BQ2057TSTRG4 [TI]

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO8, PLASTIC, TSSOP-8, Power Management Circuit;
BQ2057TSTRG4
型号: BQ2057TSTRG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO8, PLASTIC, TSSOP-8, Power Management Circuit

光电二极管
文件: 总27页 (文件大小:492K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢇ  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢉ  
SLUS025F − MAY 2001 − REVISED JULY 2002  
ꢑꢓ ꢎ ꢔ ꢊꢍꢊꢓ ꢎꢔ ꢎꢍꢈ ꢐꢇ  
ꢐ ꢙꢔꢘꢐ ꢖ ꢍ ꢊꢍꢋ ꢏ ꢐꢈ ꢒꢐ ꢙꢔꢘꢚ ꢖ ꢏꢛꢔ ꢎꢑ  
FEATURES  
DESCRIPTION  
D
D
D
D
D
Ideal for Single (4.1 V or 4.2 V) and Dual-Cell  
(8.2 V or 8.4 V) Li-Ion or Li-Pol Packs  
The BENCHMARQ bq2057 series advanced  
Lithium-Ion (Li-Ion) and Lithium-Polymer (Li-Pol) linear  
charge-management ICs are designed for cost-  
sensitive and compact portable electronics. They  
combine high-accuracy current and voltage regulation,  
battery conditioning, temperature monitoring, charge  
termination, charge-status indication, and AutoComp  
charge-rate compensation in a single 8-pin IC. MSOP,  
TSSOP, and SOIC package options are offered to fit a  
wide range of end applications.  
Requires Small Number of External  
Components  
0.3 V Dropout Voltage for Minimizing Heat  
Dissipation  
Better Than 1% Voltage Regulation Accuracy  
With Preset Voltages  
AutoCompt Dynamic Compensation of  
Battery Pack’s Internal Impedance to Reduce  
Charge Time  
The bq2057 continuously measures battery  
temperature using an external thermistor. For safety,  
the bq2057 inhibits charge until the battery temperature  
is within user-defined thresholds. The bq2057 then  
charges the battery in three phases: conditioning,  
constant current, and constant voltage. If the battery  
D
D
Optional Cell-Temperature Monitoring Before  
and During Charge  
Integrated Voltage and Current Regulation  
With Programmable Charge-Current and High-  
or Low-Side Current Sensing  
voltage is below the low-voltage threshold, V  
, the  
(min)  
D
D
Integrated Cell Conditioning for Reviving  
Deeply Discharged Cells and Minimizing Heat  
Dissipation During Initial Stage Of Charge  
bq2057 precharges using a low current to condition the  
battery. The conditioning charge rate is approximately  
10% of the regulation current. The conditioning current  
also minimizes heat dissipation in the external pass-  
element during the initial stage of the charge. After  
conditioning, the bq2057 applies a constant current to  
the battery. An external sense-resistor sets the current.  
The sense-resistor can be on either the high or low side  
of the battery without additional components. The  
constant-current phase continues until the battery  
reaches the charge-regulation voltage.  
Charge Status Output for Single or Dual Led  
or Host Processor Interface  
D
D
D
Automatic Battery-Recharge Feature  
Charge Termination by Minimum Current  
Automatic Low-Power Sleep Mode When V  
CC  
Is Removed  
D
EVMs Available for Quick Evaluation  
D
Packaging: 8-Pin SOIC, 8-Pin TSSOP, 8-Pin  
MSOP  
bq2057xSN or bq2057xTS  
SOIC (SN) or TSSOP (TS) PACKAGE  
(TOP VIEW)  
bq2057xDGK  
MSOP (DGK) PACKAGE  
(TOP VIEW)  
COMP  
CC  
BAT  
SNS  
BAT  
VCC  
TS  
8
7
6
5
VCC  
TS  
8
7
6
5
1
2
3
4
1
2
3
4
SNS  
COMP  
CC  
VSS  
STAT  
VSS  
STAT  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
AutoComp is a trademark of Texas Instruments.  
ꢈꢧ  
Copyright 2002, Texas Instruments Incorporated  
ꢣ ꢧ ꢤ ꢣꢜ ꢝꢰ ꢟꢞ ꢢ ꢩꢩ ꢨꢢ ꢠ ꢢ ꢡ ꢧ ꢣ ꢧ ꢠ ꢤ ꢫ  
1
www.ti.com  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢇ  
ꢀ ꢁ ꢂꢃ ꢄꢅ ꢈꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢉ  
SLUS025F − MAY 2001 − REVISED JULY 2002  
DESCRIPTION (continued)  
The bq2057 then begins the constant-voltage phase. The accuracy of the voltage regulation is better than 1%  
over the operating-temperature and supply-voltage ranges. For single and dual cells, the bq2057 is offered in  
four fixed-voltage versions: 4.1 V, 4.2 V, 8.2 V, and 8.4 V. Charge stops when the current tapers to the charge  
termination threshold, I  
. The bq2057 automatically restarts the charge if the battery voltage falls below  
(TERM)  
the V  
threshold.  
(RCH)  
The designer also may use the AutoComp feature to reduce charging time. This proprietary technique allows  
safe and dynamic compensation for the internal impedance of the battery pack during charge.  
AVAILABLE OPTIONS  
PACKAGE  
MSOP  
T
CHARGE REGULATION  
VOLTAGE  
SOIC  
(SN)  
TSSOP  
(TS)  
A
(DGK)  
bq2057DGK  
bq2057CDGK  
4.1 V  
4.2 V  
8.2 V  
8.4 V  
Not available  
bq2057CSN  
Not available  
bq2057WSN  
bq2057TS  
bq2057CTS  
bq2057TTS  
bq2057WTS  
20°C to 70°C  
Not available  
Note the difference in pinout for this package.  
2
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢇ  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢉ  
SLUS025F − MAY 2001 − REVISED JULY 2002  
function block diagram  
VCC  
V
Internal Reference  
CC  
_
+
DONE  
Sleep Mode  
_
+
V-Control  
I-Control  
BAT  
CC  
Voltage Regulation  
COMP  
G
(comp)  
+
_
Battery  
Recharge  
V
CC  
+
_
V
CC  
Battery  
Conditioning  
Control  
Block  
STAT  
_
+
TS  
TS2 Trip  
_
+
TS1 Trip  
I-Control  
_
0.5 V  
High/Low SNS Set  
CC  
+
SNS  
+
_
V
−V  
CC (SNS)  
Current Regulation  
Charge Termination  
V
−V  
SS (SNS)  
+
_
VSS  
3
www.ti.com  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢇ  
ꢀ ꢁ ꢂꢃ ꢄꢅ ꢈꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢉ  
SLUS025F − MAY 2001 − REVISED JULY 2002  
Terminal Functions  
TERMINAL  
NO.  
I/O  
DESCRIPTION  
NAME  
SOIC (SN) and  
TSSOP (TS)  
MSOP  
(DGK)  
BAT  
2
7
8
1
5
4
3
6
8
5
6
7
3
2
1
4
I
O
I
Voltage sense input  
Charge control output  
CC  
COMP  
SNS  
STAT  
TS  
Charge-rate compensation input (AutoComp)  
Current sense input  
I
O
I
Charge status output  
Temperature sense input  
Supply voltage  
VCC  
VSS  
I
Ground  
detailed description  
current-sense input  
Battery current is sensed via the voltage developed on this pin by an external sense resistor. The external  
resistor can be placed on either the high or low side of the battery. (See schematics for details.)  
battery-voltage input  
Voltage sense-input tied directly to the positive side of the battery.  
temperature sense input  
Input for an external battery-temperature monitoring circuit. Connecting this input to VCC/2 disables this feature.  
charge-status output  
3-state indication of charge in progress, charge complete, and temperature fault or sleep mode.  
charge-control output  
Source-follower output that drives an external pass-transistor (PNP or P-channel MOSFET) for current and  
voltage regulation.  
charge-rate compensation input  
Sets the charge-rate compensation level. The voltage-regulation output may be programmed to vary as a  
function of the charge current delivered to the battery.  
supply voltage input  
Power supply input and current reference for high-side sensing configuration.  
4
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢇ  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢉ  
SLUS025F − MAY 2001 − REVISED JULY 2002  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Supply voltage (V  
with respect to GND) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 to +18 V  
CC  
Input voltage, SNS, BAT, TS, COMP (all with respect to GND) . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to V +0.3 V  
Sink current (STAT pin) not to exceed P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
Source current (STAT pin) not to exceed P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 mA  
Output current (CC pin) not to exceed P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 mA  
CC  
D
D
D
Total power dissipation, P (at 25°C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300mW  
D
Operating free-air temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −20°C to 70°C  
A
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C  
stg  
Lead temperature (soldering, 10 s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
DISSIPATION RATING TABLE  
DERATING FACTOR  
T
25°C  
T = 70°C  
A
POWER RATING  
A
PACKAGE  
ABOVE T = 25°C  
POWER RATING  
A
DGK  
3.4 mW/°C  
424 mW  
271 mW  
recommended operating conditions  
MIN  
MAX  
15  
UNIT  
V
Supply voltage, V  
CC  
4.5  
Operating free-air temperature range, T  
−20  
70  
°C  
A
electrical characteristics over recommended operating free-air temperature range (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
I
V
V
Current  
V > V  
CC CC(min)  
, Excluding external loads  
2
4
mA  
(VCC)  
CC  
For bq2057 and bq2957C,  
V  
3
6
V
(BAT)  
,
V
(BAT)  
– V  
0.8 V  
0.8 V  
(min)  
CC  
I
Sleep current  
µA  
(VCCS)  
CC  
For bq2057T and bq2957W,  
10  
V
(BAT)  
V  
,
V
(BAT)  
– V  
(min)  
CC  
I
I
I
I
Input bias current on BAT pin  
Input bias current on SNS pin  
Input bias current on TS pin  
Input bias current on COMP pin  
V
= V  
1
5
5
5
µA  
µA  
µA  
µA  
IB(BAT)  
IB(SNS)  
IB(TS)  
(BAT)  
(REG)  
V(  
= 5 V  
= 5 V  
SNS)  
V
V
(TS)  
= 5 V  
IB(COMP)  
(COMP)  
BATTERY VOLTAGE REGULATION  
bq2057, See Notes 1, 2, 3  
4.059  
4.158  
8.119  
8.317  
4.10 4.141  
4.20 4.242  
8.20 8.282  
8.40 8.484  
bq2057C, See Notes 1, 2, 3  
bq2057T, See Notes 1, 2, 3  
bq2057W, See Notes 1, 2, 3  
V
Output voltage  
V
O(REG)  
NOTES: 1. For high-side current sensing configuration  
2. For low-side current sensing configuration, the tolerance is 1% for T = 25°C and 1.2% for −20°C T 70°C  
A
A
3.  
V +0.3 V V  
(BAT) CC  
V  
CC(max)  
5
www.ti.com  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢇ  
ꢀ ꢁ ꢂꢃ ꢄꢅ ꢈꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢉ  
SLUS025F − MAY 2001 − REVISED JULY 2002  
electrical characteristics over recommended operating free-air temperature range (unless  
otherwise noted) (continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CURRENT REGULATION  
bq2057 and bq2057C,  
High-side current sensing configuration  
95.4  
113.6  
100  
105  
125  
110  
130  
115.5  
137.5  
121  
bq2057T and bq2057W,  
High-side current sensing configuration  
Current regulation  
threshold  
V
mV  
(SNS)  
bq2057 and bq2057C,  
Low-side current sensing configuration  
bq2057T and bq2057W,  
Low-side current sensing configuration  
118.1  
143  
CHARGE TERMINATION DETECTION  
Charge termination Voltage at pin SNS, relative to V  
for high-side  
CC  
sensing, and to Vss for low-side sensing,  
I
current detect  
threshold  
−24  
−14  
−4  
mV  
(TERM)  
0°C T 50°C  
A
TEMPERATURE COMPARATOR  
Lower temperature  
threshold  
V
29.1  
58.3  
30  
60  
30.9  
61.8  
(TS1)  
(TS2)  
TS pin voltage  
%V  
CC  
Upper temperature  
threshold  
V
PRECHARGE COMPARATOR  
bq2057  
2.94  
3.04  
5.98  
6.18  
3
3.1  
6.1  
6.3  
3.06  
3.16  
6.22  
6.43  
bq2057C  
bq2057T  
bq2057W  
Precharge  
threshold  
V
(min)  
V
PRECHARGE CURRENT REGULATION  
Voltage at pin SNS, relative to V  
for high-side  
CC  
for low-side sensing,  
sensing, and to V  
SS  
13  
13  
mV  
mV  
Precharge current  
regulation  
0°C T 50°C  
A
I
(PRECHG)  
Voltage at pin SNS, relative to V  
for high-side  
= 5 V  
CC  
3
22  
sensing, 0°C T 50°C, V  
CC  
A
V
RCH  
COMPARATOR (Battery Recharge Threshold)  
V
V
V
V
V
V
O(REG)  
98 mV  
O(REG)  
100 mV  
O(REG)  
102 mV  
bq2057 and bq2057C  
Recharge  
V
V
V/V  
V
(RCH)  
threshold  
O(REG)  
204 mV  
O(REG)  
O(REG)  
bq2057T and bq2057W  
196 mV  
200 mV  
CHARGE-RATE COMPENSATION (AutoComp)  
V
+0.3 VV V  
, bq2057, bq2057C,  
(BAT) CC CC(max)  
1.87  
2.09  
2.2  
2.4  
2.53  
2.76  
bq2057T, bq2057W  
G
AutoComp gain  
(COMP)  
V
+0.3 V V  
V  
, bq2057T and  
CC(max)  
(BAT) CC  
bq2057W in low-side sensing configuration  
STAT PIN  
Output (low)  
voltage  
V
I
I
= 10 mA  
= 5 mA  
0.7  
OL(STAT)  
OH(STAT)  
OL  
Output (high)  
voltage  
V
V
CC  
-0.5  
5
OH  
CC PIN  
V
Output low voltage  
Sink current  
I
= 5 mA (sink)  
1.5  
40  
V
OL(CC)  
O(CC)  
I
Not to exceed power rating specification (P )  
D
mA  
O(CC)  
6
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢇ  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢉ  
SLUS025F − MAY 2001 − REVISED JULY 2002  
APPLICATION INFORMATION  
Q1  
FZT788B  
R
0.2 Ω  
SNS  
PACK+  
DC+  
C1  
0.1 µF  
V
CC  
R1  
PACK−  
1 kΩ  
NTC  
V
CC  
bq2057  
CC  
COMP  
R
T1  
SNS  
VCC  
VSS  
BAT  
TS  
TEMP  
C2  
STAT  
0.1 µF  
Battery  
Pack  
D1  
GND  
R
T2  
R2  
2 kΩ  
Figure 1. Low Dropout Single- or Two-Cell Li-Ion/Li-Pol Charger  
functional description  
The bq2057 is an advanced linear charge controller for single or two-cell Li-Ion or Li-Pol applications. Figure 1  
shows the schematic of charger using a PNP pass transistor. Figure 2 is an operational state diagram, and  
Figure 3 is a typical charge profile. Figure 4 shows the schematic of a charger using P-channel MOSFET.  
7
www.ti.com  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢇ  
ꢀ ꢁ ꢂꢃ ꢄꢅ ꢈꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢉ  
SLUS025F − MAY 2001 − REVISED JULY 2002  
APPLICATION INFORMATION  
POR  
Sleep Mode  
V
> V  
)
CC  
(BAT  
Indicate SLEEP  
MODE  
(STAT = Hi-Z)  
No  
Checked at All  
Times  
Yes  
Suspend Charge  
TS Pin  
in TS1 to TS2  
Range  
Indicate CHARGE  
SUSPEND  
(STAT = Hi-Z)  
No  
Yes  
Regulate  
(PRECHG)  
I
V
<V  
(BAT) (min)  
Yes  
Indicate  
Charge In-Progress  
(STAT = High)  
Suspend Charge  
No  
Indicate CHARGE  
SUSPEND  
(STAT = Hi-Z)  
TS Pin  
in TS1 to TS2  
Range  
No  
Regulate  
Current or Voltage  
Indicate  
Charge In-Progress  
(STAT = High)  
Yes  
TS Pin  
in TS1 to TS2  
Range  
V
< V  
(min)  
No  
Suspend Charge  
(BAT)  
No  
TS Pin  
in TS1 to TS2  
Range  
Indicate CHARGE  
SUSPEND  
No  
(STAT = Hi-Z)  
Yes  
TS Pin  
in TS1 to TS2  
Range  
Yes  
Yes  
No  
V
< V  
(min)  
Yes  
(BAT)  
No  
Terminate Charge  
I
Indicate CHARGE  
Done  
(TERM)  
Detected  
Yes  
No  
Yes  
V
< V  
(RCH)  
(BAT)  
(STAT = Low)  
Yes  
Figure 2. Operation Flowchart  
8
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢇ  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢉ  
SLUS025F − MAY 2001 − REVISED JULY 2002  
APPLICATION INFORMATION  
Preconditioning  
Phase  
Current Regulation  
Phase  
Voltage Regulation and Charge  
Termination Phase  
Regulation Voltage  
Regulation Current  
Minimum Charge  
Voltage  
Preconditioning  
and Taper Detect  
Figure 3. Typical Charge Profile  
qualification and precharge  
When power is applied, the bq2057 starts a charge-cycle if a battery is already present or when a battery is  
inserted. Charge qualification is based on battery temperature and voltage. The bq2057 suspends charge if the  
battery temperature is outside the V  
to V  
range and suspends charge until the battery temperature is  
(TS1)  
(TS2)  
within the allowed range. The bq2057 also checks the battery voltage. If the battery voltage is below the  
precharge threshold V , the bq2057 uses precharge to condition the battery. The conditioning charge rate  
(min)  
I
is set at approximately 10% of the regulation current. The conditioning current also minimizes heat  
(PRECHG)  
dissipation in the external pass-element during the initial stage of charge. See Figure 3 for a typical  
charge-profile.  
9
www.ti.com  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢇ  
ꢀ ꢁ ꢂꢃ ꢄꢅ ꢈꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢉ  
SLUS025F − MAY 2001 − REVISED JULY 2002  
APPLICATION INFORMATION  
Q1  
SI6475DQ  
R
0.2 Ω  
SNS  
D1  
PACK+  
PACK−  
Battery  
Pack  
DC+  
C2  
0.1 µF  
R2  
1 kΩ  
NTC  
U1  
bq2057  
R
T1  
CC  
COMP  
SNS  
VCC  
VSS  
BAT  
TS  
TEMP  
STAT  
R4  
R
T2  
511 Ω  
U2  
C1  
0.1 µF  
R5  
1 kΩ  
CMD67−  
22SRUC  
R3  
1 kΩ  
GND  
Figure 4. 0.5-A Charger Using P-Channel MOSFET  
current regulation phase  
The bq2057 regulates current while the battery-pack voltage is less than the regulation voltage, V  
. The  
, in series  
O(REG)  
bq2057 monitors charge current at the SNS input by the voltage drop across a sense-resistor, R  
SNS  
with the battery pack. In high-side current sensing configuration (Figure 5), R  
is between the VCC and SNS  
SNS  
pins, and in low-side sensing (Figure 6) the R  
is between VSS (battery negative) and SNS (charger ground)  
SNS  
pins. Charge-current feedback, applied through pin SNS, maintains a voltage of V  
resistor. The following formula calculates the value of the sense resistor:  
across the current sense  
(SNS)  
(1)  
V
(SNS)  
R
+
SNS  
I
O(REG)  
is the desired charging current.  
Where I  
O(REG)  
10  
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢇ  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢉ  
SLUS025F − MAY 2001 − REVISED JULY 2002  
APPLICATION INFORMATION  
DC+  
DC+  
R
SNS  
BAT+  
BAT+  
bq2057  
bq2057  
SNS  
COMP  
SNS  
COMP  
BAT  
VCC  
TS  
CC  
VSS  
BAT  
VCC  
TS  
CC  
VSS  
STAT  
STAT  
DC−  
BAT−  
DC−  
R
SNS  
BAT−  
Figure 5. High-Side Current Sensing  
Figure 6. Low-Side Current Sensing  
voltage regulation phase  
The voltage regulation feedback is through the BAT pin. This input is tied directly to the positive side of the  
battery pack. The bq2057 monitors the battery-pack voltage between the BAT and VSS pins. The bq2057 is  
offered in four fixed-voltage versions: 4.1 V, 4.2 V, 8.2 V and 8.4 V.  
Other regulation voltages can be achieved by adding a voltage divider between the positive and negative  
terminals of the battery pack and using bq2057T or bq2057W. The voltage divider presents scaled battery-pack  
voltage to BAT input. (See Figure 7 and Figure 8.) The resistor values RB1 and RB2 for the voltage divider are  
calculated by the following equation:  
(2)  
V
R
R
(CELL)  
B1  
B2  
+
N   
–1  
ǒ Ǔ  
V
O(REG)  
Where:  
N = Number of cells in series  
V
= Desired regulation voltage per cell  
(CELL)  
11  
www.ti.com  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢇ  
ꢀ ꢁ ꢂꢃ ꢄꢅ ꢈꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢉ  
SLUS025F − MAY 2001 − REVISED JULY 2002  
APPLICATION INFORMATION  
DC+  
DC+  
BAT+  
BAT−  
R
SNS  
BAT+  
R
R
B1  
B2  
bq2057  
R
R
B1  
SNS  
bq2057  
COMP  
SNS  
COMP  
BAT  
VCC  
TS  
CC  
VSS  
B2  
BAT  
VCC  
TS  
CC  
VSS  
BAT−  
STAT  
R
SNS  
STAT  
DC−  
DC−  
Figure 7. Optional Voltage Divider for  
Nonstandard Regulation Voltage,  
(High-Side Current Sensing)  
Figure 8. Optional Voltage Divider for  
Nonstandard Regulation Voltage,  
(Low-Side Current Sensing)  
charge termination and recharge  
The bq2057 monitors the charging current during the voltage-regulation phase. The bq2057 declares a done  
condition and terminates charge when the current tapers off to the charge termination threshold, I . A new  
(TERM)  
charge cycle begins when the battery voltage falls below the V  
threshold.  
(RCH)  
battery temperature monitoring  
The bq2057 continuously monitors temperature by measuring the voltage between the TS and VSS pins. A  
negative- or a positive-temperature coefficient thermistor (NTC, PTC) and an external voltage divider typically  
develop this voltage. (See Figure 9.) The bq2057 compares this voltage against its internal V  
thresholds to determine if charging is allowed. (See Figure 10.) The temperature sensing circuit is immune to  
and V  
(TS1)  
(TS2)  
any fluctuation in V , since both the external voltage divider and the internal thresholds (V  
are referenced to VCC.  
and V  
)
CC  
(TS1)  
(TS2)  
The resistor values of R  
and R  
are calculated by the following equations:  
(T1)  
(T2)  
For NTC Thermistors  
(3)  
(4)  
5   R  
  R  
* R  
TH  
TC  
TC  
TH  
R
R
+
+
T1  
T2  
ǒ
Ǔ
3   R  
5   R  
  R  
TH  
TC  
ǒ
Ǔǒ7   R  
Ǔ
ƫ
ƪ 2   R  
TC  
TH  
12  
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢇ  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢉ  
SLUS025F − MAY 2001 − REVISED JULY 2002  
APPLICATION INFORMATION  
battery temperature monitoring (continued)  
For PTC Thermistors  
(5)  
(6)  
5   R  
  R  
* R  
TH  
TH  
TC  
TC  
R
R
+
+
T1  
T2  
ǒ
Ǔ
3   R  
5   R  
  R  
TH  
TC  
ǒ
Ǔǒ7   R  
Ǔ
ƫ
ƪ 2   R  
TH  
TC  
Where R  
is the cold temperature resistance and R  
is the hot temperature resistance of thermistor, as  
(TC)  
(TH)  
specified by the thermistor manufacturer.  
R
the V  
or R can be omitted If only one temperature (hot or cold) setting is required. Applying a voltage between  
T1  
T2  
and V  
thresholds to pin TS disables the temperature-sensing feature.  
(TS1)  
(TS2)  
DC+  
DC+  
R
SNS  
BAT+  
BAT+  
bq2057  
bq2057  
R
T1  
SNS  
SNS  
COMP  
COMP  
BAT  
VCC  
TS  
BAT  
VCC  
TS  
CC  
VSS  
CC  
VSS  
DC−  
STAT  
STAT  
R
R
T1  
T2  
DC−  
R
Thermistor  
BAT−  
T2  
BAT−  
Thermistor  
R
SNS  
High-Side Current Sensing  
Low-Side Current Sensing  
Figure 9. Temperature Sensing Circuits  
V
CC  
Temperature Fault  
V
V
(TS2)  
Normal Temperature Range  
(TS1)  
Temperature Fault  
V
SS  
Figure 10. bq2057 TS Input Thresholds  
13  
www.ti.com  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢇ  
ꢀ ꢁ ꢂꢃ ꢄꢅ ꢈꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢉ  
SLUS025F − MAY 2001 − REVISED JULY 2002  
APPLICATION INFORMATION  
charge inhibit function  
The TS pin can be used as charge-inhibit input. The user can inhibit charge by connecting the TS pin to VCC  
or VSS (or any level outside the V to V thresholds). Applying a voltage between the V and V  
(TS2)  
(TS1)  
(TS2)  
(TS1)  
thresholds to pin TS returns the charger to normal operation.  
charge status indication  
The bq2057 reports the status of the charger on the 3-state STAT pin. The following table summarized the  
operation of the STAT pin.  
CONDITION  
STAT PIN  
High  
Battery conditioning and charging  
Charge complete (Done)  
Low  
Temperature fault or sleep mode  
Hi-Z  
The STAT pin can be used to drive a single LED (Figure 1), dual-chip LEDs (Figure 4) or for interface to a host  
or system processor (Figure 11). When interfacing the bq2057 to a processor, the user can use an output port,  
as shown in Figure 11, to recognize the high-Z state of the STAT pin. In this configuration, the user needs to  
read the input pin, toggle the output port and read the STAT pin again. In a high-Z condition, the input port always  
matches the signal level on the output port.  
Host  
Processor  
bq2057CTS  
SNS  
COMP  
BAT  
VCC  
TS  
OUT  
CC  
VSS  
IN  
STAT  
Figure 11. Interfacing the bq2057 to a Host Processor  
low-power sleep mode  
The bq2057 enters the sleep mode if the VCC falls below the voltage at the BAT input. This feature prevents  
draining the battery pack during the absence of VCC.  
14  
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢇ  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢉ  
SLUS025F − MAY 2001 − REVISED JULY 2002  
APPLICATION INFORMATION  
selecting an external pass-transistor  
The bq2057 is designed to work with both PNP transistor and P-channel MOSFET. The device should be chosen  
to handle the required power dissipation, given the circuit parameters, PCB layout and heat sink configuration.  
The following examples illustrate the design process for either device:  
PNP transistor:  
Selection steps for a PNP bipolar transistor: Example: V = 4.5 V, I  
= 1 A, 4.2-V single-cell Li-Ion (bq2057C).  
I
(REG)  
V is the input voltage to the charger and I  
is the desired charge current (see Figure 1).  
I
(REG)  
1. Determine the maximum power dissipation, P , in the transistor.  
D
The worst case power dissipation happens when the cell voltage, V  
, is at its lowest (typically 3 V at the  
(BAT)  
beginning of current regulation phase) and V is at its maximum.  
I
Where V  
is the voltage drop across the current sense resistor.  
CS  
P = (V − V  
– V ) × IREG  
(BAT)  
(7)  
D
I
CS  
P = (4.5 – 0.1 − 3) × 1 A  
D
P = 1.4 W  
D
2. Determine the package size needed in order to keep the junction temperature below the manufacturer’s  
recommended value, T  
. Calculate the total theta, θ(°C/W), needed.  
(J)max  
(8)  
ǒT(J)max  
150–40  
1.4  
Ǔ
* T  
A(max)  
θ
+
+
JC  
P
D
(
)
θ
θ
JC  
JC  
+ 78°CńW  
Now choose a device package with a theta at least 10% below this value to account for additional thetas  
other than the device. A SOT223 package, for instance, has typically a theta of 60°C/W.  
3. Select a collector-emitter voltage, V  
be adequate in this example.  
, rating greater than the maximum input voltage. A 15-V device will  
(CE)  
4. Select a device that has at least 50% higher drain current I rating than the desired charge current I  
.
C
(REG)  
5. Using the following equation, calculate the minimum beta (β or h ) needed:  
FE  
(9)  
I
CMAX  
b
+
+
min  
I
B
1
b
min  
min  
0.035  
b
+ 28  
where I  
is the maximum collector current (in this case same as I  
), and I is the base current  
max(C))  
(REG) B  
(chosen to be 35 mA in this example).  
NOTE:  
The beta of a transistor drops off by a factor of 3 over temperature and also drops off with load.  
Therefore, note the beta of device at I and the minimum ambient temperature when choosing  
(REG)  
the device. This beta should be larger than the minimum required beta.  
Now choose a PNP transistor that is rated for V  
SOT223 package.  
15 V, θ ≤ 78°C/W, I 1.5 A, β ≥ 28 and that is in a  
min  
(CE)  
JC  
C
15  
www.ti.com  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢇ  
ꢀ ꢁ ꢂꢃ ꢄꢅ ꢈꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢉ  
SLUS025F − MAY 2001 − REVISED JULY 2002  
APPLICATION INFORMATION  
selecting an external pass-transistor (continued)  
P-channel MOSFET:  
Selection steps for a P-channel MOSFET: Example: V = 5.5 V, I  
= 500 mA, 4.2-V single-cell Li−Ion  
I
(REG)  
(bq2057C). V is the input voltage to the charger and I  
is the desired charge current. (See Figure 4.)  
I
(REG)  
1. Determine the maximum power dissipation, P , in the transistor.  
D
The worst case power dissipation happens when the cell voltage, V  
, is at its lowest (typically 3 V at  
(BAT)  
the beginning of current regulation phase) and V is at its maximum.  
I
Where V is the forward voltage drop across the reverse-blocking diode (if one is used), and V  
D
voltage drop across the current sense resistor.  
is the  
(10)  
CS  
P = (V – V − V  
– V  
) × I  
D
I
D
(CS)  
(BAT) (REG)  
P = (5.5 – 0.4 – 0.1 −3) × 0.5 A  
D
P = 1 W  
D
2. Determine the package size needed in order to keep the junction temperature below the manufacturer’s  
recommended value, T . Calculate the total theta, θ(°C/W), needed.  
JMAX  
(11)  
ǒTmax(J) A(max)  
150–40  
1
Ǔ
–T  
θ
+
+
JC  
P
D
(
)
θ
θ
JC  
JC  
+ 110°CńW  
Now choose a device package with a theta at least 10% below this value to account for additional thetas  
other than the device. A TSSOP-8 package, for instance, has typically a theta of 70°C/W.  
3. Select a drain-source voltage, V  
adequate in this example.  
, rating greater than the maximum input voltage. A 12 V device will be  
(DS)  
4. Select a device that has at least 50% higher drain current (I ) rating than the desired charge current I  
D
.
(REG)  
5. Verify that the available drive is large enough to supply the desired charge current.  
V
V
V
= (V +V  
+ V  
) − V  
I
(12)  
(GS)  
(GS)  
(GS)  
D
(CS)  
OL(CC)  
= (0.4 + 0.1 + 1.5) – 5.5  
= −3.5  
Where V  
(if one is used), and V  
output low voltage specification for the bq2057.  
is the gate-to-source voltage, V is the forward voltage drop across the reverse-blocking diode  
D
(GS)  
is the voltage drop across the current sense resistor, and V  
is the CC pin  
CS  
OL(CC)  
Select a MOSFET with gate threshold voltage, V  
, rating less than the calculated V  
.
(GSth)  
(GS)  
Now choose a P-channel MOSFET transistor that is rated for VDS −15 V, θ  
(GSth)  
110°C/W, I 1 A,  
D
JC  
V
−3.5 V and in a TSSOP package.  
16  
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢇ  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢉ  
SLUS025F − MAY 2001 − REVISED JULY 2002  
APPLICATION INFORMATION  
selecting input capacitor  
In most applications, all that is needed is a high-frequency decoupling capacitor. A 0.1 µF ceramic, placed in  
proximity to VCC and VSS pins, works well. The bq2057 works with both regulated and unregulated external  
dc supplies. If a non-regulated supply is chosen, the supply unit should have enough capacitance to hold up  
the supply voltage to the minimum required input voltage at maximum load. If not, more capacitance must be  
added to the input of the charger.  
selecting output capacitor  
The bq2057 does not require any output capacitor for loop stability. The user can add output capacitance in order  
to control the output voltage when a battery is not present. The charger quickly charges the output capacitor  
to the regulation voltage, but the output voltage decays slowly, because of the low leakage current on the BAT  
pin, down to the recharge threshold. Addition of a 0.1µF ceramic capacitor, for instance, results in a 100 mV(pp)  
ripple waveform, with an approximate frequency of 25Hz. Higher capacitor values can be used if a lower  
frequency is desired.  
automatic charge-rate compensation  
To reduce charging time, the bq2057 uses the proprietary AutoComp technique to compensate safely for  
internal impedance of the battery pack. The AutoComp feature is disabled by connecting the COMP pin to VCC  
in high-side current-sensing configuration, and to VSS in low-side current-sensing configuration. The COMP  
pin must not be left floating.  
Figure 12 outlines the major components of a single-cell Li-Ion battery pack. The Li-Ion battery pack consists  
of a cell, protection circuit, fuse, connector, current sense-resistors, and some wiring. Each of these components  
contains some resistance. Total impedance of the battery pack is the sum of the minimum resistances of all  
battery-pack components. Using the minimum resistance values reduces the odds for overcompensating.  
Overcompensating may activate the safety circuit of the battery pack.  
BAT+  
Wire  
Fuse  
Terminal  
Cell  
Protection  
Controller  
BAT−  
Wire  
Wire  
Wire  
Terminal  
Discharge  
Charge  
Figure 12. Typical Components of a Single-Cell Li-Ion Pack  
Compensation is achieved through input pin COMP (Figure 13). A portion of the current-sense voltage,  
presented through this pin, is scaled by a factor of G  
and summed with the regulation threshold, V  
.
(COMP)  
O(REG)  
This process increases the output voltage to compensate for the battery pack’s internal impedance and for  
undesired voltage drops in the circuit.  
17  
www.ti.com  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢇ  
ꢀ ꢁ ꢂꢃ ꢄꢅ ꢈꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢉ  
SLUS025F − MAY 2001 − REVISED JULY 2002  
APPLICATION INFORMATION  
automatic charge-rate compensation (continued)  
AutoComp setup requires the following information:  
D
D
Total impedance of battery pack (Z  
)
(PACK)  
Maximum charging current (I  
(REG)  
)
The voltage drop across the internal impedance of battery pack, V , can then be calculated using the following  
(Z)  
equation:  
V
= Z  
× I  
(PACK) (REG)  
(13)  
(14)  
(Z)  
The required compensation is then calculated using the following equations:  
V
(Z)  
V
+
(COMP)  
G
(COMP)  
O(REG)  
) ǒG(COMP)  
Ǔ
V
+ V  
  V  
(PACK)  
(COMP  
Where V  
is the voltage on COMP pin. This voltage is referenced to VCC in high-side current sensing  
(COMP)  
configuration and to VSS for low-side sensing. V  
is the voltage across the battery pack.  
(PACK)  
The values of R  
and R can be calculated using the following equation:  
(COMP2)  
(COMP1)  
(15)  
V
R
(COMP)  
COMP2  
+
V
R
) R  
(SNS)  
COMP1  
COMP2  
DC+  
BAT+  
DC+  
R
COMP2  
BAT+  
R
COMP1  
bq2057  
bq2057  
SNS  
COMP  
R
SNS  
SNS  
COMP  
BAT  
VCC  
TS  
CC  
VSS  
BAT  
VCC  
TS  
CC  
VSS  
DC−  
STAT  
STAT  
DC−  
R
COMP2  
R
R
SNS  
COMP1  
BAT−  
High-Side Current Sensing  
Low-Side Current Sensing  
Figure 13. AutoComp Circuits  
18  
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢇ  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢉ  
SLUS025F − MAY 2001 − REVISED JULY 2002  
APPLICATION INFORMATION  
automatic charge-rate compensation (continued)  
The following example illustrates these calculations:  
Assume Z  
V
= 100 m, I  
= 500 mA, high-side current sensing bq2057C  
(REG)  
(PACK)  
(16)  
(17)  
+ Z  
  I  
(Z)  
(PACK)  
(REG)  
V
+ 0.1   0.5  
= 50 mV  
(Z)  
V
(Z)  
V
(Z)  
V
+
(COMP)  
(COMP)  
G
(COMP)  
0.05  
2.2  
V
+
V
= 22.7 mV  
(COMP)  
Let R  
= 10 kΩ  
COMP2  
(18)  
  ǒV(SNS)  
Ǔ
R
* V  
COMP2  
(COMP)  
)
R
+
COMP1  
V
(COMP)  
(
105 mV * 22.7 mV  
R
+ 10k   
COMP1  
22.7 mV  
R
+ 36.25 kW  
COMP1  
Use the closest standard value (36.0 k) for R  
COMP1  
19  
www.ti.com  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢇ  
ꢀ ꢁ ꢂꢃ ꢄꢅ ꢈꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢉ  
SLUS025F − MAY 2001 − REVISED JULY 2002  
MECHANICAL DATA  
DGK (R-PDSO-G8)  
PLASTIC SMALL-OUTLINE PACKAGE  
0,38  
0,25  
M
0,65  
8
0,25  
5
0,15 NOM  
3,05  
2,95  
4,98  
4,78  
Gage Plane  
0,25  
0°ā6°  
1
4
0,69  
3,05  
2,95  
0,41  
Seating Plane  
0,10  
0,15  
0,05  
1,07 MAX  
4073329/B 04/98  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion.  
D. Falls within JEDEC MO-187  
20  
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢇ  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢉ  
SLUS025F − MAY 2001 − REVISED JULY 2002  
MECHANICAL DATA  
8−Pin SOIC Narrow (SN)  
(
)
8−Pin SN 0.150” SOIC  
Inches  
Millimeters  
Min.  
Max.  
Min.  
Max.  
Dimension  
A
A1  
B
0.060  
0.004  
0.013  
0.007  
0.185  
0.150  
0.045  
0.225  
0.015  
0.070  
0.010  
0.020  
0.010  
0.200  
0.160  
0.055  
0.245  
0.035  
1.52  
0.10  
0.33  
0.18  
4.70  
3.81  
1.14  
5.72  
0.38  
1.78  
0.25  
0.51  
0.25  
5.08  
4.06  
1.40  
6.22  
0.89  
C
D
E
e
H
L
TS: 8−Pin TSSOP  
Inches  
Millimeters  
Dimension  
Min.  
Max.  
Min.  
Max.  
A
A1  
B
-
0.043  
0.006  
0.012  
0.007  
0.122  
0.176  
-
1.10  
0.15  
0.30  
0.18  
3.10  
4.48  
0.002  
0.007  
0.004  
0.114  
0.169  
0.05  
0.18  
0.09  
2.90  
4.30  
C
D
E
e
0.0256BSC  
0.65BSC  
H
0.246  
0.256  
6.25  
6.50  
Notes:  
1.  
Controlling dimension: millimeters. Inches shown for reference only.  
2
3
’D’ and ’E’ do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0,15 mm per side  
Each lead centerline shall be located within 0,10 mm of its exact true position.  
4
5
Leads shall be coplanar within 0,08 mm at the seating plane.  
Dimension ’B’ does not include dambar protrusion. The dambar protrusion(s) shall not cause the lead width  
to exceed ’B’ maximum by more than 0,08 mm.  
6
7
Dimension applies to the flat section of the lead between 0,10 mm and 0,25 mm from the lead tip.  
’A1’ is defined as the distance from the seating plane to the lowest point of the package body (base plane).  
21  
www.ti.com  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Feb-2006  
PACKAGING INFORMATION  
Orderable Device  
BQ2057CDGK  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
MSOP  
DGK  
8
8
8
8
80 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
BQ2057CDGKG4  
BQ2057CDGKR  
BQ2057CDGKRG4  
MSOP  
MSOP  
MSOP  
DGK  
DGK  
DGK  
80 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
BQ2057CSN  
BQ2057CSNTR  
BQ2057CTS  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
D
8
8
8
75  
TBD  
TBD  
CU NIPDAU Level-1-220C-UNLIM  
CU NIPDAU Level-1-220C-UNLIM  
2500  
TSSOP  
PW  
150 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
BQ2057CTSG4  
BQ2057CTSTR  
BQ2057CTSTRG4  
BQ2057DGK  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
TSSOP  
MSOP  
MSOP  
MSOP  
MSOP  
MSOP  
PW  
PW  
8
8
8
8
8
8
8
8
150 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
PW  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
DGK  
DGK  
DGK  
DGK  
DGK  
80 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
BQ2057DGKR  
BQ2057DGKRG4  
BQ2057PDGK  
BQ2057PDGKR  
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
80 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
BQ2057SN  
BQ2057SNTR  
BQ2057SNTRG4  
BQ2057TS  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
D
8
8
8
8
75  
TBD  
TBD  
TBD  
CU NIPDAU Level-1-220C-UNLIM  
2500  
Call TI  
Call TI  
Level-1-220C-UNLIM  
Call TI  
SOIC  
D
TSSOP  
PW  
150 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
BQ2057TSN  
BQ2057TSNTR  
BQ2057TSNTRG4  
BQ2057TSTR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
D
8
8
8
8
75  
TBD  
TBD  
TBD  
CU NIPDAU Level-1-220C-UNLIM  
CU NIPDAU Level-1-220C-UNLIM  
2500  
SOIC  
D
Call TI  
Call TI  
TSSOP  
PW  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
BQ2057TSTRG4  
BQ2057TTS  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
PW  
PW  
PW  
PW  
PW  
8
8
8
8
8
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
150 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
BQ2057TTSG4  
BQ2057TTSTR  
BQ2057TTSTRG4  
150 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Feb-2006  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
BQ2057WSN  
BQ2057WSNTR  
BQ2057WSNTRG4  
BQ2057WTS  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
D
D
8
8
8
8
75  
TBD  
TBD  
TBD  
CU NIPDAU Level-1-220C-UNLIM  
CU NIPDAU Level-1-220C-UNLIM  
SOIC  
2500  
SOIC  
D
Call TI  
Call TI  
TSSOP  
PW  
150 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
BQ2057WTSG4  
BQ2057WTSTR  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
PW  
PW  
8
8
150 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
MECHANICAL DATA  
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2006, Texas Instruments Incorporated  

相关型号:

BQ2057TTS

ADVANCED LINEAR CHARGE MANAGEMENT IC FOR SINGLE AND TWO CELL LITHIUM-POLYMER
TI

BQ2057TTSG4

ADVANCED LINEAR CHARGE MANAGEMENT IC FOR SINGLE-AND TWO-CELL LITHIUM-ION AND LITHIUM-POLYMER
TI

BQ2057TTSTR

ADVANCED LINEAR CHARGE MANAGEMENT IC FOR SINGLE AND TWO CELL LITHIUM-POLYMER
TI

BQ2057TTSTRG4

ADVANCED LINEAR CHARGE MANAGEMENT IC FOR SINGLE-AND TWO-CELL LITHIUM-ION AND LITHIUM-POLYMER
TI

BQ2057W

ADVANCED LINEAR CHARGE MANAGEMENT IC FOR SINGLE AND TWO CELL LITHIUM-POLYMER
TI

BQ2057WPN

Industrial Control IC
ETC

BQ2057WSN

ADVANCED LINEAR CHARGE MANAGEMENT IC FOR SINGLE AND TWO CELL LITHIUM-POLYMER
TI

BQ2057WSNG4

ADVANCED LINEAR CHARGE MANAGEMENT IC FOR SINGLE-AND TWO-CELL LITHIUM-ION AND LITHIUM-POLYMER
TI

BQ2057WSNTR

ADVANCED LINEAR CHARGE MANAGEMENT IC FOR SINGLE AND TWO CELL LITHIUM-POLYMER
TI

BQ2057WSNTRG4

ADVANCED LINEAR CHARGE MANAGEMENT IC FOR SINGLE-AND TWO-CELL LITHIUM-ION AND LITHIUM-POLYMER
TI

BQ2057WTS

ADVANCED LINEAR CHARGE MANAGEMENT IC FOR SINGLE AND TWO CELL LITHIUM-POLYMER
TI

BQ2057WTSG4

ADVANCED LINEAR CHARGE MANAGEMENT IC FOR SINGLE-AND TWO-CELL LITHIUM-ION AND LITHIUM-POLYMER
TI