AMC1400-Q1 [TI]

具有高 CMTI 的汽车类 ±250mV 输入、精密电压检测增强型隔离式放大器;
AMC1400-Q1
型号: AMC1400-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有高 CMTI 的汽车类 ±250mV 输入、精密电压检测增强型隔离式放大器

放大器
文件: 总33页 (文件大小:1818K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AMC1400-Q1  
ZHCSPH8 JULY 2022  
AMC1400-Q1 15mm 扩展SOIC 封装的  
TLA7312 高阻2V 输入增强型隔离放大器  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准  
– 温度等140°C +125°CTA  
提供功能安全型  
AMC1400-Q1 是一款隔离式精密放大器此放大器的  
输出与输入电路由抗电磁干扰性能极强的隔离栅隔开。  
该隔离栅经认证可提供高达 7.5 kVRMS 的增强型电隔  
符合 DIN EN IEC 60747-17 (VDE 0884-17) 和  
UL1577 标准并且可支持高2 kVRMS 的工作电压。  
有助于进行功能安全系统设计的文档  
±250mV 输入电压范围针对使用分流电阻器测量  
电流进行了优化  
• 固定增益8.2 V/V  
• 低直流误差:  
该隔离层可将系统中以不同共模电压电平运行的各器件  
隔开防止高电压冲击导致低压侧器件电气损坏或对操  
作员造成伤害。  
– 失调电压误差±0.2mV最大值)  
– 温漂±0.9µV/°C最大值)  
– 增益误差±0.3%最大值)  
– 增益漂移±30ppm/°C最大值)  
– 非线性度0.03%最大值)  
• 高侧和低侧3.3V 5V 电压运行  
• 高侧电源缺失检测功能  
AMC1400-Q1 的输入针对直接连接低阻抗分流电阻器  
或其他具有低信号电平的低阻抗电压源的情况进行了优  
化。出色的直流精度和低温漂移支持精确的电压检测,  
适用于直流/直流转换器、太阳能或风力涡轮机逆变  
器、交流电机驱动器或其他必须在高电压、高海拔或高  
度污染环境下运行的应用。  
AMC1400-Q1 采用宽体 8 引脚 SOIC 封装符合面向  
汽车应用的 AEC-Q100 支持 –40°C 至  
+125°C 的温度范围。  
CMTI100kV/µs最小值)  
EMICISPR-11 CISPR-25 标准  
• 安全相关认证:  
封装信息(1)  
– 符DIN EN IEC 60747-17 (VDE 0884-17) 标  
7000VPK 增强型隔离  
– 符UL1577 标准且长1 分钟7500VRMS  
隔离  
封装尺寸标称值)  
器件型号  
封装  
SOIC (8)  
AMC1400-Q1  
6.40 mm × 14.00 mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
2 应用  
• 基于分流电阻器的电流感应可用于:  
HEV/EV 充电桩  
HEV/EV 车载充电(OBC)  
HEV/EV 直流/直流转换器  
HEV/EV 牵引逆变器  
High-side supply  
(3.3 V or 5 V)  
Low-side supply  
(3.3 V or 5 V)  
AMC1400-Q1  
VDD1  
INP  
VDD2  
OUTP  
I
+250 mV  
–250 mV  
0 V  
VCMout  
±2.05 V  
ADC  
INN  
OUTN  
GND2  
GND1  
典型应用  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBASAI2  
 
 
 
AMC1400-Q1  
ZHCSPH8 JULY 2022  
www.ti.com.cn  
Table of Contents  
7.1 Overview...................................................................17  
7.2 Functional Block Diagram.........................................17  
7.3 Feature Description...................................................17  
7.4 Device Functional Modes..........................................19  
8 Application and Implementation..................................20  
8.1 Application Information............................................. 20  
8.2 Typical Application.................................................... 20  
8.3 Best Design Practices...............................................25  
8.4 Power Supply Recommendations.............................26  
8.5 Layout....................................................................... 27  
9 Device and Documentation Support............................28  
9.1 Documentation Support............................................ 28  
9.2 接收文档更新通知..................................................... 28  
9.3 支持资源....................................................................28  
9.4 Trademarks...............................................................28  
9.5 Electrostatic Discharge Caution................................28  
9.6 术语表....................................................................... 28  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Power Ratings.............................................................5  
6.6 Insulation Specifications............................................. 6  
6.7 Safety-Related Certifications...................................... 7  
6.8 Safety Limiting Values.................................................7  
6.9 Electrical Characteristics.............................................8  
6.10 Switching Characteristics..........................................9  
6.11 Timing Diagram.........................................................9  
6.12 Insulation Characteristics Curves........................... 10  
6.13 Typical Characteristics............................................ 11  
7 Detailed Description......................................................17  
Information.................................................................... 28  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
July 2022  
*
Initial Release  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: AMC1400-Q1  
 
AMC1400-Q1  
ZHCSPH8 JULY 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
VDD1  
INP  
1
2
3
4
8
7
6
5
VDD2  
OUTP  
OUTN  
GND2  
INN  
GND1  
Not to scale  
5-1. DWL Package, 8-Pin SOIC (Top View)  
5-1. Pin Functions  
PIN  
NAME  
TYPE  
DESCRIPTION  
NO.  
1
2
VDD1  
INP  
High-side power  
Analog input  
High-side power supply.(1)  
Noninverting analog input. Either INP or INN must have a DC current path to GND1  
to define the common-mode input voltage.(2)  
Inverting analog input. Either INP or INN must have a DC current path to GND1 to  
define the common-mode input voltage.(2)  
3
INN  
Analog input  
4
5
6
7
8
GND1  
GND2  
OUTN  
OUTP  
VDD2  
High-side ground  
Low-side ground  
Analog output  
High-side analog ground.  
Low-side analog ground.  
Inverting analog output.  
Noninverting analog output.  
Low-side power supply.(1)  
Analog output  
Low-side power  
(1) See the Power Supply Recommendations section for power-supply decoupling recommendations.  
(2) See the Layout section for details.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: AMC1400-Q1  
 
 
 
AMC1400-Q1  
ZHCSPH8 JULY 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
see(1)  
MIN  
0.3  
MAX  
UNIT  
High-side VDD1 to GND1  
6.5  
6.5  
Power-supply voltage  
V
Low-side VDD2 to GND2  
0.3  
Analog input voltage  
Output voltage  
Input current  
INP, INN  
VDD1 + 0.5  
VDD2 + 0.5  
10  
V
V
GND1 6  
GND2 0.5  
10  
OUTP, OUTN  
Continuous, any pin except power-supply pins  
mA  
Junction, TJ  
Storage, Tstg  
150  
Temperature  
°C  
150  
65  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions . If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per AEC Q100-002(1), HBM ESD classification Level 2  
Charged-device model (CDM), per AEC Q100-011, CDM ESD classification Level C6  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
POWER SUPPLY  
High-side power supply  
Low-side power supply  
ANALOG INPUT  
VClipping Differential input voltage before clipping output  
VDD1 to GND1  
VDD2 to GND2  
3
3
5
5.5  
5.5  
V
V
3.3  
±320  
mV  
mV  
VIN = VINP VINN  
VIN = VINP VINN  
VFSR  
VCM  
Specified linear differential full-scale voltage  
Operating common-mode input voltage  
250  
250  
VDD1 –  
2.1  
(VINP + VINN) / 2 to GND1  
V
0.16  
ANALOG OUTPUT  
CLOAD  
CLOAD  
RLOAD  
Capacitive load  
On OUTP or OUTN to GND2  
OUTP to OUTN  
500  
250  
1
pF  
pF  
kΩ  
Capacitive load  
Resistive load  
On OUTP or OUTN to GND2  
10  
25  
TEMPERATURE RANGE  
TA Specified ambient temperature  
125  
°C  
40  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: AMC1400-Q1  
 
 
 
 
 
 
 
AMC1400-Q1  
ZHCSPH8 JULY 2022  
www.ti.com.cn  
6.4 Thermal Information  
DWL (SOIC)  
8 PINS  
63.2  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top) Junction-to-case (top) thermal resistance  
26.1  
RθJB  
ΨJT  
Junction-to-board thermal resistance  
28.5  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
7.8  
26.8  
ΨJB  
RθJC(bot) Junction-to-case (bottom) thermal resistance  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Power Ratings  
PARAMETER  
TEST CONDITIONS  
VALUE  
99  
UNIT  
PD  
Maximum power dissipation (both sides) VDD1 = VDD2 = 5.5 V  
mW  
VDD1 = 3.6 V  
Maximum power dissipation (high-side)  
VDD1 = 5.5 V  
31  
PD1  
mW  
mW  
54  
26  
VDD2 = 3.6 V  
PD2  
Maximum power dissipation (low-side)  
VDD2 = 5.5 V  
45  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: AMC1400-Q1  
 
 
 
 
AMC1400-Q1  
ZHCSPH8 JULY 2022  
www.ti.com.cn  
UNIT  
6.6 Insulation Specifications  
over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VALUE  
GENERAL  
CLR  
External clearance(1)  
External creepage(1)  
Shortest pin-to-pin distance through air  
mm  
mm  
14.7  
15.7  
CPG  
Shortest pin-to-pin distance across the package surface  
Minimum internal gap (internal clearance) of the double  
insulation  
DTI  
CTI  
Distance through insulation  
µm  
V
21  
Comparative tracking index  
Material group  
DIN EN 60112 (VDE 0303-11); IEC 60112  
According to IEC 60664-1  
600  
I
I-IV  
I-III  
Rated mains voltage 600 VRMS  
Rated mains voltage 1000 VRMS  
Overvoltage category  
per IEC 60664-1  
DIN EN IEC 60747-17 (VDE 0884-17)(2)  
Maximum repetitive peak  
VIORM  
At AC voltage  
2800  
VPK  
isolation voltage  
At AC voltage (sine wave)  
2000  
2800  
VRMS  
VDC  
Maximum-rated isolation  
VIOWM  
working voltage  
At DC voltage  
VTEST = VIOTM, t = 60 s (qualification test)  
VTEST = 1.2 × VIOTM, t = 1 s (100% production test)  
Tested in air, 1.2/50-µs waveform per IEC 62368-1  
10600  
12720  
9800  
Maximum transient  
VIOTM  
VPK  
isolation voltage  
VIMP  
Maximum impulse voltage(3)  
VPK  
VPK  
Maximum surge  
Tested in oil (qualification test),  
1.2/50-µs waveform per IEC 62368-1  
VIOSM  
12800  
5  
isolation voltage(4)  
Method a, after input/output safety test subgroups 2 and 3,  
Vini = VIOTM, tini = 60 s, Vpd(m) = 1.2 × VIORM, tm = 10 s  
Method a, after environmental tests subgroup 1,  
Vini = VIOTM, tini = 60 s, Vpd(m) = 1.6 × VIORM, tm = 10 s  
5  
qpd  
Apparent charge(5)  
pC  
Method b1, at routine test (100% production) and  
preconditioning (type test), Vini = VIOTM, tini = 1 s, Vpd(m) = 1.875  
× VIORM, tm = 1 s  
5  
Barrier capacitance,  
input to output(6)  
CIO  
RIO  
VIO = 0.5 VPP at 1 MHz  
~1.5  
pF  
VIO = 500 V at TA = 25°C  
> 1012  
> 1011  
> 109  
Insulation resistance,  
input to output(6)  
VIO = 500 V at 100°C TA 125°C  
VIO = 500 V at TS = 150°C  
Ω
Pollution degree  
Climatic category  
2
55/125/21  
UL1577  
VTEST = VISO = 7500 VRMS, t = 60 s (qualification),  
VTEST = 1.2 × VISO = 9000 VRMS, t = 1 s (100% production test)  
VISO  
Withstand isolation voltage  
7500  
VRMS  
(1) Apply creepage and clearance requirements according to the specific equipment isolation standards of an application. Care must be  
taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the  
printed circuit board (PCB) do not reduce this distance. Creepage and clearance on a PCB become equal in certain cases. Techniques  
such as inserting grooves, ribs, or both on a PCB are used to help increase these specifications.  
(2) This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured  
by means of suitable protective circuits.  
(3) Testing is carried out in air to determine the surge immunity of the package.  
(4) Testing is carried in oil to determine the intrinsic surge immunity of the isolation barrier.  
(5) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(6) All pins on each side of the barrier are tied together, creating a two-pin device.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: AMC1400-Q1  
 
 
 
 
 
 
 
AMC1400-Q1  
ZHCSPH8 JULY 2022  
www.ti.com.cn  
6.7 Safety-Related Certifications  
VDE  
UL  
DIN EN IEC 60747-17 (VDE 0884-17),  
EN IEC 60747-17,  
DIN EN IEC 62368-1 (VDE 0868-1),  
EN IEC 62368-1,  
Recognized under 1577 component recognition program  
IEC 62368-1 Clause : 5.4.3 ; 5.4.4.4 ; 5.4.9  
Reinforced insulation  
Single protection  
Certificate number: 40040142 (pending)  
File number: E181974  
6.8 Safety Limiting Values  
Safety limiting(1) intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry. A failure  
of the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to over-  
heat the die and damage the isolation barrier potentially leading to secondary system failures.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
R
θJA = 63.2°C/W, VDDx = 3.6 V,  
550  
TJ = 150°C, TA = 25°C  
θJA = 63.2°C/W, VDDx = 5.5 V,  
TJ = 150°C, TA = 25°C  
θJA = 63.2°C/W, TJ = 150°C, TA = 25°C  
IS  
Safety input, output, or supply current  
mA  
R
360  
PS  
TS  
Safety input, output, or total power  
Maximum safety temperature  
R
1980  
150  
mW  
°C  
(1) The maximum safety temperature, TS, has the same value as the maximum junction temperature, TJ, specified for the device. The IS  
and PS parameters represent the safety current and safety power, respectively. Do not exceed the maximum limits of IS and PS. These  
limits vary with the ambient temperature, TA.  
The junction-to-air thermal resistance, RθJA, in the Thermal Information table is that of a device installed on a high-K test board for  
leaded surface-mount packages. Use these equations to calculate the value for each parameter:  
TJ = TA + RθJA × P, where P is the power dissipated in the device.  
TJ(max) = TS = TA + RθJA × PS, where TJ(max) is the maximum junction temperature.  
PS = IS × VDDmax, where VDDmax is the maximum supply voltage for high-side and low-side.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: AMC1400-Q1  
 
 
 
AMC1400-Q1  
ZHCSPH8 JULY 2022  
www.ti.com.cn  
6.9 Electrical Characteristics  
minimum and maximum specifications apply from TA = 40°C to +125°C, VDD1 = 3.0 V to 5.5 V, VDD2 = 3.0 V to 5.5 V, INP  
= 250 mV to +250 mV, and INN = GND1; typical specifications are at TA = 25°C, VDD1 = 5 V, and VDD2 = 3.3 V (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ANALOG INPUT  
VOS  
Input offset voltage(1) (2)  
Input offset drift(1) (2) (4)  
TA = 25°C, INP = INN = GND1  
±0.01  
±0.1  
100  
98  
19  
0.2  
mV  
0.2  
0.9  
TCVOS  
0.9 µV/°C  
fIN = 0 Hz, VCM min VCM VCM max  
fIN = 10 kHz, VCM min VCM VCM max  
INN = GND1  
CMRR  
Common-mode rejection ratio  
dB  
RIN  
RIND  
IIB  
Single-ended input resistance  
Differential input resistance  
Input bias current  
kΩ  
kΩ  
22  
INP = INN = GND1; IIB = (IIBP + IIBN) / 2  
µA  
nA  
pF  
pF  
41  
30  
±5  
2
24  
IIO  
Input offset current  
IIO = IIBP IIBN; INP = INN = GND1  
INN = GND1, fIN = 275 kHz  
fIN = 275 kHz  
CIN  
CIND  
Single-ended input capacitance  
Differential input capacitance  
1
ANALOG OUTPUT  
Nominal gain  
8.2  
±0.04%  
±5  
V/V  
EG  
Gain error(1)  
TA = 25°C  
0.3%  
0.3%  
30  
TCEG  
Gain drift(1) (5)  
30 ppm/°C  
0.03%  
Nonlinearity(1)  
±0.01%  
85  
0.03%  
THD  
SNR  
Total harmonic distortion(3)  
fIN = 10 kHz  
dB  
INP = INN = GND1, fIN = 0 Hz,  
BW = 100 kHz brickwall filter  
Output noise  
230  
µVRMS  
fIN = 1 kHz, BW = 10 kHz  
fIN = 10 kHz, BW = 100 kHz  
PSRR vs VDD1, at DC  
81.5  
85  
72  
Signal-to-noise ratio  
dB  
dB  
100  
PSRR vs VDD1,  
100-mV and 10-kHz ripple  
96  
106  
86  
PSRR  
Power-supply rejection ratio(2)  
PSRR vs VDD2, at DC  
PSRR vs VDD2,  
100-mV and 10-kHz ripple  
VCMout  
Common-mode output voltage  
1.39  
1.44  
1.49  
2.52  
V
V
VOUT = (VOUTP VOUTN);  
|VIN| = |VINP VINN| > |VClipping  
VCLIPout  
Clipping differential output voltage  
±2.49  
2.52  
|
VFailsafe  
BW  
Failsafe differential output voltage  
Output bandwidth  
VDD1 missing  
V
kHz  
Ω
2.63  
2.57  
310  
2.53  
250  
ROUT  
Output resistance  
On OUTP or OUTN  
< 0.2  
On OUTP or OUTN, sourcing or sinking,  
INN = INP = GND1, outputs shorted to  
either GND2 or VDD2  
Output short-circuit current  
14  
mA  
CMTI  
Common-mode transient immunity  
100  
150  
kV/µs  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: AMC1400-Q1  
 
AMC1400-Q1  
ZHCSPH8 JULY 2022  
www.ti.com.cn  
6.9 Electrical Characteristics (continued)  
minimum and maximum specifications apply from TA = 40°C to +125°C, VDD1 = 3.0 V to 5.5 V, VDD2 = 3.0 V to 5.5 V, INP  
= 250 mV to +250 mV, and INN = GND1; typical specifications are at TA = 25°C, VDD1 = 5 V, and VDD2 = 3.3 V (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
POWER SUPPLY  
VDD1 rising  
2.5  
2.4  
2.7  
2.6  
2.45  
2.0  
6.3  
7.2  
5.3  
5.9  
2.9  
V
VDD1 undervoltage detection  
threshold  
VDD1UV  
VDD2UV  
IDD1  
VDD1 falling  
2.8  
VDD2 rising  
2.2  
2.65  
V
2.2  
VDD2 undervoltage detection  
threshold  
VDD2 falling  
1.85  
8.5  
mA  
9.8  
3.0 V VDD1 3.6 V  
4.5 V VDD1 5.5 V  
3.0 V VDD2 3.6 V  
4.5 V VDD2 5.5 V  
High-side supply current  
Low-side supply current  
7.2  
mA  
8.1  
IDD2  
(1) The typical value includes one standard deviation (sigma) at nominal operating conditions.  
(2) This parameter is input referred.  
(3) THD is the ratio of the rms sum of the amplitudes of first five higher harmonics to the amplitude of the fundamental.  
(4) Offset error temperature drift is calculated using the box method, as described by the following equation:  
TCVOS = (ValueMAX - ValueMIN) / TempRange  
(5) Gain error temperature drift is calculated using the box method, as described by the following equation:  
TCEG (ppm) = (ValueMAX - ValueMIN) / (Value(T=25) x TempRange) x 106  
6.10 Switching Characteristics  
over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
1.3  
1.3  
1
MAX  
UNIT  
µs  
tr  
tf  
Output signal rise time  
Output signal fall time  
µs  
VINx to VOUTx signal delay (50% - 10%)  
VINx to VOUTx signal delay (50% - 50%)  
VINx to VOUTx signal delay (50% - 90%)  
Unfiltered output  
1.5  
2.1  
3
µs  
Unfiltered output  
Unfiltered output  
1.6  
2.5  
µs  
µs  
VDD1 step to 3.0 V with VDD2 3.0 V,  
to VOUTP, VOUTN valid, 0.1% settling  
tAS  
Analog settling time  
500  
µs  
6.11 Timing Diagram  
250 mV  
INP - INN  
0
– 250 mV  
tf  
tr  
OUTN  
OUTP  
VCMout  
50% - 10%  
50% - 50%  
50% - 90%  
6-1. Rise, Fall, and Delay Time Definition  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: AMC1400-Q1  
 
 
 
 
 
 
 
AMC1400-Q1  
ZHCSPH8 JULY 2022  
www.ti.com.cn  
6.12 Insulation Characteristics Curves  
600  
VDD1 = VDD2 = 3.6 V  
VDD1 = VDD2 = 5.5 V  
500  
400  
300  
200  
100  
0
0
25  
50  
75  
100  
125  
150  
TA (°C)  
D069  
6-3. Thermal Derating Curve for Safety-Limiting Power per  
6-2. Thermal Derating Curve for Safety-Limiting Current per  
VDE  
VDE  
TA up to 150°C, stress-voltage frequency = 60 Hz, isolation working voltage = 2000 VRMS, operating lifetime = 34 year  
6-4. Reinforced Isolation Capacitor Lifetime Projection  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: AMC1400-Q1  
 
AMC1400-Q1  
ZHCSPH8 JULY 2022  
www.ti.com.cn  
6.13 Typical Characteristics  
at VDD1 = 5 V, VDD2 = 3.3 V, INP = 250 mV to 250 mV, INN = 0 V, and fIN = 10 kHz (unless otherwise noted)  
200  
150  
100  
50  
200  
150  
100  
50  
VDD1  
VDD2  
Device 1  
Device 2  
Device 3  
0
0
-50  
-50  
-100  
-150  
-200  
-100  
-150  
-200  
3
3.5  
4
4.5  
VDDx (V)  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D027  
D026  
6-5. Input Offset Voltage vs Supply Voltage  
6-6. Input Offset Voltage vs Temperature  
0
-20  
-70  
-75  
-80  
-40  
-85  
-60  
-90  
-95  
-80  
-100  
-105  
-110  
-100  
-120  
0.001  
0.01  
0.1  
1
fIN (kHz)  
10  
100  
1000  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D038  
D039  
6-7. Common-Mode Rejection Ratio vs Input Frequency  
6-8. Common-Mode Rejection Ratio vs Temperature  
25  
-23  
-25  
-27  
-29  
-31  
-33  
-35  
-37  
-39  
-41  
15  
5
-5  
-15  
-25  
-35  
-45  
-0.5  
0
0.5  
1
1.5  
2
2.5  
3
3
3.5  
4
4.5  
VDD1 (V)  
5
5.5  
VCM (V)  
D003  
D004  
6-9. Input Bias Current vs Common-Mode Input Voltage  
6-10. Input Bias Current vs High-Side Supply Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: AMC1400-Q1  
 
AMC1400-Q1  
ZHCSPH8 JULY 2022  
www.ti.com.cn  
6.13 Typical Characteristics (continued)  
at VDD1 = 5 V, VDD2 = 3.3 V, INP = 250 mV to 250 mV, INN = 0 V, and fIN = 10 kHz (unless otherwise noted)  
-23  
-25  
-27  
-29  
-31  
-33  
-35  
-37  
-39  
-41  
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
VDD1  
VDD1  
3
3.5  
4
4.5  
VDDx (V)  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D020  
D005  
6-12. Gain Error vs Supply Voltage  
6-11. Input Bias Current vs Temperature  
0.3  
0.2  
0.1  
0
5
0
Device 1  
Device 2  
Device 3  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-0.1  
-0.2  
-0.3  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
1
10  
100  
1000  
fIN (kHz)  
D021  
D007  
6-13. Gain Error vs Temperature  
6-14. Normalized Gain vs Input Frequency  
0°  
5
4.5  
4
OUTN  
OUTP  
-45°  
-90°  
3.5  
3
-135°  
-180°  
-225°  
-270°  
-315°  
-360°  
2.5  
2
1.5  
1
0.5  
0
1
10  
100  
1000  
-350  
-250  
-150  
-50  
50  
150  
Differential Input Voltage (mV)  
250  
350  
fIN (kHz)  
D008  
D006  
6-15. Output Phase vs Input Frequency  
6-16. Output Voltage vs Input Voltage  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: AMC1400-Q1  
AMC1400-Q1  
ZHCSPH8 JULY 2022  
www.ti.com.cn  
6.13 Typical Characteristics (continued)  
at VDD1 = 5 V, VDD2 = 3.3 V, INP = 250 mV to 250 mV, INN = 0 V, and fIN = 10 kHz (unless otherwise noted)  
0.03  
0.025  
0.02  
0.03  
0.02  
0.01  
0
VDD1  
VDD2  
0.015  
0.01  
0.005  
0
-0.005  
-0.01  
-0.015  
-0.02  
-0.025  
-0.03  
-0.01  
-0.02  
-0.03  
-250 -200 -150 -100 -50  
0
Differential Input Voltage (mV)  
50 100 150 200 250  
3
3.5  
4
4.5  
VDDx (V)  
5
5.5  
D028  
D029  
6-17. Nonlinearity vs Input Voltage  
6-18. Nonlinearity vs Supply Voltage  
0.03  
0.02  
0.01  
0
-70  
-75  
Device 1  
Device 2  
Device 3  
VDD1  
VDD2  
-80  
-85  
-0.01  
-0.02  
-0.03  
-90  
-95  
-100  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
3
3.5  
4
4.5  
VDDx (V)  
5
5.5  
D030  
D056  
6-19. Nonlinearity vs Temperature  
6-20. Total Harmonic Distortion vs Supply Voltage  
-70  
-75  
10000  
1000  
100  
10  
-80  
-85  
-90  
Device 1  
Device 2  
Device 3  
-95  
-100  
0.1  
1
10  
Frequency (kHz)  
100  
1000  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D017  
D059  
6-22. Input-Referred Noise Density vs Frequency  
6-21. Total Harmonic Distortion vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: AMC1400-Q1  
AMC1400-Q1  
ZHCSPH8 JULY 2022  
www.ti.com.cn  
6.13 Typical Characteristics (continued)  
at VDD1 = 5 V, VDD2 = 3.3 V, INP = 250 mV to 250 mV, INN = 0 V, and fIN = 10 kHz (unless otherwise noted)  
80  
75  
70  
65  
60  
55  
50  
45  
40  
80  
77.5  
75  
VDD1  
VDD2  
72.5  
70  
67.5  
65  
62.5  
60  
3
3.5  
4
4.5  
VDDx (V)  
5
5.5  
0
50  
100  
150  
|VINP - VINN| (mV)  
200  
250  
300  
D034  
D032  
6-24. Signal-to-Noise Ratio vs Supply Voltage  
6-23. Signal-to-Noise Ratio vs Input Voltage  
80  
0
77.5  
75  
-20  
-40  
-60  
72.5  
70  
67.5  
65  
-80  
Device 1  
Device 2  
Device 3  
62.5  
60  
-100  
VDD2  
VDD1  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
-120  
0.001  
0.01  
0.1  
1
10  
Ripple Frequency (kHz)  
100  
1000  
D041  
6-25. Signal-to-Noise Ratio vs Temperature  
6-26. Power-Supply Rejection Ratio vs Ripple Frequency  
1.49  
1.48  
1.47  
1.46  
1.45  
1.44  
1.43  
1.42  
1.41  
1.4  
1.49  
1.48  
1.47  
1.46  
1.45  
1.44  
1.43  
1.42  
1.41  
1.4  
1.39  
1.39  
3
3.5  
4
4.5  
VDD2 (V)  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D009  
D010  
6-27. Output Common-Mode Voltage vs Low-Side Supply  
6-28. Output Common-Mode Voltage vs Temperature  
Voltage  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: AMC1400-Q1  
AMC1400-Q1  
ZHCSPH8 JULY 2022  
www.ti.com.cn  
6.13 Typical Characteristics (continued)  
at VDD1 = 5 V, VDD2 = 3.3 V, INP = 250 mV to 250 mV, INN = 0 V, and fIN = 10 kHz (unless otherwise noted)  
360  
340  
320  
300  
280  
260  
240  
360  
340  
320  
300  
280  
260  
240  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
3
3.5  
4
4.5  
VDD2 (V)  
5
5.5  
D012  
D011  
6-30. Output Bandwidth vs Temperature  
6-29. Output Bandwidth vs Low-Side Supply Voltage  
8.5  
8
8.5  
8
7.5  
7
7.5  
7
6.5  
6
6.5  
6
5.5  
5
5.5  
5
4.5  
4.5  
4
IDD1 vs VDD1  
IDD2 vs VDD2  
IDD1  
IDD2  
4
3.5  
3.5  
3
3.5  
4
4.5  
VDDx (V)  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D043  
D044  
6-31. Supply Current vs Supply Voltage  
6-32. Supply Current vs Temperature  
4
3.5  
3
4
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
3
3.5  
4
4.5  
VDD2 (V)  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D065  
D066  
6-33. Output Rise and Fall Time vs Low-Side Supply  
6-34. Output Rise and Fall Time vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: AMC1400-Q1  
AMC1400-Q1  
ZHCSPH8 JULY 2022  
www.ti.com.cn  
6.13 Typical Characteristics (continued)  
at VDD1 = 5 V, VDD2 = 3.3 V, INP = 250 mV to 250 mV, INN = 0 V, and fIN = 10 kHz (unless otherwise noted)  
3.8  
3.4  
3
3.8  
3.4  
3
50% - 90%  
50% - 50%  
50% - 10%  
50% - 90%  
50% - 50%  
50% - 10%  
2.6  
2.2  
1.8  
1.4  
1
2.6  
2.2  
1.8  
1.4  
1
0.6  
0.2  
0.6  
0.2  
3
3.5  
4
4.5  
VDD2 (V)  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D067  
D068  
6-35. VIN to VOUT Signal Delay vs Low-Side Supply Voltage  
6-36. VIN to VOUT Signal Delay vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: AMC1400-Q1  
AMC1400-Q1  
ZHCSPH8 JULY 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The AMC1400-Q1 is a fully differential, precision, isolated amplifier. The input stage of the device consists of a  
fully differential amplifier that drives a second-order, delta-sigma (ΔΣ) modulator. The modulator converts the  
analog input signal into a digital bitstream that is transferred across the isolation barrier that separates the high-  
side from the low-side. On the low-side, the received bitstream is processed by a fourth-order analog filter that  
outputs a differential signal at the OUTP and OUTN pins that is proportional to the input signal.  
The SiO2-based, capacitive isolation barrier supports a high level of magnetic field immunity, as described in the  
ISO72x Digital Isolator Magnetic-Field Immunity application report. The digital modulation used in the AMC1400-  
Q1 to transmit data across the isolation barrier, and the isolation barrier characteristics itself, result in high  
reliability and common-mode transient immunity.  
7.2 Functional Block Diagram  
VDD1  
VDD2  
OUTP  
OUTN  
GND2  
AMC1400-Q1  
Diagnostics  
Analog Filter  
INP  
ΔΣ Modulator  
INN  
GND1  
7.3 Feature Description  
7.3.1 Analog Input  
The differential amplifier input stage of the AMC1400-Q1 feeds a second-order, switched-capacitor, feed-forward  
ΔΣ modulator. The gain of the differential amplifier is set by internal precision resistors with a differential input  
impedance of RIND. The modulator converts the analog input signal into a bitstream that is transferred across the  
isolation barrier, as described in the Isolation Channel Signal Transmission section.  
There are two restrictions on the analog input signals INP and INN. First, if the input voltages VINP or VINN  
exceed the range specified in the Absolute Maximum Ratings table, the input currents must be limited to the  
absolute maximum value, because the electrostatic discharge (ESD) protection turns on. In addition, the linearity  
and parametric performance of the device are ensured only when the analog input voltage remains within the  
linear full-scale range (VFSR) and within the common-mode input voltage range (VCM), as specified in the  
Recommended Operating Conditions table.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: AMC1400-Q1  
 
 
 
 
AMC1400-Q1  
ZHCSPH8 JULY 2022  
www.ti.com.cn  
7.3.2 Isolation Channel Signal Transmission  
The AMC1400-Q1 uses an on-off keying (OOK) modulation scheme, as shown in 7-1, to transmit the  
modulator output bitstream across the SiO2-based isolation barrier. The transmit driver (TX) shown in the  
Functional Block Diagram transmits an internally-generated, high-frequency carrier across the isolation barrier to  
represent a digital one and does not send a signal to represent a digital zero. The nominal frequency of the  
carrier used inside the AMC1400-Q1 is 480 MHz.  
The receiver (RX) on the other side of the isolation barrier recovers and demodulates the signal and provides the  
input to the fourth-order analog filter. The AMC1400-Q1 transmission channel is optimized to achieve the highest  
level of common-mode transient immunity (CMTI) and lowest level of radiated emissions caused by the high-  
frequency carrier and RX/TX buffer switching.  
Internal Clock  
Modulator Bitstream  
on High-side  
Signal Across Isolation Barrier  
Recovered Sigal  
on Low-side  
7-1. OOK-Based Modulation Scheme  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: AMC1400-Q1  
 
 
AMC1400-Q1  
ZHCSPH8 JULY 2022  
www.ti.com.cn  
7.3.3 Analog Output  
The AMC1400-Q1 offers a differential analog output comprised of the OUTP and OUTN pins. For differential  
input voltages (VINP VINN) in the range from 250 mV to +250 mV, the device provides a linear response with  
a nominal gain of 8.2. For example, for a differential input voltage of 250 mV, the differential output voltage  
(VOUTP VOUTN) is 2.05 V. At zero input (INP shorted to INN), both pins output the same common-mode output  
voltage VCMout, as specified in the Electrical Characteristics table. For absolute differential input voltages greater  
than 250 mV but less than 320 mV, the differential output voltage continues to increase in magnitude but with  
reduced linearity performance. The outputs saturate at a differential output voltage of VCLIPout, as shown in 图  
7-2, if the differential input voltage exceeds the VClipping value.  
Maximum input range before clipping (VClipping  
)
Linear input range (VFSR  
)
VOUTN  
VCLIPout  
VOUTP  
VFAILSAFE  
VCMout  
– 320 mV  
– 250 mV  
320 mV  
250 mV  
0
Differential Input Voltage (VINP – VINN  
)
7-2. Output Behavior of the AMC1400-Q1  
The AMC1400-Q1 offers a fail-safe feature that simplifies diagnostics on a system level. 7-2 shows the fail-  
safe mode, in which the AMC1400-Q1 outputs a negative differential output voltage that does not occur under  
normal operating conditions. The fail-safe output is active in two cases:  
When the high-side supply is missing or below the VDD1UV threshold  
When the common-mode input voltage, that is VCM = (VINP + VINN) / 2, exceeds the common-mode  
overvoltage detection level VCMov  
Use the maximum VFAILSAFE voltage specified in the Electrical Characteristics table as a reference value for fail-  
safe detection on a system level.  
7.4 Device Functional Modes  
The AMC1400-Q1 is operational when the power supplies VDD1 and VDD2 are applied, as specified in the  
Recommended Operating Conditions table.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: AMC1400-Q1  
 
 
AMC1400-Q1  
ZHCSPH8 JULY 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
With its stretched SOIC package, the AMC1400-Q1 is specifically designed for isolated, high precision, shunt-  
based current sensing in applications with 800-V and higher working voltages. This device is designed for  
operating in harsh environments with a high pollution degree or high altitudes.  
8.2 Typical Application  
8-1 depicts a simplified block diagram of a DC/DC converter for an 800-V battery system where the  
AMC1400-Q1 is used to measure the input current on the high-voltage side. The DC bus current flows through a  
shunt resistor (RSHUNT) and produces a voltage drop that is sensed by the AMC1400-Q1. The AMC1400-Q1  
outputs a differential analog voltage that is proportional to the input signal and galvanically isolated from the  
high-voltage side. The differential output voltage is typically routed to an analog-to-digital converter (ADC) of a  
microcontroller (MCU) to complete the current-sensing signal chain. The AMC1411-Q1 is used in the same  
application for measuring the DC bus voltage. Both devices share a common high-side power supply based on  
the SN6501-Q1 push-pull driver and a transformer that supports the desired isolation voltage ratings.  
The stretched SOIC package, differential input, differential output, and the high common-mode transient  
immunity (CMTI) of the AMC1400-Q1 ensure reliable and accurate operation in high-noise environments while  
meeting IEC standards for reinforced isolation at 1 kV and higher working voltages.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: AMC1400-Q1  
 
 
 
AMC1400-Q1  
ZHCSPH8 JULY 2022  
www.ti.com.cn  
SW  
+VBUS  
V12V  
DC/DC  
SW  
RSHUNT  
– VBUS  
C12 1 µF  
C11 100 nF  
R12 10  
C14 1 µF  
AMC1400-Q1  
C13 100 nF  
VDD1  
VDD2  
OUTP  
OUTN  
GND2  
INP  
to RC filter / ADC  
to RC filter / ADC  
C15  
10 nF  
R11 10  
INN  
GND1  
C22 1 µF  
C24 1 µF  
AMC1411-Q1  
C21 100 nF  
C23 100 nF  
VDD1  
VDD2  
OUTP  
OUTN  
GND2  
IN  
to RC filter / ADC  
to RC filter / ADC  
C25 100 pF  
SHTDN  
GND1  
TPS76350-Q1  
SN6501-Q1  
NC  
EN  
GND  
IN  
D1  
GND  
VCC  
D2  
VOUT = 5 V  
OUT  
GND  
10 μF 100 nF  
10 μF  
100 nF 4.7 μF  
8-1. Using the AMC1400-Q1 for Current Sensing in a Typical Application  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: AMC1400-Q1  
 
AMC1400-Q1  
ZHCSPH8 JULY 2022  
www.ti.com.cn  
8.2.1 Design Requirements  
8-1 lists the parameters for this typical application.  
8-1. Design Requirements  
PARAMETER  
DC bus voltage  
VALUE  
1000 V (maximum)  
Overvoltage category  
II  
2
Pollution degree  
Altitude  
4000 m  
3.3 V or 5 V  
3.3 V or 5 V  
10 A  
High-side supply voltage  
Low-side supply voltage  
Transient peak DC/DC input current  
Nominal DC/DC input current  
Voltage drop across RSHUNT for a linear response  
Maximum voltage drop across RSHUNT before clipping  
4 A  
±250 mV (maximum)  
±320 mV (maximum)  
8.2.2 Detailed Design Procedure  
The value of the shunt resistor (RSHUNT) is selected such that the transient peak input current to the DC/DC  
converter (10 A) produces a voltage drop across the shunt resistor that matches the linear full-scale input range  
of the AMC1400-Q1 (250 mV). Consider the following two restrictions when selecting the value of the shunt  
resistor:  
The voltage drop across the shunt caused by the nominal-rated DC link current range must not exceed the  
recommended differential input voltage range for a linear response: |VSHUNT| |VFSR  
The voltage drop caused by the maximum allowed overcurrent must not exceed the input voltage that causes  
a clipping output: |VSHUNT| |VClipping  
|
|
In this example, a 25-mshunt resistor is selected (RSHUNT = 250 mV / 10 A).  
At the nominal-rated current, the power dissipation in the shunt resistor is R × I2 = 25 m× (4 A)2 = 0.4 W. For  
surface-mounted shunts, the heat is mainly dissipated via the device terminals and the printed circuit board  
(PCB) traces. The power rating of a shunt is typically specified for a 70°C terminal temperature and derated for  
higher temperatures. This rating ensures that the shunt itself does not exceed its specified maximum operating  
temperature at the rated power dissipation. Careful PCB design is required not to exceed the terminal  
temperature at the rated power dissipation. Using wide copper traces to spread the heat over a larger area of the  
PCB, heat sinks, and air flow can improve the thermal design.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: AMC1400-Q1  
 
AMC1400-Q1  
ZHCSPH8 JULY 2022  
www.ti.com.cn  
8.2.2.1 Insulation Coordination  
Electrical insulation must be designed to withstand the rated impulse voltage, temporary overvoltage, and the  
working voltage. In addition, the physical distance between exposed metal parts on the high- and low-voltage  
sides must meet the minimum creepage and clearance requirements for the rated working voltage and transient  
overvoltages.  
The ISO 17409:2020 standard specifies that an electrical road vehicle must be designed to withstand a minimum  
impulse voltage of 2500 V. The minimum clearance to support a 2500-V impulse voltage is 1.5 mm for basic  
isolation and 3.0 mm for reinforced isolation, according to Table F.2 of the IEC60664-1 standard. The equipment  
is designed to operate at altitudes up to 4000 m above sea level and the minimum clearance must be increased  
to 1.29 × 3 mm = 4 mm (rounded up). The factor of 1.29 is taken from table A.2 of the IEC60664-1 standard. The  
AMC1400-Q1 provides a minimum clearance of 14.7 mm and easily meets the requirement.  
The maximum temporary overvoltage, a voltage that must be sustained for 60 s, is typically determined be the  
formula 2 × VWM + 1000 V, where VWM is the maximum working voltage that can occur under normal operating  
conditions. In this example, VWM equals the maximum DC bus voltage (1000 V) and the maximum temporary  
overvoltage is calculated to be 3000 VPK (2 × 1000 V + 1000 V = 3000 V). If the overvoltage test (also known as  
the HiPot test) is performed for 1 s only, the test voltage must be multiplied with a factor of 1.2 times and  
becomes 3600 V (1.2 × 3000 V = 3600 V). The minimum clearance to support a 3600-V temporary overvoltage  
is 5.5 mm for basic isolation and 8.0 mm for reinforced isolation. These values are taken from Table 9 of the  
IEC61800-5-1 standard. The equipment is designed to operate at altitudes up to 4000 m above sea level and the  
minimum clearance must be increased to 1.29 × 8 mm = 10.5 mm (rounded up). The factor of 1.29 is taken from  
Table A.2 of the IEC60664-1 standard. The AMC1400-Q1 provides a minimum clearance of 14.7 mm and easily  
meets the requirement.  
The working voltage in this example is 1000 VDC and is lower than the maximum working voltage (VIOWM ) of  
2800 VDC) that the AMC1400-Q1 supports.  
Finally, the minimum creepage distance for a working voltage of 1000 VDC, insulating material group I, pollution  
degree 2, and reinforced isolation is 2 × 5 mm = 10 mm according to IEC60664-1 Table F.4. The 5-mm value for  
the 1000-V basic insulation is doubled for reinforced isolation. The AMC1400-Q1 provides a minimum creepage  
of 15.7 mm and provides significant margin against the minimum requirement.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: AMC1400-Q1  
AMC1400-Q1  
ZHCSPH8 JULY 2022  
www.ti.com.cn  
8.2.2.2 Input Filter Design  
Place an RC filter in front of the isolated amplifier to improve the signal-to-noise performance of the signal path.  
Design the input filter such that:  
The cutoff frequency of the filter is at least one order of magnitude lower than the sampling frequency (20  
MHz) of the ΔΣmodulator  
The input bias current does not generate a significant voltage drop across the DC impedance of the input  
filter  
The impedances measured from the analog inputs are equal  
For most applications, the structure shown in 8-2 achieves excellent performance.  
AMC1400-Q1  
VDD1  
VDD2  
OUTP  
OUTN  
GND2  
10  
10  
10 nF  
INP  
INN  
GND1  
8-2. Differential Input Filter  
8.2.2.3 Differential to Single-Ended Output Conversion  
8-3 shows an example of a TLV9001-Q1-based signal conversion and filter circuit for systems using single-  
ended input ADCs to convert the analog output voltage into digital. With R1 = R2 = R3 = R4, the output voltage  
equals (VOUTP VOUTN) + VREF. Tailor the bandwidth of this filter stage to the bandwidth requirement of the  
system and use NP0-type capacitors for best performance. For most applications, R1 = R2 = R3 = R4 = 3.3 kΩ  
and C1 = C2 = 330 pF yields good performance.  
C1  
AMC1400-Q1  
R2  
VDD1  
VDD2  
OUTP  
OUTN  
GND2  
R1  
R3  
INP  
+
ADC  
To MCU  
INN  
TLV9001-Q1  
GND1  
C2  
R4  
VREF  
8-3. Connecting the AMC1400-Q1 Output to a Single-Ended Input ADC  
For more information on the general procedure to design the filtering and driving stages of SAR ADCs, see the  
18-Bit, 1MSPS Data Acquisition Block (DAQ) Optimized for Lowest Distortion and Noise and 18-Bit Data  
Acquisition Block (DAQ) Optimized for Lowest Power reference guides, available for download at www.ti.com.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: AMC1400-Q1  
 
 
AMC1400-Q1  
ZHCSPH8 JULY 2022  
www.ti.com.cn  
8.2.3 Application Curve  
One important aspect of a power-stage design is the effective detection of an overcurrent condition to protect the  
switching devices and passive components from damage. To power off the system quickly in the event of an  
overcurrent condition, a low delay caused by the isolated amplifier is required. 8-4 shows the typical full-scale  
step response of the AMC1400-Q1.  
VOUTN  
VOUTP  
VIN  
8-4. Step Response of the AMC1400-Q1  
8.3 Best Design Practices  
Do not leave the inputs of the AMC1400-Q1 unconnected (floating) when the device is powered up. If the device  
inputs are left floating, the input bias current may drive the inputs to a positive value that exceeds the operating  
common-mode input voltage and the output voltage may not be valid.  
Connect the high-side ground (GND1) to INN, either by a hard short or through a resistive path. A DC current  
path between INN and GND1 is required to define the input common-mode voltage. Take care not to exceed the  
input common-mode range, as specified in the Recommended Operating Conditions table. For best accuracy,  
route the ground connection as a separate trace that connects directly to the shunt resistor rather than shorting  
GND1 to INN directly at the input to the device. See the Layout section for more details.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: AMC1400-Q1  
 
 
AMC1400-Q1  
ZHCSPH8 JULY 2022  
www.ti.com.cn  
8.4 Power Supply Recommendations  
The AMC1400-Q1 does not require any specific power-up sequencing. The high-side power supply (VDD1) is  
decoupled with a low-ESR, 100-nF capacitor (C1) parallel to a low-ESR, 1-µF capacitor (C2). The low-side  
power supply (VDD2) is equally decoupled with a low-ESR, 100-nF capacitor (C3) parallel to a low-ESR, 1-µF  
capacitor (C4). Place all four capacitors (C1, C2, C3, and C4) as close to the device as possible.  
The ground reference for the high-side (GND1) is derived from the end of the shunt resistor, which is connected  
to the negative input (INN) of the device. For best DC accuracy, use a separate trace (as shown in 8-5) to  
make this connection instead of shorting GND1 to INN directly at the device input. If a four-terminal shunt is  
used, the device inputs are connected to the inner leads and GND1 is connected to the outer lead on the INN-  
side of the shunt.  
INP  
VDD1  
VDD2  
C2 1 µF  
C1 100 nF  
R2 10  
C4 1 µF  
AMC1400-Q1  
I
C3 100 nF  
VDD1  
VDD2  
OUTP  
OUTN  
GND2  
INP  
to RC filter / ADC  
to RC filter / ADC  
C5  
10 nF  
R1 10  
INN  
GND1  
8-5. Decoupling of the AMC1400-Q1  
Capacitors must provide adequate effective capacitance under the applicable DC bias conditions they  
experience in the application. Multilayer ceramic capacitors (MLCCs) typically exhibit only a fraction of their  
nominal capacitance under real-world conditions and this factor must be taken into consideration when selecting  
these capacitors. This problem is especially acute in low-profile capacitors, in which the dielectric field strength is  
higher than in taller components. Reputable capacitor manufacturers provide capacitance versus DC bias curves  
that greatly simplify component selection.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: AMC1400-Q1  
 
 
AMC1400-Q1  
ZHCSPH8 JULY 2022  
www.ti.com.cn  
8.5 Layout  
8.5.1 Layout Guidelines  
8-6 shows a layout recommendation with the critical placement of the decoupling capacitors (as close as  
possible to the AMC1400-Q1 supply pins) and placement of the other components required by the device. For  
best performance, place the shunt resistor close to the INP and INN inputs of the AMC1400-Q1 and keep the  
layout of both connections symmetrical.  
The ground pin (GND1) of the AMC1400-Q1 is connected to the same end of the shunt resistor that is connected  
to the negative input pin (INN) of the AMC1400-Q1. If a four-pin shunt is used, the input pins (INN and INP) of  
the AMC1400-Q1 are connected to the inner leads, and the GND1 pin is connected to the outer lead on the INN-  
side of the shunt resistor. To minimize offset and improve accuracy, route the ground connection as a separate  
trace that connects directly to the shunt resistor rather than shorting GND1 to INN directly at the input to the  
device.  
8.5.2 Layout Example  
Clearance area, to be kept free of  
any conductive materials.  
C2  
C1  
C4  
C3  
INP  
R2  
R1  
to RC filter / ADC  
to RC filter / ADC  
OUTP  
OUTN  
GND2  
AMC1400-Q1  
INN  
GND1  
Top Metal  
Inner or Bottom Layer Metal  
Via  
8-6. Recommended Layout of the AMC1400-Q1  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: AMC1400-Q1  
 
 
AMC1400-Q1  
ZHCSPH8 JULY 2022  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 Documentation Support  
9.1.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, Isolation Glossary application note  
Texas Instruments, Semiconductor and IC Package Thermal Metrics application note  
Texas Instruments, ISO72x Digital Isolator Magnetic-Field Immunity application note  
Texas Instruments, TLV900x-Q1 Low-Power RRIO 1-MHz Automotive Operational Amplifier data sheet  
Texas Instruments, TPS763xx-Q1 Low-Power, 150-mA, Low-Dropout Linear Regulators data sheet  
Texas Instrument, SN6501-Q1 Transformer Driver for Isolated Power Supplies data sheet  
Texas Instruments, 18-Bit, 1-MSPS Data Acquisition Block (DAQ) Optimized for Lowest Distortion and Noise  
reference guide  
Texas Instruments, 18-Bit, 1-MSPS Data Acquisition Block (DAQ) Optimized for Lowest Power reference  
guide  
Texas Instruments, Isolated Amplifier Voltage Sensing Excel Calculator design tool  
Texas Instruments, Best in Class Radiated Emissions EMI Performance with the AMC1300B-Q1 Isolated  
Amplifier technical white paper  
9.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
9.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: AMC1400-Q1  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Sep-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
AMC1400QDWLRQ1  
ACTIVE  
SOIC  
DWL  
8
500  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 125  
1400Q  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
DWL0008A  
SOIC - 4.034 mm max height  
S
C
A
L
E
1
.
2
5
0
PLASTIC SMALL OUTLINE  
C
SEATING PLANE  
17.4  
17.1  
A
PIN 1 ID AREA  
0.1 C  
6X 1.27  
8
5
1
6.5  
6.3  
NOTE 3  
2X  
3.81  
4
0.51  
0.31  
8X  
(3.634)  
14.1  
13.9  
NOTE 4  
B
0.25  
A B C  
4.034 MAX  
0.33  
0.13  
TYP  
SEE DETAIL A  
(1.625)  
0.25  
GAGE PLANE  
0.3  
0.1  
1.1  
0.6  
0 -8  
DETAIL A  
TYPICAL  
4224743/A 01/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0,15 mm per side.  
4. This dimension does not include interlead flash.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DWL0008A  
SOIC - 4.034 mm max height  
PLASTIC SMALL OUTLINE  
(14.25)  
SYMM  
(14.6)  
8X (1.875)  
8X (2)  
SYMM  
8X (0.6)  
8X (0.6)  
1
1
4
8
5
8
5
SYMM  
SYMM  
4
(R0.05)  
TYP  
(R0.05)  
TYP  
6X  
(1.27)  
6X  
(1.27)  
(16.475)  
(16.25)  
LAND PATTERN EXAMPLE  
PCB CLEARANCE & CREEPAGE OPTIMIZED  
EXPOSED METAL SHOWN  
SCALE:3X  
LAND PATTERN EXAMPLE  
STANDARD  
EXPOSED METAL SHOWN  
SCALE:3X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4224743/A 01/2019  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DWL0008A  
SOIC - 4.034 mm max height  
PLASTIC SMALL OUTLINE  
8X (2)  
SYMM  
1
4
8
SYMM  
8X (0.6)  
5
6X (1.27)  
(16.25)  
SOLDER PASTE EXAMPLE  
STANDARD  
BASED ON 0.125 mm THICK STENCIL  
SCALE:4X  
SYMM  
8X (1.875)  
8X (0.6)  
1
4
8
5
SYMM  
6X (1.27)  
(16.475)  
SOLDER PASTE EXAMPLE  
PCB CLEARANCE & CREEPAGE OPTIMIZED  
BASED ON 0.125 mm THICK STENCIL  
SCALE:4X  
4224743/A 01/2019  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

AMC1400DWLR

具有高 CMTI 的 ±250mV 输入、精密电压检测增强型隔离式放大器 | DWL | 8 | -40 to 125
TI

AMC1400QDWLRQ1

具有高 CMTI 的汽车类 ±250mV 输入、精密电压检测增强型隔离式放大器 | DWL | 8 | -40 to 125
TI

AMC1411

具有高 CMTI 的 2V 输入、精密电压检测增强型隔离式放大器
TI

AMC1411-Q1

具有高 CMTI 的汽车类 2V 输入、精密电压检测增强型隔离式放大器
TI

AMC1411DWLR

具有高 CMTI 的 2V 输入、精密电压检测增强型隔离式放大器

| DWL | 8 | -40 to 125
TI

AMC1411QDWLRQ1

具有高 CMTI 的汽车类 2V 输入、精密电压检测增强型隔离式放大器 | DWL | 8 | -40 to 125
TI

AMC142SMA

Industrial Control IC
ETC

AMC151

Cascadable Thin Amplifiers, 12 dB Gain 5500 MHz
ETC

AMC152K50BC

Film Capacitor, Polyester, 50V, 10% +Tol, 10% -Tol, 0.0015uF, Through Hole Mount
KEMET

AMC152K50BCK

Film Capacitor, Polyester, 50V, 10% +Tol, 10% -Tol, 0.0015uF, Through Hole Mount
KEMET

AMC153J50AC

CAPACITOR, METALLIZED FILM, POLYESTER, 50V, 0.015uF, THROUGH HOLE MOUNT
KEMET

AMC153K50BCK

Film Capacitor, Polyester, 50V, 10% +Tol, 10% -Tol, 0.015uF, Through Hole Mount
KEMET