ALM2402F-Q1 [TI]

汽车类双通道高输出电流运算放大器;
ALM2402F-Q1
型号: ALM2402F-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类双通道高输出电流运算放大器

放大器 运算放大器
文件: 总33页 (文件大小:2695K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ALM2402F-Q1  
ZHCSJP5B MAY 2019 REVISED OCTOBER 2021  
具有高电流输出、用于旋转变压器励磁的  
ALM2402F-Q1 汽车类双路运算放大器  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准  
– 温度等140°C +125°CTA  
提供功能安全  
ALM2402F-Q1 是一款双电源运算放大器其特性和性  
能使该器件更适合基于旋转变压器的汽车应用。该器件  
具有高增益带宽和压摆率以及连续高输出电流驱动功  
从而成为提供现代旋转变压器所需的低失真和差分  
高振幅激励的理想之选。在易受故障影响的电线上驱动  
模拟信号时电流限制和过热检测功能可增强整体系统  
稳健性。  
可帮助进行功能安全系统设计的文档  
• 低失调电压1mV典型值)  
• 高输出电流驱动400mA 持续电流每通道)  
– 取代分立式运算放大器和晶体管  
• 两个电源的宽电源电压范围16V)  
• 过热关断  
ALM2402F-Q1 的轨到轨输出通过低 Rds(on) PMOS 和  
NMOS 晶体管实现可保持较低的功率耗散。具有散  
热焊盘和低 RθJA 的小型 HTSSOP 封装使用户能够向  
负载提供高电流同时最大程度地减小布板空间。当用  
于现代混合动力和电动汽车时该最小化的布板空间是  
ALM2402F-Q1 提供的主要优势之一。  
• 电流限制  
• 实现IQ 应用的关断引脚  
• 在大容性负载下保持稳定  
2MHz 增益带宽3.4V/µs 的压摆率  
• 内部射频/EMI 滤波器  
通过本页底部的最大输出电压与频率间的关系 可  
ALM2402F-Q1 的最大输出电压。  
• 封装14 HTSSOP (PWP)  
2 应用  
器件信息(1)  
• 基于旋转变压器的汽车应用  
逆变器和电机控制  
• 制动系统  
封装尺寸标称值)  
器件型号  
封装  
ALM2402F-Q1  
HTSSOP (14)  
5.00mm × 4.40mm  
电动助力转(EPS)  
后视镜模块  
汽车电子视镜  
(1) 要了解所有可用封装请参见数据表末尾的封装选项附录。  
伺服驱动器功率级模块  
VCC_OUT  
14  
Vs = 12 V  
Vs = 4.5 V  
12  
VCC  
VCC  
10  
8
VCC_O1  
IN1+  
IN1–  
+
+
½
ALM2402F-Q1  
OUT1  
OPAMP  
OTF1  
6
GND  
4
2
0
简化版原理图  
1
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
10M  
D013  
最大输出电压与频率间的关系  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOS927  
 
 
 
ALM2402F-Q1  
ZHCSJP5B MAY 2019 REVISED OCTOBER 2021  
www.ti.com.cn  
Table of Contents  
7.4 Device Functional Modes..........................................17  
8 Application and Implementation..................................18  
8.1 Application Information............................................. 18  
8.2 Typical Application.................................................... 19  
9 Power Supply Recommendations................................23  
10 Layout...........................................................................24  
10.1 Layout Guidelines................................................... 24  
10.2 Layout Example...................................................... 24  
11 Device and Documentation Support..........................25  
11.1 Documentation Support.......................................... 25  
11.2 接收文档更新通知................................................... 25  
11.3 支持资源..................................................................25  
11.4 Trademarks............................................................. 25  
11.5 Electrostatic Discharge Caution..............................25  
11.6 术语表..................................................................... 25  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics: VS = 12 V...........................5  
6.6 Electrical Characteristics: VS = 5 V.............................6  
6.7 Typical Characteristics................................................8  
7 Detailed Description......................................................14  
7.1 Overview...................................................................14  
7.2 Functional Block Diagram.........................................14  
7.3 Feature Description...................................................15  
Information.................................................................... 25  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (September 2019) to Revision B (October 2021)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
• 向部分添加了功能安全的项目符号..............................................................................................................1  
Changes from Revision * (May 2019) to Revision A (September 2019)  
Page  
• 将器件状态从预告信息预发布更改为量产数据正在供货.......................................................................1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: ALM2402F-Q1  
 
ALM2402F-Q1  
ZHCSJP5B MAY 2019 REVISED OCTOBER 2021  
www.ti.com.cn  
5 Pin Configuration and Functions  
IN(1)œ  
IN(1)+  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
GND  
OUT(1)  
VS_O(1)  
VS  
OTF/SH_DN  
IN(2)+  
Thermal  
Pad  
IN(2)œ  
VS_O(2)  
OUT(2)  
NC  
GND  
NC  
8
Not to scale  
5-1. PWP (14-Pin HTSSOP) Package, Top View  
5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
GND  
NO.  
6, 14  
2
Input  
Input  
Input  
Input  
Input  
Ground pin (both ground pins must be used and connected together on board)  
Noninverting op amp input terminal 1  
Noninverting op amp input terminal 2  
Inverting op amp input terminal 1  
Inverting op amp input terminal 2  
No internal connection (do no connect)  
Overtemperature flag and shutdown (see 7-1 for truth table)  
Op amp output 1  
IN(1)+  
IN(2)+  
IN(1)–  
IN(2)–  
NC  
4
1
5
7, 8  
3
Input/output  
Output  
Output  
Input  
OTF/SH_DN  
OUT(1)  
OUT(2)  
VS  
13  
9
Op amp output 2  
11  
12  
10  
Gain stage supply pin  
VS_O(1)  
VS_O(2)  
Input  
Output stage supply pin  
Input  
Output stage supply pin  
Connect the exposed thermal pad to ground for best thermal performance. Do not connect  
the thermal pad to any pin other than GND. The thermal pad can also be left floating.  
Thermal pad  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: ALM2402F-Q1  
 
ALM2402F-Q1  
ZHCSJP5B MAY 2019 REVISED OCTOBER 2021  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted) (1)  
MIN  
0.3  
0.3  
0.3  
MAX  
UNIT  
V
18  
Input supply voltage, VS = (V+) (V)  
Output supply voltage, VS_O  
Positive and negative input to GND voltage  
Overtemperature flag pin current  
Overtemperature flag pin voltage  
Output short-circuit(2)  
18  
V
18  
V
20  
mA  
V
0
Continuous  
40  
7
Continuous  
125  
Operating temperature  
°C  
°C  
°C  
Junction temperature  
150  
Storage temperature, Tstg  
150  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) Short-circuit to ground; one amplifier per package. Long-term, short-circuit operation leads to an elevated die temperature and a  
shorter lifetime, and places the amplifier into open-loop operation. Prolonged open-loop operation (especially at high temperatures and  
supplies) can lead to a shift in the dc electrical characteristics, such as offset voltage (see the Open-Loop and Closed-Loop Operation  
section).  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
HBM ESD Classification Level 2  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charge Device Model (CDM), per AEC Q100-011  
CDM ESD Classification Level C5  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
3
NOM  
MAX  
16  
UNIT  
V
V
Input supply voltage, VS = (V+) V()  
Output supply voltage, VS_O  
16  
Continous output current (sourcing) (1)  
Continous output current (sinking) (1)  
OTF input high voltage (op amp on or full operational state)  
OTF input low voltage (op amp off or shutdown state)  
Postitive and negative input to GND voltage  
Overtemperature flag pin voltage  
400  
400  
mA  
mA  
V
1
0.35  
7
V
0
2
V
5
V
Specified temperature  
125  
°C  
40  
(1) Current Limit must be taken into consideration when choosing maximum output current.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: ALM2402F-Q1  
 
 
 
 
 
 
 
 
ALM2402F-Q1  
ZHCSJP5B MAY 2019 REVISED OCTOBER 2021  
www.ti.com.cn  
6.4 Thermal Information  
ALM2402FQ1  
THERMAL METRIC(1)  
PWP (TSSOP)  
14 PINS  
46.5  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
33.0  
Junction-to-board thermal resistance  
27.6  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.5  
ψJT  
27.4  
ψJB  
RθJC(bot)  
2.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics: VS = 12 V  
at TA = 25°C, VS = VS_O1 = VS_O2 = 12 V, RL = 10 kconnected to VS / 2, VCM = VS / 2, VOTF = 5 V, and VO = VS / 2 (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
±1  
±7  
VOS  
Input offset voltage  
mV  
μV/°C  
dB  
±15  
TA = 40°C to +125°C  
dVOS/dT  
PSRR  
Input offset voltage drift  
65  
76  
TA = 40°C to +125°C  
VS = 10 V to 16 V  
70  
65  
Input offset voltage versus  
power supply  
VS = 10 V to 16 V, TA = 40°C to +125°C  
INPUT BIAS CURRENT  
±3.5  
±2  
±15  
±140  
±12  
IB  
Input bias current  
nA  
nA  
TA = 40°C to +125°C  
TA = 40°C to +125°C  
IOS  
Input offset current  
Input voltage noise  
±35  
NOISE  
35  
5.5  
115  
20  
μVPP  
µVRMS  
f = 0.1 Hz to 10 Hz  
eN  
iN  
Input voltage noise density f = 1 kHz  
nV/Hz  
fA/Hz  
Input current noise  
f = 1 kHz  
INPUT VOLTAGE RANGE  
VCM  
Common-mode voltage  
VS > 8.2 V  
0.2  
81  
52  
7
V
0.2 V < VCM < 7 V  
97  
93  
Common-mode rejection  
ratio  
CMRR  
dB  
TA = 40to +125, 0.2 V < VCM < 7 V  
OPEN-LOOP GAIN  
85  
60  
0.3 V < VO < (VS) 1.5 V,  
RL = 10 k  
AOL  
Open-loop voltage gain  
dB  
TA = 40°C to +125°C  
FREQUENCY RESPONSE  
GBW  
SR  
tS  
Gain-bandwidth product  
CL = 15 pF  
2.1  
3.4  
2.4  
10  
MHz  
V/μs  
μs  
Slew rate  
5-V step, G = +1 V/V, CL = 50 pF  
To 0.1%, 5-V step , G = +1 V/V  
VIN × (1) × gain > VS  
Settling time  
Overload recovery time  
μs  
(V+) = 11 V, (V) = 5 V, VO = 6 VPP, G = +2 V/V, f = 1  
kHz,  
RL = 100 Ω  
Total harmonic distortion +  
noise  
THD+N  
dB  
73  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: ALM2402F-Q1  
 
 
 
ALM2402F-Q1  
ZHCSJP5B MAY 2019 REVISED OCTOBER 2021  
www.ti.com.cn  
6.5 Electrical Characteristics: VS = 12 V (continued)  
at TA = 25°C, VS = VS_O1 = VS_O2 = 12 V, RL = 10 kconnected to VS / 2, VCM = VS / 2, VOTF = 5 V, and VO = VS / 2 (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT  
TA = 25°C  
0.3  
0.5  
TA = 40°C to +125,  
ISOURCE = 200 mA  
130  
300  
Positive rail, VID = 100 mV  
mV  
TA = 40°C to +125,  
ISOURCE = 100 mA  
60  
0.4  
150  
0.6  
Voltage output swing from  
rail  
Vo  
TA = 25°C  
TA = 40°C to +125,  
ISINK = 200 mA  
200  
550  
Negative rail, VID = 100 mV  
mV  
mA  
TA = 40°C to +125,  
ISINK = 100 mA  
100  
200  
Sinking (short to supply)  
Sourcing (short to ground)  
540  
750  
ISC  
Short-circuit current  
POWER SUPPLY  
4
5
6
IO = 0 A, TA = 25℃  
Quiescent current per  
amplifier  
IQ  
mA  
IO = 0 A, TA = 40°C to +125°C  
VOTF/SH_DN = 0 V  
0.5  
TEMPERATURE  
Thermal shutdown  
165  
159  
°C  
°C  
Thermal shutdown  
recovery  
Overtemperature fault low  
voltage  
VOL_OTF  
400  
mV  
RPULLUP = 2.5 k, VPULLUP = 5.0 V  
VIH_OTF  
VIL_OTF  
Amplifier enable voltage  
Amplifier disable voltage  
1
V
V
0.35  
6.6 Electrical Characteristics: VS = 5 V  
at TA = 25°C, VS = VS_O1 = VS_O2 = 5 V, RL = 10 kconnected to VS / 2, VCM = VS / 2, VOTF = 5 V, and VO = VS / 2 (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
TA = 25°C  
±1  
±7  
VOS  
Input offset voltage  
mV  
±15  
TA = 40°C to +125°C  
TA = 40°C to +125°C  
VS = 4.5 V to 10 V  
dVOS/dT  
Input offset voltage drift  
65  
94  
μV/°C  
82  
75  
Input offset voltage versus  
power supply  
PSRR  
dB  
VS = 4.5 V to 10 V,  
TA = 40°C to +125°C  
INPUT BIAS CURRENT  
TA = 25°C  
0.5  
±2  
±2  
±30  
±2  
IB  
Input bias current  
nA  
nA  
TA = 40°C to +125°C  
TA = 25°C  
IOS  
Input offset current  
±9  
TA = 40°C to +125°C  
NOISE  
35  
5.5  
115  
20  
μVPP  
µVRMS  
Input voltage noise  
f = 0.1 Hz to 10 Hz  
eN  
iN  
Input voltage noise density f = 1 kHz  
Input current noise f = 1 kHz  
nV/Hz  
fA/Hz  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: ALM2402F-Q1  
 
ALM2402F-Q1  
ZHCSJP5B MAY 2019 REVISED OCTOBER 2021  
www.ti.com.cn  
6.6 Electrical Characteristics: VS = 5 V (continued)  
at TA = 25°C, VS = VS_O1 = VS_O2 = 5 V, RL = 10 kconnected to VS / 2, VCM = VS / 2, VOTF = 5 V, and VO = VS / 2 (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT VOLTAGE RANGE  
VCM  
Common-mode voltage  
0.2  
80  
V
(V+) 1.2  
95  
0.2 V < VCM < (V+) 1.2 V  
Common-mode rejection  
ratio  
CMRR  
dB  
TA = 40to +125,  
0.2 V < VCM < (V+) 1.2 V  
52  
OPEN-LOOP GAIN  
TA = 25°C  
85  
60  
93  
0.3 V < VO < (VS) 1.5 V,  
RL = 10 kΩ  
AOL  
Open-loop voltage gain  
dB  
TA = 40°C to +125°C  
FREQUENCY RESPONSE  
GBW  
SR  
tS  
Gain-bandwidth product  
CL = 15 pF  
1.3  
1.7  
MHz  
2-V step, G = +1 V/V,  
CL = 50 pF  
Slew rate  
V/μs  
Settling time  
To 0.1%, 2-V step , G = +1 V/V  
2
5
μs  
μs  
Overload recovery time  
VIN × (1) × gain > VS  
VS = 5 V, VO = 2.82 VPP, G = +2 V/V,  
f = 1 kHz, RL = 100 Ω  
Total harmonic distortion +  
noise  
THD+N  
dB  
73  
OUTPUT  
TA = 25°C  
0.3  
0.5  
TA = 40°C to +125,  
ISINK = 200 mA  
130  
300  
Positive rail, VID = 100 mV  
mV  
TA = 40°C to +125,  
ISINK = 100 mA  
60  
0.4  
150  
0.6  
Voltage output swing from  
rail  
Vo  
TA = 25°C  
TA = 40°C to +125,  
ISINK = 200 mA  
200  
575  
Negative rail, VID = 100 mV  
mV  
mA  
TA = 40°C to +125,  
ISINK = 100 mA  
100  
200  
Sinking (short to supply)  
Sourcing (short to ground)  
500  
550  
ISC  
Short-circuit current  
POWER SUPPLY  
4
4.5  
5
IO = 0 A, TA = 25℃  
Quiescent current per  
amplifier  
IQ  
mA  
IO = 0 A, TA = 40°C to +125°C  
VOTF/SH_DN = 0 V  
0.5  
TEMPERATURE  
Thermal shutdown  
165  
159  
°C  
°C  
Thermal shutdown  
recovery  
Overtemperature fault low  
voltage  
VOL_OTF  
400  
mV  
RPULLUP = 2.5 k, VPULLUP = 5.0 V  
VIH_OTF  
VIL_OTF  
Amplifier enable voltage  
Amplifier disable voltage  
1
V
V
0.35  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: ALM2402F-Q1  
ALM2402F-Q1  
ZHCSJP5B MAY 2019 REVISED OCTOBER 2021  
www.ti.com.cn  
6.7 Typical Characteristics  
at TA= 25°C, VS = 12 V, VCM= VS_O1= VS_O2= VS/2, and RL= 10 kΩ(unless otherwise noted)  
40  
36  
32  
28  
24  
20  
16  
12  
8
30  
20  
10  
0
-40 èC  
25 èC  
-10  
-20  
-30  
125 èC  
4
-6  
-5  
-4  
-3  
-2  
-1  
0
Input Common-mode Voltage (V)  
1
2
-120  
-100  
-80  
-60  
-40  
-20  
0
Offset Voltage Drift (µV/èC)  
D017  
D001  
5 typical units  
6-2. Offset Voltage  
6-1. Offset Voltage Drift  
vs Input Common-Mode Voltage  
Production Distribution  
5
4
120  
180  
Gain  
Phase  
100  
80  
60  
40  
20  
0
150  
120  
90  
3
2
1
0
60  
-1  
-2  
-3  
-4  
-5  
30  
0
-20  
-30  
4
6
8
10  
Supply Voltage (V)  
12  
14  
16  
100m  
1
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
1M  
10M  
D018  
D002  
5 typical units  
CLOAD = 200 nF  
RL = 50 Ω  
6-3. Offset Voltage vs Power Supply  
6-4. Open-Loop Gain and Phase  
vs Frequency  
65  
30  
20  
10  
0
VS = 12 V  
VS = 4.5 V  
G = +1  
G = -1  
G = +10  
60  
55  
50  
45  
40  
35  
30  
25  
20  
-10  
-20  
10  
100  
Load Capacitance (pF)  
1000  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
D003  
D004  
Gain = 1 V/V  
6-5. Phase Margin vs Capacitive Load  
6-6. Closed-Loop Gain vs Frequency  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: ALM2402F-Q1  
 
ALM2402F-Q1  
ZHCSJP5B MAY 2019 REVISED OCTOBER 2021  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
at TA= 25°C, VS = 12 V, VCM= VS_O1= VS_O2= VS/2, and RL= 10 kΩ(unless otherwise noted)  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
PSRR+, VS = 12 V  
PSRR-, VS = 12 V  
PSRR+, VS = 4.5 V  
PSRR-, VS = 4.5 V  
VS = 12 V  
VS = 4.5 V  
1
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
10M  
1
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
10M  
D005  
D006  
6-7. PSRR vs Frequency  
6-8. CMRR vs Frequency  
1
-40  
1
-40  
-60  
-80  
RLOAD = 100 W  
RLOAD = 10K W  
RLOAD = 100 W  
RLOAD = 10K W  
0.1  
0.01  
0.1  
0.01  
-60  
-80  
0.001  
-100  
0.001  
-100  
10m  
100m  
Output Amplitude (VRMS  
1
100  
1k  
Frequency (Hz)  
10k  
)
D011  
D010  
Input signal  
Measurement  
VO = 8 VPP  
Gain = 2 V/V  
Measurement  
frequency =1 kHz bandwidth = 80 kHz  
bandwidth = 80 kHz  
6-10. THD+N vs Output Amplitude  
6-9. THD+N Ratio vs Frequency  
14  
12  
10  
8
32  
24  
16  
8
Vs = 12 V  
Vs = 4.5 V  
IB  
+
IB  
-
6
0
4
IOS  
-8  
2
-16  
0
1
-6  
-4.5  
-3  
-1.5  
0
Input Common-mode Voltage (V)  
1.5  
3
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
10M  
D019  
D013  
6-12. Input Bias Current  
6-11. Maximum Output Voltage  
vs Common-Mode Voltage  
vs Frequency  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: ALM2402F-Q1  
ALM2402F-Q1  
ZHCSJP5B MAY 2019 REVISED OCTOBER 2021  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
at TA= 25°C, VS = 12 V, VCM= VS_O1= VS_O2= VS/2, and RL= 10 kΩ(unless otherwise noted)  
45  
40  
35  
30  
25  
20  
15  
10  
5
5
4.5  
4
-40 èC  
25 èC  
3.5  
3
IB  
-
85 èC  
2.5  
2
IB  
+
125 èC  
1.5  
1
IOS  
0.5  
0
0
-5  
0
0.2  
0.4 0.6  
Output Current (A)  
0.8  
1
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
D022  
D020  
6-14. Output Voltage Swing  
6-13. Input Bias Current vs Temperature  
vs Output Source Current  
0
-1.5  
-3  
130  
125  
120  
115  
110  
105  
100  
95  
85 èC  
-40 èC  
125 èC  
90  
-4.5  
-6  
85  
25 èC  
80  
75  
70  
0
0.2  
0.4  
Output Current (A)  
0.6  
0.8  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
D024  
D025  
6-15. Output Voltage Swing  
6-16. CMRR vs Temperature  
vs Output Sink Current  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
Time (1 s/div)  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
D027  
D026  
6-18. 0.1-Hz to 10-Hz Noise  
6-17. PSRR vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: ALM2402F-Q1  
ALM2402F-Q1  
ZHCSJP5B MAY 2019 REVISED OCTOBER 2021  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
at TA= 25°C, VS = 12 V, VCM= VS_O1= VS_O2= VS/2, and RL= 10 kΩ(unless otherwise noted)  
10000  
1000  
100  
3.5  
3
2.5  
2
1.5  
1
0.5  
0
10  
5
0
2
4
6
8
10  
Supply Voltage (V)  
12  
14  
16  
100m  
1
10  
100 1k  
Frequency (Hz)  
10k  
100k  
1M  
D028  
D007  
5 typical units  
VO = 8 VPP  
6-20. Quiescent Current vs Power Supply  
6-19. Input Voltage Spectral Noise Density vs Frequency  
5
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
4.5  
VS = 12 V  
VS = 16 V  
4
3.5  
3
2.5  
2
VS = 4.5 V  
VS = 4.5 V  
1.5  
1
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
Temperature (èC)  
D029  
D030  
5 typical units  
RL = 100 Ω  
6-21. Quiescent Current vs Temperature  
6-22. Open-Loop Gain vs Temperature  
100000  
10000  
1000  
100  
30  
RISO = 0  
RISO = 25  
RISO = 50  
25  
20  
15  
10  
5
0
-5  
10  
10  
100  
Capactiance (pF)  
1000  
100m  
1
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
1M  
10M  
D032  
D012  
10-mV output step  
Gain = 1 V/V  
6-24. Small-Signal Overshoot  
6-23. Open-Loop Output Impedance  
vs Capacitive Load  
vs Frequency  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: ALM2402F-Q1  
ALM2402F-Q1  
ZHCSJP5B MAY 2019 REVISED OCTOBER 2021  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
at TA= 25°C, VS = 12 V, VCM= VS_O1= VS_O2= VS/2, and RL= 10 kΩ(unless otherwise noted)  
50  
VIN (V), VS = 12 V  
RISO = 0  
RISO = 25  
RISO = 50  
VOUT (V), VS = 12 V  
VIN (V), VS = 4.5 V  
VOUT (V), VS = 4.5 V  
40  
30  
20  
10  
0
10  
100  
Capactiance (pF)  
1000  
Time (100 ms/div)  
D033  
D034  
10-mV output step  
Gain = 1 V/V  
6-25. Small-Signal Overshoot  
6-26. No Phase Reversal  
vs Capacitive Load  
VIN  
VOUT, RLOAD = 10K W  
VOUT, RLOAD = 50 W  
VOUT  
VIN  
Time (5 ms/div)  
Time (1 ms/div)  
D035  
D036  
VS = 4.5 V  
VIN = 10 mVPP  
6-27. Negative Overload Recovery  
6-28. Small-Signal Step Response  
0.9  
0.85  
0.8  
Faling  
Rising  
Sourcing  
0.75  
0.7  
0.65  
0.6  
0.55  
0.5  
Sinking  
0.45  
0.4  
0.35  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Time (1 ms/div)  
Temperature (èC)  
D041  
D040  
VIN = 5 V  
6-30. Short-Circuit Current vs Temperature  
6-29. Settling Time  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: ALM2402F-Q1  
ALM2402F-Q1  
ZHCSJP5B MAY 2019 REVISED OCTOBER 2021  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
at TA= 25°C, VS = 12 V, VCM= VS_O1= VS_O2= VS/2, and RL= 10 kΩ(unless otherwise noted)  
160  
150  
140  
130  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10M  
100M  
Frequency (Hz)  
1G  
10G  
D015  
PRF = 10 dBm  
6-31. EMIRR vs Frequency  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: ALM2402F-Q1  
ALM2402F-Q1  
ZHCSJP5B MAY 2019 REVISED OCTOBER 2021  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The ALM2402F-Q1 is a dual-power op amp qualified for use in automotive applications. Key features for this  
device are low offset voltage, high output current drive capability, and high FPBW capability. The device also  
offers protection features such as thermal shutdown and current limit. The 14-pin HTSSOP package minimizes  
board space and power dissipation.  
7.2 Functional Block Diagram  
VCC  
VS_O(1)  
12  
13  
PMOS Current Limiting and  
Biasing  
IN(1)+  
2
1
+
OUT(1)  
EMI  
OTA  
Rejection  
NMOS Current Limiting and  
Biasing  
IN(1)œ  
œ
EN  
EN  
GND  
VS  
14  
11  
OTF/SH_DN  
3
VCC  
Internal  
Thermal Detection  
Circuitry  
VCC  
VS_O(2)  
10  
PMOS Current Limiting and  
Biasing  
IN(2)+  
4
+
9
OUT(2)  
EMI  
OTA  
Rejection  
NMOS Current Limiting and  
Biasing  
IN(2)œ  
5
6
œ
GND  
EN  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: ALM2402F-Q1  
 
 
 
ALM2402F-Q1  
ZHCSJP5B MAY 2019 REVISED OCTOBER 2021  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 OTF/SH_DN  
The overtemperature and shutdown (OTF/SH_DN) pin is a bidirectional pin that allows both op amps to be put  
into a low IQ state (~500 µA) when forced low or less than VIL_OTF. As a result of this pin being bidirectional, and  
the respective enable and disable functionality, this pin must be pulled high or greater than VIH_OTF through a  
pullup resistor; see the Electrical Characteristics table.  
When the junction temperature of ALM2402F-Q1 exceeds the limits specified in the Recommended Operating  
Conditions table, the OTF/SH_DN pin goes low to alert the application that both the outputs have turned off  
because of an overtemperature event. Also, the OTF pin goes low if VS_O1 and VS_O2 are 0 V. In case of an  
overtemperature event, the op amps are shut down even if OTF/SH_DN is forced high.  
When OTF/SH_DN is pulled low and the op amps are shut down, the op amps are in an open loop, even when  
there is negative feedback applied. This occurrence is due to the loss of the open-loop gain in the op amps when  
the biasing is disabled. See 7.4.1 for more details on open- and closed-loop considerations.  
7.3.2 Output Stage Supply Voltage  
The ALM2402F-Q1 uses three power rails. VS powers the op-amp signal path (OTA) and protection circuitry.  
VS_O1 and VS_O2 power the output high side driver. Each supply can operate at separate voltage levels  
(higher or lower). The minimum and maximum values listed in the Recommended Operating Conditions table are  
voltages that enable the ALM2402F-Q1 to properly function at or near the specification listed in Electrical  
Characteristics table.  
7.3.3 Current-Limit and Short-Circuit Protection  
Each op amp in the ALM2402F-Q1 has separate internal current limiting for the PMOS (high-side) and NMOS  
(low-side) output transistors. If the output is shorted to ground then the PMOS (high-side) current limit is  
activated, and limits the current to 750 mA nominally. If the output is shorted to supply then the NMOS (low-side)  
current limit is activated and limits the current to 550 mA nominally at 25°C. The current limit value decreases  
with increasing temperature as a result of the temperature coefficient of a base-emitter junction voltage.  
Similarly, the current limit value increases at low temperatures.  
In the case of short-to-ground scenarios, a programmable current limit for the PMOS (high-side) is achieved by  
adding resistance between VS_O(x), where x = 1 or 2, and the supply VS. The added current limit resistor  
reduces the drain-source voltage across the PMOS output transistor, thus reducing the output current drive  
capability. For a desired current limit (ILIMIT), an appropriate current limiting resistor (Rlimit) is selected using  
Equation 1.  
RLIMIT = (VS -1.5) / ILIMIT  
(1)  
When current is limited, the safe limits for the die temperature must be taken in to account; see the  
Recommended Operating Conditions and Absolute Maximum Ratings tables. With too much power dissipation,  
the die temperature can surpass thermal shutdown limits; the op amp shuts down and reactivates after the die  
has fallen below thermal limits. However, do not continuously operate the device in thermal hysteresis for long  
periods of time (see the Absolute Maximum Ratings table).  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: ALM2402F-Q1  
 
 
 
ALM2402F-Q1  
ZHCSJP5B MAY 2019 REVISED OCTOBER 2021  
www.ti.com.cn  
7.3.4 Input Common-Mode Overvoltage Clamps  
The input common mode range of the ALM2402F-Q1 is between (V) + 0.2 V and (V+) 1.2 V (see the  
Electrical Characteristics table). Staying within this range allows the op amps to perform and operate within the  
specification listed in the Electrical Characteristics. Operating beyond these limits can cause distortion and  
nonlinearities.  
In order for the inputs to tolerate high voltages in the event of a short to supply, Zener diodes have been added  
(see 7-1). The current into this Zener diode is limited through internal resistors (10 kΩeach). When operating  
near or above the Zener voltage (7 V), the additional voltage error caused by the mismatch in internal resistors  
must be taken in to account. In unity gain configurations, the op amp forces both gate voltages to be equal to the  
Zener voltage on the positive input pin, and ideally both Zeners sink the same amount of current and force the  
output voltage to be equal to VIN. However, in reality, RN and RP and VZ between both Zener diodes do not  
perfectly match, and have some percentage difference between their values. This occurrence leads to the output  
being VO = VIN × (ΔR + ΔVZ) .  
½
ALM2402F-Q1  
RN  
+
RP  
+
VIN  
7-1. Schematic Including Input Clamps  
7.3.5 Thermal Shutdown  
If the die temperature exceeds safe limits, all outputs are disabled, and the OTF/SH_DN pin is driven low. After  
the die temperature has fallen to a safe level, operation automatically resumes. The OTF/SH_DN pin is released  
after operation has resumed.  
When operating the die at a high temperature, the op amp toggles on and off between the thermal shutdown  
hysteresis. In this event, the safe limits for the die temperature must be taken in to account; see the  
Recommended Operating Conditions and Thermal Conditions tables. Do not continuously operate the device in  
thermal hysteresis for long periods of time; see the Recommended Operating Conditions table.  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: ALM2402F-Q1  
 
ALM2402F-Q1  
ZHCSJP5B MAY 2019 REVISED OCTOBER 2021  
www.ti.com.cn  
7.3.6 Output Stage  
Designed as a high-voltage, high current operational amplifier, the ALM2402F-Q1 device delivers a robust output  
drive capability. A class AB output stage with common-source transistors is used to achieve full rail-to-rail output  
swing capability. For resistive loads up to 10 kΩ, the output swings typically to within 5 mV of either supply rail  
regardless of the power-supply voltage applied. Different load conditions change the ability of the amplifier to  
swing close to the rails.  
Each output transistor has internal reverse diodes between drain and source that conduct if the output is forced  
greater than the supply or less than ground (reverse current flow). These diodes can be used as flyback  
protection in inductive-load driving applications. Limit the use of these diodes to pulsed operation to minimize  
junction temperature overheating due to (VF × IF). Internal current limiting circuitry does not operate when current  
is flown in the reverse direction and the reverse diodes are active.  
7.3.7 EMI Susceptibility and Input Filtering  
Op amps vary with regard to the susceptibility of the device to electromagnetic interference (EMI). If conducted  
EMI enters the op amp, the dc offset observed at the amplifier output may shift from the nominal value while EMI  
is present. This shift is a result of signal rectification associated with the internal semiconductor junctions. While  
all op-amp pin functions can be affected by EMI, the signal input pins are likely to be the most susceptible. The  
ALM2402F-Q1 incorporates an internal input low-pass filter that reduces the amplifiers response to EMI. Both  
common-mode and differential mode filtering are provided by this filter.  
Texas Instruments has developed the ability to accurately measure and quantify the immunity of an operational  
amplifier over a broad frequency spectrum extending from 10 MHz to 990 MHz. The EMI rejection ratio (EMIRR)  
metric allows op amps to be directly compared by the EMI immunity. Detailed information can also be found in  
the EMI Rejection Ratio of Operational Amplifiers application report, available for download from www.ti.com.  
7.4 Device Functional Modes  
7.4.1 Open-Loop and Closed-Loop Operation  
As a result of the very high open-loop dc gain of the ALM2402F-Q1, the device functions as a comparator in  
open-loop for most applications. As noted in the Electrical Characteristics table, the majority of electrical  
characteristics are verified in negative feedback, closed-loop configurations. Certain dc electrical characteristics,  
like offset, may have a higher drift across temperature and lifetime when continuously operated in open loop  
over the lifetime of the device.  
7.4.2 Shutdown  
When the OTF/SH_DN pin is left floating or is grounded, the op amp shuts down to a low IQ state and does not  
operate; the op amp outputs go to a high-impedance state. See the OTF/SH_DN section for more detailed  
information on the OTF/SH_DN pin.  
7-1. Shutdown Truth Table  
NAME  
LOGIC STATE  
OP AMP STATE  
Operating  
High ( > VIH_OTF see Recommended Operating Conditions)  
Low ( < VIL_OTF see Recommended Operating Conditions)  
OTF/SH_DN  
Shutdown (low IQ state)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: ALM2402F-Q1  
 
 
 
 
ALM2402F-Q1  
ZHCSJP5B MAY 2019 REVISED OCTOBER 2021  
www.ti.com.cn  
8 Application and Implementation  
Note  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The ALM2402F-Q1 is a dual-power op amp with performance and protection features that are optimal for many  
applications. For op amps, there are many general design consideration that must taken into account. The  
following sections describe what to consider for most closed-loop applications, and gives a specific example of  
the ALM2402F-Q1 being used in a motor-drive application.  
8.1.1 Capacitive Load and Stability  
The ALM2402F-Q1 is designed to be used in applications where driving a capacitive load is required. As with all  
op amps, specific instances can occur where the ALM2402F-Q1 device can become unstable. The particular op-  
amp circuit configuration, layout, gain, and output loading are some of the factors to consider when establishing  
whether or not an amplifier is stable in operation. An op amp in the unity-gain (1 V/V) buffer configuration that  
drives a capacitive load exhibits a greater tendency to be unstable than an amplifier operated at a higher-noise  
gain. The capacitive load, in conjunction with the op-amp output resistance, creates a pole within the feedback  
loop that degrades the phase margin. The degradation of the phase margin increases as the capacitive loading  
increases. When operating in the unity-gain configuration, the ALM2402F-Q1 remains stable with a pure  
capacitive load up to approximately 1 nF. Increasing the amplifier closed-loop gain allows the amplifier to drive  
increasingly larger capacitance. This increased capability is evident when observing the overshoot response of  
the amplifier at higher voltage gains.  
One technique for increasing the capacitive load drive capability of the amplifier operating in a unity-gain  
configuration is to insert a small resistor, typically 100 mΩto 10 Ω, in series with the output (RS), as shown in 图  
8-1. This resistor significantly reduces the overshoot and ringing associated with large capacitive loads.  
V+  
RS  
œ
VOUT  
CL  
+
RL  
+
VIN  
œ
8-1. Capacitive Load Drive  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: ALM2402F-Q1  
 
 
 
 
ALM2402F-Q1  
ZHCSJP5B MAY 2019 REVISED OCTOBER 2021  
www.ti.com.cn  
8.2 Typical Application  
R2  
R1  
Resolver  
Rotor  
+
COSINE  
Sensing  
Coil  
Excitation  
Coil  
Vbias  
ALM2402F-Q1  
+
CBL  
SINE  
R3  
Sensing  
Coil  
R4  
CBL  
V+  
V–  
excite–  
V+  
V–  
excite+  
Resolver-to-Digital  
Converter  
8-2. Resolver-Based Application  
High-power ac and brushless DC (BLDC) motor-drive applications need angular and position feedback in order  
to efficiently and accurately drive the motor. Position feedback can be achieved by using optical encoders, hall  
sensors, or resolvers. Resolvers are the goto choice when environmental or longevity requirements are  
challenging and extensive.  
A resolver acts like a transformer with one primary coil and two secondary coils. The primary coil, or excitation  
coil, is located on the rotor of the resolver. As the rotor of the resolver spins, the excitation coil induces a current  
into the sine and cosine sensing coils. These coils are oriented 90 degrees from one another, and produce a  
vector position read by the resolver to digital converter chip.  
Resolver excitation coils can have a very low dc resistance (< 100 Ω), requiring a sink and a source of up to 200  
mA from the excitation driver. The ALM2402F-Q1 can source and sink this current while providing current limiting  
and thermal shutdown protection. Incorporating these protections in a resolver design can increase the life of the  
end product.  
The fundamental design steps and ALM2402F-Q1 benefits shown in this application example can be applied to  
other inductive load applications, such as dc and servo motors.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: ALM2402F-Q1  
 
 
ALM2402F-Q1  
ZHCSJP5B MAY 2019 REVISED OCTOBER 2021  
www.ti.com.cn  
8.2.1 Design Requirements  
For this design example, use the parameters listed in 8-1 as the input parameters.  
8-1. Design Parameters  
DESIGN PARAMETER  
Ambient temperature range  
Available supply voltages  
EMC capacitance (CL)  
EXAMPLE VALUE  
40°C to +125°C  
12 V  
50 nF  
Excitation input voltage range  
Excitation frequency  
2 VRMS to 7 VRMS  
10 kHz  
8.2.2 Detailed Design Procedure  
When using the ALM2402F-Q1 in a resolver application, determine:  
Resolver excitation input impedance or resistance and inductance: ZO= 100 + j188; (R = 100 Ωand L = 3  
mH)  
Resolver transformation ration (VEXC / VSINCOS): 0.5 V/V at 10 kHz  
Package and RθJA: HTSSOP, 46.5°C/W  
Op amp maximum junction temperature: 150°C  
Op amp bandwidth: 1.3 MHz  
Op amp Slew Rate: 1.2 V/µs  
8.2.2.1 Resolver Excitation Input (Op Amp Output)  
Like a transformer, a resolver needs an alternating current input to function properly. The resolver receives  
alternating current from the primary coil (excitation input) and creates a multiple of this input current on the  
secondary sides (SIN, COS ports). When determining how to generate this alternating current, make sure to  
understand the op amp abilities and limitations. For the excitation input, the resolver input impedance, stability  
RMS voltage, and desired frequency must be taken in to account.  
8.2.2.1.1 Excitation Voltage  
The resolver primary winding or excitation coil can be driven by a single-ended op amp output with the other side  
of the coil grounded, or differentially as shown in 8-2. A differential drive offers higher voltage (double) on to  
the excitation coil, while not using as much output voltage headroom from the op amp. This larger output voltage  
due to the differential drive leads to lower distortion on the output signal.  
For this example, the resolver impedance is specified from 2 VRMS and 7 VRMS up to 20-kHz maximum  
frequency. To highlight use with a 7 VRMS resolver, an excitation voltage of 10 VPP is applied from each channel  
of the ALM2402F-Q1. The op amp is set in an inverting gain = 2 V/V, while applying an adequate common-  
mode bias. These conditions give the required 7 VRMS differential output (3.5 VRMS per each op amp channel) to  
the resolver primary winding without running into any op-amp headroom issues.  
Another consideration for excitation is op-amp power dissipation. As described in the Power Dissipation and  
Thermal Reliability section, power dissipation from the op amp can be lowered by driving the output peak  
voltages close to the supply and ground voltages. With the very low VOH/VOL of the ALM2402F-Q1, lower power  
dissipation is easily accomplished. See the Output Stage section for a further description of the rail-rail output  
stage.  
8.2.2.1.2 Excitation Frequency  
The excitation frequency is chosen based on the desired secondary-side output signal resolution. The excitation  
signal is similar to a sampling pulse in ADCs, with the real information being in the envelope created by the rotor.  
With a GBW of 1.3 MHz, the ALM2402F-Q1 has more than enough open-loop gain at 10 kHz to create negligible  
closed-loop gain error.  
Along with GBW, the ALM2402F-Q1 has optimal THD and SR performance to achieve 10-VPP output per  
channel.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: ALM2402F-Q1  
 
 
 
ALM2402F-Q1  
ZHCSJP5B MAY 2019 REVISED OCTOBER 2021  
www.ti.com.cn  
8.2.2.1.3 Excitation Impedance  
Knowledge of the primary-side impedance is very important when choosing an op amp for this application. As  
shown in 8-3, the excitation coil looks like an inductance in series with a resistance. Often, these values are  
not given, or are given as a function of frequency or phase angle, and must by calculated from the Cartesian or  
polar form. This calculation is a trivial task.  
After the coil resistance is determined, the maximum or peak-peak current needed from ALM2402F-Q1 is  
determined using Equation 2:  
VPP  
IOUT  
=
RL  
(2)  
In this example, the peak-to-peak output current equates to approximately 100 mA. Each op amp handles the  
peak current, with one op amp sinking current while the other op amp is sourcing current. Knowledge of the op  
amp current is very important when determining the device power dissipation, a topic that is discussed in Power  
Dissipation and Thermal Reliability.  
R2  
CEMC  
Excitation Coil  
Model  
R1  
+
RCRS  
LEXC  
Vbias  
ALM2402F-Q1  
CCRS  
RL  
+
R3  
CEMC  
R4  
8-3. Excitation Coil Implementation  
As shown in 8-3, designers often add a resistor (RCRS) in series with a capacitor (CCRS) to eliminate crossover  
distortion. This distortion occurs as a result of the biasing of BJTs in a discrete implementation. With the  
ALM2402F-Q1 rail-rail output and high-output current drive capability, this configuration is rarely needed.  
Common practice is to also add EMC capacitors to the op-amp outputs to help shield other devices on the PCB  
from the radiation created by the motor and resolver. When choosing CEMC, make sure to take the stability of the  
op amp into account.  
8.2.2.2 Resolver Output  
As mentioned in 8.2.2.1.2, the excitation signal is similar to a sampling pulse in ADCs, with the real  
information being in the envelope created by the rotor. Equation 3, Equation 4, and Equation 5 show the  
behavior of the sin and cos outputs. The excitation signal is attenuated and enveloped by the voltage created  
from the electromagnetic response of the rotating rotor. The resolver analog-output-to-digital converter filters out  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: ALM2402F-Q1  
 
 
ALM2402F-Q1  
ZHCSJP5B MAY 2019 REVISED OCTOBER 2021  
www.ti.com.cn  
the excitation signal, and processes the sine and cosine angles produced by the rotor. Hence, signal integrity or  
the sine and cosine envelope is most important in resolver design; although, some trade-offs in signal integrity of  
the excitation signal can be made for cost or convenience. Often, a square wave or sawtooth signal is used to  
accomplish excitation, as opposed to a sine wave.  
VEXC = VPP ìsin(2pft)  
(3)  
(4)  
(5)  
VSIN = TR ì VPP ìsin(2pft)ìsin(q)  
VCOS = TR ì VPP ìsin(2pft)ìcos(q)  
8.2.2.3 Power Dissipation and Thermal Reliability  
Power dissipation is critical to many industrial and automotive applications. Resolvers are typically chosen over  
other position feedback techniques because of reliability and accuracy in harsh conditions and high  
temperatures.  
The ALM2402F-Q1 is capable of high output current with power-supply voltages up to 16 V. Internal power  
dissipation increases when operating at high supply voltages. The power dissipated in the op amp (POPA) is  
calculated using Equation 6:  
VO(X)  
POPA = (V+ - VO(X))ìIOUT = (V+ - VO(X))ì  
RL  
(6)  
To calculate the worst-case power dissipation in the op amp, the ac and dc cases must be considered  
separately.  
In the case of constant output current (dc) to a resistive load, the maximum power dissipation in the op amp  
occurs when the output voltage is half the positive supply voltage. This calculation assumes that the op amp is  
sourcing current from the positive supply to a grounded load. If the op amp sinks current from a grounded load,  
modify Equation 7 to include the negative supply voltage instead of the positive.  
VO(X) (VO(X))2  
POPA(MAX _DC) = POPA  
(
) =  
2
4RL  
(7)  
The maximum power dissipation in the op amp for a sinusoidal output current (ac) to a resistive load occurs  
when the peak output voltage is 2/π times the supply voltage, given symmetrical supply voltages, as shown in  
Equation 8:  
2VO(X)  
2(VO(X))2  
p2 RL  
POPA(MAX _ AC) = POPA  
(
) =  
p
(8)  
After the total power dissipation is determined, the junction temperature at the worst expected ambient  
temperature case must be determined by using Equation 9:  
TJ(MAX) = POPA ìRqJA + TA(MAX)  
(9)  
8.2.2.3.1 Improving Package Thermal Performance  
The value of RθJA depends on the PCB layout. An external heat sink, a cooling mechanism such as a cold air  
fan, or both, can help reduce RθJA and thus improve device thermal capabilities. See TIs design support web  
page at www.ti.com/thermal for general guidance on improving device thermal performance.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: ALM2402F-Q1  
 
 
 
 
 
 
 
 
ALM2402F-Q1  
ZHCSJP5B MAY 2019 REVISED OCTOBER 2021  
www.ti.com.cn  
8.2.3 Application Curves  
The THD+N performance for the circuit described in the Excitation Voltage section is measured for a 10-kHz, 10-  
V
PP output signal from each op-amp channel. These measurement results are displayed in 8-2.  
8-2. Maximum Output Power and THD+N  
LOAD IMPEDANCE  
MAXIMUM OUTPUT POWER  
(mW)  
THD+N AT MAXIMUM OUTPUT POWER  
(dB)  
(Ω)  
100  
292  
50  
8-4 shows the THD+N performance for different input signal frequencies with a measurement bandwidth of 80  
kHz. 8-5 shows the circuit response with load capacitances of up to 100 nF. Using a larger resistor in series  
with the output, as shown in 8.1.1 further improves phase margin.  
1
-40  
-60  
-80  
-100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
G -1  
G -2  
RISO = 0  
RISO = 5  
RISO = 10  
0.1  
0.01  
0.001  
10  
100  
1000  
Capactiance (pF)  
10000  
100000  
100  
1k  
Frequency (Hz)  
10k  
D043  
D044  
8-5. Small-Signal Overshoot vs Capacitive Load  
8-4. THD+N vs Frequency  
9 Power Supply Recommendations  
The ALM2402F-Q1 is specified for continuous operation from 4.5 V to 16 V (±2.25 V to ±8 V) for VS, and 3 V to  
16V (±1.5 V to ±8 V) for VS_O(X); many specifications apply from 40°C to +125°C.  
Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-  
impedance power supplies. For more detailed information on bypass capacitor placement, see the Layout  
Guidelines section.  
CAUTION  
Supply voltages larger than 18 V can permanently damage the device (see the Absolute Maximum  
Ratings).  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: ALM2402F-Q1  
 
 
 
ALM2402F-Q1  
ZHCSJP5B MAY 2019 REVISED OCTOBER 2021  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
For best operational performance of the device, use good PCB layout practices, including:  
Noise can propagate into analog circuitry through the power pins of the circuit as a whole, as well as the  
operational amplifier. Bypass capacitors are used to reduce the coupled noise by providing low impedance  
power sources local to the analog circuitry.  
Connect low-ESR, 0.1-μF ceramic bypass capacitors between each supply pin and ground, placed as  
close as possible to the device. A single bypass capacitor from V+ to ground is applicable for single  
supply applications.  
Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective  
methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes.  
A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital  
and analog grounds, paying attention to the flow of the ground current. For more detailed information, see  
Circuit Board Layout Techniques.  
To reduce parasitic coupling, run the input traces as far away as possible from the supply or output traces. If  
keeping the traces separate is not possible, then cross the sensitive trace perpendicular, as opposed to in  
parallel with the noisy trace.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
10.2 Layout Example  
This layout does not verify optimum thermal impedance performance. See TIs design support web page at  
www.ti.com/thermal for general guidance on improving device thermal performance.  
10-1. ALM2402F-Q1 Layout Example  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: ALM2402F-Q1  
 
 
 
ALM2402F-Q1  
ZHCSJP5B MAY 2019 REVISED OCTOBER 2021  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation see the following: Texas Instruments, ALM2402F-Q1 Evaluation Module user's guide  
11.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: ALM2402F-Q1  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Oct-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ALM2402FQPWPRQ1  
ACTIVE  
HTSSOP  
PWP  
14  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 125  
A2402FQ  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ALM2402FQPWPRQ1 HTSSOP PWP  
14  
2000  
330.0  
12.4  
6.9  
5.6  
1.6  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HTSSOP PWP 14  
SPQ  
Length (mm) Width (mm) Height (mm)  
356.0 356.0 35.0  
ALM2402FQPWPRQ1  
2000  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
PWP 14  
4.4 x 5.0, 0.65 mm pitch  
PowerPAD TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224995/A  
www.ti.com  
PACKAGE OUTLINE  
PWP0014H  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
4
0
0
PLASTIC SMALL OUTLINE  
C
6.6  
6.2  
TYP  
SEATING PLANE  
PIN 1 ID  
AREA  
A
0.1 C  
12X 0.65  
14  
1
2X  
5.1  
4.9  
3.9  
NOTE 3  
7
8
0.30  
14X  
0.19  
4.5  
4.3  
B
0.1  
C A B  
SEE DETAIL A  
(0.15) TYP  
4X (0.28)  
NOTE 5  
4X (0.1)  
NOTE 5  
8
7
THERMAL  
PAD  
0.25  
GAGE PLANE  
2.86  
2.02  
15  
1.2 MAX  
0.15  
0.05  
0 - 8  
14  
1
0.75  
0.50  
DETAIL A  
(1)  
TYPICAL  
1.82  
0.98  
4224353/A 07/2018  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may differ and may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PWP0014H  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(3.4)  
NOTE 9  
SOLDER MASK  
DEFINED PAD  
(1.82)  
SYMM  
SEE DETAILS  
14X (1.5)  
1
14  
14X (0.45)  
(1.1)  
TYP  
15  
SYMM  
(2.86)  
(5)  
NOTE 9  
12X (0.65)  
8
7
(
0.2) TYP  
VIA  
(R0.05) TYP  
(1.1) TYP  
METAL COVERED  
BY SOLDER MASK  
(5.8)  
LAND PATTERN EXAMPLE  
SCALE:10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
PADS 1-14  
/A 07/2018  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PWP0014H  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(1.82)  
BASED ON  
0.125 THICK  
STENCIL  
14X (1.5)  
(R0.05) TYP  
1
14  
14X (0.45)  
15  
(2.86)  
SYMM  
BASED ON  
0.125 THICK  
STENCIL  
12X (0.65)  
8
7
SEE TABLE FOR  
METAL COVERED  
BY SOLDER MASK  
SYMM  
(5.8)  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:10X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
2.03 X 3.20  
1.86 X 2.86 (SHOWN)  
1.66 X 2.61  
0.125  
0.15  
0.175  
1.54 X 2.42  
4224353/A 07/2018  
NOTES: (continued)  
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
11. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

ALM2402FQPWPRQ1

汽车类双通道高输出电流运算放大器 | PWP | 14 | -40 to 125
TI

ALM2402QDRRRQ1

具有高电流输出的双路运算放大器 | DRR | 12 | -40 to 125
TI

ALM2402QPWPRQ1

具有高电流输出的双路运算放大器 | PWP | 14 | -40 to 125
TI

ALM2403-Q1

适用于旋转变压器应用且具有低失真的汽车类双通道高电压功率运算放大器
TI

ALM2403QPWPRQ1

适用于旋转变压器应用且具有低失真的汽车类双通道高电压功率运算放大器 | PWP | 14 | -40 to 125
TI

ALM31122-BLKG

700MHz - 1GHz 1-Watt High Linearity Amplifier
AVAGO

ALM31122-TR1G

700MHz - 1GHz 1-Watt High Linearity Amplifier
AVAGO

ALM31122-TR2G

700MHz - 1GHz 1-Watt High Linearity Amplifier
AVAGO

ALM31222-BLKG

1-Watt High Linearity Amplifier
AVAGO

ALM31222-TR1G

1-Watt High Linearity Amplifier
AVAGO

ALM31222-TR2G

1-Watt High Linearity Amplifier
AVAGO

ALM65

AC-DC Power Supplies
XPPOWER