AM3359BZCZA80 [TI]

Sitara 处理器:Arm Cortex-A8、EtherCAT、3D、PRU-ICSS、CAN | ZCZ | 324 | -40 to 105;
AM3359BZCZA80
型号: AM3359BZCZA80
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Sitara 处理器:Arm Cortex-A8、EtherCAT、3D、PRU-ICSS、CAN | ZCZ | 324 | -40 to 105

时钟 外围集成电路
文件: 总162页 (文件大小:1837K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
AM335x ARM® Cortex-A8 Microprocessors (MPUs)  
Check for Samples: AM3359, AM3358  
1 Device Summary  
1.1 Features  
1234567  
256KB of L2 Cache with Error Correcting  
Highlights  
500-MHz, 600-MHz, or 720-MHz ARM®  
Cortex-A8 32-Bit RISC Microprocessor  
Code (ECC)  
176KB of On-Chip Boot ROM  
64KB of Dedicated RAM  
Emulation/Debug  
NEONSIMD Coprocessor  
32KB/32KB of L1 Instruction/Data Cache  
with Single-Error Detection (parity)  
JTAG  
256KB of L2 Cache with Error Correcting  
Code (ECC)  
Embedded Trace Module  
Embedded Trace Buffer  
mDDR(LPDDR)/DDR2/DDR3 Support  
Interrupt Controller (up to 128 interrupt  
General-Purpose Memory Support (NAND,  
NOR, SRAM, etc.) Supporting Up to 16-bit  
ECC  
requests)  
On-Chip Memory (Shared L3 RAM)  
64 KB of General-Purpose On-Chip Memory  
SGX530 Graphics Engine  
Controller (OCMC) RAM  
Programmable Real-Time Unit Subsystem  
Real-Time Clock (RTC)  
Up to Two USB 2.0 High-Speed OTG Ports  
with Integrated PHY  
10/100/1000 Ethernet Switch Supporting Up  
to Two Ports  
Two Controller Area Network Ports (CAN)  
Six UARTs, Two McASPs, Two McSPI, and  
Two I2C Ports  
12-Bit Successive Approximation Register  
(SAR) ADC  
Up to Three 32-Bit Enhanced Capture  
Modules (eCAP)  
Up to Three Enhanced High-Resolution PWM  
Modules (eHRPWM)  
Crypto Hardware Accelerators (AES, SHA,  
Accessible to all Masters  
Supports Retention for Fast Wake-Up  
External Memory Interfaces (EMIF)  
mDDR/DDR2/DDR3 Controller:  
mDDR: 200-MHz Clock (400-MHz Data  
Rate)  
DDR2: 266-MHz Clock (532-MHz Data  
Rate)  
DDR3: 303-MHz Clock (606-MHz Data  
Rate)  
16-Bit Data Bus  
1 GB of Total Addressable Space  
Supports One x16, Two x8, or Four x4  
Memory Device Configurations  
Supports Retention for Fast Wake-Up  
General-Purpose Memory Controller (GPMC)  
PKA, RNG)  
Flexible 8/16-Bit Asynchronous Memory  
Interface with Up to seven Chip Selects  
(NAND, NOR, Muxed-NOR, SRAM, etc.)  
MPU Subsystem  
500-MHz, 600-MHz, or 720-MHz ARM®  
Cortex-A8 32-Bit RISC Microprocessor  
Uses BCH Code to Support 4-Bit, 8-Bit, or  
16-Bit ECC  
Uses Hamming Code to Support 1-Bit  
ECC  
NEONSIMD Coprocessor  
32KB of L1 Instruction Cache with  
Single-Error Detection (parity)  
32KB of L1 Data Cache with Single  
Error Locator Module (ELM)  
Used in Conjunction with the GPMC to  
Locate Addresses of Data Errors from  
Error-Detection (parity)  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
SmartReflex, DSP/BIOS, XDS are trademarks of Texas Instruments.  
Cortex, NEON are trademarks of ARM Ltd or its subsidiaries.  
ARM is a registered trademark of ARM Ltd or its subsidiaries.  
EtherCAT is a registered trademark of EtherCAT Technology Group.  
POWERVR is a registered trademark of Imagination Technologies Limited.  
All other trademarks are the property of their respective owners.  
2
3
4
5
6
7
PRODUCT PREVIEW information concerns products in the formative or design phase of  
development. Characteristic data and other specifications are design goals. Texas  
Instruments reserves the right to change or discontinue these products without notice.  
ProdPrev  
Copyright © 2011, Texas Instruments Incorporated  
English Data Sheet: SPRS717  
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
Syndrome Polynomials Generated Using  
a BCH Algorithm  
LCD Pixel Clock)  
Power  
Supports 4-Bit, 8-Bit, and 16-Bit per  
512-byte Block Error Location Based on  
BCH Algorithms  
Two Non-Switchable Power Domains  
(Real-Time Clock [RTC], Wake-Up Logic  
[WAKE-UP])  
Three Switchable Power Somains (MPU  
Subsystem [MPU], SGX530 [GFX],  
Peripherals and Infrastructure [PER])  
Implements SmartReflexClass 2B for  
Core Voltage Scaling Based On Die  
Temperature, Process Variation and  
Performance (Adaptive Voltage Scaling  
[AVS])  
Dynamic Voltage Frequency Scaling  
(DVFS)  
Programmable Real-Time Unit Subsystem  
(PRUSS)  
Two Programmable Real-Time Units (PRUs)  
32-Bit Load/Store RISC Processor  
Capable of Running at 200 MHz  
8 KB Instruction RAM with Single-Error  
Detection (parity)  
8 KB Data RAM with Single-Error  
Detection (parity)  
Single-Cycle 32-Bit Multiplier with 64-Bit  
Accumulator  
Real-Time Clock (RTC)  
Real-Time Date (Day/Month/Year/Day of  
Week) and Time (Hours/Minutes/Seconds)  
Information  
Enhanced GPIO Module Provides  
Shift-In/Out Support and Parallel Latch on  
External Signal  
Internal 32.768-kHz Oscillator, RTC Logic  
12 KB of Shared RAM with Single-Error  
and 1.1-V Internal LDO  
Detection (parity)  
Independent Power-on-Reset  
Three 120-byte Register Banks Accessible  
(RTC_PWRONRSTn) Input  
by Each PRU  
Dedicated Input Pin (EXT_WAKEUP) for  
Interrupt Controller Module (INTC) for  
External Wake Events  
Handling System Input Events  
Programmable Alarm Can be Used to  
Generate Internal Interrupts to the PRCM (for  
Wake Up) or Cortex-A8 (for Event  
Notification)  
Local Interconnect Bus for Connecting  
Internal and External Masters to the  
Resources Inside the PRUSS  
Peripherals Inside the PRUSS  
Programmable alarm Can be Used with  
External Output (PMIC_POWER_EN) to  
Enable the Power Management IC to Restore  
Non-RTC Power Domains  
One UART Port with Flow Control Pins,  
Supports Up to 12 Mbps  
Two MII Ethernet Ports that Support  
Industrial Ethernet, such as EtherCAT®  
Peripherals  
One MDIO Port  
One Enhanced Capture (eCAP) Module  
Up to Two USB 2.0 High-Speed OTG Ports  
with Integrated PHY  
Up to Two Industrial Gigabit Ethernet MACs  
Power Reset and Clock Management (PRCM)  
Module  
(10/100/1000 Mbps)  
Controls the entry and Exit of Stand-By and  
Integrated Switch  
Each MAC Supports MII/RMII/RGMII and  
MDIO Interfaces  
Deep-Sleep Modes  
Responsible for Sleep Sequencing, Power  
Domain Switch-Off Sequencing, Wake-Up  
Sequencing and Power Domain Switch-On  
Sequencing  
Ethernet MACs and Switch Can Operate  
Independent of Other Functions  
IEEE 1588 Precision Time Protocol (PTP)  
Clocks  
Up to Two Controller-Area Network (CAN)  
Integrated 15-35 MHz High-Frequency  
Oscillator Used to Generate a Reference  
Clock for Various System and Peripheral  
Clocks  
Supports Individual Clock Enable/Disable  
Control for Subsystems and Peripherals  
to Facilitate Reduced Power  
Consumption  
Five ADPLLs to Generate System Clocks  
(MPU Subsystem, DDR Interface, USB  
and Peripherals [MMC/SD, UART, SPI,  
I2C, etc.], L3, L4, Ethernet, GFX [SGX530],  
Ports  
Supports CAN Version 2 Parts A and B  
Up to Two Multichannel Audio Serial Ports  
(McASP)  
Transmit/Receive Clocks Up to 50 MHz  
Up to Four Serial Data Pins per McASP  
Port with Independent TX/RX Clocks  
Supports Time Division Multiplexing  
(TDM), Inter-IC Sound (I2S), and similar  
Formats  
2
Device Summary  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
Supports Digital Audio Interface  
Transmission (SPDIF, IEC60958-1, and  
AES-3 Formats)  
FIFO Buffers for Transmit and Receive  
(256 bytes)  
anti-Aliasing  
Fully Virtualized Memory Addressing for  
OS Operation in a Unified Memory  
Architecture  
LCD Controller  
Up to Six UARTs  
Up to 24-Bits Data Output; 8-Bits per  
All UARTs Support IrDA, CIR and RTS,  
Pixel (RGB)  
CTS Flow Control  
UART1 Supports Full Modem control  
Up to Two Master/Slave McSPI serial  
Up to WXGA (1366x768) Resolution  
Integrated LCD Interface Display Driver  
(LIDD) Controller  
Interfaces  
Integrated Raster Controller  
Up to Two Chip Selects  
Up to 48 MHz  
Integrated DMA Engine to Pull Data from  
the External Frame Buffer without  
Burdening the Processor via Interrupts or  
a Firmware Timer  
512-Word Deep Internal FIFO  
Supported Display Types:  
Up to Three MMC/SD/SDIO Ports  
1-Bit, 4-Bit and 8-Bit MMC/SD/SDIO  
Modes  
MMCSD0 has dedicated Power Rail for  
1.8-V or 3.3-V Operation  
Character Displays - Uses LCD  
Interface Display Driver (LIDD)  
Controller to Program these Displays  
Up to 48-MHz Data Transfer Rate  
Supports Card Detect and Write Protect  
Complies with MMC4.3 and SD/SDIO 2.0  
Specifications  
Passive Matrix LCD Displays - Uses  
LCD Raster Display Controller to  
Provide Timing and Data for Constant  
Graphics Refresh to a Passive Display  
Up to Three I2C Master/Slave Interfaces  
Standard Mode (up to 100 kHz)  
Fast Mode (up to 400 kHz)  
Active Matrix LCD Displays - Uses  
External Frame Buffer Space and the  
Internal DMA Engine to Drive  
Up to Four Banks of General-Purpose IO  
(GPIO)  
Streaming Data to the Panel. Maximum  
Resolution is WXGA (1366x768) at  
60-Hz Refresh Rate  
32 GPIOs per Bank (Multiplexed with  
Other Functional Pins)  
GPIOs Can be Used as Interrupt Inputs  
(Up to Two Interrupt Inputs per Bank)  
12-Bit Successive Approximation Register  
(SAR) ADC  
Up to Three External DMA Event Inputs That  
Can Also be Used as Interrupt Inputs  
Seven 32-Bit General-Purpose Timers  
100K Samples per Second  
Input Can be Selected from any of the  
Eight Analog Inputs Multiplexed Through  
an 8:1 analog Switch  
Can be Configured to Operate as a 4-wire,  
5-wire, or 8-wire Resistive Touch Screen  
Controller (TSC) Interface  
DMTIMER1 is a 1-ms Timer Used for  
Operating System (OS) Ticks  
DMTIMER4 - DMTIMER7 are Pinned Out  
One Watchdog Timer  
SGX530 3D Graphics Engine  
Up to Three 32-Bit Enhanced Capture  
Modules (eCAP)  
Tile-Based Architecture Delivering Up to  
20 MPloy/sec  
Configurable as Three Capture Inputs or  
Three Auxiliary PWM Outputs  
Universal Scalable Shader Engine is a  
Multi-Threaded Engine Incorporating  
Pixel and Vertex Shader Functionality  
Up to Three Enhanced High-Resolution PWM  
Modules (eHRPWM)  
Dedicated 16-Bit Time-Base Counter with  
Time and Frequency Controls  
Configurable as Six Single-Ended, Six  
Dual-Edge Symmetric, or Three  
Dual-Edge Asymmetric Outputs  
Advanced Shader Feature Set in Excess  
of Microsoft VS3.0, PS3.0 and OGL2.0  
Industry Standard API Support of  
Direct3D Mobile, OGL-ES 1.1 and 2.0,  
OpenVG 1.0, and OpenMax  
Up to Three 32-Bit Enhanced Quadrature  
Pulse Encoder (eQPE) Modules  
Device Identification  
Fine-Grained Task Switching, Load  
Balancing and Power Management  
Advanced Geometry DMA Driven  
Operation for Minimum CPU Interaction  
Programmable High-Quality Image  
Contains Electrical fuse Farm (FuseFarm) of  
Which Some Bits are Factory Programmable  
Copyright © 2011, Texas Instruments Incorporated  
Device Summary  
3
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
Production ID  
Device Part Number (Unique JTAG ID)  
Device Revision (readable by Host ARM)  
Integrates Hardware-Based Mailbox for IPC  
and Spinlock for Process Synchronization  
Between the Cortex-A8, PRCM, and Each  
PRU  
Debug Interface Support  
Mailbox Registers that Generate  
Interrupts  
JTAG/cJTAG for ARM (Cortex-A8 and  
PRCM), PRU Debug  
Embedded Trace Module (ETM) and  
Four Initiators (Cortex-A8, PRCM,  
PRU0, PRU1)  
Embedded Trace Buffer (ETB)  
Spinlock has 128 Software-Assigned  
Lock Registers  
Supports Device Boundary Scan  
Supports IEEE1500  
DMA  
Security  
Crypto Hardware accelerators (AES, SHA,  
PKA, RNG)  
Boot Modes  
On-Chip Enhanced DMA Controller (EDMA)  
has Three Third-Party Transfer Controllers  
(TPTC) and One Third-Party Channel  
Boot Mode is Selected via Boot  
Controller (TPCC), Which Supports Up to 64  
Programmable Logical Channels and Eight  
QDMA Channels. EDMA is Used for:  
Configuration Pins Latched on the Rising  
Edge of the PWRONRSTn Reset Input Pin  
Packages:  
Transfers to/from On-Chip Memories  
298-Pin S-PBGA-N298 package  
(ZCE Suffix), 0.65-mm Ball Pitch  
324-Pin S-PBGA-N324 package  
Transfers to/from External Storage (EMIF,  
General-Purpose Memory Controller,  
Slave Peripherals)  
(ZCZ Suffix), 0.80-mm Ball Pitch  
Inter-Processor Communication (IPC)  
1.2 Applications  
Gaming Peripherals  
Home and Industrial Automation  
Consumer Medical Appliances  
Printers  
Smart Toll Systems  
Connected Vending Machines  
Weighing Scales  
Educational Consoles  
Advanced Toys  
1.3 Description  
The AM335x microprocessors based on the ARM Cortex-A8 are enhanced with image, graphics  
processing, peripherals and industrial interface options such as etherCAT and Profibus. The device  
supports the following high-level operating systems (OSs), that are available free of charge from TI:  
Linux®  
Windows® CE  
Android™  
The AM335x microrocessor contains these subsystems:  
Microprocessor unit (MPU) subsystem based on the ARM Cortex-A8 microprocessor.  
POWERVR® SGX Graphics Accelerator subsystem for 3D graphics acceleration to support display and  
gaming effects.  
Programmable Real-Time Unit Subsystem (PRUSS) enables the user to create a variety of digital  
resources beyond native peripherals of the device. In addition, the PRUSS is separate from the ARM  
core. This allows independent operation and clocking to give the device greater flexibility in complex  
system solutions.  
Note: The subsystem available on this device is the next-generation PRUSS (PRUSSv2).  
4
Device Summary  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
1.4 Functional Block Diagram  
The AM335x microrocessor functional block diagram is shown in Figure 1-1.  
Display  
Graphics  
ARM  
Cortex-A8  
500/600/720 MHz(A)(B)(C)  
PowerVR  
SGX  
3D GFX  
24-bit LCD controller (WXGA)  
Touch screen controller  
PRU subsystem  
Crypto  
32K/32K L1 w/SED  
256K L2 w/ECC  
12K RAM  
w/SED  
PRU x2  
200 MHz  
64K  
shared  
RAM  
176K ROM 64K RAM  
8K/8K w/SED  
Peripherals  
L3/L4 interconnect  
Serial  
System  
Parallel  
eCAP x3  
UART x6  
SPI x2  
I2C x3  
eDMA  
Timers x7  
WDT  
MMC/SD/  
SDIO x3  
ADC (8 channel)  
12-bit SAR  
GPIO  
JTAG /  
ETM / ETB  
McASP x2  
(4 channel)  
RTC  
eHRPWM x3  
eQEP x3  
PRCM  
Crystal  
Oscillator x2  
CAN x2  
(Ver. 2 A and B)  
USB 2.0 HS  
OTG + PHY x2  
Memory interface  
LPDDR1 / DDR2 / DDR3  
(16-bit, 200 / 266 / 303 MHz)  
EMAC (2-port) 10M/100M/1G  
IEEE1588, and switch  
(MII, RMII, RGMII)  
NAND/NOR (16-bit ECC)  
A. Nominal voltage condition (1.1 V); available on ZCE and ZCZ packages.  
B. Overdrive voltage condition (1.2 V); only available on ZCZ package.  
C. Turbo voltage condition (1.26 V); only available on ZCZ package.  
Figure 1-1. AM335x Functional Block Diagram  
Copyright © 2011, Texas Instruments Incorporated  
Device Summary  
5
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
1
Device Summary ........................................ 1  
1.1 Features .............................................. 1  
1.2 Applications .......................................... 4  
1.3 Description ........................................... 4  
1.4 Functional Block Diagram ............................ 5  
Terminal Description ................................... 7  
2.1 Pin Assignments ..................................... 7  
2.2 Ball Characteristics ................................. 15  
2.3 Signal Description .................................. 47  
Device Operating Conditions ....................... 74  
3.1 Absolute Maximum Ratings ........................ 74  
3.2 Recommended Operating Conditions .............. 77  
5
Peripheral Information and Timings ............... 99  
5.1 Parameter Information .............................. 99  
5.2  
Recommended Clock and Control Signal Transition  
Behavior ............................................ 99  
Ethernet Media Access Controller (EMAC)/Switch  
..................................................... 100  
5.3  
5.4 External Memory Interfaces ....................... 107  
5.5 LCD Controller (LCDC) ............................ 129  
2
3
5.6  
mDDR(LPDDR)/DDR2/DDR3 Memory Controller  
..................................................... 145  
6
7
Device and Documentation Support ............. 155  
6.1 Device Support .................................... 155  
6.2 Documentation Support ........................... 156  
Mechanical Packaging and Orderable  
Information ............................................ 158  
3.3 DC Electrical Characteristics ....................... 80  
3.4 External Capacitors ................................. 84  
Power and Clocking ................................... 88  
4.1 Power Supplies ..................................... 88  
4.2 Clock Specifications ................................ 93  
7.1  
Thermal Data for ZCE and ZCZ Packages ....... 158  
4
7.2 Via Channel ....................................... 158  
7.3 Packaging Information ............................ 158  
6
Contents  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
2 Terminal Description  
2.1 Pin Assignments  
NOTE  
The terms "ball", "pin", and "terminal" are used interchangeably throughout the document. An  
attempt is made to use "ball" only when referring to the physical package.  
2.1.1 ZCE Package Pin Maps (Top View)  
The pin maps below show the pin assignments on the ZCE package in three sections (left, middle, and  
right).  
Copyright © 2011, Texas Instruments Incorporated  
Terminal Description  
7
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
Table 2-1. ZCE Pin Map [Section Left - Top View]  
A
VSS  
B
C
UART1_TXD  
I2C0_SDA  
D
UART1_RTSn  
UART1_RXD  
XXXX  
E
UART0_RXD  
ECAP0_IN_PWM0_OUT  
UART1_CTSn  
XXXX  
F
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
I2C0_SCL  
SPI0_D0  
UART0_CTSn  
UART0_RTSn  
UART0_TXD  
VDDS  
SPI0_SCLK  
SPI0_CS0  
WARMRSTn  
EMU0  
SPI0_D1  
EXTINTn  
SPI0_CS1  
XDMA_EVENT_INTR1  
TCK  
XXXX  
XXXX  
XDMA_EVENT_INTR0  
TMS  
XXXX  
PWRONRSTn  
XXXX  
XXXX  
TDO  
EMU1  
VDDSHV6  
VSS  
TRSTn  
TDI  
CAP_VBB_MPU  
VDDS_SRAM_MPU_BB  
XXXX  
CAP_VDD_SRAM_MPU  
VDDS  
VDDSHV6  
VDDSHV6  
VDDSHV6  
VSS  
AIN7  
AIN5  
VSS  
AIN1  
AIN3  
XXXX  
VDD_CORE  
XXXX  
AIN6  
CAP_VDD_SRAM_CORE  
VREFN  
VDDS_SRAM_CORE_BG  
XXXX  
VSS  
VREFP  
XXXX  
VSS  
VDD_CORE  
VSS  
8
AIN2  
AIN0  
AIN4  
VSSA_ADC  
VDDA_ADC  
CAP_VDD_RTC  
XXXX  
VSS  
7
RTC_KALDO_ENn  
RTC_XTALIN  
RTC_XTALOUT  
DDR_WEn  
DDR_BA0  
DDR_A5  
VSS  
RTC_PWRONRSTn  
RESERVED  
EXT_WAKEUP  
DDR_BA2  
DDR_A3  
PMIC_POWER_EN  
VDDS_RTC  
VDDS_PLL_DDR  
XXXX  
VSS  
VSS  
6
XXXX  
VSS  
5
DDR_A4  
XXXX  
XXXX  
4
XXXX  
DDR_A12  
DDR_A0  
DDR_RASn  
DDR_CASn  
3
DDR_A8  
XXXX  
DDR_A15  
DDR_A10  
DDR_BA1  
2
DDR_A9  
DDR_CK  
DDR_A7  
DDR_A2  
1
DDR_A6  
DDR_CKn  
Pin map section location  
Left  
8
Terminal Description  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
Table 2-2. ZCE Pin Map [Section Middle - Top View]  
G
H
J
K
MII1_RX_ER  
RMII1_REF_CLK  
MII1_TX_EN  
VDD_CORE  
VDD_CORE  
XXXX  
L
M
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
MMC0_CLK  
MMC0_DAT0  
MMC0_CMD  
USB0_DRVVBUS  
VDDSHV4  
XXXX  
MMC0_DAT3  
MMC0_DAT2  
MMC0_DAT1  
VDDS_PLL_MPU  
VDDSHV4  
VDDSHV4  
VDD_CORE  
VDD_CORE  
VSS  
MII1_COL  
MII1_CRS  
XXXX  
MII1_RX_DV  
MII1_TXD0  
XXXX  
MII1_RX_CLK  
MII1_TXD1  
MII1_TXD3  
VDDS  
XXXX  
XXXX  
VSS  
VSS  
VDDSHV5  
VDDSHV5  
VDD_CORE  
VDD_CORE  
VSS  
VSS  
VSS  
XXXX  
VDD_CORE  
VDD_CORE  
VSS  
XXXX  
VDD_CORE  
VDD_CORE  
VSS  
VSS  
VSS  
VDD_CORE  
XXXX  
VSS  
VSS  
XXXX  
XXXX  
XXXX  
VSS  
VDD_CORE  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
8
VDD_CORE  
VDD_CORE  
VDDS_DDR  
VDDS_DDR  
DDR_VREF  
DDR_A14  
DDR_CSn0  
DDR_A13  
VDD_CORE  
VDD_CORE  
VSS  
VSS  
VDD_CORE  
VDD_CORE  
VSS  
VDD_CORE  
VDD_CORE  
VDDS_DDR  
VDDS_DDR  
DDR_D11  
DDR_D10  
DDR_D12  
DDR_D13  
7
XXXX  
XXXX  
6
XXXX  
XXXX  
5
VDDS_DDR  
DDR_A11  
DDR_CKE  
DDR_RESETn  
DDR_ODT  
VSS  
VDDS_DDR  
VDDS_DDR  
DDR_DQM1  
DDR_D8  
DDR_D9  
VSS  
4
XXXX  
XXXX  
3
XXXX  
XXXX  
2
DDR_A1  
DDR_VTP  
DDR_DQSn1  
DDR_DQS1  
1
Pin map section location  
Middle  
Copyright © 2011, Texas Instruments Incorporated  
Terminal Description  
9
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
Table 2-3. ZCE Pin Map [Section Right - Top View]  
N
P
R
MDC  
T
USB0_VBUS  
USB0_CE  
XXXX  
U
V
W
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
MII1_TX_CLK  
MII1_TXD2  
MII1_RXD3  
MII1_RXD2  
VDDSHV5  
XXXX  
MII1_RXD1  
MII1_RXD0  
MDIO  
USB0_DP  
USB0_ID  
VSS  
VDDA3P3V_USB0  
VDDA1P8V_USB0  
XXXX  
USB0_DM  
GPMC_CSn3  
XXXX  
GPMC_BEn1  
GPMC_AD15  
GPMC_CLK  
GPMC_AD8  
GPMC_CSn1  
GPMC_AD4  
GPMC_AD2  
VSS_OSC  
GPMC_WPn  
GPMC_AD14  
GPMC_AD9  
GPMC_AD7  
GPMC_AD5  
GPMC_AD3  
XTALOUT  
VSSA_USB  
XXXX  
XXXX  
GPMC_WAIT0  
XXXX  
XXXX  
GPMC_CSn2  
GPMC_AD6  
GPMC_AD12  
GPMC_AD11  
XXXX  
VSS  
VDDS  
XXXX  
VSS  
VDDSHV1  
VDDSHV1  
VDDSHV1  
VSS  
GPMC_AD13  
GPMC_AD10  
XXXX  
VSS  
VSS  
VDD_CORE  
XXXX  
VDD_CORE  
XXXX  
XTALIN  
VSS  
VDDS_OSC  
XXXX  
GPMC_ADVn_ALE  
GPMC_AD1  
GPMC_BEn0_CLE  
LCD_DATA15  
LCD_DATA12  
LCD_DATA11  
LCD_DATA8  
LCD_DATA6  
LCD_DATA3  
LCD_DATA2  
GPMC_AD0  
GPMC_OEn_REn  
GPMC_CSn0  
LCD_AC_BIAS_EN  
LCD_DATA14  
LCD_PCLK  
VDD_CORE  
VSS  
VDD_CORE  
VSS  
VDDSHV1  
VDDSHV1  
VDDSHV6  
XXXX  
XXXX  
8
VDDS_PLL_CORE_LCD  
LCD_HSYNC  
VDDS  
GPMC_WEn  
LCD_VSYNC  
LCD_DATA13  
LCD_DATA10  
XXXX  
7
XXXX  
VSS  
6
XXXX  
VDDSHV6  
XXXX  
5
VDDS_DDR  
DDR_D0  
DDR_DQM0  
DDR_D14  
DDR_D15  
VPP  
XXXX  
4
DDR_D1  
DDR_D4  
DDR_D2  
DDR_D3  
XXXX  
XXXX  
LCD_DATA9  
LCD_DATA5  
LCD_DATA4  
VSS  
3
DDR_D7  
XXXX  
LCD_DATA7  
LCD_DATA1  
LCD_DATA0  
2
DDR_DQSn0  
DDR_DQS0  
DDR_D6  
DDR_D5  
1
Pin map section location  
Right  
10  
Terminal Description  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
2.1.2 ZCZ Package Pin Maps (Top View)  
The pin maps below show the pin assignments on the ZCZ package in three sections (left, middle, and  
right).  
Copyright © 2011, Texas Instruments Incorporated  
Terminal Description  
11  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
Table 2-4. ZCZ Pin Map [Section Left - Top View]  
A
VSS  
B
C
ECAP0_IN_PWM0_OUT  
I2C0_SDA  
I2C0_SCL  
D
UART1_CTSn  
UART1_RTSn  
UART1_RXD  
E
UART0_CTSn  
UART0_RTSn  
UART0_TXD  
UART0_RXD  
VDDS  
F
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
EXTINTn  
SPI0_D0  
MMC0_DAT2  
MMC0_DAT3  
USB0_DRVVBUS  
USB1_DRVVBUS  
VDDSHV6  
VDD_MPU  
VDD_MPU  
VDD_MPU  
VDD_MPU  
VDDS  
SPI0_SCLK  
SPI0_CS0  
XDMA_EVENT_INTR0  
MCASP0_AHCLKX  
MCASP0_ACLKX  
TCK  
SPI0_D1  
PWRONRSTn  
EMU1  
SPI0_CS1  
EMU0  
UART1_TXD  
XDMA_EVENT_INTR1  
MCASP0_AXR1  
MCASP0_AXR0  
CAP_VDD_SRAM_MPU  
VDDS_SRAM_MPU_BB  
CAP_VDD_SRAM_CORE  
VDDA_ADC  
MCASP0_FSX  
MCASP0_ACLKR  
TDI  
MCASP0_FSR  
MCASP0_AHCLKR  
TMS  
VDDSHV6  
VDDSHV6  
TDO  
VDDSHV6  
WARMRSTn  
VREFN  
TRSTn  
CAP_VBB_MPU  
AIN7  
VDDSHV6  
VREFP  
VDDS_SRAM_CORE_BG  
VSSA_ADC  
VDDS_PLL_DDR  
VDDS  
8
AIN6  
AIN5  
AIN4  
VSS  
7
AIN3  
AIN2  
AIN1  
VDDS_RTC  
VDD_CORE  
VDD_CORE  
VDDS_DDR  
DDR_A10  
6
RTC_XTALIN  
VSS_RTC  
RTC_XTALOUT  
RESERVED  
VDD_MPU_MON  
VSS  
AIN0  
PMIC_POWER_EN  
EXT_WAKEUP  
DDR_BA0  
CAP_VDD_RTC  
DDR_A6  
5
RTC_PWRONRSTn  
RTC_KALDO_ENn  
DDR_BA2  
DDR_WEn  
DDR_A5  
VDDS_DDR  
DDR_A2  
4
DDR_A8  
3
DDR_A3  
DDR_A15  
DDR_A12  
DDR_A0  
2
DDR_A4  
DDR_CK  
DDR_A7  
DDR_A11  
1
DDR_A9  
DDR_CKn  
DDR_BA1  
DDR_CASn  
Pin map section location  
Left  
12  
Terminal Description  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
Table 2-5. ZCZ Pin Map [Section Middle - Top View]  
G
H
RMII1_REF_CLK  
MII1_CRS  
MII1_COL  
VDDS_PLL_MPU  
VDDSHV4  
VDD_MPU  
VSS  
J
K
L
M
MDC  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
MMC0_CMD  
MMC0_CLK  
MMC0_DAT0  
MMC0_DAT1  
VDDSHV6  
VDD_MPU  
VSS  
MII1_TXD3  
MII1_RX_DV  
MII1_TX_EN  
MII1_RX_ER  
VDDSHV4  
VDD_MPU  
VDD_CORE  
VSS  
MII1_TX_CLK  
MII1_TXD0  
MII1_TXD1  
MII1_TXD2  
VDDSHV5  
VDDS  
MII1_RX_CLK  
MII1_RXD3  
MII1_RXD2  
MII1_RXD1  
VDDSHV5  
VSS  
MDIO  
MII1_RXD0  
USB0_CE  
VSSA_USB  
VDD_CORE  
VSS  
VDD_CORE  
VSS  
VSS  
VSS  
VDD_CORE  
VSS  
VSS  
VDD_CORE  
VSS  
VDD_CORE  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD_CORE  
VDD_CORE  
VDD_CORE  
VDD_CORE  
VDDS_DDR  
DDR_D14  
DDR_D13  
DDR_DQSn1  
DDR_DQS1  
VSS  
8
VSS  
VSS  
VSS  
VDD_CORE  
VSS  
VSS  
7
VDD_CORE  
VDD_CORE  
VDDS_DDR  
DDR_RASn  
DDR_CKE  
DDR_RESETn  
DDR_ODT  
VSS  
VSS  
VSS  
6
VSS  
VSS  
VDD_CORE  
VDDS_DDR  
DDR_D12  
DDR_D11  
DDR_D10  
DDR_D9  
VSS  
5
VDDS_DDR  
DDR_A14  
DDR_A13  
DDR_CSn0  
DDR_A1  
VDDS_DDR  
DDR_VREF  
DDR_VTP  
DDR_DQM1  
DDR_D8  
VPP  
4
DDR_D1  
DDR_D0  
DDR_DQM0  
DDR_D15  
3
2
1
Pin map section location  
Middle  
Copyright © 2011, Texas Instruments Incorporated  
Terminal Description  
13  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
Table 2-6. ZCZ Pin Map [Section Right - Top View]  
N
USB0_DM  
USB0_DP  
VDDA1P8V_USB0  
VDDA3P3V_USB0  
VSSA_USB  
VDD_CORE  
VDD_CORE  
VSS  
P
R
USB1_DM  
T
U
V
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
USB1_CE  
USB1_ID  
USB0_ID  
USB0_VBUS  
VDDS  
USB1_VBUS  
GPMC_WAIT0  
GPMC_A10  
GPMC_BEn1  
GPMC_WPn  
GPMC_A9  
VSS  
USB1_DP  
GPMC_A11  
GPMC_A8  
GPMC_A5  
GPMC_A1  
GPMC_AD14  
GPMC_CLK  
VSS_OSC  
VDDA1P8V_USB1  
VDDA3P3V_USB1  
GPMC_A4  
GPMC_A7  
GPMC_A6  
GPMC_A3  
GPMC_A2  
VDDSHV3  
VDDSHV3  
VDDSHV2  
VDDSHV2  
VDDS  
GPMC_A0  
GPMC_CSn3  
GPMC_AD12  
GPMC_AD10  
GPMC_AD9  
GPMC_AD7  
GPMC_AD3  
GPMC_OEn_REn  
GPMC_BEn0_CLE  
LCD_DATA15  
LCD_DATA7  
LCD_DATA6  
LCD_DATA5  
LCD_DATA4  
GPMC_AD15  
GPMC_AD11  
XTALOUT  
GPMC_AD13  
VDDS_OSC  
VSS  
VDDS_PLL_CORE_LCD  
GPMC_AD6  
GPMC_AD8  
GPMC_CSn1  
GPMC_AD4  
GPMC_AD0  
GPMC_WEn  
LCD_VSYNC  
LCD_DATA11  
LCD_DATA10  
LCD_DATA9  
LCD_DATA8  
XTALIN  
VDD_CORE  
VDD_CORE  
VSS  
GPMC_CSn2  
GPMC_AD5  
GPMC_AD1  
GPMC_CSn0  
LCD_PCLK  
LCD_DATA14  
LCD_DATA13  
LCD_DATA12  
VSS  
8
VDDSHV1  
VDDSHV1  
VDDSHV6  
VDDSHV6  
DDR_D7  
GPMC_AD2  
7
GPMC_ADVn_ALE  
LCD_AC_BIAS_EN  
LCD_HSYNC  
LCD_DATA3  
6
VDDS  
5
VDDSHV6  
DDR_D5  
4
3
DDR_D4  
DDR_D6  
LCD_DATA2  
2
DDR_D3  
DDR_DQSn0  
DDR_DQS0  
LCD_DATA1  
1
DDR_D2  
LCD_DATA0  
Pin map section location  
Right  
14  
Terminal Description  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
2.2 Ball Characteristics  
The following table identifies the terminal characteristics signals multiplexed on each terminal for the ZCZ  
and ZCE packages. The table column headers are explained below:  
1. BALL NUMBER: Package ball number(s) associated with each signal(s).  
2. PIN NAME: The name of the package pin or terminal.  
Note: The table does not take into account subsystem terminal multiplexing options.  
3. SIGNAL NAME: The signal name for that pin in the mode being used.  
4. MODE: Multiplexing mode number.  
(a) Mode 0 is the primary mode; this means that when mode 0 is set, the function mapped on the  
terminal corresponds to the name of the terminal. There is always a function mapped on the  
primary mode. Notice that primary mode is not necessarily the default mode.  
Note: The default mode is the mode at the release of the reset; also see the RESET REL. MODE  
column.  
(b) Modes 1 to 7 are possible modes for alternate functions. On each terminal, some modes are  
effectively used for alternate functions, while some modes are not used and do not correspond to a  
functional configuration.  
5. TYPE: Signal direction  
I = Input  
O = Output  
I/O = Input/Output  
D = Open drain  
DS = Differential  
A = Analog  
PWR = Power  
GND = Ground  
Note: In the safe_mode, the buffer is configured in high-impedance.  
6. BALL RESET STATE: The state of the terminal at the power-on reset.  
0: The buffer drives VOL (pulldown/pullup resistor not activated)  
0(PD): The buffer drives VOL with an active pulldown resistor  
1: The buffer drives VOH (pulldown/pullup resistor not activated)  
1(PU): The buffer drives VOH with an active pullup resistor  
Z: High-impedance  
L: High-impedance with an active pulldown resistor  
H : High-impedance with an active pullup resistor  
7. BALL RESET REL. STATE: The state of the terminal at the release of the System Control Module  
reset (PRCM CORE_RSTPWRON_RET reset signal).  
0: The buffer drives VOL (pulldown/pullup resistor not activated)  
0(PD): The buffer drives VOL with an active pulldown resistor  
1: The buffer drives VOH (pulldown/pullup resistor not activated)  
1(PU): The buffer drives VOH with an active pullup resistor  
Z: High-impedance.  
L: High-impedance with an active pulldown resistor  
H : High-impedance with an active pullup resistor  
8. RESET REL. MODE: The mode is automatically configured at the release of the System Control  
Module reset (PRCM CORE_RSTPWRON_RET reset signal).  
9. POWER: The voltage supply that powers the terminals I/O buffers.  
10. HYS: Indicates if the input buffer is with hysteresis.  
11. BUFFER STRENGTH: Drive strength of the associated output buffer.  
12. PULLUP/DOWN TYPE: Denotes the presence of an internal pullup or pulldown resistor. Pullup and  
Copyright © 2011, Texas Instruments Incorporated  
Terminal Description  
15  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
 
 
 
 
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
pulldown resistors can be enabled or disabled via software.  
13. I/O CELL: IO cell information.  
Note: Configuring two terminals to the same input signal is not supported as it can yield unexpected  
results. This can be easily prevented with the proper software configuration.  
16  
Terminal Description  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
ZCE BALL  
SPRS717 OCTOBER 2011  
Table 2-7. Ball Characteristics (ZCE and ZCZ Packages)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCZ BALL  
TYPE BALL RESET  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
Analog  
NUMBER [1] NUMBER [1]  
[5]  
STATE [6]  
B8  
B6  
C7  
B7  
A7  
C8  
B8  
A8  
C9  
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
0
A (13)  
Z
Z
Z
Z
Z
Z
Z
Z
Z
0
0
0
0
0
0
0
0
VDDA_ADC /  
VDDA_ADC  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
50  
NA  
A11  
A8  
0
0
0
0
0
0
0
A (12)  
A (12)  
A (11)  
A (11)  
A
Z
Z
Z
Z
Z
Z
Z
VDDA_ADC /  
VDDA_ADC  
50  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
Analog  
VDDA_ADC /  
VDDA_ADC  
50  
Analog  
B11  
C8  
VDDA_ADC /  
VDDA_ADC  
50  
Analog  
VDDA_ADC /  
VDDA_ADC  
50  
Analog  
B12  
A10  
A12  
VDDA_ADC /  
VDDA_ADC  
NA  
NA  
NA  
Analog  
A
VDDA_ADC /  
VDDA_ADC  
Analog  
A
VDDA_ADC /  
VDDA_ADC  
Analog  
C13  
D6  
C10  
D6  
CAP_VBB_MPU  
CAP_VBB_MPU  
CAP_VDD_RTC  
NA  
NA  
NA  
NA  
0
A
A
A
A
O
CAP_VDD_RTC  
B10  
D13  
F3  
D9  
CAP_VDD_SRAM_CORE  
CAP_VDD_SRAM_MPU  
DDR_A0  
CAP_VDD_SRAM_CORE  
CAP_VDD_SRAM_MPU  
ddr_a0  
D11  
F3  
H
H
H
H
H
H
H
H
H
H
H
H
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
VDDS_DDR /  
VDDS_DDR  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
8
8
8
8
8
8
8
8
8
8
8
8
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
LVCMOS/SSTL/  
HSTL  
J2  
H1  
E4  
C3  
C2  
B1  
D5  
E2  
D4  
C1  
F4  
F2  
DDR_A1  
DDR_A2  
DDR_A3  
DDR_A4  
DDR_A5  
DDR_A6  
DDR_A7  
DDR_A8  
DDR_A9  
DDR_A10  
DDR_A11  
ddr_a1  
ddr_a2  
ddr_a3  
ddr_a4  
ddr_a5  
ddr_a6  
ddr_a7  
ddr_a8  
ddr_a9  
ddr_a10  
ddr_a11  
0
0
0
0
0
0
0
0
0
0
0
O
O
O
O
O
O
O
O
O
O
O
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
D1  
B3  
E5  
A2  
B1  
D2  
C3  
B2  
E2  
G4  
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
Copyright © 2011, Texas Instruments Incorporated  
Terminal Description  
17  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
I/O CELL [13]  
Table 2-7. Ball Characteristics (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCE BALL  
NUMBER [1] NUMBER [1]  
ZCZ BALL  
TYPE BALL RESET  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
DDR_A12  
SIGNAL NAME [3]  
MODE [4]  
[5]  
STATE [6]  
F4  
H1  
H3  
E3  
A3  
E1  
B4  
F1  
C2  
G3  
C1  
H2  
N4  
P4  
P2  
P1  
P3  
T1  
T2  
R3  
K2  
K1  
M3  
E3  
H3  
H4  
D3  
C4  
E1  
B3  
F1  
D2  
G3  
D1  
H2  
M3  
M4  
N1  
N2  
N3  
N4  
P3  
P4  
J1  
ddr_a12  
ddr_a13  
ddr_a14  
ddr_a15  
ddr_ba0  
ddr_ba1  
ddr_ba2  
ddr_casn  
ddr_ck  
0
O
O
O
O
O
O
O
O
O
O
O
O
H
H
H
H
H
H
H
H
L
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
VDDS_DDR /  
VDDS_DDR  
NA  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
LVCMOS/SSTL/  
HSTL  
DDR_A13  
DDR_A14  
DDR_A15  
DDR_BA0  
DDR_BA1  
DDR_BA2  
DDR_CASn  
DDR_CK  
DDR_CKE  
DDR_CKn  
DDR_CSn0  
DDR_D0  
DDR_D1  
DDR_D2  
DDR_D3  
DDR_D4  
DDR_D5  
DDR_D6  
DDR_D7  
DDR_D8  
DDR_D9  
DDR_D10  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
1
1
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
VDDS_DDR /  
VDDS_DDR  
NA  
LVCMOS/SSTL/  
HSTL  
VDDS_DDR /  
VDDS_DDR  
NA  
LVCMOS/SSTL/  
HSTL  
VDDS_DDR /  
VDDS_DDR  
NA  
LVCMOS/SSTL/  
HSTL  
VDDS_DDR /  
VDDS_DDR  
NA  
LVCMOS/SSTL/  
HSTL  
VDDS_DDR /  
VDDS_DDR  
NA  
LVCMOS/SSTL/  
HSTL  
VDDS_DDR /  
VDDS_DDR  
NA  
LVCMOS/SSTL/  
HSTL  
VDDS_DDR /  
VDDS_DDR  
NA  
LVCMOS/SSTL/  
HSTL  
VDDS_DDR /  
VDDS_DDR  
NA  
LVCMOS/SSTL/  
HSTL  
ddr_cke  
ddr_nck  
ddr_csn0  
ddr_d0  
L
VDDS_DDR /  
VDDS_DDR  
NA  
LVCMOS/SSTL/  
HSTL  
H
H
L
VDDS_DDR /  
VDDS_DDR  
NA  
LVCMOS/SSTL/  
HSTL  
VDDS_DDR /  
VDDS_DDR  
NA  
LVCMOS/SSTL/  
HSTL  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VDDS_DDR /  
VDDS_DDR  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
LVCMOS/SSTL/  
HSTL  
ddr_d1  
L
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
ddr_d2  
L
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
ddr_d3  
L
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
ddr_d4  
L
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
ddr_d5  
L
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
ddr_d6  
L
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
ddr_d7  
L
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
ddr_d8  
L
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
K1  
K2  
ddr_d9  
L
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
ddr_d10  
L
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
18  
Terminal Description  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
ZCE BALL  
SPRS717 OCTOBER 2011  
Table 2-7. Ball Characteristics (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCZ BALL  
TYPE BALL RESET  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
DDR_D11  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
NUMBER [1] NUMBER [1]  
[5]  
STATE [6]  
M4  
M2  
M1  
N2  
N1  
N3  
K3  
R1  
L1  
K3  
K4  
L3  
ddr_d11  
ddr_d12  
ddr_d13  
ddr_d14  
ddr_d15  
ddr_dqm0  
ddr_dqm1  
ddr_dqs0  
ddr_dqs1  
ddr_dqsn0  
ddr_dqsn1  
ddr_odt  
0
I/O  
L
L
L
L
L
H
H
L
L
L
L
L
H
L
Z
0
VDDS_DDR /  
VDDS_DDR  
Yes  
Yes  
Yes  
Yes  
Yes  
NA  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
NA  
LVCMOS/SSTL/  
HSTL  
DDR_D12  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
I/O  
I/O  
I/O  
I/O  
O
Z
0
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
DDR_D13  
Z
0
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
L4  
DDR_D14  
Z
0
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
M1  
M2  
J2  
DDR_D15  
Z
0
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
DDR_DQM0  
DDR_DQM1  
DDR_DQS0  
DDR_DQS1  
DDR_DQSn0  
DDR_DQSn1  
DDR_ODT  
1
0
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
O
1
0
VDDS_DDR /  
VDDS_DDR  
NA  
LVCMOS/SSTL/  
HSTL  
P1  
L1  
I/O  
I/O  
I/O  
I/O  
O
Z
0
VDDS_DDR /  
VDDS_DDR  
Yes  
Yes  
Yes  
Yes  
NA  
LVCMOS/SSTL/  
HSTL  
Z
0
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
R2  
L2  
P2  
L2  
Z
0
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
Z
0
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
G1  
F2  
G1  
G4  
G2  
J4  
0
0
VDDS_DDR /  
VDDS_DDR  
LVCMOS/SSTL/  
HSTL  
DDR_RASn  
DDR_RESETn  
DDR_VREF  
DDR_VTP  
ddr_rasn  
ddr_resetn  
ddr_vref  
ddr_vtp  
O
1
0
VDDS_DDR /  
VDDS_DDR  
NA  
LVCMOS/SSTL/  
HSTL  
G2  
H4  
J1  
O
0
0
VDDS_DDR /  
VDDS_DDR  
NA  
LVCMOS/SSTL/  
HSTL  
AP (9) NA  
NA  
NA  
1
NA  
NA  
0
VDDS_DDR /  
VDDS_DDR  
NA  
NA  
NA  
8
Analog  
(10)  
J3  
I
NA  
H
VDDS_DDR /  
VDDS_DDR  
NA  
NA  
Analog  
A4  
E18  
B2  
C18  
DDR_WEn  
ddr_wen  
O
VDDS_DDR /  
VDDS_DDR  
NA  
PU/PD  
PU/PD  
LVCMOS/SSTL/  
HSTL  
ECAP0_IN_PWM0_OUT  
eCAP0_in_PWM0_out  
uart3_txd  
0
1
2
3
4
5
6
7
0
7
I/O  
O
Z
L
7
VDDSHV6 /  
VDDSHV6  
Yes  
4
LVCMOS  
spi1_cs1  
I/O  
I/O  
I/O  
I
pr1_ecap0_ecap_capin_apwm_o  
spi1_sclk  
mmc0_sdwp  
xdma_event_intr2  
gpio0_7  
I
I/O  
I/O  
I/O  
A15  
C14  
EMU0  
EMU0  
H
H
0
VDDSHV6 /  
VDDSHV6  
Yes  
6
PU/PD  
LVCMOS  
gpio3_7  
Copyright © 2011, Texas Instruments Incorporated  
Terminal Description  
19  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
Table 2-7. Ball Characteristics (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCE BALL  
NUMBER [1] NUMBER [1]  
ZCZ BALL  
TYPE BALL RESET  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
[5]  
STATE [6]  
D14  
B14  
EMU1  
EMU1  
gpio3_8  
nNMI  
0
I/O  
H
H
0
VDDSHV6 /  
VDDSHV6  
Yes  
6
PU/PD  
LVCMOS  
7
0
I/O  
I
C17  
B5  
B18  
C5  
EXTINTn  
Z
L
L
H
L
L
0
0
7
VDDSHV6 /  
VDDSHV6  
Yes  
Yes  
NA  
NA  
6
PU/PD  
NA  
LVCMOS  
LVCMOS  
LVCMOS  
EXT_WAKEUP  
GPMC_A0  
EXT_WAKEUP  
0
I
VDDS_RTC /  
VDDS_RTC  
NA  
R13  
gpmc_a0  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
O
O
O
O
O
I
NA / VDDSHV3 Yes  
NA / VDDSHV3 Yes  
NA / VDDSHV3 Yes  
NA / VDDSHV3 Yes  
PU/PD  
gmii2_txen  
rgmii2_tctl  
rmii2_txen  
gpmc_a16  
pr1_mii_mt1_clk  
ehrpwm1_tripzone_input  
gpio1_16  
I
I/O  
O
I
NA  
NA  
NA  
V14  
U14  
T14  
GPMC_A1  
GPMC_A2  
GPMC_A3  
gpmc_a1  
L
L
L
L
L
L
7
7
7
6
6
6
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
LVCMOS  
LVCMOS  
gmii2_rxdv  
rgmii2_rctl  
I
mmc2_dat0  
gpmc_a17  
pr1_mii1_txd3  
ehrpwm0_synco  
gpio1_17  
I/O  
O
O
O
I/O  
O
O
O
I/O  
O
O
O
I/O  
O
O
O
I/O  
O
O
O
I/O  
gpmc_a2  
gmii2_txd3  
rgmii2_td3  
mmc2_dat1  
gpmc_a18  
pr1_mii1_txd2  
ehrpwm1A  
gpio1_18  
gpmc_a3  
gmii2_txd2  
rgmii2_td2  
mmc2_dat2  
gpmc_a19  
pr1_mii1_txd1  
ehrpwm1B  
gpio1_19  
20  
Terminal Description  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
ZCE BALL  
SPRS717 OCTOBER 2011  
Table 2-7. Ball Characteristics (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCZ BALL  
TYPE BALL RESET  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
GPMC_A4  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
NUMBER [1] NUMBER [1]  
[5]  
STATE [6]  
NA  
NA  
NA  
NA  
R14  
V15  
U15  
T15  
gpmc_a4  
0
O
O
O
O
O
O
I
L
L
L
L
L
7
7
7
7
NA / VDDSHV3 Yes  
6
6
6
6
PU/PD  
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
gmii2_txd1  
rgmii2_td1  
rmii2_txd1  
gpmc_a20  
pr1_mii1_txd0  
eQEP1A_in  
gpio1_20  
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
I/O  
O
O
O
O
O
I
GPMC_A5  
GPMC_A6  
GPMC_A7  
gpmc_a5  
L
L
L
NA / VDDSHV3 Yes  
NA / VDDSHV3 Yes  
NA / VDDSHV3 Yes  
LVCMOS  
LVCMOS  
LVCMOS  
gmii2_txd0  
rgmii2_td0  
rmii2_txd0  
gpmc_a21  
pr1_mii1_rxd3  
eQEP1B_in  
gpio1_21  
I
I/O  
O
I
gpmc_a6  
gmii2_txclk  
rgmii2_tclk  
mmc2_dat4  
gpmc_a22  
pr1_mii1_rxd2  
eQEP1_index  
gpio1_22  
O
I/O  
O
I
I/O  
I/O  
O
I
gpmc_a7  
gmii2_rxclk  
rgmii2_rclk  
mmc2_dat5  
gpmc_a23  
pr1_mii1_rxd1  
eQEP1_strobe  
gpio1_23  
I
I/O  
O
I
I/O  
I/O  
Copyright © 2011, Texas Instruments Incorporated  
Terminal Description  
21  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
Table 2-7. Ball Characteristics (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCE BALL  
NUMBER [1] NUMBER [1]  
ZCZ BALL  
TYPE BALL RESET  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
GPMC_A8  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
[5]  
STATE [6]  
NA  
NA  
NA  
NA  
V16  
U16  
T16  
V17  
gpmc_a8  
0
O
I
L
L
L
L
L
7
7
7
7
NA / VDDSHV3 Yes  
6
6
6
6
PU/PD  
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
gmii2_rxd3  
rgmii2_rd3  
mmc2_dat6  
gpmc_a24  
pr1_mii1_rxd0  
mcasp0_aclkx  
gpio1_24  
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
7
0
1
7
I
I/O  
O
I
I/O  
I/O  
O
GPMC_A9  
GPMC_A10  
GPMC_A11  
gpmc_a9  
L
L
L
NA / VDDSHV3 Yes  
NA / VDDSHV3 Yes  
NA / VDDSHV3 Yes  
LVCMOS  
LVCMOS  
LVCMOS  
gmii2_rxd2  
rgmii2_rd2  
mmc2_dat7  
gpmc_a25  
I
I
I/O  
O
pr1_mii_mr1_clk  
mcasp0_fsx  
gpio1_25  
I
I/O  
I/O  
O
gpmc_a10  
gmii2_rxd1  
rgmii2_rd1  
rmii2_rxd1  
gpmc_a26  
pr1_mii1_rxdv  
mcasp0_axr0  
gpio1_26  
I
I
I
O
I
I/O  
I/O  
O
gpmc_a11  
gmii2_rxd0  
rgmii2_rd0  
rmii2_rxd0  
gpmc_a27  
pr1_mii1_rxer  
mcasp0_axr1  
gpio1_27  
I
I
I
O
I
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
W10  
V9  
U7  
V7  
GPMC_AD0  
GPMC_AD1  
gpmc_ad0  
mmc1_dat0  
gpio1_0  
L
L
L
L
7
7
VDDSHV1 /  
VDDSHV1  
Yes  
Yes  
6
6
PU/PD  
PU/PD  
LVCMOS  
LVCMOS  
gpmc_ad1  
mmc1_dat1  
gpio1_1  
VDDSHV1 /  
VDDSHV1  
22  
Terminal Description  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
ZCE BALL  
SPRS717 OCTOBER 2011  
Table 2-7. Ball Characteristics (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCZ BALL  
TYPE BALL RESET  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
GPMC_AD2  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
NUMBER [1] NUMBER [1]  
[5]  
STATE [6]  
V12  
W13  
V13  
W14  
U14  
W15  
V15  
R8  
gpmc_ad2  
mmc1_dat2  
gpio1_2  
0
I/O  
L
L
L
L
L
L
L
L
7
7
7
7
7
7
7
VDDSHV1 /  
VDDSHV1  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
6
6
6
6
6
6
6
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
1
7
0
1
7
0
1
7
0
1
7
0
1
7
0
1
7
0
1
2
3
4
5
7
0
1
2
3
4
5
7
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
T8  
GPMC_AD3  
GPMC_AD4  
GPMC_AD5  
GPMC_AD6  
GPMC_AD7  
GPMC_AD8  
gpmc_ad3  
mmc1_dat3  
gpio1_3  
L
L
L
L
L
L
VDDSHV1 /  
VDDSHV1  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
U8  
V8  
R9  
T9  
gpmc_ad4  
mmc1_dat4  
gpio1_4  
VDDSHV1 /  
VDDSHV1  
gpmc_ad5  
mmc1_dat5  
gpio1_5  
VDDSHV1 /  
VDDSHV1  
gpmc_ad6  
mmc1_dat6  
gpio1_6  
VDDSHV1 /  
VDDSHV1  
gpmc_ad7  
mmc1_dat7  
gpio1_7  
VDDSHV1 /  
VDDSHV1  
U10  
gpmc_ad8  
lcd_data23  
mmc1_dat0  
mmc2_dat4  
ehrpwm2A  
VDDSHV1 /  
VDDSHV2  
I/O  
I/O  
O
pr1_mii_mt0_clk  
gpio0_22  
I
I/O  
I/O  
O
W16  
T10  
GPMC_AD9  
gpmc_ad9  
lcd_data22  
mmc1_dat1  
mmc2_dat5  
ehrpwm2B  
pr1_mii0_col  
gpio0_23  
L
L
7
VDDSHV1 /  
VDDSHV2  
Yes  
6
PU/PD  
LVCMOS  
I/O  
I/O  
O
I
I/O  
Copyright © 2011, Texas Instruments Incorporated  
Terminal Description  
23  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
Table 2-7. Ball Characteristics (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCE BALL  
NUMBER [1] NUMBER [1]  
ZCZ BALL  
TYPE BALL RESET  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
GPMC_AD10  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
[5]  
STATE [6]  
T12  
U12  
U13  
T11  
U12  
T12  
gpmc_ad10  
lcd_data21  
mmc1_dat2  
mmc2_dat6  
0
I/O  
L
L
L
L
7
7
7
VDDSHV1 /  
VDDSHV2  
Yes  
Yes  
Yes  
6
6
6
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
1
2
3
4
5
7
0
1
2
3
4
5
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
O
I/O  
I/O  
I
ehrpwm2_tripzone_input  
pr1_mii0_txen  
gpio0_26  
O
I/O  
I/O  
O
GPMC_AD11  
gpmc_ad11  
L
VDDSHV1 /  
VDDSHV2  
LVCMOS  
lcd_data20  
mmc1_dat3  
I/O  
I/O  
O
mmc2_dat7  
ehrpwm0_synco  
pr1_mii0_txd3  
gpio0_27  
O
I/O  
I/O  
O
GPMC_AD12  
gpmc_ad12  
L
VDDSHV1 /  
VDDSHV2  
LVCMOS  
lcd_data19  
mmc1_dat4  
I/O  
I/O  
I
mmc2_dat0  
eQEP2A_in  
pr1_mii0_txd2  
pr1_pru0_pru_r30_14  
gpio1_12  
O
O
I/O  
I/O  
O
T13  
R12  
GPMC_AD13  
gpmc_ad13  
L
L
7
VDDSHV1 /  
VDDSHV2  
Yes  
6
PU/PD  
LVCMOS  
lcd_data18  
mmc1_dat5  
I/O  
I/O  
I
mmc2_dat1  
eQEP2B_in  
pr1_mii0_txd1  
pr1_pru0_pru_r30_15  
gpio1_13  
O
O
I/O  
I/O  
O
W17  
V13  
GPMC_AD14  
gpmc_ad14  
L
L
7
VDDSHV1 /  
VDDSHV2  
Yes  
6
PU/PD  
LVCMOS  
lcd_data17  
mmc1_dat6  
I/O  
I/O  
I/O  
O
mmc2_dat2  
eQEP2_index  
pr1_mii0_txd0  
pr1_pru0_pru_r31_14  
gpio1_14  
I
I/O  
24  
Terminal Description  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
ZCE BALL  
SPRS717 OCTOBER 2011  
Table 2-7. Ball Characteristics (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCZ BALL  
TYPE BALL RESET  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
GPMC_AD15  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
NUMBER [1] NUMBER [1]  
[5]  
STATE [6]  
V17  
U13  
gpmc_ad15  
lcd_data16  
0
I/O  
L
L
7
VDDSHV1 /  
VDDSHV2  
Yes  
6
PU/PD  
LVCMOS  
1
2
3
4
5
6
7
0
2
7
0
2
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
7
O
mmc1_dat7  
mmc2_dat3  
eQEP2_strobe  
I/O  
I/O  
I/O  
I/O  
I
pr1_ecap0_ecap_capin_apwm_o  
pr1_pru0_pru_r31_15  
gpio1_15  
I/O  
O
V10  
V8  
R7  
GPMC_ADVn_ALE  
GPMC_BEn0_CLE  
GPMC_BEn1  
gpmc_advn_ale  
timer4  
H
H
H
H
H
H
7
7
7
VDDSHV1 /  
VDDSHV1  
Yes  
Yes  
Yes  
6
6
6
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
LVCMOS  
LVCMOS  
I/O  
I/O  
O
gpio2_2  
T6  
gpmc_be0n_cle  
timer5  
VDDSHV1 /  
VDDSHV1  
I/O  
I/O  
O
gpio2_5  
V18  
U18  
gpmc_be1n  
gmii2_col  
VDDSHV1 /  
VDDSHV3  
I
gpmc_csn6  
mmc2_dat3  
gpmc_dir  
O
I/O  
O
pr1_mii1_rxlink  
mcasp0_aclkr  
gpio1_28  
I
I/O  
I/O  
I/O  
O
V16  
V12  
GPMC_CLK  
gpmc_clk  
L
L
7
VDDSHV1 /  
VDDSHV2  
Yes  
6
PU/PD  
LVCMOS  
lcd_memory_clk  
gpmc_wait1  
mmc2_clk  
I
I/O  
I
pr1_mii1_crs  
pr1_mdio_mdclk  
mcasp0_fsr  
gpio2_1  
O
I/O  
I/O  
O
W8  
V6  
GPMC_CSn0  
gpmc_csn0  
gpio1_29  
H
H
7
VDDSHV1 /  
VDDSHV1  
Yes  
6
PU/PD  
LVCMOS  
I/O  
Copyright © 2011, Texas Instruments Incorporated  
Terminal Description  
25  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
Table 2-7. Ball Characteristics (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCE BALL  
NUMBER [1] NUMBER [1]  
ZCZ BALL  
TYPE BALL RESET  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
GPMC_CSn1  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
[5]  
STATE [6]  
V14  
U15  
U17  
U9  
gpmc_csn1  
gpmc_clk  
mmc1_clk  
0
O
H
H
H
H
7
7
7
VDDSHV1 /  
VDDSHV1  
Yes  
Yes  
Yes  
6
6
6
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
3
4
5
6
7
0
2
7
0
1
2
3
4
5
6
7
0
2
7
I/O  
I/O  
I
pr1_edio_data_in6  
pr1_edio_data_out6  
pr1_pru1_pru_r30_12  
pr1_pru1_pru_r31_12  
gpio1_30  
O
O
I
I/O  
O
O
I/O  
I
V9  
GPMC_CSn2  
gpmc_csn2  
H
VDDSHV1 /  
VDDSHV1  
LVCMOS  
gpmc_be1n  
mmc1_cmd  
pr1_edio_data_in7  
pr1_edio_data_out7  
pr1_pru1_pru_r30_13  
pr1_pru1_pru_r31_13  
gpio1_31  
O
O
I
I/O  
O
I/O  
I
T13  
GPMC_CSn3  
gpmc_csn3  
H
VDDSHV1 /  
VDDSHV2  
LVCMOS  
mmc2_cmd  
pr1_mii0_crs  
pr1_mdio_data  
EMU4  
I/O  
I/O  
I/O  
O
I/O  
I/O  
I
gpio2_0  
W9  
T7  
GPMC_OEn_REn  
GPMC_WAIT0  
gpmc_oen_ren  
timer7  
H
H
H
H
7
7
VDDSHV1 /  
VDDSHV1  
Yes  
Yes  
6
6
PU/PD  
PU/PD  
LVCMOS  
LVCMOS  
gpio2_3  
R15  
T17  
gpmc_wait0  
gmii2_crs  
VDDSHV1 /  
VDDSHV3  
I
gpmc_csn4  
O
I
rmii2_crs_dv  
mmc1_sdcd  
pr1_mii1_col  
uart4_rxd  
I
I
I
gpio0_30  
I/O  
O
I/O  
I/O  
U8  
U6  
GPMC_WEn  
gpmc_wen  
H
H
7
VDDSHV1 /  
VDDSHV1  
Yes  
6
PU/PD  
LVCMOS  
timer6  
gpio2_4  
26  
Terminal Description  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
ZCE BALL  
SPRS717 OCTOBER 2011  
Table 2-7. Ball Characteristics (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCZ BALL  
TYPE BALL RESET  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
GPMC_WPn  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
NUMBER [1] NUMBER [1]  
[5]  
STATE [6]  
W18  
U17  
gpmc_wpn  
gmii2_rxerr  
gpmc_csn5  
rmii2_rxerr  
mmc2_sdcd  
pr1_mii1_txen  
uart4_txd  
0
O
I
H
H
7
VDDSHV1 /  
VDDSHV3  
Yes  
6
PU/PD  
LVCMOS  
1
2
3
4
5
6
7
0
1
2
3
7
0
1
2
3
7
0
1
2
3
4
5
6
7
0
1
2
3
5
6
7
O
I
I
O
O
gpio0_31  
I/O  
I/OD  
I/O  
I
C18  
B19  
W7  
C17  
C16  
R6  
I2C0_SDA  
I2C0_SDA  
timer4  
Z
Z
Z
H
H
L
7
7
7
VDDSHV6 /  
VDDSHV6  
Yes  
Yes  
Yes  
4
4
6
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
LVCMOS  
LVCMOS  
uart2_ctsn  
eCAP2_in_PWM2_out  
gpio3_5  
I/O  
I/O  
I/OD  
I/O  
O
I2C0_SCL  
I2C0_SCL  
VDDSHV6 /  
VDDSHV6  
timer7  
uart2_rtsn  
eCAP1_in_PWM1_out  
gpio3_6  
I/O  
I/O  
O
LCD_AC_BIAS_EN  
lcd_ac_bias_en  
gpmc_a11  
VDDSHV6 /  
VDDSHV6  
O
pr1_mii1_crs  
I
pr1_edio_data_in5  
pr1_edio_data_out5  
pr1_pru1_pru_r30_11  
pr1_pru1_pru_r31_11  
gpio2_25  
I
O
O
I
I/O  
I/O  
O
U1  
R1  
LCD_DATA0 (3)  
lcd_data0  
Z
Z
7
VDDSHV6 /  
VDDSHV6  
Yes  
6
PU/PD  
LVCMOS  
gpmc_a0  
pr1_mii_mt0_clk  
ehrpwm2A  
I
O
pr1_pru1_pru_r30_0  
pr1_pru1_pru_r31_0  
gpio2_6  
O
I
I/O  
Copyright © 2011, Texas Instruments Incorporated  
Terminal Description  
27  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
Table 2-7. Ball Characteristics (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCE BALL  
NUMBER [1] NUMBER [1]  
ZCZ BALL  
TYPE BALL RESET  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
LCD_DATA1 (3)  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
[5]  
STATE [6]  
U2  
V1  
V2  
W2  
W3  
R2  
R3  
R4  
T1  
T2  
lcd_data1  
0
I/O  
Z
Z
Z
Z
Z
Z
7
7
7
7
7
VDDSHV6 /  
VDDSHV6  
Yes  
Yes  
Yes  
Yes  
Yes  
6
6
6
6
6
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
gpmc_a1  
1
2
3
5
6
7
0
1
2
3
5
6
7
0
1
2
3
5
6
7
0
1
2
3
5
6
7
0
1
2
3
5
6
7
O
O
O
O
I
pr1_mii0_txen  
ehrpwm2B  
pr1_pru1_pru_r30_1  
pr1_pru1_pru_r31_1  
gpio2_7  
I/O  
I/O  
O
O
I
LCD_DATA2 (3)  
LCD_DATA3 (3)  
LCD_DATA4 (3)  
LCD_DATA5 (3)  
lcd_data2  
Z
Z
Z
Z
VDDSHV6 /  
VDDSHV6  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
gpmc_a2  
pr1_mii0_txd3  
ehrpwm2_tripzone_input  
pr1_pru1_pru_r30_2  
pr1_pru1_pru_r31_2  
gpio2_8  
O
I
I/O  
I/O  
O
O
O
O
I
lcd_data3  
VDDSHV6 /  
VDDSHV6  
gpmc_a3  
pr1_mii0_txd2  
ehrpwm0_synco  
pr1_pru1_pru_r30_3  
pr1_pru1_pru_r31_3  
gpio2_9  
I/O  
I/O  
O
O
I
lcd_data4  
VDDSHV6 /  
VDDSHV6  
gpmc_a4  
pr1_mii0_txd1  
eQEP2A_in  
pr1_pru1_pru_r30_4  
pr1_pru1_pru_r31_4  
gpio2_10  
O
I
I/O  
I/O  
O
O
I
lcd_data5  
VDDSHV6 /  
VDDSHV6  
gpmc_a5  
pr1_mii0_txd0  
eQEP2B_in  
pr1_pru1_pru_r30_5  
pr1_pru1_pru_r31_5  
gpio2_11  
O
I
I/O  
28  
Terminal Description  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
ZCE BALL  
SPRS717 OCTOBER 2011  
Table 2-7. Ball Characteristics (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCZ BALL  
TYPE BALL RESET  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
LCD_DATA6 (3)  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
NUMBER [1] NUMBER [1]  
[5]  
STATE [6]  
V3  
U3  
V4  
W4  
T3  
T4  
U1  
U2  
lcd_data6  
gpmc_a6  
0
I/O  
Z
Z
Z
Z
Z
7
7
7
7
VDDSHV6 /  
VDDSHV6  
Yes  
Yes  
Yes  
Yes  
6
6
6
6
PU/PD  
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
O
I
pr1_edio_data_in6  
eQEP2_index  
pr1_edio_data_out6  
pr1_pru1_pru_r30_6  
pr1_pru1_pru_r31_6  
gpio2_12  
I/O  
O
O
I
I/O  
I/O  
O
I
LCD_DATA7 (3)  
LCD_DATA8 (3)  
LCD_DATA9 (3)  
lcd_data7  
Z
Z
Z
VDDSHV6 /  
VDDSHV6  
LVCMOS  
LVCMOS  
LVCMOS  
gpmc_a7  
pr1_edio_data_in7  
eQEP2_strobe  
pr1_edio_data_out7  
pr1_pru1_pru_r30_7  
pr1_pru1_pru_r31_7  
gpio2_13  
I/O  
O
O
I
I/O  
I/O  
O
I
lcd_data8  
VDDSHV6 /  
VDDSHV6  
gpmc_a12  
ehrpwm1_tripzone_input  
mcasp0_aclkx  
uart5_txd  
I/O  
O
I
pr1_mii0_rxd3  
uart2_ctsn  
I
gpio2_14  
I/O  
I/O  
O
O
I/O  
I
lcd_data9  
VDDSHV6 /  
VDDSHV6  
gpmc_a13  
ehrpwm0_synco  
mcasp0_fsx  
uart5_rxd  
pr1_mii0_rxd2  
uart2_rtsn  
I
O
I/O  
gpio2_15  
Copyright © 2011, Texas Instruments Incorporated  
Terminal Description  
29  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
Table 2-7. Ball Characteristics (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCE BALL  
NUMBER [1] NUMBER [1]  
ZCZ BALL  
TYPE BALL RESET  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
LCD_DATA10 (3)  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
[5]  
STATE [6]  
U5  
U3  
lcd_data10  
gpmc_a14  
ehrpwm1A  
mcasp0_axr0  
pr1_mii0_rxd1  
uart3_ctsn  
gpio2_16  
0
I/O  
Z
Z
7
VDDSHV6 /  
VDDSHV6  
Yes  
6
PU/PD  
LVCMOS  
1
2
3
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
O
O
I/O  
I
I
I/O  
I/O  
O
V5  
U4  
LCD_DATA11 (3)  
LCD_DATA12 (3)  
LCD_DATA13 (3)  
lcd_data11  
gpmc_a15  
ehrpwm1B  
Z
Z
Z
Z
7
VDDSHV6 /  
VDDSHV6  
Yes  
6
PU/PD  
LVCMOS  
LVCMOS  
LVCMOS  
O
mcasp0_ahclkr  
mcasp0_axr2  
pr1_mii0_rxd0  
uart3_rtsn  
I/O  
I/O  
I
O
gpio2_17  
I/O  
I/O  
O
V6  
V2  
lcd_data12  
gpmc_a16  
Z
7
VDDSHV6 /  
VDDSHV6  
Yes  
6
PU/PD  
eQEP1A_in  
mcasp0_aclkr  
mcasp0_axr2  
pr1_mii0_rxlink  
uart4_ctsn  
I
I/O  
I/O  
I
I
gpio0_8  
I/O  
I/O  
O
U6  
V3  
lcd_data13  
gpmc_a17  
Z
7
VDDSHV6 /  
VDDSHV6  
Yes  
6
PU/PD  
eQEP1B_in  
mcasp0_fsr  
mcasp0_axr3  
pr1_mii0_rxer  
uart4_rtsn  
I
I/O  
I/O  
I
O
gpio0_9  
I/O  
30  
Terminal Description  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
ZCE BALL  
SPRS717 OCTOBER 2011  
Table 2-7. Ball Characteristics (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCZ BALL  
TYPE BALL RESET  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
LCD_DATA14 (3)  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
NUMBER [1] NUMBER [1]  
[5]  
STATE [6]  
W6 V4  
lcd_data14  
gpmc_a18  
0
I/O  
Z
Z
7
VDDSHV6 /  
VDDSHV6  
Yes  
6
PU/PD  
LVCMOS  
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
3
4
5
6
7
O
I/O  
I/O  
I
eQEP1_index  
mcasp0_axr1  
uart5_rxd  
pr1_mii_mr0_clk  
uart5_ctsn  
I
I
gpio0_10  
I/O  
I/O  
O
I/O  
I/O  
I/O  
I
V7  
T5  
LCD_DATA15 (3)  
lcd_data15  
Z
Z
7
VDDSHV6 /  
VDDSHV6  
Yes  
6
PU/PD  
LVCMOS  
gpmc_a19  
eQEP1_strobe  
mcasp0_ahclkx  
mcasp0_axr3  
pr1_mii0_rxdv  
uart5_rtsn  
O
I/O  
O
O
I
gpio0_11  
T7  
R5  
LCD_HSYNC  
lcd_hsync  
Z
L
7
VDDSHV6 /  
VDDSHV6  
Yes  
6
PU/PD  
LVCMOS  
gpmc_a9  
pr1_edio_data_in3  
pr1_edio_data_out3  
pr1_pru1_pru_r30_9  
pr1_pru1_pru_r31_9  
gpio2_23  
O
O
I
I/O  
O
O
I
W5  
V5  
LCD_PCLK  
lcd_pclk  
Z
L
7
VDDSHV6 /  
VDDSHV6  
Yes  
6
PU/PD  
LVCMOS  
gpmc_a10  
pr1_mii0_crs  
pr1_edio_data_in4  
pr1_edio_data_out4  
pr1_pru1_pru_r30_10  
pr1_pru1_pru_r31_10  
gpio2_24  
I
O
O
I
I/O  
O
O
I
U7  
U5  
LCD_VSYNC  
lcd_vsync  
Z
L
7
VDDSHV6 /  
VDDSHV6  
Yes  
6
PU/PD  
LVCMOS  
gpmc_a8  
pr1_edio_data_in2  
pr1_edio_data_out2  
pr1_pru1_pru_r30_8  
pr1_pru1_pru_r31_8  
gpio2_22  
O
O
I
I/O  
Copyright © 2011, Texas Instruments Incorporated  
Terminal Description  
31  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
Table 2-7. Ball Characteristics (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCE BALL  
NUMBER [1] NUMBER [1]  
ZCZ BALL  
TYPE BALL RESET  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
MCASP0_FSX  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
[5]  
STATE [6]  
NA  
B13  
mcasp0_fsx  
ehrpwm0B  
spi1_d0  
0
I/O  
L
L
7
NA / VDDSHV6 Yes  
6
PU/PD  
LVCMOS  
1
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
3
4
5
6
7
O
I/O  
I
mmc1_sdcd  
pr1_pru0_pru_r30_1  
pr1_pru0_pru_r31_1  
gpio3_15  
O
I
I/O  
I/O  
I
NA  
B12  
MCASP0_ACLKR  
MCASP0_AHCLKR  
MCASP0_AHCLKX  
MCASP0_ACLKX  
mcasp0_aclkr  
eQEP0A_in  
L
L
L
L
L
7
NA / VDDSHV6 Yes  
NA / VDDSHV6 Yes  
NA / VDDSHV6 Yes  
NA / VDDSHV6 Yes  
6
PU/PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
mcasp0_axr2  
mcasp1_aclkx  
mmc0_sdwp  
I/O  
I/O  
I
pr1_pru0_pru_r30_4  
pr1_pru0_pru_r31_4  
gpio3_18  
O
I
I/O  
I/O  
I
NA  
NA  
NA  
C12  
A14  
A13  
mcasp0_ahclkr  
ehrpwm0_synci  
mcasp0_axr2  
spi1_cs0  
L
L
L
7
7
7
6
6
6
PU/PD  
PU/PD  
PU/PD  
I/O  
I/O  
I/O  
O
eCAP2_in_PWM2_out  
pr1_pru0_pru_r30_3  
pr1_pru0_pru_r31_3  
gpio3_17  
I
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
mcasp0_ahclkx  
eQEP0_strobe  
mcasp0_axr3  
mcasp1_axr1  
EMU4  
pr1_pru0_pru_r30_7  
pr1_pru0_pru_r31_7  
gpio3_21  
I
I/O  
I/O  
O
mcasp0_aclkx  
ehrpwm0A  
spi1_sclk  
I/O  
I
mmc0_sdcd  
pr1_pru0_pru_r30_0  
pr1_pru0_pru_r31_0  
gpio3_14  
O
I
I/O  
32  
Terminal Description  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
ZCE BALL  
SPRS717 OCTOBER 2011  
Table 2-7. Ball Characteristics (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCZ BALL  
TYPE BALL RESET  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
MCASP0_FSR  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
NUMBER [1] NUMBER [1]  
[5]  
STATE [6]  
NA  
C13  
mcasp0_fsr  
eQEP0B_in  
mcasp0_axr3  
mcasp1_fsx  
EMU2  
0
I/O  
L
L
7
NA / VDDSHV6 Yes  
6
PU/PD  
LVCMOS  
1
2
3
4
5
6
7
0
1
3
4
5
6
7
0
1
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
I
I/O  
I/O  
I/O  
O
pr1_pru0_pru_r30_5  
pr1_pru0_pru_r31_5  
gpio3_19  
I
I/O  
I/O  
I
NA  
D12  
D13  
M18  
MCASP0_AXR0  
MCASP0_AXR1  
MDC  
mcasp0_axr0  
ehrpwm0_tripzone_input  
spi1_d1  
L
L
H
L
L
H
7
7
7
NA / VDDSHV6 Yes  
6
6
6
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
LVCMOS  
LVCMOS  
I/O  
I
mmc2_sdcd  
pr1_pru0_pru_r30_2  
pr1_pru0_pru_r31_2  
gpio3_16  
O
I
I/O  
I/O  
I/O  
I/O  
I/O  
O
NA  
mcasp0_axr1  
eQEP0_index  
mcasp1_axr0  
EMU3  
NA / VDDSHV6 Yes  
pr1_pru0_pru_r30_6  
pr1_pru0_pru_r31_6  
gpio3_20  
I
I/O  
O
R19  
mdio_clk  
VDDSHV5 /  
VDDSHV5  
Yes  
timer5  
I/O  
O
uart5_txd  
uart3_rtsn  
O
mmc0_sdwp  
mmc1_clk  
I
I/O  
I/O  
I/O  
I/O  
I/O  
O
mmc2_clk  
gpio0_1  
P17  
M17  
MDIO  
mdio_data  
H
H
7
VDDSHV5 /  
VDDSHV5  
Yes  
6
PU/PD  
LVCMOS  
timer6  
uart5_rxd  
uart3_ctsn  
I
mmc0_sdcd  
mmc1_cmd  
mmc2_cmd  
gpio0_0  
I
I/O  
I/O  
I/O  
Copyright © 2011, Texas Instruments Incorporated  
Terminal Description  
33  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
Table 2-7. Ball Characteristics (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCE BALL  
NUMBER [1] NUMBER [1]  
ZCZ BALL  
TYPE BALL RESET  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
MII1_RX_DV  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
[5]  
STATE [6]  
L19  
K17  
K19  
M19  
J17  
J16  
J15  
L18  
gmii1_rxdv  
0
I
L
L
L
L
L
7
7
7
7
VDDSHV5 /  
VDDSHV5  
Yes  
Yes  
Yes  
Yes  
6
6
6
6
PU/PD  
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
lcd_memory_clk  
rgmii1_rctl  
uart5_txd  
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
O
I
O
mcasp1_aclkx  
mmc2_dat0  
mcasp0_aclkr  
gpio3_4  
I/O  
I/O  
I/O  
I/O  
O
MII1_TX_EN  
MII1_RX_ER  
MII1_RX_CLK  
gmii1_txen  
rmii1_txen  
rgmii1_tctl  
timer4  
L
L
L
VDDSHV5 /  
VDDSHV5  
LVCMOS  
LVCMOS  
LVCMOS  
O
O
I/O  
I/O  
I/O  
I/O  
I/O  
I
mcasp1_axr0  
eQEP0_index  
mmc2_cmd  
gpio3_3  
gmii1_rxerr  
rmii1_rxerr  
spi1_d1  
VDDSHV5 /  
VDDSHV5  
I
I/O  
I/OD  
I/O  
O
I2C1_SCL  
mcasp1_fsx  
uart5_rtsn  
uart2_txd  
O
gpio3_2  
I/O  
I
gmii1_rxclk  
uart2_txd  
VDDSHV5 /  
VDDSHV5  
O
rgmii1_rclk  
mmc0_dat6  
mmc1_dat1  
uart1_dsrn  
mcasp0_fsx  
gpio3_10  
I
I/O  
I/O  
I
I/O  
I/O  
34  
Terminal Description  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
ZCE BALL  
SPRS717 OCTOBER 2011  
Table 2-7. Ball Characteristics (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCZ BALL  
TYPE BALL RESET  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
MII1_TX_CLK  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
NUMBER [1] NUMBER [1]  
[5]  
STATE [6]  
N19  
J19  
J18  
P18  
K18  
H16  
H17  
M16  
gmii1_txclk  
uart2_rxd  
0
I
L
L
L
L
L
7
7
7
7
VDDSHV5 /  
VDDSHV5  
Yes  
Yes  
Yes  
Yes  
6
6
6
6
PU/PD  
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
I
rgmii1_tclk  
mmc0_dat7  
mmc1_dat0  
uart1_dcdn  
mcasp0_aclkx  
gpio3_9  
O
I/O  
I/O  
I
I/O  
I/O  
I
MII1_COL  
MII1_CRS  
MII1_RXD0  
gmii1_col  
L
L
L
VDDSHV5 /  
VDDSHV5  
LVCMOS  
LVCMOS  
LVCMOS  
rmii2_refclk  
spi1_sclk  
I/O  
I/O  
I
uart5_rxd  
mcasp1_axr2  
mmc2_dat3  
mcasp0_axr2  
gpio3_0  
I/O  
I/O  
I/O  
I/O  
I
gmii1_crs  
VDDSHV5 /  
VDDSHV5  
rmii1_crs_dv  
spi1_d0  
I
I/O  
I/OD  
I/O  
I
I2C1_SDA  
mcasp1_aclkx  
uart5_ctsn  
uart2_rxd  
I
gpio3_1  
I/O  
I
gmii1_rxd0  
rmii1_rxd0  
rgmii1_rd0  
VDDSHV5 /  
VDDSHV5  
I
I
mcasp1_ahclkx  
mcasp1_ahclkr  
mcasp1_aclkr  
mcasp0_axr3  
gpio2_21  
I/O  
I/O  
I/O  
I/O  
I/O  
Copyright © 2011, Texas Instruments Incorporated  
Terminal Description  
35  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
Table 2-7. Ball Characteristics (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCE BALL  
NUMBER [1] NUMBER [1]  
ZCZ BALL  
TYPE BALL RESET  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
MII1_RXD1  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
[5]  
STATE [6]  
P19  
N16  
N17  
L18  
L15  
L16  
L17  
K17  
gmii1_rxd1  
rmii1_rxd1  
rgmii1_rd1  
mcasp1_axr3  
mcasp1_fsr  
eQEP0_strobe  
mmc2_clk  
gpio2_20  
0
I
I
I
L
L
L
L
L
7
7
7
7
VDDSHV5 /  
VDDSHV5  
Yes  
Yes  
Yes  
Yes  
6
6
6
6
PU/PD  
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
I/O  
I/O  
I/O  
I/O  
I/O  
I
MII1_RXD2  
MII1_RXD3  
MII1_TXD0  
gmii1_rxd2  
uart3_txd  
L
L
L
VDDSHV5 /  
VDDSHV5  
LVCMOS  
LVCMOS  
LVCMOS  
O
rgmii1_rd2  
mmc0_dat4  
mmc1_dat3  
uart1_rin  
I
I/O  
I/O  
I
mcasp0_axr1  
gpio2_19  
I/O  
I/O  
I
gmii1_rxd3  
uart3_rxd  
VDDSHV5 /  
VDDSHV5  
I
rgmii1_rd3  
mmc0_dat5  
mmc1_dat2  
uart1_dtrn  
mcasp0_axr0  
gpio2_18  
I
I/O  
I/O  
O
I/O  
I/O  
O
gmii1_txd0  
rmii1_txd0  
rgmii1_td0  
mcasp1_axr2  
mcasp1_aclkr  
eQEP0B_in  
mmc1_clk  
gpio0_28  
VDDSHV5 /  
VDDSHV5  
O
O
I/O  
I/O  
I
I/O  
I/O  
36  
Terminal Description  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
ZCE BALL  
SPRS717 OCTOBER 2011  
Table 2-7. Ball Characteristics (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCZ BALL  
TYPE BALL RESET  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
MII1_TXD1  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
NUMBER [1] NUMBER [1]  
[5]  
STATE [6]  
M18  
N18  
M17  
G17  
K16  
K15  
J18  
G18  
gmii1_txd1  
rmii1_txd1  
rgmii1_td1  
mcasp1_fsr  
mcasp1_axr1  
eQEP0A_in  
mmc1_cmd  
gpio0_21  
0
O
O
O
L
L
L
H
L
7
7
7
7
VDDSHV5 /  
VDDSHV5  
Yes  
Yes  
Yes  
Yes  
6
6
6
6
PU/PD  
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
I/O  
I/O  
I
I/O  
I/O  
O
MII1_TXD2  
MII1_TXD3  
MMC0_CMD  
gmii1_txd2  
dcan0_rx  
L
L
H
VDDSHV5 /  
VDDSHV5  
LVCMOS  
LVCMOS  
LVCMOS  
I
rgmii1_td2  
uart4_txd  
O
O
mcasp1_axr0  
mmc2_dat2  
I/O  
I/O  
I/O  
I/O  
O
mcasp0_ahclkx  
gpio0_17  
gmii1_txd3  
dcan0_tx  
VDDSHV5 /  
VDDSHV5  
O
rgmii1_td3  
O
uart4_rxd  
I
mcasp1_fsx  
mmc2_dat1  
mcasp0_fsr  
gpio0_16  
I/O  
I/O  
I/O  
I/O  
I/O  
O
mmc0_cmd  
gpmc_a25  
VDDSHV4 /  
VDDSHV4  
uart3_rtsn  
O
uart2_txd  
O
dcan1_rx  
I
pr1_pru0_pru_r30_13  
pr1_pru0_pru_r31_13  
gpio2_31  
O
I
I/O  
Copyright © 2011, Texas Instruments Incorporated  
Terminal Description  
37  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
Table 2-7. Ball Characteristics (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCE BALL  
NUMBER [1] NUMBER [1]  
ZCZ BALL  
TYPE BALL RESET  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
MMC0_CLK  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
[5]  
STATE [6]  
G19  
G18  
H17  
H18  
G17  
G16  
G15  
F18  
mmc0_clk  
gpmc_a24  
uart3_ctsn  
uart2_rxd  
dcan1_tx  
0
I/O  
H
H
H
H
H
7
7
7
7
VDDSHV4 /  
VDDSHV4  
Yes  
Yes  
Yes  
Yes  
6
6
6
6
PU/PD  
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
O
I
I
O
O
I
pr1_pru0_pru_r30_12  
pr1_pru0_pru_r31_12  
gpio2_30  
I/O  
I/O  
O
O
O
I
MMC0_DAT0  
MMC0_DAT1  
MMC0_DAT2  
mmc0_dat0  
H
H
H
VDDSHV4 /  
VDDSHV4  
LVCMOS  
LVCMOS  
LVCMOS  
gpmc_a23  
uart5_rtsn  
uart3_txd  
uart1_rin  
pr1_pru0_pru_r30_11  
pr1_pru0_pru_r31_11  
gpio2_29  
O
I
I/O  
I/O  
O
I
mmc0_dat1  
VDDSHV4 /  
VDDSHV4  
gpmc_a22  
uart5_ctsn  
uart3_rxd  
I
uart1_dtrn  
O
O
I
pr1_pru0_pru_r30_10  
pr1_pru0_pru_r31_10  
gpio2_28  
I/O  
I/O  
O
O
I/O  
I
mmc0_dat2  
VDDSHV4 /  
VDDSHV4  
gpmc_a21  
uart4_rtsn  
timer6  
uart1_dsrn  
pr1_pru0_pru_r30_9  
pr1_pru0_pru_r31_9  
gpio2_27  
O
I
I/O  
38  
Terminal Description  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
ZCE BALL  
SPRS717 OCTOBER 2011  
Table 2-7. Ball Characteristics (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCZ BALL  
TYPE BALL RESET  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
MMC0_DAT3  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
NUMBER [1] NUMBER [1]  
[5]  
STATE [6]  
H19  
F17  
mmc0_dat3  
gpmc_a20  
uart4_ctsn  
timer5  
0
I/O  
H
H
7
VDDSHV4 /  
VDDSHV4  
Yes  
6
PU/PD  
LVCMOS  
1
2
3
4
5
6
7
0
O
I
I/O  
I
uart1_dcdn  
pr1_pru0_pru_r30_8  
pr1_pru0_pru_r31_8  
gpio2_26  
O
I
I/O  
O
C7  
C6  
PMIC_POWER_EN  
PWRONRSTn  
PMIC_POWER_EN  
H
Z
1
0
VDDS_RTC /  
VDDS_RTC  
NA  
6
NA  
LVCMOS  
LVCMOS  
Analog  
E15  
B6  
B15  
A3  
porz  
0
0
I
Z
0
VDDSHV6 /  
VDDSHV6  
Yes  
NA  
NA  
NA  
6
NA  
RESERVED  
testout  
O
NA  
L
NA  
L
NA  
7
VDDSHV6 /  
VDDSHV6  
NA  
K18  
H18  
RMII1_REF_CLK  
rmii1_refclk  
0
1
2
3
4
5
6
7
0
I/O  
I
VDDSHV5 /  
VDDSHV5  
Yes  
PU/PD  
LVCMOS  
xdma_event_intr2  
spi1_cs0  
I/O  
O
uart5_txd  
mcasp1_axr3  
mmc0_pow  
I/O  
O
mcasp1_ahclkx  
gpio0_29  
I/O  
I/O  
I
A7  
B7  
A6  
A5  
A18  
B4  
B5  
A6  
A4  
A17  
RTC_KALDO_ENn  
RTC_PWRONRSTn  
RTC_XTALIN  
ENZ_KALDO_1P8V  
Z
Z
Z
Z
Z
Z
Z
H
0
0
0
0
7
VDDS_RTC /  
VDDS_RTC  
NA  
NA  
NA  
NA  
TBD  
6
NA  
Analog  
RTC_porz  
OSC1_IN  
0
0
0
I
VDDS_RTC /  
VDDS_RTC  
Yes  
Yes  
NA  
NA  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
I
VDDS_RTC /  
VDDS_RTC  
NA (2)  
NA  
(14)  
RTC_XTALOUT  
SPI0_SCLK  
OSC1_OUT  
O
Z
Z
VDDS_RTC /  
VDDS_RTC  
spi0_sclk  
0
1
2
3
4
5
6
7
I/O  
I
VDDSHV6 /  
VDDSHV6  
Yes  
PU/PD  
uart2_rxd  
I2C2_SDA  
ehrpwm0A  
pr1_uart0_cts_n  
pr1_edio_sof  
EMU2  
I/OD  
O
I
O
I/O  
I/O  
gpio0_2  
Copyright © 2011, Texas Instruments Incorporated  
Terminal Description  
39  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
Table 2-7. Ball Characteristics (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCE BALL  
NUMBER [1] NUMBER [1]  
ZCZ BALL  
TYPE BALL RESET  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
SPI0_CS0  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
[5]  
STATE [6]  
A17  
B16  
B18  
B17  
A16  
C15  
B17  
B16  
spi0_cs0  
0
I/O  
Z
Z
Z
Z
H
7
7
7
7
VDDSHV6 /  
VDDSHV6  
Yes  
Yes  
Yes  
Yes  
6
6
6
6
PU/PD  
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
mmc2_sdwp  
I2C1_SCL  
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
I
I/OD  
I
ehrpwm0_synci  
pr1_uart0_txd  
pr1_edio_data_in1  
pr1_edio_data_out1  
gpio0_5  
O
I
O
I/O  
I/O  
I
SPI0_CS1  
SPI0_D0  
SPI0_D1  
spi0_cs1  
H
H
H
VDDSHV6 /  
VDDSHV6  
LVCMOS  
LVCMOS  
LVCMOS  
uart3_rxd  
eCAP1_in_PWM1_out  
mmc0_pow  
I/O  
O
xdma_event_intr2  
mmc0_sdcd  
EMU4  
I
I
I/O  
I/O  
I/O  
O
gpio0_6  
spi0_d0  
VDDSHV6 /  
VDDSHV6  
uart2_txd  
I2C2_SCL  
I/OD  
O
ehrpwm0B  
pr1_uart0_rts_n  
pr1_edio_latch_in  
EMU3  
O
I
I/O  
I/O  
I/O  
I
gpio0_3  
spi0_d1  
VDDSHV6 /  
VDDSHV6  
mmc1_sdwp  
I2C1_SDA  
I/OD  
I
ehrpwm0_tripzone_input  
pr1_uart0_rxd  
pr1_edio_data_in0  
pr1_edio_data_out0  
gpio0_4  
I
I
O
I/O  
I
B14  
B13  
A14  
C14  
A12  
B11  
A11  
C11  
TCK  
TDI  
TCK  
H
H
H
H
H
H
H
H
0
0
0
0
VDDSHV6 /  
VDDSHV6  
Yes  
Yes  
NA  
NA  
NA  
4
PU/PD  
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
TDI  
0
0
0
I
VDDSHV6 /  
VDDSHV6  
TDO  
TMS  
TDO  
TMS  
O
I
VDDSHV6 /  
VDDSHV6  
VDDSHV6 /  
VDDSHV6  
Yes  
NA  
40  
Terminal Description  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
ZCE BALL  
SPRS717 OCTOBER 2011  
Table 2-7. Ball Characteristics (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCZ BALL  
TYPE BALL RESET  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
LVCMOS  
NUMBER [1] NUMBER [1]  
[5]  
STATE [6]  
A13  
F17  
B10  
E16  
TRSTn  
nTRST  
0
I
L
Z
L
0
7
VDDSHV6 /  
VDDSHV6  
Yes  
Yes  
NA  
PU/PD  
UART0_TXD  
UART0_CTSn  
UART0_RXD  
UART0_RTSn  
uart0_txd  
spi1_cs1  
dcan0_rx  
I2C2_SCL  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
O
H
H
H
H
VDDSHV6 /  
VDDSHV6  
4
4
4
4
PU/PD  
LVCMOS  
I/O  
I
I/OD  
I/O  
O
eCAP1_in_PWM1_out  
pr1_pru1_pru_r30_15  
pr1_pru1_pru_r31_15  
gpio1_11  
I
I/O  
I
F19  
E19  
F18  
E18  
E15  
E17  
uart0_ctsn  
Z
Z
Z
7
7
7
VDDSHV6 /  
VDDSHV6  
Yes  
Yes  
Yes  
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
LVCMOS  
LVCMOS  
uart4_rxd  
I
dcan1_tx  
O
I2C1_SDA  
I/OD  
I/O  
I/O  
O
spi1_d0  
timer7  
pr1_edc_sync0_out  
gpio1_8  
I/O  
I
uart0_rxd  
VDDSHV6 /  
VDDSHV6  
spi1_cs0  
I/O  
O
dcan0_tx  
I2C2_SDA  
I/OD  
I/O  
O
eCAP2_in_PWM2_out  
pr1_pru1_pru_r30_14  
pr1_pru1_pru_r31_14  
gpio1_10  
I
I/O  
O
uart0_rtsn  
VDDSHV6 /  
VDDSHV6  
uart4_txd  
O
dcan1_rx  
I
I2C1_SCL  
I/OD  
I/O  
I/O  
O
spi1_d1  
spi1_cs0  
pr1_edc_sync1_out  
gpio1_9  
I/O  
Copyright © 2011, Texas Instruments Incorporated  
Terminal Description  
41  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
Table 2-7. Ball Characteristics (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCE BALL  
NUMBER [1] NUMBER [1]  
ZCZ BALL  
TYPE BALL RESET  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
UART1_TXD  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
[5]  
STATE [6]  
C19  
D18  
D19  
D15  
D16  
D17  
uart1_txd  
0
O
I
Z
Z
Z
H
7
7
7
VDDSHV6 /  
VDDSHV6  
Yes  
Yes  
Yes  
4
4
4
PU/PD  
PU/PD  
PU/PD  
LVCMOS  
mmc2_sdwp  
dcan1_rx  
1
2
3
5
6
7
0
1
2
3
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
I
I2C1_SCL  
pr1_uart0_txd  
I/OD  
O
pr1_pru0_pru_r31_16  
gpio0_15  
I
I/O  
UART1_RXD  
uart1_rxd  
I
H
VDDSHV6 /  
VDDSHV6  
LVCMOS  
mmc1_sdwp  
dcan1_tx  
I
O
I2C1_SDA  
I/OD  
I
pr1_uart0_rxd  
pr1_pru1_pru_r31_16  
gpio0_14  
I
I/O  
O
UART1_RTSn  
uart1_rtsn  
H
VDDSHV6 /  
VDDSHV6  
LVCMOS  
timer5  
I/O  
I
dcan0_rx  
I2C2_SCL  
I/OD  
I/O  
O
spi1_cs1  
pr1_uart0_rts_n  
pr1_edc_latch1_in  
gpio0_13  
I
I/O  
I
E17  
D18  
UART1_CTSn  
uart1_ctsn  
Z
H
7
VDDSHV6 /  
VDDSHV6  
Yes  
4
PU/PD  
LVCMOS  
timer6  
I/O  
O
dcan0_tx  
I2C2_SDA  
I/OD  
I/O  
I
spi1_cs0  
pr1_uart0_cts_n  
pr1_edc_latch0_in  
gpio0_12  
I
I/O  
A
T18  
T19  
M15  
P15  
USB0_CE  
USB0_CE  
Z
Z
Z
Z
0
0
VDDA*_USB0 / TBD TBD  
TBD  
TBD  
Analog  
Analog  
VDDA*_USB0  
(16)  
USB0_VBUS  
USB0_VBUS  
USB0_DM  
0
0
A
A
VDDA*_USB0 / TBD TBD  
VDDA*_USB0  
(16)  
(5)  
U18  
G16  
N18  
F16  
USB0_DM  
Z
L
Z
0
0
VDDA*_USB0 / TBD TBD  
VDDA*_USB0  
TBD  
Analog  
USB0_DRVVBUS  
USB0_DRVVBUS  
gpio0_18  
0
7
O
0(PD)  
VDDSHV6 /  
VDDSHV6  
Yes  
4
PU/PD  
LVCMOS  
I/O  
42  
Terminal Description  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
ZCE BALL  
SPRS717 OCTOBER 2011  
Table 2-7. Ball Characteristics (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCZ BALL  
TYPE BALL RESET  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
USB0_ID  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
NUMBER [1] NUMBER [1]  
[5]  
STATE [6]  
V19  
P16  
USB0_ID  
0
A
Z
Z
0
VDDA*_USB0 / TBD TBD  
TBD  
Analog  
VDDA*_USB0  
(16)  
(5)  
U19  
NA  
N17  
P18  
USB0_DP  
USB1_CE  
USB0_DP  
USB1_CE  
0
0
A
A
Z
Z
Z
Z
0
0
VDDA*_USB0 / TBD TBD  
VDDA*_USB0  
TBD  
TBD  
Analog  
Analog  
NA /  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
VDDA*_USB1  
(17)  
NA  
NA  
P17  
T18  
USB1_ID  
USB1_ID  
0
0
0
A
A
Z
Z
Z
Z
0
0
NA /  
TBD  
TBD  
Analog  
Analog  
VDDA*_USB1  
(17)  
USB1_VBUS  
USB1_VBUS  
USB1_DP  
NA /  
VDDA*_USB1  
(17)  
(6)  
NA  
NA  
R17  
F15  
USB1_DP  
A
Z
L
Z
0
0
NA /  
TBD  
Analog  
VDDA*_USB1  
USB1_DRVVBUS  
USB1_DRVVBUS  
gpio3_13  
0
7
0
O
0(PD)  
NA / VDDSHV6 Yes  
4
PU/PD  
LVCMOS  
I/O  
A
(6)  
NA  
R18  
USB1_DM  
USB1_DM  
Z
Z
0
NA /  
TBD TBD  
TBD  
Analog  
VDDA*_USB1  
R17  
N16  
R16  
N15  
R15  
D8  
VDDA1P8V_USB0  
VDDA1P8V_USB1  
VDDA3P3V_USB0  
VDDA3P3V_USB1  
VDDA_ADC  
VDDA1P8V_USB0  
VDDA1P8V_USB1  
VDDA3P3V_USB0  
VDDA3P3V_USB1  
VDDA_ADC  
NA  
NA  
NA  
NA  
NA  
NA  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
NA  
R18  
NA  
D7  
D12, F16,  
E6, E14, F9, VDDS  
VDDS  
M16, T6, T14 K13, N6, P9,  
P14  
R8, R9, R11, P7, P8  
R12, R13  
VDDSHV1  
VDDSHV1  
NA  
PWR  
NA  
NA  
P10, P11  
P12, P13  
H14, J14  
VDDSHV2  
VDDSHV3  
VDDSHV4  
VDDSHV2  
VDDSHV3  
VDDSHV4  
NA  
NA  
NA  
PWR  
PWR  
PWR  
G15, H14,  
H15  
M14, M15,  
N15  
K14, L14  
VDDSHV5  
VDDSHV6  
VDDSHV5  
VDDSHV6  
NA  
NA  
PWR  
PWR  
E11, E12,  
E10, E11,  
E13, F14, P6, E12, E13,  
R7  
F14, G14, N5,  
P5, P6  
G5, H5, H6,  
K4, K5, M5,  
M6, N5  
E5, F5, G5,  
H5, J5, K5, L5  
VDDS_DDR  
VDDS_DDR  
NA  
PWR  
U10  
T8  
R11  
R10  
E7  
VDDS_OSC  
VDDS_OSC  
NA  
NA  
NA  
PWR  
PWR  
PWR  
VDDS_PLL_CORE_LCD  
VDDS_PLL_DDR  
VDDS_PLL_CORE_LCD  
VDDS_PLL_DDR  
C5  
Copyright © 2011, Texas Instruments Incorporated  
Terminal Description  
43  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
I/O CELL [13]  
Table 2-7. Ball Characteristics (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCE BALL  
NUMBER [1] NUMBER [1]  
ZCZ BALL  
TYPE BALL RESET  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
VDDS_PLL_MPU  
SIGNAL NAME [3]  
MODE [4]  
[5]  
STATE [6]  
H16  
C6  
H15  
D7  
VDDS_PLL_MPU  
NA  
PWR  
PWR  
PWR  
PWR  
PWR  
VDDS_RTC  
VDDS_RTC  
NA  
NA  
NA  
NA  
C10  
C12  
E9  
VDDS_SRAM_CORE_BG  
VDDS_SRAM_MPU_BB  
VDD_CORE  
VDDS_SRAM_CORE_BG  
VDDS_SRAM_MPU_BB  
VDD_CORE  
D10  
F9, F11, G9, F6, F7, G6,  
G11, H7, H8, G7, G10,  
H12, H13, J7, H11, J12, K6,  
J8, J12, J13, K8, K12, L6,  
K15, K16, L7, L7, L8, L9,  
L8, L12, L13, M11, M13,  
M7, M8, M12, N8, N9, N12,  
M13, N9,  
N13  
N11, P9, P11  
NA  
F10, F11,  
F12, F13,  
G13, H13,  
J13  
VDD_MPU  
VDD_MPU  
NA  
PWR  
NA  
R5  
B9  
A2  
M5  
A9  
VDD_MPU_MON  
VPP  
VDD_MPU_MON  
VPP  
NA  
NA  
0
PWR  
AP  
VREFN  
VREFN  
Z
Z
Z
0
0
VDDA_ADC /  
VDDA_ADC  
NA  
NA  
NA  
NA  
NA  
Analog  
Analog  
A9  
B9  
VREFP  
VREFP  
VSS  
0
AP  
Z
VDDA_ADC /  
VDDA_ADC  
NA  
A1, A19, D10, A1, A18, F8, VSS  
E7, E8, E9, G8, G9, G11,  
NA  
GND  
E10, F6, F7, G12, H6, H7,  
F8, F12, F13, H8, H9, H10,  
G8, G12, H9, H12, J6, J7,  
H10, H11, J5, J8, J9, J10,  
J6, J9, J11,  
J11, K7, K9,  
J14, J15, K8, K10, K11,  
K9, K11, K12, L10, L11, L12,  
L5, L6, L9,  
L13, M6, M7,  
L11, L14, L15, M8, M9, M10,  
M9, M10,  
M11, N8,  
M12, N7,  
N10, N11, V1,  
N12, P7, P8, V18  
P12, P13,  
P14, R10,  
T10, W1, W19  
D8  
E8  
VSSA_ADC  
VSSA_USB  
VSS_OSC  
VSS_RTC  
VSSA_ADC  
VSSA_USB  
VSS_OSC  
NA  
NA  
NA  
NA  
0
GND  
GND  
A
P16  
V11  
NA  
M14, N14  
V11  
A5  
VSS_RTC  
GND  
I/OD  
A16  
A10  
WARMRSTn  
nRESETIN_OUT  
0
0
0
VDDSHV6 /  
VDDSHV6  
Yes  
4
PU/PD  
LVCMOS  
44  
Terminal Description  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
ZCE BALL  
SPRS717 OCTOBER 2011  
Table 2-7. Ball Characteristics (ZCE and ZCZ Packages) (continued)  
BALL RESET  
REL. STATE  
[7]  
BUFFER  
STRENGTH  
(mA) [11]  
PULLUP  
/DOWN TYPE  
[12]  
ZCZ BALL  
TYPE BALL RESET  
RESET REL. ZCE POWER / HYS  
MODE [8] ZCZ POWER [9] [10]  
PIN NAME [2]  
SIGNAL NAME [3]  
MODE [4]  
I/O CELL [13]  
NUMBER [1] NUMBER [1]  
[5]  
STATE [6]  
(8)  
(7)  
(4)  
C15 A15  
XDMA_EVENT_INTR0  
xdma_event_intr0  
0
I
Z
Z
Z
VDDSHV6 /  
VDDSHV6  
Yes  
4
PU/PD  
LVCMOS  
timer4  
2
3
4
5
6
7
0
2
3
4
5
6
7
0
I/O  
O
clkout1  
spi1_cs1  
I/O  
I
pr1_pru1_pru_r31_16  
EMU2  
I/O  
I/O  
I
gpio0_19  
B15  
D14  
XDMA_EVENT_INTR1  
xdma_event_intr1  
tclkin  
L
7
VDDSHV6 /  
VDDSHV6  
Yes  
4
PU/PD  
LVCMOS  
I
clkout2  
O
timer7  
I/O  
I
pr1_pru0_pru_r31_16  
EMU3  
I/O  
I/O  
I
gpio0_20  
W11  
W12  
V10  
U11  
XTALIN  
OSC0_IN  
Z
0
0
VDDS_OSC /  
VDDS_OSC  
Yes  
NA  
NA  
PD (1)  
NA  
LVCMOS  
LVCMOS  
(15)  
XTALOUT  
OSC0_OUT  
0
O
VDDS_OSC /  
VDDS_OSC  
TBD  
(1) A internal 15 kohm pull down is turned on when the oscillator is disabled. The oscillator is enabled by default after power is applied.  
(2) An external pull-down resistor should be connected to this terminal to minmize leakage current when not using the oscillator.  
(3) LCD_DATA[15:0] terminals are respectively SYSBOOT[15:0] inputs, latched on the rising edge of PWRONRSTn.  
(4) Reset Release Mode = 7 if sysboot[5] is low. Mode = 3 if sysboot[5] is high.  
(5) The internal USB PHY can be configured to multiplex the UART2_TX or UART2_RX signals to this terminal. For more details refer to USB GPIO Details section of the TRM.  
(6) The internal USB PHY can be configured to multiplex the UART3_TX or UART3_RX signals to this terminal. For more details refer to USB GPIO Details section of the TRM.  
(7) This terminal has an internal pull-down that remains on after reset is released if sysboot[5] is low on the rising edge or PWRONRSTn. This terminal will initially be driven low after reset is  
released if sysboot[5] is high on the rising edge or PWRONRSTn, then it begins to toggle at the same frequency of the XTALIN terminal.  
(8) This terminal has an internal pull-down turned on while reset is asserted.  
(9) This terminal is a analog input used to set the switching threshold of the DDR input buffers to (VDDS_DDR / 2).  
(10) This terminal is a analog passive signal that connects to an external 50 ohm 2% reference resistor which is used to calibrate the DDR input/output buffers.  
(11) This terminal is analog input that may also be configured as an open-drain output.  
(12) This terminal is analog input that may also be configured as an open-source or open-drain output.  
(13) This terminal is analog input that may also be configured as an open-source output.  
(14) This terminal is high-Z when the oscillator is diasabled. This terminal is driven high if RTC_XTALIN is less than VIL, driven low if RTC_XTALIN is greater than VIH, and driven to a  
unknown value if RTC_XTALIN is between VIL and VIH when the oscillator is enabled. The oscillator is disabled by default after power is applied.  
(15) This terminal is high-Z when the oscillator is diasabled. This terminal is driven high if XTALIN is less than VIL, driven low if XTALIN is greater than VIH, and driven to a unknown value if  
XTALIN is between VIL and VIH when the oscillator is enabled. The oscillator is enabled by default after power is applied.  
(16) This terminal requires two power supplies, VDDA3P3v_USB0 and VDDA1P8v_USB0. The "*" character in the power supply name is a wild card that represents "3P3v" and "1P8v".  
Copyright © 2011, Texas Instruments Incorporated  
Terminal Description  
45  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
 
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
(17) This terminal requires two power supplies, VDDA3P3v_USB1 and VDDA1P8v_USB1. The "*" character in the power supply name is a wild card that represents "3P3v" and "1P8v".  
46  
Terminal Description  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
2.3 Signal Description  
Many signals are available on multiple pins according to the software configuration of the pin multiplexing  
options.  
NOTE  
The Subsystem Multiplexing Signals are not described in the following tables. For more  
information, see: TBD  
Copyright © 2011, Texas Instruments Incorporated  
Terminal Description  
47  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
(1) SIGNAL NAME: The signal name  
(2) DESCRIPTION: Description of the signal  
(3) TYPE: Ball type for this specific function:  
I = Input  
O = Output  
I/O = Input/Output  
D = Open drain  
DS = Differential  
A = Analog  
(4) BALL: Package ball location  
Table 2-8. ADC Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
Analog Input/Output  
ZCE BALL [4]  
B8  
ZCZ BALL [4]  
AIN0  
A
A
A
A
A
A
A
A
B6  
AIN1  
Analog Input/Output  
A11  
A8  
C7  
B7  
A7  
C8  
B8  
A8  
C9  
A9  
B9  
AIN2  
Analog Input/Output  
AIN3  
Analog Input/Output  
B11  
C8  
AIN4  
Analog Input/Output  
AIN5  
Analog Input/Output  
B12  
A10  
A12  
B9  
AIN6  
Analog Input/Output  
AIN7  
Analog Input/Output  
VREFN  
VREFP  
Analog Reference Input Negative Terminal  
Analog Reference Input Positive Terminal  
AP  
AP  
A9  
Table 2-9. Debug Subsystem Signals Description  
TYPE  
SIGNAL NAME [1]  
DESCRIPTION [2]  
[3]  
ZCE BALL [4]  
A15  
ZCZ BALL [4]  
EMU0  
EMU1  
EMU2  
EMU3  
EMU4  
nTRST  
TCK  
MISC EMULATION PIN  
MISC EMULATION PIN  
MISC EMULATION PIN  
MISC EMULATION PIN  
MISC EMULATION PIN  
JTAG TEST RESET (ACTIVE LOW)  
JTAG TEST CLOCK  
I/O  
I/O  
I/O  
I/O  
I/O  
I
C14  
D14  
B14  
A18, C15  
B15, B18  
B16, U17  
A13  
A15, A17, C13  
B17, D13, D14  
A14, C15, T13  
B10  
I
B14  
A12  
TDI  
JTAG TEST DATA INPUT  
JTAG TEST DATA OUTPUT  
JTAG TEST MODE SELECT  
I
B13  
B11  
TDO  
O
A14  
A11  
TMS  
I
C14  
C11  
Table 2-10. ECAT Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
ZCZ BALL [4]  
pr1_edc_latch0_in  
pr1_edc_latch1_in  
pr1_edc_sync0_out  
pr1_edc_sync1_out  
pr1_edio_data_in0  
pr1_edio_data_in1  
pr1_edio_data_in2  
pr1_edio_data_in3  
pr1_edio_data_in4  
pr1_edio_data_in5  
Data In  
Data In  
Data Out  
Data Out  
Data In  
Data In  
Data In  
Data In  
Data In  
Data In  
I
E17  
D19  
F19  
F18  
B17  
A17  
U7  
D18  
D17  
E18  
E17  
B16  
A16  
U5  
I
O
O
I
I
I
I
T7  
R5  
I
W5  
W7  
V5  
I
R6  
48  
Terminal Description  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
Table 2-10. ECAT Signals Description (continued)  
TYPE  
SIGNAL NAME [1]  
DESCRIPTION [2]  
[3]  
ZCE BALL [4]  
ZCZ BALL [4]  
T3, U9  
pr1_edio_data_in6  
pr1_edio_data_in7  
pr1_edio_data_out0  
pr1_edio_data_out1  
pr1_edio_data_out2  
pr1_edio_data_out3  
pr1_edio_data_out4  
pr1_edio_data_out5  
pr1_edio_data_out6  
pr1_edio_data_out7  
pr1_edio_latch_in  
pr1_edio_sof  
Data In  
I
V14, V3  
U15, U3  
B17  
Data In  
I
T4, V9  
B16  
A16  
U5  
Data Out  
Data Out  
Data Out  
Data Out  
Data Out  
Data Out  
Data Out  
Data Out  
Latch In  
O
O
O
O
O
O
O
O
I
A17  
U7  
T7  
R5  
W5  
V5  
W7  
R6  
V14, V3  
U15, U3  
B18  
T3, U9  
T4, V9  
B17  
A17  
Start of Frame  
O
A18  
Table 2-11. LCD Controller Signals Description  
TYPE  
SIGNAL NAME [1]  
DESCRIPTION [2]  
[3]  
ZCE BALL [4]  
ZCZ BALL [4]  
lcd_ac_bias_en  
lcd_data0  
LCD AC bias enable chip select  
LCD data bus  
LCD data bus  
LCD data bus  
LCD data bus  
LCD data bus  
LCD data bus  
LCD data bus  
LCD data bus  
LCD data bus  
LCD data bus  
LCD data bus  
LCD data bus  
LCD data bus  
LCD data bus  
LCD data bus  
LCD data bus  
LCD data bus  
LCD data bus  
LCD data bus  
LCD data bus  
LCD data bus  
LCD data bus  
LCD data bus  
LCD data bus  
LCD Horizontal Sync  
LCD MCLK  
O
W7  
U1  
R6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
R1  
lcd_data1  
U2  
R2  
lcd_data10  
lcd_data11  
lcd_data12  
lcd_data13  
lcd_data14  
lcd_data15  
lcd_data16  
lcd_data17  
lcd_data18  
lcd_data19  
lcd_data2  
U5  
U3  
V5  
U4  
V6  
V2  
U6  
V3  
W6  
V7  
V4  
T5  
V17  
W17  
T13  
U13  
V1  
U13  
V13  
R12  
T12  
R3  
O
O
O
I/O  
O
lcd_data20  
lcd_data21  
lcd_data22  
lcd_data23  
lcd_data3  
U12  
T12  
W16  
V15  
V2  
U12  
T11  
T10  
U10  
R4  
O
O
O
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
lcd_data4  
W2  
W3  
V3  
T1  
lcd_data5  
T2  
lcd_data6  
T3  
lcd_data7  
U3  
T4  
lcd_data8  
V4  
U1  
lcd_data9  
W4  
T7  
U2  
lcd_hsync  
lcd_memory_clk  
lcd_pclk  
R5  
O
L19, V16  
W5  
U7  
J17, V12  
V5  
LCD pixel clock  
LCD Vertical Sync  
O
lcd_vsync  
O
U5  
Copyright © 2011, Texas Instruments Incorporated  
Terminal Description  
49  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
2.3.1 External Memory Interfaces  
Table 2-12. External Memory Interfaces/DDR Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
F3  
ZCZ BALL [4]  
ddr_a0  
ddr_a1  
ddr_a10  
ddr_a11  
ddr_a12  
ddr_a13  
ddr_a14  
ddr_a15  
ddr_a2  
ddr_a3  
ddr_a4  
ddr_a5  
ddr_a6  
ddr_a7  
ddr_a8  
ddr_a9  
ddr_ba0  
ddr_ba1  
ddr_ba2  
ddr_casn  
DDR SDRAM ROW/COLUMN ADDRESS  
DDR SDRAM ROW/COLUMN ADDRESS  
DDR SDRAM ROW/COLUMN ADDRESS  
DDR SDRAM ROW/COLUMN ADDRESS  
DDR SDRAM ROW/COLUMN ADDRESS  
DDR SDRAM ROW/COLUMN ADDRESS  
DDR SDRAM ROW/COLUMN ADDRESS  
DDR SDRAM ROW/COLUMN ADDRESS  
DDR SDRAM ROW/COLUMN ADDRESS  
DDR SDRAM ROW/COLUMN ADDRESS  
DDR SDRAM ROW/COLUMN ADDRESS  
DDR SDRAM ROW/COLUMN ADDRESS  
DDR SDRAM ROW/COLUMN ADDRESS  
DDR SDRAM ROW/COLUMN ADDRESS  
DDR SDRAM ROW/COLUMN ADDRESS  
DDR SDRAM ROW/COLUMN ADDRESS  
DDR SDRAM BANK ADDRESS  
O
F3  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
J2  
H1  
F4  
F2  
E3  
H3  
H4  
D3  
E4  
C3  
C2  
B1  
D5  
E2  
D4  
C1  
C4  
E1  
B3  
F1  
E2  
G4  
F4  
H1  
H3  
E3  
D1  
B3  
E5  
A2  
B1  
D2  
C3  
B2  
A3  
E1  
B4  
F1  
DDR SDRAM BANK ADDRESS  
DDR SDRAM BANK ADDRESS  
DDR SDRAM COLUMN ADDRESS STROBE.  
(ACTIVE LOW)  
ddr_ck  
DDR SDRAM CLOCK (Differential+)  
DDR SDRAM CLOCK ENABLE  
DDR SDRAM CHIP SELECT  
DDR SDRAM DATA  
DDR SDRAM DATA  
DDR SDRAM DATA  
DDR SDRAM DATA  
DDR SDRAM DATA  
DDR SDRAM DATA  
DDR SDRAM DATA  
DDR SDRAM DATA  
DDR SDRAM DATA  
DDR SDRAM DATA  
DDR SDRAM DATA  
DDR SDRAM DATA  
DDR SDRAM DATA  
DDR SDRAM DATA  
DDR SDRAM DATA  
DDR SDRAM DATA  
O
C2  
G3  
H2  
N4  
P4  
M3  
M4  
M2  
M1  
N2  
N1  
P2  
P1  
P3  
T1  
T2  
R3  
K2  
K1  
N3  
D2  
G3  
H2  
M3  
M4  
K2  
K3  
K4  
L3  
ddr_cke  
ddr_csn0  
ddr_d0  
ddr_d1  
ddr_d10  
ddr_d11  
ddr_d12  
ddr_d13  
ddr_d14  
ddr_d15  
ddr_d2  
ddr_d3  
ddr_d4  
ddr_d5  
ddr_d6  
ddr_d7  
ddr_d8  
ddr_d9  
ddr_dqm0  
O
O
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
L4  
M1  
N1  
N2  
N3  
N4  
P3  
P4  
J1  
K1  
M2  
DDR WRITE ENABLE / DATA MASK FOR  
DATA[7:0]  
ddr_dqm1  
ddr_dqs0  
DDR WRITE ENABLE / DATA MASK FOR  
DATA[15:8]  
O
K3  
R1  
J2  
DDR DATA STROBE FOR DATA[7:0]  
(Differential+)  
I/O  
P1  
50  
Terminal Description  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
Table 2-12. External Memory Interfaces/DDR Signals Description (continued)  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
L1  
ZCZ BALL [4]  
L1  
ddr_dqs1  
ddr_dqsn0  
ddr_dqsn1  
DDR DATA STROBE FOR DATA[15:8]  
(Differential+)  
I/O  
DDR DATA STROBE FOR DATA[7:0]  
(Differential-)  
I/O  
I/O  
R2  
L2  
P2  
L2  
DDR DATA STROBE FOR DATA[15:8]  
(Differential-)  
ddr_nck  
ddr_odt  
ddr_rasn  
DDR SDRAM CLOCK (Differential-)  
ODT  
O
O
O
C1  
G1  
F2  
D1  
G1  
G4  
DDR SDRAM ROW ADDRESS STROBE  
(ACTIVE LOW)  
ddr_resetn  
ddr_vref  
ddr_vtp  
DDR3 resetn  
O
AP  
I
G2  
H4  
J1  
G2  
J4  
Voltage Reference  
VTP Compensation pin  
DDR SDRAM WRITE ENABLE (ACTIVE LOW)  
J3  
ddr_wen  
O
A4  
B2  
Table 2-13. External Memory Interfaces/General Purpose Memory Controller Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
U1  
ZCZ BALL [4]  
gpmc_a0  
gpmc_a1  
gpmc_a10  
gpmc_a11  
gpmc_a12  
gpmc_a13  
gpmc_a14  
gpmc_a15  
gpmc_a16  
gpmc_a17  
gpmc_a18  
gpmc_a19  
gpmc_a2  
gpmc_a20  
gpmc_a21  
gpmc_a22  
gpmc_a23  
gpmc_a24  
gpmc_a25  
gpmc_a26  
gpmc_a27  
gpmc_a3  
gpmc_a4  
gpmc_a5  
gpmc_a6  
gpmc_a7  
gpmc_a8  
gpmc_a9  
gpmc_ad0  
gpmc_ad1  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
GPMC Address  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
R1, R13  
R2, V14  
T16, V5  
R6, V17  
U1  
U2  
W5  
W7  
V4  
W4  
U5  
U2  
U3  
V5  
U4  
V6  
R13, V2  
V14, V3  
U14, V4  
T14, T5  
R3, U14  
F17, R14  
F18, V15  
G15, U15  
G16, T15  
G17, V16  
G18, U16  
T16  
U6  
W6  
V7  
V1  
H19  
H18  
H17  
G18  
G19  
G17  
NA  
NA  
V2  
V17  
R4, T14  
R14, T1  
T2, V15  
T3, U15  
T15, T4  
U5, V16  
R5, U16  
U7  
W2  
W3  
V3  
U3  
U7  
T7  
GPMC Address & Data  
GPMC Address & Data  
I/O  
I/O  
W10  
V9  
V7  
Copyright © 2011, Texas Instruments Incorporated  
Terminal Description  
51  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
Table 2-13. External Memory Interfaces/General Purpose Memory Controller Signals  
Description (continued)  
TYPE  
[3]  
SIGNAL NAME [1]  
gpmc_ad10  
DESCRIPTION [2]  
ZCE BALL [4]  
T12  
ZCZ BALL [4]  
GPMC Address & Data  
I/O  
T11  
gpmc_ad11  
gpmc_ad12  
gpmc_ad13  
gpmc_ad14  
gpmc_ad15  
gpmc_ad2  
gpmc_ad3  
gpmc_ad4  
gpmc_ad5  
gpmc_ad6  
gpmc_ad7  
gpmc_ad8  
gpmc_ad9  
gpmc_advn_ale  
gpmc_be0n_cle  
gpmc_be1n  
gpmc_clk  
GPMC Address & Data  
GPMC Address & Data  
GPMC Address & Data  
GPMC Address & Data  
GPMC Address & Data  
GPMC Address & Data  
GPMC Address & Data  
GPMC Address & Data  
GPMC Address & Data  
GPMC Address & Data  
GPMC Address & Data  
GPMC Address & Data  
GPMC Address & Data  
GPMC Address Valid / Address Latch Enable  
GPMC Byte Enable 0 / Command Latch Enable  
GPMC Byte Enable 1  
GPMC Clock  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
U12  
U13  
T13  
U12  
T12  
R12  
V13  
U13  
R8  
W17  
V17  
V12  
W13  
V13  
T8  
U8  
W14  
U14  
W15  
V15  
V8  
R9  
T9  
U10  
T10  
R7  
W16  
V10  
O
V8  
T6  
O
U15, V18  
V14, V16  
W8  
U18, V9  
U9, V12  
V6  
I/O  
O
gpmc_csn0  
gpmc_csn1  
gpmc_csn2  
gpmc_csn3  
gpmc_csn4  
gpmc_csn5  
gpmc_csn6  
gpmc_dir  
GPMC Chip Select  
GPMC Chip Select  
O
V14  
U9  
GPMC Chip Select  
O
U15  
U17  
R15  
W18  
V18  
V9  
GPMC Chip Select  
O
T13  
T17  
U17  
U18  
U18  
T7  
GPMC Chip Select  
O
GPMC Chip Select  
O
GPMC Chip Select  
O
GPMC Data Direction  
GPMC Output / Read Enable  
GPMC Wait 0  
O
V18  
gpmc_oen_ren  
gpmc_wait0  
gpmc_wait1  
gpmc_wen  
gpmc_wpn  
O
W9  
I
R15  
V16  
T17  
V12  
U6  
GPMC Wait 1  
I
GPMC Write Enable  
O
U8  
GPMC Write Protect  
O
W18  
U17  
52  
Terminal Description  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
2.3.2 General Purpose IOs  
Table 2-14. General Purpose IOs/GPIO0 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
P17  
ZCZ BALL [4]  
M17  
gpio0_0  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
I/O  
gpio0_1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
R19  
W6  
M18  
V4  
gpio0_10  
gpio0_11  
gpio0_12  
gpio0_13  
gpio0_14  
gpio0_15  
gpio0_16  
gpio0_17  
gpio0_18  
gpio0_19  
gpio0_2  
V7  
T5  
E17  
D19  
D18  
C19  
M17  
N18  
G16  
C15  
A18  
B15  
M18  
V15  
W16  
T12  
U12  
L18  
K18  
B18  
R15  
W18  
B17  
A17  
B16  
E18  
V6  
D18  
D17  
D16  
D15  
J18  
K15  
F16  
A15  
A17  
D14  
K16  
U10  
T10  
T11  
U12  
K17  
H18  
B17  
T17  
U17  
B16  
A16  
C15  
C18  
V2  
gpio0_20  
gpio0_21  
gpio0_22  
gpio0_23  
gpio0_26  
gpio0_27  
gpio0_28  
gpio0_29  
gpio0_3  
gpio0_30  
gpio0_31  
gpio0_4  
gpio0_5  
gpio0_6  
gpio0_7  
gpio0_8  
gpio0_9  
U6  
V3  
Table 2-15. General Purpose IOs/GPIO1 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
ZCZ BALL [4]  
gpio1_0  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
I/O  
W10  
V9  
U7  
gpio1_1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
V7  
gpio1_10  
gpio1_11  
gpio1_12  
gpio1_13  
gpio1_14  
gpio1_15  
gpio1_16  
gpio1_17  
gpio1_18  
E19  
F17  
U13  
T13  
W17  
V17  
NA  
E15  
E16  
T12  
R12  
V13  
U13  
R13  
V14  
U14  
NA  
NA  
Copyright © 2011, Texas Instruments Incorporated  
Terminal Description  
53  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
Table 2-15. General Purpose IOs/GPIO1 Signals Description (continued)  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
ZCZ BALL [4]  
gpio1_19  
gpio1_2  
gpio1_20  
gpio1_21  
gpio1_22  
gpio1_23  
gpio1_24  
gpio1_25  
gpio1_26  
gpio1_27  
gpio1_28  
gpio1_29  
gpio1_3  
gpio1_30  
gpio1_31  
gpio1_4  
gpio1_5  
gpio1_6  
gpio1_7  
gpio1_8  
gpio1_9  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
I/O  
NA  
T14  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
V12  
NA  
R8  
R14  
V15  
U15  
T15  
V16  
U16  
T16  
V17  
U18  
V6  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
V18  
W8  
W13  
V14  
U15  
V13  
W14  
U14  
W15  
F19  
F18  
T8  
U9  
V9  
U8  
V8  
R9  
T9  
E18  
E17  
Table 2-16. General Purpose IOs/GPIO2 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
ZCZ BALL [4]  
gpio2_0  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
I/O  
U17  
V16  
W2  
W3  
V3  
T13  
V12  
T1  
gpio2_1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
gpio2_10  
gpio2_11  
gpio2_12  
gpio2_13  
gpio2_14  
gpio2_15  
gpio2_16  
gpio2_17  
gpio2_18  
gpio2_19  
gpio2_2  
T2  
T3  
U3  
T4  
V4  
U1  
W4  
U5  
U2  
U3  
V5  
U4  
N17  
N16  
V10  
P19  
P18  
U7  
L17  
L16  
R7  
gpio2_20  
gpio2_21  
gpio2_22  
gpio2_23  
gpio2_24  
gpio2_25  
gpio2_26  
gpio2_27  
gpio2_28  
L15  
M16  
U5  
T7  
R5  
W5  
W7  
H19  
H18  
H17  
V5  
R6  
F17  
F18  
G15  
54  
Terminal Description  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
Table 2-16. General Purpose IOs/GPIO2 Signals Description (continued)  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
ZCZ BALL [4]  
G16  
gpio2_29  
gpio2_3  
gpio2_30  
gpio2_31  
gpio2_4  
gpio2_5  
gpio2_6  
gpio2_7  
gpio2_8  
gpio2_9  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
I/O  
G18  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
W9  
G19  
G17  
U8  
T7  
G17  
G18  
U6  
T6  
V8  
U1  
R1  
R2  
R3  
R4  
U2  
V1  
V2  
Table 2-17. General Purpose IOs/GPIO3 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
ZCZ BALL [4]  
gpio3_0  
gpio3_1  
gpio3_10  
gpio3_13  
gpio3_14  
gpio3_15  
gpio3_16  
gpio3_17  
gpio3_18  
gpio3_19  
gpio3_2  
gpio3_20  
gpio3_21  
gpio3_3  
gpio3_4  
gpio3_5  
gpio3_6  
gpio3_7  
gpio3_8  
gpio3_9  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
I/O  
J19  
J18  
M19  
NA  
H16  
H17  
L18  
F15  
A13  
B13  
D12  
C12  
B12  
C13  
J15  
D13  
A14  
J16  
J17  
C17  
C16  
C14  
B14  
K18  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NA  
NA  
NA  
NA  
NA  
NA  
K19  
NA  
NA  
K17  
L19  
C18  
B19  
A15  
D14  
N19  
Copyright © 2011, Texas Instruments Incorporated  
Terminal Description  
55  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
2.3.3 Miscellaneous  
Table 2-18. Miscellaneous/Miscellaneous Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
C15  
ZCZ BALL [4]  
clkout1  
clkout2  
Clock out1  
Clock out2  
O
A15  
O
B15  
D14  
ENZ_KALDO_1P8V  
EXT_WAKEUP  
nNMI  
Active low output enable for CAP_VDD_RTC  
EXT_WAKEUP  
I
A7  
B4  
I
B5  
C5  
External Interrupt to ARM Cortext A8 core  
Chip Reset  
I
C17  
B18  
nRESETIN_OUT  
OSC0_IN  
I/OD  
A16  
A10  
HF OSCILLATOR RECEIVER  
HF OSCILLATOR DRIVER  
PMIC_POWER_EN  
I
W11  
W12  
C7  
V10  
OSC0_OUT  
O
O
I
U11  
PMIC_POWER_EN  
porz  
C6  
Power on Reset  
E15  
B15  
tclkin  
Timer Clock In  
I
B15  
D14  
xdma_event_intr0  
xdma_event_intr1  
xdma_event_intr2  
External DMA Event or Interrupt 0  
External DMA Event or Interrupt 1  
External DMA Event or Interrupt 2  
I
C15  
A15  
I
B15  
D14  
I
B16, E18, K18  
C15, C18, H18  
56  
Terminal Description  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
2.3.3.1 eCAP  
Table 2-19. eCAP/eCAP0 Signals Description  
TYPE  
SIGNAL NAME [1]  
eCAP0_in_PWM0_out  
DESCRIPTION [2]  
[3]  
ZCE BALL [4]  
E18  
ZCZ BALL [4]  
C18  
enhanced capture 0 input or Auxiliary PWM0 out I/O  
Table 2-20. eCAP/eCAP1 Signals Description  
TYPE  
SIGNAL NAME [1]  
eCAP1_in_PWM1_out  
DESCRIPTION [2]  
[3]  
ZCE BALL [4]  
ZCZ BALL [4]  
enhanced capture 1 input or Auxiliary PWM1 out I/O  
B16, B19, F17  
C15, C16, E16  
Table 2-21. eCAP/eCAP2 Signals Description  
TYPE  
SIGNAL NAME [1]  
eCAP2_in_PWM2_out  
DESCRIPTION [2]  
[3]  
ZCE BALL [4]  
ZCZ BALL [4]  
enhanced capture 2 input or Auxiliary PWM2 out I/O  
C18, E19  
C12, C17, E15  
Copyright © 2011, Texas Instruments Incorporated  
Terminal Description  
57  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
2.3.3.2 eHRPWM  
Table 2-22. eHRPWM/eHRPWM0 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
eHRPWM0 A output.  
ZCE BALL [4]  
ZCZ BALL [4]  
ehrpwm0A  
O
O
I
A18  
B18  
A17  
A13, A17  
B13, B17  
A16, C12  
ehrpwm0B  
eHRPWM0 B output.  
ehrpwm0_synci  
Sync input to eHRPWM0 module from an  
external pin  
ehrpwm0_synco  
Sync Output from eHRPWM0 module to an  
external pin  
O
I
U12, V2, W4  
B17  
R4, U12, U2, V14  
B16, D12  
ehrpwm0_tripzone_input  
eHRPWM0 trip zone input  
Table 2-23. eHRPWM/eHRPWM1 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
eHRPWM1 A output.  
ZCE BALL [4]  
ZCZ BALL [4]  
ehrpwm1A  
O
O
I
U5  
V5  
V4  
U14, U3  
T14, U4  
R13, U1  
ehrpwm1B  
eHRPWM1 B output.  
ehrpwm1_tripzone_input  
eHRPWM1 trip zone input  
Table 2-24. eHRPWM/eHRPWM2 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
eHRPWM2 A output.  
ZCE BALL [4]  
ZCZ BALL [4]  
ehrpwm2A  
O
O
I
U1, V15  
U2, W16  
T12, V1  
R1, U10  
R2, T10  
R3, T11  
ehrpwm2B  
eHRPWM2 B output.  
ehrpwm2_tripzone_input  
eHRPWM2 trip zone input  
58  
Terminal Description  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
2.3.3.3 eQEP  
Table 2-25. eQEP/eQEP0 Signals Description  
TYPE  
SIGNAL NAME [1]  
DESCRIPTION [2]  
[3]  
ZCE BALL [4]  
M18  
ZCZ BALL [4]  
eQEP0A_in  
eQEP0A quadrature input  
eQEP0B quadrature input  
eQEP0 index.  
I
B12, K16  
C13, K17  
D13, J16  
A14, L15  
eQEP0B_in  
I
L18  
K17  
P19  
eQEP0_index  
eQEP0_strobe  
I/O  
I/O  
eQEP0 strobe.  
Table 2-26. eQEP/eQEP1 Signals Description  
TYPE  
SIGNAL NAME [1]  
DESCRIPTION [2]  
[3]  
ZCE BALL [4]  
ZCZ BALL [4]  
eQEP1A_in  
eQEP1A quadrature input  
eQEP1B quadrature input  
eQEP1 index.  
I
V6  
U6  
W6  
V7  
R14, V2  
V15, V3  
U15, V4  
T15, T5  
eQEP1B_in  
I
eQEP1_index  
eQEP1_strobe  
I/O  
I/O  
eQEP1 strobe.  
Table 2-27. eQEP/eQEP2 Signals Description  
TYPE  
SIGNAL NAME [1]  
DESCRIPTION [2]  
[3]  
ZCE BALL [4]  
ZCZ BALL [4]  
eQEP2A_in  
eQEP2A quadrature input  
eQEP2B quadrature input  
eQEP2 index.  
I
U13, W2  
T13, W3  
V3, W17  
U3, V17  
T1, T12  
R12, T2  
T3, V13  
T4, U13  
eQEP2B_in  
I
eQEP2_index  
eQEP2_strobe  
I/O  
I/O  
eQEP2 strobe.  
Copyright © 2011, Texas Instruments Incorporated  
Terminal Description  
59  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
2.3.3.4 Timer  
Table 2-28. Timer/Timer4 Signals Description  
TYPE  
SIGNAL NAME [1]  
DESCRIPTION [2]  
[3]  
ZCE BALL [4]  
ZCZ BALL [4]  
timer4  
Timer trigger event / PWM out  
I/O  
C15, C18, K17,  
V10  
A15, C17, J16,  
R7  
Table 2-29. Timer/Timer5 Signals Description  
TYPE  
SIGNAL NAME [1]  
DESCRIPTION [2]  
[3]  
ZCE BALL [4]  
ZCZ BALL [4]  
timer5  
Timer trigger event / PWM out  
I/O  
D19, H19, R19,  
V8  
D17, F17, M18,  
T6  
Table 2-30. Timer/Timer6 Signals Description  
TYPE  
SIGNAL NAME [1]  
DESCRIPTION [2]  
[3]  
ZCE BALL [4]  
ZCZ BALL [4]  
timer6  
Timer trigger event / PWM out  
I/O  
E17, H18, P17,  
U8  
D18, F18, M17,  
U6  
Table 2-31. Timer/Timer7 Signals Description  
TYPE  
SIGNAL NAME [1]  
DESCRIPTION [2]  
[3]  
ZCE BALL [4]  
ZCZ BALL [4]  
timer7  
Timer trigger event / PWM out  
I/O  
B15, B19, F19,  
W9  
C16, D14, E18,  
T7  
60  
Terminal Description  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
2.3.4 PRU Subsystem  
Table 2-32. PRU Subsystem/MII0 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
MII Collision Detect  
ZCE BALL [4]  
ZCZ BALL [4]  
T10  
pr1_mii0_col  
I
W16  
pr1_mii0_crs  
MII Carrier Sense  
I
U17, W5  
V5  
T13, V5  
U4  
pr1_mii0_rxd0  
pr1_mii0_rxd1  
pr1_mii0_rxd2  
pr1_mii0_rxd3  
pr1_mii0_rxdv  
pr1_mii0_rxer  
pr1_mii0_rxlink  
pr1_mii0_txd0  
pr1_mii0_txd1  
pr1_mii0_txd2  
pr1_mii0_txd3  
pr1_mii0_txen  
pr1_mii_mr0_clk  
pr1_mii_mt0_clk  
MII Receive Data bit 0  
MII Receive Data bit 1  
MII Receive Data bit 2  
MII Receive Data bit 3  
MII Receive Data Valid  
MII Receive Data Error  
MII Receive Link  
I
I
U5  
U3  
I
W4  
U2  
I
V4  
U1  
I
V7  
T5  
I
U6  
V3  
I
V6  
V2  
MII Transmit Data bit 0  
MII Transmit Data bit 1  
MII Transmit Data bit 2  
MII Transmit Data bit 3  
MII Transmit Enable  
MII Receive Clock  
O
O
O
O
O
I
W17, W3  
T13, W2  
U13, V2  
U12, V1  
T12, U2  
W6  
T2, V13  
R12, T1  
R4, T12  
R3, U12  
R2, T11  
V4  
MII Transmit Clock  
I
U1, V15  
R1, U10  
Table 2-33. PRU Subsystem/MII1 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
MII Collision Detect  
ZCE BALL [4]  
ZCZ BALL [4]  
pr1_mii1_col  
I
R15  
V16, W7  
NA  
T17  
pr1_mii1_crs  
MII Carrier Sense  
I
R6, V12  
V16  
T15  
pr1_mii1_rxd0  
pr1_mii1_rxd1  
pr1_mii1_rxd2  
pr1_mii1_rxd3  
pr1_mii1_rxdv  
pr1_mii1_rxer  
pr1_mii1_rxlink  
pr1_mii1_txd0  
pr1_mii1_txd1  
pr1_mii1_txd2  
pr1_mii1_txd3  
pr1_mii1_txen  
pr1_mii_mr1_clk  
pr1_mii_mt1_clk  
MII Receive Data bit 0  
MII Receive Data bit 1  
MII Receive Data bit 2  
MII Receive Data bit 3  
MII Receive Data Valid  
MII Receive Data Error  
MII Receive Link  
I
I
NA  
I
NA  
U15  
V15  
T16  
I
NA  
I
NA  
I
NA  
V17  
U18  
R14  
T14  
I
V18  
NA  
MII Transmit Data bit 0  
MII Transmit Data bit 1  
MII Transmit Data bit 2  
MII Transmit Data bit 3  
MII Transmit Enable  
MII Receive Clock  
O
O
O
O
O
I
NA  
NA  
U14  
V14  
U17  
U16  
R13  
NA  
W18  
NA  
MII Transmit Clock  
I
NA  
Table 2-34. PRU Subsystem/UART0 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
UART Clear to Send  
ZCE BALL [4]  
ZCZ BALL [4]  
pr1_uart0_cts_n  
pr1_uart0_rts_n  
pr1_uart0_rxd  
pr1_uart0_txd  
I
A18, E17  
B18, D19  
B17, D18  
A17, C19  
A17, D18  
B17, D17  
B16, D16  
A16, D15  
UART Request to Send  
UART Receive Data  
UART Transmit Data  
O
I
O
Copyright © 2011, Texas Instruments Incorporated  
Terminal Description  
61  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
2.3.4.1 PRU0  
Table 2-35. PRU0/General Purpose Inputs Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
pr1_pru0_pru_r31_0  
DESCRIPTION [2]  
ZCE BALL [4]  
NA  
ZCZ BALL [4]  
PRU0 Data In  
PRU0 Data In  
PRU0 Data In  
PRU0 Data In  
PRU0 Data In  
PRU0 Data In  
PRU0 Data In  
PRU0 Data In  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
A13  
pr1_pru0_pru_r31_1  
pr1_pru0_pru_r31_10  
pr1_pru0_pru_r31_11  
pr1_pru0_pru_r31_12  
pr1_pru0_pru_r31_13  
pr1_pru0_pru_r31_14  
pr1_pru0_pru_r31_15  
pr1_pru0_pru_r31_16  
pr1_pru0_pru_r31_2  
pr1_pru0_pru_r31_3  
pr1_pru0_pru_r31_4  
pr1_pru0_pru_r31_5  
pr1_pru0_pru_r31_6  
pr1_pru0_pru_r31_7  
pr1_pru0_pru_r31_8  
pr1_pru0_pru_r31_9  
NA  
B13  
H17  
G18  
G19  
G17  
W17  
V17  
B15, C19  
NA  
G15  
G16  
G17  
G18  
V13  
U13  
D14, D15  
D12  
C12  
B12  
PRU0 Data In Capture Enable  
PRU0 Data In  
PRU0 Data In  
NA  
PRU0 Data In  
NA  
PRU0 Data In  
NA  
C13  
D13  
A14  
PRU0 Data In  
NA  
PRU0 Data In  
NA  
PRU0 Data In  
H19  
H18  
F17  
PRU0 Data In  
F18  
Table 2-36. PRU0/General Purpose Outputs Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
ZCZ BALL [4]  
pr1_pru0_pru_r30_0  
pr1_pru0_pru_r30_1  
pr1_pru0_pru_r30_10  
pr1_pru0_pru_r30_11  
pr1_pru0_pru_r30_12  
pr1_pru0_pru_r30_13  
pr1_pru0_pru_r30_14  
pr1_pru0_pru_r30_15  
pr1_pru0_pru_r30_2  
pr1_pru0_pru_r30_3  
pr1_pru0_pru_r30_4  
pr1_pru0_pru_r30_5  
pr1_pru0_pru_r30_6  
pr1_pru0_pru_r30_7  
pr1_pru0_pru_r30_8  
pr1_pru0_pru_r30_9  
PRU0 Data Out  
PRU0 Data Out  
PRU0 Data Out  
PRU0 Data Out  
PRU0 Data Out  
PRU0 Data Out  
PRU0 Data Out  
PRU0 Data Out  
PRU0 Data Out  
PRU0 Data Out  
PRU0 Data Out  
PRU0 Data Out  
PRU0 Data Out  
PRU0 Data Out  
PRU0 Data Out  
PRU0 Data Out  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
NA  
A13  
B13  
G15  
G16  
G17  
G18  
T12  
R12  
D12  
C12  
B12  
C13  
D13  
A14  
F17  
F18  
NA  
H17  
G18  
G19  
G17  
U13  
T13  
NA  
NA  
NA  
NA  
NA  
NA  
H19  
H18  
62  
Terminal Description  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
2.3.4.2 PRU1  
Table 2-37. PRU1/General Purpose Inputs Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
U1  
ZCZ BALL [4]  
R1  
pr1_pru1_pru_r31_0  
pr1_pru1_pru_r31_1  
pr1_pru1_pru_r31_10  
pr1_pru1_pru_r31_11  
pr1_pru1_pru_r31_12  
pr1_pru1_pru_r31_13  
pr1_pru1_pru_r31_14  
pr1_pru1_pru_r31_15  
pr1_pru1_pru_r31_16  
pr1_pru1_pru_r31_2  
pr1_pru1_pru_r31_3  
pr1_pru1_pru_r31_4  
pr1_pru1_pru_r31_5  
pr1_pru1_pru_r31_6  
pr1_pru1_pru_r31_7  
pr1_pru1_pru_r31_8  
pr1_pru1_pru_r31_9  
PRU1 Data In  
PRU1 Data In  
PRU1 Data In  
PRU1 Data In  
PRU1 Data In  
PRU1 Data In  
PRU1 Data In  
PRU1 Data In  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
U2  
R2  
W5  
W7  
V14  
U15  
E19  
F17  
C15, D18  
V1  
V5  
R6  
U9  
V9  
E15  
E16  
A15, D16  
R3  
PRU1 Data In Capture Enable  
PRU1 Data In  
PRU1 Data In  
V2  
R4  
PRU1 Data In  
W2  
W3  
V3  
T1  
PRU1 Data In  
T2  
PRU1 Data In  
T3  
PRU1 Data In  
U3  
T4  
PRU1 Data In  
U7  
U5  
PRU1 Data In  
T7  
R5  
Table 2-38. PRU1/General Purpose Outputs Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
ZCZ BALL [4]  
pr1_pru1_pru_r30_0  
pr1_pru1_pru_r30_1  
pr1_pru1_pru_r30_10  
pr1_pru1_pru_r30_11  
pr1_pru1_pru_r30_12  
pr1_pru1_pru_r30_13  
pr1_pru1_pru_r30_14  
pr1_pru1_pru_r30_15  
pr1_pru1_pru_r30_2  
pr1_pru1_pru_r30_3  
pr1_pru1_pru_r30_4  
pr1_pru1_pru_r30_5  
pr1_pru1_pru_r30_6  
pr1_pru1_pru_r30_7  
pr1_pru1_pru_r30_8  
pr1_pru1_pru_r30_9  
PRU1 Data Out  
PRU1 Data Out  
PRU1 Data Out  
PRU1 Data Out  
PRU1 Data Out  
PRU1 Data Out  
PRU1 Data Out  
PRU1 Data Out  
PRU1 Data Out  
PRU1 Data Out  
PRU1 Data Out  
PRU1 Data Out  
PRU1 Data Out  
PRU1 Data Out  
PRU1 Data Out  
PRU1 Data Out  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
U1  
R1  
R2  
V5  
R6  
U9  
V9  
E15  
E16  
R3  
R4  
T1  
U2  
W5  
W7  
V14  
U15  
E19  
F17  
V1  
V2  
W2  
W3  
V3  
T2  
T3  
U3  
T4  
U7  
U5  
R5  
T7  
Copyright © 2011, Texas Instruments Incorporated  
Terminal Description  
63  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
2.3.5 Removable Media Interfaces  
Table 2-39. Removable Media Interfaces/MMC0 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
mmc0_clk  
DESCRIPTION [2]  
MMC/SD/SDIO Clock  
ZCE BALL [4]  
G19  
ZCZ BALL [4]  
I/O  
G17  
mmc0_cmd  
mmc0_dat0  
mmc0_dat1  
mmc0_dat2  
mmc0_dat3  
mmc0_dat4  
mmc0_dat5  
mmc0_dat6  
mmc0_dat7  
mmc0_pow  
mmc0_sdcd  
mmc0_sdwp  
MMC/SD/SDIO Command  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD Power Switch Control  
SD Card Detect  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
G17  
G18  
G18  
G16  
H17  
G15  
H18  
F18  
H19  
F17  
N16  
L16  
N17  
L17  
M19  
L18  
N19  
K18  
B16, K18  
B16, P17  
E18, R19  
C15, H18  
A13, C15, M17  
B12, C18, M18  
I
SD Write Protect  
I
Table 2-40. Removable Media Interfaces/MMC1 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
MMC/SD/SDIO Clock  
ZCE BALL [4]  
ZCZ BALL [4]  
mmc1_clk  
I/O  
L18, R19, V14  
M18, P17, U15  
N19, V15, W10  
M19, V9, W16  
N17, T12, V12  
N16, U12, W13  
U13, V13  
K17, M18, U9  
K16, M17, V9  
K18, U10, U7  
L18, T10, V7  
L17, R8, T11  
L16, T8, U12  
T12, U8  
mmc1_cmd  
mmc1_dat0  
mmc1_dat1  
mmc1_dat2  
mmc1_dat3  
mmc1_dat4  
mmc1_dat5  
mmc1_dat6  
mmc1_dat7  
mmc1_sdcd  
mmc1_sdwp  
MMC/SD/SDIO Command  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
SD Card Detect  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
T13, W14  
R12, V8  
U14, W17  
R9, V13  
V17, W15  
T9, U13  
R15  
B13, T17  
SD Write Protect  
I
B17, D18  
B16, D16  
Table 2-41. Removable Media Interfaces/MMC2 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
MMC/SD/SDIO Clock  
ZCE BALL [4]  
ZCZ BALL [4]  
mmc2_clk  
I/O  
P19, R19, V16  
K17, P17, U17  
L19, U13  
M17, T13  
N18, W17  
J19, V17, V18  
V15  
L15, M18, V12  
J16, M17, T13  
J17, T12, V14  
J18, R12, U14  
K15, T14, V13  
H16, U13, U18  
U10, U15  
mmc2_cmd  
mmc2_dat0  
mmc2_dat1  
mmc2_dat2  
mmc2_dat3  
mmc2_dat4  
mmc2_dat5  
mmc2_dat6  
mmc2_dat7  
mmc2_sdcd  
mmc2_sdwp  
MMC/SD/SDIO Command  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
MMC/SD/SDIO Data Bus  
SD Card Detect  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
W16  
T10, T15  
T12  
T11, V16  
U12  
U12, U16  
W18  
D12, U17  
SD Write Protect  
I
A17, C19  
A16, D15  
64  
Terminal Description  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
2.3.6 Serial Communication Interfaces  
2.3.6.1 CAN  
Table 2-42. CAN/DCAN0 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
ZCZ BALL [4]  
dcan0_rx  
dcan0_tx  
DCAN0 Receive Data  
DCAN0 Transmit Data  
I
D19, F17, N18  
E17, E19, M17  
D17, E16, K15  
D18, E15, J18  
O
Table 2-43. CAN/DCAN1 Signals Description  
TYPE  
SIGNAL NAME [1]  
DESCRIPTION [2]  
[3]  
ZCE BALL [4]  
ZCZ BALL [4]  
dcan1_rx  
dcan1_tx  
DCAN1 Receive Data  
DCAN1 Transmit Data  
I
C19, F18, G17  
D18, F19, G19  
D15, E17, G18  
D16, E18, G17  
O
Copyright © 2011, Texas Instruments Incorporated  
Terminal Description  
65  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
2.3.6.2 GEMAC_CPSW  
Table 2-44. GEMAC_CPSW/MII1 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
ZCZ BALL [4]  
gmii1_col  
MII Colision  
I
J19  
H16  
gmii1_crs  
MII Carrier Sense  
I
J18  
H17  
L18  
M16  
L15  
L16  
L17  
J17  
J15  
K18  
K17  
K16  
K15  
J18  
J16  
gmii1_rxclk  
gmii1_rxd0  
gmii1_rxd1  
gmii1_rxd2  
gmii1_rxd3  
gmii1_rxdv  
gmii1_rxer  
gmii1_txclk  
gmii1_txd0  
gmii1_txd1  
gmii1_txd2  
gmii1_txd3  
gmii1_txen  
MII Receive Clock  
I
M19  
P18  
P19  
N16  
N17  
L19  
K19  
N19  
L18  
M18  
N18  
M17  
K17  
MII Receive Data bit 0  
MII Receive Data bit 1  
MII Receive Data bit 2  
MII Receive Data bit 3  
MII Receive Data Valid  
MII Receive Data Error  
MII Transmit Clock  
I
I
I
I
I
I
I
MII Transmit Data bit 0  
MII Transmit Data bit 1  
MII Transmit Data bit 2  
MII Transmit Data bit 3  
MII Transmit Enable  
O
O
O
O
O
Table 2-45. GEMAC_CPSW/MII2 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
ZCZ BALL [4]  
gmii2_col  
MII Colision  
I
V18  
R15  
NA  
NA  
NA  
NA  
NA  
NA  
W18  
NA  
NA  
NA  
NA  
NA  
NA  
U18  
T17  
T15  
V17  
T16  
U16  
V16  
V14  
U17  
U15  
V15  
R14  
T14  
U14  
R13  
gmii2_crs  
MII Carrier Sense  
I
gmii2_rxclk  
gmii2_rxd0  
gmii2_rxd1  
gmii2_rxd2  
gmii2_rxd3  
gmii2_rxdv  
gmii2_rxer  
gmii2_txclk  
gmii2_txd0  
gmii2_txd1  
gmii2_txd2  
gmii2_txd3  
gmii2_txen  
MII Receive Clock  
I
MII Receive Data bit 0  
MII Receive Data bit 1  
MII Receive Data bit 2  
MII Receive Data bit 3  
MII Receive Data Valid  
MII Receive Data Error  
MII Transmit Clock  
I
I
I
I
I
I
I
MII Transmit Data bit 0  
MII Transmit Data bit 1  
MII Transmit Data bit 2  
MII Transmit Data bit 3  
MII Transmit Enable  
O
O
O
O
O
Table 2-46. GEMAC_CPSW/RGMII1 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
rgmii1_rclk  
DESCRIPTION [2]  
RGMII Receive Clock  
ZCE BALL [4]  
ZCZ BALL [4]  
I
M19  
L19  
P18  
P19  
N16  
N17  
N19  
L18  
J17  
M16  
L15  
L16  
L17  
K18  
rgmii1_rctl  
rgmii1_rd0  
rgmii1_rd1  
rgmii1_rd2  
rgmii1_rd3  
rgmii1_tclk  
RGMII Receive Control  
RGMII Receive Data bit 0  
RGMII Receive Data bit 1  
RGMII Receive Data bit 2  
RGMII Receive Data bit 3  
RGMII Transmit Clock  
I
I
I
I
I
O
66  
Terminal Description  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
Table 2-46. GEMAC_CPSW/RGMII1 Signals Description (continued)  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
ZCZ BALL [4]  
J16  
rgmii1_tctl  
rgmii1_td0  
rgmii1_td1  
rgmii1_td2  
rgmii1_td3  
RGMII Transmit Control  
O
K17  
RGMII Transmit Data bit 0  
RGMII Transmit Data bit 1  
RGMII Transmit Data bit 2  
RGMII Transmit Data bit 3  
O
O
O
O
L18  
K17  
K16  
K15  
J18  
M18  
N18  
M17  
Table 2-47. GEMAC_CPSW/RGMII2 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
RGMII Receive Clock  
ZCE BALL [4]  
ZCZ BALL [4]  
rgmii2_rclk  
rgmii2_rctl  
rgmii2_rd0  
rgmii2_rd1  
rgmii2_rd2  
rgmii2_rd3  
rgmii2_tclk  
rgmii2_tctl  
rgmii2_td0  
rgmii2_td1  
rgmii2_td2  
rgmii2_td3  
I
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
T15  
V14  
V17  
T16  
U16  
V16  
U15  
R13  
V15  
R14  
T14  
U14  
RGMII Receive Control  
RGMII Receive Data bit 0  
RGMII Receive Data bit 1  
RGMII Receive Data bit 2  
RGMII Receive Data bit 3  
RGMII Transmit Clock  
I
I
I
I
I
O
O
O
O
O
O
RGMII Transmit Control  
RGMII Transmit Data bit 0  
RGMII Transmit Data bit 1  
RGMII Transmit Data bit 2  
RGMII Transmit Data bit 3  
Table 2-48. GEMAC_CPSW/RMII1 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
ZCZ BALL [4]  
rmii1_crs_dv  
rmii1_refclk  
rmii1_rxd0  
rmii1_rxd1  
rmii1_rxer  
rmii1_txd0  
rmii1_txd1  
rmii1_txen  
RMII Carrier Sense / Data Valid  
RMII Reference Clock  
I
J18  
K18  
P18  
P19  
K19  
L18  
M18  
K17  
H17  
H18  
M16  
L15  
J15  
K17  
K16  
J16  
I/O  
I
RMII Receive Data bit 0  
RMII Receive Data bit 1  
RMII Receive Data Error  
RMII Transmit Data bit 0  
RMII Transmit Data bit 1  
RMII Transmit Enable  
I
I
O
O
O
Table 2-49. GEMAC_CPSW/RMII2 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
ZCZ BALL [4]  
rmii2_crs_dv  
rmii2_refclk  
rmii2_rxd0  
rmii2_rxd1  
rmii2_rxer  
rmii2_txd0  
rmii2_txd1  
rmii2_txen  
RMII Carrier Sense / Data Valid  
RMII Reference Clock  
I
R15  
J19  
NA  
T17  
H16  
V17  
T16  
U17  
V15  
R14  
R13  
I/O  
I
RMII Receive Data bit 0  
RMII Receive Data bit 1  
RMII Receive Data Error  
RMII Transmit Data bit 0  
RMII Transmit Data bit 1  
RMII Transmit Enable  
I
NA  
I
W18  
NA  
O
O
O
NA  
NA  
Copyright © 2011, Texas Instruments Incorporated  
Terminal Description  
67  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
2.3.6.3 I2C  
Table 2-50. I2C/I2C0 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
ZCZ BALL [4]  
I2C0_SCL  
I2C0_SDA  
I2C0 Clock  
I2C0 Data  
I/OD  
I/OD  
B19  
C18  
C16  
C17  
Table 2-51. I2C/I2C1 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
ZCZ BALL [4]  
I2C1_SCL  
I2C1 Clock  
I2C1 Data  
I/OD  
A17, C19, F18,  
K19  
A16, D15, E17,  
J15  
I2C1_SDA  
I/OD  
B17, D18, F19,  
J18  
B16, D16, E18,  
H17  
Table 2-52. I2C/I2C2 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
ZCZ BALL [4]  
I2C2_SCL  
I2C2_SDA  
I2C2 Clock  
I2C2 Data  
I/OD  
I/OD  
B18, D19, F17  
A18, E17, E19  
B17, D17, E16  
A17, D18, E15  
68  
Terminal Description  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
2.3.6.4 McASP  
Table 2-53. McASP/MCASP0 Signals Description  
TYPE  
SIGNAL NAME [1]  
DESCRIPTION [2]  
[3]  
ZCE BALL [4]  
ZCZ BALL [4]  
mcasp0_aclkr  
mcasp0_aclkx  
McASP0 Receive Bit Clock  
I/O  
L19, V18, V6  
B12, J17, U18,  
V2  
McASP0 Transmit Bit Clock  
I/O  
N19, V4  
A13, K18, U1,  
V16  
mcasp0_ahclkr  
mcasp0_ahclkx  
mcasp0_axr0  
McASP0 Receive Master Clock  
McASP0 Transmit Master Clock  
McASP0 Serial Data (IN/OUT)  
I/O  
I/O  
I/O  
V5  
C12, U4  
N18, V7  
N17, U5  
A14, K15, T5  
D12, L17, T16,  
U3  
mcasp0_axr1  
mcasp0_axr2  
mcasp0_axr3  
mcasp0_fsr  
McASP0 Serial Data (IN/OUT)  
McASP0 Serial Data (IN/OUT)  
McASP0 Serial Data (IN/OUT)  
McASP0 Receive Frame Sync  
McASP0 Transmit Frame Sync  
I/O  
I/O  
I/O  
I/O  
I/O  
N16, W6  
D13, L16, V17,  
V4  
J19, V5, V6  
P18, U6, V7  
M17, U6, V16  
M19, W4  
B12, C12, H16,  
U4, V2  
A14, C13, M16,  
T5, V3  
C13, J18, V12,  
V3  
mcasp0_fsx  
B13, L18, U16,  
U2  
Table 2-54. McASP/MCASP1 Signals Description  
TYPE  
SIGNAL NAME [1]  
DESCRIPTION [2]  
[3]  
ZCE BALL [4]  
ZCZ BALL [4]  
mcasp1_aclkr  
mcasp1_aclkx  
mcasp1_ahclkr  
mcasp1_ahclkx  
mcasp1_axr0  
mcasp1_axr1  
mcasp1_axr2  
mcasp1_axr3  
mcasp1_fsr  
McASP1 Receive Bit Clock  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L18, P18  
J18, L19  
P18  
K17, M16  
B12, H17, J17  
M16  
McASP1 Transmit Bit Clock  
McASP1 Receive Master Clock  
McASP1 Transmit Master Clock  
McASP1 Serial Data (IN/OUT)  
McASP0 Serial Data (IN/OUT)  
McASP0 Serial Data (IN/OUT)  
McASP0 Serial Data (IN/OUT)  
McASP1 Receive Frame Sync  
McASP1 Transmit Frame Sync  
K18, P18  
K17, N18  
M18  
H18, M16  
D13, J16, K15  
A14, K16  
J19, L18  
K18, P19  
M18, P19  
K19, M17  
H16, K17  
H18, L15  
K16, L15  
mcasp1_fsx  
C13, J15, J18  
Copyright © 2011, Texas Instruments Incorporated  
Terminal Description  
69  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
2.3.6.5 SPI  
Table 2-55. SPI/SPI0 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
A17  
ZCZ BALL [4]  
spi0_cs0  
spi0_cs1  
spi0_d0  
spi0_d1  
spi0_sclk  
SPI Chip Select  
SPI Chip Select  
SPI Data  
I/O  
A16  
I/O  
I/O  
I/O  
I/O  
B16  
B18  
B17  
A18  
C15  
B17  
B16  
A17  
SPI Data  
SPI Clock  
Table 2-56. SPI/SPI1 Signals Description  
TYPE  
[3]  
SIGNAL NAME [1]  
DESCRIPTION [2]  
ZCE BALL [4]  
ZCZ BALL [4]  
spi1_cs0  
SPI Chip Select  
SPI Chip Select  
I/O  
E17, E19, F18,  
K18  
C12, D18, E15,  
E17, H18  
spi1_cs1  
I/O  
C15, D19, E18,  
F17  
A15, C18, D17,  
E16  
spi1_d0  
spi1_d1  
spi1_sclk  
SPI Data  
SPI Data  
SPI Clock  
I/O  
I/O  
I/O  
F19, J18  
F18, K19  
E18, J19  
B13, E18, H17  
D12, E17, J15  
A13, C18, H16  
70  
Terminal Description  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
2.3.6.6 UART  
Table 2-57. UART/UART0 Signals Description  
TYPE  
SIGNAL NAME [1]  
DESCRIPTION [2]  
[3]  
ZCE BALL [4]  
F19  
ZCZ BALL [4]  
E18  
uart0_ctsn  
uart0_rtsn  
uart0_rxd  
uart0_txd  
UART Clear to Send  
UART Request to Send  
UART Receive Data  
UART Transmit Data  
I
O
I
F18  
E19  
F17  
E17  
E15  
E16  
O
Table 2-58. UART/UART1 Signals Description  
TYPE  
SIGNAL NAME [1]  
DESCRIPTION [2]  
[3]  
ZCE BALL [4]  
ZCZ BALL [4]  
uart1_ctsn  
UART Clear to Send  
UART Clear to Send  
UART Request to Send  
UART Receive Data  
UART Transmit Data  
UART Request to Send  
UART Receive Data  
UART Transmit Data  
I
E17  
D18  
uart1_dcdn  
uart1_dsrn  
uart1_dtrn  
uart1_rin  
I
H19, N19  
H18, M19  
H17, N17  
G18, N16  
D19  
F17, K18  
F18, L18  
G15, L17  
G16, L16  
D17  
I
O
I
uart1_rtsn  
uart1_rxd  
uart1_txd  
O
I
D18  
D16  
O
C19  
D15  
Table 2-59. UART/UART2 Signals Description  
TYPE  
SIGNAL NAME [1]  
DESCRIPTION [2]  
[3]  
ZCE BALL [4]  
ZCZ BALL [4]  
uart2_ctsn  
uart2_rtsn  
uart2_rxd  
UART Clear to Send  
UART Request to Send  
UART Receive Data  
I
C18, V4  
B19, W4  
C17, U1  
C16, U2  
O
I
A18, G19, J18,  
N19  
A17, G17, H17,  
K18  
uart2_txd  
UART Transmit Data  
O
B18, G17, K19,  
M19  
B17, G18, J15,  
L18  
Table 2-60. UART/UART3 Signals Description  
TYPE  
SIGNAL NAME [1]  
DESCRIPTION [2]  
[3]  
ZCE BALL [4]  
ZCZ BALL [4]  
uart3_ctsn  
uart3_rtsn  
uart3_rxd  
uart3_txd  
UART Clear to Send  
UART Request to Send  
UART Receive Data  
UART Transmit Data  
I
G19, P17, U5  
G17, R19, V5  
B16, H17, N17  
E18, G18, N16  
G17, M17, U3  
G18, M18, U4  
C15, G15, L17  
C18, G16, L16  
O
I
O
Table 2-61. UART/UART4 Signals Description  
TYPE  
SIGNAL NAME [1]  
DESCRIPTION [2]  
[3]  
ZCE BALL [4]  
ZCZ BALL [4]  
uart4_ctsn  
uart4_rtsn  
uart4_rxd  
uart4_txd  
UART Clear to Send  
UART Request to Send  
UART Receive Data  
UART Transmit Data  
I
H19, V6  
F17, V2  
O
I
H18, U6  
F18, V3  
F19, M17, R15  
F18, N18, W18  
E18, J18, T17  
E17, K15, U17  
O
Copyright © 2011, Texas Instruments Incorporated  
Terminal Description  
71  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
Table 2-62. UART/UART5 Signals Description  
TYPE  
SIGNAL NAME [1]  
DESCRIPTION [2]  
[3]  
ZCE BALL [4]  
ZCZ BALL [4]  
uart5_ctsn  
uart5_rtsn  
uart5_rxd  
UART Clear to Send  
UART Request to Send  
UART Receive Data  
I
H17, J18, W6  
G18, K19, V7  
G15, H17, V4  
G16, J15, T5  
O
O
J19, P17, W4,  
W6  
H16, M17, U2, V4  
uart5_txd  
UART Transmit Data  
O
K18, L19, R19,  
V4  
H18, J17, M18,  
U1  
72  
Terminal Description  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
2.3.6.7 USB  
Table 2-63. USB/USB0 Signals Description  
TYPE  
SIGNAL NAME [1]  
DESCRIPTION [2]  
[3]  
ZCE BALL [4]  
T18  
ZCZ BALL [4]  
M15  
USB0_CE  
USB0 PHY Charger Enable  
USB0 PHY DATA PLUS  
USB0 PHY DATA MINUS  
A
A
A
O
USB0_DM  
U18  
U19  
G16  
N18  
N17  
F16  
USB0_DP  
USB0_DRVVBUS  
USB0 CONTROLLER VBUS CONTROL  
OUTPUT  
USB0_ID  
USB0 PHY IDENTIFICATION (Mini-A or Mini-B  
Plug)  
A
A
V19  
T19  
P16  
P15  
USB0_VBUS  
USB0 BUS VOLTAGE  
Table 2-64. USB/USB1 Signals Description  
TYPE  
SIGNAL NAME [1]  
DESCRIPTION [2]  
[3]  
ZCE BALL [4]  
ZCZ BALL [4]  
USB1_CE  
USB1 PHY Charger Enable  
USB0 PHY DATA MINUS  
USB0 PHY DATA PLUS  
A
A
A
O
NA  
NA  
NA  
NA  
P18  
R18  
R17  
F15  
USB1_DM  
USB1_DP  
USB1_DRVVBUS  
USB0 CONTROLLER VBUS CONTROL  
OUTPUT  
USB1_ID  
USB0 PHY IDENTIFICATION (Mini-A or Mini-B  
Plug)  
A
A
NA  
NA  
P17  
T18  
USB1_VBUS  
USB0 BUS VOLTAGE  
Copyright © 2011, Texas Instruments Incorporated  
Terminal Description  
73  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
3 Device Operating Conditions  
3.1 Absolute Maximum Ratings  
Table 3-1. Absolute Maximum Ratings Over Junction Temperature Range (Unless Otherwise Noted)(1)(2)  
PARAMETER  
MIN  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.3  
MAX UNIT  
VDD_MPU(3)  
Supply voltage range for MPU domain  
1.5  
1.5  
1.5  
2.2  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
3.8  
3.8  
3.8  
3.8  
3.8  
3.8  
4
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
VDD_CORE  
Supply voltage range for core domain  
CAP_VDD_RTC(4)  
VPP(5)  
Supply voltage range for RTC core domain  
Supply voltage range for FUSE ROM domain  
Supply voltage range for the RTC domain  
Supply voltage range for the System oscillator  
Supply voltage range for the Core SRAM LDOs  
Supply voltage range for the MPU SRAM LDOs  
Supply voltage range for the DPLL DDR  
Supply voltage range for the DPLL Core and LCD  
Supply voltage range for the DPLL MPU  
Supply voltage range for the DDR IO domain  
Supply voltage range for all dual-voltage IO domains  
Supply voltage range for USBPHY  
VDDS_RTC  
VDDS_OSC  
VDDS_SRAM_CORE_BG  
VDDS_SRAM_MPU_BB  
VDDS_PLL_DDR  
VDDS_PLL_CORE_LCD  
VDDS_PLL_MPU  
VDDS_DDR  
VDDS  
VDDA1P8V_USB0  
VDDA1P8V_USB1(6)  
VDDA_ADC  
Supply voltage range for USBPHY  
Supply voltage range for ADC  
VDDSHV1  
VDDSHV2(6)  
VDDSHV3(6)  
Supply voltage range for the dual-voltage IO domain  
Supply voltage range for the dual-voltage IO domain  
Supply voltage range for the dual-voltage IO domain  
Supply voltage range for the dual-voltage IO domain  
Supply voltage range for the dual-voltage IO domain  
Supply voltage range for the dual-voltage IO domain  
Supply voltage range for USBPHY  
VDDSHV4  
VDDSHV5  
VDDSHV6  
VDDA3P3V_USB0  
VDDA3P3V_USB1(6)  
USB0_VBUS  
Supply voltage range for USBPHY  
4
Supply voltage range for USB VBUS comparator input  
Supply voltage range for USB VBUS comparator input  
5.25  
5.25  
1.1  
USB1_VBUS(6)  
DDR_VREF  
Supply voltage range for the DDR SSTL/HSTL reference  
voltage  
Steady State Max. Voltage  
at all IO pins  
-0.5V to NOM IO supply + 0.3 V  
USB0_ID  
USB1_ID(6)  
Supply voltage range for the USB ID input  
Supply voltage range for the USB ID input  
-0.5  
-0.5  
2.1  
2.1  
V
V
Transient Overshoot /  
Undershoot specification at  
IO PAD  
30% of supply for up to 30% of signal  
period  
Storage temperature range,  
Tstg  
-55  
±2000  
155  
°C  
(7)  
ESD-HBM (Human Body Model)(8)  
Electrostatic Discharge  
(ESD) Performance  
ESD-CDM (Charged-Device Model)(9)  
±500  
±750  
V
ESD-CDM (Charged-Device Model) Corner Balls  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to their associated VSS or VSSA_x.  
(3) Not available on the ZCE package. VDD_MPU is merged with VDD_CORE in the ZCE package.  
(4) This supply is sourced from an internal LDO when RTC_KALDO_ENn is low. If RTC_KALDO_ENn is high, this supply must be sourced  
74  
Device Operating Conditions  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
from an external power supply.  
(5) During functional operation, this pin is a no connect.  
(6) Not availabe on the ZCE package.  
(7) For tape and reel the storage temperature range is [-10°C; +50°C] with a maximum relative humidity of 70%. It is recommended  
returning to ambient room temperature before usage.  
(8) Based on JEDEC JESD22-A114E [Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)].  
(9) Based on JEDEC JESD22-C101C (Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds  
of Microelectronic Components).  
Copyright © 2011, Texas Instruments Incorporated  
Device Operating Conditions  
75  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
Table 3-2 summarizes the power consumption at the ball level.  
Table 3-2. Maximum Current Ratings at Ball Level  
PARAMETER  
MAX UNIT  
SUPPLY NAME  
VDD_CORE  
DESCRIPTION  
Maximum current rating for the core domain  
Maximum current rating for the MPU domain; TURBO  
Maximum current rating for the MPU domain; OPP120  
Maximum current rating for the MPU domain; OPP100  
Maximum current rating for the MPU domain; OPP50  
Maximum current rating for RTC domain input/LDO output  
Maximum current rating for the RTC domain  
Maximum current rating for DDR IO domain  
400  
720  
600  
500  
300  
2
mA  
VDD_MPU(1)  
mA  
CAP_VDD_RTC(2)  
VDDS_RTC  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
5
VDDS_DDR  
200  
50  
10  
10  
10  
20  
10  
5
VDDS  
Maximum current rating for all dual-voltage IO domains  
Maximum current rating for core SRAM LDOs  
Maximum current rating for MPU SRAM LDOs  
Maximum current rating for the DPLL DDR  
VDDS_SRAM_CORE_BG  
VDDS_SRAM_MPU_BB  
VDDS_PLL_DDR  
VDDS_PLL_CORE_LCD  
VDDS_PLL_MPU  
VDDS_OSC  
Maximum current rating for the DPLL Core and LCD  
Maximum current rating for the DPLL MPU  
Maximum current rating for the system oscillator IOs  
Maximum current rating for USBPHY 1.8 V  
VDDA1P8V_USB0  
VDDA1P8V_USB1(3)  
VDDA3P3V_USB0  
VDDA3P3V_USB1(3)  
VDDA_ADC  
40  
10  
40  
10  
10  
50  
50  
50  
50  
50  
100  
Maximum current rating for USBPHY 1.8 V  
Maximum current rating for USBPHY 3.3 V  
Maximum current rating for USBPHY 3.3 V  
Maximum current rating for ADC  
VDDSHV1  
VDDSHV2(3)  
VDDSHV3(3)  
Maximum current rating for dual-voltage IO domain  
Maximum current rating for dual-voltage IO domain  
Maximum current rating for dual-voltage IO domain  
Maximum current rating for dual-voltage IO domain  
Maximum current rating for dual-voltage IO domain  
Maximum current rating for dual-voltage IO domain  
VDDSHV4  
VDDSHV5  
VDDSHV6  
(1) Not available on the ZCE package. VDD_MPU is merged with VDD_CORE in the ZCE package.  
(2) This supply is sourced from an internal LDO when RTC_KALDO_ENn is low. If RTC_KALDO_ENn is high, this supply must be sourced  
from an external power supply.  
(3) Not available on the ZCE package.  
76  
Device Operating Conditions  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
3.2 Recommended Operating Conditions  
The device is used under the recommended operating conditions described in Table 3-4.  
Table 3-3. Reliability Data  
Commercial  
Industrial  
Extended  
Operating  
Condition  
VDD_MPU(1)(2) VDD_CORE(2)  
Junction  
Life Time  
(POH)(3)  
Junction  
Temp (Tj)  
Life Time  
(POH)(3)  
Junction  
Temp (Tj)  
Life Time  
(POH)(3)  
Temp (Tj)  
0°C to 90°C  
0°C to 90°C  
0°C to 90°C  
0°C to 90°C  
Turbo  
OPP120  
OPP100  
OPP50  
1.26 V ±4%  
1.2 V ±4%  
1.1 V ±4%  
0.95 V ±4%  
1.1 V ±4%  
1.1 V ±4%  
1.1 V ±4%  
1.1 V ±4%  
TBD  
100K  
100K  
100k  
-40°C to 90°C  
-40°C to 90°C  
-40°C to 90°C  
-40°C to 90°C  
TBD  
100K  
100K  
100k  
-40°C to 105°C  
-40°C to 105°C  
-40°C to 105°C  
-40°C to 105°C  
TBD  
70K  
100k  
100k  
(1) Not available on the ZCE package. VDD_MPU is merged with VDD_CORE in the ZCE package.  
(2) Voltage specification at the device package pin.  
(3) POH = Power-on hours when the device is fully functional.  
NOTE  
Logic functions and parameter values are not assured out of the range specified in the  
recommended operating conditions.  
Table 3-4. Recommended Operating Conditions  
PARAMETER  
MIN  
NOM  
MAX  
UNIT  
SUPPLY NAME  
VDD_CORE  
DESCRIPTION  
Supply voltage range for core  
domain  
1.06  
1.21  
1.15  
1.06  
0.91  
1.06  
1.71  
1.71  
1.43  
1.71  
1.71  
1.71  
1.71  
1.71  
1.71  
1.71  
1.1  
1.26  
1.2  
1.1  
0.95  
1.1  
1.8  
1.8  
1.5  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.15  
1.31  
1.25  
1.15  
0.99  
1.15  
1.89  
1.89  
1.58  
1.89  
1.89  
1.89  
1.89  
1.89  
1.89  
1.89  
V
Supply voltage range for MPU  
domain; TURBO  
Supply voltage range for MPU  
domain; OPP120  
VDD_MPU(1)  
V
Supply voltage range for MPU  
domain; OPP100  
Supply voltage range for MPU  
domain; OPP50  
Supply voltage range for RTC  
domain input/LDO output  
CAP_VDD_RTC(2)  
VDDS_RTC  
V
V
Supply voltage range for RTC  
domain  
Supply voltage range for DDR  
IO domain (DDR2)  
VDDS_DDR  
V
Supply voltage range for DDR  
IO domain (DDR3)  
Supply voltage range for all  
Dual Voltage IO domains  
VDDS(3)  
V
V
V
V
V
V
V
Supply voltage range for Core  
SRAM LDOs, Analog  
VDDS_SRAM_CORE_BG  
VDDS_SRAM_MPU_BB  
VDDS_PLL_DDR  
VDDS_PLL_CORE_LCD  
VDDS_PLL_MPU  
VDDS_OSC  
Supply voltage range for MPU  
SRAM LDOs, Analog  
Supply voltage range for DPLL  
DDR, Analog  
Supply voltage range for DPLL  
CORE and LCD, Analog  
Supply voltage range for DPLL  
MPU, Analog  
Supply voltage range for  
system oscillator IO's, Analog  
Copyright © 2011, Texas Instruments Incorporated  
Device Operating Conditions  
77  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
UNIT  
Table 3-4. Recommended Operating Conditions (continued)  
PARAMETER  
DESCRIPTION  
MIN  
NOM  
MAX  
SUPPLY NAME  
Supply voltage range for USB  
PHY, Analog, 1.8V  
VDDA1P8V_USB0  
1.71  
1.71  
3.14  
3.14  
1.71  
1.8  
1.8  
3.3  
3.3  
1.8  
1.89  
1.89  
3.47  
3.47  
1.89  
V
V
V
V
V
Supply voltage range for USB  
PHY, Analog, 1.8V  
VDDA1P8V_USB1(4)  
VDDA3P3V_USB0  
VDDA3P3V_USB1(4)  
VDDA_ADC  
Supply voltage range for USB  
PHY, Analog, 3.3V  
Supply voltage range for USB  
PHY, Analog, 3.3V  
Supply voltage range for ADC,  
Analog  
Supply voltage range for Dual  
Voltage IO domain (1.8-V  
operation)  
VDDSHV1  
VDDSHV2(4)  
VDDSHV3(4)  
VDDSHV4  
VDDSHV5  
VDDSHV6  
VDDSHV1  
VDDSHV2(4)  
VDDSHV3(4)  
VDDSHV4  
VDDSHV5  
VDDSHV6  
DDR_VREF  
1.71  
1.8  
1.89  
V
V
V
V
V
V
V
V
V
V
V
V
V
Supply voltage range for Dual  
Voltage IO domain (1.8-V  
operation)  
1.71  
1.8  
1.89  
Supply voltage range for Dual  
Voltage IO domain (1.8-V  
operation)  
1.71  
1.8  
1.89  
Supply voltage range for Dual  
Voltage IO domain (1.8-V  
operation)  
1.71  
1.8  
1.89  
Supply voltage range for Dual  
Voltage IO domain (1.8-V  
operation)  
1.71  
1.8  
1.89  
Supply voltage range for Dual  
Voltage IO domain (1.8-V  
operation)  
1.71  
1.8  
1.89  
Supply voltage range for Dual  
Voltage IO domain (3.3-V  
operation)  
3.14  
3.3  
3.47  
Supply voltage range for Dual  
Voltage IO domain (3.3-V  
operation)  
3.14  
3.3  
3.47  
Supply voltage range for Dual  
Voltage IO domain (3.3-V  
operation)  
3.14  
3.3  
3.47  
Supply voltage range for Dual  
Voltage IO domain (3.3-V  
operation)  
3.14  
3.14  
3.3  
3.47  
3.47  
Supply voltage range for Dual  
Voltage IO domain (3.3-V  
operation)  
3.3  
3.3  
Supply voltage range for Dual  
Voltage IO domain (3.3-V  
operation)  
3.14  
3.47  
Voltage range for DDR  
SSTL/HSTL reference input  
(DDR2/DDR3)  
0.49*VDDS_DDR  
0.50*VDDS_DDR  
0.51*VDDS_DDR  
Voltage range for USB VBUS  
comparator input  
USB0_VBUS  
USB1_VBUS(4)  
USB0_ID  
0
0
5
5
V
V
V
V
Voltage range for USB VBUS  
comparator input  
Voltage range for the USB ID  
input  
1.71  
1.71  
1.8  
1.8  
1.89  
1.89  
Voltage range for the USB ID  
input  
USB1_ID(4)  
78  
Device Operating Conditions  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
Table 3-4. Recommended Operating Conditions (continued)  
PARAMETER  
DESCRIPTION  
MIN  
NOM  
MAX  
UNIT  
SUPPLY NAME  
Commercial Temperature  
Industrial Temperature  
Extended Temperature  
0
-40  
-40  
90  
90  
Operating Temperature  
Range, Tj  
°C  
105  
(1) Not available on the ZCE package. VDD_MPU is merged with VDD_CORE in the ZCE package.  
(2) This supply is sourced from an internal LDO when RTC_KALDO_ENn is low. If RTC_KALDO_ENn is high, this supply must be sourced  
from an external power supply.  
(3) VDDS should be supplied irrespective of 1.8-V or 3.3-V mode of operation of the dual voltage IOs.  
(4) Not available on the ZCE package.  
Table 3-5. Operating Performance Points for ZCZ Package(1)  
OPP  
VDD_MPU(2)  
1.26 V ±4%  
1.2 V ±4%  
1.1 V ±4%  
0.95 V ±4%  
VDD_CORE(2)  
1.1 V ±4%  
ARM (A8)  
720 MHz  
600 MHz  
500 MHz  
275 MHz  
DDR3  
303 MHz  
303 MHz  
303 MHz  
-
DDR2  
mDDR  
180 MHz  
180 MHz  
180 MHz  
90 MHz  
L3/L4  
Turbo  
200 MHz  
200 MHz  
200 MHz  
125 MHz  
200/100 MHz  
200/100 MHz  
200/100 MHz  
100/50 MHz  
OPP120  
OPP100  
OPP50  
1.1 V ±4%  
1.1 V ±4%  
0.95 V ±4%  
(1) Frequencies in this table indicate maximum performance for a given OPP condition.  
(2) Interfaces in this row are validated and available on OPP50.  
Table 3-6. Operating Performance Points for ZCE Package(1)  
OPP  
VDD_CORE(2)  
1.1 V ±4%  
ARM (A8)  
500 MHz  
275 MHz  
DDR3  
303 MHz  
-
DDR2  
mDDR  
L3/L4  
OPP100  
OPP50  
200 MHz  
125 MHz  
180 MHz  
90 MHz  
200/100 MHz  
100/50 MHz  
0.95 V ±4%  
(1) Frequencies in this table indicate maximum performance for a given OPP condition.  
(2) Interfaces in this row are validated and available on OPP50.  
Copyright © 2011, Texas Instruments Incorporated  
Device Operating Conditions  
79  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
3.3 DC Electrical Characteristics  
Table 3-7 summarizes the dc electrical characteristics.  
Note: The interfaces or signals described in Table 3-7 correspond to the interfaces or signals available in  
multiplexing mode 0. All interfaces or signals multiplexed on the balls/pins described in Table 3-7 have the same  
dc electrical characteristics.  
Table 3-7. DC Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating  
Temperature (Unless Otherwise Noted)  
PARAMETER  
MIN  
NOM  
MAX UNIT  
DDR_RESETn,DDR_CSn0,DDR_CKE,DDR_CK,DDR_CKn,DDR_CASn,DDR_RASn,DDR_WEn,DDR_BA0,DDR_BA1,DDR_BA2,DDR_A  
0,DDR_A1,DDR_A2,DDR_A3,DDR_A4,DDR_A5,DDR_A6,DDR_A7,DDR_A8,DDR_A9,DDR_A10,DDR_A11,DDR_A12,DDR_A13,DDR_A  
14,DDR_A15,DDR_ODT,DDR_D0,DDR_D1,DDR_D2,DDR_D3,DDR_D4,DDR_D5,DDR_D6,DDR_D7,DDR_D8,DDR_D9,DDR_D10,DDR_  
D11,DDR_D12,DDR_D13,DDR_D14,DDR_D15,DDR_DQM0,DDR_DQM1,DDR_DQS0,DDR_DQSn0,DDR_DQS1,DDR_DQSn1 pins  
(LPDDR - LVCMOS mode)  
0.65 *  
VDDS_DDR  
VIH  
High-level input voltage  
V
0.35  
*VDDS_DDR  
VIL  
Low-level input voltage  
V
V
V
VHYS  
VOH  
Hysteresis voltage at an input  
0.07  
0.25  
High level output voltage, driver enabled, pullup  
or pulldown disbaled  
VDDS_DDR -  
0.4  
IOH = 8 mA  
IOL = 8 mA  
Low level output voltage, driver enabled, pullup  
or pulldown disbaled  
VOL  
0.4  
10  
V
Input leakage current, Receiver disabled, pullup or pulldown  
inhibited  
II  
µA  
Input leakage current, Receiver disabled, pullup enabled  
Input leakage current, Receiver disabled, pulldown enabled  
-240  
80  
-80  
240  
Total leakage current through the PAD connection of a  
driver/receiver combination that may include a pullup or pulldown.  
The driver output is disabled and the pullup or pulldown is  
inhibited.  
IOZ  
10  
µA  
DDR_RESETn,DDR_CSn0,DDR_CKE,DDR_CK,DDR_CKn,DDR_CASn,DDR_RASn,DDR_WEn,DDR_BA0,DDR_BA1,DDR_BA2,DDR_A  
0,DDR_A1,DDR_A2,DDR_A3,DDR_A4,DDR_A5,DDR_A6,DDR_A7,DDR_A8,DDR_A9,DDR_A10,DDR_A11,DDR_A12,DDR_A13,DDR_A  
14,DDR_A15,DDR_ODT,DDR_D0,DDR_D1,DDR_D2,DDR_D3,DDR_D4,DDR_D5,DDR_D6,DDR_D7,DDR_D8,DDR_D9,DDR_D10,DDR_  
D11,DDR_D12,DDR_D13,DDR_D14,DDR_D15,DDR_DQM0,DDR_DQM1,DDR_DQS0,DDR_DQSn0,DDR_DQS1,DDR_DQSn1 pins  
(DDR2 - SSTL mode)  
VIH  
High-level input voltage  
DDR_VREF +  
0.125  
V
VIL  
Low-level input voltage  
VDDS_DDR -  
0.125  
V
VHYS  
VOH  
Hysteresis voltage at an input  
NA  
V
V
High-level output voltage, driver enabled, pullup  
or pulldown disbaled  
IOH = 8 mA  
IOL = 8 mA  
VDDS_DDR -  
0.4  
VOL  
Low-level output voltage, driver enabled, pullup  
or pulldown disbaled  
0.4  
10  
V
Input leakage current, Receiver disabled, pullup or pulldown  
inhibited  
II  
µA  
µA  
Input leakage current, Receiver disabled, pullup enabled  
Input leakage current, Receiver disabled, pulldown enabled  
-240  
80  
-80  
240  
10  
IOZ  
Total leakage current through the PAD connection of a  
driver/receiver combination that may include a pullup or pulldown.  
The driver output is disabled and the pullup or pulldown is  
inhibited.  
80  
Device Operating Conditions  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
Table 3-7. DC Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating  
Temperature (Unless Otherwise Noted) (continued)  
PARAMETER  
MIN  
NOM  
MAX UNIT  
DDR_RESETn,DDR_CSn0,DDR_CKE,DDR_CK,DDR_CKn,DDR_CASn,DDR_RASn,DDR_WEn,DDR_BA0,DDR_BA1,DDR_BA2,DDR_A  
0,DDR_A1,DDR_A2,DDR_A3,DDR_A4,DDR_A5,DDR_A6,DDR_A7,DDR_A8,DDR_A9,DDR_A10,DDR_A11,DDR_A12,DDR_A13,DDR_A  
14,DDR_A15,DDR_ODT,DDR_D0,DDR_D1,DDR_D2,DDR_D3,DDR_D4,DDR_D5,DDR_D6,DDR_D7,DDR_D8,DDR_D9,DDR_D10,DDR_  
D11,DDR_D12,DDR_D13,DDR_D14,DDR_D15,DDR_DQM0,DDR_DQM1,DDR_DQS0,DDR_DQSn0,DDR_DQS1,DDR_DQSn1 pins  
(DDR3 - HSTL mode)  
VIH  
High-level input voltage  
DDR_VREF +  
0.1  
V
VIL  
Low-level input voltage  
VDDS_DDR -  
0.1  
V
VHYS  
VOH  
Hysteresis voltage at an input  
NA  
V
V
High-level output voltage, driver enabled, pullup  
or pulldown disbaled  
IOH = 8 mA  
IOL = 8 mA  
VDDS_DDR -  
0.4  
VOL  
Low-level output voltage, driver enabled, pullup  
or pulldown disbaled  
0.4  
10  
V
Input leakage current, Receiver disabled, pullup or pulldown  
inhibited  
II  
µA  
µA  
Input leakage current, Receiver disabled, pullup enabled  
Input leakage current, Receiver disabled, pulldown enabled  
-240  
80  
-80  
240  
10  
IOZ  
Total leakage current through the PAD connection of a  
driver/receiver combination that may include a pullup or pulldown.  
The driver output is disabled and the pullup or pulldown is  
inhibited.  
ECAP0_IN_PWM0_OUT,UART0_CTSn,UART0_RTSn,UART0_RXD,UART0_TXD,UART1_CTSn,UART1_RTSn,UART1_RXD,UART1_T  
XD,I2C0_SDA,I2C0_SCL,XDMA_EVENT_INTR0,XDMA_EVENT_INTR1,WARMRSTn,PWRONRSTn,NMIn,TMS,TDO,USB0_DRVVBUS,U  
SB1_DRVVBUS (VDDSHV6 = 1.8 V)  
VIH  
High-level input voltage  
0.65 *  
V
VDDSHV6  
VIL  
Low-level input voltage  
0.35 *  
V
VDDSHV6  
VHYS  
VOH  
Hysteresis voltage at an input  
0.18  
0.305  
V
V
High-level output voltage, driver enabled, pullup  
or pulldown disbaled  
IOH = 4 mA  
IOL = 4 mA  
VDDSHV6 -  
0.45  
VOL  
Low-level output voltage, driver enabled, pullup  
or pulldown disbaled  
0.45  
5
V
Input leakage current, Receiver disabled, pullup or pulldown  
inhibited  
II  
µA  
µA  
Input leakage current, Receiver disabled, pullup enabled  
Input leakage current, Receiver disabled, pulldown enabled  
-161  
52  
-100  
100  
-52  
170  
5
IOZ  
Total leakage current through the PAD connection of a  
driver/receiver combination that may include a pullup or pulldown.  
The driver output is disabled and the pullup or pulldown is  
inhibited.  
Copyright © 2011, Texas Instruments Incorporated  
Device Operating Conditions  
81  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
Table 3-7. DC Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating  
Temperature (Unless Otherwise Noted) (continued)  
PARAMETER  
MIN  
NOM  
MAX UNIT  
ECAP0_IN_PWM0_OUT,UART0_CTSn,UART0_RTSn,UART0_RXD,UART0_TXD,UART1_CTSn,UART1_RTSn,UART1_RXD,UART1_T  
XD,I2C0_SDA,I2C0_SCL,XDMA_EVENT_INTR0,XDMA_EVENT_INTR1,WARMRSTn,PWRONRSTn,NMIn,TMS,TDO,USB0_DRVVBUS,U  
SB1_DRVVBUS (VDDSHV6 = 3.3 V)  
VIH  
High-level input voltage  
Low-level input voltage  
2
V
V
V
V
VIL  
0.8  
VHYS  
VOH  
Hysteresis voltage at an input  
0.265  
0.44  
High-level output voltage, driver enabled, pullup  
or pulldown disbaled  
IOH = 4 mA  
IOL = 4 mA  
VDDSHV6 -  
0.2  
VOL  
Low-level output voltage, driver enabled, pullup  
or pulldown disbaled  
0.2  
18  
V
Input leakage current, Receiver disabled, pullup or pulldown  
inhibited  
II  
µA  
µA  
Input leakage current, Receiver disabled, pullup enabled  
Input leakage current, Receiver disabled, pulldown enabled  
-243  
51  
-100  
110  
-19  
210  
18  
IOZ  
Total leakage current through the PAD connection of a  
driver/receiver combination that may include a pullup or pulldown.  
The driver output is disabled and the pullup or pulldown is  
inhibited.  
TCK (VDDSHV6 = 1.8 V)  
VIH  
VIL  
VHYS  
II  
High-level input voltage  
1.45  
0.4  
V
V
Low-level input voltage  
0.46  
5
Hysteresis voltage at an input  
V
Input leakage current, Receiver disabled, pullup or pulldown  
inhibited  
µA  
Input leakage current, Receiver disabled, pullup enabled  
Input leakage current, Receiver disabled, pulldown enabled  
-161  
52  
-100  
100  
-52  
170  
TCK (VDDSHV6 = 3.3 V)  
VIH  
High-level input voltage  
2.15  
0.4  
V
V
V
VIL  
Low-level input voltage  
0.46  
18  
VHYS  
Hysteresis voltage at an input  
Input leakage current, Receiver disabled, pullup or pulldown  
inhibited  
II  
µA  
Input leakage current, Receiver disabled, pullup enabled  
Input leakage current, Receiver disabled, pulldown enabled  
-243  
51  
-100  
110  
-19  
210  
82  
Device Operating Conditions  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
Table 3-7. DC Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating  
Temperature (Unless Otherwise Noted) (continued)  
PARAMETER  
MIN  
NOM  
MAX UNIT  
All other LVCMOS pins (VDDSHVx = 1.8 V; x=1-6)  
VIH  
High-level input voltage  
0.65 *  
V
VDDSHVx  
VIL  
Low-level input voltage  
0.35 *  
V
VDDSHVx  
VHYS  
VOH  
Hysteresis voltage at an input  
0.18  
0.305  
V
V
High-level output voltage, driver enabled, pullup  
or pulldown disbaled  
IOH = 6 mA  
IOL = 6 mA  
VDDSHVx -  
0.45  
VOL  
Low-level output voltage, driver enabled, pullup  
or pulldown disbaled  
0.45  
5
V
Input leakage current, Receiver disabled, pullup or pulldown  
inhibited  
II  
µA  
µA  
Input leakage current, Receiver disabled, pullup enabled  
Input leakage current, Receiver disabled, pulldown enabled  
-161  
52  
-100  
100  
-52  
170  
5
IOZ  
Total leakage current through the PAD connection of a  
driver/receiver combination that may include a pullup or pulldown.  
The driver output is disabled and the pullup or pulldown is  
inhibited.  
All other LVCMOS pins (VDDSHVx = 3.3 V; x=1-6)  
VIH  
High-level input voltage  
Low-level input voltage  
2
V
V
V
V
VIL  
0.8  
VHYS  
VOH  
Hysteresis voltage at an input  
0.265  
0.44  
High-level output voltage, driver enabled, pullup  
or pulldown disbaled  
IOH = 6 mA  
IOL = 6 mA  
VDDSHVx -  
0.2  
VOL  
Low-level output voltage, driver enabled, pullup  
or pulldown disbaled  
0.2  
18  
V
Input leakage current, Receiver disabled, pullup or pulldown  
inhibited  
II  
µA  
µA  
Input leakage current, Receiver disabled, pullup enabled  
Input leakage current, Receiver disabled, pulldown enabled  
-243  
51  
-100  
110  
-19  
210  
18  
IOZ  
Total leakage current through the PAD connection of a  
driver/receiver combination that may include a pullup or pulldown.  
The driver output is disabled and the pullup or pulldown is  
inhibited.  
Copyright © 2011, Texas Instruments Incorporated  
Device Operating Conditions  
83  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
3.4 External Capacitors  
To improve module performance, decoupling capacitors are required to suppress the switching noise generated  
by high frequency and to stabilize the supply voltage. A decoupling capacitor is most effective when it is close to  
the device, because this minimizes the inductance of the circuit board wiring and interconnects.  
3.4.1 Voltage Decoupling Capacitors  
Table 3-8 summarizes the Core voltage decoupling characteristics.  
3.4.1.1 Core Voltage Decoupling Capacitors  
To improve module performance, decoupling capacitors are required to suppress high-frequency switching noise  
and to stabilize the supply voltage. A decoupling capacitor is most effective when located close to the AM335x  
device, because this minimizes the inductance of the circuit board wiring and interconnects.  
Table 3-8. Core Voltage Decoupling Characteristics  
PARAMETER  
MIN  
TBD  
TBD  
TYP  
10.08  
10.05  
MAX  
TBD  
TBD  
UNIT  
μF  
(1)  
CVDD_CORE  
(2)(3)  
CVDD_MPU  
(1) The typical value corresponds to 1 cap of 10 µF and 8 caps of 10 nF.  
μF  
(2) Not available on the ZCE package. VDD_MPU is merged with VDD_CORE in the ZCE package.  
(3) The typical value corresponds to 1 cap of 10 µF and 5 caps of 10 nF.  
3.4.1.2 IO and Analog Voltage Decoupling Capacitors  
Table 3-9 summarizes the power-supply decoupling capacitor recommendations.  
Table 3-9. Power-Supply Decoupling Capacitor Characteristics  
PARAMETER  
MIN  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TYP  
10  
MAX  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
UNIT  
nF  
nF  
nF  
nF  
nF  
nF  
nF  
nF  
nF  
nF  
nF  
nF  
nF  
nF  
nF  
nF  
nF  
CVDDA_ADC  
CVDDA1P8V_USB0  
CCVDDA3P3V_USB0  
10  
10  
(1)  
CVDDA1P8V_USB1  
10  
(1)  
CVDDA3P3V_USB1  
10  
(2)  
CVDDS  
10.04  
10.06  
10  
(3)  
CVDDS_DDR  
CVDDS_OSC  
CVDDS_PLL_DDR  
10  
CVDDS_PLL_CORE_LCD  
CVDDS_SRAM_CORE_BG  
CVDDS_SRAM_MPU_BB  
CVDDS_PLL_MPU  
10  
10  
10  
10  
CVDDS_RTC  
10  
(4)  
CVDDSHV1  
10.02  
10.02  
10.02  
(4)  
CVDDSHV2  
(4)  
CVDDSHV3  
84  
Device Operating Conditions  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
Table 3-9. Power-Supply Decoupling Capacitor Characteristics (continued)  
PARAMETER  
MIN  
TBD  
TBD  
TBD  
TYP  
10.02  
10.02  
10.06  
MAX  
TBD  
TBD  
TBD  
UNIT  
nF  
(4)  
CVDDSHV4  
CVDDSHV5  
CVDDSHV6  
(4)  
(3)  
nF  
nF  
(1) Not available on the ZCE package.  
(2) Typical values consist of a 1 cap of 10 µF and 4 caps of 10 nF.  
(3) Typical values consist of a 1 cap of 10 µF and 6 caps of 10 nF.  
(4) Typical values consist of a 1 cap of 10 µF and 2 caps of 10 nF.  
3.4.2 Output Capacitors  
Internal low dropout output (LDO) regulators require external capacitors to stabilize their outputs. These  
capacitors should be placed as close as possible to the respective terminals of the AM335x device. Table 3-10  
summarizes the LDO output capacitor recommendations.  
Table 3-10. Output Capacitor Characteristics  
PARAMETER  
MIN  
0.7  
0.7  
0.7  
0.7  
TYP  
MAX  
1.3  
UNIT  
μF  
(1)  
CCAP_VDD_SRAM_CORE  
1
1
1
1
(1)(2)  
CCAP_VDD_RTC  
1.3  
μF  
(1)  
CCAP_VDD_SRAM_MPU  
1.3  
μF  
(1)  
CCAP_VBB_MPU  
1.3  
μF  
(1) LDO regulator outputs should not be used as a power source for any external components.  
(2) The CAP_VDD_RTC terminal operates as an input to the RTC core voltage domain when the RTC_KLDO_ENn terminal is high.  
Copyright © 2011, Texas Instruments Incorporated  
Device Operating Conditions  
85  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
Figure 3-1 illustrates an example of the external capacitors.  
AM335x Device  
VDDS_PLL_MPU  
CVDDS_PLL_MPU  
MPU  
PLL  
VDD_MPU  
MPU  
CVDD_MPU  
VDDS_PLL_CORE_LCD  
CVDDS_PLL_CORE_LCD  
CORE  
PLL  
LCD  
PLL  
VDD_CORE  
CVDD_CORE  
CORE  
CAP_VBB_MPU  
CCAP_VBB_MPU  
VDDS  
IO  
CVDDS  
VDDS_SRAM_MPU_BB  
CVDDS_SRAM_MPU_BB  
VDDSHV1  
IOs  
MPU SRAM  
LDO  
CVDDSHV1  
Back Bias  
LDO  
CAP_VDD_SRAM_MPU  
CCAP_VDD_SRAM_MPU  
VDDSHV2  
IOs  
CVDDSHV2  
CVDDSHV3  
CVDDSHV4  
CVDDSHV5  
CVDDSHV6  
CVDDS_DDR  
CVDDS_RTC  
VDDS_SRAM_CORE_BG  
CVDDS_SRAM_CORE_BG  
VDDSHV3  
IOs  
CORE SRAM  
LDO  
Band Gap  
Reference  
CAP_VDD_SRAM_CORE  
CCAP_VDD_SRAM_CORE  
VDDSHV4  
IOs  
VDDA_3P3V_USBx  
CVDDA_3P3V_USBx  
VDDSHV5  
IOs  
VSSA_USB  
USB PHYx  
VDDA_1P8V_USBx  
VDDSHV6  
IOs  
CVDDA_1P8V_USBx  
VSSA_USB  
VDDA_ADC  
VDDS_DDR  
IOs  
CVDDA_ADC  
ADC  
VDDS_RTC  
IOs  
VSSA_ADC  
VDDS_OSC  
CVDDS_OSC  
VDDS_PLL_DDR  
CVDDS_PLL_DDR  
DDR  
PLL  
CAP_VDD_RTC  
CCAP_VDD_RTC  
RTC  
A. Decoupling capacitors must be placed as closed as possible of the power ball. Choose the ground located closest to  
the power pin for each decoupling capacitor. In case of interconnecting powers, first insert the decoupling capacitor  
and then interconnect the powers.  
B. The decoupling capacitor value depends on the board characteristics.  
Figure 3-1. External Capacitors  
86  
Device Operating Conditions  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
3.4.3 VDD_MPU_MON Connections  
Figure 3-2 shows the VDD_MPU_MON connectivity.  
VDD_MPU  
Power  
Management  
IC  
AM335x Device  
VDD_MPU_MON  
Vfeedback  
Connection for VDD_MPU_MON if voltage monitoring is used  
VDD_MPU  
Power  
Source  
VDD_MPU_MON  
AM335x Device  
Connection for VDD_MPU_MON if voltage monitoring is NOT used  
Figure 3-2. VDD_MPU_MON Connectivity  
Copyright © 2011, Texas Instruments Incorporated  
Device Operating Conditions  
87  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
4 Power and Clocking  
4.1 Power Supplies  
4.1.1 Power-Up Sequencing  
1.8V  
1.8V  
VDDS_RTC  
RTC_PWRONRSTn  
1.8V  
1.8V  
PMIC_POWER_EN  
All 1.8-V Supplies  
1.8V/1.5V  
3.3V  
VDDS_DDR  
IO 3.3-V Supplies  
1.1V  
3.3V  
VDD_CORE, VDD_MPU  
PWRONRSTn  
CLK_M_OSC  
A. RTC_PWRONRSTn should be asserted for at least 1ms.  
B. When using the ZCZ package option, VDD_MPU and VDD_CORE power inputs may be powered from the same  
source if the application only uses operating performance points (OPPs) that define a common power supply voltage  
for VDD_MPU and VDD_CORE. The ZCE package option has the VDD_MPU domain merged with the VDD_CORE  
domain.  
C. If a USB port is not used, the respective VDDA1P8V_USB terminal may be connected to any 1.8-V power supply and  
the respective VDDA3P3V_USB terminal may be connected to any 3.3-V power supply. If the system does not have a  
3.3-V power supply, the VDDA3P3V_USB terminal may be connected to ground.  
D. If the system uses LPDDR or DDR2 memory devices, VDDS_DDR can be ramped simultaneously with the other  
1.8-V I/O power supplies.  
E. VDDS_RTC can be ramped independent of other power supplies if PMIC_PWR_EN functionality is not required. If  
VDDS_RTC is ramped after VDD_CORE, there might be a small amount of additional leakage current on  
VDD_CORE. The power sequence shown provides the lowest leakage option.  
Figure 4-1. Preferred Power-Supply Sequencing with Dual-Voltage I/Os Configured as 3.3 V  
88  
Power and Clocking  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
1.8V  
1.8V  
VDDS_RTC  
RTC_PWRONRSTn  
1.8V  
PMIC_POWER_EN  
3.3V  
1.8V  
See Notes Below  
All 1.8-V Supplies  
All 3.3-V Supplies  
1.8V/1.5V  
1.1V  
VDDS_DDR  
VDD_CORE, VDD_MPU  
PWRONRSTn  
CLK_M_OSC  
A. RTC_PWRONRSTn should be asserted for at least 1ms.  
B. The 3.3-V I/O power supplies may be ramped simultaneously with the 1.8-V I/O power supplies if the voltage sourced  
by any 3.3-V power supplies does not exceed the voltage sourced by any 1.8-V power supply by more than 2 V.  
Serious reliability issues may occur if the system power supply design allows any 3.3-V I/O power supplies to exceed  
any 1.8-V I/O power supplies by more than 2 V.  
C. When using the ZCZ package option, VDD_MPU and VDD_CORE power inputs may be powered from the same  
source if the application only uses operating performance points (OPPs) that define a common power supply voltage  
for VDD_MPU and VDD_CORE. The ZCE package option has the VDD_MPU domain merged with the VDD_CORE  
domain.  
D. If a USB port is not used, the respective VDDA1P8V_USB terminal may be connected to any 1.8-V power supply and  
the respective VDDA3P3V_USB terminal may be connected to any 3.3-V power supply. If the system does not have a  
3.3-V power supply, the VDDA3P3V_USB terminal may be connected to ground.  
E. If the system uses LPDDR or DDR2 memory devices, VDDS_DDR can be ramped simultaneously with the other  
1.8-V I/O power supplies.  
F. VDDS_RTC can be ramped independent of other power supplies if PMIC_PWR_EN functionality is not required. If  
VDDS_RTC is ramped after VDD_CORE, there might be a small amount of additional leakage current on  
VDD_CORE. The power sequence shown provides the lowest leakage option.  
Figure 4-2. Alternate Power-Supply Sequencing with Dual-Voltage I/Os Configured as 3.3 V  
Copyright © 2011, Texas Instruments Incorporated  
Power and Clocking  
89  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
1.8V  
1.8V  
VDDS_RTC  
RTC_PWRONRSTn  
1.8V  
1.8V  
PMIC_POWER_EN  
All 1.8-V Supplies  
1.8V/1.5V  
VDDS_DDR  
All 3.3-V Supplies  
3.3V  
1.1V  
VDD_CORE, VDD_MPU  
1.8V  
PWRONRSTn  
CLK_M_OSC  
A. RTC_PWRONRSTn should be asserted for at least 1ms.  
B. When using the ZCZ package option, VDD_MPU and VDD_CORE power inputs may be powered from the same  
source if the application only uses operating performance points (OPPs) that define a common power supply voltage  
for VDD_MPU and VDD_CORE. The ZCE package option has the VDD_MPU domain merged with the VDD_CORE  
domain.  
C. If a USB port is not used, the respective VDDA1P8V_USB terminal may be connected to any 1.8-V power supply and  
the respective VDDA3P3V_USB terminal may be connected to any 3.3-V power supply. If the system does not have a  
3.3-V power supply, the VDDA3P3V_USB terminal may be connected to ground.  
D. If the system uses LPDDR or DDR2 memory devices, VDDS_DDR can be ramped simultaneously with the other  
1.8-V I/O power supplies.  
E. VDDS_RTC can be ramped independent of other power supplies if PMIC_PWR_EN functionality is not required. If  
VDDS_RTC is ramped after VDD_CORE, there might be a small amount of additional leakage current on  
VDD_CORE. The power sequence shown provides the lowest leakage option.  
Figure 4-3. Power-Supply Sequencing with Dual-Voltage I/Os Configured as 1.8 V  
90  
Power and Clocking  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
1.8V  
1.1V  
VDDS_RTC,  
CAP_VDD_RTC  
1.8V  
1.8V  
1.8V  
RTC_PWRONRSTn  
PMIC_POWER_EN  
VDDSHV 1-6  
All other 1.8-V Supplies  
1.8V/1.5V  
VDDS_DDR  
3.3V  
1.1V  
All 3.3-V Supplies  
VDD_CORE, VDD_MPU  
PWRONRSTn  
1.8V  
CLK_M_OSC  
A. RTC_PWRONRSTn should be asserted for at least 1ms.  
B. The CAP_VDD_RTC terminal operates as an input to the RTC core voltage domain when the internal RTC LDO is  
disabled by connecting the RTC_KALDO_ENn terminal to VDDS_RTC. If the internal RTC LDO is disabled,  
CAP_VDD_RTC should be sourced from an external 1.1-V power supply.  
C. When using the ZCZ package option, VDD_MPU and VDD_CORE power inputs may be powered from the same  
source if the application only uses operating performance points (OPPs) that define a common power supply voltage  
for VDD_MPU and VDD_CORE. The ZCE package option has the VDD_MPU domain merged with the VDD_CORE  
domain.  
D. If a USB port is not used, the respective VDDA1P8V_USB terminal may be connected to any 1.8-V power supply and  
the respective VDDA3P3V_USB terminal may be connected to any 3.3-V power supply. If the system does not have a  
3.3-V power supply, the VDDA3P3V_USB terminal may be connected to ground.  
E. If the system uses LPDDR or DDR2 memory devices, VDDS_DDR can be ramped simultaneously with the other  
1.8-V I/O power supplies.  
F. VDDS_RTC should be ramped at the same time or before VDD_RTC, but these power inputs can be ramped  
independent of other power supplies if PMIC_PWR_EN functionality is not required. If VDD_RTC is ramped after  
VDD_CORE, there might be a small amount of additional leakage current on VDD_CORE. The power sequence  
shown provides the lowest leakage option.  
Figure 4-4. Power-Supply Sequencing with Internal RTC LDO Disabled  
Copyright © 2011, Texas Instruments Incorporated  
Power and Clocking  
91  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
1.8V  
VDDS_RTC,  
All other 1.8-V Supplies  
1.8V/1.5V  
3.3V  
VDDS_DDR  
All 3.3-V Supplies  
1.1V  
VDD_CORE, VDD_MPU  
VDD_RTC  
PWRONRSTn  
CLK_M_OSC  
A. CAP_VDD_RTC terminal operates as an input to the RTC core voltage domain when the internal RTC LDO is  
disabled by connecting the RTC_KALDO_ENn terminal to VDDS_RTC. If the internal RTC LDO is disabled,  
CAP_VDD_RTC should be sourced from an external 1.1-V power supply. The PMIC_POWER_EN output cannot be  
used when the RTC is disabled.  
B. When using the ZCZ package option, VDD_MPU and VDD_CORE power inputs may be powered from the same  
source if the application only uses operating performance points (OPPs) that define a common power supply voltage  
for VDD_MPU and VDD_CORE. The ZCE package option has the VDD_MPU domain merged with the VDD_CORE  
domain.  
C. If a USB port is not used, the respective VDDA1P8V_USB terminal may be connected to any 1.8-V power supply and  
the respective VDDA3P3V_USB terminal may be connected to any 3.3-V power supply. If the system does not have a  
3.3-V power supply, the VDDA3P3V_USB terminal may be connected to ground.  
D. If the system uses LPDDR or DDR2 memory devices, VDDS_DDR can be ramped simultaneously with the other  
1.8-V I/O power supplies.  
E. VDDS_RTC should be ramped at the same time or before VDD_RTC, but these power inputs can be ramped  
independent of other power supplies if PMIC_PWR_EN functionality is not required. If VDD_RTC is ramped after  
VDD_CORE, there might be a small amount of additional leakage current on VDD_CORE. The power sequence  
shown provides the lowest leakage option.  
Figure 4-5. Power-Supply Sequencing with RTC Feature Disabled  
4.1.2 Power-Down Sequencing  
PWRONRSTn input terminal should be taken low, which stops all internal clocks before power supplies  
are turned off.  
The preferred way to sequence power down is to have all the power supplies ramped down sequentially in  
the exact reverse order of the power-up sequencing. In other words, the power supply that has been  
ramped up first should be the last one that should be ramped down. This will ensure there would be no  
spurious current paths during the power-down sequence.  
The VDDS power supply must ramp down after all 3.3-V VDDSHV power supplies. If there is no 3.3-V  
VDDSHV power supply, the VDDS power supply may ramp down at the same time or after all 1.8-V  
VDDSHV power supplies.  
92  
Power and Clocking  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
4.2 Clock Specifications  
4.2.1 Input Clock Specifications  
The AM335x device has two clock inputs. Each clock input passes through an internal oscillator which can  
be connected to an external crystal circuit (oscillator mode) or external LVCMOS square-wave digital clock  
source (bypass mode). The oscillators automatically operate in bypass mode when their input is  
connected to an external LVCMOS square-wave digital clock source. The oscillator associated with a  
specific clock input must be enabled when the clock input is being used in either oscillator mode or bypass  
mode.  
The OSC1 oscillator provides a 32.768-kHz reference clock to the real-time clock (RTC) and is connected  
to the RTC_XTALIN and RTC_XTALOUT terminals. This clock source is referred to as the 32K oscillator  
(CLK_32K_RTC) in the AM335x ARM Cortex-A8 Technical Reference Manual (literature number  
SPRUH73). OSC1 is disabled by default after power is applied. This clock input is optional and may not  
be required if the RTC is configured to receive a clock from the internal 32k RC oscillator (CLK_RC32K) or  
peripheral PLL (CLK_32KHZ) which receives a reference clock from the OSC0 input.  
The OSC0 oscillator provides a 19.2-MHz, 24-MHz, 25-MHz, or 26-MHz reference clock which is used to  
clock all non-RTC functions and is connected to the XTALIN and XTALOUT terminals. This clock source is  
referred to as the master oscillator (CLK_M_OSC) in the AM335x ARM Cortex-A8 Technical Reference  
Manual (literature number SPRUH73). OSC0 is enabled by default after power is applied.  
For more information related to recommended circuit topologies and crystal oscillator circuit requirements  
for these clock inputs, see Section 4.2.2.  
4.2.2 Input Clock Requirements  
4.2.2.1 OSC0 Internal Oscillator Clock Source  
Figure 4-6 shows the recommended crystal circuit. It is recommended that pre-production printed circuit  
board (PCB) designs include the two optional resistors Rbias and Rd in case they are required for proper  
oscillator operation when combined with production crystal circuit components. In most cases, Rbias will  
not be required and Rd will be a zero ohm resistor. These resistors may be removed from production PCB  
designs after evaluating oscillator performance with production crystal circuit components installed on  
pre-production PCBs.  
The XTALIN terminal has a 15 - 40 kΩ internal pull-down resistor which is enabled when OSC0 is  
disabled. This internal resistor prevents the XTALIN terminal from floating to an invalid logic level which  
may increase leakage current through the oscillator input buffer.  
Copyright © 2011, Texas Instruments Incorporated  
Power and Clocking  
93  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
AM335x  
XTALIN  
VSS_OSC  
XTALOUT  
C1  
C2  
Optional Rbias  
Optional Rd  
Crystal  
A. Oscillator components (Crystal, C1, C2, optional Rbias and Rd) must be located close to the AM335x package.  
Parasitic capacitance to the printed circuit board (PCB) ground and other signals should be minimized to reduce noise  
coupled into the oscillator. The VSS_OSC terminal provides a Kelvin ground reference for the external crystal  
components. External crystal component grounds should only be connected to the VSS_OSC terminal and should not  
be connected to the PCB ground plane.  
B. C1 and C2 represent the total capacitance of the respective PCB trace, load capacitor, and other components  
(excluding the crystal) connected to each crystal terminal. The value of capacitors C1 and C2 should be selected to  
provide the total load capacitance, CL, specified by the crystal manufacturer. The total load capacitance is CL  
=
[(C1*C2)/(C1+C2)] + Cshunt, where Cshunt is the crystal shunt capacitance (C0) specified by the crystal manufacturer  
plus any mutual capacitance (Cpkg + CPCB) seen across the AM335x XTALIN and XTALOUT signals. For  
recommended values of crystal circuit components, see Table 4-1.  
Figure 4-6. OSC0 Crystal Circuit Schematic  
Table 4-1. OSC0 Crystal Circuit Requirements  
NAME  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
fxtal  
Crystal parallel resonance  
frequency  
Fundamental mode oscillation only  
19.2, 24.0,  
25.0, or  
26.0  
MHz  
Crystal frequency  
stability/tolerance  
-50.0  
50.0  
ppm  
CC1  
C1 capacitance  
C2 capacitance  
Shunt capacitance  
12.0  
12.0  
24.0  
24.0  
5.0  
pF  
pF  
pF  
Ω
CC2  
Cshunt  
ESR  
Crystal effective series  
resistance  
fxtal = 19.2 MHz, oscillator has nominal  
negative resistance of 272 Ω and  
54.4  
worst-case negative resistance of 163 Ω  
fxtal = 24.0 MHz, oscillator has nominal  
negative resistance of 240 Ω and  
worst-case negative resistance of 144 Ω  
48.0  
46.6  
45.3  
Ω
Ω
Ω
fxtal = 25.0 MHz, oscillator has nominal  
negative resistance of 233 Ω and  
worst-case negative resistance of 140 Ω  
fxtal = 26.0 MHz, oscillator has nominal  
negative resistance of 227 Ω and  
worst-case negative resistance of 137 Ω  
94  
Power and Clocking  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
4.2.2.2 OSC0 LVCMOS Digital Clock Source  
Figure 4-7 shows the recommended oscillator connections when OSC0 is connected to an LVCMOS  
square-wave digital clock source. The LVCMOS clock source is connected to the XTALIN terminal. In this  
mode of operation, the XTALOUT terminal should not be used to source any external components. The  
printed circuit board design should provide a mechanism to disconnect the XTALOUT terminal from any  
external components or signal traces that may couple noise into OSC0 via the XTALOUT terminal.  
The XTALIN terminal has a 15 - 40 kΩ internal pull-down resistor which is enabled when OSC0 is  
disabled. This internal resistor prevents the XTALIN terminal from floating to an invalid logic level which  
may increase leakage current through the oscillator input buffer.  
AM335x  
XTALIN  
VSS_OSC  
XTALOUT  
LVCMOS  
Digital  
Clock  
Source  
Figure 4-7. OSC0 LVCMOS Circuit Schematic  
4.2.2.3 OSC1 Internal Oscillator Clock Source  
Figure 4-8 shows the recommended crystal circuit. It is recommended that pre-production printed circuit  
board (PCB) designs include the two optional resistors Rbias and Rd in case they are required for proper  
oscillator operation when combined with production crystal circuit components. In most cases, Rbias will  
not be required and Rd will be a zero ohm resistor. These resistors may be removed from production PCB  
designs after evaluating oscillator performance with production crystal circuit components installed on  
pre-production PCBs.  
The RTC_XTALIN terminal does not enable an internal pull-down resistor when OSC1 is disabled. If this  
oscillator is disabled, the RTC_XTALIN terminal may float to an invalid logic level which may increase  
leakage current through the oscillator input buffer. This should not be an issue for most applications that  
use this oscillator to source the RTC clock since the RTC requires a continuous clock to maintain time.  
Copyright © 2011, Texas Instruments Incorporated  
Power and Clocking  
95  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
AM335x  
RTC_XTALIN  
RTC_XTALOUT  
Optional Rbias  
Optional Rd  
Crystal  
C1  
C2  
A. Oscillator components (Crystal, C1, C2, optional Rbias and Rd) must be located close to the AM335x package.  
Parasitic capacitance to the printed circuit board (PCB) ground and other signals should be minimized to reduce noise  
coupled into the oscillator.  
B. C1 and C2 represent the total capacitance of the respective PCB trace, load capacitor, and other components  
(excluding the crystal) connected to each crystal terminal. The value of capacitors C1 and C2 should be selected to  
provide the total load capacitance, CL, specified by the crystal manufacturer. The total load capacitance is CL  
=
[(C1*C2)/(C1+C2)] + Cshunt, where Cshunt is the crystal shunt capacitance (C0) specified by the crystal manufacturer  
plus any mutual capacitance (Cpkg + CPCB) seen across the AM335x RTC_XTALIN and RTC_XTALOUT signals. For  
recommended values of crystal circuit components, see Table 4-2.  
Figure 4-8. OSC1 Crystal Circuit Schematic  
Table 4-2. OSC1 Crystal Circuit Requirements  
NAME  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
fxtal  
Crystal parallel resonance  
frequency  
Fundamental mode oscillation only  
32.768  
kHz  
Crystal frequency  
stability/tolerance  
Maximum RTC error = 10.512  
minutes/year  
-20.0  
-50.0  
20.0  
50.0  
ppm  
ppm  
Maximum RTC error = 26.28  
minutes/year  
CC1  
C1 capacitance  
C2 capacitance  
Shunt capacitance  
12.0  
12.0  
24.0  
24.0  
5.0  
pF  
pF  
pF  
kΩ  
CC2  
Cshunt  
ESR  
Crystal effective series  
resistance  
fxtal = 32.768 kHz, oscillator has nominal  
negative resistance of 725 kΩ and  
80  
worst-case negative resistance of 250 kΩ  
4.2.2.4 OSC1 LVCMOS Digital Clock Source  
Figure 4-9 shows the recommended oscillator connections when OSC1 is connected to an LVCMOS  
square-wave digital clock source. The LVCMOS clock source is connected to the RTC_XTALIN terminal.  
In this mode of operation, the RTC_XTALOUT terminal should not be used to source any external  
components. The printed circuit board design should provide a mechanism to disconnect the  
RTC_XTALOUT terminal from any external components or signal traces that may couple noise into OSC1  
via the RTC_XTALOUT terminal.  
The RTC_XTALIN terminal does not enable an internal pull-down resistor when OSC1 is disabled. If this  
oscillator is disabled, the RTC_XTALIN terminal may float to an invalid logic level which may increase  
leakage current through the oscillator input buffer. This should not be an issue for most applications that  
use this oscillator to source the RTC clock since the RTC requires a continuous clock to maintain time.  
96  
Power and Clocking  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
AM335x  
RTC_XTALIN  
RTC_XTALOUT  
LVCMOS  
Digital  
Clock  
N/C  
Source  
Figure 4-9. OSC1 LVCMOS Circuit Schematic  
4.2.2.5 OSC1 Not Used  
Figure 4-10 shows the recommended oscillator connections when OSC0 is not being used. An external 10  
kΩ maximum pull-down resistor should be connected to the RTC_XTALIN terminal to prevent this input  
from floating to an invalid logic level which may increase leakage current through the oscillator input  
buffer. The RTC_XTALOUT terminal is a no connect (NC).  
AM335x  
RTC_XTALIN  
Rpd  
RTC_XTALOUT  
N/C  
Figure 4-10. OSC1 Not Used Schematic  
4.2.3 Output Clock Specifications  
The AM335x device has two clock output signals. The CLKOUT1 signal is always a replica of the OSC0  
input clock which is referred to as the master oscillator (CLK_M_OSC) in the AM335x ARM Cortex-A8  
Technical Reference Manual (literature number SPRUH73). The CLKOUT2 signal can be configured to  
output the OSC0 input clock, which is referred to as the 32K oscillator (CLK_32K_RTC) in the AM335x  
ARM Cortex-A8 Technical Reference Manual (literature number SPRUH73), or four other internal clocks.  
For more information related to configuring these clock output signals, see the CLKOUT Signals section of  
the AM335x ARM Cortex-A8 Technical Reference Manual (literature number SPRUH73).  
4.2.4 Output Clock Characteristics  
4.2.4.1 CLKOUT1  
The CLKOUT1 signal can be output on the XDMA_EVENT_INTR0 terminal. This terminal connects to one  
of seven internal signals via configurable multiplexers. The XDMA_EVENT_INTR0 multiplexer must be  
configured for Mode 3 to connect the CLKOUT1 signal to the XDMA_EVENT_INTR0 terminal.  
The default reset configuration of the XDMA_EVENT_INTR0 multiplexer is selected by the logic level  
applied to the LCD_DATA5 terminal on the rising edge of PWRONRSTn. The XDMA_EVENT_INTR0  
multiplexer will be configured to Mode 7 if the LCD_DATA5 terminal is low on the rising edge of  
PWRONRSTn or Mode 3 if the LCD_DATA5 terminal is high on the rising edge of PWRONRSTn. This  
allows the CLKOUT1 signal to be output on the XDMA_EVENT_INTR0 terminal without software  
intervention. In this mode, the output will be held low while PWRONRSTn is active and will begin to toggle  
after PWRONRSTn is released.  
Copyright © 2011, Texas Instruments Incorporated  
Power and Clocking  
97  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
4.2.4.2 CLKOUT2  
The CLKOUT2 signal can be output on the XDMA_EVENT_INTR1 terminal. This terminal connects to one  
of seven internal signals via configurable multiplexers. The XDMA_EVENT_INTR1 multiplexer must be  
configured for Mode 3 to connect the CLKOUT2 signal to the XDMA_EVENT_INTR1 terminal.  
The default reset configuration of the XDMA_EVENT_INTR1 multiplexer is always Mode 7. Software must  
configure the XDMA_EVENT_INTR1 multiplexer to Mode 3 for the CLKOUT2 signal to be output on the  
XDMA_EVENT_INTR1 terminal.  
98  
Power and Clocking  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
5 Peripheral Information and Timings  
5.1 Parameter Information  
5.1.1 Timing Parameters and Board Routing Analysis  
The timing parameter values specified in this data manual do not include delays by board routings. As a  
good board design practice, such delays must always be taken into account. Timing values may be  
adjusted by increasing/decreasing such delays. TI recommends utilizing the available I/O buffer  
information specification (IBIS) models to analyze the timing characteristics correctly. If needed, external  
logic hardware such as buffers may be used to compensate any timing differences.  
For the mDDR(LPDDR)/DDR2/DDR3 memory controller interface, it is not necessary to use the IBIS  
models to analyze timing characteristics. TI provides a PCB routing rules solution that describes the  
routing rules to ensure the mDDR(LPDDR)/DDR2/DDR3 memory controller interface timings are met.  
5.2 Recommended Clock and Control Signal Transition Behavior  
All clocks and control signals must transition between VIH and VIL (or between VIL and VIH) in a monotonic  
manner.  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Timings  
99  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
5.3 Ethernet Media Access Controller (EMAC)/Switch  
5.3.1 Ethernet MAC/Switch Electrical Data/Timing  
The Ethernet MAC/Switch implemented in the AM335x device supports GMII mode, but the AM335x  
design does not pin out 9 of the 24 GMII signals. This was done to reduce the total number of package  
terminals. Therefore, the AM335x device does not support GMII mode. MII mode is supported with the  
remaining GMII signals.  
The AM335x ARM Cortex-A8 Microprocessors (MPUs) Technical Reference Manual (literature number  
SPRUH73) and this document may reference internal signal names when discussing peripheral input and  
output signals since many of the AM335x package terminals can be multiplexed to one of several  
peripheral signals. For example, the AM335x terminal names for port 1 of the Ethernet MAC/Switch have  
been changed from GMII to MII to indicate their Mode 0 function, but the internal signal is named GMII.  
However, documents that describe the Ethernet switch reference these signals by their internal signal  
name. For a cross-reference of internal signal names to terminal names, see Table 2-7.  
Operation of the Ethernet MAC/Switch is not supported for OPP50.  
Table 5-1. Ethernet MAC/Switch Timing Conditions  
TIMING CONDITION PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
tR  
tF  
Input signal rise time  
Input signal fall time  
1(1)  
1(1)  
5(1)  
5(1)  
ns  
ns  
Output Condition  
CLOAD Output load capacitance  
3
30  
pF  
(1) Except when specified otherwise.  
5.3.1.1 Ethernet MAC/Switch MII Electrical Data/Timing  
Table 5-2. Timing Requirements for GMII[x]_RXCLK - MII Mode  
(see Figure 5-1)  
10 Mbps  
TYP  
100 Mbps  
TYP  
NO.  
UNIT  
MIN  
399.96  
140  
MAX  
400.04  
260  
MIN  
39.996  
14  
MAX  
40.004  
26  
1
2
3
4
tc(RX_CLK)  
tw(RX_CLKH)  
tw(RX_CLKL)  
tt(RX_CLK)  
Cycle time, RX_CLK  
ns  
ns  
ns  
ns  
Pulse Duration, RX_CLK high  
Pulse Duration, RX_CLK low  
Transition time, RX_CLK  
140  
260  
14  
26  
5
5
1
4
2
3
GMII[x]_RXCLK  
4
Figure 5-1. GMII[x]_RXCLK Timing - MII Mode  
100  
Peripheral Information and Timings  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
Table 5-3. Timing Requirements for GMII[x]_TXCLK - MII Mode  
(see Figure 5-2)  
10 Mbps  
TYP  
100 Mbps  
TYP  
NO.  
UNIT  
MIN  
399.96  
140  
MAX  
400.04  
260  
MIN  
39.996  
14  
MAX  
40.004  
26  
1
2
3
4
tc(TX_CLK)  
tw(TX_CLKH)  
tw(TX_CLKL)  
tt(TX_CLK)  
Cycle time, TX_CLK  
ns  
ns  
ns  
ns  
Pulse Duration, TX_CLK high  
Pulse Duration, TX_CLK low  
Transition time, TX_CLK  
140  
260  
14  
26  
5
5
1
4
2
3
GMII[x]_TXCLK  
4
Figure 5-2. GMII[x]_TXCLK Timing - MII Mode  
Table 5-4. Timing Requirements for GMII[x]_RXD[3:0], GMII[x]_RXDV, and GMII[x]_RXER - MII Mode  
(see Figure 5-3)  
10 Mbps  
TYP  
100 Mbps  
TYP  
NO.  
UNIT  
MIN  
MAX  
MIN  
MAX  
tsu(RXD-RX_CLK)  
Setup time, RXD[3:0] valid before RX_CLK  
1
tsu(RX_DV-RX_CLK) Setup time, RX_DV valid before RX_CLK  
tsu(RX_ER-RX_CLK) Setup time, RX_ER valid before RX_CLK  
8
8
ns  
th(RX_CLK-RXD)  
Hold time RXD[3:0] valid after RX_CLK  
Hold time RX_DV valid after RX_CLK  
Hold time RX_ER valid after RX_CLK  
2
th(RX_CLK-RX_DV)  
th(RX_CLK-RX_ER)  
8
8
ns  
1
2
GMII[x]_MRCLK (Input)  
GMII[x]_RXD[3:0], GMII[x]_RXDV,  
GMII[x]_RXER (Inputs)  
Figure 5-3. GMII[x]_RXD[3:0], GMII[x]_RXDV, GMII[x]_RXER Timing - MII Mode  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Timings  
101  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
Table 5-5. Switching Characteristics for GMII[x]_TXD[3:0], and GMII[x]_TXEN - MII Mode  
(see Figure 5-4)  
10 Mbps  
TYP  
100 Mbps  
TYP  
NO.  
PARAMETER  
UNIT  
MAX  
MIN  
MAX  
MIN  
td(TX_CLK-TXD)  
Delay time, TX_CLK high to TXD[3:0] valid  
Delay time, TX_CLK to TX_EN valid  
1
5
25  
5
25 ns  
td(TX_CLK-TX_EN)  
1
GMII[x]_TXCLK (input)  
GMII[x]_TXD[3:0],  
GMII[x]_TXEN (outputs)  
Figure 5-4. GMII[x]_TXD[3:0], GMII[x]_TXEN Timing - MII Mode  
102  
Peripheral Information and Timings  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
5.3.1.2 Ethernet MAC/Switch RMII Electrical Data/Timing  
Table 5-6. Timing Requirements for RMII[x]_REFCLK - RMII Mode  
(see Figure 5-5)  
NO.  
MIN  
TYP  
MAX  
20.001  
13  
UNIT  
ns  
1
2
3
tc(REF_CLK)  
tw(REF_CLKH)  
tw(REF_CLKL)  
Cycle time, REF_CLK  
19.999  
Pulse Duration, REF_CLK high  
Pulse Duration, REF_CLK low  
7
7
ns  
13  
ns  
1
2
RMII[x]_REFCLK  
(Input)  
3
Figure 5-5. RMII[x]_REFCLK Timing - RMII Mode  
Table 5-7. Timing Requirements for RMII[x]_RXD[1:0], RMII[x]_CRS_DV, and RMII[x]_RXER - RMII Mode  
(see Figure 5-6)  
NO.  
MIN  
TYP  
MAX  
UNIT  
tsu(RXD-REF_CLK)  
tsu(CRS_DV-REF_CLK)  
tsu(RX_ER-REF_CLK)  
th(REF_CLK-RXD)  
Setup time, RXD[1:0] valid before REF_CLK  
Setup time, CRS_DV valid before REF_CLK  
Setup time, RX_ER valid before REF_CLK  
Hold time RXD[1:0] valid after REF_CLK  
Hold time, CRS_DV valid after REF_CLK  
Hold time, RX_ER valid after REF_CLK  
1
4
ns  
2
th(REF_CLK-CRS_DV)  
th(REF_CLK-RX_ER)  
2
ns  
1
2
RMII[x]_REFCLK (input)  
RMII[x]_RXD[1:0], RMII[x]_CRS_DV,  
RMII[x]_RXER (inputs)  
Figure 5-6. RMII[x]_RXD[1:0], RMII[x]_CRS_DV, RMII[x]_RXER Timing - RMII Mode  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Timings  
103  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
Table 5-8. Switching Characteristics for RMII[x]_TXD[1:0], and RMII[x]_TXEN - RMII Mode  
(see Figure 5-7)  
NO.  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
td(REF_CLK-TXD)  
td(REF_CLK-TXEN)  
tr(TXD)  
tr(TX_EN)  
tf(TXD)  
Delay time, REF_CLK high to TXD[1:0] valid  
Delay time, REF_CLK to TXEN valid  
Rise time, TXD outputs  
1
2
3
2
13  
ns  
1
1
5
5
ns  
ns  
Rise time, TX_EN output  
Fall time, TXD outputs  
tf(TX_EN)  
Fall time, TX_EN output  
1
RMII[x]_REFCLK (Input)  
RMII[x]_TXD[1:0],  
RMII[x]_TXEN (Outputs)  
2
3
Figure 5-7. RMII[x]_TXD[1:0], RMII[x]_TXEN Timing - RMII Mode  
104  
Peripheral Information and Timings  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
5.3.1.3 Ethernet MAC/Switch RGMII Electrical Data/Timing  
RGMII mode is not supported for OPP50.  
Table 5-9. Timing Requirements for RGMII[x]_RCLK - RGMII Mode  
(see Figure 5-8)  
10 Mbps  
TYP  
100 Mbps  
TYP  
1000 Mbps  
UNIT  
NO.  
MIN  
MAX  
MIN  
MAX  
MIN  
TYP  
MAX  
1
2
tc(RXC)  
Cycle time, RXC  
360  
440  
36  
44  
7.2  
8.8 ns  
Pulse duration, RXC  
high  
tw(RXCH)  
160  
160  
240  
16  
16  
24  
3.6  
3.6  
4.4 ns  
3
4
tw(RXCL)  
tt(RXC)  
Pulse duration, RXC low  
Transition time, RXC  
240  
24  
4.4 ns  
0.75  
0.75  
0.75 ns  
1
4
2
4
3
RGMII[x]_RCLK  
Figure 5-8. RGMII[x]_RCLK Timing - RGMII Mode  
Table 5-10. Timing Requirements for RGMII[x]_RD[3:0], and RGMII[x]_RCTL - RGMII Mode  
(see Figure 5-9)  
10 Mbps  
MIN TYP  
100 Mbps  
MIN TYP  
1000 Mbps  
MIN TYP  
NO.  
UNIT  
MAX  
MAX  
MAX  
Setup time, RD[3:0] valid  
before RXC high/low  
tsu(RD-RXC)  
tsu(RX_CTL-RXC)  
1
1
1
1
1
1
1
1
1
1
1
1
1
ns  
Setup time, RX_CTL valid  
before RXC high/low  
Hold time, RD[3:0] valid  
after RXC high/low  
th(RXC-RD)  
2
3
ns  
ns  
Hold time, RX_CTL valid  
after RXC high/low  
th(RXC-RX_CTL)  
tt(RD)  
Transition time, RD  
0.75  
0.75  
0.75  
0.75  
0.75  
0.75  
tt(RX_CTL)  
Transition time, RX_CTL  
RGMII[x]_RCLK(A)  
1
1st Half-byte  
2
2nd Half-byte  
RGMII[x]_RD[3:0](B)  
RGMII[x]_RCTL(B)  
RGRXD[3:0]  
RXDV  
RGRXD[7:4]  
3
A. RGMII[x]_RCLK must be externally delayed relative to the RGMII[x]_RD[3:0] and RGMII[x]_RCTL signals to meet the  
respective timing requirements.  
B. Data and control information is received using both edges of the clocks. RGMII[x]_RD[3:0] carries data bits 3-0 on the  
rising edge of RGMII[x]_RCLK and data bits 7-4 on the falling edge of RGMII[x]_RCLK. Similarly, RGMII[x]_RCTL  
carries RXDV on rising edge of RGMII[x]_RCLK and RXERR on falling edge of RGMII[x]_RCLK.  
Figure 5-9. RGMII[x]_RD[3:0], RGMII[x]_RCTL Timing - RGMII Mode  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Timings  
105  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
Table 5-11. Switching Characteristics for RGMII[x]_TCLK - RGMII Mode  
(see Figure 5-10)  
10 Mbps  
TYP  
100 Mbps  
TYP  
1000 Mbps  
TYP  
NO.  
UNIT  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
1
2
tc(TXC)  
Cycle time, TXC  
360  
440  
36  
44  
7.2  
8.8 ns  
Pulse duration, TXC  
high  
tw(TXCH)  
160  
160  
240  
16  
16  
24  
3.6  
3.6  
4.4 ns  
3
4
tw(TXCL)  
tt(TXC)  
Pulse duration, TXC low  
Transition time, TXC  
240  
24  
4.4 ns  
0.75  
0.75  
0.75 ns  
1
4
2
4
3
RGMII[x]_TCLK  
Figure 5-10. RGMII[x]_TCLK Timing - RGMII Mode  
Table 5-12. Switching Characteristics for RGMII[x]_TD[3:0], and RGMII[x]_TCTL - RGMII Mode  
(see Figure 5-11)  
10 Mbps  
MIN TYP  
100 Mbps  
MIN TYP  
1000 Mbps  
MIN TYP  
NO.  
UNIT  
ns  
MAX  
0.5  
MAX  
0.5  
MAX  
0.5  
tsk(TD-TXC)  
TD to TXC output skew  
TX_CTL to TXC output skew  
Transition time, TD  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
1
tsk(TX_CTL-TXC)  
0.5  
0.5  
0.5  
tt(TD)  
0.75  
0.75  
0.75  
0.75  
0.75  
0.75  
2
ns  
tt(TX_CTL)  
Transition time, TX_CTL  
RGMII[x]_TCLK(A)  
1
1
2
RGMII[x]_TD[3:0](B)  
RGMII[x]_TCTL(B)  
1st Half-byte  
2nd Half-byte  
TXERR  
TXEN  
A. The Ethernet MAC/Switch implemented in the AM335x device supports internal delay mode, but timing closure was  
not performed for this mode of operation. Therefore, the AM335x device does not support internal delay mode.  
B. Data and control information is transmitted using both edges of the clocks. RGMII[x]_TD[3:0] carries data bits 3-0 on  
the rising edge of RGMII[x]_TCLK and data bits 7-4 on the falling edge of RGMII[x]_TCLK. Similarly, RGMII[x]_TCTL  
carries TXEN on rising edge of RGMII[x]_TCLK and TXERR of falling edge of RGMII[x]_TCLK.  
Figure 5-11. RGMII[x]_TD[3:0], RGMII[x]_TCTL Timing - RGMII Mode  
106  
Peripheral Information and Timings  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
5.4 External Memory Interfaces  
The device includes the following external memory interfaces:  
General-purpose memory controller (GPMC)  
SDRAM controller (SDRC) or External Memory Interface (EMIF)  
5.4.1 General-Purpose Memory Controller (GPMC)  
NOTE  
For more information, see the Memory Subsystem/General-Purpose Memory Controller  
section of the AM335x ARM Cortex-A8 Microprocessors (MPUs) Technical Reference  
Manual (literature number SPRUH73).  
The GPMC is the unified memory controller used to interface external memory devices such as:  
Asynchronous SRAM-like memories and ASIC devices  
Asynchronous page mode and synchronous burst NOR flash  
NAND flash  
5.4.1.1 GPMC/NOR FlashSynchronous Mode  
Synchronous mode is not supported for OPP50.  
Table 5-14 and Table 5-15 assume testing over the recommended operating conditions and electrical  
characteristic conditions below (see Figure 5-12 through Figure 5-16).  
Table 5-13. GPMC/NOR Flash Timing ConditionsSynchronous Mode  
TIMING CONDITION PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
tR  
tF  
Input signal rise time  
Input signal fall time  
1
1
5
5
ns  
ns  
Output Condition  
CLOAD  
Output load capacitance  
3
30  
pF  
Table 5-14. GPMC/NOR Flash Timing RequirementsSynchronous Mode  
OPP100  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
F12 tsu(dV-clkH)  
Setup time, input data gpmc_ad[15:0] valid before output clock gpmc_clk  
high  
3.2  
ns  
F13 th(clkH-dV)  
Hold time, input data gpmc_ad[15:0] valid after output clock gpmc_clk high  
Setup time, input wait gpmc_wait[x](1) valid before output clock gpmc_clk  
high  
2.5  
3.2  
ns  
ns  
F21 tsu(waitV-clkH)  
F22 th(clkH-waitV)  
Hold time, input wait gpmc_wait[x](1) valid after output clock gpmc_clk high  
2.5  
ns  
(1) In gpmc_wait[x], x is equal to 0 or 1.  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Timings  
107  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
UNIT  
Table 5-15. GPMC/NOR Flash Switching CharacteristicsSynchronous Mode(2)  
NO.  
PARAMETER  
OPP100  
MIN  
MAX  
F0  
F1  
F1  
1 / tc(clk)  
tw(clkH)  
tw(clkL)  
tdc(clk)  
tJ(clk)  
Frequency(15), output clock gpmc_clk  
Typical pulse duration, output clock gpmc_clk high  
Typical pulse duration, output clock gpmc_clk low  
Duty cycle error, output clock gpmc_clk  
Jitter standard deviation(16), output clock gpmc_clk  
Rise time, output clock gpmc_clk  
100  
0.5P(12)  
0.5P(12)  
MHz  
ns  
ns  
ps  
ps  
ns  
ns  
ns  
ns  
ns  
0.5P(12)  
0.5P(12)  
500  
500  
33.33  
tR(clk)  
2
tF(clk)  
Fall time, output clock gpmc_clk  
2
tR(do)  
Rise time, output data gpmc_ad[15:0]  
Fall time, output data gpmc_ad[15:0]  
2
2
tF(do)  
F2  
F3  
F4  
F5  
F6  
td(clkH-csnV)  
Delay time, output clock gpmc_clk rising edge to output chip  
select gpmc_csn[x](11) transition  
F(6) 2.2  
E(5) 2.2  
B(2) 4.5  
2.3  
F(6) + 4.5  
td(clkH-csnIV)  
td(aV-clk)  
td(clkH-aIV)  
td(be[x]nV-clk)  
Delay time, output clock gpmc_clk rising edge to output chip  
select gpmc_csn[x](11) invalid  
E(5) + 4.5  
B(2) + 2.3  
4.5  
ns  
ns  
ns  
ns  
Delay time, output address gpmc_a[27:1] valid to output clock  
gpmc_clk first edge  
Delay time, output clock gpmc_clk rising edge to output address  
gpmc_a[27:1] invalid  
Delay time, output lower byte enable/command latch enable  
gpmc_be0n_cle, output upper byte enable gpmc_be1n valid to  
output clock gpmc_clk first edge  
B(2) 1.9  
B(2) + 2.3  
F7  
td(clkH-be[x]nIV)  
Delay time, output clock gpmc_clk rising edge to output lower  
byte enable/command latch enable gpmc_be0n_cle, output  
upper byte enable gpmc_be1n invalid  
D(4) 2.3  
D(4) + 1.9  
ns  
F8  
td(clkH-advn)  
td(clkH-advnIV)  
td(clkH-oen)  
td(clkH-oenIV)  
td(clkH-wen)  
td(clkH-do)  
Delay time, output clock gpmc_clk rising edge to output address  
valid/address latch enable gpmc_advn_ale transition  
G(7) + 2.3  
D(4) 2.3  
H(8) 2.3  
E(5) 2.3  
I(9) 2.3  
G(7) + 4.5  
D(4) + 3.5  
H(8) + 3.5  
E(5) + 3.5  
I(9) + 4.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
F9  
Delay time, output clock gpmc_clk rising edge to output address  
valid/address latch enable gpmc_advn_ale invalid  
F10  
F11  
F14  
F15  
F17  
F18  
Delay time, output clock gpmc_clk rising edge to output enable  
gpmc_oen transition  
Delay time, output clock gpmc_clk rising edge to output enable  
gpmc_oen invalid  
Delay time, output clock gpmc_clk rising edge to output write  
enable gpmc_wen transition  
Delay time, output clock gpmc_clk rising edge to output data  
gpmc_ad[15:0] transition  
J(10) 2.3  
J(10) 2.3  
J(10) + 1.9  
J(10) + 1.9  
td(clkH-be[x]n)  
tw(csnV)  
Delay time, output clock gpmc_clk rising edge to output lower  
byte enable/command latch enable gpmc_be0n_cle transition  
Pulse duration, output chip select gpmc_csn[x](11)  
low  
Read  
Write  
Read  
Write  
A(1)  
A(1)  
C(3)  
C(3)  
ns  
ns  
ns  
ns  
F19  
F20  
tw(be[x]nV)  
Pulse duration, output lower byte enable/command  
latch enable gpmc_be0n_cle, output upper byte  
enable gpmc_be1n low  
tw(advnV)  
Pulse duration, output address valid/address latch  
enable gpmc_advn_ale low  
Read  
Write  
K(13)  
K(13)  
ns  
ns  
(1) For single read: A = (CSRdOffTime CSOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)  
For burst read: A = (CSRdOffTime CSOnTime + (n 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)  
For burst write: A = (CSWrOffTime CSOnTime + (n 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)  
With n being the page burst access number.  
(2) B = ClkActivationTime * GPMC_FCLK(14)  
(14)  
(3) For single read: C = RdCycleTime * (TimeParaGranularity + 1) * GPMC_FCLK  
For burst read: C = (RdCycleTime + (n 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)  
For burst write: C = (WrCycleTime + (n 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)  
With n being the page burst access number.  
(4) For single read: D = (RdCycleTime AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)  
108  
Peripheral Information and Timings  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
For burst read: D = (RdCycleTime AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)  
For burst write: D = (WrCycleTime AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)  
(5) For single read: E = (CSRdOffTime AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)  
For burst read: E = (CSRdOffTime AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)  
For burst write: E = (CSWrOffTime AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)  
(6) For csn falling edge (CS activated):  
Case GpmcFCLKDivider = 0:  
F = 0.5 * CSExtraDelay * GPMC_FCLK(14)  
Case GpmcFCLKDivider = 1:  
F = 0.5 * CSExtraDelay * GPMC_FCLK(14) if (ClkActivationTime and CSOnTime are odd) or (ClkActivationTime and CSOnTime  
are even)  
F = (1 + 0.5 * CSExtraDelay) * GPMC_FCLK(14) otherwise  
Case GpmcFCLKDivider = 2:  
F = 0.5 * CSExtraDelay * GPMC_FCLK(14) if ((CSOnTime ClkActivationTime) is a multiple of 3)  
F = (1 + 0.5 * CSExtraDelay) * GPMC_FCLK(14) if ((CSOnTime ClkActivationTime 1) is a multiple of 3)  
F = (2 + 0.5 * CSExtraDelay) * GPMC_FCLK(14) if ((CSOnTime ClkActivationTime 2) is a multiple of 3)  
(7) For ADV falling edge (ADV activated):  
Case GpmcFCLKDivider = 0:  
G = 0.5 * ADVExtraDelay * GPMC_FCLK(14)  
Case GpmcFCLKDivider = 1:  
G = 0.5 * ADVExtraDelay * GPMC_FCLK(14) if (ClkActivationTime and ADVOnTime are odd) or (ClkActivationTime and  
ADVOnTime are even)  
G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK(14) otherwise  
Case GpmcFCLKDivider = 2:  
G = 0.5 * ADVExtraDelay * GPMC_FCLK(14) if ((ADVOnTime ClkActivationTime) is a multiple of 3)  
G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK(14) if ((ADVOnTime ClkActivationTime 1) is a multiple of 3)  
G = (2 + 0.5 * ADVExtraDelay) * GPMC_FCLK(14) if ((ADVOnTime ClkActivationTime 2) is a multiple of 3)  
For ADV rising edge (ADV deactivated) in Reading mode:  
Case GpmcFCLKDivider = 0:  
G = 0.5 * ADVExtraDelay * GPMC_FCLK(14)  
Case GpmcFCLKDivider = 1:  
G = 0.5 * ADVExtraDelay * GPMC_FCLK(14) if (ClkActivationTime and ADVRdOffTime are odd) or (ClkActivationTime and  
ADVRdOffTime are even)  
G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK(14) otherwise  
Case GpmcFCLKDivider = 2:  
G = 0.5 * ADVExtraDelay * GPMC_FCLK(14) if ((ADVRdOffTime ClkActivationTime) is a multiple of 3)  
G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK(14) if ((ADVRdOffTime ClkActivationTime 1) is a multiple of 3)  
G = (2 + 0.5 * ADVExtraDelay) * GPMC_FCLK(14) if ((ADVRdOffTime ClkActivationTime 2) is a multiple of 3)  
For ADV rising edge (ADV deactivated) in Writing mode:  
Case GpmcFCLKDivider = 0:  
G = 0.5 * ADVExtraDelay * GPMC_FCLK(14)  
Case GpmcFCLKDivider = 1:  
G = 0.5 * ADVExtraDelay * GPMC_FCLK(14) if (ClkActivationTime and ADVWrOffTime are odd) or (ClkActivationTime and  
ADVWrOffTime are even)  
G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK(14) otherwise  
Case GpmcFCLKDivider = 2:  
G = 0.5 * ADVExtraDelay * GPMC_FCLK(14) if ((ADVWrOffTime ClkActivationTime) is a multiple of 3)  
G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK(14) if ((ADVWrOffTime ClkActivationTime 1) is a multiple of 3)  
G = (2 + 0.5 * ADVExtraDelay) * GPMC_FCLK(14) if ((ADVWrOffTime ClkActivationTime 2) is a multiple of 3)  
(8) For OE falling edge (OE activated) / IO DIR rising edge (Data Bus input direction):  
Case GpmcFCLKDivider = 0:  
H = 0.5 * OEExtraDelay * GPMC_FCLK(14)  
Case GpmcFCLKDivider = 1:  
H = 0.5 * OEExtraDelay * GPMC_FCLK(14) if (ClkActivationTime and OEOnTime are odd) or (ClkActivationTime and OEOnTime  
are even)  
H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK(14) otherwise  
Case GpmcFCLKDivider = 2:  
H = 0.5 * OEExtraDelay * GPMC_FCLK(14) if ((OEOnTime ClkActivationTime) is a multiple of 3)  
H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK(14) if ((OEOnTime ClkActivationTime 1) is a multiple of 3)  
H = (2 + 0.5 * OEExtraDelay) * GPMC_FCLK(14) if ((OEOnTime ClkActivationTime 2) is a multiple of 3)  
For OE rising edge (OE deactivated):  
Case GpmcFCLKDivider = 0:  
H = 0.5 * OEExtraDelay * GPMC_FCLK(14)  
Case GpmcFCLKDivider = 1:  
H = 0.5 * OEExtraDelay * GPMC_FCLK(14) if (ClkActivationTime and OEOffTime are odd) or (ClkActivationTime and OEOffTime  
are even)  
H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK(14) otherwise  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Timings  
109  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
Case GpmcFCLKDivider = 2:  
H = 0.5 * OEExtraDelay * GPMC_FCLK(14) if ((OEOffTime ClkActivationTime) is a multiple of 3)  
H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK(14) if ((OEOffTime ClkActivationTime 1) is a multiple of 3)  
H = (2 + 0.5 * OEExtraDelay) * GPMC_FCLK(14) if ((OEOffTime ClkActivationTime 2) is a multiple of 3)  
(9) For WE falling edge (WE activated):  
Case GpmcFCLKDivider = 0:  
I = 0.5 * WEExtraDelay * GPMC_FCLK(14)  
Case GpmcFCLKDivider = 1:  
I = 0.5 * WEExtraDelay * GPMC_FCLK(14) if (ClkActivationTime and WEOnTime are odd) or (ClkActivationTime and WEOnTime  
are even)  
I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK(14) otherwise  
Case GpmcFCLKDivider = 2:  
I = 0.5 * WEExtraDelay * GPMC_FCLK(14) if ((WEOnTime ClkActivationTime) is a multiple of 3)  
I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK(14) if ((WEOnTime ClkActivationTime 1) is a multiple of 3)  
I = (2 + 0.5 * WEExtraDelay) * GPMC_FCLK(14) if ((WEOnTime ClkActivationTime 2) is a multiple of 3)  
For WE rising edge (WE deactivated):  
Case GpmcFCLKDivider = 0:  
I = 0.5 * WEExtraDelay * GPMC_FCLK  
(14)  
Case GpmcFCLKDivider = 1:  
I = 0.5 * WEExtraDelay * GPMC_FCLK(14) if (ClkActivationTime and WEOffTime are odd) or (ClkActivationTime and WEOffTime  
are even)  
I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK(14) otherwise  
Case GpmcFCLKDivider = 2:  
I = 0.5 * WEExtraDelay * GPMC_FCLK(14) if ((WEOffTime ClkActivationTime) is a multiple of 3)  
I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK(14) if ((WEOffTime ClkActivationTime 1) is a multiple of 3)  
I = (2 + 0.5 * WEExtraDelay) * GPMC_FCLK(14) if ((WEOffTime ClkActivationTime 2) is a multiple of 3)  
(10) J = GPMC_FCLK(14)  
(11) In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4 or 5. In gpmc_wait[x], x is equal to 0 or 1.  
(12) P = gpmc_clk period in ns  
(13) For read: K = (ADVRdOffTime ADVOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)  
For write: K = (ADVWrOffTime ADVOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)  
(14) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.  
(15) Related to the gpmc_clk output clock maximum and minimum frequencies programmable in the GPMC module by setting the  
GPMC_CONFIG1_CSx configuration register bit field GpmcFCLKDivider.  
(16) The jitter probability density can be approximated by a Gaussian function.  
110  
Peripheral Information and Timings  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
F1  
F0  
F1  
gpmc_clk  
F2  
F3  
F18  
gpmc_csn[x]  
gpmc_a[10:1]  
F4  
F6  
Valid Address  
F19  
F7  
gpmc_be0n_cle  
gpmc_be1n  
F19  
F6  
F8  
F8  
F20  
F9  
gpmc_advn_ale  
gpmc_oen  
F10  
F11  
F13  
F12  
D 0  
gpmc_ad[15:0]  
gpmc_wait[x]  
A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4 or 5.  
B. In gpmc_wait[x], x is equal to 0 or 1.  
Figure 5-12. GPMC/NOR FlashSynchronous Single Read(GpmcFCLKDivider = 0)  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Timings  
111  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
F1  
F0  
F1  
gpmc_clk  
F2  
F3  
gpmc_csn[x]  
F4  
gpmc_a[10:1]  
Valid Address  
F6  
F7  
gpmc_be0n_cle  
F7  
F9  
gpmc_be1n  
F6  
F8  
F8  
gpmc_advn_ale  
gpmc_oen  
F10  
F11  
F13  
F13  
F12  
D 0  
F22  
F12  
D 3  
gpmc_ad[15:0]  
gpmc_wait[x]  
D 1  
D 2  
F21  
A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4 or 5.  
B. In gpmc_wait[x], x is equal to 0 or 1.  
Figure 5-13. GPMC/NOR FlashSynchronous Burst Read4x16-bit (GpmcFCLKDivider = 0)  
112  
Peripheral Information and Timings  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
F1  
F1  
F0  
gpmc_clk  
F2  
F3  
gpmc_csn[x]  
gpmc_a[10:1]  
F4  
F6  
Valid Address  
F17  
F17  
F17  
F17  
F17  
gpmc_be0n_cle  
F17  
gpmc_be1n  
gpmc_advn_ale  
gpmc_wen  
F6  
F8  
F8  
F9  
F14  
F14  
F15  
D 1  
F15  
D 2  
F15  
gpmc_ad[15:0]  
gpmc_wait[x]  
D 0  
D 3  
A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4 or 5.  
B. In gpmc_wait[x], x is equal to 0 or 1.  
Figure 5-14. GPMC/NOR FlashSynchronous Burst Write(GpmcFCLKDivider > 0)  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Timings  
113  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
F1  
F0  
F1  
gpmc_clk  
gpmc_csn[x]  
F2  
F3  
F6  
F6  
F4  
F7  
gpmc_be0n_cle  
gpmc_be1n  
Valid  
F7  
Valid  
gpmc_a[27:17]  
Address (MSB)  
F5  
F12  
F13  
F4  
F12  
gpmc_ad[15:0]  
gpmc_advn_ale  
gpmc_oen  
Address (LSB)  
D0  
D1  
D2  
D3  
F8  
F8  
F9  
F10  
F11  
gpmc_wait[x]  
A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4 or 5.  
B. In gpmc_wait[x], x is equal to 0 or 1.  
Figure 5-15. GPMC/Multiplexed NOR FlashSynchronous Burst Read  
114  
Peripheral Information and Timings  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
F1  
F1  
F0  
gpmc_clk  
F2  
F3  
F18  
gpmc_csn[x]  
F4  
F6  
F6  
gpmc_a[27:17]  
Address (MSB)  
F17  
F17  
F17  
F17  
F17  
F17  
F9  
gpmc_be1n  
gpmc_be0n_cle  
gpmc_advn_ale  
F8  
F8  
F20  
F14  
F14  
gpmc_wen  
F15  
D 1  
F15  
D 2  
F15  
gpmc_ad[15:0]  
Address (LSB)  
D 0  
D 3  
F22  
F21  
gpmc_wait[x]  
A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4 or 5.  
B. In gpmc_wait[x], x is equal to 0 or 1.  
Figure 5-16. GPMC/Multiplexed NOR FlashSynchronous Burst Write  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Timings  
115  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
5.4.1.2 GPMC/NOR FlashAsynchronous Mode  
Table 5-17 and Table 5-18 assume testing over the recommended operating conditions and electrical  
characteristic conditions below (see Figure 5-17 through Figure 5-22).  
Table 5-16. GPMC/NOR Flash Timing ConditionsAsynchronous Mode  
TIMING CONDITION PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
tR  
tF  
Input signal rise time  
Input signal fall time  
1
1
5
5
ns  
ns  
Output Condition  
CLOAD  
Output load capacitance  
3
30  
pF  
Table 5-17. GPMC/NOR Flash Internal Timing ParametersAsynchronous Mode(1)(2)  
OPP100  
MIN  
OPP50  
MIN  
NO.  
PARAMETER  
UNIT  
MAX  
MAX  
FI1 Delay time, output data gpmc_ad[15:0] generation from internal functional clock  
GPMC_FCLK(3)  
6.5  
6.5  
ns  
FI2 Delay time, input data gpmc_ad[15:0] capture from internal functional clock  
GPMC_FCLK(3)  
4
6.5  
6.5  
6.5  
6.5  
4
6.5  
6.5  
6.5  
6.5  
ns  
ns  
ns  
ns  
ns  
FI3 Delay time, output chip select gpmc_csn[x] generation from internal functional  
clock GPMC_FCLK(3)  
FI4 Delay time, output address gpmc_a[27:1] generation from internal functional clock  
GPMC_FCLK(3)  
FI5 Delay time, output address gpmc_a[27:1] valid from internal functional clock  
GPMC_FCLK(3)  
FI6 Delay time, output lower-byte enable/command latch enable gpmc_be0n_cle,  
output upper-byte enable gpmc_be1n generation from internal functional clock  
GPMC_FCLK(3)  
FI7 Delay time, output enable gpmc_oen generation from internal functional clock  
GPMC_FCLK(3)  
6.5  
6.5  
6.5  
6.5  
ns  
ns  
ps  
FI8 Delay time, output write enable gpmc_wen generation from internal functional  
clock GPMC_FCLK(3)  
FI9 Skew, internal functional clock GPMC_FCLK(3)  
100  
100  
(1) The internal parameters table must be used to calculate data access time stored in the corresponding CS register bit field.  
(2) Internal parameters are referred to the GPMC functional internal clock which is not provided externally.  
(3) GPMC_FCLK is general-purpose memory controller internal functional clock.  
116  
Peripheral Information and Timings  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
NO.  
SPRS717 OCTOBER 2011  
Table 5-18. GPMC/NOR Flash Timing RequirementsAsynchronous Mode  
PARAMETER  
OPP100  
MIN  
OPP50  
MIN  
UNIT  
MAX  
H(5)  
P(4)  
MAX  
H(5)  
P(4)  
FA5(1) tacc(d)  
FA20(2) tacc1-pgmode(d)  
FA21(3) tacc2-pgmode(d)  
Data access time  
ns  
ns  
ns  
Page mode successive data access time  
Page mode first data access time  
H(5)  
H(5)  
(1) The FA5 parameter illustrates the amount of time required to internally sample input data. It is expressed in number of GPMC functional  
clock cycles. From start of read cycle and after FA5 functional clock cycles, input data is internally sampled by active functional clock  
edge. FA5 value must be stored inside the AccessTime register bit field.  
(2) The FA20 parameter illustrates amount of time required to internally sample successive input page data. It is expressed in number of  
GPMC functional clock cycles. After each access to input page data, next input page data is internally sampled by active functional clock  
edge after FA20 functional clock cycles. The FA20 value must be stored in the PageBurstAccessTime register bit field.  
(3) The FA21 parameter illustrates amount of time required to internally sample first input page data. It is expressed in number of GPMC  
functional clock cycles. From start of read cycle and after FA21 functional clock cycles, first input page data is internally sampled by  
active functional clock edge. FA21 value must be stored inside the AccessTime register bit field.  
(4) P = PageBurstAccessTime * (TimeParaGranularity + 1) * GPMC_FCLK(6)  
(5) H = AccessTime * (TimeParaGranularity + 1) * GPMC_FCLK(6)  
(6) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.  
Table 5-19. GPMC/NOR Flash Switching CharacteristicsAsynchronous Mode  
OPP100  
MIN  
OPP50  
MIN  
NO.  
PARAMETER  
UNIT  
MAX  
2
MAX  
2
tR(d)  
Rise time, output data gpmc_ad[15:0]  
Fall time, output data gpmc_ad[15:0]  
ns  
ns  
ns  
tF(d)  
2
2
FA0  
tw(be[x]nV)  
Pulse duration, output lower-byte  
enable/command latch enable  
gpmc_be0n_cle, output upper-byte  
enable gpmc_be1n valid time  
Read  
Write  
N(12)  
N(12)  
N(12)  
N(12)  
FA1  
FA3  
tw(csnV)  
Pulse duration, output chip select  
gpmc_csn[x](13) low  
Read  
Write  
Read  
Write  
A(1)  
A(1)  
B(2) + 2.0  
B(2) + 2.0  
A(1)  
A(1)  
B(2) + 2.0  
B(2) + 2.0  
ns  
ns  
td(csnV-advnIV)  
Delay time, output chip select  
gpmc_csn[x](13) valid to output  
address valid/address latch enable  
gpmc_advn_ale invalid  
B(2) 0.2  
B(2) 0.2  
B(2) 0.2  
B(2) 0.2  
FA4  
FA9  
td(csnV-oenIV)  
Delay time, output chip select gpmc_csn[x](13)  
valid to output enable gpmc_oen invalid (Single  
read)  
C(3) 0.2  
C(3) + 2.0  
C(3) 0.2  
C(3) + 2.0  
ns  
td(aV-csnV)  
Delay time, output address gpmc_a[27:1] valid  
to output chip select gpmc_csn[x](13) valid  
J(9) 0.2  
J(9) 0.2  
J(9) + 2.0  
J(9) + 2.0  
J(9) 0.2  
J(9) 0.2  
J(9) + 2.0  
J(9) + 2.0  
ns  
ns  
FA10 td(be[x]nV-csnV)  
Delay time, output lower-byte enable/command  
latch enable gpmc_be0n_cle, output upper-byte  
enable gpmc_be1n valid to output chip select  
gpmc_csn[x](13) valid  
FA12 td(csnV-advnV)  
Delay time, output chip select gpmc_csn[x](13)  
valid to output address valid/address latch  
enable gpmc_advn_ale valid  
K(10) 0.2 K(10) + 2.0 K(10) 0.2 K(10) + 2.0  
ns  
FA13 td(csnV-oenV)  
FA16 tw(aIV)  
Delay time, output chip select gpmc_csn[x](13)  
valid to output enable gpmc_oen valid  
L(11) 0.2 L(11) + 2.0  
L
(11) 0.2 L(11) + 2.0  
ns  
ns  
ns  
Pulse durationm output address gpmc_a[26:1]  
invalid between 2 successive R/W accesses  
Delay time, output chip select gpmc_csn[x](13)  
valid to output enable gpmc_oen invalid (Burst  
read)  
G(7)  
G(7)  
FA18 td(csnV-oenIV)  
I(8) 0.2  
I(8) + 2.0  
I(8) 0.2  
I(8) + 2.0  
FA20 tw(aV)  
Pulse duration, output address gpmc_a[27:1]  
valid 2nd, 3rd, and 4th accesses  
Delay time, output chip select gpmc_csn[x](13)  
valid to output write enable gpmc_wen valid  
D(4)  
D(4)  
ns  
ns  
FA25 td(csnV-wenV)  
E(5) 0.2  
E(5) + 2.0  
E(5) 0.2  
E(5) + 2.0  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Timings  
117  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
UNIT  
Table 5-19. GPMC/NOR Flash Switching CharacteristicsAsynchronous Mode (continued)  
OPP100  
OPP50  
MIN  
F(6) 0.2  
NO.  
PARAMETER  
MIN  
MAX  
MAX  
FA27 td(csnV-wenIV)  
FA28 td(wenV-dV)  
FA29 td(dV-csnV)  
FA37 td(oenV-aIV)  
Delay time, output chip select gpmc_csn[x](13)  
valid to output write enable gpmc_wen invalid  
F(6) 0.2  
F(6) + 2.0  
F(6) + 2.0  
2.0  
ns  
ns  
ns  
ns  
Delay time, output write enable gpmc_ wen  
valid to output data gpmc_ad[15:0] valid  
2.0  
Delay time, output data gpmc_ad[15:0] valid to  
output chip select gpmc_csn[x](13) valid  
J(9) 0.2  
J(9) + 2.0  
2.0  
J(9) 0.2  
J(9) + 2.0  
2.0  
Delay time, output enable gpmc_oen valid to  
output address gpmc_ad[15:0] phase end  
(1) For single read: A = (CSRdOffTime CSOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)  
For single write: A = (CSWrOffTime CSOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)  
For burst read: A = (CSRdOffTime CSOnTime + (n 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)  
For burst write: A = (CSWrOffTime CSOnTime + (n 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)  
with n being the page burst access number  
(2) For reading: B = ((ADVRdOffTime CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay CSExtraDelay)) *  
GPMC_FCLK(14)  
For writing: B = ((ADVWrOffTime CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay CSExtraDelay)) *  
GPMC_FCLK(14)  
(3) C = ((OEOffTime CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay CSExtraDelay)) * GPMC_FCLK(14)  
(4) D = PageBurstAccessTime * (TimeParaGranularity + 1) * GPMC_FCLK(14)  
(5) E = ((WEOnTime CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay CSExtraDelay)) * GPMC_FCLK(14)  
(6) F = ((WEOffTime CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay CSExtraDelay)) * GPMC_FCLK(14)  
(7) G = Cycle2CycleDelay * GPMC_FCLK(14)  
(8) I = ((OEOffTime + (n 1) * PageBurstAccessTime CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay CSExtraDelay)) *  
GPMC_FCLK(14)  
(9) J = (CSOnTime * (TimeParaGranularity + 1) + 0.5 * CSExtraDelay) * GPMC_FCLK(14)  
(10) K = ((ADVOnTime CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay CSExtraDelay)) * GPMC_FCLK(14)  
(11) L = ((OEOnTime CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay CSExtraDelay)) * GPMC_FCLK(14)  
(12) For single read: N = RdCycleTime * (TimeParaGranularity + 1) * GPMC_FCLK(14)  
For single write: N = WrCycleTime * (TimeParaGranularity + 1) * GPMC_FCLK(14)  
For burst read: N = (RdCycleTime + (n 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)  
For burst write: N = (WrCycleTime + (n 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)  
(13) In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4 or 5.  
(14) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.  
118  
Peripheral Information and Timings  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
GPMC_FCLK  
gpmc_clk  
FA5  
FA1  
gpmc_csn[x]  
gpmc_a[10:1]  
FA9  
Valid Address  
FA0  
FA10  
gpmc_be0n_cle  
gpmc_be1n  
Valid  
FA0  
Valid  
FA10  
FA3  
FA12  
gpmc_advn_ale  
FA4  
FA13  
gpmc_oen  
Data IN 0  
Data IN 0  
gpmc_ad[15:0]  
gpmc_wait[x]  
A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4 or 5. In gpmc_wait[x], x is equal to 0 or 1.  
B. FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC  
functional clock cycles. From start of read cycle and after FA5 functional clock cycles, input data will be internally  
sampled by active functional clock edge. FA5 value must be stored inside AccessTime register bits field.  
C. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.  
Figure 5-17. GPMC/NOR FlashAsynchronous ReadSingle Word  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Timings  
119  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
GPMC_FCLK  
gpmc_clk  
FA5  
FA5  
FA1  
FA1  
gpmc_csn[x]  
FA16  
FA9  
FA9  
gpmc_a[10:1]  
Address 0  
FA0  
Address 1  
FA0  
FA10  
FA10  
gpmc_be0n_cle  
Valid  
FA0  
Valid  
FA0  
gpmc_be1n  
FA10  
Valid  
Valid  
FA10  
FA3  
FA3  
FA12  
FA12  
gpmc_advn_ale  
FA4  
FA4  
FA13  
FA13  
gpmc_oen  
Data Upper  
gpmc_ad[15:0]  
gpmc_wait[x]  
A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4 or 5. In gpmc_wait[x], x is equal to 0 or 1.  
B. FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC  
functional clock cycles. From start of read cycle and after FA5 functional clock cycles, input data will be internally  
sampled by active functional clock edge. FA5 value must be stored inside AccessTime register bits field.  
C. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.  
Figure 5-18. GPMC/NOR FlashAsynchronous Read32-bit  
120  
Peripheral Information and Timings  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
GPMC_FCLK  
gpmc_clk  
FA20  
FA20  
Add1  
FA21  
FA20  
Add2  
FA1  
gpmc_csn[x]  
gpmc_a[10:1]  
FA9  
Add0  
Add3  
Add4  
FA0  
FA10  
FA10  
gpmc_be0n_cle  
FA0  
gpmc_be1n  
FA12  
gpmc_advn_ale  
FA18  
FA13  
gpmc_oen  
D3  
D0  
D1  
D2  
D3  
gpmc_ad[15:0]  
gpmc_wait[x]  
A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4 or 5. In gpmc_wait[x], x is equal to 0 or 1.  
B. FA21 parameter illustrates amount of time required to internally sample first input page data. It is expressed in  
number of GPMC functional clock cycles. From start of read cycle and after FA21 functional clock cycles, first input  
page data will be internally sampled by active functional clock edge. FA21 calculation must be stored inside  
AccessTime register bits field.  
C. FA20 parameter illustrates amount of time required to internally sample successive input page data. It is expressed in  
number of GPMC functional clock cycles. After each access to input page data, next input page data will be internally  
sampled by active functional clock edge after FA20 functional clock cycles. FA20 is also the duration of address  
phases for successive input page data (excluding first input page data). FA20 value must be stored in  
PageBurstAccessTime register bits field.  
D. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.  
Figure 5-19. GPMC/NOR FlashAsynchronous ReadPage Mode 4x16-bit  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Timings  
121  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
gpmc_fclk  
gpmc_clk  
FA1  
gpmc_csn[x]  
FA9  
gpmc_a[10:1]  
Valid Address  
FA0  
FA10  
gpmc_be0n_cle  
FA0  
FA10  
gpmc_be1n  
FA3  
FA12  
gpmc_advn_ale  
FA27  
FA25  
gpmc_wen  
gpmc_ad[15:0]  
gpmc_wait[x]  
FA29  
Data OUT  
A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4 or 5. In gpmc_wait[x], x is equal to 0 or 1.  
Figure 5-20. GPMC/NOR FlashAsynchronous WriteSingle Word  
122  
Peripheral Information and Timings  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
GPMC_FCLK  
gpmc_clk  
FA1  
FA5  
gpmc_csn[x]  
FA9  
Address (MSB)  
FA0  
gpmc_a[27:17]  
FA10  
FA10  
gpmc_be0n_cle  
gpmc_be1n  
Valid  
FA0  
Valid  
FA3  
FA12  
gpmc_advn_ale  
gpmc_oen  
FA4  
FA13  
FA29  
FA37  
Data IN  
Data IN  
Address (LSB)  
gpmc_ad[15:0]  
gpmc_wait[x]  
A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4 or 5. In gpmc_wait[x], x is equal to 0 or 1.  
B. FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC  
functional clock cycles. From start of read cycle and after FA5 functional clock cycles, input data will be internally  
sampled by active functional clock edge. FA5 value must be stored inside AccessTime register bits field.  
C. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.  
Figure 5-21. GPMC / Multiplexed NOR FlashAsynchronous ReadSingle Word  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Timings  
123  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
gpmc_fclk  
gpmc_clk  
FA1  
gpmc_csn[x]  
FA9  
gpmc_a[27:17]  
Address (MSB)  
FA0  
FA10  
gpmc_be0n_cle  
FA0  
FA10  
gpmc_be1n  
FA3  
FA12  
gpmc_advn_ale  
FA27  
FA25  
gpmc_wen  
FA29  
Valid Address (LSB)  
FA28  
gpmc_ad[15:0]  
Data OUT  
gpmc_wait[x]  
A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4 or 5. In gpmc_wait[x], x is equal to 0 or 1.  
Figure 5-22. GPMC/Multiplexed NOR FlashAsynchronous WriteSingle Word  
124  
Peripheral Information and Timings  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
5.4.1.3 GPMC/NAND FlashAsynchronous Mode  
Table 5-21 and Table 5-22 assume testing over the recommended operating conditions and electrical  
characteristic conditions below (see Figure 5-23 through Figure 5-26).  
Table 5-20. GPMC/NAND Flash Timing ConditionsAsynchronous Mode  
TIMING CONDITION PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
tR  
tF  
Input signal rise time  
Input signal fall time  
1
1
5
5
ns  
ns  
Output Condition  
CLOAD  
Output load capacitance  
3
30  
pF  
Table 5-21. GPMC/NAND Flash Internal Timing ParametersAsynchronous Mode(1)(2)  
OPP100  
MIN  
OPP50  
MIN  
NO.  
PARAMETER  
UNIT  
MAX  
MAX  
GNFI1 Delay time, output data gpmc_ad[15:0] generation from internal  
functional clock GPMC_FCLK(3)  
6.5  
6.5  
ns  
GNFI2 Delay time, input data gpmc_ad[15:0] capture from internal functional  
clock GPMC_FCLK(3)  
4.0  
6.5  
6.5  
6.5  
4.0  
6.5  
6.5  
6.5  
ns  
ns  
ns  
ns  
GNFI3 Delay time, output chip select gpmc_csn[x] generation from internal  
functional clock GPMC_FCLK(3)  
GNFI4 Delay time, output address valid/address latch enable gpmc_advn_ale  
generation from internal functional clock GPMC_FCLK(3)  
GNFI5 Delay time, output lower-byte enable/command latch enable  
gpmc_be0n_cle generation from internal functional clock  
GPMC_FCLK(3)  
GNFI6 Delay time, output enable gpmc_oen generation from internal functional  
clock GPMC_FCLK(3)  
6.5  
6.5  
6.5  
6.5  
ns  
ns  
ps  
GNFI7 Delay time, output write enable gpmc_wen generation from internal  
functional clock GPMC_FCLK(3)  
GNFI8 Skew, functional clock GPMC_FCLK(3)  
100  
100  
(1) Internal parameters table must be used to calculate data access time stored in the corresponding CS register bit field.  
(2) Internal parameters are referred to the GPMC functional internal clock which is not provided externally.  
(3) GPMC_FCLK is general-purpose memory controller internal functional clock.  
Table 5-22. GPMC/NAND Flash Timing RequirementsAsynchronous Mode  
OPP100  
MIN  
OPP50  
MIN  
NO.  
PARAMETER  
UNIT  
MAX  
J(2)  
MAX  
J(2)  
GNF12(1) tacc(d)  
Access time, input data gpmc_ad[15:0]  
ns  
(1) The GNF12 parameter illustrates the amount of time required to internally sample input data. It is expressed in number of GPMC  
functional clock cycles. From start of the read cycle and after GNF12 functional clock cycles, input data is internally sampled by the  
active functional clock edge. The GNF12 value must be stored inside AccessTime register bit field.  
(2) J = AccessTime * (TimeParaGranularity + 1) * GPMC_FCLK(3)  
(3) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Timings  
125  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
UNIT  
Table 5-23. GPMC/NAND Flash Switching CharacteristicsAsynchronous Mode  
OPP100  
MIN  
OPP50  
MIN  
NO.  
PARAMETER  
MAX  
MAX  
tR(d)  
tF(d)  
Rise time, output data gpmc_ad[15:0]  
Fall time, output data gpmc_ad[15:0]  
2
2
2
ns  
ns  
ns  
2
GNF0 tw(wenV)  
Pulse duration, output write enable gpmc_wen  
valid  
A(1)  
A(1)  
GNF1 td(csnV-wenV)  
GNF2 tw(cleH-wenV)  
Delay time, output chip select gpmc_csn[x](13)  
valid to output write enable gpmc_wen valid  
B(2) 0.2  
B(2) + 2.0  
B(2) 0.2  
B(2) + 2.0  
ns  
ns  
Delay time, output lower-byte enable/command  
latch enable gpmc_be0n_cle high to output write  
enable gpmc_wen valid  
C(3) 0.2 C(3) + 2.0  
D(4) 0.2 D(4) + 2.0  
C(3) 0.2 C(3) + 2.0  
D(4) 0.2 D(4) + 2.0  
GNF3 tw(wenV-dV)  
GNF4 tw(wenIV-dIV)  
GNF5 tw(wenIV-cleIV)  
Delay time, output data gpmc_ad[15:0] valid to  
output write enable gpmc_wen valid  
ns  
ns  
ns  
Delay time, output write enable gpmc_wen  
invalid to output data gpmc_ad[15:0] invalid  
E(5) 0.2  
F(6) 0.2  
E(5) + 2.0  
F(6) + 2.0  
E(5) 0.2  
F(6) 0.2  
E(5) + 2.0  
F(6) + 2.0  
Delay time, output write enable gpmc_wen  
invalid to output lower-byte enable/command  
latch enable gpmc_be0n_cle invalid  
GNF6 tw(wenIV-csnIV)  
GNF7 tw(aleH-wenV)  
GNF8 tw(wenIV-aleIV)  
Delay time, output write enable gpmc_wen  
invalid to output chip select gpmc_csn[x](13)  
invalid  
G(7) 0.2 G(7) + 2.0 G(7) 0.2 G(7) + 2.0  
ns  
ns  
ns  
Delay time, output address valid/address latch  
enable gpmc_advn_ale high to output write  
enable gpmc_wen valid  
C(3) 0.2 C(3) + 2.0  
C(3) 0.2 C(3) + 2.0  
Delay time, output write enable gpmc_wen  
invalid to output address valid/address latch  
enable gpmc_advn_ale invalid  
F(6) 0.2  
F(6) + 2.0  
F(6) 0.2  
F(6) + 2.0  
GNF9 tc(wen)  
Cycle time, write  
Delay time, output chip select gpmc_csn[x](13)  
valid to output enable gpmc_oen valid  
H(8)  
I(9) + 2.0  
H(8)  
I(9) + 2.0  
ns  
ns  
GNF10 td(csnV-oenV)  
I(9) 0.2  
I(9) 0.2  
GNF13 tw(oenV)  
GNF14 tc(oen)  
Pulse duration, output enable gpmc_oen valid  
Cycle time, read  
K(10)  
K(10)  
ns  
ns  
ns  
L(11)  
L(11)  
GNF15 tw(oenIV-csnIV)  
Delay time, output enable gpmc_oen invalid to  
output chip select gpmc_csn[x](13) invalid  
M(12) 0.2 M(12) + 2.0 M(12) 0.2 M(12) + 2.0  
(1) A = (WEOffTime WEOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK(14)  
(2) B = ((WEOnTime CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay CSExtraDelay)) * GPMC_FCLK(14)  
(3) C = ((WEOnTime ADVOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay ADVExtraDelay)) * GPMC_FCLK(14)  
(4) D = (WEOnTime * (TimeParaGranularity + 1) + 0.5 * WEExtraDelay) * GPMC_FCLK(14)  
(5) E = ((WrCycleTime WEOffTime) * (TimeParaGranularity + 1) 0.5 * WEExtraDelay) * GPMC_FCLK(14)  
(6) F = ((ADVWrOffTime WEOffTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay WEExtraDelay)) * GPMC_FCLK(14)  
(7) G = ((CSWrOffTime WEOffTime) * (TimeParaGranularity + 1) + 0.5 * (CSExtraDelay WEExtraDelay)) * GPMC_FCLK(14)  
(8) H = WrCycleTime * (1 + TimeParaGranularity) * GPMC_FCLK(14)  
(9) I = ((OEOnTime CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay CSExtraDelay)) * GPMC_FCLK(14)  
(10) K = (OEOffTime OEOnTime) * (1 + TimeParaGranularity) * GPMC_FCLK(14)  
(11) L = RdCycleTime * (1 + TimeParaGranularity) * GPMC_FCLK(14)  
(12) M = ((CSRdOffTime OEOffTime) * (TimeParaGranularity + 1) + 0.5 * (CSExtraDelay OEExtraDelay)) * GPMC_FCLK(14)  
(13) In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4 or 5.  
(14) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.  
126  
Peripheral Information and Timings  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
GPMC_FCLK  
GNF1  
GNF2  
GNF6  
GNF5  
gpmc_csn[x]  
gpmc_be0n_cle  
gpmc_advn_ale  
gpmc_oen  
GNF0  
gpmc_wen  
GNF3  
GNF4  
gpmc_ad[15:0]  
Command  
(1) In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4 or 5.  
Figure 5-23. GPMC/NAND FlashCommand Latch Cycle  
GPMC_FCLK  
gpmc_csn[x]  
GNF1  
GNF7  
GNF6  
gpmc_be0n_cle  
gpmc_advn_ale  
gpmc_oen  
GNF8  
GNF9  
GNF0  
gpmc_wen  
GNF3  
GNF4  
Address  
gpmc_ad[15:0]  
(1) In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4 or 5.  
Figure 5-24. GPMC/NAND FlashAddress Latch Cycle  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Timings  
127  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
GPMC_FCLK  
GNF12  
GNF10  
GNF15  
gpmc_csn[x]  
gpmc_be0n_cle  
gpmc_advn_ale  
GNF14  
GNF13  
gpmc_oen  
gpmc_ad[15:0]  
DATA  
gpmc_wait[x]  
(1) GNF12 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional  
clock cycles. From start of read cycle and after GNF12 functional clock cycles, input data will be internally sampled by active  
functional clock edge. GNF12 value must be stored inside AccessTime register bits field.  
(2) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.  
(3) In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4 or 5. In gpmc_wait[x], x is equal to 0 or 1.  
Figure 5-25. GPMC/NAND FlashData Read Cycle  
GPMC_FCLK  
GNF1  
GNF6  
gpmc_csn[x]  
gpmc_be0n_cle  
gpmc_advn_ale  
gpmc_oen  
GNF9  
GNF0  
gpmc_wen  
GNF3  
GNF4  
gpmc_ad[15:0]  
DATA  
(1) In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4 or 5.  
Figure 5-26. GPMC / NAND FlashData Write Cycle  
128  
Peripheral Information and Timings  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
5.5 LCD Controller (LCDC)  
The LCD controller consists of two independent controllers, the raster controller and the LCD interface  
display driver (LIDD) controller. Each controller operates independently from the other and only one of  
them is active at any given time.  
The raster controller handles the synchronous LCD interface. It provides timing and data for constant  
graphics refresh to a passive display. It supports a wide variety of monochrome and full-color display  
types and sizes by use of programmable timing controls, a built-in palette, and a gray-scale/serializer.  
Graphics data is processed and stored in frame buffers. A frame buffer is a contiguous memory block  
in the system. A built-in DMA engine supplies the graphics data to the raster engine which, in turn,  
outputs to the external LCD device.  
The LIDD controller supports the asynchronous LCD interface. It provides full-timing programmability of  
control signals (CS, WE, OE, ALE) and output data.  
The maximum resolution for the LCD controller is 2048 x 2048 pixels. The maximum frame rate is  
determined by the image size in combination with the pixel clock rate.  
Table 5-24. LCD Controller Timing Conditions  
TIMING CONDITION PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Output Condition  
LIDD mode  
5
3
60  
30  
pF  
pF  
CLOAD Output load capacitance  
Raster mode  
5.5.1 LCD Interface Display Driver (LIDD Mode)  
Table 5-25. Timing Requirements for LCD LIDD Mode  
(see Figure 5-28 through Figure 5-36)  
OPP100  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
Setup time, LCD_DATA[15:0] valid before  
LCD_MEMORY_CLK high  
16  
tsu(LCD_DATA-LCD_MEMORY_CLK)  
18  
ns  
Hold time, LCD_DATA[15:0] valid after  
LCD_MEMORY_CLK high  
17  
18  
th(LCD_MEMORY_CLK-LCD_DATA)  
tt(LCD_DATA)  
0
1
ns  
pf  
Transition time, LCD_DATA[15:0]  
3
Table 5-26. Switching Characteristics Over Recommended Operating Conditions for LCD LIDD Mode  
(see Figure 5-28 through Figure 5-36)  
OPP100  
NO.  
PARAMETER  
UNIT  
MIN  
23.7  
MAX  
1
2
3
tc(LCD_MEMORY_CLK)  
tw(LCD_MEMORY_CLKH)  
tw(LCD_MEMORY_CLKL)  
Cycle time, LCD_MEMORY_CLK  
ns  
ns  
ns  
Pulse duration, LCD_MEMORY_CLK high  
Pulse duration, LCD_MEMORY_CLK low  
0.45tc  
0.45tc  
0.55tc  
0.55tc  
Delay time, LCD_MEMORY_CLK high to  
LCD_DATA[15:0] valid (write)  
4
5
td(LCD_MEMORY_CLK-LCD_DATAV)  
td(LCD_MEMORY_CLK-LCD_DATAI)  
td(LCD_MEMORY_CLK-LCD_AC_BIAS_EN)  
tt(LCD_AC_BIAS_EN)  
td(LCD_MEMORY_CLK-LCD_VSYNC)  
tt(LCD_VSYNC)  
7
ns  
ns  
Delay time, LCD_MEMORY_CLK high to  
LCD_DATA[15:0] invalid (write)  
0
Delay time, LCD_MEMORY_CLK high to  
LCD_AC_BIAS_EN  
6
7
0
1
0
1
0
6.8  
10  
7
ns  
ns  
ns  
ns  
ns  
Transition time, LCD_AC_BIAS_EN  
Delay time, LCD_MEMORY_CLK high to  
LCD_VSYNC  
8
9
Transition time, LCD_VSYNC  
10  
7
Delay time, LCD_MEMORY_CLK high to  
LCD_HSYNC  
10  
td(LCD_MEMORY_CLK-LCD_HYSNC)  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Timings  
129  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
Table 5-26. Switching Characteristics Over Recommended Operating Conditions for LCD LIDD  
Mode (continued)  
(see Figure 5-28 through Figure 5-36)  
OPP100  
NO.  
PARAMETER  
UNIT  
MIN  
1
MAX  
10  
11  
12  
13  
tt(LCD_HSYNC)  
Transition time, LCD_HYSNC  
ns  
ns  
ns  
td(LCD_MEMORY_CLK-LCD_PCLK)  
tt(LCD_PCLK)  
Delay time, LCD_MEMORY_CLK high to LCD_PCLK  
Transition time, LCD_PCLK  
0
7
1
10  
Delay time, LCD_MEMORY_CLK high to  
LCD_DATA[15:0] high-Z  
14  
15  
td(LCD_MEMORY_CLK-LCD_DATAZ)  
td(LCD_MEMORY_CLK-LCD_DATA)  
0
0
7
7
ns  
ns  
Delay time, LCD_MEMORY_CLK high to  
LCD_DATA[15:0] driven  
19  
20  
tt(LCD_MEMORY_CLK)  
tt(LCD_DATA)  
Transition time, LCD_MEMORY_CLK  
Transition time, LCD_DATA  
1
1
2.5  
10  
ns  
ns  
CS_DELAY  
(0 to 3)  
W_SU  
(0 to 31)  
W_STROBE  
(1 to 63)  
W_HOLD  
(1 to 15)  
LCD_MEMORY_CLK  
6
6
LCD_MEMORY_CLK  
(E1)  
7
4
8
5
8
LCD_DATA[7:0]  
Write Instruction  
LCD_VSYNC  
(RS)  
9
10  
10  
LCD_HSYNC  
(R/W)  
11  
6
6
LCD_AC_BIAS_EN  
(E0)  
7
A. Hitachi mode performs asynchronous operations that do not require an external LCD_MEMORY_CLK. The first  
LCD_MEMORY_CLK waveform is only shown as a reference of the internal clock that sequences the other signals.  
The second LCD_MEMORY_CLK waveform is shown as E1 since the LCD_MEMORY_CLK signal is used to  
implement the E1 function in Hitachi mode.  
Figure 5-27. Command Write in Hitachi Mode  
130  
Peripheral Information and Timings  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
CS_DELAY  
(0 to 3)  
W_SU  
(0 to 31)  
W_STROBE  
(1 to 63)  
W_HOLD  
(1 to 15)  
LCD_MEMORY_CLK  
6
6
LCD_MEMORY_CLK  
(E1)  
7
4
5
LCD_DATA[15:0]  
Write Data  
20  
10  
LCD_VSYNC  
(RS)  
10  
11  
LCD_HSYNC  
(R/W)  
6
6
LCD_AC_BIAS_EN  
(E0)  
7
A. Hitachi mode performs asynchronous operations that do not require an external LCD_MEMORY_CLK. The first  
LCD_MEMORY_CLK waveform is only shown as a reference of the internal clock that sequences the other signals.  
The second LCD_MEMORY_CLK waveform is shown as E1 since the LCD_MEMORY_CLK signal is used to  
implement the E1 function in Hitachi mode.  
Figure 5-28. Data Write in Hitachi Mode  
R_SU  
(0 to 31)  
R_HOLD  
(1 to 15)  
CS_DELAY  
(0 to 3)  
R_STROBE  
(1 to 63)  
LCD_MEMORY_CLK  
6
6
LCD_MEMORY_CLK  
(E1)  
7
17  
16  
15  
8
14  
8
LCD_DATA[15:0]  
Read Command  
18  
LCD_VSYNC  
(RS)  
9
LCD_HSYNC  
(R/W)  
6
6
LCD_AC_BIAS_EN  
(E0)  
7
A. Hitachi mode performs asynchronous operations that do not require an external LCD_MEMORY_CLK. The first  
LCD_MEMORY_CLK waveform is only shown as a reference of the internal clock that sequences the other signals.  
The second LCD_MEMORY_CLK waveform is shown as E1 since the LCD_MEMORY_CLK signal is used to  
implement the E1 function in Hitachi mode.  
Figure 5-29. Command Read in Hitachi Mode  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Timings  
131  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
R_SU  
(0 to 31)  
R_HOLD  
(1 to 15)  
CS_DELAY  
(0 to 3)  
R_STROBE  
(1 to 63)  
LCD_MEMORY_CLK  
6
6
LCD_MEMORY_CLK  
(E1)  
7
17  
16  
15  
14  
LCD_DATA[15:0]  
Read Data  
18  
LCD_VSYNC  
(RS)  
LCD_HSYNC  
(R/W)  
6
6
LCD_AC_BIAS_EN  
(E0)  
7
A. Hitachi mode performs asynchronous operations that do not require an external LCD_MEMORY_CLK. The first  
LCD_MEMORY_CLK waveform is only shown as a reference of the internal clock that sequences the other signals.  
The second LCD_MEMORY_CLK waveform is shown as E1 since the LCD_MEMORY_CLK signal is used to  
implement the E1 function in Hitachi mode.  
Figure 5-30. Data Read in Hitachi Mode  
132  
Peripheral Information and Timings  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
W_HOLD  
(1−15)  
W_HOLD  
(1−15)  
W_SU  
(0−31)  
W_SU  
(0−31)  
1
W_STROBE  
(1−63)  
W_STROBE  
(1−63)  
2
CS_DELAY  
(0−3)  
CS_DELAY  
(0−3)  
3
LCD_MEMORY_CLK  
(MCLK) Sync Mode  
19  
6
6
6
6
LCD_MEMORY_CLK  
(CS1) Async Mode  
7
5
4
4
5
LCD_DATA[15:0]  
Write Address  
Write Data  
20  
6
6
6
6
LCD_AC_BIAS_EN  
(CS0)  
7
8
8
LCD_VSYNC  
(ALE)  
9
10  
10  
10  
10  
LCD_HSYNC  
(DIR)  
11  
12  
13  
12  
12  
12  
LCD_PCLK  
(EN)  
A. Motorola mode can be configured to perform asynchronous operations or synchronous operations. When configured  
in asynchronous mode, LCD_MEMORY_CLK is not required, so it performs the CS1 function. When configured in  
synchronous mode, LCD_MEMORY_CLK performs the MCLK function. LCD_MEMORY_CLK is also shown as a  
reference of the internal clock that sequences the other signals.  
Figure 5-31. Micro-Interface Graphic Display Motorola Write  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Timings  
133  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
W_HOLD  
(1−15)  
R_SU  
(0−31)  
W_SU  
(0−31)  
R_HOLD  
(1−15)  
1
W_STROBE  
(1−63)  
R_STROBE  
(1−63)  
2
CS_DELAY  
(0−3)  
CS_DELAY  
(0−3)  
3
LCD_MEMORY_CLK  
(MCLK) Sync Mode  
19  
6
6
6
6
LCD_MEMORY_CLK  
(CS1) Async Mode  
7
5
16  
18  
4
14  
15  
17  
LCD_DATA[15:0]  
Write Address  
20  
6
Read  
Data  
6
6
6
LCD_AC_BIAS_EN  
(CS0)  
7
8
8
LCD_VSYNC  
(ALE)  
9
10  
10  
LCD_HSYNC  
(DIR)  
11  
12  
13  
12  
12  
12  
LCD_PCLK  
(EN)  
A. Motorola mode can be configured to perform asynchronous operations or synchronous operations. When configured  
in asynchronous mode, LCD_MEMORY_CLK is not required, so it performs the CS1 function. When configured in  
synchronous mode, LCD_MEMORY_CLK performs the MCLK function. LCD_MEMORY_CLK is also shown as a  
reference of the internal clock that sequences the other signals.  
Figure 5-32. Micro-Interface Graphic Display Motorola Read  
134  
Peripheral Information and Timings  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
R_SU  
(0−31)  
1
R_HOLD  
(1−15)  
R_STROBE  
(1−63)  
2
CS_DELAY  
(0−3)  
3
LCD_MEMORY_CLK  
(MCLK) Sync Mode  
19  
6
6
LCD_MEMORY_CLK  
(CS1) Async Mode  
7
16  
14  
15  
17  
LCD_DATA[15:0]  
Read  
Status  
18  
6
6
8
LCD_AC_BIAS_EN  
(CS0)  
7
8
LCD_VSYNC  
(ALE)  
9
LCD_HSYNC  
(DIR)  
12  
12  
LCD_PCLK  
(EN)  
13  
A. Motorola mode can be configured to perform asynchronous operations or synchronous operations. When configured  
in asynchronous mode, LCD_MEMORY_CLK is not required, so it performs the CS1 function. When configured in  
synchronous mode, LCD_MEMORY_CLK performs the MCLK function. LCD_MEMORY_CLK is also shown as a  
reference of the internal clock that sequences the other signals.  
Figure 5-33. Micro-Interface Graphic Display Motorola Status  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Timings  
135  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
W_HOLD  
(1−15)  
W_HOLD  
(1−15)  
W_SU  
(0−31)  
W_SU  
(0−31)  
1
W_STROBE  
(1−63)  
W_STROBE  
2
(1−63)  
Write Data  
10  
CS_DELAY  
(0−3)  
CS_DELAY  
(0−3)  
3
LCD_MEMORY_CLK  
(MCLK) Sync Mode  
19  
6
6
6
6
LCD_MEMORY_CLK  
(CS1) Async Mode  
7
4
5
4
5
LCD_DATA[15:0]  
Write Address  
20  
6
6
8
6
6
LCD_AC_BIAS_EN  
(CS0)  
7
8
LCD_VSYNC  
(ALE)  
9
10  
11  
10  
10  
LCD_HSYNC  
(WS)  
LCD_PCLK  
(RS)  
A. Intel mode can be configured to perform asynchronous operations or synchronous operations. When configured in  
asynchronous mode, LCD_MEMORY_CLK is not required, so it performs the CS1 function. When configured in  
synchronous mode, LCD_MEMORY_CLK performs the MCLK function. LCD_MEMORY_CLK is also shown as a  
reference of the internal clock that sequences the other signals.  
Figure 5-34. Micro-Interface Graphic Display Intel Write  
136  
Peripheral Information and Timings  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
W_HOLD  
(1−15)  
R_SU  
(0−31)  
W_SU  
(0−31)  
R_HOLD  
(1−15)  
1
W_STROBE  
(1−63)  
R_STROBE  
(1−63)  
2
CS_DELAY  
(0−3)  
CS_DELAY  
(0−3)  
3
LCD_MEMORY_CLK  
(MCLK) Sync Mode  
19  
6
6
6
6
LCD_MEMORY_CLK  
(CS1) Async Mode  
7
4
16  
18  
5
14  
15  
17  
LCD_DATA[15:0]  
Write Address  
20  
6
Read  
Data  
6
8
6
6
LCD_AC_BIAS_EN  
(CS0)  
7
8
LCD_VSYNC  
(ALE)  
9
10  
11  
10  
LCD_HSYNC  
(WS)  
12  
13  
12  
LCD_PCLK  
(RS)  
A. Intel mode can be configured to perform asynchronous operations or synchronous operations. When configured in  
asynchronous mode, LCD_MEMORY_CLK is not required, so it performs the CS1 function. When configured in  
synchronous mode, LCD_MEMORY_CLK performs the MCLK function. LCD_MEMORY_CLK is also shown as a  
reference of the internal clock that sequences the other signals.  
Figure 5-35. Micro-Interface Graphic Display Intel Read  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Timings  
137  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
R_SU  
(0−31)  
1
R_HOLD  
(1−15)  
R_STROBE  
(1−63)  
2
CS_DELAY  
(0−3)  
3
LCD_MEMORY_CLK  
(MCLK) Sync Mode  
19  
6
6
LCD_MEMORY_CLK  
(CS1) Async Mode  
7
16  
14  
15  
17  
LCD_DATA[15:0]  
Read  
Status  
18  
6
6
8
LCD_AC_BIAS_EN  
(CS0)  
7
8
LCD_VSYNC  
(ALE)  
9
LCD_HSYNC  
(WS)  
12  
12  
LCD_PCLK  
(RS)  
13  
A. Intel mode can be configured to perform asynchronous operations or synchronous operations. When configured in  
asynchronous mode, LCD_MEMORY_CLK is not required, so it performs the CS1 function. When configured in  
synchronous mode, LCD_MEMORY_CLK performs the MCLK function. LCD_MEMORY_CLK is also shown as a  
reference of the internal clock that sequences the other signals.  
Figure 5-36. Micro-Interface Graphic Display Intel Status  
138  
Peripheral Information and Timings  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
5.5.2 LCD Raster Mode  
Table 5-27. Switching Characteristics Over Recommended Operating Conditions for LCD Raster Mode  
(see Figure 5-38 through Figure 5-41)  
OPP50  
MIN  
OPP100  
MIN  
NO.  
PARAMETER  
UNIT  
MAX  
MAX  
1
2
3
tc(LCD_PCLK)  
tw(LCD_PCLKH)  
tw(LCD_PCLKL)  
Cycle time, pixel clock  
7.9  
0.45tc  
0.45tc  
7.9  
ns  
ns  
ns  
Pulse duration, pixel clock high  
Pulse duration, pixel clock low  
0.55tc  
0.55tc  
0.45tc  
0.45tc  
0.55tc  
0.55tc  
Delay time, LCD_PCLK to LCD_DATA[23:0] valid  
(write)  
4
5
td(LCD_PCLK-LCD_DATAV)  
td(LCD_PCLK-LCD_DATAI)  
1
1
ns  
ns  
Delay time, LCD_PCLK to LCD_DATA[23:0] invalid  
(write)  
-1.5  
-1  
6
7
8
9
td(LCD_PCLK-LCD_AC_BIAS_EN) Delay time, LCD_PCLK to LCD_AC_BIAS_EN  
-1.5  
0.5  
-1.5  
0.5  
-1.5  
0.5  
0.5  
0.5  
1
2.4  
1
-1  
0.5  
-1  
1
2.4  
1
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tt(LCD_AC_BIAS_EN)  
td(LCD_PCLK-LCD_VSYNC)  
tt(LCD_VSYNC)  
Transition time, LCD_AC_BIAS_EN  
Delay time, LCD_PCLK to LCD_VSYNC  
Transition time, LCD_VSYNC  
2.4  
1
0.5  
-1  
2.4  
1
10 td(LCD_PCLK-LCD_HSYNC)  
11 tt(LCD_HSYNC)  
12 tt(LCD_PCLK)  
Delay time, LCD_PCLK to LCD_HSYNC  
Transition time, LCD_HSYNC  
2.4  
2.4  
2.4  
0.5  
0.5  
0.5  
2.4  
2.4  
2.4  
Transition time, LCD_PCLK  
13 tt(LCD_DATA)  
Transition time, LCD_DATA  
Frame-to-frame timing is derived through the following parameters in the LCD (RASTER_TIMING_1)  
register:  
Vertical front porch (VFP)  
Vertical sync pulse width (VSW)  
Vertical back porch (VBP)  
Lines per panel (LPP_B10 + LPP)  
Line-to-line timing is derived through the following parameters in the LCD (RASTER_TIMING_0) register:  
Horizontal front porch (HFP)  
Horizontal sync pulse width (HSW)  
Horizontal back porch (HBP)  
Pixels per panel (PPLMSB + PPLLSB)  
LCD_AC_BIAS_EN timing is derived through the following parameter in the LCD (RASTER_TIMING_2)  
register:  
AC bias frequency (ACB)  
The display format produced in raster mode is shown in Figure 5-37. An entire frame is delivered one line  
at a time. The first line delivered starts at data pixel (1, 1) and ends at data pixel (P, 1). The last line  
delivered starts at data pixel (1, L) and ends at data pixel (P, L). The beginning of each new frame is  
denoted by the activation of I/O signal LCD_VSYNC. The beginning of each new line is denoted by the  
activation of I/O signal LCD_HSYNC.  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Timings  
139  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
Data Pixels (From 1 to P)  
P−2,  
1
P−1,  
1
1, 1  
1, 2  
1, 3  
2, 1  
2, 2  
3, 1  
P, 1  
P, 2  
P, 3  
P−1,  
2
LCD  
1,  
L−2  
P,  
L−2  
1,  
L−1  
2,  
L−1  
P−1,  
L−1  
P,  
L−1  
P−2,  
L
P−1,  
L
1, L  
2, L  
3, L  
P, L  
Figure 5-37. LCD Raster-Mode Display Format  
140  
Peripheral Information and Timings  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
Frame Time  
LPP_B10 + LPP  
(1 to 2048)  
VSW  
VBP  
VFP  
VSW  
(1 to 64)  
(0 to 255)  
(1 to 64)  
(0 to 255)  
Line  
Time  
LCD_HSYNC  
LCD_VSYNC  
LCD_DATA[23:0]  
1, 1 1, 2  
P, 1 P, 2  
1, L-1 1, L  
P, L-1 P, L  
LCD_AC_BIAS_EN  
(ACTVID)  
10  
10  
LCD_HSYNC  
11  
LCD_PCLK  
LCD_DATA[23:0]  
2, 1  
1, 2  
P, 2  
P, 1  
1, 1  
2, 2  
LCD_AC_BIAS_EN  
(ACTVID)  
PPLMSB + PPLLSB  
16 × (1 to 2048)  
Line 2  
PPLMSB + PPLLSB  
16 × (1 to 2048)  
Line 1  
HFP  
(1 to 256)  
HSW  
HBP  
(1 to 256)  
(1 to 64)  
Figure 5-38. LCD Raster-Mode Active  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Timings  
141  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
Frame Time  
VBP = 0  
VFP = 0  
VSW = 1  
LPP_B10 + LPP  
(1 to 2048)  
Line  
Time  
LCD_HSYNC  
LCD_VSYNC  
1, L  
Data  
1, L:  
P, L  
1, 1:  
P, 1  
1, 2:  
P, 2  
1, 3:  
P, 3  
1, 4:  
P, 4  
1, 5:  
P, 5  
1, 6:  
P, 6  
1, L  
P, L  
1, 1  
P, 1  
1, 2  
P, 2  
LCD_DATA[7:0]  
1, L−1  
P, L−1  
1, L−4  
P, L−4  
1, L−3 1, L−2 1, L−1  
P, L−1  
P, L−3 P, L−2  
LCD_AC_BIAS_EN  
ACB  
ACB  
(0 to 255)  
(0 to 255)  
10  
11  
10  
LCD_HSYNC  
LCD_PCLK  
1, 5 2, 5  
P, 5  
1, 6 2, 6  
P, 6  
LCD_DATA[7:0]  
PPLMSB + PPLLSB  
16 x (1 to 2048)  
Line 5  
HFP  
HSW  
HBP  
PPLMSB + PPLLSB  
16 x (1 to 2048)  
Line 6  
(1 to 256)  
(1 to 64)  
(1 to 256)  
A. The dashed portion of LCD_PCLK is only shown as a reference of the internal clock that sequences the other signals.  
Figure 5-39. LCD Raster-Mode Passive  
142  
Peripheral Information and Timings  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
6
7
LCD_AC_BIAS_EN  
8
9
LCD_VSYNC  
LCD_HSYNC  
10  
10  
11  
1
2
3
LCD_PCLK  
(passive mode)  
4
5
LCD_DATA[7:0]  
(passive mode)  
1, L 2, L  
P, L  
1, 1 2, 1  
P, 1  
1
3
2
LCD_PCLK  
(active mode)  
4
5
LCD_DATA[23:0]  
(active mode)  
1, L 2, L  
P, L  
VBP = 0  
VFP = 0  
VWS = 1  
PPLMSB + PPLLSB  
16 x (1 to 2048)  
PPLMSB + PPLLSB  
16 x (1 to 2048)  
HSW  
HBP  
HFP  
(1 to 256)  
(1 to 64)  
(1 to 256)  
Line L  
Line 1 (Passive Only)  
A. The dashed portion of LCD_PCLK is only shown as a reference of the internal clock that sequences the other signals.  
Figure 5-40. LCD Raster-Mode Control Signal Activation  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Timings  
143  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
6
LCD_AC_BIAS_EN  
8
LCD_VSYNC  
LCD_HSYNC  
2
10  
10  
11  
1
3
LCD_PCLK  
(passive mode)  
4
5
LCD_D[7:0]  
(passive mode)  
1, 1 2, 1  
P, 1  
1, 2 2, 2  
P, 2  
1
3
2
LCD_PCLK  
(active mode)  
4
5
LCD_DATA[23:0]  
(active mode)  
1, 1 2, 1  
P, 1  
VBP = 0  
VFP = 0  
VWS = 1  
PPLMSB + PPLLSB  
16 x (1 to 2048)  
PPLMSB + PPLLSB  
16 x (1 to 2048)  
HSW  
HBP  
HFP  
(1 to 256)  
(1 to 64)  
(1 to 256)  
Line 1  
Line 1 for active  
Line 2 for passive  
A. The dashed portion of LCD_PCLK is only shown as a reference of the internal clock that sequences the other signals.  
Figure 5-41. LCD Raster-Mode Control Signal Deactivation  
144  
Peripheral Information and Timings  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
5.6 mDDR(LPDDR)/DDR2/DDR3 Memory Controller  
5.6.1 DDR2 Routing Guidelines  
5.6.1.1 Board Designs  
TI only supports board designs that follow the guidelines outlined in this document. The switching  
characteristics and the timing diagram for the DDR2 memory controller are shown in Table 5-28 and  
Figure 5-42.  
Table 5-28. Switching Characteristics Over Recommended Operating Conditions for DDR2 Memory  
Controller  
-1G  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
1
tc(DDR_CLK)  
Cycle time, DDR_CLK  
3.76  
8
ns  
1
DDR_CLK  
Figure 5-42. DDR2 Memory Controller Clock Timing  
5.6.1.2 DDR2 Interface  
This section provides the timing specification for the DDR2 interface as a PCB design and manufacturing  
specification. The design rules constrain PCB trace length, PCB trace skew, signal integrity, cross-talk,  
and signal timing. These rules, when followed, result in a reliable DDR2 memory system without the need  
for a complex timing closure process. For more information regarding the guidelines for using this DDR2  
specification, see the Understanding TIs PCB Routing Rule-Based DDR Timing Specification Application  
Report (Literature Number: SPRAAV0).  
5.6.1.2.1 DDR2 Interface Schematic  
Figure 5-43 shows the DDR2 interface schematic for a x16 DDR2 memory system. The AM335x device  
does not support a x32 DDR2 memory system.  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Timings  
145  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
DDR2  
DQ0  
DDR_D[0]  
DDR_D[7]  
DQ7  
LDM  
LDQS  
DDR_DQM[0]  
DDR_DQS[0]  
DDR_DQS[0]  
DDR_D[8]  
LDQS  
DQ8  
DDR_D[15]  
DDR_DQM[1]  
DDR_DQS[1]  
DDR_DQS[1]  
DQ15  
UDM  
UDQS  
UDQS  
DDR_ODT[0]  
DDR_ODT[1]  
DDR_D[16]  
T0  
NC  
NC  
ODT  
DDR_BA[0]  
T0  
BA0  
DDR_BA[2]  
DDR_A[0]  
T0  
T0  
BA2  
A0  
DDR_A[14]  
DDR_CS[0]  
T0  
T0  
A14  
CS  
DDR_CAS  
DDR_RAS  
DDR_WE  
DDR_CKE  
DDR_CLK  
CAS  
RAS  
T0  
T0  
T0  
T0  
T0  
T0  
VDDS_DDR 1.8(A)  
WE  
CKE  
CK  
CK  
1 K Ω 1%  
0.1 µF  
0.1 µF  
DDR_CLK  
DDR_VREF  
VREF VREF  
VREF  
0.1 µF(B)  
0.1 µF(B)  
1 K Ω 1%  
DDR_RST  
DDR_VTP  
NC  
50 Ω ( 2%)  
T0  
Termination is required. See terminator comments.  
A. VDDS_DDR 1.8 is the power supply for the DDR2 memories and the AM335x DDR2 interface.  
B. One of these capacitors can be eliminated if the divider and its capacitors are placed near a VREF pin.  
Figure 5-43. 16-Bit DDR2 High-Level Schematic  
146  
Peripheral Information and Timings  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
5.6.1.2.2 Compatible JEDEC DDR2 Devices  
Table 5-29 shows the parameters of the JEDEC DDR2 devices that are compatible with this interface.  
Generally, the DDR2 interface is compatible with x16 DDR2-800 speed grade DDR2 devices.  
Table 5-29. Compatible JEDEC DDR2 Devices (Per Interface)  
NO.  
1
PARAMETER  
MIN  
MAX  
UNIT  
JEDEC DDR2 device speed grade(1)  
JEDEC DDR2 device bit width  
JEDEC DDR2 device count  
DDR2-533  
2
x8  
1
x16  
2
Bits  
Devices  
Balls  
3
4
JEDEC DDR2 device ball count(2)  
84  
92  
(1) Higher DDR2 speed grades are supported due to inherent JEDEC DDR2 backwards compatibility.  
(2) The 92-ball devices are retained for legacy support. New designs will migrate to 84-ball DDR2 devices. Electrically, the 92- and 84-ball  
DDR2 devices are the same.  
5.6.1.2.3 PCB Stackup  
The minimum stackup required for routing the AM335x device is a four-layer stackup as shown in  
Table 5-30. Additional layers may be added to the PCB stackup to accommodate other circuitry or to  
reduce the size of the PCB footprint.  
Table 5-30. Minimum PCB Stackup  
LAYER  
TYPE  
Signal  
Plane  
Plane  
Signal  
DESCRIPTION  
1
2
3
4
Top routing mostly horizontal  
Ground  
Power  
Bottom routing mostly vertical  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Timings  
147  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
Complete stackup specifications are provided in Table 5-31.  
Table 5-31. PCB Stackup Specifications  
NO.  
1
PARAMETER  
MIN  
4
TYP  
MAX  
UNIT  
PCB routing/plane layers  
Signal routing layers  
2
2
3
Full ground layers under DDR2 routing region  
Number of ground plane cuts allowed within DDR routing region  
Number of ground reference planes required for each DDR2 routing layer  
Number of layers between DDR2 routing layer and reference ground plane  
PCB routing feature size  
2
4
0
0
5
1
6
7
4
4
Mils  
Mils  
Mils  
Mils  
8
PCB trace width, w  
PCB BGA escape via pad size(1)  
9
18  
10  
0.5  
0.4  
20  
10 PCB BGA escape via hole size(1)  
ZCZ package  
ZCE package  
11 MPU BGA pad size  
mm  
13 Single-ended impedance, Zo  
14 Impedance control(3)  
50  
75  
Z-5  
Z
Z+5  
(1) A 20/10 via may be used if enough power routing resources are available. An 18/10 via allows for more flexible power routing to the  
MPU.  
(2) For the DDR2 device BGA pad size, see the DDR2 device manufacturer documentation.  
(3) Z is the nominal singled-ended impedance selected for the PCB specified by item 13.  
148  
Peripheral Information and Timings  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
5.6.1.2.4 Placement  
Figure 5-44 shows the required placement for the DDR2 devices. The dimensions for this figure are  
defined in Table 5-32. The placement does not restrict the side of the PCB on which the devices are  
mounted. The ultimate purpose of the placement is to limit the maximum trace lengths and allow for  
proper routing space. For single-memory DDR2 systems, the second DDR2 device is omitted from the  
placement.  
X
A1  
Y
OFFSET  
DDR2  
Device  
Y
Y
OFFSET  
Microprocessor  
A1  
Recommended DDR2  
Device Orientation  
Figure 5-44. AM335x Device and DDR2 Device Placement  
Table 5-32. Placement Specifications  
NO.  
1
PARAMETER  
MIN  
MAX  
1750  
1280  
650  
UNIT  
Mils  
Mils  
Mils  
X(1)(2)  
Y(1)(2)  
2
3
Y Offset(1)(2)(3)  
DDR2 keepout region(4)  
4
5
Clearance from non-DDR2 signal to DDR2 keepout region(5)  
4
w
(1) For dimension definitions, see Figure 5-43.  
(2) Measurements from center of MPU to center of DDR2 device.  
(3) For single-memory systems, it is recommended that Y offset be as small as possible.  
(4) DDR2 keepout region to encompass entire DDR2 routing area.  
(5) Non-DDR2 signals allowed within DDR2 keepout region provided they are separated from DDR2 routing layers by a ground plane.  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Timings  
149  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
5.6.1.2.5 DDR2 Keepout Region  
The region of the PCB used for the DDR2 circuitry must be isolated from other signals. The DDR2  
keepout region is defined for this purpose and is shown in Figure 5-45. The size of this region varies with  
the placement and DDR routing. Additional clearances required for the keepout region are shown in  
Table 5-32.  
A1  
DDR2  
Device  
A1  
Region should encompass all DDR2 circuitry and varies depending  
on placement. Non-DDR2 signals should not be routed on the DDR  
signal layers within the DDR2 keep out region. Non-DDR2 signals may  
be routed in the region provided they are routed on layers separated  
from DDR2 signal layers by a ground layer. No breaks should be  
allowed in the reference ground layers in this region. In addition, the  
1.8 V power plane should cover the entire keep out region.  
Figure 5-45. DDR2 Keepout Region  
5.6.1.2.6 Bulk Bypass Capacitors  
Bulk bypass capacitors are required for moderate speed bypassing of the DDR2 and other circuitry.  
Table 5-33 contains the minimum numbers and capacitance required for the bulk bypass capacitors. Note  
that this table only covers the bypass needs of the DDR2 interfaces and DDR2 device. Additional bulk  
bypass capacitance may be needed for other circuitry.  
Table 5-33. Bulk Bypass Capacitors  
No. Parameter  
Min  
6
Max  
Unit  
Devices  
μF  
1
2
3
4
5
6
DVDD18 bulk bypass capacitor count(1)  
DVDD18 bulk bypass total capacitance  
DDR#1 bulk bypass capacitor count(1)  
DDR#1 bulk bypass total capacitance(1)  
DDR#2 bulk bypass capacitor count(2)  
DDR#2 bulk bypass total capacitance(1)(2)  
60  
1
Devices  
μF  
10  
1
Devices  
μF  
10  
(1) These devices should be placed near the device they are bypassing, but preference should be given to the placement of the high-speed  
(HS) bypass capacitors. Use half of these capacitors for DDR[0] and half for DDR[1].  
(2) Only used on 32-bit wide DDR2 memory systems.  
5.6.1.2.7 High-Speed Bypass Capacitors  
High-speed (HS) bypass capacitors are critical for proper DDR2 interface operation. It is particularly  
important to minimize the parasitic series inductance of the HS bypass capacitors, MPU/DDR power, and  
MPU/DDR ground connections. Table 5-34 contains the specification for the HS bypass capacitors as well  
as for the power connections on the PCB.  
150  
Peripheral Information and Timings  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
NO.  
SPRS717 OCTOBER 2011  
Table 5-34. High-Speed Bypass Capacitors  
PARAMETER  
MIN  
MAX  
UNIT  
1
2
3
4
5
6
7
8
9
HS bypass capacitor package size(1)  
0402 10 Mils  
Distance from HS bypass capacitor to device being bypassed  
250  
30  
Mils  
Vias  
Mils  
Number of connection vias for each HS bypass capacitor(2)  
Trace length from bypass capacitor contact to connection via  
Number of connection vias for each MPU power/ground ball  
Trace length from MPU power/ground ball to connection via  
Number of connection vias for each DDR2 device power/ground ball  
Trace length from DDR2 device power/ground ball to connection via  
DVDD18 HS bypass capacitor count(3)(4)  
2
1
1
Vias  
Mils  
35  
1
Vias  
Mils  
35  
40  
2.4  
8
Devices  
μF  
10 DVDD18 HS bypass capacitor total capacitance(4)  
11 DDR device HS bypass capacitor count(3)(5)  
12 DDR device HS bypass capacitor total capacitance(5)  
Devices  
μF  
0.4  
(1) LxW, 10-mil units; i.e., a 0402 is a 40x20-mil surface-mount capacitor.  
(2) An additional HS bypass capacitor can share the connection vias only if it is mounted on the opposite side of the board.  
(3) These devices should be placed as close as possible to the device being bypassed.  
(4) Use half of these capacitors for DDR[0] and half for DDR[1].  
(5) Per DDR device.  
5.6.1.2.8 Net Classes  
Table 5-35 lists the clock net classes for the DDR2 interface. Table 5-36 lists the signal net classes, and  
associated clock net classes, for the signals in the DDR2 interface. These net classes are used for the  
termination and routing rules that follow.  
Table 5-35. Clock Net Class Definitions  
CLOCK NET CLASS MPU PIN NAMES  
CK  
DDR_CLK/DDR_CLK  
DQS0  
DQS1  
DDR_DQS[0]/DDR_DQS[0]  
DDR_DQS[1]/DDR_DQS[1]  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Timings  
151  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
Table 5-36. Signal Net Class Definitions  
ASSOCIATED CLOCK  
NET CLASS  
CLOCK NET CLASS  
MPU PIN NAMES  
ADDR_CTRL  
CK  
DDR_BA[2:0], DDR_A[14:0], DDR_CS[x], DDR_CAS, DDR_RAS, DDR_WE,  
DDR_CKE  
DQ0  
DQ1  
DQS0  
DQS1  
DDR_D[7:0], DDR_DQM[0]  
DDR_D[15:8], DDR_DQM[1]  
5.6.1.2.9 DDR2 Signal Termination  
Signal terminators are required in CK and ADDR_CTRL net classes. Serial terminators may be used on  
data lines to reduce EMI risk; however, serial terminations are the only type permitted. ODT's are  
integrated on the data byte net classes. They should be enabled to ensure signal integrity. Table 5-37  
shows the specifications for the series terminators.  
Table 5-37. DDR2 Signal Terminations  
No. Parameter  
Min  
0
Typ  
Max Unit  
1
2
3
CK net class(1)(2)  
ADDR_CTRL net class(1)(2)(3)(4)  
Data byte net classes (DQS0-DQS3, DQ0-DQ3)(5)  
10  
Zo  
0
0
22  
0
(1) Only series termination is permitted, parallel or SST specifically disallowed on board.  
(2) Only required for EMI reduction.  
(3) Terminator values larger than typical only recommended to address EMI issues.  
(4) Termination value should be uniform across net class.  
(5) No external terminations allowed for data byte net classes. ODT is to be used.  
5.6.1.2.10 DDR_VREF Routing  
DDR_VREF is used as a reference by the input buffers of the DDR2 memories as well as the MPU. VREF  
is intended to be half the DDR2 power supply voltage and should be created using a resistive divider as  
shown in Figure 5-43. Other methods of creating VREF are not recommended. Figure 5-46 shows the  
layout guidelines for VREF.  
VREF Bypass Capacitor  
DDR2 Device  
A1  
VREF Nominal Minimum  
Trace Width is 20 Mils  
Microprocessor  
A1  
Neck down to minimum in BGA escape  
regions is acceptable. Narrowing to  
accomodate via congestion for short  
distances is also acceptable. Best  
performance is obtained if the width  
of VREF is maximized.  
Figure 5-46. VREF Routing and Topology  
152  
Peripheral Information and Timings  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
5.6.1.3 DDR2 CK and ADDR_CTRL Routing  
Figure 5-47 shows the topology of the routing for the CLK and ADDR_CTRL net classes. The route is a  
balanced T as it is intended that the length of segments B and C be equal. In addition, the length of A  
should be maximized.  
A1  
T
A
Microprocessor  
A1  
Figure 5-47. CK and ADDR_CTRL Routing and Topology  
Table 5-38. CK and ADDR_CTRL Routing Specification(1)  
NO.  
1
PARAMETER  
Cente- to-center DQS-DQSN spacing  
MIN  
TYP  
MAX  
2w  
UNIT  
2
CK differential pair skew length mismatch(1)(2)  
25  
Mils  
Mils  
3
CK B-to-CK C skew length mismatch  
25  
4
Center-to-center CK to other DDR2 trace spacing(3)  
CK/ADDR_CTRL nominal trace length(4)  
4w  
5
CACLM-50  
CACLM  
CACLM+50  
100  
Mils  
Mils  
Mils  
6
ADDR_CTRL-to-CK skew length mismatch  
7
ADDR_CTRL-to-ADDR_CTRL skew length mismatch  
Center-to-center ADDR_CTRL to other DDR2 trace spacing(3)  
Center-to-center ADDR_CTRL to other ADDR_CTRL trace spacing(3)  
ADDR_CTRL A-to-B/ADDR_CTRL A-to-C skew length mismatch(1)  
ADDR_CTRL B-to-C skew length mismatch  
100  
8
4w  
3w  
9
10  
11  
100  
100  
Mils  
Mils  
(1) Series terminator, if used, should be located closest to the MPU.  
(2) Differential impedance should be 100 Ω.  
(3) Center-to-center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routing  
congestion.  
(4) CACLM is the longest Manhattan distance of the CK and ADDR_CTRL net classes.  
Figure 5-48 shows the topology and routing for the DQS and Dx net classes; the routes are point to point.  
Skew matching across bytes is not needed nor recommended.  
Copyright © 2011, Texas Instruments Incorporated  
Peripheral Information and Timings  
153  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
T
T
E0  
E1  
A1  
Microprocessor  
T
T
E2  
E3  
A1  
Figure 5-48. DQS and Dx Routing and Topology  
Table 5-39. DQS and Dx Routing Specification(1)(2)  
NO.  
PARAMETER  
Center-to-center DQS-DQSN spacing  
DQS E differential pair skew length mismatch(3)  
Center-to-center DQS to other DDR2 trace spacing(4)  
DQS/Dx nominal trace length(2)(5)  
Dx-to-DQS skew length mismatch(5)  
Dx-to-Dx skew length mismatch(5)  
MIN  
TYP  
MAX  
2w  
UNIT  
1
2
3
4
5
6
7
8
25  
Mils  
4w  
DQLM-50  
DQLM  
DQLM+50  
100  
Mils  
Mils  
Mils  
100  
Center-to-center Dx to other DDR2 trace spacing(4)(6)  
Center-to-center Dx to other Dx trace spacing(4)(7)  
4w  
3w  
(1) Dx indicates a data line. E indicates length of DQS differential pair or Dx signal.  
(2) Series terminator, if used, should be located closest to DDR.  
(3) Differential impedance should be 100 Ω.  
(4) Center-to-center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routing  
congestion.  
(5) There is no need, and it is not recommended, to skew match across data bytes; i.e., from DQS0 and data byte 0 to DQS1 and data  
byte 1.  
(6) Data lines (Dx) from other DQS domains are considered other DDR2 trace.  
(7) DQLM is the longest Manhattan distance of each of the DQS and Dx net classes.  
154  
Peripheral Information and Timings  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
 
 
 
 
 
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
6 Device and Documentation Support  
6.1 Device Support  
6.1.1 Development Support  
TI offers an extensive line of development tools, including tools to evaluate the performance of the  
processors, generate code, develop algorithm implementations, and fully integrate and debug software  
and hardware modules. The tool's support documentation is electronically available within the Code  
Composer StudioIntegrated Development Environment (IDE).  
The following products support development of AM335x device applications:  
Software Development Tools: Code Composer StudioIntegrated Development Environment (IDE):  
including Editor C/C++/Assembly Code Generation, and Debug plus additional development tools  
Scalable, Real-Time Foundation Software (DSP/BIOS), which provides the basic run-time target  
software needed to support any AM335x device application. DSP/BIOS™  
Hardware Development Tools: Extended Development System (XDS) Emulator XDS™  
For a complete listing of development-support tools for the AM335x microprocessor platform, visit the  
Texas Instruments website at www.ti.com. For information on pricing and availability, contact the nearest  
TI field sales office or authorized distributor.  
6.1.2 Device Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
microprocessors (MPUs) and support tools. Each device has one of three prefixes: X, P, or null (no prefix)  
(e.g., XAM3358ZCE). Texas Instruments recommends two of three possible prefix designators for its  
support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development  
from engineering prototypes (TMDX) through fully qualified production devices/tools (TMDS).  
Device development evolutionary flow:  
X
Experimental device that is not necessarily representative of the final device's electrical  
specifications and may not use production assembly flow.  
P
Prototype device that is not necessarily the final silicon die and may not necessarily meet  
final electrical specifications.  
null  
Production version of the silicon die that is fully qualified.  
Support tool development evolutionary flow:  
TMDX  
Development-support product that has not yet completed Texas Instruments internal  
qualification testing.  
TMDS  
Fully-qualified development-support product.  
X and P devices and TMDX development-support tools are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
Production devices and TMDS development-support tools have been characterized fully, and the quality  
and reliability of the device have been demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices (X or P) have a greater failure rate than the standard production  
devices. Texas Instruments recommends that these devices not be used in any production system  
because their expected end-use failure rate still is undefined. Only qualified production devices are to be  
used.  
Copyright © 2011, Texas Instruments Incorporated  
Device and Documentation Support  
155  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the  
package type (for example, ZCE), the temperature range (for example, blank is the default commercial  
temperature range), and the device speed range, in megahertz (for example, 27 is 275-MHz). Figure 6-1  
provides a legend for reading the complete device name for any AM335x device.  
For orderable part numbers of AM335x devices in the ZCE and ZCZ package types, see the Package  
Option Addendum of this document, the TI website (www.ti.com), or contact your TI sales representative.  
For additional description of the device nomenclature markings on the die, see the AM335x ARM  
Cortex-A8 Microprocessors (MPUs) Silicon Errata (literature number SPRZ360).  
(
)
X
(
)
AM3358  
(
)
ZCE  
PREFIX  
DEVICE SPEED RANGE  
27 = 275-MHZ Cortex-A8  
50 = 500-MHZ Cortex-A8  
60 = 600-MHZ Cortex-A8  
72 = 720-MHz Cortex-A8  
X = Experimental device  
Blank = Qualified device  
DEVICE(A)  
ARM Cortex-A8 MPU:  
AM3352  
AM3354  
AM3356  
AM3357  
AM3358  
AM3359  
TEMPERATURE RANGE  
Blank = 0°C to 90°C (commercial junction temperature)  
A = -40°C to 105°C (extended temperature)  
D = -40°C to 90°C (industrial temperature)  
PACKAGE TYPE(B)  
ZCE = 298-pin plastic BGA, with Pb-Free solder balls  
ZCZ = 324-pin plastic BGA, with Pb-Free solder balls  
SILICON REVISION  
Blank = silicon revision 1.0  
A. The AM3358 device shown in this device nomenclature example is one of several valid part numbers for the AM335x  
family of devices. For orderable device part numbers, see the Package Option Addendum of this document.  
B. BGA = Ball Grid Array.  
Figure 6-1. AM335x Device Nomenclature  
6.2 Documentation Support  
6.2.1 Related Documentation from Texas Instruments  
The following documents describe the AM335x MPU. Copies of these documents are available on the  
Internet at www.ti.com. Tip: Enter the literature number in the search box.  
The current documentation that describes the AM335x MPU, related peripherals, and other technical  
collateral, is available in the product folder at: www.ti.com.  
SPRUH73 AM335x ARM Cortex-A8 Microprocessors (MPUs) Technical Reference Manual.  
Collection of documents providing detailed information on the AM335x device including  
power, reset, and clock control, interrupts, memory map, and switch fabric interconnect.  
Detailed information on the microprocessor unit (MPU) subsystem as well as a functional  
description of the peripherals supported on AM335x devices is also included.  
SPRZ360  
AM335x ARM Cortex-A8 Microprocessors (MPUs) Silicon Errata. Describes the known  
exceptions to the functional specifications for the AM335x ARM Cortex-A8 Microprocessors.  
6.2.2 Community Resources  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the  
respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views;  
see TI's Terms of Use.  
TI E2E Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and  
help solve problems with fellow engineers.  
TI Embedded Processors Wiki Texas Instruments Embedded Processors Wiki. Established to help  
developers get started with Embedded Processors from Texas Instruments and to foster  
156  
Device and Documentation Support  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
 
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
www.ti.com  
SPRS717 OCTOBER 2011  
innovation and growth of general knowledge about the hardware and software surrounding  
these devices.  
6.2.3 Related Documentation from Other Sources  
The following documents are related to the AM335x MPU. Copies of these documents can be obtained  
directly from the internet or from your Texas Instruments representative.  
Cortex-A8 Technical Reference Manual. This is the technical reference manual for the Cortex-A8  
processor. A copy of this document can be obtained via the internet at http://infocenter.arm.com. To  
determine the revision of the Cortex-A8 core used on your device, see the AM335x ARM Cortex-A8  
Microprocessors (MPUs) Silicon Errata (literature number SPRZ360).  
ARM Core Cortex-A8 (AT400/AT401) Errata Notice. Provides a list of advisories for the different  
revisions of the Cortex-A8 processor. Contact your TI representative for a copy of this document. To  
determine the revision of the Cortex-A8 core used on your device, see the AM335x ARM Cortex-A8  
Microprocessors (MPUs) Silicon Errata (literature number SPRZ360).  
Copyright © 2011, Texas Instruments Incorporated  
Device and Documentation Support  
157  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
AM3359, AM3358, AM3357  
AM3356, AM3354, AM3352  
SPRS717 OCTOBER 2011  
www.ti.com  
7 Mechanical Packaging and Orderable Information  
7.1 Thermal Data for ZCE and ZCZ Packages  
Table 7-1 provides thermal characteristics for the packages used on this device.  
NOTE  
Table 7-1 provides simulation data and may not represent actual use-case values.  
Table 7-1. Thermal Resistance Characteristics (PBGA Package) [ZCE and ZCZ]  
NAME  
DESCRIPTION  
AIR  
ZCE  
ZCZ  
FLOW(1)  
(°C/W)(2)  
(°C/W)(2)  
ΘJC  
ΘJB  
ΘJA  
Junction-to-case (1S0P)(3)  
Junction-to-board (2S2P)(3)  
Junction-to-free air (2S2P)(3)  
N/A  
N/A  
0.0  
1.0  
2.0  
3.0  
0.0  
1.0  
2.0  
3.0  
0.0  
1.0  
2.0  
3.0  
10.3  
11.6  
24.7  
20.5  
19.7  
19.2  
0.4  
10.2  
12.1  
24.2  
20.1  
19.3  
18.8  
0.3  
ΨJT  
Junction-to-package top (2S2P)(3)  
Junction-to-board (2S2P)(3)  
0.6  
0.6  
0.7  
0.7  
0.9  
0.8  
ΨJB  
11.9  
11.7  
11.7  
11.6  
12.7  
12.3  
12.3  
12.2  
(1) m/s = meters per second.  
(2) °C/W = degress celsius per watt.  
(3) The board types are defined by JEDEC (reference JEDEC standard JESD51-9, Test Board for Area  
Array Surface Mount Package Thermal Measurements).  
7.2 Via Channel  
The ZCE package has been specially engineered with Via Channeltechnology. This allows larger than  
normal PCB via and trace sizes and reduced PCB signal layers to be used in a PCB design with the  
0.65-mm pitch package, and substantially reduces PCB costs. It allows PCB routing in only two signal  
layers (four layers total) due to the increased layer efficiency of the Via ChannelBGA technology.  
7.3 Packaging Information  
The following packaging information and addendum reflect the most current data available for the  
designated device(s). This data is subject to change without notice and without revision of this document.  
The figures below show the package drawings for the ZCE and ZCZ package options.  
158  
Mechanical Packaging and Orderable Information  
Submit Documentation Feedback  
www.ti.com: AM3359 AM3358 AM3357 AM3356 AM3354 AM3352  
Copyright © 2011, Texas Instruments Incorporated  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Oct-2011  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
XAM3358ZCE  
XAM3359ZCZ  
ACTIVE  
ACTIVE  
NFBGA  
NFBGA  
ZCE  
ZCZ  
298  
324  
1
1
Green (RoHS  
& no Sb/Br)  
SNAGCU Level-3-260C-168 HR  
Green (RoHS  
& no Sb/Br)  
SNAGCU Level-3-260C-168 HR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TIs terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TIs standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Audio  
Applications  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
Medical  
Security  
Logic  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
Transportation and Automotive www.ti.com/automotive  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
www.ti.com/video  
OMAP Mobile Processors www.ti.com/omap  
Wireless Connectivity www.ti.com/wirelessconnectivity  
TI E2E Community Home Page  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2011, Texas Instruments Incorporated  

相关型号:

AM3359ZCZD72

AM335x ARM® Cortex™-A8 Microprocessors (MPUs)
TI

AM3359_12

AM335x ARM? Cortex?-A8 Microprocessors (MPUs)
TI

AM3359_1211

AM335x ARM® Cortex™-A8 Microprocessors (MPUs)
TI

AM3359_13

Sitara™ AM335x ARM® Cortex™-A8 Microprocessors (MPUs)
TI

AM3359_14

Sitara AM335x ARM Cortex-A8 Microprocessors (MPUs)
TI

AM335X

AM335x General-Purpose EVM
TI

AM336

IC FOR OPTO DETECTOR
AME

AM336-1

IC FOR OPTO DETECTOR
AME

AM336-2

IC FOR OPTO DETECTOR
AME

AM33C93A

Optical Disk Controller
AMD

AM3400

N-CHANNEL ENHANCEMENT MODE POWER MOSFET
AITSEMI

AM3400A

30V N-CHANNEL ENHANCEMENT MODE
AITSEMI