BQ3285ESSTR [TI]

Real-Time Clock RTC; 实时时钟RTC
BQ3285ESSTR
型号: BQ3285ESSTR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Real-Time Clock RTC
实时时钟RTC

外围集成电路 光电二极管 时钟
文件: 总29页 (文件大小:1049K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
bq3285E/L  
Real-Time Clock (RTC)  
BCD or binary format for clock  
Features  
General Description  
and calendar data  
Direct clock/calendar replace-  
ment for IBM® AT-compatible  
computers and other applications  
Th e CMOS bq3285E /L is a low-  
power m icr opr ocessor per iph er a l  
providing a time-of-day clock and  
100-year calendar with alarm fea-  
t ures a nd ba t t ery opera t ion . Th e  
b q3 28 5 L s u p p or t s 3 V s ys t e m s.  
Other bq3285E/L features include  
three maskable interrupt sources,  
square-wave output, and 242 bytes  
of general nonvolatile storage.  
Calendar in day of the week, day  
of the month, months, and years,  
with automatic leap-year adjust-  
ment  
Functionally compatible with the  
DS1285  
Time of day in seconds, minutes,  
and hours  
- Closely matches MC146818A  
pin configuration  
- 12- or 24-hour format  
- Optional daylight saving  
2.7–3.6V operation (bq3285L);  
adjustment  
4.5–5.5V operation (bq3285E)  
A 32.768kHz output is available for  
sustaining power-management ac-  
tivities. Wake-up capability is pro-  
vided by an alarm interrupt, which  
is active in battery-backup mode.  
Programmable square wave out-  
242 bytes of general nonvolatile  
put  
storage  
Three individually maskable in-  
32.768kHz output for power man-  
terrupt event flags:  
agement  
- Periodic rates from 122µs to  
The bq3285E/L write-protects the  
clock, calendar, and storage registers  
du r in g power fa ilu r e. A ba cku p  
battery then maintains data and oper-  
ates the clock and calendar.  
System wake-up capability—  
alarm interrupt output active in  
battery-backup mode  
500ms  
- Time-of-day alarm once per  
second to once per day  
Less than 0.5µA load under bat-  
- End-of-clock update cycle  
24-pin plastic DIP, SOIC, or  
tery operation  
The bq3285E/L is a fully compatible  
real-time clock for IBM AT-compatible  
computers and other applications.  
The only external components are a  
32.768kHz crystal and a backup bat-  
tery.  
Selectable Intel or Motorola bus  
SSOP  
timing  
14 bytes for clock/calendar and  
control  
Pin Connections  
Pin Names  
AD0–AD7 Multiplexed address/  
data input/output  
RST  
Reset input  
SQW  
Square wave output  
MOT  
24  
1
V
CC  
SQW  
EXTRAM  
MOT  
CS  
Bus type select input  
Chip select input  
Address strobe input  
Data strobe input  
Read/write input  
Interrupt request  
output  
EXTRAM Extended RAM enable  
X1  
X2  
23  
22  
2
3
RCL  
BC  
RAM clear input  
3V backup cell input  
Crystal inputs  
Power supply  
Ground  
4
RCL  
BC  
AD  
0
AD  
1
AD  
2
AD  
3
AD  
4
AD  
5
AD  
6
21  
20  
19  
18  
AS  
5
6
INT  
RST  
DS  
X1–X2  
VCC  
7
R/W  
INT  
8
9
17 DS  
16  
15  
V
SS  
R/W  
VSS  
10  
11  
12  
AD  
7
14 AS  
13 CS  
V
SS  
24-Pin DIP or SOIC/SSOP  
PN3285E1.eps  
SLUS004A -DECEMBER 1993 - REVISED MAY 2004  
1
bq3285E/L  
Block Diagram  
AD0–AD7 Mu ltiplexed addr ess/data in pu t/  
Pin Descriptions  
ou tpu t  
MOT  
Bu s typ e select in p u t  
The bq3285E/L bus cycle consists of two  
phases: the address phase and the data-  
transfer phase. The address phase pre-  
cedes the data-transfer phase. During the  
a d d r es s p h a s e, a n a d d r es s p la ced on  
AD0–AD7 and EXTRAM is latched into the  
bq3285E/L on the falling edge of the AS sig-  
nal. During the data-transfer phase of the  
bus cycle, the AD0–AD7 pins serve as a bidi-  
rectional data bus.  
MOT selects bus timing for either Motorola  
or Intel architecture. This pin should be  
tied to VCC for Motorola timing or to VSS for  
Intel timing (see Table 1). The setting  
should not be changed during system opera-  
tion. MOT is internally pulled low by a  
30Kresistor.  
Table 1. Bus Setup  
AS  
Ad d r ess str obe in p u t  
Bus  
Type  
MOT  
DS  
R/W  
AS  
AS serves to demultiplex the address/data  
bus. The falling edge of AS latches the ad-  
dress on AD0–AD7 and EXTRAM. This de-  
multiplexing process is independent of the  
CS signal. For DIP and SOIC packages with  
MOT = VSS, the AS input is provided a signal  
similar to ALE in an Intel-based system.  
Level Equivalent Equivalent Equivalent  
DS, E, or  
VCC  
Motorola  
R/W  
WR,  
AS  
Φ2  
RD,  
VSS  
Intel  
MEMR, or MEMW, or ALE  
I/OR I/OW  
2
bq3285E/L  
DS  
Da ta str obe in p u t  
EXTRAM Exten d ed RAM en a ble  
When MOT = VCC, DS controls data trans-  
fer during a bq3285E/L bus cycle. During a  
read cycle, the bq3285E/L drives the bus af-  
ter the rising edge on DS. During a write  
cycle, the falling edge on DS is used to latch  
write data into the chip.  
Enables 128 bytes of additional nonvolatile  
SRAM. It is connected internally to a 30K  
pull-down resistor. To access the RTC  
registers, EXTRAM must be low.  
RCL  
RAM clea r in p u t  
A low level on the RCL pin causes the con-  
tents of each of the 242 storage bytes to be  
set to FF(hex). The contents of the clock  
and control registers are unaffected. This  
pin should be used as a user-interface input  
(pushbutton to ground) and not connected  
to the output of any active component. RCL  
input is only recognized when held low for  
at least 125ms in the presence of VCC. Us-  
ing RAM clear does not affect the battery  
load. This pin is connected internally to a  
30Kpull-up resistor.  
When MOT = VSS, the DS input is provided  
a signal similar to RD, MEMR, or I/OR in  
an Intel-based system. The falling edge on  
DS is used to enable the outputs during a  
read cycle.  
Read/wr ite in pu t  
R/W  
When MOT = VCC, the level on R/W identi-  
fies the direction of data transfer. A high  
level on R/W indicates a read bus cycle,  
whereas a low on this pin indicates a write  
bus cycle.  
BC  
3V ba ck u p cell in p u t  
When MOT = VSS, R/W is provided a sig-  
nal similar to WR, MEMW, or I/OW in an  
Intel-based system. The rising edge on  
R/W latches data into the bq3285E/L.  
BC should be connected to a 3V backup cell  
for RTC operation and storage register non-  
volatility in the absence of system power.  
When VCC slews down past VBC (3V typical),  
the integral control circuitry switches the  
power source to BC. When VCC returns  
above VBC, the power source is switched to  
CS  
Ch ip select in p u t  
CS should be driven low and held stable  
during the data-transfer phase of a bus cy-  
cle accessing the bq3285E/L.  
VCC  
.
Upon power-up, a voltage within the VBC  
range must be present on the BC pin for  
the oscillator to start up.  
INT  
In ter r u p t r equ est ou tp u t  
INT is an open-drain output. This allows  
alarm INT to be valid in battery-backup  
mode. To use this feature, INT must be con-  
RST  
Reset in p u t  
nected to a power supply other than VCC  
.
The bq3285E/L is reset when RST is pulled  
low. When reset, INT becomes high imped-  
ance, and the bq3285E/L is not accessible.  
Table 4 in the Control/Status Registers sec-  
tion lists the register bits that are cleared  
by a reset.  
INT is asserted low when any event flag is  
set and the corresponding event enable bit  
is also set. INT becomes high-impedance  
whenever register C is read (see the Con-  
trol/Status Registers section).  
SQW  
Squ a r e-w a ve ou tp u t  
Reset may be disabled by connecting RST  
to VCC  
. This allows the control bits to re-  
SQW m a y ou t pu t a pr ogr a m m a ble fr e-  
quency square-wave signal during normal  
(VCC valid) system operation. Any one of  
the 13 specific frequencies may be selected  
through register A. This pin is held low  
when the square-wave enable bit (SQWE)  
in register B is 0 (see the Control/Status  
Registers section).  
t a in t h e ir s t a t e s t h r ou gh p ow e r -  
down/power-up cycles.  
X1–X2  
Cr ysta l in p u ts  
The X1–X2 inputs are provided for an exter-  
nal 32.768kHz quartz crystal, Daiwa DT-26  
or equivalent, with 6pF load capacitance. A  
trimming capacitor may be necessary for ex-  
tremely precise time-base generation.  
A 32.768kHz output is enabled by setting  
the SQWE bit in register B to 1 and the  
32KE bit in register C to 1 after setting  
OSC2–OSC0 in register A to 011 (binary).  
In the absence of a crystal, a 32.768kHz  
waveform can be fed into the X1 input.  
3
bq3285E/L  
dar locations during the update cycle at the end of each  
update period (see Figure 2). The alarm flag bit may  
also be set during the update cycle.  
Functional Description  
Address Map  
The bq3285E/L copies the local register updates into the  
user buffer accessed by the host processor. When a 1 is  
written to the update transfer inhibit bit (UTI) in regis-  
ter B, the user copy of the clock and calendar bytes re-  
mains unchanged, while the local copy of the same bytes  
continues to be updated every second.  
The bq3285E/L provides 14 bytes of clock and con-  
trol/status registers and 242 bytes of general nonvolatile  
storage. Figure 1 illustrates the address map for the  
bq3285E/L.  
The update-in-progress bit (UIP) in register A is set  
tBUC time before the beginning of an update cycle (see  
Figure 2). This bit is cleared and the update-complete  
flag (UF) is set at the end of the update cycle.  
Update Period  
The update period for the bq3285E/L is one second. The  
bq3285E/L updates the contents of the clock and calen-  
Figure 1. Address Map  
Figure 2. Update Period Timing and UIP  
4
bq3285E/L  
c.  
Write the appropriate value to the hour  
format (HF) bit.  
Programming the RTC  
The time-of-day, alarm, and calendar bytes can be writ-  
ten in either the BCD or binary format (see Table 2).  
2. Write new values to all the time, alarm, and  
calendar locations.  
3. Clear the UTI bit to allow update transfers.  
These steps may be followed to program the time, alarm,  
and calendar:  
On the next update cycle, the RTC updates all 10 bytes  
in the selected format.  
1. Modify the contents of register B:  
a. Write a 1 to the UTI bit to prevent trans-  
fers between RTC bytes and user buffer.  
b. Write the appropriate value to the data  
format (DF) bit to select BCD or binary  
format for all time, alarm, and calendar  
bytes.  
Table 2. Time, Alarm, and Calendar Formats  
Range  
Binary-Coded  
Decimal  
Decimal  
0–59  
Binary  
Address  
RTC Bytes  
0
1
2
3
Seconds  
00H–3BH  
00H–3BH  
00H–3BH  
00H–3BH  
00H–59H  
00H–59H  
00H–59H  
00H–59H  
Seconds alarm  
Minutes  
0–59  
0–59  
Minutes alarm  
0–59  
01H–OCH AM;  
81H–8CH PM  
01H–12H AM;  
81H–92H PM  
Hours, 12-hour format  
Hours, 24-hour format  
Hours alarm, 12-hour format  
1–12  
0–23  
4
5
00H–17H  
00H–23H  
01H–OCH AM;  
81H–8CH PM  
01H–12H AM;  
81H–92H PM  
1–12  
Hours alarm, 24-hour format  
Day of week (1=Sunday)  
Day of month  
0–23  
1–7  
00H–17H  
01H–07H  
01H–1FH  
01H–0CH  
00H–63H  
00H–23H  
01H–07H  
01H–31H  
01H–12H  
00H–99H  
6
7
8
9
1–31  
1–12  
0–99  
Month  
Year  
5
bq3285E/L  
n
n
The alarm interrupt, programmable to occur once per  
second to once per day, is active in battery-backup  
mode, providing a wake-up” feature.  
Square-Wave Output  
The bq3285E/L divides the 32.768kHz oscillator fre-  
quency to produce the 1Hz update frequency for the  
clock and calendar. Thirteen taps from the frequency di-  
vider are fed to a 16:1 multiplexer circuit. The output of  
this mux is fed to the SQW output and periodic inter-  
rupt generation circuitry. The four least-significant bits  
of register A, RS0–RS3, select among the 13 taps (see  
Table 3). The square-wave output is enabled by writing  
a 1 to the square-wave enable bit (SQWE) in register B.  
A 32.768k H z ou t p u t m a y be s elect ed by s et t in g  
OSC2–OSC0 in register A to 011 while SQWE = 1 and  
32KE = 1.  
The update-ended interrupt, which occurs at the end  
of each update cycle.  
Each of the three interrupt events is enabled by an indi-  
vidual interrupt-enable bit in register B. When an event  
occurs, its event flag bit in register C is set. If the corre-  
sponding event enable bit is also set, then an interrupt  
request is generated. The interrupt request flag bit  
(INTF) of register C is set with every interrupt request.  
Reading register C clears all flag bits, including INTF,  
and makes INT high-impedance.  
Two methods can be used to process bq3285E/L interrupt  
events:  
Interrupts  
n
n
Enable interrupt events and use the interrupt request  
output to invoke an interrupt service routine.  
The bq3285E/L allows three individually selected inter-  
rupt events to generate an interrupt request. These  
three interrupt events are:  
Do not enable the interrupts and use a polling routine  
to periodically check the status of the flag bits.  
n
The periodic interrupt, programmable to occur once  
every 122µs to 500ms.  
The individual interrupt sources are described in detail  
in the following sections.  
Table 3. Square-Wave Frequency/Periodic Interrupt Rate  
Register A Bits  
Square Wave  
Periodic Interrupt  
OSC2 OSC1 OSC0  
RS3  
0
RS2  
RS1  
0
RS0  
0
Frequency  
None  
256  
128  
8.192  
Units  
Period  
Units  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
None  
0
0
1
Hz  
Hz  
3.90625  
ms  
ms  
µs  
0
1
0
7.8125  
122.070  
244.141  
488.281  
976.5625  
1.95315  
3.90625  
7.8125  
15.625  
31.25  
0
1
1
kHz  
kHz  
kHz  
kHz  
Hz  
0
0
0
4.096  
2.048  
1.024  
µs  
0
0
1
µs  
0
1
0
µs  
0
1
1
512  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
1
0
0
256  
128  
64  
32  
16  
8
Hz  
1
0
1
Hz  
1
1
0
Hz  
1
1
1
Hz  
1
0
0
Hz  
62.5  
1
0
1
Hz  
125  
1
1
0
4
Hz  
250  
1
1
1
2
Hz  
500  
32.768  
same as above defined  
by RS3–RS0  
0
1
1
X
X
X
X
kHz  
6
bq3285E/L  
Periodic Interrupt  
Update Cycle Interrupt  
The mux output used to drive the SQW output also  
drives the interrupt-generation circuitry. If the periodic  
interrupt event is enabled by writing a 1 to the periodic  
interrupt enable bit (PIE) in register C, an interrupt re-  
quest is generated once every 122µs to 500ms. The pe-  
riod between interrupts is selected by the same bits in  
register A that select the square wave frequency (see Ta-  
ble 3). Setting OSC2–OSC0 in register A to 011 does not  
affect the periodic interrupt timing.  
The update cycle ended flag bit (UF) in register C is set to  
a 1 at the end of an update cycle. If the update interrupt  
enable bit (UIE) of register B is 1, and the update transfer  
inhibit bit (UTI) in register B is 0, then an interrupt request  
is generated at the end of each update cycle.  
Accessing RTC bytes  
The EXTRAM pin must be low to access the RTC regis-  
ters. Time and calendar bytes read during an update  
cycle may be in error. Three methods to access the time  
and calendar bytes without ambiguity are:  
Alarm Interrupt  
The alarm interrupt is active in battery-backup mode,  
providing a wake-up” capability. During each update  
cycle, the RTC compares the hours, minutes, and sec-  
onds bytes with the three corresponding alarm bytes. If  
a match of all bytes is found, the alarm interrupt event  
flag bit, AF in register C, is set to 1. If the alarm event  
is enabled, an interrupt request is generated.  
n
Enable the update interrupt event to generate  
interrupt requests at the end of the update cycle. The  
interrupt handler has a maximum of 999ms to access  
the clock bytes before the next update cycle begins (see  
Figure 3).  
n
n
Poll the update-in-progress bit (UIP) in register A. If  
UIP = 0, the polling routine has a minimum of tBUC  
time to access the clock bytes (see Figure 3).  
An alarm byte may be removed from the comparison by  
setting it to a dont care” state. An alarm byte is set to  
a “dont care” state by writing a 1 to each of its two  
most-significant bits. A dont care” state may be used to  
select the frequency of alarm interrupt events as follows:  
Use the periodic interrupt event to generate  
interrupt requests every tPI time, such that UIP = 1  
always occurs between the periodic interrupts. The  
interrupt handler has a minimum of tPI/2 + tBUC  
time to access the clock bytes (see Figure 3).  
n
n
n
n
If none of the three alarm bytes is dont care,” the  
frequency is once per day, when hours, minutes, and  
seconds match.  
If only the hour alarm byte is dont care,” the  
frequency is once per hour, when minutes and  
seconds match.  
Oscillator Control  
When power is first applied to the bq3285E/L and VCC is  
above VPFD, the internal oscillator and frequency divider  
are turned on by writing a 010 pattern to bits 4 through 6  
of register A. A pattern of 011 behaves as 010 but addition-  
ally transforms register C into a read/write register. This  
allows the 32.768kHz output on the square wave pin to be  
turned on. A pattern of 11X turns the oscillator on, but  
keeps the frequency divider disabled. Any other pattern to  
these bits keeps the oscillator off.  
If only the hour and minute alarm bytes are dont  
care,” the frequency is once per minute, when seconds  
match.  
If the hour, minute, and second alarm bytes are  
dont care,” the frequency is once per second.  
Figure 3. Update-Ended/Periodic Interrupt Relationship  
7
bq3285E/L  
Register A provides:  
Status of the update cycle.  
Power-Down/Power-Up Cycle  
n
The bq3285E and bq3285L power-up/power-down cycles are  
different. The bq3285L continuously monitors VCC for out-of-  
tolerance. During a power failure, when VCC falls below VPFD  
(2.53V typical), the bq3285L write-protects the clock and stor-  
age registers. The power source is switched to BC when VCC is  
less than VPFD and BC is greater than VPFD, or when VCC is  
less than VBC and VBC is less than VPFD. RTC operation and  
storage data are sustained by a valid backup energy source.  
When VCC is above VPFD, the power source is VCC. Write-  
RS0–RS3 - Frequency Select  
7
-
6
-
5
-
4
-
3
2
1
0
RS3 RS2 RS1 RS0  
These bits select one of the 13 frequencies for the SQW out-  
put and the periodic interrupt rate, as shown in Table 3.  
protection continues for tCSR time after VCC rises above VPFD  
.
OS0–OS2 - Oscillator Control  
The bq3285E continuously monitors VCC for out-of-tolerance.  
During a power failure, when VCC falls below VPFD (4.17V  
typical), the bq3285E write-protects the clock and storage  
registers. When VCC is below VBC (3V typical), the power  
source is switched to BC. RTC operation and storage data  
are sustained by a valid backup energy source. When VCC is  
above VBC, the power source is VCC. Write-protection contin-  
7
-
6
5
4
3
-
2
-
1
-
0
-
OS2 OS1 OS0  
These three bits control the state of the oscillator and  
divider stages. A pattern of 010 enables RTC operation  
by turning on the oscillator and enabling the frequency  
divider. A pattern of 011 behaves as 010 but additionally  
transforms register C into a read/write register. This al-  
lows the 32.768kHz output on the square wave pin to be  
turned on. A pattern of 11X turns the oscillator on, but  
keeps the frequency divider disabled. When 010 is writ-  
ten, the RTC begins its first update after 500ms.  
ues for tCSR time after VCC rises above VPFD  
.
Control/Status Registers  
The four control/status registers of the bq3285E/L are  
accessible regardless of the status of the update cycle  
(see Table 4).  
UIP - Update Cycle Status  
Register A  
7
6
-
5
-
4
-
3
-
2
-
1
-
0
-
UIP  
Register A Bits  
7
6
5
4
3
2
1
0
This read-only bit is set prior to the update cycle. When  
UIP equals 1, an RTC update cycle may be in progress.  
UIP is cleared at the end of each update cycle. This bit  
is also cleared when the update transfer inhibit (UTI)  
bit in register B is 1.  
UIP OS2 OS1 OS0 RS3 RS2 RS1 RS0  
Register A programs:  
n
n
The frequency of the square-wave and the periodic  
event rate.  
Oscillator operation.  
Table 4. Control/Status Registers  
Bit Name and State on Reset  
Loc.  
7 (MSB)  
6
5
4
3
2
1
0 (LSB)  
Reg. (Hex) Rea d Wr ite  
A
0A  
0B  
0C  
0D  
Yes Yes1 UIP na OS2 na OS1 na OS0 na RS3 na RS2 na RS1 na RS0 na  
B
C
Yes  
Yes No2 INTF  
Yes No VRT na  
Yes UTI na PIE  
0
0
0
AIE  
AF  
-
0
0
0
UIE  
UF  
-
0
0
0
SQWE  
0
0
0
DF na HF na DSE na  
0
PF  
-
-
-
32KE na  
-
-
0
0
-
-
0
0
D
-
0
Notes:  
na = not affected.  
1. Except bit 7.  
2. Read/write only when OSC2–OSC0 in register A is 011 (binary).  
8
bq3285E/L  
SQWE - Square-Wave Enable  
Register B  
7
-
6
-
5
-
4
-
3
2
-
1
-
0
-
Register B Bits  
SQWE  
7
6
5
4
3
2
1
0
UTI PIE  
AIE UIE SQWE DF  
HF  
DSE  
This bit enables the square-wave output:  
1 = Enabled  
Register B enables:  
n
n
n
n
Update cycle transfer operation  
Square-wave output  
0 = Disabled and held low  
UIE - Update Cycle Interrupt Enable  
Interrupt events  
7
-
6
-
5
-
4
3
-
2
-
1
-
0
-
Daylight saving adjustment  
UIE  
Register B selects:  
Clock and calendar data formats  
This bit enables an interrupt request due to an update  
ended interrupt event:  
n
All bits of register B are read/write.  
1 = Enabled  
0 = Disabled  
DSE - Daylight Saving Enable  
7
-
6
-
5
-
4
-
3
-
2
-
1
-
0
The UIE bit is automatically cleared when the UTI bit  
equals 1.  
DSE  
AIE - Alarm Interrupt Enable  
This bit enables daylight-saving time adjustments when  
written to 1:  
7
-
6
-
5
4
-
3
-
2
-
1
-
0
-
AIE  
n
On the last Sunday in October, the first time the  
bq3285E/L increments past 1:59:59 AM, the time  
falls back to 1:00:00 AM.  
This bit enables an interrupt request due to an alarm  
interrupt event:  
n
On the first Sunday in April, the time springs  
forward from 2:00:00 AM to 3:00:00 AM.  
1 = Enabled  
0 = Disabled  
HF - Hour Format  
7
-
6
-
5
-
4
-
3
-
2
-
1
0
-
PIE - Periodic Interrupt Enable  
HF  
7
-
6
5
-
4
-
3
-
2
-
1
-
0
-
PIE  
This bit selects the time-of-day and alarm hour format:  
1 = 24-hour format  
This bit enables an interrupt request due to a periodic  
interrupt event:  
0 = 12-hour format  
1 = Enabled  
0 = Disabled  
DF - Data Format  
7
-
6
-
5
-
4
-
3
-
2
1
-
0
-
DF  
This bit selects the numeric format in which the time,  
alarm, and calendar bytes are represented:  
1 = Binary  
0 = BCD  
9
bq3285E/L  
UTI - Update Transfer Inhibit  
PF - Periodic Event Flag  
This bit is set to a 1 every tPI time, where tPI is the time  
period selected by the settings of RS0–RS3 in register A.  
Reading register C clears this bit.  
7
6
-
5
-
4
-
3
-
2
-
1
-
0
-
UTI  
7
-
6
5
-
4
-
3
-
2
-
1
-
0
-
This bit inhibits the transfer of RTC bytes to the user  
buffer:  
PF  
1 = Inhibits transfer and clears UIE  
0 = Allows transfer  
INTF - Interrupt Request Flag  
This flag is set to a 1 when any of the following is true:  
AIE = 1 and AF = 1  
Register C  
PIE = 1 and PF = 1  
Register C is the read-only event status register.  
7
6
-
5
-
4
-
3
-
2
-
1
-
0
-
Register C Bits  
INTF  
7
6
5
4
3
0
2
1
0
0
0
INTF PF  
AF  
UF  
32KE  
UIE = 1 and UF = 1  
Reading register C clears this bit.  
Bits 0, 1, 3 - Unused Bits  
These bits are always set to 0.  
Register D  
Register D is the read-only data integrity status register.  
7
-
6
-
5
-
4
-
3
0
2
-
1
0
0
0
Bits 0–6 - Unused Bits  
These bits are always set to 0.  
32KE - 32kHz Enable Output  
VRT - Valid RAM and Time  
Register D Bits  
This bit may be set to a 1 only when the OSC2–OSC0  
bits in register A are set to 011. Setting OSC2–OSC0 to  
7
6
0
5
0
4
0
3
0
2
0
1
0
0
0
7
-
6
-
5
-
4
-
3
-
2
1
-
0
-
VRT  
32KE  
1 = Valid backup energy source  
0 = Backup energy source is depleted  
anything other than 011 clears this bit. If SQWE in reg-  
ister B and 32KE are set, a 32.768kHz waveform is out-  
put on the square wave pin.  
7
-
6
0
5
0
4
0
3
0
2
0
1
0
0
0
UF - Update Event Flag  
This bit is set to a 1 at the end of the update cycle.  
When the backup energy source is depleted (VRT = 0),  
data integrity of the RTC and storage registers is not  
guaranteed.  
7
-
6
-
5
-
4
3
-
2
-
1
-
0
-
UF  
7
6
-
5
-
4
-
3
-
2
-
1
-
0
-
VRT  
Reading register C clears this bit.  
AF - Alarm Event Flag  
This bit is set to a 1 when an alarm event occurs. Read-  
ing register C clears this bit.  
7
-
6
-
5
4
-
3
-
2
-
1
-
0
-
AF  
10  
bq3285E/L  
Absolute Maximum Ratings—bq3285E  
Symbol  
Parameter  
Value  
Unit  
Conditions  
VCC  
DC voltage applied on VCC relative to VSS  
-0.3 to 7.0  
V
DC voltage applied on any pin excluding VCC  
relative to VSS  
VT  
VT VCC + 0.3  
-0.3 to 7.0  
0 to +70  
V
°C  
Commercial  
TOPR  
Operating temperature  
TSTG  
Storage temperature  
-55 to +125  
-40 to +85  
260  
°C  
°C  
°C  
TBIAS  
Temperature under bias  
TSOLDER Soldering temperature  
For 10 seconds  
Note:  
Permanent device damage may occur if Absolu te Ma xim u m Ra tin gs are exceeded. Functional opera-  
tion should be limited to the Recommended DC Operating Conditions detailed in this data sheet. Expo-  
sure to conditions beyond the operational limits for extended periods of time may affect device reliability.  
Absolute Maximum Ratings—bq3285L  
Symbol  
Parameter  
Value  
Unit  
Conditions  
VCC  
DC voltage applied on VCC relative to VSS  
-0.3 to 6.0  
V
DC voltage applied on any pin excluding VCC  
relative to VSS  
VT  
VT VCC + 0.3  
-0.3 to 6.0  
V
TOPR  
TSTG  
TBIAS  
Operating temperature  
Storage temperature  
Temperature under bias  
0 to +70  
-55 to +125  
-40 to +85  
260  
°C  
°C  
°C  
°C  
Commercial  
TSOLDER Soldering temperature  
For 10 seconds  
Note:  
Permanent device damage may occur if Absolu te Ma xim u m Ra tin gs are exceeded. Functional opera-  
tion should be limited to the Recommended DC Operating Conditions detailed in this data sheet. Expo-  
sure to conditions beyond the operational limits for extended periods of time may affect device reliability.  
11  
bq3285E/L  
Recommended DC Operating Conditions—bq3285E (TA = TOPR  
)
Symbol  
VCC  
Parameter  
Supply voltage  
Minimum  
Typical  
Maximum  
Unit  
V
4.5  
0
5.0  
5.5  
VSS  
VIL  
VIH  
VBC  
Supply voltage  
0
-
0
0.8  
V
Input low voltage  
Input high voltage  
Backup cell voltage  
-0.3  
2.2  
2.5  
V
-
VCC + 0.3  
4.0  
V
-
V
Note:  
Typical values indicate operation at TA = 25°C.  
Recommended DC Operating Conditions—bq3285L (TA = TOPR  
)
Symbol  
VCC  
Parameter  
Supply voltage  
Minimum  
Typical  
Maximum  
Unit  
V
2.7  
0
3.15  
3.6  
VSS  
VIL  
VIH  
VBC  
Supply voltage  
0
-
0
0.6  
V
Input low voltage  
Input high voltage  
Backup cell voltage  
-0.3  
2.2  
2.4  
V
-
VCC + 0.3  
4.0  
V
-
V
Note:  
Typical values indicate operation at TA = 25°C.  
Crystal Specifications—bq3285E/L (DT-26 or Equivalent)  
Symbol  
Parameter  
Oscillation frequency  
Minimum  
Typical  
Maximum  
Unit  
fO  
-
32.768  
-
kHz  
pF  
CL  
TP  
Load capacitance  
-
6
-
30  
Temperature turnover point  
Parabolic curvature constant  
Quality factor  
20  
25  
°C  
k
-
-
-0.042  
-
ppm/°C  
Q
40,000  
70,000  
R1  
Series resistance  
-
-
-
-
-
-
1.1  
430  
-
45  
KΩ  
C0  
Shunt capacitance  
Capacitance ratio  
1.8  
600  
1
pF  
C0/C1  
DL  
f/fO  
Drive level  
µW  
Aging (first year at 25°C)  
1
-
ppm  
12  
bq3285E/L  
DC Electrical Characteristics—bq3285E (TA = TOPR, VCC = 5V ± 10%)  
Symbol  
ILI  
Parameter  
Minimum Typical Maximum Unit  
Conditions/Notes  
Input leakage current  
-
-
-
-
± 1  
± 1  
µA VIN = VSS to VCC  
AD0–AD7, INT, and SQW  
in high impedance,  
VOUT = VSS to VCC  
µA  
ILO  
Output leakage current  
VOH  
VOL  
Output high voltage  
Output low voltage  
2.4  
-
-
-
-
V
V
IOH = -2.0 mA  
IOL = 4.0 mA  
0.4  
Min. cycle, duty = 100%,  
IOH = 0mA, IOL = 0mA  
ICC  
Operating supply current  
Standby supply current  
-
-
7
15  
-
mA  
VIN = VSS or VCC  
,
µA  
ICCSB  
300  
CS VCC - 0.2  
VSO  
Supply switch-over voltage  
Battery operation current  
Power-fail-detect voltage  
Input current when RCL = VSS  
-
VBC  
-
V
ICCB  
VPFD  
IRCL  
-
4.0  
-
0.3  
0.5  
4.35  
185  
-185  
0
µA VBC = 3V, TA = 25°C  
V
4.17  
.
-
-
-
µA Internal 30K pull-up  
µA Internal 30K pull-down  
µA Internal 30K pull-down  
Input current when MOT = VCC  
Input current when MOT = VSS  
-
IMOTH  
-
Input current when EXTRAM =  
VCC  
µA  
µA  
-
-
-
-
-185  
0
Internal 30K pull-down  
Internal 30K pull-down  
IXTRAM  
Input current when EXTRAM =  
VSS  
Note:  
Typical values indicate operation at TA = 25°C, VCC = 5V or VBC = 3V.  
13  
bq3285E/L  
DC Electrical Characteristics—bq3285L (TA = TOPR, VCC = 3.15V ±0.45V)  
Symbol  
ILI  
Parameter  
Minimum Typical Maximum Unit  
Conditions/Notes  
Input leakage current  
-
-
-
-
± 1  
± 1  
µA VIN = VSS to VCC  
AD0–AD7 and INT in high  
impedance,  
µA  
ILO  
Output leakage current  
VOUT = VSS to VCC  
VOH  
VOL  
Output high voltage  
Output low voltage  
2.2  
-
-
-
-
V
V
IOH = -1.0 mA  
IOL = 2.0 mA  
0.4  
Min. cycle, duty = 100%, IOH  
= 0mA, IOL = 0mA  
ICC  
Operating supply current  
Standby supply current  
-
-
5
9
-
mA  
VIN = VSS or VCC  
,
µA  
ICCSB  
100  
CS VCC - 0.2  
-
-
VPFD  
VBC  
-
-
V
V
VBC > VPFD  
VBC < VPFD  
VSO  
Supply switch-over voltage  
Battery operation current  
VBC = 3V, TA = 25°C,  
VCC < VBC  
µA  
ICCB  
-
0.3  
0.5  
VPFD  
IRCL  
Power-fail-detect voltage  
2.4  
2.53  
2.65  
120  
-120  
0
V
Input current when RCL = VSS  
.
-
-
-
-
-
-
µA Internal 30K pull-up  
µA Internal 30K pull-down  
µA Internal 30K pull-down  
Input current when MOT = VCC  
Input current when MOT = VSS  
IMOTH  
Input current when EXTRAM =  
VCC  
µA  
µA  
-
-
-
-
-120  
0
Internal 30K pull-down  
Internal 30K pull-down  
IXTRAM  
Input current when EXTRAM =  
VSS  
Note:  
Typical values indicate operation at TA = 25°C, VCC = 3V.  
14  
bq3285E/L  
Capacitance—bq3285E/L (TA = 25°C, F = 1MHz, VCC = 5.0V)  
Symbol  
CI/O  
Parameter  
Input/output capacitance  
Input capacitance  
Minimum  
Typical  
Maximum  
Unit  
pF  
Conditions  
-
-
-
-
7
5
VOUT = 0V  
VIN = 0V  
CIN  
pF  
Note:  
This parameter is sampled and not 100% tested. It does not include the X1 or X2 pin.  
AC Test Conditions—bq3285E  
Parameter  
Input pulse levels  
Test Conditions  
0 to 3.0 V  
Input rise and fall times  
5 ns  
Input and output timing reference levels  
Output load (including scope and jig)  
1.5 V (unless otherwise specified)  
See Figures 4 and 5  
Figure 4. Output Load A—bq3285E  
Figure 5. Output Load B—bq3285E  
15  
bq3285E/L  
AC Test Conditions—bq3285L  
Parameter  
Input pulse levels  
Test Conditions  
0 to 2.3 V  
Input rise and fall times  
5 ns  
Input and output timing reference levels  
Output load (including scope and jig)  
1.2 V (unless otherwise specified)  
See Figures 6 and 7  
Figure 6. Output Load A—bq3285L  
Figure 7. Output Load B—bq3285L  
16  
bq3285E/L  
Read/Write Timing—bq3285E (TA = TOPR, VCC = 5V ± 10%)  
Symbol  
tCYC  
tDSL  
tDSH  
tRWH  
tRWS  
tCS  
Parameter  
Minimum  
Typical  
Maximum  
Unit  
Notes  
Cycle time  
160  
80  
55  
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DS low or RD/WR high time  
DS high or RD/WR low time  
R/W hold time  
-
-
R/W setup time  
10  
5
-
Chip select setup time  
Chip select hold time  
Read data hold time  
Write data hold time  
Address setup time  
Address hold time  
-
tCH  
0
-
tDHR  
tDHW  
tAS  
0
25  
-
0
20  
5
-
tAH  
-
tDAS  
tASW  
Delay time, DS to AS rise  
Pulse width, AS high  
10  
30  
-
-
Delay time, AS to DS rise (RD/WR  
fall)  
tASD  
35  
-
-
-
-
ns  
ns  
Output data delay time from DS rise  
(RD fall)  
tOD  
50  
tDW  
tBUC  
tPI  
Write data setup time  
30  
-
-
244  
-
-
-
-
-
ns  
µs  
-
Delay time before update cycle  
Periodic interrupt time interval  
Time of update cycle  
-
See Table 3  
tUC  
-
1
µs  
17  
bq3285E/L  
Read/Write Timing—bq3285L (TA = TOPR, VCC = 3.15V ± 0.45V)  
Symbol  
tCYC  
tDSL  
tDSH  
tRWH  
tRWS  
tCS  
Parameter  
Minimum  
Typical  
Maximum  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
Cycle time  
270  
135  
90  
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
DS low or RD/WR high time  
DS high or RD/WR low time  
R/W hold time  
-
-
R/W setup time  
15  
8
-
Chip select setup time  
Chip select hold time  
Read data hold time  
Write data hold time  
Address setup time  
Address hold time  
-
tCH  
0
-
tDHR  
tDHW  
tAS  
0
40  
-
0
30  
15  
15  
50  
-
tAH  
-
tDAS  
tASW  
Delay time, DS to AS rise  
Pulse width, AS high  
-
-
Delay time, AS to DS rise (RD/WR  
fall)  
tASD  
tOD  
55  
-
-
-
-
ns  
ns  
Output data delay time from DS rise  
(RD fall)  
100  
tDW  
tBUC  
tPI  
Write data setup time  
50  
-
-
244  
-
-
-
-
-
ns  
µs  
-
Delay time before update cycle  
Periodic interrupt time interval  
Time of update cycle  
-
See Table 3  
tUC  
-
1
µs  
18  
bq3285E/L  
Motorola Bus Read/Write Timing—bq3285E/L  
19  
bq3285E/L  
Intel Bus Read Timing—bq3285E/L  
Intel Bus Write Timing—bq3285E/L  
20  
bq3285E/L  
Power-Down/Power-Up Timing—bq3285E (TA = TOPR  
)
Symbol  
Parameter  
Minimum  
300  
Typical  
Maximum  
Unit  
µs  
Conditions  
tF  
VCC slew from 4.5V to 0V  
VCC slew from 0V to 4.5V  
-
-
-
-
tR  
100  
µs  
Internal write-protection  
period after VCC passes VPFD  
on power-up.  
tCSR  
CS at VIH after power-up  
20  
-
200  
ms  
Ca u tion : Nega tive u n d er sh oots below th e a bsolu te m a xim u m r a tin g of -0.3V in ba tter y-ba ck u p m od e  
m a y a ffect d a ta in tegr ity.  
Power-Down/Power-Up Timing—bq3285E  
21  
bq3285E/L  
Power-Down/Power-Up Timing—bq3285L (TA = TOPR  
)
Symbol  
Parameter  
Minimum  
300  
Typical  
Maximum  
Unit  
µs  
Conditions  
tF  
VCC slew from 2.7V to 0V  
VCC slew from 0V to 2.7V  
-
-
-
-
tR  
100  
µs  
Internal write-protection  
period after VCC passes VPFD  
on power-up.  
tCSR  
CS at VIH after power-up  
20  
-
200  
ms  
Ca u tion : Nega tive u n d er sh oots below th e a bsolu te m a xim u m r a tin g of -0.3V in ba tter y-ba ck u p m od e  
m a y a ffect d a ta in tegr ity.  
Power-Down/Power-Up Timing—bq3285L  
22  
bq3285E/L  
Interrupt Delay Timing—bq3285E/L (TA = TOPR  
)
Symbol  
tRSW  
Parameter  
Reset pulse width  
Minimum  
Typical  
Maximum  
Unit  
µs  
5
-
-
-
-
-
2
2
tIRR  
INT release from RST  
INT release from DS  
µs  
tIRD  
-
µs  
Interrupt Delay Timing—bq3285E/L  
23  
bq3285E/L  
(
24-Pin DIP P)  
(
)
24-Pin DIP 0.600" DIP  
Inches  
Millimeters  
Min.  
Max.  
Min.  
Max.  
Dimension  
A
A1  
B
0.160  
0.015  
0.015  
0.045  
0.008  
1.240  
0.600  
0.530  
0.600  
0.090  
0.115  
0.070  
0.190  
0.040  
0.022  
0.065  
0.013  
1.280  
0.625  
0.570  
0.670  
0.110  
0.150  
0.090  
4.06  
0.38  
4.83  
1.02  
0.38  
0.56  
B1  
C
1.14  
1.65  
0.20  
0.33  
D
31.50  
15.24  
13.46  
15.24  
2.29  
32.51  
15.88  
14.48  
17.02  
2.79  
E
E1  
e
G
L
2.92  
3.81  
S
1.78  
2.29  
24-Pin SOIC (S)  
(
)
24-Pin S 0.300" SOIC  
Inches  
Millimeters  
Min.  
Max.  
Min.  
Max.  
Dimension  
B
e
A
A1  
B
0.095  
0.004  
0.013  
0.008  
0.600  
0.290  
0.045  
0.395  
0.020  
0.105  
0.012  
0.020  
0.013  
0.615  
0.305  
0.055  
0.415  
0.040  
2.41  
0.10  
0.33  
0.20  
15.24  
7.37  
1.14  
10.03  
0.51  
2.67  
0.30  
0.51  
0.33  
15.62  
7.75  
1.40  
10.54  
1.02  
D
C
D
E
E
H
e
H
L
A
C
.004  
A1  
L
24  
bq3285E/L  
24-Pin SSOP (SS)  
(
)
24-Pin SS 0.150" SSOP  
Inches  
Millimeters  
Min.  
0.061  
0.004  
0.008  
0.007  
0.337  
0.150  
Max.  
0.068  
0.010  
0.012  
0.010  
0.344  
0.157  
Min.  
1.55  
0.10  
0.20  
0.18  
8.56  
3.81  
Max.  
1.73  
0.25  
0.30  
0.25  
8.74  
3.99  
Dimension  
A
A1  
B
C
D
E
e
.025 BSC  
0.64 BSC  
H
L
0.230  
0.016  
0.244  
0.035  
5.84  
0.41  
6.20  
0.89  
25  
bq3285E/L  
Data Sheet Revision History  
Change  
No.  
Page  
No.  
Description  
Nature of Change  
Was 0; is na (not affected)  
1
1
2
3
4
8
Register C, bit 2  
Output data delay time t  
18  
Was 80 ns max; is 100 ns max  
OD  
1, 24, 26 Package option change  
1, 24, 26 Package option change  
Lst time buy for some package options.  
Removed PLCC and added industrial SSOP package options  
Industrial package option removed  
1, 11  
Package option change  
Note: Change 1 = Jan. 1995 B “Final” changes from Dec. 1993 A “Preliminary”.  
Change 2 = Jan. 1999 C changes from Jan. 1995 B  
Change 3 = Apr. 1999 D changes from Jan. 1999 C.  
Change 4 = May 2004 (SLUS004A) changes from Apr. 1999 D  
26  
bq3285E/L  
Ordering Information  
bq3285E/L  
-
Tem p er a tu r e:  
blank = Commercial (0 to +70°C)  
Pa ck a ge Op tion :  
P = 24-pin plastic DIP (0.600)  
S = 24-pin SOIC (0.300)  
SS= 24-pin SSOP (0.150)  
Device:  
bq3285E Real-Time Clock with 242  
bytes of general storage  
or  
bq3285L Real-Time Clock with 242  
bytes of general storage  
(3V operation)  
bq3285L only available in 24-pin SSOP (0.150).  
27  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Feb-2005  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
PDIP  
SOIC  
Drawing  
BQ3285EP  
BQ3285ES  
BQ3285ESS  
ACTIVE  
ACTIVE  
ACTIVE  
N
24  
24  
24  
15  
25  
50  
None  
None  
A42 SNPB  
CU SNPB  
Level-NA-NA-NA  
DW  
Level-1-220C-UNLIM  
SSOP/  
QSOP  
DBQ  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
BQ3285ESSTR  
ACTIVE  
SSOP/  
QSOP  
DBQ  
24  
2500  
2000  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
BQ3285ESTR  
BQ3285LSS  
ACTIVE  
SOIC  
DW  
24  
24  
None  
None  
CU SNPB  
Call TI  
Level-1-220C-UNLIM  
Call TI  
OBSOLETE  
SSOP/  
QSOP  
DBQ  
BQ3285LSSTR  
OBSOLETE  
SSOP  
DB  
24  
None  
Call TI  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional  
product content details.  
None: Not yet available Lead (Pb-Free).  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens,  
including bromine (Br) or antimony (Sb) above 0.1% of total product weight.  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

BQ3285ESSTRG4

RTC IC with 242x8 NVSRAM Alarm Wake-up 24-SSOP 0 to 70
TI

BQ3285ESTR

Real-Time Clock RTC
TI

BQ3285ESTRG4

1 TIMER(S), REAL TIME CLOCK, PDSO24, 0.300 INCH, GREEN, PLASTIC, SOIC-24
TI

BQ3285E_15

Real-Time Clock (RTC)
TI

BQ3285L

Y2K-Enhanced Real-Time Clock (RTC)
TI

BQ3285LC

Real-Time Clock (RTC)
ETC

BQ3285LCS

Real-Time Clock
ETC

BQ3285LCSS

RTC IC With 242x8 NVSRAM Alarm Wake-up Dedicated 32kHz Output, 3V Vcc 24-SSOP
TI

BQ3285LCSS-

Real-Time Clock (RTC)
TI

BQ3285LCSSTR

RTC IC With 242x8 NVSRAM Alarm Wake-up Dedicated 32kHz Output, 3V Vcc 24-SSOP
TI

BQ3285LD

Real-Time Clock (RTC)
TI

BQ3285LDSS

Real-Time Clock (RTC)
TI