AFE4404 [TI]

适用于可穿戴设备、光学心率监测和生物传感的超小型集成式 AFE;
AFE4404
型号: AFE4404
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于可穿戴设备、光学心率监测和生物传感的超小型集成式 AFE

文件: 总87页 (文件大小:1468K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
AFE4404  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
AFE4404 用于可穿戴光学心率监测和生物传感的超小型集成 AFE  
1 特性  
2 应用  
1
发送器:  
光学心率监测 (HRM)  
心率变异分析 (HRV)  
血氧饱和仪(SpO2 测量)  
最大摄氧量  
支持共阳极 LED 配置  
动态范围:100dB  
6 位可编程 LED 电流最高达 50mA(可扩展至  
100mA)  
卡路里消耗  
可编程 LED 接通时间  
3 说明  
同时支持 3 LED,适用于优化型血氧饱和度  
(SpO2) 测量、心率监测 (HRM) 或多波长 HRM  
AFE4404 是一款面向光生物传感 应用的模拟前端  
(AFE),例如心率监测 (HRM) 和血氧饱和度 (SpO2) 测  
量。该器件支持三个开关发光二极管 (LED) 和一个光  
电二极管。光电二极管的电流通过互阻抗放大器 (TIA)  
转换为电压,并使用模数转换器 (ADC) 进行数字化。  
ADC 代码可使用 I2C 接口读出。AFE 还配有带 6 位电  
流控制的全集成 LED 驱动器。该器件具有宽动态范围  
的发送和接收电路,有助于感测超小信号电平。  
接收器:  
24 位二进制补码格式表示光电二极管的电流  
输入  
TIA 输入端的独立直流偏移减法 DAC,用于每  
LED 和环境相位  
ADC 输出端的数字环境减法  
可编程互阻抗增益:  
10kΩ 2MΩ  
器件信息(1)  
动态范围:100dB  
器件型号  
AFE4404  
封装  
封装尺寸(标称值)  
2.60mm × 1.60mm(2)  
动态节能模式,可使电流降至 200µA 以下  
DSBGA (15)  
脉冲频率:10SPS 1000SPS  
灵活的脉冲排序和定时控制  
灵活的时钟选项:  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
(2) 请参见99 中的尺寸 D × E。  
外部时钟:  
4MHz 60MHz 输入时钟  
内部时钟:4MHz 振荡器  
I2C 接口  
工作温度范围:–20°C 70°C  
2.6mm × 1.6mm DSBGA 封装,0.5mm 间距  
电源:Rx2V 3.6VTx3V 5.25V;  
IO1.8V 3.6V  
简化框图  
TX_SUP  
RX_SUP  
LDO  
TX_SUP  
TX1  
TX2  
TX3  
Offset  
Cancellation  
DAC  
I-V Amplifier (TIA)  
Cf  
LED  
Driver  
ILED  
IO_SUP  
I2C_CLK  
I2C_DAT  
RESETZ  
Rf  
Rf  
Cf  
Buffer  
INP  
INM  
Noise-  
Reduction  
Filter  
I2C Interface  
IO  
Buffer  
ADC  
Internal,  
External  
Clock  
Timing  
Engine  
ADC_RDY  
CLK  
GND  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBAS689  
 
 
 
 
AFE4404  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 13  
8.4 Device Functional Modes........................................ 28  
8.5 Register Map........................................................... 32  
Application and Implementation ........................ 67  
9.1 Application Information............................................ 67  
9.2 Typical Application .................................................. 67  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 5  
7.5 Electrical Characteristics........................................... 6  
7.6 Timing Requirements ............................................... 7  
7.7 Typical Characteristics.............................................. 8  
Detailed Description ............................................ 12  
8.1 Overview ................................................................. 12  
8.2 Functional Block Diagram ....................................... 12  
9
10 Power Supply Recommendations ..................... 74  
11 Layout................................................................... 76  
11.1 Layout Guidelines ................................................. 76  
11.2 Layout Example .................................................... 76  
12 器件和文档支持 ..................................................... 77  
12.1 社区资源................................................................ 77  
12.2 ....................................................................... 77  
12.3 静电放电警告......................................................... 77  
12.4 Glossary................................................................ 77  
13 机械、封装和可订购信息....................................... 78  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (October 2015) to Revision C  
Page  
Changed specifications of t1 and t4 rows in Table 7 to improve rejection of ambient light................................................... 23  
Changed Description column in Table 10 ........................................................................................................................... 25  
Changed Table 11 ................................................................................................................................................................ 26  
Changed Table 12 ................................................................................................................................................................ 27  
Added Reducing Sensitivity to Ambient Light Modulation section........................................................................................ 69  
Changes from Revision A (August 2015) to Revision B  
Page  
Changed TX_SUP pin number to E3 in Pin Functions table ................................................................................................. 4  
Added Figure 9 ....................................................................................................................................................................... 9  
Added Decimation Mode section ......................................................................................................................................... 31  
Added rows 3Dh, 3Fh, and 40h to Table 16 ........................................................................................................................ 34  
Added Register 3Dh description to Register Map section.................................................................................................... 65  
Added Register 3Fh and Register 40h descriptions to Register Map section...................................................................... 66  
Added System-Level ESD Considerations section ............................................................................................................. 68  
Added input-referred current paragraph associated to Figure 9 in Application Curves section........................................... 71  
Changes from Original (June 2015) to Revision A  
Page  
Deleted Diagnostics Mode section ....................................................................................................................................... 30  
Changed bit 2 of address 00h to 0 in Table 16 ................................................................................................................... 32  
Deleted row 30h from Table 16 ........................................................................................................................................... 33  
Changed bit 2 name and description in Register 0h ........................................................................................................... 35  
Deleted Register 30h ........................................................................................................................................................... 58  
2
Copyright © 2015–2016, Texas Instruments Incorporated  
 
AFE4404  
www.ti.com.cn  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
5 Device Comparison Table  
LED DRIVE  
CURRENT  
(mA, Max)  
OPERATING  
TEMPERATURE  
RANGE  
LED DRIVE  
CONFIGURATION  
PRODUCT  
PACKAGE-LEAD  
OPTIMIZED APPLICATION  
H-bridge,  
common anode  
AFE4400  
AFE4490  
VQFN-40  
VQFN-40  
50  
0°C to 70°C  
Finger-clip pulse oximeters  
H-bridge,  
common anode  
200  
–40°C to 85°C  
Clinical-grade pulse oximeters  
H-bridge,  
common anode  
AFE4403  
AFE4404  
DSBGA-36  
DSBGA-15  
100  
–20°C to 70°C  
–20°C to 70°C  
Clinical pulse oximeter patches, wearables  
Wearable optical bio-sensing  
Common anode  
50(1)  
(1) Mode that doubles the range to 100 mA with additional restrictions.  
6 Pin Configuration and Functions  
YZP Package  
15-Ball DSBGA  
Bottom View  
I2C_DAT  
RESETZ  
I2C_CLK  
TX2  
TX_SUP  
E
D
C
B
A
GND  
DNC  
INP  
CLK  
TX3  
TX1  
ADC_RDY  
INM  
1
RX_SUP  
IO_SUP  
2
3
Copyright © 2015–2016, Texas Instruments Incorporated  
3
AFE4404  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
www.ti.com.cn  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
ADC_RDY  
B2  
Digital  
Digital  
ADC ready interrupt signal (output)  
Clock input or output, selectable based on register. Default is input (external clock mode).  
Can be set via a register to output the clock when the oscillator is enabled.(1)(2)  
CLK  
C2  
DNC  
C1  
D3  
E2  
E1  
A1  
B1  
Do not connect (leave floating)  
GND  
Ground  
Digital  
Digital  
Analog  
Analog  
Common ground for transmitter and receiver  
I2C clock input, external pullup resistor to IO_SUP (for example, 10 kΩ)  
I2C data, external pullup resistor to IO_SUP (for example, 10 kΩ)  
Connect only to anode of photodiode(3)  
I2C_CLK  
I2C_DAT  
INM  
INP  
Connect only to cathode of photodiode(3)  
Separate supply for digital I/O. Must be less than or equal to RX_SUP.  
Can be tied to RX_SUP.  
IO_SUP  
A3  
Supply  
RESETZ or PWDN: function based on (active low) duration of RESETZ pulse(4)  
A 25-µs to 50-µs duration = RESETZ active.  
.
RESETZ  
D1  
Digital  
A > 200-µs duration = PWDN active.  
RX_SUP  
TX1  
A2  
B3  
D2  
C3  
E3  
Supply  
Analog  
Analog  
Analog  
Supply  
Receiver supply; 1-µF decapacitor to GND  
Transmit output, LED1  
TX2  
Transmit output, LED2  
TX3  
Transmit output, LED3  
TX_SUP  
Transmitter supply; 1-µF decapacitor to GND  
(1) Depending on whether external clock mode or internal oscillator mode is used, extra series or shunt resistors are recommended on the  
CLK pin. For more details, see the Typical Application section.  
(2) In both hardware power-down (PWDN) and software power-down (PDNAFE) modes, the CLK pin is driven by the AFE to 0 V.  
Therefore, if operating in external clock mode, take care to shut off the external clock to the AFE when in these power-down modes.  
(3) Maintain the indicated polarity of photodiode connections to the AFE input pins.  
(4) A RESET pulse must be applied after power-up to ensure that the registers are all reset to their default values.  
4
Copyright © 2015–2016, Texas Instruments Incorporated  
AFE4404  
www.ti.com.cn  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
RX_SUP to GND  
4
4
IO_SUP to GND  
Supply voltage range  
V
RX_SUP-IO_SUP  
TX_SUP to GND  
6
Voltage applied to analog inputs  
Voltage applied to digital inputs  
Max [–0.3, (GND – 0.3)]  
Max [–0.3, (GND – 0.3)]  
Min [4, (RX_SUP + 0.3)]  
Min [4, (IO_SUP + 0.3)]  
V
V
50-mA LED current mode  
(ILED_2X = 0)  
10%  
Maximum duty cycle (cumulative):  
sum of all LED phase durations as a function  
of the total period  
100-mA LED current mode  
(ILED_2X = 1)  
3%  
Storage temperature, Tstg  
–60  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
±1000  
±250  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
3.6  
UNIT  
V
RX_SUP  
IO_SUP  
Receiver supply  
2
Input/output supply  
1.7  
Min (3.6, RX_SUP)  
V
(1)  
50-mA LED current mode  
(ILED_2X = 0)  
3.0 or (0.5 + VLED  
)
,
5.25  
5.25  
whichever is greater  
TX_SUP  
Transmitter supply  
V
(1)  
100-mA LED current mode  
(ILED_2X = 1)  
3.0 or (1.0 + VLED) ,  
whichever is greater  
Digital inputs  
Analog inputs  
0
0
IO_SUP  
RX_SUP  
70  
V
V
Operating temperature range  
–20  
°C  
(1) VLED refers to the maximum voltage drop across the external LED (at maximum LED current). This value is usually governed by the  
forward drop voltage (VFB) of the LED.  
7.4 Thermal Information  
AFE4404  
THERMAL METRIC(1)  
YZP (DSBGA)  
UNIT  
15 BALLS  
67.5  
0.5  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
12.9  
0.2  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
12.9  
n/a  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
Copyright © 2015–2016, Texas Instruments Incorporated  
5
AFE4404  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
www.ti.com.cn  
7.5 Electrical Characteristics  
Minimum and maximum specifications are at TA = –20°C to 70°C, typical specifications are at 25°C. TX_SUP = 4 V, RX_SUP  
= IO_SUP = 3 V, 100-Hz PRF, 8-MHz external clock (with CLKDIV_EXTMODE set to divide-by-2), detector CIN = 50 pF, and  
CLKDIV_PRF set to 1, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
PULSE REPETITION FREQUENCY  
PRF(1)  
Pulse repetition frequency  
10(2)  
1000  
SPS  
RECEIVER  
Offset cancellation DAC current range  
Offset cancellation DAC current step  
TIA gain setting  
–7 to 7  
µA  
µA  
Ω
0.47  
10k to 2M  
2.5 to 25  
2.5(3)  
Cf setting  
pF  
kHz  
Switched RC filter bandwidth  
ADC averages  
1
16  
Detector capacitance  
Differential capacitance between INP, INN  
10  
200  
pF  
TRANSMITTER  
ILED_2X = 0  
ILED_2X = 1  
0 to 50  
0 to 100  
6
LED current range  
mA  
LED current resolution  
CLOCKING (Internal Oscillator)  
Frequency  
Bits  
4
±1%  
MHz  
Accuracy  
Room temperature  
Frequency drift with temperature  
Full temperature range  
±0.5%  
100  
Jitter (RMS)  
ps  
V
Output clock high level  
Output clock low level  
IO_SUP  
0
V
10% to 90%, 15-pF load capacitance on  
CLK pin  
Output clock rise and fall times  
< 30  
ns  
CLOCKING (External Clock)  
Frequency range(4)  
4
60  
MHz  
V
Input clock high level  
Input clock low level  
IO_SUP  
0
V
Input capacitance of CLK pin  
Capacitance to ground  
< 4  
pF  
I2C INTERFACE  
Maximum clock speed  
I2C slave address  
400  
58  
kHz  
Hex  
PERFORMANCE  
SNR over a 20-Hz bandwidth for a 500-kΩ  
gain setting, 50% FS output, 2% LED and  
sampling pulse duration,  
Receiver SNR  
100  
100  
dBFS(5)  
dBFS(5)  
ADC averages set to 16  
SNR over a 20-Hz bandwidth for a 50-mA  
LED current setting  
Transmitter SNR  
(1) PRF refers to the rate at which samples from each of the four phases are output from the AFE.  
(2) To extend the lower range of PRF down to 10 Hz, program the CLKDIV_PRF setting.  
(3) The effective bandwidth of the switched RC filter scales as a function of the sampling duty cycle. For example, at 2% sampling width  
duty cycle, the effective bandwidth of the switched RC filter is approximately 50 Hz.  
(4) With appropriate setting of the clock divider ratio (CLKDIV_EXTMODE).  
(5) dBFS refers to a full-scale voltage of 2 V.  
6
Copyright © 2015–2016, Texas Instruments Incorporated  
 
AFE4404  
www.ti.com.cn  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
Electrical Characteristics (continued)  
Minimum and maximum specifications are at TA = –20°C to 70°C, typical specifications are at 25°C. TX_SUP = 4 V, RX_SUP  
= IO_SUP = 3 V, 100-Hz PRF, 8-MHz external clock (with CLKDIV_EXTMODE set to divide-by-2), detector CIN = 50 pF, and  
CLKDIV_PRF set to 1, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CURRENT CONSUMPTION  
Normal operation, external clock mode  
Normal operation, internal oscillator mode  
In dynamic power-down mode(6)  
Hardware power-down (PWDN) mode(7)  
Software power-down (PDNAFE) mode(7)  
Normal operation, external clock mode  
Normal operation, internal oscillator mode  
In dynamic power-down mode(6)  
Hardware power-down (PWDN) mode(7)  
Software power-down (PDNAFE) mode(7)  
Normal operation, external clock mode(8)  
Normal operation, internal oscillator mode(8)  
In dynamic power-down mode(6)(8)  
620  
670  
300  
3
RX_SUP current  
IO_SUP current  
TX_SUP current  
µA  
35  
20  
5
20  
3
µA  
µA  
5
25  
25  
5
Hardware power-down (PWDN) mode(7)(8)  
Software power-down (PDNAFE) mode(7)(8)  
2
2
TRANSIENT RECOVERY  
tACTIVE  
Recovery from PWDN mode  
Time for signal chain to be functional(9)  
10  
ms  
ms  
Recovery from any event causing a  
change in signal characteristics  
PRF = 100 Hz, sampling duty cycle  
(each phase) of 2%(10)  
tCHANNEL  
200  
DIGITAL INPUTS  
0.9 ×  
IO_SUP  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
IO_SUP  
0
V
V
0.1 ×  
IO_SUP  
DIGITAL OUTPUTS  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
IO_SUP  
0
V
V
(6) In dynamic power-down mode for 90% and active mode for 10% of the period.  
(7) External clock mode with the external clock switched off.  
(8) LED currents set to 0 mA.  
(9) For full performance to be restored, a longer time as governed by tCHANNEL can be applicable.  
(10) tCHANNELscales inversely with the sampling duty cycle.  
7.6 Timing Requirements  
MIN  
TYP  
MAX  
UNIT  
I2C data rise time with a 10-kΩ pullup resistor with a 20-pF load from I2C  
data to GND  
tI2C_RISE  
1200  
ns  
I2C data fall time (when the data line is pulled down by the AFE) with a 20-pF  
load from I2C data to GND  
tI2C_FALL  
28  
ns  
tADC_RDY_RISE  
tADC_RDY_FALL  
ADC_RDY rise time (10% to 90%) with a 15-pF capacitive load to ground  
ADC_RDY fall time (90% to 10%) with a 15-pF capacitive load to ground  
21  
21  
ns  
ns  
Copyright © 2015–2016, Texas Instruments Incorporated  
7
AFE4404  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
www.ti.com.cn  
7.7 Typical Characteristics  
At 25°C, TX_SUP = 4 V, RX_SUP = IO_SUP = 3.3 V, 100-Hz PRF, 25% duty cycle, Rf = 500 kΩ, Cf is adjusted to keep the  
TIA time constant at 1/10th of the sampling duration, 8-MHz external clock (with CLKDIV_EXTMODE set to divide-by-2),  
CLKDIV_PRF = 1, detector CIN = 50 pF, ADC averaging = max allowed, SNR (dBFS) = noise referred to full-scale range of  
2 V, noise integrated from 1 Hz to Nyquist (= PRF / 2), and values assigned to CLKDIV_EXTMODE and CLK_DIV_PRF  
parameters correspond to division ratios controlled by these modes, unless otherwise specified.  
1250  
1150  
1050  
950  
900  
800  
700  
600  
500  
400  
300  
200  
100  
CLKDIV_EXTMODE = 1  
CLKDIV_EXTMODE = 2  
CLKDIV_EXTMODE = 3  
CLKDIV_EXTMODE = 4  
CLKDIV_EXTMODE = 6  
CLKDIV_EXTMODE = 8  
CLKDIV_EXTMODE = 12  
CLKDIV_PRF = 1  
CLKDIV_PRF = 16  
850  
750  
650  
550  
0
10  
20  
30  
40  
50  
60  
0
200  
400  
600  
800  
1000  
1200  
1400  
External Clock Frequency (MHz)  
PRF (Hz)  
Active window = 500 µs, LED pulse = 100 µs,  
all four DYNAMIC bits set to 1  
Figure 2. Receiver Current vs PRF in  
Dynamic Power-Down Mode  
Figure 1. Receiver Current vs External Clock Frequency  
40  
106  
Output Voltage = 0% of FS  
Output Voltage = 10% of FS  
Output Voltage = 25% of FS  
Output Voltage = 50% of FS  
Output Voltage = 75% of FS  
Output Voltage = 0% of FS  
Output Voltage = 10% of FS  
Output Voltage = 25% of FS  
Output Voltage = 50% of FS  
Output Voltage = 75% of FS  
35  
30  
25  
20  
15  
10  
104  
102  
100  
98  
96  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Duty Cycle (%)  
Duty Cycle (%)  
Duty cycle (x-axis) refers to the sampling duration expressed as a  
percentage of the pulse repetition period.  
Duty cycle (x-axis) refers to the sampling duration expressed as a  
percentage of the pulse repetition period.  
Figure 3. Input-Referred Noise Current in 20-Hz Bandwidth  
vs Duty Cycle for Different Output Levels  
(As a Percentage of Full-Scale)  
Figure 4. Signal-to-Noise Ratio in 20-Hz Bandwidth vs Duty  
Cycle for Different Output Levels  
(As a Percentage of Full-Scale)  
108  
100000  
50000  
Rf = 10 kW  
Rf = 25 kW  
Rf = 50 kW  
Rf = 100 kW  
Rf = 250 kW  
Rf = 500 kW  
Rf = 1000 kW  
Rf = 2000 kW  
Rf = 10 kW  
Rf = 25 kW  
Rf = 50 kW  
Rf = 100 kW  
Rf = 250 kW  
Rf = 500 kW  
Rf = 1000 kW  
Rf = 2000 kW  
20000  
10000  
5000  
106  
104  
102  
100  
98  
2000  
1000  
500  
200  
100  
50  
20  
10  
5
2
1
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Duty Cycle (%)  
Duty Cycle (%)  
Figure 5. Receiver Input-Referred Noise Current in 20-Hz  
BW vs Duty Cycle (Different TIA Gain Settings)  
Figure 6. Receiver SNR in 20-Hz BW vs Duty Cycle  
(Different TIA Gain Settings)  
8
Copyright © 2015–2016, Texas Instruments Incorporated  
 
 
 
 
AFE4404  
www.ti.com.cn  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
Typical Characteristics (continued)  
At 25°C, TX_SUP = 4 V, RX_SUP = IO_SUP = 3.3 V, 100-Hz PRF, 25% duty cycle, Rf = 500 kΩ, Cf is adjusted to keep the  
TIA time constant at 1/10th of the sampling duration, 8-MHz external clock (with CLKDIV_EXTMODE set to divide-by-2),  
CLKDIV_PRF = 1, detector CIN = 50 pF, ADC averaging = max allowed, SNR (dBFS) = noise referred to full-scale range of  
2 V, noise integrated from 1 Hz to Nyquist (= PRF / 2), and values assigned to CLKDIV_EXTMODE and CLK_DIV_PRF  
parameters correspond to division ratios controlled by these modes, unless otherwise specified.  
50  
45  
40  
35  
30  
25  
20  
102  
100  
98  
ADC Averaging = 1  
ADC Averaging = 2  
ADC Averaging = 4  
ADC Averaging = 8  
ADC Averaging = 16  
ADC Averaging = 1  
ADC Averaging = 2  
ADC Averaging = 4  
ADC Averaging = 8  
ADC Averaging = 16  
96  
94  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Duty Cycle (%)  
Duty Cycle (%)  
Figure 7. Receiver Input-Referred Noise Current over  
Nyquist Bandwidth vs Duty Cycle (Different ADC Averaging)  
Figure 8. Receiver Signal-to-Noise Ratio over Nyquist  
Bandwidth vs Duty Cycle (Different ADC Averaging)  
500  
220  
I_OFFDAC = 0 mA, Rf = 25 kW  
I_OFFDAC = 7 mA, Rf = 1000 kW  
I_OFFDAC = 7 mA, Rf = 250 kW  
Decimation Factor = 1  
Decimation Factor = 2  
Decimation Factor = 4  
Decimation Factor = 8  
Decimation Factor = 16  
400  
180  
300  
200  
100  
0
140  
100  
60  
20  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Duty Cycle (%)  
Duty Cycle (%)  
D022  
Figure 10. Receiver Input-Referred Noise in 20-Hz  
Bandwidth vs Duty Cycle  
(Different Offset Cancellation DAC Currents)  
Figure 9. Input-Referred Noise Current in Nyquist  
Bandwidth vs Duty Cycle (Different Decimation Factor)  
8
10  
5% Duty Cycle  
25% Duty Cycle  
4
0
-10  
-20  
-30  
-40  
-50  
0
-4  
-8  
PRF = 50 Hz  
PRF = 100 Hz  
PRF = 200 Hz  
PRF = 400 Hz  
PRF = 800 Hz  
PRF = 1000 Hz  
-12  
-16  
-20  
1
2
3 4 567 10  
20 30 50 70100 200  
Frequency (Hz)  
500 1000  
0
100 200 300 400 500 600 700 800 900 1000  
Frequency (Hz)  
PRF = 2000 Hz  
Figure 11. Response of the Switched-RC Filter  
at the AFE Output  
Figure 12. Filter Response for Multiple PRFs at  
1% Duty Cycle  
Copyright © 2015–2016, Texas Instruments Incorporated  
9
 
 
 
AFE4404  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
At 25°C, TX_SUP = 4 V, RX_SUP = IO_SUP = 3.3 V, 100-Hz PRF, 25% duty cycle, Rf = 500 kΩ, Cf is adjusted to keep the  
TIA time constant at 1/10th of the sampling duration, 8-MHz external clock (with CLKDIV_EXTMODE set to divide-by-2),  
CLKDIV_PRF = 1, detector CIN = 50 pF, ADC averaging = max allowed, SNR (dBFS) = noise referred to full-scale range of  
2 V, noise integrated from 1 Hz to Nyquist (= PRF / 2), and values assigned to CLKDIV_EXTMODE and CLK_DIV_PRF  
parameters correspond to division ratios controlled by these modes, unless otherwise specified.  
5
120  
100  
80  
60  
40  
20  
0
50-mA LED Current Mode  
100-mA LED Current Mode  
0
-5  
-10  
-15  
-20  
-25  
-30  
PRF = 50 Hz  
PRF = 100 Hz  
PRF = 200 Hz  
PRF = 400 Hz  
PRF = 800 Hz  
PRF = 1000 Hz  
0
100 200 300 400 500 600 700 800 900 1000  
Frequency (Hz)  
0
10  
20  
30  
40  
50  
60  
Transmitter DAC Current Setting Code  
Figure 13. Filter Response for Multiple PRFs at  
5% Duty Cycle  
Figure 14. Transmitter Current Linearity  
60  
40  
20  
0
120  
100  
80  
50-mA LED Current Mode  
100-mA LED Current Mode  
60  
-20  
-40  
-60  
40  
20  
0.3  
0.9  
1.5  
2.1  
2.7  
3.3  
0
10  
20  
30  
40  
50  
60  
Transmitter Head_Room Voltage (V)  
Transmitter DAC Current Setting Code  
Figure 15. LED Current vs Transmitter Headroom Voltage  
Figure 16. Transmitter DAC Current Step Error in  
50-mA Mode  
100  
90  
80  
70  
60  
50  
40  
100  
75  
50  
25  
0
-25  
-50  
-75  
-100  
0
10  
20  
30  
40  
50  
60  
10  
100  
1000  
10000  
100000  
1000000  
Transmitter DAC Current Setting Code  
Frequency (Hz) of Tone at TX_SUP Pin  
Duty cycle = 1%  
Figure 17. Transmitter DAC Current Step Error in  
100-mA Mode  
Figure 18. PSRR vs Tone Frequency at TX_SUP  
10  
Copyright © 2015–2016, Texas Instruments Incorporated  
 
 
 
AFE4404  
www.ti.com.cn  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
Typical Characteristics (continued)  
At 25°C, TX_SUP = 4 V, RX_SUP = IO_SUP = 3.3 V, 100-Hz PRF, 25% duty cycle, Rf = 500 kΩ, Cf is adjusted to keep the  
TIA time constant at 1/10th of the sampling duration, 8-MHz external clock (with CLKDIV_EXTMODE set to divide-by-2),  
CLKDIV_PRF = 1, detector CIN = 50 pF, ADC averaging = max allowed, SNR (dBFS) = noise referred to full-scale range of  
2 V, noise integrated from 1 Hz to Nyquist (= PRF / 2), and values assigned to CLKDIV_EXTMODE and CLK_DIV_PRF  
parameters correspond to division ratios controlled by these modes, unless otherwise specified.  
120  
100  
80  
60  
40  
20  
0
50  
40  
30  
20  
10  
0
LED Data  
(LED - AMB) Data  
10  
100  
1000  
10000  
100000  
1000000  
0
1000  
2000  
3000  
4000  
5000  
Frequency (Hz) of Tone at RX_SUP Pin  
Spacing between LED and AMB Sampling Instants (ms)  
Duty cycle = 1%  
PRF = 200 Hz, NUMAV = 0  
Figure 19. PSRR vs Tone Frequency at RX_SUP  
Figure 20. Rejection of a 50-Hz Differential Tone Across  
Spacing Between LED and Ambient Phases  
108  
4.06  
4.04  
4.02  
4
Temperature = -40è C  
Temperature = 27è C  
Temperature = 85è C  
106  
104  
102  
100  
98  
3.98  
3.96  
0
5
10  
15  
20  
25  
-40  
-20  
0
20  
40  
60  
80  
100  
Duty Cycle (%)  
Temperature (è C)  
Figure 21. Receiver SNR in a 20-Hz Bandwidth vs  
Duty Cycle Across Different Temperatures  
Figure 22. Internal Oscillator Frequency vs  
Temperature on a Typical Unit  
Copyright © 2015–2016, Texas Instruments Incorporated  
11  
 
 
AFE4404  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The AFE has an integrated transmitter and receiver for optical heart-rate monitoring and pulse oximetry  
applications. The system is characterized by a parameter termed the pulse repetition frequency (PRF) that  
determines the repetition periodicity of a sequence of operations. Every cycle of a PRF results in four 24-bit  
digital samples at the output of the AFE, each of which is stored in a separate register.  
8.2 Functional Block Diagram  
TX_SUP  
RX_SUP  
TX_SUP  
TX2  
TX3  
TX1  
LDO  
Offset  
Cancellation DAC  
ILED  
6-Bit LED  
Current Control  
I-V Amplifier (TIA)  
Cf  
CONVLED2  
SLED2  
LED2  
Filter  
Rf  
Filter  
Buffer  
INP  
INM  
LED2 Ambient, LED3  
Analog-to-Digital  
Converter  
CONVLED2_amb  
SLED2_amb  
SLED1  
IO_SUP  
CONVLED1  
LED1  
Filter  
Rf  
I2C_CLK  
I2C_DAT  
RESET  
Filter  
I2C Interface  
Cf  
LED1 Ambient  
SLED1_amb  
CONVLED1_amb  
IO  
Buffer  
OSC_ENABLE  
4-MHz  
Oscillator  
1
0
4-MHz Clock  
CLK  
Timing  
Engine  
ADC_RDY  
GND  
Copyright © 2016, Texas Instruments Incorporated  
12  
Copyright © 2015–2016, Texas Instruments Incorporated  
AFE4404  
www.ti.com.cn  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
8.3 Feature Description  
8.3.1 TIA and Switched RC Filter  
The receiver input pins (INP, INM) are meant to be connected differentially to a photodiode. The signal current  
from the photodiode is converted to a differential voltage using a transimpedance amplifier (TIA). The TIA gain is  
set by its feedback resistor (Rf) and can be programmed from 10 kΩ to 2 MΩ. The transimpedance gain between  
the input current and output differential voltage of the TIA is equal to 2 × Rf. At the output of the TIA is a switched  
RC filter. There are four parallel instances of the filter, each of which are connected to the TIA output signal  
during one of four sampling phases.  
The signal chain is kept fully differential throughout the receiver channel in order to enable excellent rejection of  
common-mode noise as well as noise on power supplies. For simplicity, the scheme with the four parallel filters  
is shown in Figure 23 for a single-ended representation of the signal chain. The ADCRST signal corresponds to  
the collection of active phases of four ADCRST pulses: ADCRST0, ADCRST1, ADCRST2, and ADCRST3.  
SLED2  
CONVLED2  
Cf  
CSAMP1  
CONVLED2_AMB,  
CONVLED3  
SLED2_AMB, SLED3  
Rf  
CSAMP2  
Analog-to-Digital  
Converter  
Buffer  
CBUF  
SLED1  
CONVLED1  
ADCRST(1)  
Transimpedance Amplifier  
CSAMP3  
SLED_AMB  
CONVLED_AMB  
CSAMP4  
Switched RC Filter  
NOTE: For simplicity, this circuit is shown in single-ended format.  
(1) ADCRST corresponds to ADCRST0, ADCRST1, ADCRST2, or ADCRST3.  
Figure 23. Four Sampling and Conversion Phases Diagram  
Copyright © 2015–2016, Texas Instruments Incorporated  
13  
 
AFE4404  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
www.ti.com.cn  
Feature Description (continued)  
8.3.1.1 Operation with Two and Three LEDs  
The four sampling phases can correspond to either of the following signal state sequences received by the  
photodiode:  
1. 2-LED mode: LED2 ambient phase 2 LED1 ambient phase 1  
2. 3-LED mode: LED2 LED3 LED1 ambient  
The sequence of the phases within a pulse repetition cycle is shown in Figure 24.  
Pulse Repetition Period  
Rf2, Cf2  
Sample LED2  
Sample Ambient 2 or LED3  
Rf1, Cf1  
Sample LED1  
Sample Ambient 1  
Convert LED2  
Convert Ambient 2 or LED3  
Convert LED1  
Convert Ambient 1  
PDN_CYCLE  
ADC_RDY  
Figure 24. Sequence of Four Sampling and Conversion Phases  
In the 2-LED mode, LED1 and LED2 are pulsed during the corresponding sampling instants. In the 3-LED mode,  
LED1, LED2, and LED3 are pulsed during the corresponding sampling instants. As mentioned in the TIA Gain  
Settings and Operation with Two and Three LEDs sections, the TIA gain (Rf) and feedback capacitor (Cf) can be  
programmed differently between two sets: Rf1 / Cf1 and Rf2 / Cf2. The way these sets are applied to the four  
phases is shown in Figure 24.  
14  
Copyright © 2015–2016, Texas Instruments Incorporated  
 
 
AFE4404  
www.ti.com.cn  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
Feature Description (continued)  
8.3.1.1.1 LED Current Setting  
The default LED current range is from 0 mA to 50 mA. The individual currents of each of the three LEDs can be  
controlled independently, each with a separate 6-bit control.  
Taken as a decimal number, the 6-bit setting provides 63 equal steps between 0 mA and 50 mA. Each increment  
of the ILED 6-bit code causes the LED current setting to increment by approximately 0.8 mA. For details, see  
register 22h.  
The LED current range can be doubled by setting the ILED_2X bit to 1. The accuracy of higher current settings  
close to 100 mA can be low because of current saturation of the driver. Each increment of the ILED 6-bit code  
causes the LED current to increment by approximately 1.6 mA when ILED_2X is set to 1.  
8.3.1.2 TIA Gain Settings  
The TIA gain is set by programming the value of Rf (the feedback resistor of the TIA). The Rf setting is controlled  
using the TIA_GAIN register bit. For details see register 21h.  
By default, the same TIA_GAIN setting is applied for all four phases of the receiver. Separate gains can be set  
for two of the four phases by setting the EN_SEP_GAIN bit. When the EN_SEP_GAIN bit is enabled, the  
TIA_GAIN register controls the Rf1 setting and the TIA_GAIN_SEP register controls the Rf2 settings.  
Mapping of the Rf1 / Rf2 values to the two sets of 3-bit controls is described in Table 50.  
8.3.1.3 TIA Bandwidth Settings  
TIA bandwidth settings are similar to TIA gain settings. The TIA bandwidth is set by programming the value of Cf  
(the feedback capacitance of the TIA). The product of Rf and Cf gives the time constant of the TIA and must be  
set approximately 1/5th (or less) of the LED or sampling pulse durations. This choice of time constant allows the  
TIA to pass the incoming pulses from the photodiode.  
Cf is controlled using the TIA_CF register bit. For details, see register 21.  
By default, the same TIA_CF setting is applied for all four phases of the receiver. Similar to the TIA gain settings,  
a separate Cf can be set for two of the four phases by setting the EN_SEP_GAIN bit. When the EN_SEP_GAIN  
bit is enabled, the TIA_CF register controls the Cf1 settings and TIA_CF_SEP controls the Cf2 settings. Mapping  
the Cf1 / Cf2 values to the two sets of 3-bit controls is the same as illustrated in Table 51.  
8.3.2 Power Management  
The AFE has three independent supplies for the transmitter, receiver, and I/O.  
8.3.2.1 Transmitter Supply (TX_SUP)  
The transmitter supply has a range of 3.0 V to 5.25 V. In the most common arrangement, this supply can be the  
same supply that the anodes of the LEDs are tied to, as shown in Figure 25.  
TX_SUP  
LEDs  
TX_SUP  
TX1  
TX2  
TX3  
AFE  
Figure 25. LED to Pin Connections  
When the LEDs must be tied to a different supply, care must be taken to ensure that the LED supply is within  
0.3 V of TX_SUP. This consideration of the LED supply voltage prevents the electrostatic discharge (ESD)  
diodes inside the AFE from turning on during the off state of the LEDs.  
Copyright © 2015–2016, Texas Instruments Incorporated  
15  
 
AFE4404  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
www.ti.com.cn  
Feature Description (continued)  
8.3.2.2 Receiver Supply (RX_SUP)  
The receiver supply has a range of 2.0 V to 3.6 V. The AFE has internal low-dropout (LDO) regulators operating  
at 1.8 V that regulate both the analog and digital blocks inside the AFE. This rejection of supply noise from the  
internal LDOs, coupled with the differential nature of the architecture, enables excellent noise rejection on the  
supplies (for instance, 50-Hz noise).  
8.3.2.3 I/O Supply (IO_SUP)  
The I/O supply can either be tied to RX_SUP or can be separately driven. The motivation for a separate I/O  
supply is to interface with certain microcontrollers (MCUs) that require a 1.8-V I/O current. In this case, IO_SUP  
can be driven separately from RX_SUP and can be tied to 1.8 V.  
8.3.2.4 Boost Converters Selection  
If the supply voltage for TX_SUP (and the LEDs) is unavailable in the system, a boost converter may be required  
to generate the supply voltage. TI has a portfolio of boost converters from which an appropriate device can be  
selected. Some choices are listed in Table 1.  
Table 1. TI Boost Converter Details(1)  
TYPICAL  
QUIESCENT  
CURRENT (µA)  
SIZE  
(mm, L × W × H)  
INPUT SUPPLY  
(V)  
TI PART NUMBER  
OUTPUT SUPPLY  
EXTERNAL COMPONENTS  
Different parts with a  
fixed voltage up to 5 V  
TPS61254  
1.2 × 1.3 × 0.625  
2.3 to 5.5  
36  
2 capacitors, 1 inductor  
TPS61240  
TPS61252  
TPS61220  
0.9 × 1.3 × 0.625  
2 × 2 × 0.75  
2.3 to 5.5  
2.3 to 6  
5 V (fixed)  
30  
30  
2 capacitors, 1 inductor  
Adjustable up to 6.5 V  
Adjustable from 1.8 V to 6 V  
3 capacitors, 1 inductor, 4 resistors  
2 capacitors, 1 inductor, 2 resistors  
2 × 2.2 × 1  
0.7 to 5.5  
5.5  
(1) For the most current information, see the TI data sheets corresponding to each device (available for download from www.ti.com).  
8.3.3 Offset Cancellation DAC  
A typical optical heart-rate signal has a dc component and an ac component. Although a higher TIA gain  
maximizes the ac signal at the AFE output, the magnitude of the dc component limits the maximum gain possible  
in the TIA. In order to decouple the affect of the dc level on the allowed ac signal gain, a current digital-to-analog  
converter (DAC) is placed at the input of the device. By setting a programmable cancellation current (based on  
the dc current signal level), the effective signal that is gained up by the TIA can be reduced. This reduction in the  
effective signal current into the TIA results in the ability to set a higher TIA gain than what is otherwise possible  
without enabling the offset correction. In each of the four phases of operation, a separate programmable current  
value can be set by programming four different sets of register bits. These cancellation currents are automatically  
presented to the input of the TIA in the appropriate phase. The ability to set a different cancellation current in  
each of the four phases can be used to cancel out the ambient current in the ambient phase. In the LED on  
phase, this ability can be used to cancel out the sum of the ambient current and dc current of the heart-rate  
signal. The polarities of the signal current and offset cancellation current is illustrated in Figure 26. The polarity of  
the offset cancellation current can be reversed by programming the POL_OFFDAC bits.  
16  
Copyright © 2015–2016, Texas Instruments Incorporated  
 
AFE4404  
www.ti.com.cn  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
With zero input current and zero current in the offset cancellation DAC, the output of the AFE will be close to  
zero. Based on the channel offset, the output voltage for zero input current could be a small positive or negative  
value, usually in the range of several mV. With the photodiode connected as shown in Figure 26 and a signal  
current coming from the photodiode, the output code of the device is expected to be positive with the offset  
cancellation DAC set to zero (Ioffset = 0). With Ioffset set negative (POL_OFFFAC = 1), a dc offset can be  
subtracted from the signal and the ac signal can be amplified with a higher gain than what is otherwise possible.  
Cf  
IPD  
Ioffset  
Rf  
+
INP  
INM  
PD  
TIA_diff  
_
Cf  
Ioffset  
IPD  
Rf  
Figure 26. Offset Cancellation Current Polarity Diagram  
A breakdown of the signal current and voltage levels is provided in Table 2 for a variety of signal levels. In  
Table 2, the current transfer ratio (CTR) is used to describe the relationship between the set LED current and the  
resulting photodiode current (IPD). CTR is the ratio of the photodiode current for a given LED current and is a  
function of the optical and mechanical parameters as well as human physiology.  
Table 2. Signal Current and Voltage Levels for a Hypothetical Use Case(1)  
CTR  
(µA / mA)  
I_OFFDAC  
(µA)  
PHASE  
ILED (mA)  
Isig (µA)  
Iamb (µA)  
IPD (µA)  
Ieff (µA)  
Rf (MΩ)  
TIA_diff (V)  
LED2  
LED3  
LED1  
AMB1  
25  
50  
0.025  
0.025  
0.025  
0.025  
0.625  
1.25  
0.3125  
0
1
1
1
1
1.625  
2.25  
1.3125  
1
–1.4  
–1.87  
–0.93  
–0.93  
0.225  
0.38  
1
0.45  
0.38  
0.5  
0.5  
2
12.5  
0
0.3825  
0.07  
0.3825  
0.28  
(1) ILED is the set LED current; CTR is the current transfer ratio (in µA / mA); Isig is the photodiode signal current resulting from LED  
pulsing (Isig = ILED × CTR); Iamb is the current in the photodiode resulting from ambient light (that is present in all phases and adds to  
Isig); IPD is the total input current (Isig + Iamb); I_OFFDAC is the current setting of the offset cancellation DAC; Ieff is the effective current  
after offset cancellation (Isig + I_OFFDAC); Rf is the TIA gain setting; and TIA_diff is the output differential signal of the TIA (note that  
this signal must be within the range of ±1 V).  
8.3.3.1 Offset Cancellation DAC Controls  
The I_OFFDAC bits control the magnitude of the current subtracted (or added) at the TIA input. The  
POL_OFFDAC bits control the polarity of the current and determine whether the current is subtracted from or  
added to the input. For details, see register 3Ah.  
Copyright © 2015–2016, Texas Instruments Incorporated  
17  
 
 
AFE4404  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
www.ti.com.cn  
8.3.4 Analog-to-Digital Converter (ADC)  
The AFE has an ADC that provides a 22-bit representation of the current from the photodiode. The ADC codes  
corresponding to the various sampling phases can be read out from 24-bit registers in twos complement format.  
The ADC full-scale input range is ±1.2 V and spans bits 21 to 0. The mapping of the ADC input voltage to the  
ADC code is shown in Table 3.  
Table 3. Mapping the ADC Input Voltage to the ADC Code  
DIFFERENTIAL INPUT VOLTAGE AT ADC INPUT  
24-BIT ADC OUTPUT CODE  
111000000000000000000000  
111111111111111111111111  
000000000000000000000000  
000000000000000000000001  
000111111111111111111111  
–1.2 V  
(–1.2 / 221) V  
0
(1.2 / 221) V  
1.2 V  
The two MSBs of the 24-bit word serve as sign-extension bits to the 22-bit ADC code and are equal to the MSB  
of the 22-bit ADC code when the input to the ADC is within its full-scale range, as shown in Table 4.  
Table 4. Using Sign-Extension Bits to Determine the Input Operating Voltage  
BITS 23-21  
000  
INPUT STATUS  
Positive and lower than positive full-scale (within full-scale range)  
Negative and higher than negative full-scale (within full-scale range)  
Positive and higher than positive full-scale (outside full-scale range)  
Negative and lower than negative full-scale (outside full-scale range)  
111  
001  
110  
Noted that the TIA has an operating range of ±1 V even though the ADC input full-scale range is ±1.2 V, as  
shown in Figure 27. When setting the TIA gain, ensure that the signal at the TIA output does not exceed ±1 V.  
ADC Max  
(Differential)  
1.2 V  
TIA Max  
(Differential)  
1 V  
0 V  
TIA Min  
(Differential)  
-1 V  
ADC Min  
(Differential)  
-1.2 V  
Figure 27. TIA and ADC Dynamic Ranges  
18  
Copyright © 2015–2016, Texas Instruments Incorporated  
 
 
 
AFE4404  
www.ti.com.cn  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
8.3.5 I2C Interface  
The AFE has an I2C interface for communication. The I2C_CLK and I2C_DAT lines require external pullup  
resistors to IO_SUP. See the I2C protocol standards documents for details of the I2C interface. This section only  
describes certain key features of the interface. The data on I2C_DAT must be stable during the high level of  
I2C_CLK and may transition during the low level of I2C_CLK, as shown in Figure 28.  
Data Line  
Data Line  
Stable Data  
Transition  
Allowed  
I2C_DAT  
I2C_CLK  
Figure 28. Allowed Transition of I2C_DAT while Transmission of Data Bits  
The start condition is indicated by a high-to-low transition of the I2C_DAT line when the I2C_CLK is high. A stop  
condition is indicated by a low-to-high transition of the I2C_DAT line when the I2C_CLK is high. Figure 29 shows  
the start and stop conditions.  
I2C_DAT  
I2C_CLK  
STOP  
Condition (P)  
START  
Condition (S)  
Figure 29. Transition of I2C_DAT during Start and Stop Conditions  
Copyright © 2015–2016, Texas Instruments Incorporated  
19  
 
 
AFE4404  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
www.ti.com.cn  
With the previously mentioned protocols for data, start, and stop conditions in place, the write and read  
operations are as shown in Figure 30 and Figure 31, respectively. In Figure 30 and Figure 31, the slave address  
for the AFE (indicated as SA6 to SA0) is a 7-bit representation of address 58h. The R/W bit is the read/write bit  
and is set to '1' for Read and '0' for Write. Only the ADC output registers (addressed from 2Ah to 2Fh) can be  
read out without the need for setting the REG_READ bit. Prior to reading out any other register, the REG_READ  
bit needs to be additionally set to '1'. In Figure 30 and Figure 31, the activity performed by the host is shown in  
black whereas activity from the AFE is shown in red. Thus, after the host sends the slave address during a write  
operation, the AFE pulls the I2C_DAT line low (shown as ACK) if the slave address matches 58h. Similarly, the  
host pulls the I2C_DAT line high (shown as NACK) as acknowledgment of a successfully completed read  
operation involving three bytes of data. Continuous read/write mode is not supported.  
S
P
ACK  
ACK  
ACK  
ACK  
R/W  
I2C_DAT  
ACK  
SA5 SA4  
SA2 SA1 SA0  
A6  
A5  
A3  
A2  
A1  
A0  
DATA[23:16]  
DATA[7:0]  
SA6  
SA3  
A7  
A4  
DATA[15:8]  
Slave Address  
Register Address  
(1) Activity performed by the host is shown in black whereas activity from the AFE is shown in red. Continuous read/write  
mode is not supported.  
Figure 30. I2C Write Option Timing  
S
P
S
ACK  
SLAVE ADDRESS  
REG ADDRESS  
SLAVE ADDRESS  
R/W  
ACK  
ACK  
DATA[23:16]  
DATA[15:8]  
DATA[7:0]  
ACK  
ACK  
R/W  
NACK  
I2C_DAT  
Figure 31. I2C Read Option Timing  
8.3.6 Timing Engine  
The AFE has a fully-integrated timing engine that can be programmed to generate all clock phases for  
synchronized transmit drive, receive sampling, and data conversion. To enable the timing engine (after powering  
up the device), enable the TIMEREN bit.  
8.3.6.1 Timer and PRF Controls  
The timing engine inside the AFE has a 16-bit counter. The duration of the count with respect to an internal clock  
(the timer clock) determines the pulse repetition period. The pulse repetition frequency (PRF) can be set using  
the PRPCT register bits that represent the high value of the counter (the low value of the counter is 0). The  
counter automatically counts until reaching PRPCT and then returns to 0 to start the next count. To suspend the  
count and keep the counter in reset state, enable the TM_COUNT_RST bit.  
20  
Copyright © 2015–2016, Texas Instruments Incorporated  
 
 
 
AFE4404  
www.ti.com.cn  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
8.3.6.2 Timing Control Registers  
The start and stop counts for the various dynamic signals generated by the timing engine are shown in Table 5.  
The timing edge numbers are in reference to Figure 32.  
Table 5. Timing Register and Edge Details  
REGISTER  
ADDRESS (Hex)  
TIMING SIGNAL  
DESCRIPTION  
TIMING EDGE  
LED2STC  
LED2ENDC  
Sample LED2 start  
Sample LED2 end  
1h  
2h  
TE3  
TE4  
LED1LEDSTC  
LED1 start  
3h  
TE17  
TE18  
TE11  
TE12  
TE19  
TE20  
TE1  
LED1LEDENDC  
ALED2STC\LED3STC  
ALED2ENDC\LED3ENDC  
LED1STC  
LED1 end  
4h  
Sample ambient 2 (or sample LED3) start  
Sample ambient 2 (or sample LED3) end  
Sample LED1 start  
5h  
6h  
7h  
LED1ENDC  
Sample LED1 end  
8h  
LED2LEDSTC  
LED2 start  
9h  
LED2LEDENDC  
ALED1STC  
LED2 end  
Ah  
TE2  
Sample ambient 1 start  
Sample ambient 1 end  
LED2 convert phase start  
LED2 convert phase end  
Ambient 2 (or LED3) convert phase start  
Ambient 2 (or LED3) convert phase end  
LED1 convert phase start  
LED1 convert phase end  
Ambient 1 convert phase start  
Ambient 1 convert phase end  
ADC reset phase 0 start  
ADC reset phase 0 end  
ADC reset phase 1 start  
ADC reset phase 1 end  
ADC reset phase 2 start  
ADC reset phase 2 end  
ADC reset phase 3 start  
ADC reset phase 3 end  
Bh  
TE25  
TE26  
TE7  
ALED1ENDC  
Ch  
LED2CONVST  
Dh  
LED2CONVEND  
ALED2CONVST\LED3CONVST  
ALED2CONVEND\LED3CONVEND  
LED1CONVST  
Eh  
TE8  
Fh  
TE15  
TE16  
TE23  
TE24  
TE29  
TE30  
TE5  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
LED1CONVEND  
ALED1CONVST  
ALED1CONVEND  
ADCRSTSTCT0  
ADCRSTENDCT0  
ADCRSTSTCT1  
ADCRSTENDCT1  
ADCRSTSTCT2  
ADCRSTENDCT2  
ADCRSTSTCT3  
ADCRSTENDCT3  
TE6  
TE13  
TE14  
TE21  
TE22  
TE27  
TE28  
When three LEDs are used within a single period, the Ambient2 phase is replaced by the LED3 phase. The  
timing controls for driving the third LED are as shown in Table 6.  
Table 6. Timing Controls for Driving the Third LED  
TIMING SIGNAL  
LED3LEDSTC  
DESCRIPTION  
LED3 start  
REGISTER ADDRESS (Hex)  
TIMING EDGE  
TE9  
36h  
37h  
LED3LEDENDC  
LED3 end  
TE10  
Copyright © 2015–2016, Texas Instruments Incorporated  
21  
 
 
AFE4404  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
www.ti.com.cn  
The timing diagram for when all three LEDs are active is shown in Figure 32.  
Count = 0  
Count = PRPCT  
LED2  
TE1  
TE2  
TE4  
SLED2  
TE3  
ADCRST0  
TE5  
TE6  
CONVLED2  
TE7  
TE8  
LED3  
TE9  
TE10  
SLED3  
TE11  
TE12  
ADCRST1  
TE13  
TE14  
CONVLED3  
TE15  
TE16  
TE18  
LED1  
TE17  
SLED1  
TE19  
TE20  
ADCRST2  
TE21  
TE22  
CONVLED1  
TE23  
TE24  
SLED_amb  
TE25  
TE26  
ADCRST3  
TE27  
TE28  
CONVLED_amb  
TE29  
TE30  
PDNCYCLE  
TE31  
TE32  
Figure 32. Timing Diagram  
22  
Copyright © 2015–2016, Texas Instruments Incorporated  
 
AFE4404  
www.ti.com.cn  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
8.3.6.3 Receiver Timing  
The timing engine can be programmed to set the different phases of the receiver. The relative timings of the LED  
phase, sampling phase, ADC reset phase, and ADC conversion phases are shown in Figure 33 and Table 7.  
t1  
LED2  
t2  
SLED2  
ADCRST0  
CONVLED2  
t3  
t4  
t5  
Figure 33. Receiver Timing Guidelines  
Table 7. Receiver Timing Details  
MIN  
MAX  
UNIT  
µs  
t1  
t2  
t3  
t4  
t5  
Start of LED to start of sampling  
Max [25, (0.2 × LED pulse duration)]  
End of LED to start of ADC reset phase  
Duration of ADC reset phase  
2
Counts(1)  
Counts  
Count  
µs  
6
End of ADC reset phase to start of ADC conversion phase  
Duration of ADC conversion phase(2)  
2
2
(NUMAV + 2) × 200 × tADC + 15(3)  
(1) Refers to one clock period of CLK_TE.  
(2) See Figure 36 for notations of the clocking domain.  
(3) tADC = 1 / fADC  
.
Copyright © 2015–2016, Texas Instruments Incorporated  
23  
 
 
AFE4404  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
www.ti.com.cn  
The fourth ADCRST signal (ADCRST3) in a period also defines the start of the ADC_RDY pulse. The rising edge  
of the ADC_RDY signal can be used as an interrupt by the MCU to readout the registers corresponding to the  
preceding four conversions in that period. If any of the four conversion phases are not needed, then their  
duration can be set to 0. However, the corresponding ADCRSTx pulse must still be defined. All four ADCRSTx  
pulses must be defined in order to generate the ADC_RDY pulse. A scheme of the ADC_RDY pulse generation  
is shown in Figure 34. The ADC_RDY pulse timing is shown in Table 8.  
Pulse Repetition Period  
CONV1  
CONV1'  
ADCRST0  
ADCRST1  
CONV2  
CONV2'  
CONV3  
CONV3'  
ADCRST2  
ADCRST3  
CONV4  
CONV4'  
t7  
ADC_RDY  
(Generated by Device)  
t6  
Data in ADC Registers  
ADC registers hold contents of CONV1, CONV2, CONV3, and CONV4.  
… CONV1', CONV2', CONV3', CONV4'  
Figure 34. ADC_RDY Generation Scheme  
Table 8. ADC_RDY Timing Details  
TYP  
MAX  
(NUMAV + 2) × 200 × tADC + 15  
UNIT  
µs  
End of fourth ADC reset phase to start of  
ADC_RDY pulse  
t6  
t7  
(NUMAV + 1) × 200 × tADC  
(1)  
ADC_RDY pulse duration  
tADC  
µs  
(1) If a larger pulse duration is needed for the ADC_RDY interrupt, use PROG_TG_EN to enable a programmable timing signal to come out  
of the ADC_RDY pin. The location of the signal can be set using the PROG_TG_STC and PROG_TG_ENDC counts.  
24  
Copyright © 2015–2016, Texas Instruments Incorporated  
 
 
AFE4404  
www.ti.com.cn  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
8.3.6.4 Dynamic Power-Down Timing  
The dynamic power-down feature can be used to shut down the receiver inside every cycle to save power, as  
shown in Figure 35 and Table 9.  
Count =  
PRPCT  
Count = 0  
CONVLED2  
CONVLED3  
CONVLED1  
CONVLED_amb  
PDNCYCLE  
t8  
t9  
Figure 35. Dynamic Power-Down Timing Diagram  
Table 9. Dynamic Power-Down Timing Details  
MIN  
200  
200  
UNIT  
µs  
t8  
t9  
End of 4th conversion phase to the start of PDNCYCLE  
End of PDNCYCLE to start of next period  
µs  
The timing controls for the PDNCYCLE pulse are shown in Table 10.  
Table 10. Timing Controls for Dynamic Power-Down  
TIMING SIGNAL  
PDNCYCLESTC  
PDNCYCLEENDC  
DESCRIPTION  
REGISTER ADDRESS (Hex)  
TIMING EDGE(1)  
TE31  
Dynamic power-down start  
Dynamic power-down end  
32h  
33h  
TE32  
(1) See Figure 32.  
8.3.6.5 Sample Register Values  
Table 11 lists a sample of the register settings for generating the different timing signals. These sample settings  
correspond to CLK_INT = 4 MHz and a PRF of 100 Hz. Three LEDs are used in a cycle, each with a duty cycle  
of 1%, corresponding to a pulse duration of 100 µs. The conversion durations are set in order to accommodate  
four averages (NUMAV = 3). Two cases are described in Table 11: one for CLKDIV_PRF = 1 (CLK_TE = 4 MHz)  
and the other for CLKDIV_PRF = 16 (CLK_TE = 250 kHz).  
Copyright © 2015–2016, Texas Instruments Incorporated  
25  
 
 
 
AFE4404  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
www.ti.com.cn  
Table 11. Sample Register Settings  
NO DIVISION OF CLOCK TO TIMING  
ENGINE CLOCK  
ADC CLOCK TO TIMING ENGINE  
CLOCK DIVIDED BY 16  
(CLKDIV_PRF = 16)  
SIGNAL(1)  
REGISTER FIELD  
(CLKDIV_PRF = 1)  
TIME DURATION  
(µs)  
REGISTER  
SETTING(2)  
TIME DURATION  
REGISTER  
(µs)  
SETTING(2)  
PRF COUNTER  
LED2  
PRPCT  
10000  
39999(3)  
10000  
2499(3)  
LED2LEDSTC  
LED2LEDENDC  
LED2STC  
0
0
100  
100  
72  
399  
100  
399  
401  
407  
409  
1468  
401  
800  
24  
7
SLED2  
ADCRST0  
CONVLED2  
LED3  
75  
LED2ENDC  
24  
26  
26  
28  
94  
26  
50  
ADCRSTSTCT0  
ADCRSTENDCT0  
LED2CONVST  
LED2CONVEND  
LED3LEDSTC  
LED3LEDENDC  
1.75  
265  
100  
4
268  
100  
ALED2STC\  
LED3STC  
501  
800  
33  
50  
SLED3  
75  
72  
4
ALED2ENDC\  
LED3ENDC  
ADCRSTSTCT1  
1470  
1476  
96  
96  
ADCRST1  
CONVLED3  
1.75  
265  
ADCRSTENDCT1  
ALED2CONVST\  
LED3CONVST  
1478  
2537  
98  
268  
ALED2CONVEND\  
LED3CONVEND  
164  
LED1LEDSTC  
LED1LEDENDC  
LED1STC  
802  
1201  
902  
52  
76  
LED1  
SLED1  
100  
75  
100  
72  
59  
LED1ENDC  
1201  
2539  
2545  
2547  
3606  
1303  
1602  
3608  
3614  
3616  
4675  
5475  
39199  
76  
ADCRSTSTCT2  
ADCRSTENDCT2  
LED1CONVST  
LED1CONVEND  
ALED1STC  
166  
166  
168  
234  
85  
ADCRST2  
CONVLED1  
SLED_AMB  
1.75  
265  
4
268  
72  
75  
ALED1ENDC  
102  
236  
236  
238  
304  
354  
2449  
ADCRSTSTCT3  
ADCRSTENDCT3  
ALED1CONVST  
ALED1CONVEND  
PDNCYCLESTC  
PDNCYCLEENDC  
ADCRST3  
CONVLED_AMB  
PDNCYCLE  
1.75  
265  
4
268  
8384  
8431.25  
(1) For signal names, see Figure 23.  
(2) Time duration = (end count – start count + 1) / fTE  
.
(3) For PRPCT, start count = 0.  
26  
Copyright © 2015–2016, Texas Instruments Incorporated  
 
AFE4404  
www.ti.com.cn  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
The timing described in Table 11 minimizes the active time, thereby enabling the signal chain to be in the  
dynamic power-down state for the maximum fraction of time. In this timing, the LED active phase overlaps with  
the conversion phase corresponding to a previous LED. The ground bounce from the LED switching can couple  
into the receiver and cause a small interference between one phase and the next. In most intended applications,  
this bounce is not expected to cause any problems. However, if the lowest level of interference across phases  
must be attained, the timing registers can be programmed as shown in Table 12.  
Table 12. Sample Register Settings for Low Interference Across Phases  
NO DIVISION OF CLOCK TO TIMING ENGINE CLOCK  
(CLKDIV_PRF = 1)  
SIGNAL(1)  
REGISTER FIELD  
TIME DURATION (µs)  
REGISTER SETTING  
PRF COUNTER  
LED2  
PRPCT  
10000  
39999  
0
LED2LEDSTC  
LED2LEDENDC  
LED2STC  
99.75  
74.75  
1.75  
398  
100  
SLED2  
ADCRST0  
CONVLED2  
LED3  
LED2ENDC  
398  
ADCRSTSTCT0  
ADCRSTENDCT0  
LED2CONVST  
LED2CONVEND  
LED3LEDSTC  
LED3LEDENDC  
5600  
5606  
5608  
6067  
400  
115  
99.75  
798  
ALED2STC\  
LED3STC  
500  
798  
SLED3  
74.75  
1.75  
115  
ALED2ENDC\  
LED3ENDC  
ADCRSTSTCT1  
6069  
6075  
ADCRST1  
CONVLED3  
ADCRSTENDCT1  
ALED2CONVST\  
LED3CONVST  
6077  
6536  
ALED2CONVEND\  
LED3CONVEND  
LED1LEDSTC  
LED1LEDENDC  
LED1STC  
800  
1198  
900  
LED1  
SLED1  
99.75  
74.75  
1.75  
LED1ENDC  
1198  
6538  
6544  
6546  
7006  
1300  
1598  
7008  
7014  
7016  
7475  
7675  
39199  
ADCRSTSTCT2  
ADCRSTENDCT2  
LED1CONVST  
LED1CONVEND  
ALED1STC  
ADCRST2  
CONVLED1  
SLED_AMB  
ADCRST3  
CONVLED_AMB  
115.25  
74.75  
1.75  
ALED1ENDC  
ADCRSTSTCT3  
ADCRSTENDCT3  
ALED1CONVST  
ALED1CONVEND  
PDNCYCLESTC  
PDNCYCLEENDC  
115  
PDNCYCLE  
7881.25  
(1) For signal names, see Figure 23.  
Copyright © 2015–2016, Texas Instruments Incorporated  
27  
 
AFE4404  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 Power Modes  
The AFE has the following power modes:  
1. Normal mode.  
2. Hardware power-down mode (PWDN): this mode is set using the RESETZ pin. When the RESETZ pin is  
pulled low for more than 200 µs, the device enters hardware power-down mode where the power  
consumption is very low (of a few µA).  
3. Software power-down mode (PDNAFE) using a register bit.  
4. Dynamic power-down mode: this mode is enabled by setting the start and end points of the PDN_CYCLE  
signal that is controlled using the timing engine. During the PDN_CYCLE high phase, the functional blocks  
(as selected by the DYNAMICx bits) are powered down. When powering down the TIA in dynamic power-  
down mode, consideration must be given to the dynamics of the photodiode. When the TIA is powered down,  
the feedback mechanism is no longer available to maintain zero bias across the photodiode, resulting in a  
voltage drift across the photodiode. When the AFE comes out of dynamic power-down into active mode, a  
transient recovery time for the photodiode results. Additionally, the INP, INM pins can be shorted through a  
switch to an internal reference voltage (VCM) to keep the photodiode in zero bias whenever the TIA is in  
power-down mode. Maintaining zero bias across the photodiode is accomplished by setting the  
ENABLE_INPUT_SHORT bit to 1. By setting this bit in conjunction with the DYNAMIC3 bit, the dynamics of  
the photodiode can be better controlled during the dynamic power-down mode.  
8.4.2 RESET Modes  
The AFE has internal registers that must be reset before valid operation. There are two ways to reset the device:  
1. Either through the RESETZ pin (a reset signal can be issued by pulsing the RESETZ pin low for a duration of  
time between 25 to 50 µs) or  
2. A software reset via the SW_RESET register bit.  
8.4.3 Clocking Modes  
The AFE has an internal oscillator that can generate a 4-MHz clock. This clock can be made to come out of the  
CLK pin for use by the rest of the system. The default mode is to use an external clock. The frequency range of  
this external clock is between 4 MHz to 60 MHz. A programmable internal division ratio between 1 to 12 must be  
set so that the divided clock is between 4 MHz to 6 MHz. For high-accuracy measurements, operating the AFE  
using an input (external) clock with high accuracy is preferable. If a high-accuracy measurement is required when  
using the internal oscillator, a correction scheme can be used in the MCU to digitally compensate for the  
inaccuracy in the oscillator. One method of this approach is to accurately estimate the PRF by measuring the  
ADC_RDY periodicity in terms of a high-accuracy MCU clock (for example, a 32-kHz clock) to establish the  
accurate PRF. This information can then be used to digitally correct the heart rate computation.  
8.4.4 PRF Programmability  
By default, the internal clock is 4 MHz. This clock also goes to the timing engine that has a 16-bit counter. The  
maximum setting of this counter (all 16 bits set to 1) determines the lowest value of PRF, resulting in a minimum  
PRF of 61 Hz. To extend the lower range of PRF, an independent programmable divider is introduced in the  
clock going to the timing engine. By programming this divider between 1 to 16 with the CLKDIV_PRF register  
control, the lower range of PRF can be extended from 61 Hz to approximately 4 Hz (limit the minimum PRF to  
10 Hz). The various clocking domains and controls are described in Figure 36 and Table 13.  
28  
Copyright © 2015–2016, Texas Instruments Incorporated  
AFE4404  
www.ti.com.cn  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
Device Functional Modes (continued)  
To ADC  
CLKDIV_CLKOUT  
ENABLE_CLKOUT  
OSC_ENABLE  
/
CLK_INT  
4-MHz  
Oscillator  
1
0
fINT  
CLK_ADC  
CLK_TE  
ADC_RDY  
fPRF  
CLK  
/
Timing Engine  
(TE)  
/
CLK_EXT  
fEXT  
fTE  
fADC  
CLKDIV_PRF  
OSC_ENABLE  
CLKDIV_EXTMODE  
Figure 36. Clocking Domains Diagram  
Table 13. Clock Domains and Operating Ranges  
CLOCK  
CLK_INT  
DESCRIPTION  
FREQUENCY  
FREQUENCY RANGE  
COMMENTS  
Clock generated by the internal  
oscillator  
Internal clock when the oscillator is  
enabled  
(1)  
fINT  
4 MHz  
Set the division ratio with  
CLKDIV_EXTMODE so that CLK_ADC is  
4 MHz to 6 MHz  
CLK_EXT  
External clock  
fEXT  
4 MHz to 60 MHz  
Clock used by the ADC for  
conversion  
Selected as either an internal clock or a  
divided version of the external clock  
CLK_ADC  
CLK_TE  
fADC  
fTE  
4 MHz to 6 MHz  
Clock used by the timing engine  
fADC divided by 1 to 16  
Division ratio is set by CLKDIV_PRF  
Set by PRPCT and fTE  
Interrupt to MCU at the same  
rate as the PRF  
Limit to 10 Hz-1000 Hz, limited to 1000 /  
(division ratio as set by CLKDIV_PRF)  
ADC_RDY  
fPRF  
(1) See the Electrical Characteristics table for the accuracy of the internal oscillator.  
8.4.5 Averaging Modes  
To reduce the noise, the input to the ADC (sampled on the CSAMPx capacitors) can be converted by the ADC  
multiple times and averaged. The number of averages is set using the NUMAV register control based on  
Equation 1:  
Number of Averages = (NUMAV + 1)  
(1)  
By default, NUMAV = 0. Therefore, the default mode corresponds to when the ADC converts its input one time in  
each of the four phases and stores the content in the register corresponding to that phase.  
When NUMAV is programmed (for example if NUMAV = 3), the ADC converts its input four times in each phase,  
averages the four conversions, and stores the averaged value in the register corresponding to that phase.  
Averaging only helps in reducing ADC noise and not the front end noise because the input to the ADC is the  
same sampled voltage across all the ADC conversions used to generate the average (this voltage corresponds  
to the voltage sampled on the four CSAMPx capacitors in Figure 23). The number of samples that can be  
averaged ranges from 1 to 16 (when NUMAV is programmed from 0 to 15). A higher number of averages results  
in larger conversion times; see Table 7.  
Copyright © 2015–2016, Texas Instruments Incorporated  
29  
 
AFE4404  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
www.ti.com.cn  
Averaging is implemented in the following manner:  
The number of ADC samples corresponding to the number of averages (NUMAV + 1) are accumulated, as  
shown in Equation 2.  
where  
ADCi = the ith sample converted by the ADC.  
(2)  
The accumulator output (SUMADC) is then divided by a factor D that is obtained by D = 128 ÷ X , with X being  
an integer.  
The averaged output is shown in Equation 3:  
ADCOUT = SUMADC ÷ D  
where  
D = 128 ÷ X, with X being an integer.  
(3)  
This implementation gives an averaging function that is exact when the number of averages is a power of 2 but  
deviates from ideal values for other settings, as shown in Table 14.  
Table 14. Averaging Mode Settings  
NUMAV  
NUMBER OF AVERAGES  
INTEGER (X)  
DIVISION FACTOR (D)  
0
1
1
2
128  
64  
43  
32  
26  
21  
18  
16  
14  
13  
12  
11  
10  
9
1.0  
2.0  
2
3
2.97  
4.0  
3
4
4
5
4.92  
6.10  
7.11  
8.0  
5
6
6
7
7
8
8
9
9.14  
9.85  
10.67  
11.64  
12.8  
14.22  
14.22  
16.0  
9
10  
11  
12  
13  
14  
15  
16  
10  
11  
12  
13  
14  
15  
9
8
30  
Copyright © 2015–2016, Texas Instruments Incorporated  
 
 
 
AFE4404  
www.ti.com.cn  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
8.4.6 Decimation Mode  
The AFE4404 has a decimation mode that can be used to improve the performance at low pulse repetition  
frequencies (PRFs). In this mode, up to N (N = 2, 4, 8, or 16) consecutive data samples can be averaged. The  
averaged output comes out one time every N clock cycles. The ADC_RDY frequency also reduces to PRF / N.  
A timing diagram is shown in Figure 37 for where the decimation factor = 4 and PRF = 100 Hz. Figure 37 is only  
intended to illustrate the change in periodicity of ADC_RDY and the update rate of the registers relative to the  
pulse repetition period. However, the timing of all other signals continues to be as per the descriptions mentioned  
in the Timing Engine section.  
LED On  
PRF Setting,  
100 Hz  
ADC Conversion of  
(LED2-Ambient2)  
Data 5  
Data 5  
Data 6  
Data 6  
Data 7  
Data 7  
Data 8  
Data 8  
Data 9  
Data 9  
Data 10  
Data 10  
Data 11  
Data 11  
Data 12  
Data 12  
Data 4  
Data 4  
Register 2Eh  
Average of Data 1, 2, 3, 4  
Average of Data 5, 6, 7, 8  
Register 3Fh  
ADC_RDY  
25-Hz Frequency  
Figure 37. Decimation Mode Enabled Timing Diagram  
(Decimation Factor = 4, PRF = 100 Hz)  
8.4.6.1 Decimation Mode Power and Performance  
The main advantage of the decimation mode is that this mode can be used to reduce the readout rate of the  
MCU because the data rate reduces by the decimation factor. Normally, reducing the data rate leads to SNR  
loss. However, with decimation mode, there is no SNR loss regardless of the lower data rate because of the  
averaging of consecutive samples. Table 15 compares different modes of operation.  
Table 15. Different Modes of Operation  
RATE OF DEVICE SAMPLES  
MODE  
RATE OF MCU DATA READS  
RELATIVE PERFORMANCE  
AND CONVERSIONS  
No decimation, 100-Hz PRF  
No decimation, 25-Hz PRF  
100 Hz  
100 Hz  
25 Hz  
Reference  
SNR is approximately 6 dB lower  
than reference  
25 Hz  
4X decimation mode, 100-Hz  
PRF  
100 Hz  
25 Hz  
SNR is comparable to reference  
Copyright © 2015–2016, Texas Instruments Incorporated  
31  
 
 
AFE4404  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
www.ti.com.cn  
8.5 Register Map  
Table 16. Register Map(1)  
ADDRESS  
(Hex)  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
00h  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
LED2STC  
LED2ENDC  
LED1LEDSTC  
LED1LEDENDC  
ALED2STC\LED3STC  
ALED2ENDC\LED3ENDC  
LED1STC  
LED1ENDC  
LED2LEDSTC  
LED2LEDENDC  
ALED1STC  
ALED1ENDC  
LED2CONVST  
LED2CONVEND  
ALED2CONVST\LED3CONVST  
ALED2CONVEND\LED3CONVEND  
LED1CONVST  
LED1CONVEND  
ALED1CONVST  
ALED1CONVEND  
ADCRSTSTCT0  
ADCRSTENDCT0  
ADCRSTSTCT1  
ADCRSTENDCT1  
ADCRSTSTCT2  
ADCRSTENDCT2  
ADCRSTSTCT3  
ADCRSTENDCT3  
PRPCT  
(1) After reset, all register bits are reset to 0.  
32  
Copyright © 2015–2016, Texas Instruments Incorporated  
AFE4404  
www.ti.com.cn  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
Register Map (continued)  
Table 16. Register Map(1) (continued)  
ADDRESS  
(Hex)  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
1Eh  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
NUMAV  
20h  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
TIA_CF_SEP  
TIA_CF  
TIA_GAIN_SEP  
TIA_GAIN  
21h  
22h  
23h  
28h  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
ILED3  
ILED2  
ILED1  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
29h  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CLKDIV_CLKOUT  
2Ah  
2Bh  
2Ch  
2Dh  
2Eh  
2Fh  
LED2VAL  
ALED2VAL\LED3VAL  
LED1VAL  
ALED1VAL  
LED2-ALED2VAL(2)  
LED1-ALED1VAL  
31h  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CLKDIV_EXTMODE  
32h  
PDNCYCLESTC  
(2) Ignore the contents of this register when LED3 is used.  
Copyright © 2015–2016, Texas Instruments Incorporated  
33  
AFE4404  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
www.ti.com.cn  
Register Map (continued)  
Table 16. Register Map(1) (continued)  
ADDRESS  
(Hex)  
33h  
34h  
35h  
36h  
37h  
39h  
23  
0
22  
0
21  
0
20  
0
19  
0
18  
0
17  
0
16  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PDNCYCLEENDC  
PROG_TG_STC  
PROG_TG_ENDC  
LED3LEDSTC  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
LED3LEDENDC  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CLKDIV_PRF  
I_OFFDAC_AMB2\  
I_OFFDAC_LED3  
3Ah  
0
0
0
0
I_OFFDAC_LED2  
I_OFFDAC_AMB1  
I_OFFDAC_LED1  
DEC_E  
N
3Dh  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DEC_FACTOR  
0
3Fh  
40h  
AVG_LED2-ALED2VAL  
AVG_LED1-ALED1VAL  
34  
Copyright © 2015–2016, Texas Instruments Incorporated  
 
AFE4404  
www.ti.com.cn  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
8.5.1 Register 0h (address = 0h) [reset = 0h]  
Figure 38. Register 0h  
23  
0
22  
0
21  
0
20  
0
19  
0
18  
0
17  
16  
0
W-0h  
9
0
W-0h  
8
W-0h  
15  
W-0h  
14  
W-0h  
13  
W-0h  
12  
W-0h  
11  
W-0h  
10  
0
0
0
0
0
0
0
0
W-0h  
7
W-0h  
6
W-0h  
5
W-0h  
4
W-0h  
3
W-0h  
2
W-0h  
1
W-0h  
0
TM_COUNT_  
RST  
0
0
0
0
SW_RESET  
W-0h  
0
REG_READ  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: W = Write only; -n = value after reset  
Table 17. Register 0h Field Descriptions  
Bit  
23-4  
3
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
SW_RESET  
W
0h  
Self-clearing reset bit.  
For a software reset, write 1.  
2
1
0
0
W
W
W
0h  
0h  
0h  
Must write 0.  
TM_COUNT_RST  
REG_READ  
Used to suspend the count and keep the counter in a reset state.  
Register readout enable for write registers  
(not needed for ADC output registers).  
0 = Register write mode  
1 = Enables the readout of write registers  
8.5.2 Register 1h (address = 1h) [reset = 0h]  
Figure 39. Register 1h  
23  
0
22  
0
21  
0
20  
0
19  
0
18  
0
17  
0
16  
0
W-0h  
15  
W-0h  
14  
W-0h  
13  
W-0h  
12  
W-0h  
11  
W-0h  
10  
W-0h  
9
W-0h  
8
LED2STC  
R/W-0h  
7
6
5
4
3
2
1
0
LED2STC  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 18. Register 1h Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
23-16  
15-0  
0
Must write 0.  
LED2STC  
R/W  
0h  
Sample LED2 start  
Copyright © 2015–2016, Texas Instruments Incorporated  
35  
AFE4404  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
www.ti.com.cn  
8.5.3 Register 2h (address = 2h) [reset = 0h]  
Figure 40. Register 2h  
23  
0
22  
0
21  
0
20  
0
19  
0
18  
0
17  
0
16  
0
W-0h  
15  
W-0h  
14  
W-0h  
13  
W-0h  
12  
W-0h  
11  
W-0h  
10  
W-0h  
9
W-0h  
8
LED2ENDC  
R/W-0h  
7
6
5
4
3
2
1
0
LED2ENDC  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 19. Register 2h Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
23-16  
15-0  
0
Must write 0.  
LED2ENDC  
R/W  
0h  
Sample LED2 end  
8.5.4 Register 3h (address = 3h) [reset = 0h]  
Figure 41. Register 3h  
23  
0
22  
0
21  
0
20  
0
19  
0
18  
0
17  
0
16  
0
W-0h  
15  
W-0h  
14  
W-0h  
13  
W-0h  
12  
W-0h  
11  
W-0h  
10  
W-0h  
9
W-0h  
8
LED1LEDSTC  
R/W-0h  
7
6
5
4
3
2
1
0
LED1LEDSTC  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 20. Register 3h Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
Must write 0.  
LED1 start  
23-16  
15-0  
0
LED1LEDSTC  
R/W  
0h  
36  
Copyright © 2015–2016, Texas Instruments Incorporated  
AFE4404  
www.ti.com.cn  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
8.5.5 Register 4h (address = 4h) [reset = 0h]  
Figure 42. Register 4h  
23  
0
22  
0
21  
0
20  
0
19  
0
18  
0
17  
0
16  
0
W-0h  
15  
W-0h  
14  
W-0h  
13  
W-0h  
12  
W-0h  
11  
W-0h  
10  
W-0h  
9
W-0h  
8
LED1LEDENDC  
R/W-0h  
7
6
5
4
3
2
1
0
LED1LEDENDC  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 21. Register 4h Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
Must write 0.  
LED1 end  
23-16  
15-0  
0
LED1LEDENDC  
R/W  
0h  
8.5.6 Register 5h (address = 5h) [reset = 0h]  
Figure 43. Register 5h  
23  
0
22  
0
21  
0
20  
0
19  
0
18  
0
17  
0
16  
0
W-0h  
15  
W-0h  
14  
W-0h  
13  
W-0h  
12  
W-0h  
11  
W-0h  
10  
W-0h  
9
W-0h  
8
ALED2STC\LED3STC  
R/W-0h  
7
6
5
4
3
2
1
0
ALED2STC\LED3STC  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 22. Register 5h Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
23-16  
15-0  
0
Must write 0.  
ALED2STC\LED3STC  
R/W  
0h  
Sample ambient 2 (or sample LED3) start  
Copyright © 2015–2016, Texas Instruments Incorporated  
37  
AFE4404  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
www.ti.com.cn  
8.5.7 Register 6h (address = 6h) [reset = 0h]  
Figure 44. Register 6h  
23  
0
22  
0
21  
0
20  
0
19  
0
18  
0
17  
0
16  
0
W-0h  
15  
W-0h  
14  
W-0h  
13  
W-0h  
12  
W-0h  
11  
W-0h  
10  
W-0h  
9
W-0h  
8
ALED2ENDC\LED3ENDC  
R/W-0h  
7
6
5
4
3
2
1
0
ALED2ENDC\LED3ENDC  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 23. Register 6h Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
23-16  
15-0  
0
Must write 0.  
ALED2ENDC\LED3ENDC  
R/W  
0h  
Sample ambient 2 (or sample LED3) end  
8.5.8 Register 7h (address = 7h) [reset = 0h]  
Figure 45. Register 7h  
23  
0
22  
0
21  
0
20  
0
19  
0
18  
0
17  
0
16  
0
W-0h  
15  
W-0h  
14  
W-0h  
13  
W-0h  
12  
W-0h  
11  
W-0h  
10  
W-0h  
9
W-0h  
8
LED1STC  
R/W-0h  
7
6
5
4
3
2
1
0
LED1STC  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 24. Register 7h Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
23-16  
15-0  
0
Must write 0.  
LED1STC  
R/W  
0h  
Sample LED1 start  
38  
Copyright © 2015–2016, Texas Instruments Incorporated  
AFE4404  
www.ti.com.cn  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
8.5.9 Register 8h (address = 8h) [reset = 0h]  
Figure 46. Register 8h  
23  
0
22  
0
21  
0
20  
0
19  
0
18  
0
17  
0
16  
0
W-0h  
15  
W-0h  
14  
W-0h  
13  
W-0h  
12  
W-0h  
11  
W-0h  
10  
W-0h  
9
W-0h  
8
LED1ENDC  
R/W-0h  
7
6
5
4
3
2
1
0
LED1ENDC  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 25. Register 8h Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
23-16  
15-0  
0
Must write 0.  
LED1ENDC  
R/W  
0h  
Sample LED1 end  
8.5.10 Register 9h (address = 9h) [reset = 0h]  
Figure 47. Register 9h  
23  
0
22  
0
21  
0
20  
0
19  
0
18  
0
17  
0
16  
0
W-0h  
15  
W-0h  
14  
W-0h  
13  
W-0h  
12  
W-0h  
11  
W-0h  
10  
W-0h  
9
W-0h  
8
LED2LEDSTC  
R/W-0h  
7
6
5
4
3
2
1
0
LED2LEDSTC  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 26. Register 9h Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
Must write 0.  
LED2 start  
23-16  
15-0  
0
LED2LEDSTC  
R/W  
0h  
Copyright © 2015–2016, Texas Instruments Incorporated  
39  
AFE4404  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
www.ti.com.cn  
8.5.11 Register Ah (address = Ah) [reset = 0h]  
Figure 48. Register Ah  
23  
0
22  
0
21  
0
20  
0
19  
0
18  
0
17  
0
16  
0
W-0h  
15  
W-0h  
14  
W-0h  
13  
W-0h  
12  
W-0h  
11  
W-0h  
10  
W-0h  
9
W-0h  
8
LED2LEDENDC  
R/W-0h  
7
6
5
4
3
2
1
0
LED2LEDENDC  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 27. Register Ah Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
Must write 0.  
LED2 end  
23-16  
15-0  
0
LED2LEDENDC  
R/W  
0h  
8.5.12 Register Bh (address = Bh) [reset = 0h]  
Figure 49. Register Bh  
23  
0
22  
0
21  
0
20  
0
19  
0
18  
0
17  
0
16  
0
W-0h  
15  
W-0h  
14  
W-0h  
13  
W-0h  
12  
W-0h  
11  
W-0h  
10  
W-0h  
9
W-0h  
8
ALED1STC  
R/W-0h  
7
6
5
4
3
2
1
0
ALED1STC  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 28. Register Bh Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
23-16  
15-0  
0
Must write 0.  
ALED1STC  
R/W  
0h  
Sample ambient 1 start  
40  
Copyright © 2015–2016, Texas Instruments Incorporated  
AFE4404  
www.ti.com.cn  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
8.5.13 Register Ch (address = Ch) [reset = 0h]  
Figure 50. Register Ch  
23  
0
22  
0
21  
0
20  
0
19  
0
18  
0
17  
0
16  
0
W-0h  
15  
W-0h  
14  
W-0h  
13  
W-0h  
12  
W-0h  
11  
W-0h  
10  
W-0h  
9
W-0h  
8
ALED1ENDC  
R/W-0h  
7
6
5
4
3
2
1
0
ALED1ENDC  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 29. Register Ch Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
23-16  
15-0  
0
Must write 0.  
ALED1ENDC  
R/W  
0h  
Sample ambient 1 end  
8.5.14 Register Dh (address = Dh) [reset = 0h]  
Figure 51. Register Dh  
23  
0
22  
0
21  
0
20  
0
19  
0
18  
0
17  
0
16  
0
W-0h  
15  
W-0h  
14  
W-0h  
13  
W-0h  
12  
W-0h  
11  
W-0h  
10  
W-0h  
9
W-0h  
8
LED2CONVST  
R/W-0h  
7
6
5
4
3
2
1
0
LED2CONVST  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 30. Register Dh Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
23-16  
15-0  
0
Must write 0.  
LED2CONVST  
R/W  
0h  
LED2 convert phase start  
Copyright © 2015–2016, Texas Instruments Incorporated  
41  
AFE4404  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
www.ti.com.cn  
8.5.15 Register Eh (address = Eh) [reset = 0h]  
Figure 52. Register Eh  
23  
0
22  
0
21  
0
20  
0
19  
0
18  
0
17  
0
16  
0
W-0h  
15  
W-0h  
14  
W-0h  
13  
W-0h  
12  
W-0h  
11  
W-0h  
10  
W-0h  
9
W-0h  
8
LED2CONVEND  
R/W-0h  
7
6
5
4
3
2
1
0
LED2CONVEND  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 31. Register Eh Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
23-16  
15-0  
0
Must write 0.  
LED2CONVEND  
R/W  
0h  
LED2 convert phase end  
8.5.16 Register Fh (address = Fh) [reset = 0h]  
Figure 53. Register Fh  
23  
0
22  
0
21  
0
20  
0
19  
0
18  
0
17  
0
16  
0
W-0h  
15  
W-0h  
14  
W-0h  
13  
W-0h  
12  
W-0h  
11  
W-0h  
10  
W-0h  
9
W-0h  
8
ALED2CONVST\LED3CONVST  
R/W-0h  
7
6
5
4
3
2
1
0
ALED2CONVST\LED3CONVST  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 32. Register Fh Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
23-16  
15-0  
0
Must write 0.  
ALED2CONVST\LED3CONVST  
R/W  
0h  
Ambient 2 (or LED3) convert phase start  
42  
Copyright © 2015–2016, Texas Instruments Incorporated  
AFE4404  
www.ti.com.cn  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
8.5.17 Register 10h (address = 10h) [reset = 0h]  
Figure 54. Register 10h  
23  
0
22  
0
21  
0
20  
0
19  
0
18  
0
17  
0
16  
0
W-0h  
15  
W-0h  
14  
W-0h  
13  
W-0h  
12  
W-0h  
11  
W-0h  
10  
W-0h  
9
W-0h  
8
ALED2CONVEND\LED3CONVEND  
R/W-0h  
7
6
5
4
3
2
1
0
ALED2CONVEND\LED3CONVEND  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 33. Register 10h Field Descriptions  
Bit  
Field  
Type  
Reset  
0h  
Description  
23-16  
15-0  
0
W
Must write 0.  
ALED2CONVEND\LED3CONVEND R/W  
0h  
Ambient 2 (or LED3) convert phase end  
8.5.18 Register 11h (address = 11h) [reset = 0h]  
Figure 55. Register 11h  
23  
0
22  
0
21  
0
20  
19  
18  
0
17  
0
16  
0
0
0
W-0h  
15  
W-0h  
14  
W-0h  
13  
W-0h  
12  
W-0h  
11  
W-0h  
10  
W-0h  
9
W-0h  
8
LED1CONVST  
R/W-0h  
7
6
5
4
3
2
1
0
LED1CONVST  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 34. Register 11h Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
23-16  
15-0  
0
Must write 0.  
LED1CONVST  
R/W  
0h  
LED1 convert phase start  
Copyright © 2015–2016, Texas Instruments Incorporated  
43  
AFE4404  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
www.ti.com.cn  
8.5.19 Register 12h (address = 12h) [reset = 0h]  
Figure 56. Register 12h  
23  
0
22  
0
21  
0
20  
0
19  
0
18  
0
17  
0
16  
0
W-0h  
15  
W-0h  
14  
W-0h  
13  
W-0h  
12  
W-0h  
11  
W-0h  
10  
W-0h  
9
W-0h  
8
LED1CONVEND  
R/W-0h  
7
6
5
4
3
2
1
0
LED1CONVEND  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 35. Register 12h Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
23-16  
15-0  
0
Must write 0.  
LED1CONVEND  
R/W  
0h  
LED1 convert phase end  
8.5.20 Register 13h (address = 13h) [reset = 0h]  
Figure 57. Register 13h  
23  
0
22  
0
21  
0
20  
19  
18  
0
17  
0
16  
0
0
0
W-0h  
15  
W-0h  
14  
W-0h  
13  
W-0h  
12  
W-0h  
11  
W-0h  
10  
W-0h  
9
W-0h  
8
ALED1CONVST  
R/W-0h  
7
6
5
4
3
2
1
0
ALED1CONVST  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 36. Register 13h Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
23-16  
15-0  
0
Must write 0  
ALED1CONVST  
R/W  
0h  
Ambient 1 convert phase start  
44  
Copyright © 2015–2016, Texas Instruments Incorporated  
AFE4404  
www.ti.com.cn  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
8.5.21 Register 14h (address = 14h) [reset = 0h]  
Figure 58. Register 14h  
23  
0
22  
0
21  
0
20  
0
19  
0
18  
0
17  
0
16  
0
W-0h  
15  
W-0h  
14  
W-0h  
13  
W-0h  
12  
W-0h  
11  
W-0h  
10  
W-0h  
9
W-0h  
8
ALED1CONVEND  
R/W-0h  
7
6
5
4
3
2
1
0
ALED1CONVEND  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 37. Register 14h Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
23-16  
15-0  
0
Must write 0.  
ALED1CONVEND  
R/W  
0h  
Ambient 1 convert phase end  
8.5.22 Register 15h (address = 15h) [reset = 0h]  
Figure 59. Register 15h  
23  
0
22  
0
21  
0
20  
19  
18  
0
17  
0
16  
0
0
0
W-0h  
15  
W-0h  
14  
W-0h  
13  
W-0h  
12  
W-0h  
11  
W-0h  
10  
W-0h  
9
W-0h  
8
ADCRSTSTCT0  
R/W-0h  
7
6
5
4
3
2
1
0
ADCRSTSTCT0  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 38. Register 15h Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
23-16  
15-0  
0
Must write 0.  
ADCRSTSTCT0  
R/W  
0h  
ADC reset phase 0 start  
Copyright © 2015–2016, Texas Instruments Incorporated  
45  
AFE4404  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
www.ti.com.cn  
8.5.23 Register 16h (address = 16h) [reset = 0h]  
Figure 60. Register 16h  
23  
0
22  
0
21  
0
20  
0
19  
0
18  
0
17  
0
16  
0
W-0h  
15  
W-0h  
14  
W-0h  
13  
W-0h  
12  
W-0h  
11  
W-0h  
10  
W-0h  
9
W-0h  
8
ADCRSTENDCT0  
R/W-0h  
7
6
5
4
3
2
1
0
ADCRSTENDCT0  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 39. Register 16h Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
23-16  
15-0  
0
Must write 0.  
ADCRSTENDCT0  
R/W  
0h  
ADC reset phase 0 end  
8.5.24 Register 17h (address = 17h) [reset = 0h]  
Figure 61. Register 17h  
23  
0
22  
0
21  
0
20  
19  
18  
0
17  
0
16  
0
0
0
W-0h  
15  
W-0h  
14  
W-0h  
13  
W-0h  
12  
W-0h  
11  
W-0h  
10  
W-0h  
9
W-0h  
8
ADCRSTSTCT1  
R/W-0h  
7
6
5
4
3
2
1
0
ADCRSTSTCT1  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 40. Register 17h Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
23-16  
15-0  
0
Must write 0.  
ADCRSTSTCT1  
R/W  
0h  
ADC reset phase 1 start  
46  
Copyright © 2015–2016, Texas Instruments Incorporated  
AFE4404  
www.ti.com.cn  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
8.5.25 Register 18h (address = 18h) [reset = 0h]  
Figure 62. Register 18h  
23  
0
22  
0
21  
0
20  
0
19  
0
18  
0
17  
0
16  
0
W-0h  
15  
W-0h  
14  
W-0h  
13  
W-0h  
12  
W-0h  
11  
W-0h  
10  
W-0h  
9
W-0h  
8
ADCRSTENDCT1  
R/W-0h  
7
6
5
4
3
2
1
0
ADCRSTENDCT1  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 41. Register 18h Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
23-16  
15-0  
0
Must write 0.  
ADCRSTENDCT1  
R/W  
0h  
ADC reset phase 1 end  
8.5.26 Register 19h (address = 19h) [reset = 0h]  
Figure 63. Register 19h  
23  
0
22  
0
21  
0
20  
19  
18  
0
17  
0
16  
0
0
0
W-0h  
15  
W-0h  
14  
W-0h  
13  
W-0h  
12  
W-0h  
11  
W-0h  
10  
W-0h  
9
W-0h  
8
ADCRSTSTCT2  
R/W-0h  
7
6
5
4
3
2
1
0
ADCRSTSTCT2  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 42. Register 19h Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
23-16  
15-0  
0
Must write 0.  
ADCRSTSTCT2  
R/W  
0h  
ADC reset phase 2 start  
Copyright © 2015–2016, Texas Instruments Incorporated  
47  
AFE4404  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
www.ti.com.cn  
8.5.27 Register 1Ah (address = 1Ah) [reset = 0h]  
Figure 64. Register 1Ah  
23  
0
22  
0
21  
0
20  
0
19  
0
18  
0
17  
0
16  
0
W-0h  
15  
W-0h  
14  
W-0h  
13  
W-0h  
12  
W-0h  
11  
W-0h  
10  
W-0h  
9
W-0h  
8
ADCRSTENDCT2  
R/W-0h  
7
6
5
4
3
2
1
0
ADCRSTENDCT2  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 43. Register 1Ah Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
23-16  
15-0  
0
Must write 0.  
ADCRSTENDCT2  
R/W  
0h  
ADC reset phase 2 end  
8.5.28 Register 1Bh (address = 1Bh) [reset = 0h]  
Figure 65. Register 1Bh  
23  
0
22  
0
21  
0
20  
19  
18  
0
17  
0
16  
0
0
0
W-0h  
15  
W-0h  
14  
W-0h  
13  
W-0h  
12  
W-0h  
11  
W-0h  
10  
W-0h  
9
W-0h  
8
ADCRSTSTCT3  
R/W-0h  
7
6
5
4
3
2
1
0
ADCRSTSTCT3  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 44. Register 1Bh Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
23-16  
15-0  
0
Must write 0.  
ADCRSTSTCT3  
R/W  
0h  
ADC reset phase 3 start  
48  
Copyright © 2015–2016, Texas Instruments Incorporated  
AFE4404  
www.ti.com.cn  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
8.5.29 Register 1Ch (address = 1Ch) [reset = 0h]  
Figure 66. Register 1Ch  
23  
0
22  
0
21  
0
20  
0
19  
0
18  
0
17  
0
16  
0
W-0h  
15  
W-0h  
14  
W-0h  
13  
W-0h  
12  
W-0h  
11  
W-0h  
10  
W-0h  
9
W-0h  
8
ADCRSTENDCT3  
R/W-0h  
7
6
5
4
3
2
1
0
ADCRSTENDCT3  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 45. Register 1Ch Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
23-16  
15-0  
0
Must write 0.  
ADCRSTENDCT3  
R/W  
0h  
ADC reset phase 3 end  
8.5.30 Register 1Dh (address = 1Dh) [reset = 0h]  
Figure 67. Register 1Dh  
23  
0
22  
0
21  
0
20  
19  
18  
0
17  
0
16  
0
0
0
W-0h  
15  
W-0h  
14  
W-0h  
13  
W-0h  
12  
W-0h  
11  
W-0h  
10  
W-0h  
9
W-0h  
8
PRPCT  
R/W-0h  
7
6
5
4
3
2
1
0
PRPCT  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 46. Register 1Dh Field Descriptions  
Bit  
Field  
0
Type  
W
Reset  
0h  
Description  
23-16  
15-0  
Must write 0.  
PRPCT  
R/W  
0h  
These bits are the count value for the counter that sets the PRF.  
The counter automatically counts until PRPCT and then returns back to  
0 to start the next count.  
Copyright © 2015–2016, Texas Instruments Incorporated  
49  
AFE4404  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
www.ti.com.cn  
8.5.31 Register 1Eh (address = 1Eh) [reset = 0h]  
Figure 68. Register 1Eh  
23  
0
22  
0
21  
0
20  
0
19  
0
18  
0
17  
16  
0
W-0h  
9
0
W-0h  
8
W-0h  
15  
W-0h  
14  
W-0h  
13  
W-0h  
12  
W-0h  
11  
W-0h  
10  
0
0
0
0
0
0
0
TIMEREN  
R/W-0h  
0
W-0h  
7
W-0h  
6
W-0h  
5
W-0h  
4
W-0h  
3
W-0h  
2
W-0h  
1
0
0
0
0
NUMAV  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 47. Register 1Eh Field Descriptions  
Bit  
23-9  
8
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
TIMEREN  
R/W  
0h  
0 = Timer module disabled  
1 = Enables timer module. This bit enables the timing engine that can  
be programmed to generate all clock phases for the synchronized  
transmit drive, receive sampling, and data conversion.  
7-4  
3-0  
0
W
0h  
0h  
Must write 0.  
NUMAV  
R/W  
These bits determine the number of ADC averages. By programming a  
higher ADC conversion time, the ADC can be set to do multiple  
conversions and average these multiple conversions to achieve lower  
noise. This programmability is set with the NUMAV bit control. The  
number of samples that are averaged is represented by the decimal  
equivalent of NUMAV + 1. For example, NUMAV = 0 represents no  
averaging, NUMAV = 2 represents averaging of three samples, and  
NUMAV = 15 represents averaging of 16 samples.  
8.5.32 Register 20h (address = 20h) [reset = 0h]  
Figure 69. Register 20h  
23  
22  
0
21  
0
20  
19  
18  
0
17  
16  
0
0
0
0
0
W-0h  
8
W-0h  
W-0h  
14  
W-0h  
13  
W-0h  
W-0h  
11  
W-0h  
10  
W-0h  
15  
12  
9
ENSEPGAIN  
0
0
0
W-0h  
0
0
0
W-0h  
0
R/W-0h  
W-0h  
6
W-0h  
5
W-0h  
3
W-0h  
2
W-0h  
0
7
0
4
1
0
TIA_CF_SEP  
R/W-0h  
TIA_GAIN_SEP  
R/W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 48. Register 20h Field Descriptions  
Bit  
23-16  
15  
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
ENSEPGAIN  
R/W  
0h  
0 = Single TIA gain for all phases  
1 = Enables two separate sets of TIA gains  
14-6  
5-3  
0
W
0h  
0h  
0h  
Must write 0.  
TIA_CF_SEP  
TIA_GAIN_SEP  
R/W  
R/W  
When ENSEPGAIN = 1, TIA_CF_SEP is the control for the Cf2 setting.  
2-0  
When ENSEPGAIN = 1, TIA_GAIN_SEP is the control for the Rf2  
setting.  
50  
Copyright © 2015–2016, Texas Instruments Incorporated  
AFE4404  
www.ti.com.cn  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
8.5.33 Register 21h (address = 21h) [reset = 0h]  
Figure 70. Register 21h  
23  
0
22  
0
21  
0
20  
0
19  
0
18  
0
17  
16  
0
0
W-0h  
15  
W-0h  
14  
W-0h  
13  
W-0h  
12  
W-0h  
11  
W-0h  
10  
W-0h  
W-0h  
9
0
8
0
0
0
0
0
0
PROG_TG_EN  
W-0h  
7
W-0h  
6
W-0h  
5
W-0h  
4
W-0h  
3
W-0h  
2
W-0h  
1
W-0h  
0
0
0
TIA_CF  
R/W-0h  
TIA_GAIN  
R/W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 49. Register 21h Field Descriptions  
Bit  
23-9  
8
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
PROG_TG_EN  
W
0h  
This bit replaces the ADC_RDY output with a fully-  
programmable signal from the timing engine. The start and end  
points of this signal are set using the PROG_TG_STC and  
PROG_TG_ENDC controls.  
7-6  
5-3  
0
W
0h  
0h  
Must write 0.  
TIA_CF  
R/W  
When ENSEPGAIN = 0, these bits control the Cf setting (both  
Cf1 and Cf2); see Table 51 for details.  
When ENSEPGAIN = 1, these bits control the Cf1 setting.  
2-0  
TIA_GAIN  
R/W  
0h  
When ENSEPGAIN = 0, these bits control the Rf setting (both  
Rf1 and Rf2); see Table 50 for details.  
When ENSEPGAIN = 1, these bits control the Rf1 setting.  
Table 50. TIA_GAIN Register Settings  
TIA_GAIN, TIA_GAIN_SEP REGISTER VALUE  
Rf  
0
1
2
3
4
5
6
7
500 kΩ  
250 kΩ  
100 kΩ  
50 kΩ  
25 kΩ  
10 kΩ  
1 MΩ  
2 MΩ  
Table 51. TIA_CF Register Settings  
TIA_CF, TIA_CF_SEP REGISTER VALUE  
Cf  
0
1
2
3
4
5
6
7
5 pF  
2.5 pF  
10 pF  
7.5 pF  
20 pF  
17.5 pF  
25 pF  
22.5 pF  
Copyright © 2015–2016, Texas Instruments Incorporated  
51  
 
 
AFE4404  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
www.ti.com.cn  
8.5.34 Register 22h (address = 22h) [reset = 0h]  
Figure 71. Register 22h  
23  
0
22  
0
21  
0
20  
0
19  
0
18  
0
17  
9
16  
ILED3  
R/W-0h  
W-0h  
15  
W-0h  
14  
W-0h  
13  
W-0h  
12  
W-0h  
11  
W-0h  
10  
8
0
ILED3  
ILED2  
R/W-0h  
R/W-0h  
7
6
5
4
3
2
1
ILED2  
ILED1  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 52. Register 22h Field Descriptions  
Bit  
23-18  
17-12  
11-6  
5-0  
Field  
0
Type  
W
Reset  
0h  
Description  
Must write 0.  
ILED3  
ILED2  
ILED1  
R/W  
R/W  
R/W  
0h  
LED3 current control  
LED2 current control  
0h  
0h  
LED1 current control. Increments of the LED1 current setting are  
listed in Table 53.  
Table 53. ILED1 Register Settings  
ILED1, ILED2, ILED3 REGISTER VALUES  
LED CURRENT SETTING (mA)  
0
1
0
0.8  
1.6  
2.4  
2
3
63  
50  
52  
Copyright © 2015–2016, Texas Instruments Incorporated  
 
AFE4404  
www.ti.com.cn  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
8.5.35 Register 23h (address = 23h) [reset = 0h]  
Figure 72. Register 23h  
23  
0
22  
21  
0
20  
DYNAMIC1  
R/W-0h  
12  
19  
18  
0
17  
ILED_2X  
R/W-0h  
9
16  
0
W-0h  
14  
0
W-0h  
11  
0
W-0h  
8
W-0h  
15  
W-0h  
13  
W-0h  
10  
0
DYNAMIC2  
R/W-0h  
6
0
0
0
0
OSC_ENABLE  
R/W-0h  
1
0
W-0h  
7
W-0h  
5
W-0h  
W-0h  
3
W-0h  
2
W-0h  
0
4
0
0
0
DYNAMIC3  
R/W-0h  
DYNAMIC4  
R/W-0h  
0
PDNRX  
R/W-0h  
PDNAFE  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 54. Register 23h Field Descriptions  
Bit  
23-21  
20  
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
DYNAMIC1  
R/W  
0h  
0 = Transmitter is not powered down  
1 = Transmitter is powered down in dynamic power-down mode  
19-18  
17  
0
W
0h  
0h  
Must write 0.  
ILED_2X  
R/W  
0 = LED current range is 0 mA to 50 mA  
1 = LED current range is 0 mA to 100 mA  
16-15  
14  
0
W
0h  
0h  
Must write 0.  
DYNAMIC2  
R/W  
0 = ADC is not powered down  
1 = ADC is powered down in dynamic power-down mode  
13-10  
9
0
W
0h  
0h  
Must write 0.  
OSC_ENABLE  
R/W  
0 = External clock mode (default). In this mode, the CLK pin  
functions as an input pin where the external clock can be input.  
1 = Enables oscillator mode. In this mode, the 4-MHz internal  
oscillator is enabled.  
8-5  
4
0
W
0h  
0h  
Must write 0.  
DYNAMIC3  
R/W  
0 = TIA is not powered down  
1 = TIA is powered down in dynamic power-down mode  
3
DYNAMIC4  
R/W  
0h  
0 = Rest of ADC is not powered down  
1 = Rest of ADC is powered down in dynamic power-down mode  
2
1
0
W
0h  
0h  
Must write 0.  
PDNRX  
R/W  
0 = Normal mode  
1 = RX portion of the AFE is powered down  
0
PDNAFE  
R/W  
0h  
0 = Normal mode  
1 = Entire AFE is powered down  
Copyright © 2015–2016, Texas Instruments Incorporated  
53  
AFE4404  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
www.ti.com.cn  
8.5.36 Register 29h (address = 29h) [reset = 0h]  
Figure 73. Register 29h  
23  
0
22  
0
21  
0
20  
0
19  
0
18  
0
17  
0
16  
0
W-0h  
15  
W-0h  
14  
W-0h  
13  
W-0h  
12  
W-0h  
11  
W-0h  
10  
W-0h  
9
W-0h  
8
ENABLE_  
CLKOUT  
0
0
0
0
0
0
0
W-0h  
7
W-0h  
6
W-0h  
5
W-0h  
4
W-0h  
3
W-0h  
2
R/W-0h  
1
W-0h  
0
0
0
0
CLKDIV_CLKOUT  
R/W-0h  
0
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 55. Register 29h Field Descriptions  
Bit  
23-10  
9
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
ENABLE_CLKOUT  
R/W  
0h  
In internal clock mode, the internally-generated clock can be  
output on the CLK pin.  
0 = Disables the clock output  
1 = Enables CLKOUT generation and buffering on the CLK pin.  
The frequency of the clock output on the CLK pin (in internal  
clock mode) can be set using a programmable divider controlled  
by the CLKDIV_CLKOUT register bit.  
8-5  
4-1  
0
W
0h  
0h  
Must write 0.  
CLKDIV_CLKOUT  
R/W  
Set the frequency of the clock output on the CLK pin (in the  
internal clock mode), as shown in Table 56.  
Table 56. CLKDIV_CLKOUT Register Settings  
CLKDIV_CLKOUT REGISTER SETTINGS  
DIVISION RATIO  
FREQUENCY OF OUTPUT CLOCK IN MHz  
0
1
4
2
1
2
2
4
1
3
8
0.5  
4
5
16  
32  
0.25  
0.125  
0.0625  
0.03125  
Do not use  
6
64  
7
128  
8..15  
Do not use  
54  
Copyright © 2015–2016, Texas Instruments Incorporated  
 
AFE4404  
www.ti.com.cn  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
8.5.37 Register 2Ah (address = 2Ah) [reset = 0h]  
Figure 74. Register 2Ah  
23  
15  
7
22  
14  
6
21  
13  
5
20  
12  
4
19  
11  
3
18  
10  
2
17  
9
16  
8
LED2VAL  
R-0h  
LED2VAL  
R-0h  
1
0
LED2VAL  
R-0h  
LEGEND: R = Read only; -n = value after reset  
Table 57. Register 2Ah Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23-0  
LED2VAL  
R
0h  
These bits are the LED2 output code in 24-bit, twos complement  
format.  
8.5.38 Register 2Bh (address = 2Bh) [reset = 0h]  
Figure 75. Register 2Bh  
23  
15  
7
22  
14  
6
21  
13  
5
20  
19  
18  
10  
2
17  
9
16  
8
ALED2VAL\LED3VAL  
R-0h  
12  
11  
ALED2VAL\LED3VAL  
R-0h  
4
3
1
0
ALED2VAL\LED3VAL  
R-0h  
LEGEND: R = Read only; -n = value after reset  
Table 58. Register 2Bh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23-0  
ALED2VAL\LED3VAL  
R
0h  
These bits are the ambient 2 or LED3 output code in 24-bit, twos  
complement format.  
Copyright © 2015–2016, Texas Instruments Incorporated  
55  
AFE4404  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
www.ti.com.cn  
8.5.39 Register 2Ch (address = 2Ch) [reset = 0h]  
Figure 76. Register 2Ch  
23  
15  
7
22  
14  
6
21  
13  
5
20  
12  
4
19  
11  
3
18  
10  
2
17  
9
16  
8
LED1VAL  
R-0h  
LED1VAL  
R-0h  
1
0
LED1VAL  
R-0h  
LEGEND: R = Read only; -n = value after reset  
Table 59. Register 2Ch Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23-0  
LED1VAL  
R
0h  
These bits are the LED1 output code in 24-bit, twos complement  
format.  
8.5.40 Register 2Dh (address = 2Dh) [reset = 0h]  
Figure 77. Register 2Dh  
23  
15  
7
22  
14  
6
21  
13  
5
20  
19  
18  
10  
2
17  
9
16  
8
ALED1VAL  
R-0h  
12  
4
11  
3
ALED1VAL  
R-0h  
1
0
ALED1VAL  
R-0h  
LEGEND: R = Read only; -n = value after reset  
Table 60. Register 2Dh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23-0  
ALED1VAL  
R
0h  
These bits are the ambient 1 output code in 24-bit, twos  
complement format.  
56  
Copyright © 2015–2016, Texas Instruments Incorporated  
AFE4404  
www.ti.com.cn  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
8.5.41 Register 2Eh (address = 2Eh) [reset = 0h]  
Figure 78. Register 2Eh  
23  
15  
7
22  
14  
6
21  
13  
5
20  
LED2-ALED2VAL  
R-0h  
19  
18  
10  
2
17  
9
16  
8
12  
11  
LED2-ALED2VAL  
R-0h  
4
3
1
0
LED2-ALED2VAL  
R-0h  
LEGEND: R = Read only; -n = value after reset  
Table 61. Register 2Eh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23-0  
LED2-ALED2VAL(1)  
R
0h  
These bits are the LED2-ambient2 output code in 24-bit, twos  
complement format.  
(1) Ignore the content of this register when LED3 is used.  
8.5.42 Register 2Fh (address = 2Fh) [reset = 0h]  
Figure 79. Register 2Fh  
23  
15  
7
22  
14  
6
21  
13  
5
20  
19  
18  
10  
2
17  
9
16  
8
LED1-ALED1VAL  
R-0h  
12  
11  
LED1-ALED1VAL  
R-0h  
4
3
1
0
LED1-ALED1VAL  
R-0h  
LEGEND: R = Read only; -n = value after reset  
Table 62. Register 2Fh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23-0  
LED1-ALED1VAL  
R
0h  
These bits are the LED1-ambient1 output code in 24-bit, twos  
complement format.  
Copyright © 2015–2016, Texas Instruments Incorporated  
57  
AFE4404  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
www.ti.com.cn  
8.5.43 Register 31h (address = 31h) [reset = 0h]  
Figure 80. Register 31h  
23  
0
22  
0
21  
0
20  
0
19  
0
18  
0
17  
0
16  
0
W-0h  
15  
W-0h  
14  
W-0h  
13  
W-0h  
12  
W-0h  
11  
W-0h  
10  
W-0h  
9
W-0h  
8
PD_  
DISCONNECT  
0
0
0
0
0
0
0
W-0h  
7
W-0h  
6
W-0h  
5
W-0h  
4
W-0h  
3
W-0h  
2
W-0h  
1
W-0h  
0
ENABLE_  
INPUT_  
SHORT  
0
0
0
0
CLKDIV_EXTMODE  
R/W-0h  
W-0h  
W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 63. Register 31h Field Descriptions  
Bit  
23-11  
10  
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
PD_DISCONNECT  
W
0h  
This bit disconnects the PD signals (INP, INM) from the TIA  
inputs. When enabled, the current input to the TIA is determined  
completely by the offset cancellation DAC current (I_OFFDAC).  
Note that in this mode, the AFE no longer sets the bias for the  
PD.  
9-6  
5
0
W
0h  
0h  
Must write 0.  
ENABLE_INPUT_SHORT  
R/W  
INP, INN are shorted to VCM whenever the TIA is in power-  
down.  
4-3  
2-0  
0
W
0h  
0h  
Must write 0.  
CLKDIV_EXTMODE  
R/W  
These bits are used to set the division ratio to allow flexible  
clocking in external clock mode. For details, see Table 64.  
Table 64. CLKDIV_EXTMODE Register Settings  
ALLOWED FREQUENCY RANGE OF  
EXTERNAL CLOCK IN MHz  
CLKDIV_EXTMODE REGISTER SETTINGS  
DIVISION RATIO  
0
1
2
3
4
5
6
7
2
8-12  
32-48  
8
Do not use  
Do not use  
48-60  
12  
4
16-24  
1
6
4-6  
24-36  
Do not use  
Do not use  
58  
Copyright © 2015–2016, Texas Instruments Incorporated  
 
AFE4404  
www.ti.com.cn  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
8.5.44 Register 32h (address = 32h) [reset = 0h]  
Figure 81. Register 32h  
23  
0
22  
0
21  
0
20  
0
19  
0
18  
0
17  
0
16  
0
W-0h  
15  
W-0h  
14  
W-0h  
13  
W-0h  
12  
W-0h  
11  
W-0h  
10  
W-0h  
9
W-0h  
8
PDNCYCLESTC  
R/W-0h  
7
6
5
4
3
2
1
0
PDNCYCLESTC  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 65. Register 32h Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
23-16  
15-0  
0
Must write 0.  
PDNCYCLESTC  
R/W  
0h  
PDN_CYCLE start  
8.5.45 Register 33h (address = 33h) [reset = 0h]  
Figure 82. Register 33h  
23  
0
22  
0
21  
0
20  
0
19  
0
18  
0
17  
0
16  
0
W-0h  
15  
W-0h  
14  
W-0h  
13  
W-0h  
12  
W-0h  
11  
W-0h  
10  
W-0h  
9
W-0h  
8
PDNCYCLEENDC  
R/W-0h  
7
6
5
4
3
2
1
0
PDNCYCLEENDC  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 66. Register 33h Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
23-16  
15-0  
0
Must write 0.  
PDNCYCLEENDC  
R/W  
0h  
PDN_CYCLE end  
Copyright © 2015–2016, Texas Instruments Incorporated  
59  
AFE4404  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
www.ti.com.cn  
8.5.46 Register 34h (address = 34h) [reset = 0h]  
Figure 83. Register 34h  
23  
0
22  
0
21  
0
20  
0
19  
0
18  
0
17  
0
16  
0
W-0h  
15  
W-0h  
14  
W-0h  
13  
W-0h  
12  
W-0h  
11  
W-0h  
10  
W-0h  
9
W-0h  
8
PROG_TG_STC  
W-0h  
7
6
5
4
3
2
1
0
PROG_TG_STC  
W-0h  
LEGEND: W = Write only; -n = value after reset  
Table 67. Register 34h Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
23-16  
15-0  
0
Must write 0.  
PROG_TG_STC  
W
0h  
These bits define the start time for the programmable timing  
engine signal that can replace ADC_RDY.  
8.5.47 Register 35h (address = 35h) [reset = 0h]  
Figure 84. Register 35h  
23  
0
22  
0
21  
0
20  
19  
18  
0
17  
0
16  
0
0
0
W-0h  
15  
W-0h  
14  
W-0h  
13  
W-0h  
12  
W-0h  
11  
W-0h  
10  
W-0h  
9
W-0h  
8
PROG_TG_ENDC  
W-0h  
7
6
5
4
3
2
1
0
PROG_TG_ENDC  
W-0h  
LEGEND: W = Write only; -n = value after reset  
Table 68. Register 35h Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
23-16  
15-0  
0
Must write 0.  
PROG_TG_ENDC  
W
0h  
These bits define the end time for the programmable timing  
engine signal that can replace ADC_RDY.  
60  
Copyright © 2015–2016, Texas Instruments Incorporated  
AFE4404  
www.ti.com.cn  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
8.5.48 Register 36h (address = 36h) [reset = 0h]  
Figure 85. Register 36h  
23  
0
22  
0
21  
0
20  
0
19  
0
18  
0
17  
0
16  
0
W-0h  
15  
W-0h  
14  
W-0h  
13  
W-0h  
12  
W-0h  
11  
W-0h  
10  
W-0h  
9
W-0h  
8
LED3LEDSTC  
R/W-0h  
7
6
5
4
3
2
1
0
LED3LEDSTC  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 69. Register 36h Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
23-16  
15-0  
0
Must write 0.  
LED3LEDSTC  
R/W  
0h  
LED3 start. If LED3 is not used, set these register bits to '0'.  
8.5.49 Register 37h (address = 37h) [reset = 0h]  
Figure 86. Register 37h  
23  
0
22  
0
21  
0
20  
19  
18  
0
17  
0
16  
0
0
0
W-0h  
15  
W-0h  
14  
W-0h  
13  
W-0h  
12  
W-0h  
11  
W-0h  
10  
W-0h  
9
W-0h  
8
LED3LEDENDC  
R/W-0h  
7
6
5
4
3
2
1
0
LED3LEDENDC  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 70. Register 37h Field Descriptions  
Bit  
Field  
Type  
W
Reset  
0h  
Description  
23-16  
15-0  
0
Must write 0.  
LED3LEDENDC  
R/W  
0h  
LED3 end. If LED3 is not used, set these register bits to '0'.  
Copyright © 2015–2016, Texas Instruments Incorporated  
61  
AFE4404  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
www.ti.com.cn  
8.5.50 Register 39h (address = 39h) [reset = 0h]  
Figure 87. Register 39h  
23  
0
22  
0
21  
0
20  
0
19  
0
18  
0
17  
16  
0
0
W-0h  
8
W-0h  
15  
W-0h  
14  
W-0h  
13  
W-0h  
12  
W-0h  
11  
W-0h  
10  
W-0h  
9
0
0
0
0
0
0
0
W-0h  
0
W-0h  
7
W-0h  
6
W-0h  
5
W-0h  
4
W-0h  
3
W-0h  
2
W-0h  
0
1
0
0
0
0
0
CLKDIV_PRF  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 71. Register 39h Field Descriptions  
Bit  
23-3  
2-0  
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
CLKDIV_PRF  
R/W  
0h  
Clock division ratio for the clock to the timing engine.  
For details, see Table 72.  
Table 72. CLKDIV_PRF Register Settings  
CLKDIV_PRF  
REGISTER SETTINGS  
FREQUENCY OF THE TIMING CLOCK in  
MHz (When the ADC Clock is 4 MHz)  
LOWEST PRF SETTING  
DIVISION RATIO  
(In Hz(1)  
)
0
1
2
3
4
5
6
7
1
4
61  
Do not use  
Do not use  
Do not use  
Do not use  
Do not use  
Do not use  
Do not use  
Do not use  
Do not use  
2
4
2
1
31  
15  
8
8
0.5  
0.25  
16  
4
(1) Limit to 10 Hz.  
62  
Copyright © 2015–2016, Texas Instruments Incorporated  
 
AFE4404  
www.ti.com.cn  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
8.5.51 Register 3Ah (address = 3Ah) [reset = 0h]  
Figure 88. Register 3Ah  
23  
0
22  
0
21  
0
20  
0
19  
18  
10  
2
17  
16  
8
POL_OFFDAC  
_LED2  
I_OFFDAC_LED2  
W-0h  
15  
W-0h  
14  
W-0h  
13  
W-0h  
12  
R/W-0h  
11  
R/W-0h  
9
I_OFFDAC_  
LED2  
POL_OFFDAC  
_AMB1  
POL_OFFDAC  
_LED1  
I_OFFDAC_  
LED1  
I_OFFDAC_AMB1  
R/W-0h  
R/W-0h  
7
R/W-0h  
6
R/W-0h  
1
R/W-0h  
0
5
4
3
POL_OFFDAC  
_AMB2\  
POL_OFFDAC  
_LED3  
I_OFFDAC_LED1  
R/W-0h  
I_OFFDAC_AMB2\I_OFFDAC_LED3  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 73. Register 3Ah Field Descriptions  
Bit  
23-20  
19  
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
POL_OFFDAC_LED2  
I_OFFDAC_LED2  
POL_OFFDAC_AMB1  
I_OFFDAC_AMB1  
POL_OFFDAC_LED1  
I_OFFDAC_LED1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
Offset cancellation DAC polarity for LED2  
Offset cancellation DAC setting forLED2  
18-15  
14  
0h  
0h  
Offset cancellation DAC polarity for ambient 1  
Offset cancellation DAC setting for ambient 1  
Offset cancellation DAC polarity for LED1  
13-10  
9
0h  
0h  
8-5  
0h  
Offset cancellation DAC setting for LED1, as described in  
Table 74.  
4
POL_OFFDAC_AMB2\POL_OFFDAC_LED3  
I_OFFDAC_AMB2\I_OFFDAC_LED3  
R/W  
R/W  
0h  
0h  
Offset cancellation DAC polarity for ambient 2 (or LED3)  
Offset cancellation DAC setting for ambient 2 (or LED3)  
3-0  
Copyright © 2015–2016, Texas Instruments Incorporated  
63  
AFE4404  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
www.ti.com.cn  
Table 74. I_OFFDAC Register Settings(1)(2)  
OFFSET CANCELLATION DAC CURRENT OFFSET CANCELLATION DAC CURRENT  
I_OFFDAC REGISTER SETTINGS  
(µA) WITH POL_OFFDAC = 0  
(µA) WITH POL_OFFDAC = 1  
0
1
0
0
0.47  
0.93  
1.4  
–0.47  
–0.93  
–1.4  
2
3
4
1.87  
2.33  
2.8  
–1.87  
–2.33  
–2.8  
5
6
7
3.27  
3.73  
4.2  
–3.27  
–3.73  
–4.2  
8
9
10  
11  
12  
13  
14  
15  
4.67  
5.13  
5.6  
–4.67  
–5.13  
–5.6  
6.07  
6.53  
7
–6.07  
–6.53  
–7  
(1) I_OFFDAC can correspond to one of the four phases. POL_OFFDAC corresponds to the polarity control for the same phase.  
(2) The offset cancellation DAC is not trimmed at production and, therefore, the value of the full-scale current can vary across units by  
±20%.  
64  
Copyright © 2015–2016, Texas Instruments Incorporated  
AFE4404  
www.ti.com.cn  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
8.5.52 Register 3Dh (address = 3Dh) [reset = 0h]  
Figure 89. Register 3Dh  
23  
0
22  
0
21  
0
20  
0
19  
0
18  
17  
16  
0
0
W-0h  
9
0
W-0h  
8
W-0h  
15  
W-0h  
14  
W-0h  
13  
W-0h  
12  
W-0h  
11  
W-0h  
10  
0
0
0
0
0
0
W-0h  
0
0
W-0h  
7
W-0h  
6
W-0h  
5
W-0h  
4
W-0h  
3
W-0h  
1
W-0h  
0
2
0
0
DEC_EN  
R/W-0h  
0
DEC_FACTOR  
R/W-0h  
0
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 75. Register 3Dh Field Descriptions  
Bit  
23-6  
5
Field  
0
Type  
W
Reset  
0h  
Description  
Must write 0.  
DEC_EN  
R/W  
0h  
0 = Decimation mode disabled  
1 = Decimation mode enabled  
4
0
W
0h  
0h  
Must write 0.  
3-1  
DEC_FACTOR  
R/W  
Decimation factor (how many samples are to be  
averaged); see Table 76 for details.  
0
0
W
0h  
Must write 0.  
Table 76. DEC_FACTOR Register Settings  
DEC_FACTOR REGISTER SETTINGS  
DECIMATION FACTOR  
0
1
1
2
2
4
3
8
16  
4
5-8  
Do not use  
Copyright © 2015–2016, Texas Instruments Incorporated  
65  
 
AFE4404  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
www.ti.com.cn  
8.5.53 Register 3Fh (address = 3Fh) [reset = 0h]  
Figure 90. Register 3Fh  
23  
15  
7
22  
14  
6
21  
13  
5
20  
19  
18  
10  
2
17  
9
16  
8
AVG_LED2-ALED2VAL  
R-0h  
12  
11  
AVG_LED2-ALED2VAL  
R-0h  
4
3
1
0
AVG_LED2-ALED2VAL  
R-0h  
LEGEND: R = Read only; -n = value after reset  
Table 77. Register 3Fh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23-0  
AVG_LED2-ALED2VAL  
R
0h  
These bits are the 24-bit averaged output code for (LED2-  
Ambient2) when decimation mode is enabled. The  
averaging is done over the number of samples specified  
by the decimation factor.  
8.5.54 Register 40h (address = 40h) [reset = 0h]  
Figure 91. Register 40h  
23  
15  
7
22  
14  
6
21  
13  
5
20  
19  
18  
10  
2
17  
9
16  
8
AVG_LED1-ALED1VAL  
R-0h  
12  
11  
AVG_LED1-ALED1VAL  
R-0h  
4
3
1
0
AVG_LED1-ALED1VAL  
R-0h  
LEGEND: R = Read only; -n = value after reset  
Table 78. Register 40h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23-0  
AVG_LED1-ALED1VAL  
R
0h  
These bits are the 24-bit averaged output code for (LED1-  
Ambient1) when decimation mode is enabled. The  
averaging is done over the number of samples specified  
by the decimation factor.  
66  
Copyright © 2015–2016, Texas Instruments Incorporated  
AFE4404  
www.ti.com.cn  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The AFE is designed to operate with a minimal number of external components. Deriving the power supplies for  
the AFE from the available source of power in the system can require an additional external LDO or boost  
converter. A reset is essential after power-up to ensure that all registers are reset to their default values. TI also  
recommends that the entire system be operated using a single master clock. The AFE can either be set to  
accept an external clock derived from a master clock generated elsewhere in the system, or the AFE can provide  
its internal oscillator as an output clock to serve as the master clock for the rest of the system. If a single master  
clock is not possible, extra care must be taken to ensure that spurious energy from unrelated clocks does not get  
coupled into the AFE. If this energy does couple into the AFE the spurs get aliased based on the sampling  
operation. These aliased spurs can result in a faulty detection of parameters (such as heart rate). The  
photodiode outputs are specifically prone to picking up noise. Especially when operating in coexistence and  
close proximity with RF communication circuitry [such as Bluetooth® low energy (BLE)], a common-mode choke  
may become essential to add in the path of the AFE inputs to reject the interference.  
9.2 Typical Application  
TX_SUP  
LEDs  
TX_SUP  
RX_SUP  
TX1  
TX2  
TX3  
IO_SUP  
INP  
INM  
I2C_CLK  
AFE  
I2C_DAT  
RESETZ  
MCU  
ADC_RDY  
CLK  
Rseries  
GND  
Rshunt  
Copyright © 2016, Texas Instruments Incorporated  
NOTE: Use Rseries in external clock mode and Rshunt in internal oscillator mode.  
Figure 92. Typical AFE Connection  
Copyright © 2015–2016, Texas Instruments Incorporated  
67  
 
AFE4404  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
www.ti.com.cn  
Typical Application (continued)  
Figure 92 illustrates the typical connection of the AFE. The following points are to be noted:  
1. Use decoupling capacitors (1 µF or higher) placed close to the device to filter noise on RX_SUP and  
TX_SUP.  
2. The voltage level used for IO_SUP must be the same as the I/O voltage level for the MCU.  
3. In external clock mode, TI recommends connecting a series resistor (Rseries) on the CLK pin. At power-up  
and before a RESET pulse is applied, the register bits can be in an uninitialized state. The CLK pin can  
possibly be configured as an output pin in this uninitialized state because the CLK pin is an I/O pin. In such a  
scenario, Rseries limits the current (because the MCU also attempts to drive the CLK pin). For maximum  
frequency of the external clock (60 MHz), the Rseries value is recommended to be 500 Ω.  
4. In internal oscillator mode, a shunt resistor (Rshunt) equal to 500 kΩ is recommended to be connected to the  
CLK pin. At power-up and after reset, the device resets to the default mode of the external clock. The CLK  
pin is in a tri-state mode until the internal clock mode with the CLK output enabled is written through the I2C  
interface. The function of Rshunt is to pull down the CLK pin to a logic level of 0 so that the input clock to the  
MCU is at a logic level even when the CLK pin is tri-stated.  
5. When in power-down mode (PWDN and PDNAFE) the CLK pin must be shut off (tri-stated or driven to zero),  
if externally driven.  
9.2.1 Design Requirements  
The AFE architecture is very flexible, and can be used for both high-performance saturation of peripheral  
capillary oxygen (SpO2) applications as well as low-power, battery-operated heart-rate monitoring (HRM)  
applications as a result of this flexibility. The high dynamic range of the AFE enables excellent SNR for the signal  
of interest (usually small in amplitude) even in the presence of large-signal artifacts resulting from ambient and  
motion changes.  
9.2.2 Detailed Design Procedure  
The following important factors are key to extracting the full performance benefit from the AFE:  
1. Good optics including bright LEDs and high-sensitivity photodiodes  
2. Good mechanical design  
3. A calibration loop that sets the optimal AFE settings based on the signal conditions  
TI recommends that a system-level budgeting of dynamic range be initially done based on the following factors:  
1. The range of the dc signal currents that are input to the AFE  
2. The range of ac-to-dc ratio across different users  
3. Signal current changes expected from artifacts (such as motion and ambient light changes)  
4. The SNR required for heart-rate extraction algorithms to function successfully  
Based on the above analysis, the available dynamic range from the AFE (approximately 100 dB) can be  
partitioned between the various components, and the target dc level for the calibration algorithm can also be  
arrived at.  
9.2.2.1 System-Level ESD Considerations  
To meet system-level ESD requirements, additional on-board ESD protection diodes may be required to be  
connected to the AFE4404 input pins. The input pins are sensitive to leakage, so using low-leakage ESD diodes  
is recommended for protecting these pins.  
TI’s portfolio of ESD protection devices can be accessed at the Overview for ESD Protection Diodes page.  
The ESD Protection Layout Guide (SLVA680) is available for download at www.ti.com.  
68  
Copyright © 2015–2016, Texas Instruments Incorporated  
AFE4404  
www.ti.com.cn  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
Typical Application (continued)  
9.2.2.2 Reducing Sensitivity to Ambient Light Modulation  
Ambient light has an additive effect to the LED phase output of the AFE because ambient light occurs on the  
photodiode in a manner similar to the light originating from the LED. Any artifacts in ambient light can therefore  
interfere with the extraction of the heart rate from the signal in the LED phase. The purpose of subtracting the  
ambient phase signal from the LED phase signal is to remove this effect. If the effect of ambient light on the LED  
and ambient phase outputs is unequal, then subtraction of the ambient phase data from the LED phase data  
gives only an incomplete cancellation of the ambient light modulation effect. In that case, a periodic pattern in the  
ambient light can cause spurious tones to appear in the (LED-Ambient) data. The following guidelines can  
significantly reduce the sensitivity of the AFE to ambient light modulation:  
Follow the timing guidelines listed in Table 7.  
t1 (the start of the LED to the start of sampling) plays a role in the sensitivity to ambient light modulation. For  
best performance under high ambient light modulation, keeping t1 to a value greater than 25 µs is  
recommended even when operating at low sampling pulse durations.  
The TIA maintains the photodiode bias through negative feedback. If the TIA output saturates, then the  
photodiode bias is disturbed. The associated transient for the photodiode bias to get restored can increase  
the sensitivity to ambient light modulation. For example, a saturation of the TIA output during the LED3 phase  
can lead to the TIA recovery response to span both the LED1 and Ambient1 phases. This scenario can cause  
the channel response to differ between these two phases, thereby rendering the ambient subtraction through  
(LED1-Ambient1) to be incomplete. Therefore, the output of every phase is recommended to be prevented  
from saturating (through periodic signal monitoring and gain adjustment) even if the data from that phase is  
not being used by the heart rate estimation algorithm.  
If the ambient light changes at a fast rate, the effective ambient signal observed during the LED and ambient  
phases can be different because of the difference between the sampling instants. This effect can also cause  
the ambient subtraction to be incomplete. Reducing the spacing between the sampling instants of the LED  
and ambient can reduce this effect.  
Figure 93 is the AFE output in the ambient phase resulting from modulation applied to the ambient light.  
Figure 94 is the (LED-Ambient) phase data with non-optimal settings and Figure 95 is the (LED-Ambient) phase  
data with optimal settings.  
452000  
451000  
450000  
449000  
448000  
447000  
446000  
445000  
444000  
443000  
442000  
441000  
440000  
90000  
80000  
70000  
60000  
50000  
40000  
30000  
20000  
10000  
0
-10000  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
Sample Number  
Sample Number  
Figure 93. Ambient Data with Ambient Light Modulation  
Figure 94. (LED-Ambient) Data with a Non-Optimal AFE  
Setting  
Copyright © 2015–2016, Texas Instruments Incorporated  
69  
 
AFE4404  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
www.ti.com.cn  
Typical Application (continued)  
447000  
446000  
445000  
444000  
443000  
442000  
441000  
440000  
439000  
438000  
437000  
436000  
435000  
0
200  
400  
600  
800  
1000  
Sample Number  
Figure 95. (LED-Ambient) Data with an Optimal AFE Setting  
9.2.3 Application Curves  
This section outlines the trends described in the Typical Characteristics section from an application perspective.  
Figure 1 illustrates the receiver current across different external clock frequencies. Each of the curves  
corresponds to a different CLKDIV_EXTMODE setting that determines the division ratio between the external  
clock and the internal clock (CLK_INT). The internal clock frequency must be in the range of 4 MHz to 6 MHz for  
proper operation, and each curve corresponds to a sweep of the external clock frequency that corresponds to an  
internal clock frequency sweep over the range of 4 MHz to 6 MHz.  
Figure 2 illustrates the receiver current across the PRF with the dynamic power-down signal (PDN_CYCLE)  
enabled during the portion of the period when the receiver does not need to be active. The active period is  
maintained as 500 µs for each PRF setting and the device is in power-down mode (set by PDN_CYCLE) for the  
rest of the period. Additionally, the timing margins indicated as t8 and t9 in Figure 35 are included before and  
after the PDN_CYCLE pulse. The fraction of time that the device is in power-down mode over a period increases  
with reduction in the PRF because the period scales inversely with PRF. This timing is the reason why the curve  
displays a reduction in the average receiver current with reduction in PRF. The curve corresponding to  
CLKDIV_PRF = 1 terminates at a lower PRF of approximately 61 Hz, which is determined by the maximum  
range of the 16-bit timing counter (4 MHz divided by 216). With the CLKDIV_PRF set to 16, the timer clock is  
divided by 16. Thus, the lower PRF range can be extended down to a few hertz (the recommended operation is  
to restrict the range to 10 Hz or higher). For the same PRF (for example 100 Hz), a higher CLKDIV_PRF setting  
results in a lower power consumption because the timer engine runs on a slower clock and takes less switching  
current.  
The noise plots from Figure 3 to Figure 7 are taken at a PRF of 100 Hz. For this PRF setting, the noise at the  
output of the AFE is distributed from 0 Hz to 50 Hz. Plots that indicate the noise as over Nyquist bandwidth have  
integrated noise from 1 Hz to 50 Hz. The plots that indicate the noise as over 20-Hz bandwidth have integrated  
noise until 20 Hz. These plots are suitable for when additional low-pass filtering is implemented in the MCU to  
limit the noise bandwidth (in this case, to 20 Hz). This low-pass filtering can improve SNR because the PPG  
signal has information contained in the frequency band below 10 Hz.  
Figure 3 illustrates the input-referred noise current versus sampling duration duty cycle for different voltage levels  
at the receiver output. The PPG signal has a dc component that can cause the signal at the output of the  
receiver to be anywhere between ±FS (full-scale). The curves in Figure 3 illustrate a slight increase in the noise  
around higher dc levels, which results from additional noise sources in the ADC. The input-referred noise current  
can be visualized as a noise current flowing into one of the input pins (for instance, INP) and flowing out of the  
other (for example, INM). The noise is computed on the samples that constitute the difference between the LED  
phase and the ambient phase.  
70  
Copyright © 2015–2016, Texas Instruments Incorporated  
AFE4404  
www.ti.com.cn  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
Typical Application (continued)  
Figure 4 illustrates the SNR plots corresponding to the same data as Figure 3. The input-referred noise and SNR  
can be related as follows: the input-referred noise current can be first referred to the receiver output using a  
factor of 2Rf, where Rf is 500 kΩ for this case. This output-referred voltage gives the output noise that can then  
be referred to the full-scale value of 2 V (note that when the full-scale differential input to the ADC is 2.4 VPP, the  
operating range is 2 VPP, which is the valid operating range of the TIA).  
Figure 5 plots the input-referred noise current versus sampling duty cycle across different TIA gain settings.  
Figure 6 corresponds to the SNR plot of the data in Figure 5. As illustrated in Figure 5, a dynamic range of 100  
dB or more can be achieved in the receiver for many of the TIA gain settings. A reduction in SNR for higher TIA  
gain settings is in line with what is expected from the receiver because a higher TIA gain setting implies a lower  
signal level at the input of the receiver.  
Figure 7 and Figure 8 correspond to the input-referred noise current and corresponding SNR across the  
sampling duration duty cycle for different settings of the ADC averaging (as set by the NUMAV register setting).  
An ADC averaging of 1 implies no averaging. As illustrated in these curves, the SNR improves with averaging  
more samples. This improvement becomes more pronounced at lower TIA gain settings where the ADC noise  
has a higher affect on the overall receiver noise.  
The input-referred current noise current versus sampling duty cycle for different decimation factors is illustrated in  
Figure 9. As illustrated in Figure 9, a 4X decimation leads to almost a 2X reduction in input-referred noise.  
Figure 10 refers to a hypothetical case that is used to illustrate the improvement in the receiver dynamic range  
when using the offset cancellation DAC. Assume that the dc level of the signal current corresponds to 7.25 µA.  
Without the offset cancellation DAC, assume operation is with a TIA gain of 25 kΩ, which causes the output of  
the receiver to be at 362.5 mV. If the offset cancellation DAC is enabled with a subtraction current of 7 µA (the  
maximum setting), then the signal level at the input of the TIA after the offset cancellation DAC subtraction is  
0.25 µA. For this current, a TIA gain setting of 1 MΩ causes the TIA output to be at 500 mV. In effect, by  
enabling the offset cancellation DAC with the right setting, a higher TIA gain setting is allowed, which ends up  
reducing the contribution of the ADC noise and thereby reduces the input-referred noise current of the receiver.  
Note that the benefit from the offset cancellation DAC may not be so dramatic in an actual use case because  
perfect cancellation of the dc signal may not be achieved from the 0.5-µA resolution of the offset cancellation  
DAC. Even if achieved, the highest possible TIA gain setting on the residual current may cause receiver  
saturation with small changes in the dc signal level. For this reason, a safe value for the maximum gain setting  
when operating with the offset cancellation DAC is 250 kΩ or less. The third curve in Figure 10 illustrates this  
case.  
Figure 11 illustrates the effective response of the switched RC filter at the receiver output. The switched RC filter  
has a physical RC time constant that corresponds to a bandwidth of approximately 2.5 kHz. However, the  
effective bandwidth of the filter scales approximately with the sampling duration duty cycle. For a lower duty  
cycle, the effective filter bandwidth reduces as described from the comparison of a 5% duty cycle with a 25%  
duty cycle. At even lower duty cycles, the filter can double-up as a noise bandwidth reduction filter that can relax  
the digital-filtering requirements in the MCU.  
Figure 12 illustrates the switched RC filter response for a sampling duty cycle of 1% across different PRF  
settings.  
Figure 13 illustrates the switched RC filter response for a sampling duty cycle of 5% across different PRF  
settings.  
Figure 14 illustrates the LED current value versus the LED current setting code. The mode marked as 50-mA  
LED Current Mode corresponds to the default setting of ILED_2X = 0, whereas the mode marked as 100-mA  
LED Current Mode corresponds to ILED_2X = 1. The ideal slope of these curves corresponds to 0.793 mA per  
code for the 50-mA current mode and 1.587 mA per code for the 100-mA current mode. However, a small  
deviation from these ideal values can exist from device to device, and can be viewed as a gain error in the LED  
current versus code. This deviation can be larger for the 100-mA current mode, with slight saturation of current  
especially at the high-current settings.  
Copyright © 2015–2016, Texas Instruments Incorporated  
71  
AFE4404  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
www.ti.com.cn  
Typical Application (continued)  
Figure 15 illustrates the LED current as a function of the voltage at the TX pin. The voltage at the TX pin is  
changed by connecting a load resistor from the TX pin to TX_SUP and changing the voltage of TX_SUP. In the  
50-mA current mode, with a 50-mA current setting, the LED current starts to drop when the voltage at the TX pin  
goes below 0.5 V. In the 100-mA current mode, with a 100-mA current setting, the current starts to drop when  
the voltage at the TX pin goes below 1 V.  
Figure 16 and Figure 17 illustrate the LED current step error as a function of the LED current setting code for the  
50-mA and 100-mA current modes. These plots are generated from the data in Figure 14 after removing the gain  
error component (based on the best-fit curve).  
Figure 18 illustrates the power-supply rejection ratio (PSRR) for a tone on the TX_SUP power rail. The frequency  
of the tone is swept and the magnitude of the same tone at the device output (LED-ambient) is monitored. Note  
that in cases where the tone frequency is greater than PRF / 2, power is monitored at the aliasing frequency.  
PSRR is computed as the RMS value of the output tone referred to the RMS value of the tone applied on the  
supply pin.  
Figure 19 illustrates the PSRR for a tone applied on the RX_SUP power rail. PSRR is enhanced because of the  
presence of an internal LDO that drives the signal chain as well as the differential nature of the signal chain.  
Figure 20 illustrates the rejection of a 50-Hz differential input tone. A differential current input with a frequency of  
50 Hz is applied on the input pins. The magnitude of the tone at the output of the device (LED minus ambient  
phase) is converted to an input-referred current and compared with the magnitude of the injected current to  
estimate the rejection. The rejection is plotted as a function of the separation between the sampling instants of  
the LED and ambient phases. As illustrated in Figure 20, with reducing separation between the sampling  
instants, the rejection keeps improving because of an increased correlation of the injected tone between the two  
phases. A similar rejection is not obtained if only the LED phase data are considered.  
Figure 21 illustrates the SNR in dBFS over a 20-Hz bandwidth across sampling duty cycle over multiple  
operating temperatures ranging from –40°C to 85°C.  
Figure 22 illustrates the variation of the internal oscillator frequency over operating temperature on a typical unit.  
9.2.3.1 Choosing the Right AFE Settings  
The AFE signal chain offers several knobs that can be adjusted to achieve the SNR requirements needed for  
high-end, clinical, pulse-oximeter applications as well as for the low-power demands of battery-operated, optical,  
heart-rate monitoring applications. The knobs include TIA gain (Rf), TIA bandwidth, LED current (ILED), and  
offset cancellation DAC (I_OFFDAC). TI highly recommends running a calibration algorithm at startup and also  
periodically on the MCU to monitor the dc level at the output of the AFE and adjust the AFE signal chain settings  
to get close to the target dc level.  
In addition to a target dc level, the high and low thresholds can also be determined (for example, 80% and 20%  
of full-scale), which can cause the algorithm to switch to a different TIA gain or LED current setting when the  
signal amplitude changes beyond the thresholds.  
The optimum gain and LED current depends on the following conditions:  
1. The current transfer ratio (CTR) from the LED to the photodiode  
2. The perfusion index at the ADC output (the ac to dc ratio of the signal)  
For clinical SPO2 applications demanding the highest SNR, where power may not be a primary concern, TI  
recommends setting the LED and sampling pulse durations to > 200 µs. To simplify system design, keeping the  
pulse duration fixed across use cases is easiest. Set the LED current to the highest value that can be afforded by  
the system power budget. Initialize the TIA gain to the lowest gain setting of 10 kΩ and use the initial calibration  
routine to determine the optimum gain. Set the ADC in averaging mode with the number of averages being the  
maximum afforded by the choice of pulse repetition period and pulse duration. Eight ADC averages is usually  
sufficient to obtain good SNR.  
For power-critical, battery-operated applications, choose a sampling pulse duration between 50 µs to 100 µs and  
operate the device at a high TIA gain setting (for example, 1 MΩ). Set the ADC in averaging mode with four to  
eight averages. Initialize the LED current to the desired lowest setting (of a few milliamps) and use the initial  
calibration routine to determine the optimum LED current setting up to the highest value allowed by the system  
power budget.  
72  
Copyright © 2015–2016, Texas Instruments Incorporated  
AFE4404  
www.ti.com.cn  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
Typical Application (continued)  
For pulse-oximeter applications using red and IR LEDs, the target dc level can be typically set to 50% of positive  
full-scale.  
For HRM applications, the offset cancellation DAC can be additionally used such that the dc offset can be  
subtracted from the signal, thereby allowing for a larger TIA gain to be applied without saturating the signal.  
The calibration routine must be designed in a manner that does not rely on the accuracy of the LED current, TIA  
gain, and offset cancellation DAC, thus allowing for device-to-device variations. Specifically, the offset  
cancellation DAC is not trimmed at production and can have a significant device-to-device variation (±20%). If the  
calibration routine requires an accurate estimate of the offset cancellation DAC, then the PD_DISCONNECT  
mode can be used to estimate the offset cancellation DAC range on a given unit. The PD_DISCONNECT mode  
disconnects the photodiode from the TIA inputs. In this mode IPD = 0 and, thus, the effective input current to the  
TIA comes solely from the offset cancellation DAC (Ieff = I_OFFDAC). As a result, the offset cancellation DAC  
value can be directly estimated from the AFE output code.  
When the calibration loop is in the process of converging to the steady state, the device settings can continue to  
be refreshed to new values. Ideally, a time equal to tCHANNEL is provided for the AFE to settle to any change in  
signal-chain settings. However, this time can lead to unacceptably large delays in the convergence of the  
calibration routine. Therefore, during the transient (when the calibration routine is in the transient phase), the wait  
times can be reduced to as low as tCHANNEL / 10. After the calibration routine converges to the final settings, a  
wait time of tCHANNEL can then be applied before high-accuracy data are read out from the AFE.  
Copyright © 2015–2016, Texas Instruments Incorporated  
73  
AFE4404  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
www.ti.com.cn  
10 Power Supply Recommendations  
The guidelines for power-supply sequencing and device initialization are shown in Figure 96, Figure 97, and  
Table 79.  
RX_SUP  
t1  
IO_SUP  
t2  
TX_SUP  
t3  
RESETZ  
t4  
t5  
t6  
t7  
t4  
t5  
t6  
Device  
Settings  
Device  
Settings  
I2C Interface  
ADC_RDY  
t8  
CLK  
(External Clock Mode)  
High-Accuracy  
Operation  
Hardware  
Power-  
Down  
High-Accuracy Operation  
Reset  
Device State  
(PWDN)  
Figure 96. Power-Supply Sequencing, Device Initialization, and Hardware Power-Down Timing  
RX_SUP  
t1  
IO_SUP  
t2  
TX_SUP  
t3  
RESETZ  
t4  
t5  
t6  
t6  
Device  
Settings  
PDNAFE  
= 1  
PDNAFE  
= 0  
I2C Interface  
ADC_RDY  
CLK  
(External Clock Mode)  
High-Accuracy  
Operation  
High-Accuracy Operation  
Software Power-Down (PDNAFE)  
Device State  
Figure 97. Power-Supply Sequencing, Device Initialization, and Software Power-Down Timing  
74  
Copyright © 2015–2016, Texas Instruments Incorporated  
 
 
AFE4404  
www.ti.com.cn  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
Table 79. Timing Parameters for Power Supply Sequencing, Device Initialization, and Power-Down  
Timing  
VALUE  
Ramp up RX_SUP before or at the same time as IO_SUP. Keep t1 as  
Time between RX_SUP and IO_SUP ramping up  
t1  
t2  
t3  
small as possible (for example,10 ms).  
Time between RX_SUP and TX_SUP ramping up  
Keep t2 as small as possible (for example,10 ms).  
> 10 ms  
Time between all supplies stabilizing and start of the RESETZ low-  
going pulse  
t4  
t5  
RESETZ pulse duration for the device to get reset  
Between 25 µs and 50 µs  
> 1 ms  
Time between resetting the device and issuing of I2C commands  
Time between I2C commands and the ADC_RDY pulse that  
corresponds to valid data  
(1)  
t6  
t7  
t8  
tCHANNEL  
RESETZ pulse duration for the device to enter PWDN (power-down)  
mode  
> 200 µs  
> 10 ms  
Time from exiting power-down mode and subsequently resetting the  
device  
(1) The tCHANNEL parameter is specified in the Electrical Characteristics table.  
Copyright © 2015–2016, Texas Instruments Incorporated  
75  
AFE4404  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
Two key layout guidelines are:  
1. TX1, TX2, and TX3 are fast-switching lines and must be routed away from sensitive lines (such as the INP,  
INN inputs).  
2. The device can draw high-switching currents from the TX_SUP pin. A decoupling capacitor must be  
electrically close to the pin.  
11.2 Layout Example  
Figure 98. Example Layout  
76  
版权 © 2015–2016, Texas Instruments Incorporated  
AFE4404  
www.ti.com.cn  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
12 器件和文档支持  
12.1 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.2 商标  
E2E is a trademark of Texas Instruments.  
Bluetooth is a registered trademark of Bluetooth SIG, Inc.  
All other trademarks are the property of their respective owners.  
12.3 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.4 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2015–2016, Texas Instruments Incorporated  
77  
AFE4404  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
www.ti.com.cn  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏  
78  
版权 © 2015–2016, Texas Instruments Incorporated  
AFE4404  
www.ti.com.cn  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
YZP0015  
DSBGA - 0.5 mm max height  
SCALE 7.000  
DIE SIZE BALL GRID ARRAY  
A
B
E
BALL A1  
CORNER  
E = 1.6 mm  
D = 2.6 mm  
D
C
0.5 MAX  
SEATING PLANE  
0.05 C  
0.19  
0.13  
BALL TYP  
1 TYP  
0.5 TYP  
E
D
SYMM  
2
C
B
TYP  
0.5  
TYP  
A
1
2
3
0.25  
0.21  
15X  
C A  
SYMM  
0.015  
B
4221665/A 09/2014  
NanoFree Is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. NanoFreeTM package configuration.  
99. 封装外形  
版权 © 2015–2016, Texas Instruments Incorporated  
79  
AFE4404  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
YZP0015  
DSBGA - 0.5 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.5) TYP  
15X (  
0.23)  
3
1
2
A
(0.5) TYP  
B
SYMM  
C
D
E
SYMM  
LAND PATTERN EXAMPLE  
SCALE:30X  
0.05 MAX  
0.05 MIN  
( 0.23)  
METAL  
METAL  
UNDER  
SOLDER MASK  
(
0.23)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221665/A 09/2014  
NOTES: (continued)  
4. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SBVA017 (www.ti.com/lit/sbva017).  
100. 电路板布局示例  
80  
版权 © 2015–2016, Texas Instruments Incorporated  
AFE4404  
www.ti.com.cn  
ZHCSDV4C JUNE 2015REVISED MAY 2016  
EXAMPLE STENCIL DESIGN  
YZP0015  
DSBGA - 0.5 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.5) TYP  
(R0.05) TYP  
15X ( 0.25)  
1
3
2
A
B
C
(0.5)  
TYP  
METAL  
TYP  
SYMM  
D
E
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:40X  
4221665/A 09/2014  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
101. 模板设计示例  
版权 © 2015–2016, Texas Instruments Incorporated  
81  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2016, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
AFE4404YZPR  
AFE4404YZPT  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
YZP  
YZP  
15  
15  
3000 RoHS & Green  
250 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-20 to 70  
-20 to 70  
AFE4404  
AFE4404  
SNAGCU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jun-2016  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
AFE4404YZPR  
AFE4404YZPT  
DSBGA  
DSBGA  
YZP  
YZP  
15  
15  
3000  
250  
180.0  
180.0  
8.4  
8.4  
1.68  
1.68  
2.68  
2.68  
0.59  
0.59  
4.0  
4.0  
8.0  
8.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jun-2016  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
AFE4404YZPR  
AFE4404YZPT  
DSBGA  
DSBGA  
YZP  
YZP  
15  
15  
3000  
250  
182.0  
182.0  
182.0  
182.0  
20.0  
20.0  
Pack Materials-Page 2  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

AFE4404YZPR

适用于可穿戴设备、光学心率监测和生物传感的超小型集成式 AFE | YZP | 15 | -20 to 70
TI

AFE4404YZPT

适用于可穿戴设备、光学心率监测和生物传感的超小型集成式 AFE | YZP | 15 | -20 to 70
TI

AFE4405

适用于可穿戴设备光学心率监测和生物传感且具有 FIFO 的超小型集成式 AFE
TI

AFE4405YZR

适用于可穿戴设备光学心率监测和生物传感且具有 FIFO 的超小型集成式 AFE

TI

AFE4410

适用于可穿戴设备光学心率监测和生物传感且具有 FIFO 的低功耗集成式 AFE
TI

AFE4410YZR

适用于可穿戴设备光学心率监测和生物传感且具有 FIFO 的低功耗集成式 AFE | YZ | 30 | 0 to 0
TI

AFE4410YZT

适用于可穿戴设备光学心率监测和生物传感且具有 FIFO 的低功耗集成式 AFE | YZ | 30 | -20 to 70
TI

AFE4420

具有 FIFO 功能且适用于多传感器可穿戴光学心率监测的超小型集成式 AFE
TI

AFE4420YZR

具有 FIFO 功能且适用于多传感器可穿戴光学心率监测的超小型集成式 AFE | YZ | 30 | -40 to 85
TI

AFE4420YZT

具有 FIFO 功能且适用于多传感器可穿戴光学心率监测的超小型集成式 AFE | YZ | 30 | -40 to 85
TI

AFE4432

具有 FIFO 且适用于可穿戴设备光学生物传感的超小型、超低功耗、高 SNR 集成式 AFE
TI

AFE4432YCHR

具有 FIFO 且适用于可穿戴设备光学生物传感的超小型、超低功耗、高 SNR 集成式 AFE | YCH | 25 | -40 to 85
TI