentication Key Packager and Programmer Tools User's Guide (SLUUBU3)  
12.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
Impedance Trackand TI E2Eare trademarks of Texas Instruments.  
Impedance Track® is a registered trademark of Texas Instruments.  
Intel® is a registered trademark of Intel.  
所有商标均为其各自所有者的财产。  
12.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, package, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: BQ40Z80  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ40Z80RSMR  
BQ40Z80RSMT  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RSM  
RSM  
32  
32  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
BQ40Z80  
BQ40Z80  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Aug-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
BQ40Z80RSMR  
BQ40Z80RSMT  
VQFN  
VQFN  
RSM  
RSM  
32  
32  
3000  
250  
330.0  
180.0  
12.4  
12.4  
4.25  
4.25  
4.25  
4.25  
1.15  
1.15  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Aug-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
BQ40Z80RSMR  
BQ40Z80RSMT  
VQFN  
VQFN  
RSM  
RSM  
32  
32  
3000  
250  
367.0  
210.0  
367.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RSM 32  
4 x 4, 0.4 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224982/A  
www.ti.com  
PACKAGE OUTLINE  
RSM0032A  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
B
4.1  
3.9  
A
0.5  
0.3  
PIN 1 INDEX AREA  
4.1  
3.9  
0.25  
0.15  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 2.8  
1.4 0.05  
(0.2) TYP  
4X (0.45)  
28X 0.4  
9
16  
8
17  
EXPOSED  
THERMAL PAD  
2X  
SYMM  
33  
2.8  
24  
0.25  
32X  
1
SEE TERMINAL  
DETAIL  
0.15  
0.1  
C A B  
25  
32  
PIN 1 ID  
(OPTIONAL)  
0.05  
SYMM  
0.5  
0.3  
32X  
4219107/A 11/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RSM0032A  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.4)  
SYMM  
32  
25  
32X (0.6)  
1
32X (0.2)  
24  
SYMM  
33  
(3.8)  
28X (0.4)  
(
0.2) VIA  
17  
8
(R0.05)  
TYP  
9
16  
(3.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219107/A 11/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RSM0032A  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.3)  
(R0.05) TYP  
25  
32  
32X (0.6)  
32X (0.2)  
1
24  
SYMM  
33  
(3.8)  
28X (0.4)  
METAL  
TYP  
17  
8
16  
9
SYMM  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD 33:  
86% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4219107/A 11/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

BQ40Z80RSMT

采用 Impedance Track™ 电量监测技术的 2 节至 7 节电池组管理器 | RSM | 32 | -40 to 85
TI

BQ4115YMA-150

NVRAM (Battery Based)
ETC

BQ4285

Real-Time Clock RTC With NVRAM Control
TI

BQ4285E

Enhanced RTC With NVRAM Control
TI

BQ4285EP

Enhanced RTC With NVRAM Control
TI

BQ4285EPN

暂无描述
TI

BQ4285ES

Enhanced RTC With NVRAM Control
TI

BQ4285E_14

Enhanced RTC With NVRAM Control
TI

BQ4285L

Enhanced RTC With NVRAM Control
TI

BQ4285LP

Enhanced RTC With NVRAM Control
TI

BQ4285LQN

1 TIMER(S), REAL TIME CLOCK, PQCC28, PLASTIC, LCC-28
TI